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Abstract. We first study the so-called Heat equation with two families of

elliptic operators which are fully nonlinear, and depend on some eigenvalues

of the Hessian matrix. The equation with operators including the “large”
eigenvalues has strong similarities with a Heat equation in lower dimension

whereas, surprisingly, for operators including “small” eigenvalues it shares some
properties with some transport equations. In particular, for these operators,

the Heat equation (which is nonlinear) not only does not have the property

that “disturbances propagate with infinite speed” but may lead to quenching
in finite time. Last, based on our analysis of the Heat equations (for which we

provide a large variety of special solutions) for these operators, we inquire on

the associated Fujita blow-up phenomena.

1. Introduction. Let N ≥ 2 be given. For u : RN → R, say of the class C2, we
denote by

λ1(D2u) ≤ · · · ≤ λN (D2u)

the eigenvalues of the Hessian matrix D2u. For 1 ≤ k < N we consider the fully
nonlinear elliptic operators given by

P−k u :=

k∑
i=1

λi(D
2u), (1)

and

P+
k u :=

N∑
i=N−k+1

λi(D
2u). (2)

Notice that the case k = N leads to the linear situation P−Nu = P+
Nu = ∆u, hence

we will always suppose that k < N .
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Our first main goal is to understand the Heat equations

∂tu = P−k u in (0,+∞)× RN , (3)

and

∂tu = P+
k u in (0,+∞)× RN , (4)

together with the associated Cauchy problems. As revealed below by our analysis,
naming (3) a Heat equation is controversial but, for the moment, we adopt this
denomination.

Our second main goal is to analyze the Fujita blow-up phenomena [13], [26], [21],
[2], for the Cauchy problems associated with equations

∂tu = P−k u+ u1+p in (0,+∞)× RN , (5)

and

∂tu = P+
k u+ u1+p in (0,+∞)× RN , (6)

where p > 0.
Let us mention that these highly degenerate elliptic operators have been intro-

duced in the context of differential geometry, by Wu [27] and Sha [24], in order
to solve problems related to manifolds with partial positive curvature. In a related
fashion, they appear in the analysis of mean curvature flow in arbitrary codimension
performed by Ambrosio and Soner [3].

In the context of elliptic PDE they are already considered as an example of
degenerate fully non linear operators in the User’s guide [11], but more recently
both Harvey and Lawson in [18, 19] and Caffarelli, Li and Nirenberg [9] have studied
them in a completely new light.

Finally, in the very last years, some new results have been obtained on Dirichlet
problems in bounded domains in relationship with the convexity of the domain,
through the study of the maximum principle and the so called “principal eigenva-
lue”, see [23] and [4, 5].

Notice also that, due to the links between the behavior of solutions to evolution
equations (Fujita blow up phenomenon) and the existence of steady states (nonlinear
Liouville theorems), see [16] e.g., the works of Birindelli, Galise and Leoni [6] and
Galise [14] can be seen as a starting point for the present paper focused on evolution
problems.

We also wish to mention the very recent works of Blanc and Rossi that study
degenerate elliptic operators defined by Pju := λj(D

2u) for some 1 ≤ j ≤ N . In
other words, instead of considering the sum of the k smallest or k largest eigenvalues,
they consider only the j-th eigenvalue of the Hessian matrix. Even though they are
different operators they share some analogies both in the definitions and in the
difficulties that arise in studying them. These authors have considered both the
steady state equation [8] and the evolution equation [7] in a bounded domain. They
mainly focus on the well-posedness of such problems (in the viscosity sense), and
their approximation by a two-player zero-sum game.

As far as we know, this work is the first analysis of evolution equations in RN
involving the aforementioned nonlinear truncated Laplacian operators. Since we
explore many directions, and collect results that we believe to be of equal impor-
tance, we take the liberty not to present a section with some so-called main results.
Instead, we give below a rather detailed overview of the paper.
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In Section 2 we compute naive explicit solutions to the Heat equations (3) and
(4). This can be seen as a warm-up, already revealing the importance of convex-
ity/concavity of solutions.

In Section 3 we inquire on the existence of self similar solutions to (3) and (4). A
key observation is that when a solution u is “one dimensional”, its Hessian has an
eigenvalue of multiplicity (at least) N −1 and therefore, computing P±k u reduces to
compare the last eigenvalue with the one of order (at least) N − 1, see assumption
(8). The outcomes are the following: for equation (3) involving P−k , self similar

solutions have algebraic decay as |x| → +∞; for equation (4) involving P+
k self

similar solutions are the Heat kernels in lower dimension k < N which, in particular,

have a L1(RN ) norm which is increasing in time like t
N−k

2 .
In Section 4, we quote a result of Crandall and Lions [10] to obtain the global

well-posedness, in the viscosity sense, of the Cauchy problems (3) and (4), and the
local well-posedness, of the Cauchy problems (5) and (6), which we plan to study
in the end of the paper.

In Section 5 we inquire on radial solutions to the Cauchy problems (3) and (4). It
turns out that the Heat equation (3) involving P−k may not diffuse but transports.

In other words, the operator P−k shares some similarities with some first order
operators. As a by product, we can construct a very surprising example of an initial
datum driving the solution to zero everywhere in finite time, see Example 4, which
is referred as a quenching phenomena. On the other hand, and as already suspected
since Section 3, the Heat equation (4) in dimension N involving P+

k behaves like
the Heat equation in lower dimension k < N .

Finally, Section 6 is devoted to the analysis of the Cauchy problems (5) and (6).
We aim at determining the Fujita exponent pF separating “sytematic blow-up when
0 < p < pF ” from “existence of global solutions when p > pF ” (see Section 6 for a
more precise statement). The proofs rely on the variety of special solutions to the
Heat equations (3) and (4) collected in the previous sections. We prove that pF = 0
for (5) involving P−k , whereas pF = 2

k for (6) involving P+
k . These facts were highly

suspected from the previous sections but the proofs for (6) are far from trivial:
the proof of Theorem 6.1 in particular requires the combination of the comparison
principle, the subtle solutions of Example 7 and a comparison between P+

k u and
∆u which is available for radial and smooth solutions.

Let us mention that, from places to places, we have indicated some directions and
presented some preliminary computations that lead to partial conclusions or obser-
vations, and therefore raise some open problems. We have also tried to underline
the variety of possible behaviours of the evolution equations under consideration by
providing many examples of very different solutions.

2. Explicit solutions to the Heat equations.

2.1. Convex/concave functions of one variable. If, for some 1 ≤ i ≤ N ,

u(t, x) = ϕ(xi), with ϕ a C2 convex function,

then u solves (3). Indeed D2u = Diag (0, 0, ..., ϕ′′(xi)︸ ︷︷ ︸
ith position

, ..., 0, 0). Since ϕ′′(xi) ≥ 0

the N − 1 smallest eigenvalues are 0, hence P−k u = λ1(D2u) + · · ·+ λk(D2u) = 0 =
∂tu.
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Similarly if, for some 1 ≤ i ≤ N ,

u(t, x) = ϕ(xi), with ϕ a C2 concave function,

then u solves (4).

2.2. One variable travelling waves. For some 1 ≤ i ≤ N , let

u(t, x) = ϕ(xi − ct), with c 6= 0.

If ϕ is convex then, again, P−k u = 0 and thus we need −cϕ′ = 0 and ϕ = cst already

found above. On the other hand, if ϕ is concave then P−k u(t, x) = ϕ′′(xi − ct) and
thus we need −cϕ′ = ϕ′′ that is ϕ(z) = α− βe−cz with β > 0 to get the concavity.
Hence we are equipped with

u(t, x) = α− βe−c(xi−ct), α ∈ R, β > 0, c 6= 0,

solutions to (3) that are planar travelling waves connecting α to −∞.
Similarly, we are equipped with

u(t, x) = α+ βe−c(xi−ct), α ∈ R, β > 0, c 6= 0,

solutions to (4) that are planar travelling waves connecting α to +∞.

2.3. Polynomial solutions. For any A ∈ SN (R), any x0 ∈ RN , any y ∈ RN , any
C ∈ R,

u(t, x) =

(
k∑
i=1

λi(A)

)
t+

1

2
A(x− x0) · (x− x0) + (x− x0) · y + C

solves (3), whereas

u(t, x) =

(
N∑

i=N−k+1

λi(A)

)
t+

1

2
A(x− x0) · (x− x0) + (x− x0) · y + C

solves (4), since in the two above cases D2u = A. Those solutions provide the sub
and supersolutions used in the proof of [10, Theorem 2.7].

3. The Heat equations: Self similar solutions. If u(t, x) solves (3) or (4) so
does Cu(λ2t, λx), C > 0, λ > 0. We thus look after a nonnegative self similar
solution in the form

u(t, x) :=
1

tβ
ϕ

(
|x|√
t

)
, (7)

for some ϕ = ϕ(r), β ∈ R, and where |x| = (x21 + · · · + x2N )1/2. We also require
ϕ(0) = 1, ϕ′(0) = 0.

We immediately get

∂tu = − β

tβ+1
ϕ− 1

2

|x|
tβ+

3
2

ϕ′.

Next, after straightforward computations, we obtain the Hessian matrix

D2u =
1

tβ+
1
2

(
1

|x|
ϕ′IdN −

(
1

|x|
ϕ′ − 1

t
1
2

ϕ′′
)
x

|x|
⊗ x

|x|

)
.
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Since x
|x| ⊗

x
|x| is a matrix of rank 1, 1

tβ+
1
2 |x|

ϕ′ is an eigenvalue of D2u with multi-

plicity (at least) N − 1. By considering the traces of the matrices we see that the
remaining eigenvalue has to be 1

tβ+1ϕ
′′. From now on, we assume

ϕ′′(r) ≥ 1

r
ϕ′(r), for all r > 0, (8)

which enables to compute P±k u. Notice that other assumptions than (8) will be
discussed in subsection 3.3 and will reveal much less natural.

3.1. Operator P−k . Under assumption (8), we have

P−k u =

k∑
i=1

λi(D
2u) =

k

tβ+
1
2 |x|

ϕ′,

and thus the Heat equation (3) is transferred into the linear first order ODE Cauchy
problem

ϕ′ = −β 2r

r2 + 2k
ϕ, ϕ(0) = 1, (9)

which is solved as

ϕ(r) =

(
2k

r2 + 2k

)β
,

which in turn does satisfy (8) if β ≤ −1 or β ≥ 0. In order to keep nonconstant and
bounded solutions, we now restrict to β > 0: going back to (7), we are equipped,
for any β > 0, µ > 0, with solutions

u(t, x) = µ

(
1

|x|2 + 2kt

)β
, (10)

and also their temporal translations that is, for any β > 0, µ > 0, ε > 0,

uε(t, x) = µ

(
1

|x|2 + 2kt+ ε

)β
. (11)

Remark 1. Let 1 ≤ p ≤ +∞. For any t > 0, u(t, ·) belongs to Lp(RN ) as soon as
β > N

2p and we have

‖u(t, ·)‖Lp(RN ) =
µC

tβ−
N
2p

,

with C = C(β, p,N, k) > 0. In particular the L∞ norm decreases like 1
tβ

.

3.2. Operator P+
k . Under assumption (8), we have

P+
k u =

N∑
i=N−k+1

λi(D
2u) =

1

tβ+1
ϕ′′ +

k − 1

tβ+
1
2 |x|

ϕ′,

and thus the Heat equation (4) is transferred into the linear problem

ϕ′′ +
r2 + 2(k − 1)

2r
ϕ′ + βϕ = 0, ϕ(0) = 1, ϕ′(0) = 0. (12)

One recognizes the ODE arising when looking after self-similar solutions to the

Heat equation in dimension k < N . Hence, ϕ(r) := e−
r2

4 solves the above problem
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provided that β = k
2 , and does satisfy (8). Hence, going back to (7), we are equipped

for any µ > 0, with solutions

u(t, x) =
µ

t
k
2

e−
|x|2
4t , t > 0, x ∈ RN . (13)

In particular notice that, for µ = (4π)−
N
2 , we have

∫
RN u(t, x)dx = t

N−k
2 → +∞,

as t→ +∞.

Remark 2. For the self-containedness of the argument, we briefly discuss the prob-
lem (12) when β 6= k

2 . Using a Sturm-Liouville approach, one can recast the ODE
problem (12) into an integral equation and prove the existence and uniqueness of

a local solution which moreover always satisfies ϕ′′(0) = −βk , and is global when
β > 0, see [17, Proposition 3.1].

If β = 0, the solution is ϕ ≡ 1.
If β < 0, we claim that ϕ ≥ 1: if not, from ϕ(0) = 1, ϕ′(0) = 0, ϕ′′(0) > 0, there

must be a point r0 > 0 where ϕ reaches a local maximum larger than 1; testing the
equation at r0 yields a contradiction. We get rid of these solutions which are larger
than one.

Now, for β > 0, β 6= k
2 , writing ϕ(r) = e−

r2

4 ψ( r
2

4 ), we see that ψ has to solve

zψ′′(z) +

(
k

2
− z
)
ψ′(z) +

(
β − k

2

)
ψ(z) = 0, ψ(0) = 1, ψ′(0) = 1− 2β

k
,

and thus ψ(z) = 1F1

(
k−2β

2 , k2 , z
)

, where 1F1(a, b, z) is the confluent hypergeometric

function of first kind, or Kummer’s function, see [1]. It is known that, when a is
not a nonpositive integer,

1F1(a, b, z) ∼ Γ(b)

Γ(a)

ez

zb−a
, as z → +∞.

This transfers, when 0 < β < k
2 , into ϕ(r) ∼ C

r2β
, for some C > 0, as r → +∞,

and thus
∫ +∞
0

rN−1ϕ(r)dr = +∞, so that these solutions are not “admissible”.

When β > k
2 and k−2β

2 is not a negative integer, the conclusion is again ϕ(r) ∼ C
r2β

,
for some C > 0 or C < 0, as r → +∞, and these solutions are not “admissible”.
Last, when k−2β

2 is a negative integer, say −p, ψ(z) is the p-th generalized Laguerre
polynomial, which is known [25, Section 6.31] to change sign on (0,+∞), and thus
these solutions are not “admissible”.

3.3. On assumption (8). The goal of this short subsection is to show that as-
sumption (8) is the one to be retained, as claimed above.

First, assuming the reverse inequality, namely

ϕ′′(r) ≤ 1

r
ϕ′(r), for all r > 0, (14)

we can still compute P±k u, where u(t, x) is given by the self-similar ansatz (7).

But, when dealing with operator P−k , we now reach the second order ODE problem

(12), whose solution ϕ(r) = e−
r2

4 does not satisfy (14). Similarly, when dealing
with operator P+

k , we now reach the first order ODE problem (9), whose solutions

ϕ(r) =
(

2k
r2+2k

)β
do not satisfy (14).

Next, we may only assume the existence of ε > 0 such that

ϕ′′(r) ≥ 1

r
ϕ′(r), for all 0 < r < ε. (15)
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Then, dealing with P−k , we reach ϕ(r) =
(

2k
r2+2k

)β
, say for β > 0, for which

ϕ′′(r) > 1
rϕ
′(r) holds all along (0,+∞). In other words, we are back to assumption

(8). The same argument applies when dealing with P+
k .

Last, assuming (14) only a small bounded interval (0, ε), we reach a contradiction
as in the case of assumption (14).

4. Well-posedness of the different Cauchy problems. For A ∈ SN (R), we

define F−k (A) :=
∑k
i=1 λi(A) and F+

k (A) :=
∑N
i=N−k+1 λi(A). From the min-

max theorem for eigenvalues of real symmetric matrices, we have that, for any
A,B ∈ SN (R),

A ≥ B =⇒ λi(A) ≥ λi(B),∀1 ≤ i ≤ N =⇒ F±k (A) ≥ F±k (B),

and that, for any A ∈ SN (R), any c ∈ R,

F±k (A+ cIdN )− F±k (A) ≥ kc.

This enables to quote [10, Theorem 2.7]: for a initial datum u0 ∈ UC(RN ),
the Cauchy problems associated with the Heat equations (3) and (4) admit a com-
parison principle1 and are globally well-posed, solutions being understood in the
viscosity sense, [10], [11], [12], [22]. The proof follows the three main steps: first
prove a comparison principle using a doubling of variables method, next construct
polynomial sub and supersolutions in the spirit of subsection 2.3, last conclude by
the Perron’s method.

By a straightforward and classical modification of the above procedure, one can
prove the well-posedness of the Cauchy problems associated with equations (5) and
(6), at least locally in time. The main issue is then to determine if the local solution
is global or blows up in finite time, which will be discussed in Section 6.

5. The Heat equations: Radial solutions of the Cauchy problems. We
consider the Cauchy problem (3) or (4) starting from a radial initial datum u0(x) =
g(|x|), where g : [0,+∞)→ R is uniformly continuous. From the uniqueness of the
solution, u(t, ·) remains radial for t > 0 and we therefore use the ansatz

u(t, x) = ψ(t, |x|),

for some ψ = ψ(t, r). We compute the Hessian matrix and get

D2u =
1

|x|
(∂rψ)IdN −

(
1

|x|
∂rψ − ∂rrψ

)
x

|x|
⊗ x

|x|
.

whose eigenvalues are 1
|x|∂rψ with multiplicity (at least) N−1 and ∂rrψ (see Section

3). From now on, guided by (8) and subsection 3.3, we assume

∂rrψ(t, r) ≥ 1

r
∂rψ(t, r), for all t > 0, r > 0, (16)

which enables to compute P±k u.

1Notice that, as revealed by Example 4, the strong maximum principle may fail for operator
P−
k .
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5.1. Operator P−k . Under assumption (16), we have

P−k u =

k∑
i=1

λi(D
2u) =

k

|x|
∂rψ,

and thus the Heat equation (3) is transferred into the linear transport equation

∂tψ =
k

r
∂rψ,

that can be solved via the method of characteristics. Indeed, for r0 > 0, we have

d

dt

[
ψ
(
t, (r20 − 2kt)

1
2

)]
= 0,

and thus ψ
(
t, (r20 − 2kt)

1
2

)
= ψ(0, r0) = g(r0) which is recast

ψ(t, r) = g
(

(2kt+ r2)
1
2

)
. (17)

Conversely, we need to check that assumption (16) is satisfied. From (17) we
compute, assuming further regularity for g,

∂rrψ(t, r)− 1

r
∂rψ(t, r) =

r2

2kt+ r2

(
g′′(s)− 1

s
g′(s)

)
,

which we want to be nonnegative, and where we have let s = (2kt+ r2)
1
2 .

As a conclusion, we have proved the following.

Theorem 5.1 (Radial solutions of the Cauchy problem (3)). If g : [0,+∞)→ R is
uniformly continuous on [0,+∞), twice differentiable on (0,+∞) and such that

g′′(s)− 1

s
g′(s) ≥ 0,∀s > 0, (18)

then the solution of the Cauchy problem (3) starting from u0(x) = g(|x|) is

u(t, x) = g
(√

2kt+ |x|2
)
. (19)

In other words, in the above situation, the so-called Heat equation (3) does not
diffuse but transports. Let us investigate a few examples, for which we always
assume µ > 0 and β > 0.

Example 1. Function g(s) := µe−
s2

2k satisfies (18). From (19) we get the solution

u(t, x) = µe−te−
|x|2
2k . (20)

Notice that u(t, x) = e−tv(x) where v(x) := µe−
|x|2
2k is an eigenelement for operator

P−k : as noticed in [6], v solves P−k v + v = 0.

Example 2. Function g(s) := µ
(ε+s2)β

, ε > 0, satisfies (18). From (19) we recover

the solution (11).

Example 3. Any function g : [0,+∞)→ R, twice differentiable on (0,+∞), which
is nonincreasing and convex satisfies (18). In this framework g(s) = µe−s provides

the solution u(t, x) = µe−
√

2kt+|x|2 whereas g(s) = µ
(ε+s)β

, ε > 0, provides the

solution u(t, x) = µ(
ε+
√

2kt+|x|2
)β .
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The appearance of a transport equation implies very striking phenomena for a
so-called Heat equation: as shown by the following example, global extinction in
finite time, or quenching, may occur.

Example 4 (Quenching). Straightforward computations show that the smooth
function

g(s) :=

{
e

1
s−1 if 0 ≤ s < 1

0 if s ≥ 1

does satisfy (18). Since u0(x) = g(|x|) is compactly supported in the ball of radius
1, the associated solution (19) of the Cauchy problem vanishes everywhere as soon
as t ≥ 1

2k , that is a quenching phenomena in finite time occurs.

Also, using the rescaling gε(s) = ε−1g(εs) together with the comparison principle,
we deduce that any solution starting from a compactly supported initial datum will
endure quenching.

5.2. Operator P+
k . Under assumption (16), we have

P+
k u =

N∑
i=N−k+1

λi(D
2u) = ∂rrψ +

k − 1

|x|
∂rψ

and thus the Heat equation (4) is transferred into the linear convection diffusion
equation

∂tψ = ∂rrψ +
k − 1

r
∂rψ. (21)

We assume that g is bounded on [0,+∞). We denote by g̃ its radial extension
to Rk, namely g̃(x) := g(|x|) for x ∈ Rk. We thus select

ψ(t, r) =
1

(4πt)
k
2

∫
Rk
e−
|rω−y|2

4t g̃(y)dy = (Gk(t, ·) ∗ g̃)(rω), t > 0, r ∈ R, (22)

where ω is any unit vector in Rk. Since (21) corresponds to solving the radial Heat
equation in Rk, the restriction of ψ(t, r) to the t > 0, r > 0, solves (21) and starts
from g(r).

As a conclusion, we have proved the following.

Theorem 5.2 (Radial solutions of the Cauchy problem (4)). If g : [0,+∞)→ R is
uniformly continuous, bounded and such that ψ(t, r) given by (22) satisfies

∂rrψ(t, r) ≥ 1

r
∂rψ(t, r), for all t > 0, r > 0, (23)

then the solution of the Cauchy problem (4) starting from u0(x) = g(|x|) is

u(t, x) = ψ(t, |x|) =
1

(4πt)
k
2

∫
Rk
e−
|(|x|ω−y)|2

4t g(|y|)dy, t > 0, x ∈ RN , (24)

where ω is any unit vector in Rk.

Let us make a few comments. First, notice that x lives in RN but we integrate
over y ∈ Rk. Next, observe that (24) does not provide a convolution formula for any
radial solution, which would be in contrast with the fact that the equation is fully
nonlinear. Actually, (24) provides a convolution formula under condition (23) on
the initial datum, which is more consistent. Nonetheless, notice that (23) is stable
by linear combination with nonnegative coefficients.
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Example 5. For the Gaussian initial datum g(s) = 1

(4πa)
k
2
e−

s2

4a , a > 0, the con-

volution (22) is straightforwardly computed as ψ(t, r) = 1

(4π(a+t))
k
2
e−

r2

4(a+t) which

satisfies (23). Hence we get the solution

u(t, x) =
1

(4π(a+ t))
k
2

e−
|x|2

4(a+t) (25)

for t > 0, x ∈ RN . Notice that, for any 1 ≤ p ≤ +∞,

‖u(t, ·)‖Lp(RN ) ∼
C

t
1
2 (k−

N
p )
, as t→ +∞.

where C = C(a, p,N, k) > 0. In particular the L∞ norm decreases like 1

t
k
2

.

Example 6. For the step function g(s) := 1(0,1)(s) and k = 1 (for simplicity), we

use (22) to compute (∂rrψ − 1
r∂rψ)(t, r) for t > 0, r > 0, and observe that it has

the sign of

B(t, r) :=

∫ 1

−1
(r(r − y)2 − 2ty)e−

(r−y)2
4t dy.

Using a formal calculation software, we get

B(t, r) = 2te−
1+r2

4t

(
e
r
2t (−r + r2 + 2t)− e− r

2t (r + r2 + 2t)
)
,

which fails to be nonnegative as soon as 0 < r < 1, 0 < t < r−r2
2 . Hence (23) is

not satisfied. Notice however that g 6∈ UC(RN ) so that the well-posedness of the
Cauchy problem is not obvious.

Now, we intend to provide examples of compactly supported initial data that
satisfy (23). This is more complicated than checking condition (18), which is the
counterpart of condition (23) for the Heat equation involving P−k , since the solution
ψ(t, r) is now given by a convolution, namely (22). With additional assumptions on
the initial datum, we now try to find a “local” sufficient condition for (18) to hold.
Assuming that there is ε > 0 such that

g is of the class C2 on [0, ε], nonnegative, g′(0) = 0, and g ≡ 0 on [ε,+∞), (26)

the following computations are licit. Formula (22) yields

(4πt)
k
2ψ(t, r) =

∫
Rk
e−
|re1−y|

2

4t g(|y|)dy =

∫
|y|<ε

e−
|re1−y|

2

4t g(|y|)dy,

where e1 denotes the first vector of the canonical basis of Rk. In the sequel a generic
y ∈ Rk is recast y = (y1, y

′) with y1 ∈ R, y′ ∈ Rk−1. We differentiate with respect
to r and get, using the shortcut z = z(y) := re1 − y,

(4πt)
k
2ψr(t, r) =

∫
|y|<ε

−2(r − y1)

4t
e−
|z|2
4t g(|y|)dy = −

∫
|y|<ε

∂

∂y1
[e−

|z|2
4t ]g(|y|)dy

=

∫
|y|<ε

e−
|z|2
4t
y1
|y|
g′(|y|)dy,

using integration by part over y1, noticing that the boundary terms vanishes since
g(ε) = 0. Again we differentiate with respect to r, write

∫
|y|<ε fdy =

∫
|y′|<ε

∫ α
−α fdy1
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dy′ with the shortcut α = α(y′) :=
√
ε2 − |y′|2, use integration by part over y1 and

reach

(4πt)
k
2ψrr(t, r) =

∫
|y′|<ε

e−
|y′|2
4t
−αg′(ε)

ε

(
e−

(r−α)2

4t + e−
(r+α)2

4t

)
dy′

+

∫
|y|<ε

e−
|z|2
4t

(
1

|y|
g′(|y|)− y21

|y|3
g′(|y|) +

y21
|y|2

g′′(|y|)
)
dy.

Notice that the first integral term, over |y′| < ε, is the boundary term. Putting all
together we see that the sign of ψrr(t, r)− 1

rψr(t, r) is that of

I(t, r) :=

∫
|y|<ε

e−
|z|2
4t

y21
|y|2

(
g′′(|y|)− 1

|y|
g′(|y|)

)
dy +

∫
|y|<ε

e−
|z|2
4t
r − y1
r|y|

g′(|y|)dy

+

∫
|y′|<ε

e−
|y′|2
4t
−αg′(ε)

ε

(
e−

(r−α)2

4t + e−
(r+α)2

4t

)
dy′ =: (I1 + I2 + I3)(t, r).

Using again integration by part over y1 we get

I2(t, r) =

∫
|y′|<ε

e−
|y′|2
4t

2t

r

(
e−

(r−α)2

4t
g′(ε)

ε
− e−

(r+α)2

4t
g′(ε)

ε

)
dy′

−2t

r

∫
|y|<ε

e−
|z|2
4t

y1
|y|2

(
g′′(|y|)− 1

|y|
g′(|y|)

)
dy.

Putting all together we arrive at

I(t, r) =

∫
|y|<ε

e−
|z|2
4t
y1(y1 − 2t

r )

|y|2

(
g′′(|y|)− 1

|y|
g′(|y|)

)
dy

+

∫
|y′|<ε

e−
|y′|2
4t

t

r

−g′(ε)
ε

e−
(r+α)2

4t

(
eαrt

−1

(αrt−1 − 2) + αrt−1 + 2
)
dy′

=: (J1 + J2)(t, r).

We easily see that eλ(λ− 2) + λ+ 2 ≥ 0 for all λ ≥ 0 and, since g′(ε) ≤ 0, we have
J2(t, r) ≥ 0 for all t > 0, r > 0. Nonetheless even if we assume

g′′(s)− 1

s
g′(s) ≥ 0, for all 0 < s < ε, (27)

we cannot hope the term J1(t, r) to remain nonegative for all t > 0, r > 0 — unless
it vanishes— because of the term y1(y1 − 2t

r ). This is a strong indication that the
nonnegative initial data for which (23) holds are rather “rare” or, in other words
and roughly speaking, condition (23) seems to be very “unstable”. In particular for
k = 1 or g′(ε) = 0, the nonnegative favorable term J2(t, r) vanishes.

Nevertheless, assuming equality in (27) obviously saves the day and provides the
following example, which is an important tool for the proof of Theorem 6.1 on the
Fujta blow-up phenomena.

Example 7. Let ε > 0 be given. Function g(s) := (ε2 − s2)+ clearly satisfies (26)
and the equality in (27), so that the solution of the Cauchy problem (4) starting
from u0(x) = g(|x|) is given by the convolution formula (24).

Remark 3. From Example 5, Example 7 and the comparison principle we deduce
that, for any nonnegative and nontrivial initial datum u0 (not necessarily radial)
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having tails that can be dominated by a Gaussian tail, the solution u(t, x) of the
Heat equation (4) starting from u0 satisfies

C1

(1 + t)
k
2

≤ ‖u(t, ·)‖L∞(RN ) ≤
C2

(1 + t)
k
2

, for all t ≥ 0,

for some positive constants C1 = C1(u0), C2 = C2(u0).

Remark 4. Assume that the initial datum u0(x) = g(|x|) is such that the conclu-
sion of Theorem 5.2 holds, and that gi :=

∫
Rk |x|

ig(|x|)dx < +∞ for i = 0, 1. Then
the solution becomes asymptotically self-similar in the sense that∥∥∥∥∥u(t, ·)− g0

1

(4πt)
k
2

e−
| · |2
4t

∥∥∥∥∥
L∞(RN )

= o
(
t−

k
2

)
as t→ +∞.

This can be proved from the convolution formula (24) by reproducing the standard
argument for the (classical) Heat equation, see for instance the monograph of Giga,
Giga and Saal [15, subsection 1.1.5].

6. Global vs blow-up solutions for the doubly nonlinear Cauchy prob-
lems. In this section, as explained in Section 4, we wonder if the local solution to
the Cauchy problem associated with equations (5) or (6) is global or not.

Let us recall that, in his seminal work [13], Fujita considered solutions u(t, x) to
the nonlinear (p > 0) Heat equation

∂tu = ∆u+ u1+p in (0,∞)× RN , (28)

supplemented with a nonnegative and nontrivial initial datum and proved the fol-
lowing: when 0 < p < 2

N , any solution blows up in finite time whereas, when p > 2
N

some solutions with small initial datum are global in time. Hence, for equation
(28), pF := 2

N is the so-called Fujita exponent. Let us observe that, as well-known,

solutions to the Heat equation ∂tu = ∆u tend to zero as t → ∞ like O
(
t−

N
2

)
,

which is a formal argument to guess pF = 2
N .

In the sequel we prove that pF = 0 for equation (5) involving P−k , whereas pF = 2
k

for equation (6) involving P+
k .

6.1. Operator P−k . As seen in Example 1, the L∞ norm of some solutions to the
Heat equation (3) decrease exponentially fast to zero at large times. This is a strong
indication that the Fujita exponent is pF = 0.

Proposition 1 (Some global solutions with light tails). Let p > 0 be given. Assume

0 ≤ u0(x) ≤ Ce−
|x|2
2k for some 0 < C ≤ 1. Then the solution to (5) starting from

u0 is global in time and satisfies

‖u(t, ·)‖L∞(RN ) ≤

{
C

(1−Cp)1/p e
−t if 0 < C < 1

C if C = 1.

Proof. We define v(t, x) := Ce−te−
|x|2
2k which is the solution of the Heat equation

(3) starting from v0(x) = Ce−
|x|2
2k . We look after a supersolution to (5) in the form

u(t, x) = f(t)v(t, x),

with f to be chosen and starting from f(0) = 1. We compute

(∂tu− P−k u− u
1+p)(t, x) = f ′(t)v(t, x)− f1+p(t)v1+p(t, x)
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which is nonnegative provided

f ′(t)

f1+p(t)
≥ ‖v(t, ·)‖pL∞ = Cpe−pt.

Since C ≤ 1 the Cauchy problem f ′(t)
f1+p(t) = Cpe−pt, f(0) = 1 is globally solved as

f(t) =
1

(1 + Cp(e−pt − 1))1/p
≤

{
1

(1−Cp)1/p if 0 < C < 1

et if C = 1.

From the comparison principle, we deduce 0 ≤ u(t, x) ≤ u(t, x) for all t > 0, x ∈ RN ,
which provides the result.

The solutions (11) to the Heat equation (3) provide examples of global solutions
to (5) with initial heavy tails, provided p is large enough.

Proposition 2 (Some global solutions with heavy tails). Let β > 0 be given. Let
p > 1

β be given. Assume 0 ≤ u0(x) ≤ C
(|x|2+ε)β for some C > 0, ε > 0 satisfying

Cp

εpβ−1
≤ 2k

pβ − 1

p
.

Then the solution to (5) starting from u0 is global in time and satisfies

‖u(t, ·)‖L∞(RN ) ≤


C′

tβ
if Cp

εpβ−1 < 2k pβ−1p

C′

t1/p
if Cp

εpβ−1 = 2k pβ−1p ,

for some C ′ = C ′(β, p, k, ε, C) > 0.

Proof. We define v(t, x) := C
(|x|2+2kt+ε)β

which is the solution of the Heat equation

starting from v0(x) = C
(|x|2+ε)β . Next, the proof is similar as the previous one.

From any of the two above propositions, we thus conclude that we do have
pF = 0. Notice also that pF = 0 also follows from the following observation from
[6]: for any p > 0, equation (5) admits the stationary solutions(

2k

p(µ+ |x|2)

) 1
p

,

which corresponds to the critical case p = 1
β of the above proposition.

6.2. Operator P+
k . As seen in Example 5, the L∞ norm of some solutions to the

Heat equation (4) decrease like t−
k
2 at large times. This is an indication that the Fu-

jita exponent pF is smaller than 2
k . This is confirmed by the following construction

of global solutions when p > 2
k .

Proposition 3 (Some global solutions when p > 2
k ). Assume p > 2

k . Let a > 0 be

given. Assume 0 ≤ u0(x) ≤ C

(4πa)
k
2
e−
|x|2
4a for some C > 0. Then, if C > 0 is small

enough, the solution to (6) starting from u0 is global in time and satisfies

‖u(t, ·)‖L∞(RN ) ≤
C ′

(a+ t)
k
2

for some C ′ = C ′(p, k, a, C) > 0.
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Proof. We define v(t, x) := C

(4π(a+t))
k
2
e−

|x|2
4(a+t) which is the solution of the Heat

equation (4) starting from v0(x) = C

(4πa)
k
2
e−
|x|2
4a . We look after a supersolution to

(6) in the form

u(t, x) = f(t)v(t, x),

with f to be chosen and starting from f(0) = 1. We compute

(∂tu− P+
k u− u

1+p)(t, x) = f ′(t)v(t, x)− f1+p(t)v1+p(t, x)

which is nonnegative provided

f ′(t)

f1+p(t)
≥ ‖v(t, ·)‖pL∞ =

Cp

(4π(a+ t))
pk
2

.

If C > 0 is sufficiently small, the Cauchy problem f ′(t)
f1+p(t) = Cp

(4π(a+t))
pk
2

, f(0) = 1

is globally solved as

f(t) =
1(

1 + pCp

(4π)
pk
2 ( pk2 −1)

(
1

(a+t)
pk
2
−1
− 1

a
pk
2
−1

)) 1
p

≤ 1(
1− pCp

(4π)
pk
2 ( pk2 −1)a

pk
2
−1

) 1
p

.

From the comparison principle, we deduce 0 ≤ u(t, x) ≤ u(t, x) for all t > 0, x ∈ RN ,
which provides the result.

Our last main result shows that pF = 2
k .

Theorem 6.1 (Systematic blow-up when p < 2
k ). Assume 0 < p < 2

k . Then for

any u0 ∈ UC(RN ) nonnegative and nontrivial, the solution to (6) starting from u0
blows up in finite time.

Proof. Since the equation is invariant by translation in space and in view of the
comparison principle, it is enough to consider the case of the compactly supported
initial datum

u0(x) = g(|x|) := (ε2 − |x|2)+, x ∈ RN ,
for a arbitrary small ε > 0. We assume that the solution u(t, x) (t > 0, x ∈ RN ) to
(6) starting from u0 is global in time and look after a contradiction. To start with,
we make the additional assumption (to be removed in the end of the proof) that
the viscosity solution is radial and smooth, in the sense that u(t, x) = ϕ(t, |x|) for
some ϕ = ϕ(t, r) smooth on (0,+∞)× [0,+∞).

In some related proofs of blow-up phenomena, see [20], [13], [2], the fundamen-
tal solution of the underlying linear Heat equation is used. We are not equipped
with such a tool but it turns out that the solution of Example 7 has enough good
properties for a modification of the argument to apply. Hence, we denote by v(t, x)
(t > 0, x ∈ RN ) the solution to (4) starting from u0, as provided by Theorem 5.2
and Example 7. In particular we have v(t, x) = ψ(t, |x|) for ψ = ψ(t, r) provided by
the convolution formula (22) and smooth on (0,+∞)× [0,+∞).

We define the quantity (notice that we integrate over z ∈ Rk)

f(t) :=

∫
Rk
v(t, |z|e1)u0(|z|e1)dz =

∫
Rk
ψ(t, |z|)g(|z|)dz,

where e1 is the first unit vector of the canonical basis of RN . We aim at finding
estimates of f(t) from below and above which are incompatible as t→ +∞.
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From the expression of the initial datum, we have

f(t) ≥ ε2

2

∫
|z|<ε/

√
2

v(t, |z|e1)dz.

Since v(t, x) is given by the convolution formula (24) we see, from the expression

of the initial datum, that, for any |x| < ε/
√

2 and t ≥ 1, v(t, x) ≥ C

t
k
2

for some

C = C(ε) > 0. As a result, we reach the estimate from below

f(t) ≥ C1

t
k
2

, ∀t ≥ 1, (29)

for some C1 = C1(ε) > 0.
Next, for a given t > 0 and any small α > 0, we let

g(s) :=

∫
Rk
v(t− s+ α, |z|e1)u(s, |z|e1)dz, 0 ≤ s ≤ t.

We differentiate with respect to s and use the equations satisfied by v and u to
reach

g′(s) =

∫
Rk

(
−P+

k v(t− s+ α, |z|e1)u(s, |z|e1) + v(t− s+ α, |z|e1)P+
k u(s, |z|e1)

)
dz

+

∫
Rk
v(t− s+ α, |z|e1)u1+p(s, |z|e1)dz =: h1(s) + h2(s).

A first key point is that, as understood in Section 5 and roughly speaking, P+
k v

corresponds to the Laplacian in dimension k < N . Another crucial point is that,
for a radial fonction u, P+

k u is always larger than the Laplacian in dimension k < N ,
this following from the beginning of Section 5. Precisely, denoting |Sk−1| the area
of the unit hypersphere of Rk, we have

h1(s) ≥ |Sk−1|
∫ +∞

0

(
(−ψrr −

k − 1

r
ψr)(t− s+ α, r)ϕ(s, r)

+ψ(s, r)(ϕrr +
k − 1

r
ϕr)(t− s+ α, r)

)
rk−1dr

which is nonnegative as seen by integrating by parts. Next, from the convolution
formula (24) and Fubini-Tonelli theorem, we see that, for all τ > 0,∫

Rk
v(τ, |z|e1)dz = ‖g(| · |)‖L1(Rk) =: C(ε, k)

1
p = C

1
p > 0.

Therefore we have, from Jensen inequality,

g′(s) ≥ h2(s) ≥ C
(∫

Rk
v(t− s+ α, |z|e1)u(s, |z|e1)dz

)1+p

= Cg1+p(s).

Integrating this differential inequality from 0 to t, we get Ct ≤ −1p
(

1
gp(t) −

1
gp(0)

)
≤

1
pgp(0) . Now letting α→ 0, this is recast

f(t) ≤ C2

t
1
p

, ∀t ≥ 1, (30)

for some C2 = C2(p, k, ε) > 0. As announced, letting t → +∞ into (29) and (30)
contradicts 0 < p < 2

k .
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It remains to remove the assumption that u is radial and smooth, which can
be done thanks to the comparison principle and the crucial point mentioned above
concerning radial solutions. Indeed, let us denote by w(t, x) the solution to

∂tw = ∆w + w1+p in (0,+∞)× Rk,

starting from w0(x) = u0(x) = g(|x|), for which we know that w(t, x) = θ(t, |x|) for
some θ = θ(t, r) smooth on (0,+∞)× [0,+∞). We switch to RN by letting

w(t, x) := θ(t, |x|e1), t > 0, x ∈ RN .

Since ∆w ≤ P+
k w, we deduce from the comparison principle that w ≤ u, and it

suffices to prove the blow-up of w. Since w possesses all the necessary properties,
we can reproduce the above argument with w playing the role of u. This concludes
the proof of Theorem 6.1.

Remark 5. The comparison argument in the preceding paragraph, combined with
the Fujita blow-up result [13] for the classical heat equation, may actually provide
the result in a more direct way. Nonetheless, in order to keep the paper self-
contained, we decided not to rely on [13] and thus have reproduced the full estimates.

Acknowledgments. The authors are grateful to the anonymous referee whose
precise comments have improved the presentation of the results.
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