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Abstract: A two-level iterative algorithm for finding stationary solutions of coupled nonlinear
Schrödinger equations describing the propagation dynamics of an electromagnetic pulse in
multimode and multicore optical fibers of various structures was developed and tested. Using as
an example the proposed analytical soliton solution which is localized in space and time, test
calculations were performed, and the convergence of the algorithm was demonstrated.
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1. Introduction

Multicore fibers (MCFs) and multimode fibers (MMFs) are currently used in a large number
of scientific and technical applications. Despite the fact that initially they emerged as solutions
to increase the throughput of fiber-optic communication lines, nowadays MCFs and MMFs are
used in a wide range of photonics applications. MMFs have one core supporting a few number
of optical modes, while MCFs consist of several small cores located under a common cladding
(see Fig. 1). Such structures can be considered as nonlinear discrete physical systems, that are
important both for basic research and for practical use. For example, it has recently been shown
that propagation of high-power optical pulses through a MCF can lead to energy concentration in
certain cores, leading to the coherent combination, amplification and compression of light pulses
[1]. This nonlinear effect arising in MCFs can be used to create photonic devices, such as optical
switches, as well as to develop new types of high-power fiber lasers.

Fig. 1. The scheme of a multimode fiber (a) and examples of multicore fibers of regular
structure: (b) hexagonal structure, (c) ring structure the central core.

In addition, multimode and multicore fibers have great potential for applying to the effective
transmission of information over long distances. Their use can serve as an alternative to the
parallel laying of fiber cables, since the bandwidth in such fibers increases in proportion to
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the number of modes or cores [2,3]. Record performance for data transfer have recently been
achieved with the help of a combined MCF-MMF approach. For example, in [4] using a 19-core
fiber and 6 modes in each core, a record bandwidth of 10.16 petabits per second was achieved.
Data transmission was carried out at a distance of 11.3 km.
Different spatio-temporal effects can be observed in MMFs. Recently, the effect of spatial

beam self-cleaning was discovered [5,6]: above a certain threshold power, a cleaned powerful
pulse can be obtained from an initial random optical field introduced in the MMF core. The
Gross-Pitaevskii equation (GPE) is a suitable mathematical model for numerically describing
such type of dynamics, which however is too complex for qualitatively describing this effect. It is
possible to construct a simpler, low-dimensional model based on mode decomposition, which
can provide some insight into the self-cleaning phenomenon (see [5]). As we shall see, a simple
reduced "mean field" model can be suitable for the qualitative description of the steady-state
generation in MMFs.

An interesting phenomenon associated with multicore fibers is the generation of light bullets –
high-energy pulses localized both in time and space, and propagating without distorting their
shape along the fiber. Light bullets are formed due to the mutual compensation of diffraction,
anomalous dispersion, and nonlinearity; they were recently observed in experiments [7–9]. In
bulk media, small fluctuations in the intensity or width of the light beam can lead to collapse; in
such case, light bullets are unstable. However, in discrete media, such as for example in MCFs, a
similar effect is not observed [10]. In recent years, due to the increased interest in multicore light
guides, many papers have appeared which are devoted to theoretical studies of light bullets. The
propagation of the electromagnetic field in multicore and multimode fibers can be described by a
system of coupled nonlinear Schrödinger equations (CNLSEs) or generalized Manakov equations
[1,11]. Approximate analytical solutions in the form of space-time discrete solitons [12] were
obtained for models of centrally symmetric multicore optical fibers based on the CNLSEs.

But in most cases, the search for stationary solutions of pulse propagation in MCFs and MMFs
is only possible with the help of numerical methods. Among the methods for finding stationary
solutions, the most common are: the Petviashvili method [13], as well as the imaginary time
evolution method (ITEM) [14]. In the ITEMmethod, a solution of predetermined power is sought.
Time t is replaced by the imaginary time it, for constructing an iterative process in the norm of L2.
The disadvantage of this method is the inability to fix the propagation constant, which needs to
be calculated at each iteration step. The Petviashvili stabilizing correction method, on the other
hand, is suitable for finding solutions with a predetermined propagation constant, but the power
of the obtained solution is not fixed. In the case of nonlinear photonic structures (for example,
MCFs), the propagation constant parameterizes well the localized solution [13,15]. However,
this algorithm is only applicable to MCFs with a regular structure and a large number of cores
or for ring MCFs. In such cases one can reduce the relevant system to an uncoupled form by
applying discrete Fourier transform by the discrete core space. For more complex MCFs, both of
the above methods converge either to a trivial solution or to a distributed, non-localized solution.

Here we consider the case of a MCF with a centrally symmetric arrangement of the cores (see
Fig. 1(c)). Since the central core introduces an irregularity into the structure, the use of standard
iterative methods for finding a stationary solution in the form of a light bullet of nonzero energy
is difficult in this situation.
In this work, we introduce a new two-level iterative algorithm, which allows for finding a

pulsed stationary solution of the CNLSEs with different types of couplings among the cores of
the MCF. The propagation of the found solutions was simulated, in order to demonstrate truly
stationary dynamics. Next, we derive a new approximate analytical solution for ring MCFs with
central core, and demonstrate the stability of such a solution. In addition, the analytical solution
can also be used as initial distribution in order to start the iterative algorithm. Finally, we briefly
investigate spatiotemporal bullet solutions for MMFs.
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2. Mathematical model for MCF

The propagation of the electromagnetic field in a MCF can be described by using a system of
CNLSEs, defined in the slowly varying envelope approximation. We write a system of (NC + 1)
equations, which characterize the field propagation in a MCF with a centrally symmetric structure,
as follows 

i ∂A0
∂z + D0

∂2A0
∂t2 + 2γ0 |A0 |

2A0 +
Nc∑

m=0
C0,mAm = 0,

i ∂A1
∂z + D1

∂2A1
∂t2 + 2γ1 |A1 |

2A1 +
Nc∑

m=0
C1,mAm = 0,

· · ·

i ∂ANc
∂z + DNc

∂2ANc
∂t2 + 2γNc |ANc |

2ANc +
Nc∑

m=0
CNc,mAm = 0,

(1)

where An is the envelope of the field propagating along the nth core, Dn > 0 is the dispersion
parameter of the nth core (we consider only the case of anomalous dispersion), γn is the Kerr
nonlinear coefficient, z is an evolutionary variable, t is a time, and Nc is the number of cores on
the periphery of the MCF. Further, for each core, we will only take into account the coupling with
nearest cores: for example, for the cores at the periphery, the right and left neighbors, as well as
the central one, will contribute to the evolution of the field. The coupling decreases in inverse
proportion to the square of the distance between the cores, so this simplification is acceptable.
The core located in the center is equally spaced from cores on the periphery, so that all members
of the sum

∑
Cn,mAm are taken into account.

Due to the symmetry of the waveguide structure, the stationary pulse solution will also have
a central symmetry: in the cores at the periphery, pulses will be characterized by one set of
parameters (A1, γ1,D1). The solution in the central core will be described by the set (A0, γ0,D0).
Therefore, we will only consider 2 equations, one for the central core, and one for a generic core
on the periphery: 

i ∂A0
∂z + D0

∂2A0
∂t2 + 2γ0 |A0 |

2A0 +
Nc∑

m=0
C0,mAm = 0,

i ∂A1
∂z + D1

∂2A1
∂t2 + 2γ1 |A1 |

2A1 + C1,1A1 + 2C1,2A1 = 0.
(2)

Let us denote C0,0 = β0, C0,n = C0, Cn,n+1 = C1, Cn,n = βn, and introduce the dimensionless
variables [16,17]:

An =
√

Pneiβ0Lz′un, P0 = P1Nc = N3/2
c

C0
γ1

,

z′ =
z
L
, L =

1
β0
√

Nc
, t′ = t/T , T2 =

D0

C0
√

Nc
.

The final system of equations is written in the form (omitting primes):{
i ∂u0
∂z +

∂2u0
∂t2 + 2Nc

γ0
γ1
|u0 |2u0 + u1 = 0,

i ∂u1
∂z +

D0
D1

∂2u1
∂t2 + 2|u1 |

2u1 + u0 + κu1 = 0,
(3)

where κ = β1−β0+2C1
C0
√

Nc
.

3. Iterative method

In order to construct an iterative method, we will perform several transformations of the system
Eq. (3). First, we will search for a stationary solution in the form un(z, t) = un(t) exp (iλ2z). After
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substituting this type of solution into the system, we divide the first equation by 2Nc
γ0
γ1
, and the

second by 2, so that all coefficients of nonlinear terms are equal to one. Next, we calculate the
Fourier transform of both equations of the system, and obtain{

− λ
2

2N
γ0
γ1

ũ0 − γ1
2Nγ0ω

2ũ0 + N(ũ0) + γ1
2Nγ0 ũ1 = 0,

−λ
2

2 ũ1 − D1
2D0

ω2ũ1 + N(ũ1) + κ
2 ũ1 + ũ0

2 = 0,
(4)

where ũn = ũn(ω) and N(ũn) = F(|un |
2un) is the Fourier transform of the nonlinear term. As one

can see, system Eq. (4) has an asymmetry of linear couplings. Next, we rewrite the system Eq.
(4) in a matrix form Mũ = ṽ:

©­«
λ2

2N
γ0
γ1
+

γ1
2Nγ0ω

2 0

0 λ2

2 +
D1
2D0
− κ

2

ª®¬ ©­«
ũ0

ũ1

ª®¬ = ©­«
N(ũ0) + γ1

2Nγ0 ũ1

N(ũ1) + ũ0
2

ª®¬ (5)

The two-level iterativemethod for searching a stationary solution of systemEq. (4) is schematically
presented in Fig. 2. The purpose of the outer loop is to determine the the non-zero total energy
E of the stationary solution, while the inner loop is responsible for the construction of the
solution shape. As initial non-zero conditions u(0)0 (t) and u(0)1 (t), we used the approximate
solutions that we will derive in the next section. For the total energy of the initial approximation
E0 = E(u(0)0 ) + E(u(0)1 ), we define the right Emax = 102E0 and the left Emin = 10−2E0 energy
interval boundaries, within which we will search the energy of a stationary solution by means of
the bisection method. The condition for stopping the outer loop iterations is provided by the
criterion

|E(k) − EM |

EM
< ε, EM =

Emax + Emin
2

, (6)

where ε is a given accuracy, and k is the outer loop iteration number. In calculations we used the
value ε = 10−11.

The inner iteration loop is necessary for approximating the shape of the stationary solution
with a target value of energy EM , and consist of the transformation Eq. (5) coupled with a
renormalization of the resulting solution energy:

ˆ̃u(k,l) =
(

EM∫
|M−1ṽ(k,l) |2dt

)1/2
M−1ṽ(k,l). (7)

Here the index l is an iteration number of the inner loop. The stopping criterion is given by
the stabilisation of the total energy of the field M−1ṽ(k,l) (before renormalization). To calculate
the nonlinear vector of the right-hand side ṽ(k,l), it is necessary to perform the inverse Fourier
transform after each inner iteration in order to calculate N(ũ(k,l−1)n ). In general, this slows down
the algorithm, so, for example, when searching for solutions of uncoupled systems of equations,
the Petviashvili method will have an advantage in terms of computational speed. However, the
advantage of the present algorithm is its applicability to the presently considered type of irregular
waveguide structure, as discussed in the introductory Sec. 1. The application of the method to an
arbitrary system of equations should not be confusing, since the matrix M for any system with
linear couplings is diagonal, and generalization of the algorithm for the systems with more than 2
equations is quite straightforward. The application of the algorithm, generalized to the case of
many (i.e., at least a dozen) equations, made it possible to find stationary solutions in [12,18].
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Fig. 2. Scheme of iterative two-level algorithm.

4. Analytic approximate stationary solution

For a verification of the numerical iterative algorithm, and in order to define applicable initial
conditions, we shall derive now an analytical approximate solution. We search a solution in
the form of a light bullet, where most of the energy is concentrated in the central core, and low
energy pulses are distributed at the periphery. In addition, let us assume that a solution in the
form of a light bullet corresponds to a spatiotemporal soliton, the envelope of which will be in
the form of a hyperbolic secant. The solution for the central core is

u0 = A(λ)f0 exp (iλ2z),
f0 = sech(ρ0t),
A(λ) = α1λ + α3

λ3
+
α5
λ5
+ O

(
1
λ7

)
,

ρ0 = ρ0(λ),

(8)
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whereas for the peripheral core:
u1 = B(λ)f1 exp (iλ2z),
f1 = eρ1t ln(1 + e−2ρ1t) + e−ρ1t ln(1 + e2ρ1t),
B(λ) = β1

λ +
β3
λ3
+

β5
λ5
+ O

(
1
λ7

)
,

ρ1 = r1λ + r3
λ3
+ O

(
1
λ5

)
,

(9)

where ρk are the pulse widths in the central and peripheral cores, respectively, fk are test functions,
and A, B are functions that approximate the amplitude of the stationary solution. The solution Eq.
(8) is a fundamental soliton solution, and the solution Eq. (9) is a localized optical pulse [12].

The pulse width of the central core can be found from the condition of a mutual compensation
of dispersive and nonlinear effects, specifically

ρ20 = Nc
γ0
γ1

A2. (10)

Since the pulse at the periphery is not a fundamental soliton, we will also find its width by the
method of indeterminate coefficients.

By substituting the solutions Eq. (8) and Eq. (9) into the investigated system of Eq. (3) at the
point t = 0, and using the method of undetermined coefficients for polynomials of λ, we obtain
the coefficients αk, βk and rk:

α1 =

√
γ0

Ncγ1
, α3 = −

α1
2s

, α5 = −
κα1

2s2
,

β1 = −
α3
ln 2

, β3 = −
α5
ln 2

, β5 = −
3α2

3
2 ln 2α1

,

r1 =

√
(s − 1)

D0
D1

ln(2)
1 − ln(2)

, r3 =
D0
4D1

1
r1

ln(2)
1 − ln(2)

[4α2
1

s2
+
2κ2

s
+
1
2

]
,

(11)

where s = −κ2 +
√
κ4 + 8α2

1 . The disadvantage of proposed the analytic expressions is the need

to fulfill the condition s > 1, which leads to the limitation on the core number Nc < 8
(
γ1
γ0
− 1

)
.

For the analytic approximate solutions of Eq. (3), we obtain the following expressions for the
total energy and the Hamiltonian:

E =
∞∫

−∞

|u0 |2dt +
∞∫

−∞

|u1 |2dt = 2
A2

ρ0
+ d1

B2

ρ1
, (12)

H = H0 + H1 =

∞∫
−∞

[����∂u0
∂t

����2 − γ0γ1 |u0 |4 − u∗0u1

]
dt

+

∞∫
−∞

[
D0
D1

����∂u1
∂t

����2 − |u1 |4 − u0u∗1 − κ |u1 |
2

]
dt

=


2
3

A2ρ0 −
4
3

Nc
γ0
γ1

A4

ρ0
+

∞∫
−∞

u∗0u1dt
 +


1
3

(
π2

6
+ 2 ln2 2

)
D0
D1

B2ρ1 − d2
B4

ρ1
+

∞∫
−∞

u∗0u1dt − d1
B2

ρ1

 ,
(13)

where d1 = 5.69398194001592, d2 = 7.37436321044295.
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5. Analysis of stationary solutions of the CNLSEs

We carried out a comparative analysis of our analytical approximate and numerical solutions
of the CNLSEs Eq. (3). We considered the following parameter values: D0 = D1 = 1, γ0 = 1,
γ1 = 2. Without any loss of generality, the value κ = 2/

√
Nc was chosen. Moreover, we took the

time interval t ∈ [−30; 30] uniformly divided by M = 214 nodes.
In Fig. 3, we illustrate the results of the comparison of the obtained pulse profiles in the central

(a,c) and peripheral (b,c) cores, for different values of the parameter λ, and for the core numbers
Nc = 2 and Nc = 6, respectively. In the central core, a good agreement between analytical and
numerical solutions is observed, both in amplitude and in pulse width. The relative error of the
discrepancy among approximate analytical and numerical solutions was ≈ 10−3. Note that the
case with Nc = 6 peripheral cores can be considered as a 7-core hexagonal MCF also.

Fig. 3. Power distribution of the approximate analytical solution (lines) and of the numerical
solution (symbols) for different values of the parameter λ, for (a,c) the central and (b,d)
peripheral core. Here the upper figures (a,b) correspond to the case Nc = 2, the lower figures
(c,d) – Nc = 6.

For the peripheral cores, a good agreement is only observed in amplitude, for small values
of the parameter λ; whereas a slight discrepancy in the pulse widths is obtained. This can
be explained by the use of different approaches for the calculation of the analytical solution.
Specifically, the pulse width in the central core is uniquely calculated from the condition of
mutual compensation of nonlinear and dispersive effects of the fiber Eq. (10). On the other
hand, pulse width for the periphery cores is obtained by using the polynomial Eq. (9), the
highest power of which is λ. Therefore, for small values of λ, possible discrepancies may arise
between the widths of the analytical and numerical solutions. Whereas for large values of λ, the
relative error decreases to an order similar to 10−3. The pulse amplitudes for both the central and
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peripheral cores are given by approximating linear combinations of inverse power functions with
an accuracy of O

(
λ−7

)
. Therefore one obtains a good agreement in both cases.

The relative error between analytical and numerical solutions for the pulses in the central
and peripheral cores is presented in Fig. 4, as a function of the propagation constant λ. Also,
the discrepancy between the total energy E and the Hamiltonian H is shown. Figure 5
presents an example of propagation of the analytic solution and of the numerical solution. The
analytical solutions can give adequate approximation of numerical solutions in many cases. All
approximation errors decrease with the growth of parameter λ, except for the relative error for the
field in peripheral cores, which stabilizes to a certain level. This level increases with the growth
of the total number of cores. For small values of the parameter λ, analytical expressions poorly
describe the stationary solution; nevertheless they can still be used as an initial approximation for
the proposed numerical algorithm. The discrepancy is caused by a change of soliton solution
type for the MCFs: for small values of λ the stationary solution ceases to be an optical bullet,
and most of the energy concentrates in the peripheral cores. This case will be considered later.

Fig. 4. Errors between approximate analytical and numerical values of the total energy E,
the Hamiltonian H and solutions u0(t) and u1(t) for Nc = 2 (a) and Nc = 6 (b).

Fig. 5. Example of dynamics of the approximate analytical solution (a) and of the numerical
solution for Nc = 4, λ = 2.

Let discuss now in more detail the properties of stationary solutions, which are numerically
found by the proposed algorithm. As we have mentioned before, for each peripheral core number
Nc some value λ∗ = λ∗(Nc) exists, for which the stationary solution with λ > λ∗ is a light bullet
where most of its energy is concentrated in the central core. Whereas the stationary solution
with λ < λ∗ represents a distributed solution. Figure 6 shows the total energy of the system
E = E(u0) + E(u1) and the Hamiltonian H. Here these solution families are well separated by a
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discontinuity of the energy E = E(λ) (for Nc = 2), or by a discontinuity of the energy derivative
(for Nc = 4 and higher values). To determine the stability of the found solution we can use the
Vakhitov-Kolokolov criterion [19], which states that a positive slope linear dependence of the
total energy E of the system on the parameter λ2 indicates the stability of the solution. Also, it
should be noted that in discrete systems a collapse does not occur for a negative value of the
Hamiltonian H [20]. Thus, based on Fig. 6(a), we can state that all stationary solutions for Nc = 2
are stable, and can propagate without a shape change. On the other hand, for Nc ≥ 4, a value
λs = λs(Nc) exist, such that the solution obtained for λ∗ < λ < λs is unstable.

Fig. 6. The total energy E and the Hamiltonian H of the system Eq. (3) for different
peripheral core numbers Nc.

Figure 7 sheds light on this observation. In the top left panel of Fig. 7, we pointed out by
stars on the total energy E = E(λ,Nc) curve some specific solutions and drew the corresponding
pulse dynamics along fiber length z. Solutions 1) and 2) correspond to the distributed and soliton
stationary regimes for a MCF with Nc = 2 peripheral cores. Both solutions are stable due to the
Vakhitov-Kolokolov criterion, and propagate without change of shape in numerical simulations
performed by the split-step Fourier method adapted for CNLSEs [21]. Solutions 3) – 5) belong
to different ranges of the parameter λ. Regime 5) is a stable soliton solution, while regime 4)

Fig. 7. The dependence of the total energy E of the numerically found solutions on small
values of parameter λ (top left graphs). Stars on this picture indicate some solutions whose
dynamics along fiber are depicted in other figures. Examples 2) and 5) represent light bullets.
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corresponds to an unstable soliton solution, since the Vakhitov-Kolokolov criterion is not met
in this case. Nevertheless, the dynamics of regime 4) show that for a given value of λ there is
a stable distributed solution that was not captured by the algorithm, due to insufficiently close
initial data. Finally, solution 3) belongs to a family of stable distributed solutions.
In Fig. 8, we present the energy E0 = E(u0), the width (FWHM) w0, and the peak power P0

for the central core only. Please note that the width of all solutions of the "light bullet" type is
the same, for different values of the parameter λ and of the number of cores Nc. In this case,
the energy and the peak power of the solutions increase in proportion to each other. A different
behavior is only observed for N = 2, where another type of solution exists.

Fig. 8. The values of energy E0, time width (FWHM) w0, and peak power P0 of the
stationary solution u0(t) for the central core, obtained numerically by means of the proposed
algorithm.

6. Mathematical model for MMF

The proposed two-level algorithm can also be applied to systems describing optical pulse
propagation in MMFs (see [5]):{

i ∂ψ1∂z = D1
∂2ψ1
∂t2 + U1N1ψ1 − Kψ2,

i ∂ψ2∂z = D2
∂2ψ2
∂t2 + U2N2ψ2 − Kψ1,

(14)

where ψ1,2 =
√

N1,2 exp(−iθ1,2), and N1,2 =
��ψ1,2��2 measures the number of photons in the

fundamental mode and the generic higher-order-mode (HOM), respectively, K is a constant

Fig. 9. Stationary solutions of Eq. (14) for different values of the parameter λ for the
fundamental mode (left) and generic HOM mode (right), respectively.
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coupling coefficient originating from nonlinear four-wave mixing terms, and U1,2 is a constant
determined by overlap integrals. Also, similar systems appeared in problems connected with
Bose-Einstein condensates [22] and nonlinear directional couplers [23]. Figure 9 presents the
stationary solutions of Eq. (14) for λ = 4 and λ = 16, in the case with U1 = 1, U2 = 2,
D1 = D2 = 1, K = 1. The intercomparison of the agreement between the solutions of Eq. (4) and
numerical solutions of the GPE is left for a subsequent publication.

7. Conclusion

We derived and verified the validity of a numerical algorithm for finding a stationary solution of
a system of nonlinear differential equations, describing the dynamics of an electromagnetic pulse
in a multicore optical fiber with a centrally symmetric structure. The proposed two-level iterative
method allows one to numerically find solutions for an irregular structure of the fiber cores,
which is similar to light bullets observed in experiments [9]. The application of the algorithm
presented in this paper made it possible to find stationary solutions in [12,18]. For the considered
multicore fiber involving a radial structure with an irregularity in its center, a stationary soliton
solution which is localized both in time and space was found. In addition, we confirmed that the
found family of solutions is stable upon propagation.
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