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Abstract—  This paper proposes a lexicographic Deep Rein-  

forcement Learning (DeepRL)-based approach to chance-

constrained Markov Decision Processes, in which the controller 

seeks to ensure that the probability of satisfying the constraint is 

above a given threshold. Standard DeepRL approaches require 

i) the constraints to be included as additional weighted terms in 

the cost function, in a multi-objective fashion, and ii) the tuning 

of the introduced weights during the training phase of the Deep 

Neural Network (DNN) according to the probability thresholds. 

The proposed approach, instead, requires to separately train one 

constraint-free DNN and one DNN associated to each constraint 

and then, at each time-step, to select which DNN to use 

depending on the system observed state. The presented solution 

does not require any hyper-parameter tuning besides the 

standard DNN ones, even if the probability thresholds changes. 

A lexicographic version of the well-known DeepRL algorithm 

DQN is also proposed and validated via simulations. 

I. INTRODUCTION AND RELATED WORKS 

Deep Reinforcement Learning (DeepRL) is a branch of 

model-free control that is gathering great interest from the 

scientific community and funding institutions, thanks to the 

exponential increase of computing capacity availability and 

its capability of addressing heavily nonlinear problems 

starting from the analysis of the input-output pairs of a 

system. This paper proposes a DeepRL solution for chance-

constrained control, a scenario in which the evolution of the 

system is steered in such a way that its constraints are satisfied 

with at least a certain probability threshold [1]. By imposing 

chance constraints, the operation of the controlled system can 

be confined within a certain region (e.g., for safety reasons 

[2]), while still allowing the state to evolve outside of that 

region if incentivized by an adequate economic/performance 

return [3], [4], or to assure the feasibility of the control.  

The modelling framework utilised in this work is the one 

of Markov Decision Processes (MDPs), commonly used for 

stochastic optimization problems involving random events 

and decision makers [5]. The classic scenario for which 

MDPs were introduced is related to the solution of 

unconstrained optimal control problems by means of 

Dynamic Programming (DP) [6], but MDPs found great 

application in RL-based controllers [7], able to infer the 

optimal control law directly from experience without 

requiring the explicit knowledge of the system dynamics. 

One of the most impactful modern contributions to 
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DeepRL is presented in [8], [9], in which the authors 

demonstrated how a so-called Convolutional Deep Q-

Network (DQN) was able to surpass human experts in playing 

a series of videogames. In the following years, DeepRL 

solutions found application in a broad range of domains 

typical of classic control systems, and were further refined 

with techniques inspired by classic RL theory such as Double 

Q-Learning [10] and actor-critic methods [11]. 

Several MDP studies dealt with constrained scenarios, 

typically by means of traditional Linear Programming and 

Lagrangian, or multi-objective, approaches [12], [13]. The 

Lagrangian approach can be used in RL/DeepRL algorithms 

and consists in designing a multi-objective cost function, 

where the constraints are translated into costs and included as 

additional objectives multiplied by constant weights. From 

the DeepRL viewpoint, the weights are additional hyper-

parameters that have to be tuned by trial-and-error or other 

rather time-consuming procedures during the training phase 

(see [14] and references therein). An alternative solution, at 

the basis of the present work, is the so-called “lexicographic” 

approach, already introduced in DP and RL formulations in 

[15], [16]. As described in Section II, in the lexicographic 

paradigm the action of the controller is aimed at minimizing 

either the primary cost function, if the system state is such that 

all the constraints are met, or one of the cost functions 

associated to the unsatisfied constraints, ordered by their 

relevance. 

The main contribution of this paper consists in the 

extension of the lexicographic approach to the DeepRL 

domain, allowing the offline design of DeepRL-based 

controllers for chance-constrained systems. As detailed in 

Section III, besides the training of a DNN associated to the 

primary cost function, as in standard DeepRL, each constraint 

cost function constitutes the objective of an additional DNN. 

Even if more DNNs need to be trained, the advantage with 

respect to multi-objective approaches is twofold: i) the 

training phase of the DNN is much simpler since there are no 

additional hyper-parameters (associated to the weights) to 

tune; ii) if the probability thresholds of the chance constraints 

change, the proposed algorithm can seamlessly reuse the 

already trained DNNs, whereas the multi-objective 

approaches require a new training. As detailed in Section III, 

besides the use of DNNs to approximate the action-value 

functions, the fact that they are trained offline is another 

This paper was partially funded by the European Commission in the 

framework of the H2020 EU-Korea project 5G-ALLSTAR under Grant 

Agreement no. 815323 

Alessandro Giuseppi, Member, IEEE, and Antonio Pietrabissa, Member, IEEE 

Chance-Constrained Control with 

Lexicographic Deep Reinforcement Learning 

mailto:pietrabissa%7d@diag.uniroma1.it


 

 

difference with respect to [16], where the action-value 

functions are approximated online by RL algorithms. 

The proposed methodology considers the class of DeepRL 

algorithms with discrete action space. Within this class, the 

methodology is independent from the chosen DeepRL 

algorithm and, for the sake of simplicity, is presented in 

Section III in a formulation based on DQN. In Section IV, the 

approach is evaluated in an environment built from the classic 

cart-pole balancing problem with additional chance 

constraints. Section V draws the conclusion and future works. 

II. PRELIMINARIES ON LEXICOGRAPHIC RL 

A constrained MDP with multiple constraints is defined by 

the tuple {𝑆, 𝐴0, 𝐓, 𝜌0, 𝝆, 𝛾, 𝑲,𝒳}, where: 𝑆 is the finite state 

space; 𝐴0 is the finite action space (the subscript 0 is added 

for notation convenience); 𝐓(𝑢) ∈ 𝑆 × 𝑆, ∀𝑢 ∈ 𝐴0 is the 

transition probability matrix, whose entries depend also on 

the actions; 𝜌0: 𝑆 × 𝐴0 × 𝑆 → ℝ+ is the one-step non-

negative primary cost function;  𝝆 is a vector of one-step non-

negative cost functions 𝜌𝑐: 𝑆 × 𝐴0 × 𝑆 → ℝ+ accounting for 

the constraints 𝑐 = 1,… , 𝐶; 𝛾 is the discount factor, weighting 

immediate versus delayed costs; 𝑲 is a vector of 𝐶 constant 

thresholds 𝐾𝑐, 𝑐 =  1,… , 𝐶, each one representing the 

maximum tolerated expected value of the corresponding cost, 

as detailed afterwards; 𝒳 ∈ 𝛸 is the probability distribution 

of the initial state 𝑠0 over the state set 𝑆 and 𝛸 is the set of 

feasible initial probability distributions. 

We considered deterministic policies, which associate a 

unique action 𝑢 ∈ 𝐴0 to each state 𝑠 ∈ 𝑆.  The selected action 

𝑢 in state 𝑠 will be denoted as 𝜋(𝑠) = 𝑢. 

The control objective is to drive the evolution of the 

discrete-time Markov process {𝑠𝑡}𝑡 = 1,2,…, where 𝑠𝑡 ∈ 𝑆 

denotes the state visited at time 𝑡, in order to minimize the 

expected discounted total cost  

𝐽𝜋,𝒳 = 𝐸𝜒{𝑉0
𝜋(𝑠)} = ∑ 𝜒(𝑠)𝑉0

𝜋(𝑠)𝑠∈𝑆 , (1) 

where the operator 𝐸𝒳{⋅} denotes the expected value under 

initial state distribution 𝒳 and 𝑉0
𝜋(𝑠) is the state-value 

function in state 𝑠, i.e., the expected discounted total cost, 

with one-step cost 𝜌0, when the initial state is 𝑠 and the system 

runs under policy 𝜋. 𝑉0
𝜋(𝑠) is defined as 

𝑉0
𝜋(𝑠) ≔ 𝐸𝜋{∑ 𝛾𝑡𝜌0(𝑠𝑡 , 𝑢𝑡 , s𝑡+1)

∞
𝑡=0 |𝑠0 = 𝑠}, (2) 

where the operator 𝐸𝜋{⋅} is the expected value when the 

system operates under policy 𝜋. 

In constrained MDPs, additional cost functions are defined 

to enforce the constraints. For clarity, hereafter the cost (1) 

will be referred to as primary cost. The one-step constraint 

costs 𝜌𝑐 are used in the expected discounted total costs 

𝐽𝑐
𝜋,𝒳 = 𝐸𝜒{𝑉𝑐

𝜋(𝑠)} = ∑ 𝜒(𝑠)𝑉𝑐
𝜋(𝑠)𝑠∈𝑆 , 𝑐 = 1,… , 𝐶, (3) 

hereafter referred to as constraint costs, with lower-bounded 

state-value functions, defined as 

 
1 This property derives from the series ∑ 𝑎𝑘∞

𝑡=0 = 1/(1 − 𝑎), 𝑎 ∈ (0,1). 

𝑉𝑐
𝜋(𝑠) ≔ 𝐸𝜋{∑ 𝛾𝑡𝜌𝑐(𝑠𝑡 , 𝑢𝑡 , s𝑡+1)

∞
𝑡=0 |𝑠0 = 𝑠}. (4) 

Chance constraints usually limit the expected undiscounted 

constraint cost below a given threshold (e.g., in the cart-pole 

balancing problem of Section IV, we are interested in limiting 

the probability that the pole angle exceeds a given threshold, 

regardless of when the constraint violations occur). Let 𝐾𝑐 be 

the 𝑐-th threshold; considering that 𝐽𝑐
𝜋,𝒳

 approximates the 

total undiscounted expected cost scaled by 1/(1 − 𝛾) [17]1, 

chance constraints can be expressed as 

𝐽𝑐
𝜋,𝒳 ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝐶, (5) 

with 𝐾𝑐 = 𝐾𝑐/(1 − 𝛾) . The constrained MDP, with the 

constraints representing the chance constraints, is then 

formulated as the following optimization problem: 

min
𝜋

𝐽0
𝜋,𝒳

𝑠. 𝑡.  𝐽𝑐
𝜋,𝒳 ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝐶

. (6) 

As shown in [16], the problem (6) can be written as 

min
𝜋

∑ 𝜒(𝑠)𝑄0
𝜋(𝑠, 𝜋(𝑠))𝑠∈𝑆

𝑠. 𝑡.  ∑ 𝜒(𝑠)𝑄𝑐
𝜋(𝑠, 𝜋(𝑠))𝑠∈𝑆 ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝐶,

 (7) 

where 𝑄𝑣
𝜋(𝑠, 𝑢), 𝑣 = 0,… , 𝐶, is the state-action value 

function, i.e., the expected total discounted cost, with one-

step cost 𝜌𝑣, when the initial state is 𝑠 ∈ 𝑆, the initial action 

is 𝑢 ∈ 𝐴0 and the system runs under policy 𝜋: 

𝑄𝑣
𝜋(𝑠, 𝑢) ≔ 𝐸𝜋{∑ 𝛾𝑡𝜌𝑣(𝑠𝑡 , 𝑢𝑡 , s𝑡+1)

∞
𝑡=0 |(𝑠0, 𝑢0) = (𝑠, 𝑢)} (8) 

As shown in [15], [16], the constraints are enforced by 

defining the vectorial action-value function 

𝑸𝜋(𝑠, 𝑢) ≔

(

 
 

min(𝐾𝐶 , 𝑄𝐶
𝜋(𝑠, 𝑢))

⋮
min(𝐾1, 𝑄1

𝜋(𝑠, 𝑢))

𝑄0
𝜋(𝑠, 𝑢)

)

 
 

. (9) 

where, without loss of generality, we assume that the 

constraints are ordered in ascending order of priority, i.e., the 

𝑐-th constraint has priority over the (𝑐 + 1)-th one. 

Under the lexicographic approach, the comparison between 

two policies 𝜋′ and 𝜋′′ is done according to the vectorial 

value function (9), which, for the 𝑐-th element, 𝑐 = 1,… , 𝐶, 

returns the threshold value 𝐾𝑐 if the constraint is met, the 

value of the corresponding state-action value function 

otherwise. In a generic state 𝑠 ∈ 𝑆, there are three cases to 

consider for establishing if the policy 𝜋′(𝑠) is better than 

𝜋′′(𝑠), i.e., 𝜋′(𝑠) ≻ 𝜋′′(𝑠): 

• if more constraints are met by 𝜋′(𝑠) w.r.t. 𝜋′′(𝑠); 

• if the same number 𝑣 < 𝐶 of constraints are met by both 

policies and 𝑄𝑣+1
𝜋′

(𝑠, 𝜋′(𝑠)) < 𝑄𝑣+1
𝜋′′

(𝑠, 𝜋′′(𝑠)); 

• if all the 𝐶 constraints are met by both policies and 

𝑄0
𝜋′

(𝑠, 𝜋′(𝑠)) < 𝑄0
𝜋′′

(𝑠, 𝜋′′(𝑠)). 

The overall policy 𝜋′ is better than 𝜋′′ if 𝜋′(𝑠) ≽ 𝜋′′(𝑠), for 



 

 

all states 𝑠 ∈ 𝑆, with 𝜋′(𝑠) ≻ 𝜋′′(𝑠) for at least one state. 

The lexicographic approach is conservative: since it checks 

the constraints for each possible initial state, it actually solves 

the following problem: 

min
𝜋

∑ 𝜒(𝑠)𝑄0
𝜋(𝑠, 𝜋(𝑠))𝑠∈𝑆

𝑠. 𝑡.  𝑄𝑐
𝜋(𝑠, 𝜋(𝑠)) ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝐶, ∀𝑠 ∈ 𝑆

. (10) 

Solving (10) leads to a conservative sub-optimal solution of 

problem (6). The following property holds. 

Property 1 [15], [16]. By using the lexicographic approach 

with DP/RL algorithms, a stationary deterministic policy is 

found, which is lexicographically optimal with respect to the 

vectorial state-action value function (9). 

III. LEXICOGRAPHIC DEEP RL 

Sections III.A and III.B describe the lexicographic DeepRL 

(L-DeepRL) approach and the lexicographic extension of the 

DQN algorithm, respectively. 

A. Training and application of L-DeepRL algorithms 

In the actor-critic paradigm, a DeepNN (critic) is used to 

estimate the optimal state-action value function based on the 

observed states and costs and another DeepNN (actor) is used 

to estimate the optimal control action based on the observed 

state. In this paper, we consider the class of DeepRL 

algorithms implementing DNNs for the critic role only, 

suitable for problems with a finite action space. 

In L-DeepRL algorithms, 𝐶 + 1 critic networks are needed: 

one for estimating the primary value function 𝑄0 and one for 

each of the value functions 𝑄𝑐’s. The (𝐶 + 1) DNNs are 

hereafter denoted as 𝒬𝑐 , 𝑐 = 0,… , 𝐶. For all the (finite 

number of) actions 𝑢 ∈ 𝐴0, the 𝑐-th (state,action)-value 

function is evaluated as 𝒬𝑐(𝜑𝑐(𝑠), 𝑢|𝜽𝑐), where 𝜽𝒄 is the 

vector collecting the parameters of the DNN and 𝜑𝑐(𝑠) is a 

feature map which takes the state observations as inputs and 

returns the features in the feature set Φ𝑐, i.e., 𝜑𝑐: 𝑆 → Φ𝑐.  

The training phase is performed offline, separately for each 

critic network, and results in the determination of the 𝒬𝑐’s, 

each one estimating the optimal state-action value function 

generated by the corresponding cost. In general, each DNNs 

could be trained according to a different algorithm. We note 

that, conversely, the lexicographic RL approach in [16] 

performs the approximation online: when the system is in a 

given state at time 𝑘, the action is chosen according to the 

current values of the value functions; after the observation of 

the cost and of the next state, the value functions are updated 

according to the selected RL algorithm and the new values are 

used for the action selection at step 𝑘 + 1. 

The key difference between DeepRL and L-DeepRL lies in 

the action selection strategy as, at each time-step, the 

controller, or RL agent, uses one of the 𝐶 + 1 DNNs 

according to the lexicographic approach. 

Preliminarily, for a given a policy 𝜋, the constrained action 

sets 𝐴𝑣(𝑠) ⊆ 𝐴0, 𝑣 = 0,… , 𝐶, are introduced: 

𝐴𝑣(𝑠) = {𝑢 ∈ 𝐴0|𝒬𝑐
𝜋(𝜑𝑐(𝑠), 𝑢|𝜽𝑐) ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝑣}. (11) 

By definition (11), the set 𝐴𝑣(𝑠) is then the set of the actions 

which, according to the estimated values of the action-value 

functions, meet the first 𝑣 constraints in state 𝑠 under policy 

𝜋. If 𝑣 = 0, the definition coincides with that of 𝐴0.  

The determination of the constraint action sets is 

straightforward, since a discrete action set 𝐴0 is considered. 

The constraints 𝒬𝑐(𝜑𝑐(𝑠), 𝑢|𝜽𝑐) ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝐶, can be 

verified, for the observed state 𝑠 and for all the actions, by 

simple enumeration, and the action sets 𝐴𝑐(𝑠) are then found 

by applying the definition (11). Figure 1 reports the pseudo-

code of the function, named Function 1, for the computation 

of the discrete constraint action sets. 

The comparison between two policies 𝜋′ and 𝜋′′ in state 𝑠 

is done according to the lexicographic approach. Let 0 ≤
𝑣′ ≤ 𝐶 be the number of ordered constraints which are met 

by 𝜋′ in the observed state 𝑠, i.e., 𝑣′ is such that 

{
𝒬𝑐

𝜋′
(𝜑𝑐(𝑠), 𝜋

′(𝑠)|𝜽𝑐) ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝑣′

𝒬𝑣′+1
𝜋′

(𝜑𝑣′+1(𝑠), 𝜋
′(𝑠)|𝜽𝑣′+1) > 𝐾𝑣′+1  

, (12) 

and let 𝑣′′ be defined accordingly for 𝜋′′. Then, 𝜋′(𝑠) ≻
𝜋′′(𝑠) in the observed state 𝑠 if one of the following cases 

holds: i) 𝑣′ > 𝑣′′; ii) 𝑣′ = 𝑣′′ = 𝑣 < 𝐶 and 𝒬𝑣+1
𝜋′

< 𝒬𝑣+1
𝜋′′

; iii) 

𝑣′ = 𝑣′′ = 𝐶 and 𝒬0
𝜋′

< 𝒬0
𝜋′′

. 

At time 𝑡, let the system be in state 𝑠. For all the actions 

𝑢 ∈ 𝐴0, the L-DeepRL algorithm considers the constraints 

𝒬𝑐
𝜋(𝜑𝑐(𝑠), 𝑢|𝜽𝑐) ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝐶, (13) 

to decide whether the action selection rule of the RL 

algorithm must be applied considering the primary value 

function 𝒬0 or to one of the 𝐶 constraint value functions 𝒬𝑐’s. 

Specifically, given the constraint action sets 𝐴𝐶’s and the 

number of met constraints 𝑣, the lexicographic action 

selection rule is 

𝑢 = {
min

𝑢′∈𝐴𝐶(𝑠)
𝒬0(𝜑0(𝑠), 𝑢

′|𝜽0)               if 𝑣 = 𝐶    

min
𝑢′∈𝐴𝑣(𝑠)

𝒬𝑣+1(𝜑𝑣+1(𝑠), 𝑢
′|𝜽𝑣+1)  otherwise

 . (14) 

The following logic is pursued: 

• if 𝐴𝐶(𝑠) ≠ ∅ (i.e., at least one action exists such that all 

the 𝐶 constraints are met) the controller selects an action 

belonging to the set 𝐴𝐶(𝑠) based on 𝒬0(𝜑0(𝑠), 𝑢|𝜽0) and 

is thus aimed at minimizing the primary cost 𝐽0; 

• if 𝐴𝑣(𝑠) ≠ ∅ and 𝐴𝑣+1(𝑠) = ∅, 𝑣 = 0,… , 𝐶 − 1 (i.e., at 

least one action exists such that the first 𝑣 constraints are 

met but no actions exist such that the first 𝑣 + 1 

constraints are met) the controller selects an action in the 

set 𝐴𝑣(𝑠) based on 𝒬𝑣+1(𝜑𝑣+1(𝑠), 𝑢|𝜽𝑣+1) and is thus 

aimed at minimizing the (𝑣 + 1)-th constrained cost 𝐽𝑣+1. 

Property 2 is a straightforward consequence of Property 1. 

Property 2. Under the assumption that the DNNs 𝒬𝑣 are 

exact representations of the state-action value functions 𝑄𝑣 , 

𝑣 = 0,… , 𝐶, by using the control logic (14) a stationary 

deterministic policy is found, which is lexicographically 



 

 

optimal with respect to the vectorial state-action value 

function (9). 

Remark 1. Under the assumptions of Property 2, if the 

feasible set of the problem (10) is not empty, the 

lexicographically optimal solution is an optimal solution of 

the problem (10). Otherwise, i.e., if no solutions exist which 

satisfy all the constraints, the lexicographic approach 

computes a sub-optimal policy which is not a feasible solution 

of (10) but satisfies the maximum number of ordered 

constraints. In this case, since the algorithm aims at satisfying 

the constraints according to their priority, the solution 

generally depends on their ordering. 

Remark 2. If different thresholds 𝐾𝑐 are required, there is 

no need of re-training the DNNs: the desired behavior can be 

obtained by using the already trained DNNs with the 

lexicographic action selection according to the new values of 

𝐾𝑐 = 𝐾𝑐/(1 − 𝛾), 𝑐 = 1,… , 𝐶. 

B. Lexicographic Deep Q-Network 

As reference algorithms for the algorithm class identified 

above, we picked the well-known Deep Q-learning with 

Experience Replay algorithm, also known as Deep Q-

Network (DQN) [8], which considers a finite action set. To 

improve the training process, DQN utilized the replay buffer 

[18], which stores the state transitions and cost observations 

occurred at each time-step; the update rule for the DNN is 

then performed based on the costs contained in the buffer and 

not on the current observed one. 

Figure 2 presents the lexicographic DQN (L-DQN) 

algorithm, which accounts for prioritized constraints. As 

described in Section III.A, the modifications consist in the 

utilization of additional 𝐶 DNNs, 𝒬𝑐 , 𝑐 = 1,… , 𝐶, to represent 

the constraint state-action value functions and in the 

lexicographic action selection. The training phase is the same 

as in the standard DQN but it is needed for  (𝐶 + 1) DNNs: 

the primary DNN, minimizing the primary expected total 

cost, and the constraint DNNs, each one minimizing one of 

the constraint cost. 

As the DNNs are trained, they are ready to be used by the 

controller. The action selection is performed according to the 

lexicographic approach. At each time-step 𝑡, the algorithm of 

Function 1 (see Figure 1) is used to determine the number 𝑣 

of satisfied ordered constraints and the constraint action sets 

𝐴𝑐 , 𝑐 = 1,… , 𝐶. If all the constraints are met, i.e., 𝑣 = 𝐶, the 

action is selected in the set 𝐴𝐶 and is aimed at minimizing the 

primary cost 𝐽0; if one or more constraints are not met, i.e., 

𝑣 < 𝐶, the action is selected in the set 𝐴𝑣 and is aimed at 

minimizing the constraint cost 𝐽𝑣+1 associated to the first 

constraint which is not met. 

 

Figure 1.  Computation of the discrete constraint action sets 

Function 1.  Function for the computation of the discrete constraint 

action sets in state 𝑠 ∈ 𝑆 observed at time 𝑡 

Input:  𝑠, 𝒬𝑐(𝜑𝑐(𝑠), 𝑢|𝜽𝑐), ∀𝑢 ∈ 𝐴0, 𝑐 = 0,… , 𝐶 and 𝐾𝑐, 𝑐 = 1,… , 𝐶  

• Initialize 𝑐 = 0 and 𝐴𝑣(𝑠) = ∅, 𝑣 = 1,… , 𝐶 

• While 𝑐 < 𝐶 and 𝐴𝑐−1(𝑠) ≠ ∅ do 

▪ Update 𝑐 ← 𝑐 + 1 

▪ For all 𝑢 ∈ 𝐴𝑐−1(𝑠) do 

- If 𝒬𝑐(𝜑𝑐(𝑠), 𝑢|𝜽𝑐) ≤ 𝐾𝑐, update 𝐴𝑐(𝑠) ← 𝐴𝑐(𝑠) ∪ {𝑢} 
▪ If 𝐴𝑐(𝑠) = ∅ set 𝑣 = 𝑐 − 1 and 𝑐 = 𝐶 

Output: 𝑣 and 𝐴𝑐(𝑠), 𝑐 = 1,… , 𝑣 + 1 

Figure 2.  Pseudo-code of the L-DQN algorithm 

Algorithm 1. Lexicographic Deep Q-Network (L-DQN) 

Training 

• Initialize (𝐶 + 1) replay buffers 𝒟𝑐 to size N, and set minibatch sizes 

𝑀𝑐 and number of sequences in the minibatches 𝑏 = 0 

• Initialize action-value functions 𝒬𝑐, 𝑐 = 0,… , 𝐶, with random weights 

• For 𝑐 = 0,… , 𝐶 

▪ For 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1,… ,𝑀 do 

- Initialize sequence with random initial state 𝑠0 and preprocessed 

sequences with 𝜑𝑐(𝑠0), 𝑐 = 0,… , 𝐶 

- For time steps 𝑡 = 0,… , 𝑇  do  

• With probability 𝜀 select a random action 𝑢𝑡 ∈ 𝐴𝑐(𝑠𝑡) 

otherwise select 𝑢𝑡 = min
𝑢′∈𝐴𝑐(𝑠𝑡)

𝒬𝑐(𝜑𝑐(𝑠𝑡), 𝑢
′|𝜽𝑐) 

• Execute action 𝑢𝑡 in emulator, observe cost 𝑟𝑡  

and next state 𝑠𝑡+1 and set 𝑏 = 𝑏 + 1 

• Preprocess 𝜑𝑐(𝑠𝑡+1) 

• Store the transition 〈𝜑𝑐,𝑏 , 𝑢𝑏 , 𝑟𝑏, 𝜑𝑐,𝑏〉 =

〈𝜑𝑐(𝑠𝑡), 𝑢𝑡 , 𝑟𝑡 , 𝜑𝑐(𝑠𝑡+1)〉 in 𝒟𝑐 

• Every 𝒯 time steps do 

o Sample a minibatch ℬ𝑐 of 𝑀𝑐 random transitions 

from 𝒟𝑐 

o For each transition 𝑗 ∈ ℬ𝑐 

▪ Set 𝑦𝑗 = {
𝑟𝑗    for terminal 𝜑𝑐,𝑗+1                                

𝑟𝑗 + 𝛾 min
𝑢∈𝐴0

𝒬𝑐(𝜑𝑐,𝑗+1, 𝑢|𝜽𝑐)  otherwise  

▪ Update the critic by minimizing the loss 

      𝐿 =
1

𝑁
∑ (𝑦𝑗 − 𝒬𝑐(𝜑𝑐,𝑗 , 𝑢𝑗|𝜽𝑐))

2

𝑗∈ℬ𝑐
  

Lexicographic RL Agent 

• Observe initial state 𝑠0 

• For 𝑡 = 0,… , 𝑇  do 

▪ Use Function 1 (see Figure 1) to compute the number 

𝑣 of met ordered constraints, and the action sets 

𝐴𝑐(𝑠𝑡), 𝑐 = 1,… , 𝑣 + 1, based on 𝑠𝑡, 𝒬𝑐, 𝑐 = 0,… , 𝐶, 

and 𝐾𝑐, 𝑐 = 1,… , 𝐶 

▪ If 𝑣 = 𝐶, select 

𝑢 = min
𝑢′∈𝐴𝐶(𝑠𝑡)

𝒬0(𝜑0(𝑠𝑡), 𝑢
′|𝜽0)  

Otherwise, select 

𝑢 = min
𝑢′∈𝐴𝑣(𝑠𝑡)

𝒬𝑣+1(𝜑𝑣+1(𝑠𝑡), 𝑢
′|𝜽𝑣+1)  

▪ Execute action 𝑢, observe cost 𝑟𝑡 and next state 𝑠𝑡+1 

 

The L-DQN pseudo-code is reported in Figure 2. As 

analyzed in [10], DQN, as the original Q-Learning algorithm, 

tends to overestimate the values of the state-action value 

function. Even if this problem is not vital in some 

applications, where obtaining the optimal policy is the main 

objective, it is of great relevance in the proposed L-DeepRL 

framework, since it may prevent the algorithm to guarantee 

the performance requested, in probability, to the controller. 

The overestimation issue was addressed by the introduction 



 

 

of Double Q-Learning for the tabular algorithm, later 

translated into Double DQN (D-DQN) for DeepRL solutions 

[10]. Even if the simulations were run using a lexicographic 

D-DQN implementation, this section describes the L-DQN 

algorithm for the sake of readability. 

IV. APPLICATION TO THE CONSTRAINED CART-POLE 

PROBLEM 

The scenario considered to validate the approach consists 

in the classic cart-pole RL problem, originally presented in 

[19], that has later become a standard benchmarking 

environment for RL/DeepRL solutions. The implementation 

is based on the environment implemented via OpenAI in the 

Gym toolkit [20], in which the state space is defined by 

𝑆 = {𝑠 = (𝑥  �̇�  𝜔  �̇�) s. t. |𝑥| ≤ 2.4𝑚, |𝜔| ≤ 0.21𝑟𝑎𝑑}, (15) 

where 𝑥 and �̇� are the cart position and velocity, respectively, 

and 𝜔 and �̇� are the pole angle (with 0 𝑟𝑎𝑑 defining the 

straight standing position) and angular velocity, respectively. 

The two box constraints in (15) define an operative region. 

The action space is defined by 𝐴0 = {𝑢|𝑢 ∈

{−10,−5,0,5,10}}, where each action corresponds to 

applying the specified force, expressed in Newton. A uniform 

initial distribution 𝜒 was selected in the range ‖𝑠‖∞ ≤ 0.05. 

A state is said to be terminal if the cart position or the pole 

angle are not included in the operative region. In case a 

terminal state is reached, the cart-pole is re-started in a 

random position according to the distribution 𝜒. 

The primary objective of the lexicographic RL (L-RL) 

agent consists in maintaining the cart-pole system state within 

the operative region while minimizing the required force. 

This objective is captured by the reward function 𝜌0 (note that 

Algorithm 1, presented for costs minimization, can be 

seamlessly adapted to the case of reward maximization): 

𝜌0(𝑠𝑡 , 𝑢𝑡 , 𝑠𝑡+1) = {
(10 − |𝑢𝑡|) if 𝑠𝑡+1 is not terminal

−10                 otherwise                      
. 

Regarding the chance-constraints, the one with the highest 

priority is defined to impose the cart-pole system to maintain 

the magnitude of the angle 𝜃 within a threshold of ± 0.03𝑟𝑎𝑑 

with a threshold probability 𝐾1, while the second constraint 

consists in maintaining the cart within a region ± 0.1𝑚 on the 

cart position with a threshold probability 𝐾2. The two reward 

functions 𝜌1, 𝜌2 were then set to 1 if the state evolves inside 

the corresponding desired region, and 0 otherwise.  

As motivated in Section III, the implemented algorithm is 

the D-DQN, with target DNN trained according to the soft 

target update method ([21]), with the parameter 𝜏 set to 0.1. 

All the DNNs were trained with discount factor 𝛾 = 0.995, 

decaying learning rate 𝛼(𝑡) = 10−4 ⋅ 0.99max{1,𝑡−500}−1 and 

decaying 𝜀(𝑡) = 0.5 ⋅ 0.99max{1,𝑡−500}−1. The experience 

replay was played after every time step, i.e., 𝒯 = 1. The 

simulation length was set equal to the standard 200 time-

steps, and the other physical parameters of the cart-pole can 

be found in [19], [20].  

Figure 3.  Percentage of time within various position (left plots) and angle 

ranges (right plots) with different RL and L-RL agents. 
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TABLE 1. SIMULATION RESULTS 

Reward 

function 

% of time within 

desired positions 

% of time within 

desired angles 

Average 

applied force  

𝐽0  27.2% 77.7% 0.29𝑁 

𝐽1 51.9% 99.3% 0.39𝑁 

𝐽2 99. %  4.4% 2.97𝑁 

𝐿𝑒𝑥(95) 99.7% 99.4% 1.39𝑁 

𝐿𝑒𝑥( 5)  7. % 91.5% 1.17𝑁 

𝐽    99.5% 9 .7% 2.54𝑁 

For all the reported tests, a total of 100 episodes with initial 

state 𝑠0 ∈ 𝜒 were executed. The left (right) plots of Figure 3 

show the percentage of time that the cart-pole spent in a given 

position (angle) range. The figures also highlight the desired 

position and angle ranges |𝑥| ≤ 0.1 and |𝜔| ≤ 0.03. Table 1 

collects the results in terms of percentage of time within the 

desired position and angle ranges and average absolute value 

of the force applied during the runs. Figures 3.a)-c) show the 

results when controlled by only the DNN trained to maximize 

𝐽0 (minimization of the average used force), 𝐽1 (minimization 

of the angle displacement) and 𝐽2 (minimization of the 

distance from 𝑥 = 0), respectively. All the DNNs are 

characterized by two hidden layers of 64 neurons with relu 

activation functions, save for 𝒬0 that has 16 neurons on the 

second layer, and a linear dense output layer. The training 

required approximatively 400 episodes for each DNN. 



 

 

Figure 3.a) shows that the control policy found by 

maximising 𝐽0 is such that the cart position and angle are often 

on the positive 𝑥 and 𝜔 values, leading to a percentage of time 

spent within the desired region of 27.2% for the position range 

and 77.7% for the angle– as reported in Table 1, while the 

spent average force is 0.29𝑁. Figure 3.b) shows that, under 

the reward 𝐽1, the angle remains almost always within the 

desired angle region (99.3% of the time-steps), the 

percentage of time spent within the desired position region is 

51.9% and the spent average force is 0.39𝑁. As shown in 

Figure 3.c), under the reward 𝐽2 the controller maintains the 

desired position range for 99. % of the time at the price of a 

larger effort, 2.97𝑁. The angle lies in the desired region 

 4.4% of the time.  

Figures 3.d)-e) show the results with the L-RL agents with 

thresholds 𝐾1 = 𝐾2 = 0.95 and 𝐾1 = 𝐾2 = 0. 5. The L-RL 

agents exploit the same three DNNs trained for the previous 

tests and, in each state, use one of the DNNs to maximize one 

of the 𝐽𝑖’s. In the table and figure, they are denoted with 

𝐿𝑒𝑥(95) and 𝐿𝑒𝑥( 5), respectively. Figure 3.d) shows that 

the first L-RL agent manages to keep the cart-pole in the 

desired region almost always (above 99% for both position 

and angle) by spending an average force of 1.39𝑁, 

significantly smaller than the one spent under 𝐽2 as the L-RL 

agent uses also the DNN trained for the force minimization 

objective. Figure 3.e), shows that also the second L-RL agent 

manages to keep the cart-pole in the desired region for more 

than its prescribed percentage of time ( 7. % for the angle, 

91.5% for the position). As the prescribed percentages are 

smaller than the ones of the previous L-RL agent, the average 

spent force is reduced to 1.17𝑁. 

During the episodes, the first L-RL agent, 𝐿𝑒𝑥(95), used 

𝒬0 (trained based on the primary reward 𝜌0, i.e., to minimize 

the control effort) to select the control action in 11% of the 

time-steps, 𝒬1 (trained based on the angle reward 𝜌1) in 4% 

and 𝒬2 (trained based on the position reward 𝜌2), in  5%. The 

second L-RL agent, 𝐿𝑒𝑥( 5), which has lower probability 

thresholds, manages to increase the percentage of time in 

which 𝜌0 is maximized: it uses 𝒬0, 𝒬1 and 𝒬2 in 27%, 3% 

and 70% of the time-steps, respectively.  

For comparison purposes, Figure 3.f) shows the results 

with a RL agent aimed at maximizing the multi-objective 

reward function 𝐽   ≔ 𝝀[𝐽0  𝐽1  𝐽2]
𝑇, where 𝝀 = [1  5  25] is 

the vector of the Lagrangian weights associated to the reward 

functions 𝐽𝑖’s. To achieve the prescribed percentages of 95%, 

the weights were tuned by extensive grid-search during the 

training phase of an analogous DNN which required 

approximately 600 episodes. By using this DNN, the RL 

agent manages to achieve similar performance with respect to 

the L-RL agent with the same targets (𝐿𝑒𝑥(95)) at the price 

of a larger control effort, equal to 2.54𝑁. Better results can be 

obtained with finer weight tuning techniques, which are out 

of the scope of the paper. Conversely, it is important to remark 

that the DNN should be trained again to aim at the prescribed 

percentages of 85% and a consequently lower control effort. 

V. CONCLUSIONS AND FUTURE WORKS 

This paper proposed an extension of the lexicographic 

approach to the DeepRL framework, showing how it can be 

used to design chance-constrained controllers. The main 

advantage with respect to standard methods is that no 

additional tuning of hyper-parameters is required in the 

training phase to cope with the constraints and that the 

probability with which the constraints are met can be changed 

without the need of re-training the DNNs. 

Future work is aimed at extending the lexicographic 

approach to online solutions and continuous action space 

scenarios by extending actor-critic methods [21]. 
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