

This paper is a preprint (IEEE “accepted” status). IEEE copyright notice. © 2020 IEEE. Personal use of this

material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted.

To cite this paper please refer to

A. Giuseppi, A. Pietrabissa, "Chance-Constrained Control with Lexicographic Deep Reinforcement

Learning", IEEE Control Systems Letters (IEEE), 2020, pp. 1-6, DOI: 10.1109/LCSYS.2020.2979635

Abstract— This paper proposes a lexicographic Deep Rein-

forcement Learning (DeepRL)-based approach to chance-

constrained Markov Decision Processes, in which the controller

seeks to ensure that the probability of satisfying the constraint is

above a given threshold. Standard DeepRL approaches require

i) the constraints to be included as additional weighted terms in

the cost function, in a multi-objective fashion, and ii) the tuning

of the introduced weights during the training phase of the Deep

Neural Network (DNN) according to the probability thresholds.

The proposed approach, instead, requires to separately train one

constraint-free DNN and one DNN associated to each constraint

and then, at each time-step, to select which DNN to use

depending on the system observed state. The presented solution

does not require any hyper-parameter tuning besides the

standard DNN ones, even if the probability thresholds changes.

A lexicographic version of the well-known DeepRL algorithm

DQN is also proposed and validated via simulations.

I. INTRODUCTION AND RELATED WORKS

Deep Reinforcement Learning (DeepRL) is a branch of

model-free control that is gathering great interest from the

scientific community and funding institutions, thanks to the

exponential increase of computing capacity availability and

its capability of addressing heavily nonlinear problems

starting from the analysis of the input-output pairs of a

system. This paper proposes a DeepRL solution for chance-

constrained control, a scenario in which the evolution of the

system is steered in such a way that its constraints are satisfied

with at least a certain probability threshold [1]. By imposing

chance constraints, the operation of the controlled system can

be confined within a certain region (e.g., for safety reasons

[2]), while still allowing the state to evolve outside of that

region if incentivized by an adequate economic/performance

return [3], [4], or to assure the feasibility of the control.

The modelling framework utilised in this work is the one

of Markov Decision Processes (MDPs), commonly used for

stochastic optimization problems involving random events

and decision makers [5]. The classic scenario for which

MDPs were introduced is related to the solution of

unconstrained optimal control problems by means of

Dynamic Programming (DP) [6], but MDPs found great

application in RL-based controllers [7], able to infer the

optimal control law directly from experience without

requiring the explicit knowledge of the system dynamics.

One of the most impactful modern contributions to

A. Giuseppi and A. Pietrabissa are both first authors and are with the

Department of Computer, Control, and Management Engineering Antonio

Ruberti, University of Rome La Sapienza, via Ariosto 25, 00185, Rome, Italy

(email: {giuseppi, pietrabissa}@diag.uniroma1.it).

DeepRL is presented in [8], [9], in which the authors

demonstrated how a so-called Convolutional Deep Q-

Network (DQN) was able to surpass human experts in playing

a series of videogames. In the following years, DeepRL

solutions found application in a broad range of domains

typical of classic control systems, and were further refined

with techniques inspired by classic RL theory such as Double

Q-Learning [10] and actor-critic methods [11].

Several MDP studies dealt with constrained scenarios,

typically by means of traditional Linear Programming and

Lagrangian, or multi-objective, approaches [12], [13]. The

Lagrangian approach can be used in RL/DeepRL algorithms

and consists in designing a multi-objective cost function,

where the constraints are translated into costs and included as

additional objectives multiplied by constant weights. From

the DeepRL viewpoint, the weights are additional hyper-

parameters that have to be tuned by trial-and-error or other

rather time-consuming procedures during the training phase

(see [14] and references therein). An alternative solution, at

the basis of the present work, is the so-called “lexicographic”

approach, already introduced in DP and RL formulations in

[15], [16]. As described in Section II, in the lexicographic

paradigm the action of the controller is aimed at minimizing

either the primary cost function, if the system state is such that

all the constraints are met, or one of the cost functions

associated to the unsatisfied constraints, ordered by their

relevance.

The main contribution of this paper consists in the

extension of the lexicographic approach to the DeepRL

domain, allowing the offline design of DeepRL-based

controllers for chance-constrained systems. As detailed in

Section III, besides the training of a DNN associated to the

primary cost function, as in standard DeepRL, each constraint

cost function constitutes the objective of an additional DNN.

Even if more DNNs need to be trained, the advantage with

respect to multi-objective approaches is twofold: i) the

training phase of the DNN is much simpler since there are no

additional hyper-parameters (associated to the weights) to

tune; ii) if the probability thresholds of the chance constraints

change, the proposed algorithm can seamlessly reuse the

already trained DNNs, whereas the multi-objective

approaches require a new training. As detailed in Section III,

besides the use of DNNs to approximate the action-value

functions, the fact that they are trained offline is another

This paper was partially funded by the European Commission in the

framework of the H2020 EU-Korea project 5G-ALLSTAR under Grant

Agreement no. 815323

Alessandro Giuseppi, Member, IEEE, and Antonio Pietrabissa, Member, IEEE

Chance-Constrained Control with

Lexicographic Deep Reinforcement Learning

mailto:pietrabissa%7d@diag.uniroma1.it

difference with respect to [16], where the action-value

functions are approximated online by RL algorithms.

The proposed methodology considers the class of DeepRL

algorithms with discrete action space. Within this class, the

methodology is independent from the chosen DeepRL

algorithm and, for the sake of simplicity, is presented in

Section III in a formulation based on DQN. In Section IV, the

approach is evaluated in an environment built from the classic

cart-pole balancing problem with additional chance

constraints. Section V draws the conclusion and future works.

II. PRELIMINARIES ON LEXICOGRAPHIC RL

A constrained MDP with multiple constraints is defined by

the tuple {𝑆, 𝐴0, 𝐓, 𝜌0, 𝝆, 𝛾, 𝑲,𝒳}, where: 𝑆 is the finite state

space; 𝐴0 is the finite action space (the subscript 0 is added

for notation convenience); 𝐓(𝑢) ∈ 𝑆 × 𝑆, ∀𝑢 ∈ 𝐴0 is the

transition probability matrix, whose entries depend also on

the actions; 𝜌0: 𝑆 × 𝐴0 × 𝑆 → ℝ+ is the one-step non-

negative primary cost function; 𝝆 is a vector of one-step non-

negative cost functions 𝜌𝑐: 𝑆 × 𝐴0 × 𝑆 → ℝ+ accounting for

the constraints 𝑐 = 1,… , 𝐶; 𝛾 is the discount factor, weighting

immediate versus delayed costs; 𝑲 is a vector of 𝐶 constant

thresholds 𝐾𝑐, 𝑐 = 1,… , 𝐶, each one representing the

maximum tolerated expected value of the corresponding cost,

as detailed afterwards; 𝒳 ∈ 𝛸 is the probability distribution

of the initial state 𝑠0 over the state set 𝑆 and 𝛸 is the set of

feasible initial probability distributions.

We considered deterministic policies, which associate a

unique action 𝑢 ∈ 𝐴0 to each state 𝑠 ∈ 𝑆. The selected action

𝑢 in state 𝑠 will be denoted as 𝜋(𝑠) = 𝑢.

The control objective is to drive the evolution of the

discrete-time Markov process {𝑠𝑡}𝑡 = 1,2,…, where 𝑠𝑡 ∈ 𝑆

denotes the state visited at time 𝑡, in order to minimize the

expected discounted total cost

𝐽𝜋,𝒳 = 𝐸𝜒{𝑉0
𝜋(𝑠)} = ∑ 𝜒(𝑠)𝑉0

𝜋(𝑠)𝑠∈𝑆 , (1)

where the operator 𝐸𝒳{⋅} denotes the expected value under

initial state distribution 𝒳 and 𝑉0
𝜋(𝑠) is the state-value

function in state 𝑠, i.e., the expected discounted total cost,

with one-step cost 𝜌0, when the initial state is 𝑠 and the system

runs under policy 𝜋. 𝑉0
𝜋(𝑠) is defined as

𝑉0
𝜋(𝑠) ≔ 𝐸𝜋{∑ 𝛾𝑡𝜌0(𝑠𝑡 , 𝑢𝑡 , s𝑡+1)

∞
𝑡=0 |𝑠0 = 𝑠}, (2)

where the operator 𝐸𝜋{⋅} is the expected value when the

system operates under policy 𝜋.

In constrained MDPs, additional cost functions are defined

to enforce the constraints. For clarity, hereafter the cost (1)

will be referred to as primary cost. The one-step constraint

costs 𝜌𝑐 are used in the expected discounted total costs

𝐽𝑐
𝜋,𝒳 = 𝐸𝜒{𝑉𝑐

𝜋(𝑠)} = ∑ 𝜒(𝑠)𝑉𝑐
𝜋(𝑠)𝑠∈𝑆 , 𝑐 = 1,… , 𝐶, (3)

hereafter referred to as constraint costs, with lower-bounded

state-value functions, defined as

1 This property derives from the series ∑ 𝑎𝑘∞

𝑡=0 = 1/(1 − 𝑎), 𝑎 ∈ (0,1).

𝑉𝑐
𝜋(𝑠) ≔ 𝐸𝜋{∑ 𝛾𝑡𝜌𝑐(𝑠𝑡 , 𝑢𝑡 , s𝑡+1)

∞
𝑡=0 |𝑠0 = 𝑠}. (4)

Chance constraints usually limit the expected undiscounted

constraint cost below a given threshold (e.g., in the cart-pole

balancing problem of Section IV, we are interested in limiting

the probability that the pole angle exceeds a given threshold,

regardless of when the constraint violations occur). Let 𝐾𝑐 be

the 𝑐-th threshold; considering that 𝐽𝑐
𝜋,𝒳

 approximates the

total undiscounted expected cost scaled by 1/(1 − 𝛾) [17]1,

chance constraints can be expressed as

𝐽𝑐
𝜋,𝒳 ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝐶, (5)

with 𝐾𝑐 = 𝐾𝑐/(1 − 𝛾) . The constrained MDP, with the

constraints representing the chance constraints, is then

formulated as the following optimization problem:

min
𝜋

𝐽0
𝜋,𝒳

𝑠. 𝑡. 𝐽𝑐
𝜋,𝒳 ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝐶

. (6)

As shown in [16], the problem (6) can be written as

min
𝜋

∑ 𝜒(𝑠)𝑄0
𝜋(𝑠, 𝜋(𝑠))𝑠∈𝑆

𝑠. 𝑡. ∑ 𝜒(𝑠)𝑄𝑐
𝜋(𝑠, 𝜋(𝑠))𝑠∈𝑆 ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝐶,

 (7)

where 𝑄𝑣
𝜋(𝑠, 𝑢), 𝑣 = 0,… , 𝐶, is the state-action value

function, i.e., the expected total discounted cost, with one-

step cost 𝜌𝑣, when the initial state is 𝑠 ∈ 𝑆, the initial action

is 𝑢 ∈ 𝐴0 and the system runs under policy 𝜋:

𝑄𝑣
𝜋(𝑠, 𝑢) ≔ 𝐸𝜋{∑ 𝛾𝑡𝜌𝑣(𝑠𝑡 , 𝑢𝑡 , s𝑡+1)

∞
𝑡=0 |(𝑠0, 𝑢0) = (𝑠, 𝑢)} (8)

As shown in [15], [16], the constraints are enforced by

defining the vectorial action-value function

𝑸𝜋(𝑠, 𝑢) ≔

(

min(𝐾𝐶 , 𝑄𝐶
𝜋(𝑠, 𝑢))

⋮
min(𝐾1, 𝑄1

𝜋(𝑠, 𝑢))

𝑄0
𝜋(𝑠, 𝑢)

)

. (9)

where, without loss of generality, we assume that the

constraints are ordered in ascending order of priority, i.e., the

𝑐-th constraint has priority over the (𝑐 + 1)-th one.

Under the lexicographic approach, the comparison between

two policies 𝜋′ and 𝜋′′ is done according to the vectorial

value function (9), which, for the 𝑐-th element, 𝑐 = 1,… , 𝐶,

returns the threshold value 𝐾𝑐 if the constraint is met, the

value of the corresponding state-action value function

otherwise. In a generic state 𝑠 ∈ 𝑆, there are three cases to

consider for establishing if the policy 𝜋′(𝑠) is better than

𝜋′′(𝑠), i.e., 𝜋′(𝑠) ≻ 𝜋′′(𝑠):

• if more constraints are met by 𝜋′(𝑠) w.r.t. 𝜋′′(𝑠);

• if the same number 𝑣 < 𝐶 of constraints are met by both

policies and 𝑄𝑣+1
𝜋′

(𝑠, 𝜋′(𝑠)) < 𝑄𝑣+1
𝜋′′

(𝑠, 𝜋′′(𝑠));

• if all the 𝐶 constraints are met by both policies and

𝑄0
𝜋′

(𝑠, 𝜋′(𝑠)) < 𝑄0
𝜋′′

(𝑠, 𝜋′′(𝑠)).

The overall policy 𝜋′ is better than 𝜋′′ if 𝜋′(𝑠) ≽ 𝜋′′(𝑠), for

all states 𝑠 ∈ 𝑆, with 𝜋′(𝑠) ≻ 𝜋′′(𝑠) for at least one state.

The lexicographic approach is conservative: since it checks

the constraints for each possible initial state, it actually solves

the following problem:

min
𝜋

∑ 𝜒(𝑠)𝑄0
𝜋(𝑠, 𝜋(𝑠))𝑠∈𝑆

𝑠. 𝑡. 𝑄𝑐
𝜋(𝑠, 𝜋(𝑠)) ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝐶, ∀𝑠 ∈ 𝑆

. (10)

Solving (10) leads to a conservative sub-optimal solution of

problem (6). The following property holds.

Property 1 [15], [16]. By using the lexicographic approach

with DP/RL algorithms, a stationary deterministic policy is

found, which is lexicographically optimal with respect to the

vectorial state-action value function (9).

III. LEXICOGRAPHIC DEEP RL

Sections III.A and III.B describe the lexicographic DeepRL

(L-DeepRL) approach and the lexicographic extension of the

DQN algorithm, respectively.

A. Training and application of L-DeepRL algorithms

In the actor-critic paradigm, a DeepNN (critic) is used to

estimate the optimal state-action value function based on the

observed states and costs and another DeepNN (actor) is used

to estimate the optimal control action based on the observed

state. In this paper, we consider the class of DeepRL

algorithms implementing DNNs for the critic role only,

suitable for problems with a finite action space.

In L-DeepRL algorithms, 𝐶 + 1 critic networks are needed:

one for estimating the primary value function 𝑄0 and one for

each of the value functions 𝑄𝑐’s. The (𝐶 + 1) DNNs are

hereafter denoted as 𝒬𝑐 , 𝑐 = 0,… , 𝐶. For all the (finite

number of) actions 𝑢 ∈ 𝐴0, the 𝑐-th (state,action)-value

function is evaluated as 𝒬𝑐(𝜑𝑐(𝑠), 𝑢|𝜽𝑐), where 𝜽𝒄 is the

vector collecting the parameters of the DNN and 𝜑𝑐(𝑠) is a

feature map which takes the state observations as inputs and

returns the features in the feature set Φ𝑐, i.e., 𝜑𝑐: 𝑆 → Φ𝑐.

The training phase is performed offline, separately for each

critic network, and results in the determination of the 𝒬𝑐’s,

each one estimating the optimal state-action value function

generated by the corresponding cost. In general, each DNNs

could be trained according to a different algorithm. We note

that, conversely, the lexicographic RL approach in [16]

performs the approximation online: when the system is in a

given state at time 𝑘, the action is chosen according to the

current values of the value functions; after the observation of

the cost and of the next state, the value functions are updated

according to the selected RL algorithm and the new values are

used for the action selection at step 𝑘 + 1.

The key difference between DeepRL and L-DeepRL lies in

the action selection strategy as, at each time-step, the

controller, or RL agent, uses one of the 𝐶 + 1 DNNs

according to the lexicographic approach.

Preliminarily, for a given a policy 𝜋, the constrained action

sets 𝐴𝑣(𝑠) ⊆ 𝐴0, 𝑣 = 0,… , 𝐶, are introduced:

𝐴𝑣(𝑠) = {𝑢 ∈ 𝐴0|𝒬𝑐
𝜋(𝜑𝑐(𝑠), 𝑢|𝜽𝑐) ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝑣}. (11)

By definition (11), the set 𝐴𝑣(𝑠) is then the set of the actions

which, according to the estimated values of the action-value

functions, meet the first 𝑣 constraints in state 𝑠 under policy

𝜋. If 𝑣 = 0, the definition coincides with that of 𝐴0.

The determination of the constraint action sets is

straightforward, since a discrete action set 𝐴0 is considered.

The constraints 𝒬𝑐(𝜑𝑐(𝑠), 𝑢|𝜽𝑐) ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝐶, can be

verified, for the observed state 𝑠 and for all the actions, by

simple enumeration, and the action sets 𝐴𝑐(𝑠) are then found

by applying the definition (11). Figure 1 reports the pseudo-

code of the function, named Function 1, for the computation

of the discrete constraint action sets.

The comparison between two policies 𝜋′ and 𝜋′′ in state 𝑠

is done according to the lexicographic approach. Let 0 ≤
𝑣′ ≤ 𝐶 be the number of ordered constraints which are met

by 𝜋′ in the observed state 𝑠, i.e., 𝑣′ is such that

{
𝒬𝑐

𝜋′
(𝜑𝑐(𝑠), 𝜋

′(𝑠)|𝜽𝑐) ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝑣′

𝒬𝑣′+1
𝜋′

(𝜑𝑣′+1(𝑠), 𝜋
′(𝑠)|𝜽𝑣′+1) > 𝐾𝑣′+1

, (12)

and let 𝑣′′ be defined accordingly for 𝜋′′. Then, 𝜋′(𝑠) ≻
𝜋′′(𝑠) in the observed state 𝑠 if one of the following cases

holds: i) 𝑣′ > 𝑣′′; ii) 𝑣′ = 𝑣′′ = 𝑣 < 𝐶 and 𝒬𝑣+1
𝜋′

< 𝒬𝑣+1
𝜋′′

; iii)

𝑣′ = 𝑣′′ = 𝐶 and 𝒬0
𝜋′

< 𝒬0
𝜋′′

.

At time 𝑡, let the system be in state 𝑠. For all the actions

𝑢 ∈ 𝐴0, the L-DeepRL algorithm considers the constraints

𝒬𝑐
𝜋(𝜑𝑐(𝑠), 𝑢|𝜽𝑐) ≤ 𝐾𝑐 , 𝑐 = 1,… , 𝐶, (13)

to decide whether the action selection rule of the RL

algorithm must be applied considering the primary value

function 𝒬0 or to one of the 𝐶 constraint value functions 𝒬𝑐’s.

Specifically, given the constraint action sets 𝐴𝐶’s and the

number of met constraints 𝑣, the lexicographic action

selection rule is

𝑢 = {
min

𝑢′∈𝐴𝐶(𝑠)
𝒬0(𝜑0(𝑠), 𝑢

′|𝜽0) if 𝑣 = 𝐶

min
𝑢′∈𝐴𝑣(𝑠)

𝒬𝑣+1(𝜑𝑣+1(𝑠), 𝑢
′|𝜽𝑣+1) otherwise

 . (14)

The following logic is pursued:

• if 𝐴𝐶(𝑠) ≠ ∅ (i.e., at least one action exists such that all

the 𝐶 constraints are met) the controller selects an action

belonging to the set 𝐴𝐶(𝑠) based on 𝒬0(𝜑0(𝑠), 𝑢|𝜽0) and

is thus aimed at minimizing the primary cost 𝐽0;

• if 𝐴𝑣(𝑠) ≠ ∅ and 𝐴𝑣+1(𝑠) = ∅, 𝑣 = 0,… , 𝐶 − 1 (i.e., at

least one action exists such that the first 𝑣 constraints are

met but no actions exist such that the first 𝑣 + 1

constraints are met) the controller selects an action in the

set 𝐴𝑣(𝑠) based on 𝒬𝑣+1(𝜑𝑣+1(𝑠), 𝑢|𝜽𝑣+1) and is thus

aimed at minimizing the (𝑣 + 1)-th constrained cost 𝐽𝑣+1.

Property 2 is a straightforward consequence of Property 1.

Property 2. Under the assumption that the DNNs 𝒬𝑣 are

exact representations of the state-action value functions 𝑄𝑣 ,

𝑣 = 0,… , 𝐶, by using the control logic (14) a stationary

deterministic policy is found, which is lexicographically

optimal with respect to the vectorial state-action value

function (9).

Remark 1. Under the assumptions of Property 2, if the

feasible set of the problem (10) is not empty, the

lexicographically optimal solution is an optimal solution of

the problem (10). Otherwise, i.e., if no solutions exist which

satisfy all the constraints, the lexicographic approach

computes a sub-optimal policy which is not a feasible solution

of (10) but satisfies the maximum number of ordered

constraints. In this case, since the algorithm aims at satisfying

the constraints according to their priority, the solution

generally depends on their ordering.

Remark 2. If different thresholds 𝐾𝑐 are required, there is

no need of re-training the DNNs: the desired behavior can be

obtained by using the already trained DNNs with the

lexicographic action selection according to the new values of

𝐾𝑐 = 𝐾𝑐/(1 − 𝛾), 𝑐 = 1,… , 𝐶.

B. Lexicographic Deep Q-Network

As reference algorithms for the algorithm class identified

above, we picked the well-known Deep Q-learning with

Experience Replay algorithm, also known as Deep Q-

Network (DQN) [8], which considers a finite action set. To

improve the training process, DQN utilized the replay buffer

[18], which stores the state transitions and cost observations

occurred at each time-step; the update rule for the DNN is

then performed based on the costs contained in the buffer and

not on the current observed one.

Figure 2 presents the lexicographic DQN (L-DQN)

algorithm, which accounts for prioritized constraints. As

described in Section III.A, the modifications consist in the

utilization of additional 𝐶 DNNs, 𝒬𝑐 , 𝑐 = 1,… , 𝐶, to represent

the constraint state-action value functions and in the

lexicographic action selection. The training phase is the same

as in the standard DQN but it is needed for (𝐶 + 1) DNNs:

the primary DNN, minimizing the primary expected total

cost, and the constraint DNNs, each one minimizing one of

the constraint cost.

As the DNNs are trained, they are ready to be used by the

controller. The action selection is performed according to the

lexicographic approach. At each time-step 𝑡, the algorithm of

Function 1 (see Figure 1) is used to determine the number 𝑣

of satisfied ordered constraints and the constraint action sets

𝐴𝑐 , 𝑐 = 1,… , 𝐶. If all the constraints are met, i.e., 𝑣 = 𝐶, the

action is selected in the set 𝐴𝐶 and is aimed at minimizing the

primary cost 𝐽0; if one or more constraints are not met, i.e.,

𝑣 < 𝐶, the action is selected in the set 𝐴𝑣 and is aimed at

minimizing the constraint cost 𝐽𝑣+1 associated to the first

constraint which is not met.

Figure 1. Computation of the discrete constraint action sets

Function 1. Function for the computation of the discrete constraint

action sets in state 𝑠 ∈ 𝑆 observed at time 𝑡

Input: 𝑠, 𝒬𝑐(𝜑𝑐(𝑠), 𝑢|𝜽𝑐), ∀𝑢 ∈ 𝐴0, 𝑐 = 0,… , 𝐶 and 𝐾𝑐, 𝑐 = 1,… , 𝐶

• Initialize 𝑐 = 0 and 𝐴𝑣(𝑠) = ∅, 𝑣 = 1,… , 𝐶

• While 𝑐 < 𝐶 and 𝐴𝑐−1(𝑠) ≠ ∅ do

▪ Update 𝑐 ← 𝑐 + 1

▪ For all 𝑢 ∈ 𝐴𝑐−1(𝑠) do

- If 𝒬𝑐(𝜑𝑐(𝑠), 𝑢|𝜽𝑐) ≤ 𝐾𝑐, update 𝐴𝑐(𝑠) ← 𝐴𝑐(𝑠) ∪ {𝑢}
▪ If 𝐴𝑐(𝑠) = ∅ set 𝑣 = 𝑐 − 1 and 𝑐 = 𝐶

Output: 𝑣 and 𝐴𝑐(𝑠), 𝑐 = 1,… , 𝑣 + 1

Figure 2. Pseudo-code of the L-DQN algorithm

Algorithm 1. Lexicographic Deep Q-Network (L-DQN)

Training

• Initialize (𝐶 + 1) replay buffers 𝒟𝑐 to size N, and set minibatch sizes

𝑀𝑐 and number of sequences in the minibatches 𝑏 = 0

• Initialize action-value functions 𝒬𝑐, 𝑐 = 0,… , 𝐶, with random weights

• For 𝑐 = 0,… , 𝐶

▪ For 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1,… ,𝑀 do

- Initialize sequence with random initial state 𝑠0 and preprocessed

sequences with 𝜑𝑐(𝑠0), 𝑐 = 0,… , 𝐶

- For time steps 𝑡 = 0,… , 𝑇 do

• With probability 𝜀 select a random action 𝑢𝑡 ∈ 𝐴𝑐(𝑠𝑡)

otherwise select 𝑢𝑡 = min
𝑢′∈𝐴𝑐(𝑠𝑡)

𝒬𝑐(𝜑𝑐(𝑠𝑡), 𝑢
′|𝜽𝑐)

• Execute action 𝑢𝑡 in emulator, observe cost 𝑟𝑡

and next state 𝑠𝑡+1 and set 𝑏 = 𝑏 + 1

• Preprocess 𝜑𝑐(𝑠𝑡+1)

• Store the transition 〈𝜑𝑐,𝑏 , 𝑢𝑏 , 𝑟𝑏, 𝜑𝑐,𝑏〉 =

〈𝜑𝑐(𝑠𝑡), 𝑢𝑡 , 𝑟𝑡 , 𝜑𝑐(𝑠𝑡+1)〉 in 𝒟𝑐

• Every 𝒯 time steps do

o Sample a minibatch ℬ𝑐 of 𝑀𝑐 random transitions

from 𝒟𝑐

o For each transition 𝑗 ∈ ℬ𝑐

▪ Set 𝑦𝑗 = {
𝑟𝑗 for terminal 𝜑𝑐,𝑗+1

𝑟𝑗 + 𝛾 min
𝑢∈𝐴0

𝒬𝑐(𝜑𝑐,𝑗+1, 𝑢|𝜽𝑐) otherwise

▪ Update the critic by minimizing the loss

 𝐿 =
1

𝑁
∑ (𝑦𝑗 − 𝒬𝑐(𝜑𝑐,𝑗 , 𝑢𝑗|𝜽𝑐))

2

𝑗∈ℬ𝑐

Lexicographic RL Agent

• Observe initial state 𝑠0

• For 𝑡 = 0,… , 𝑇 do

▪ Use Function 1 (see Figure 1) to compute the number

𝑣 of met ordered constraints, and the action sets

𝐴𝑐(𝑠𝑡), 𝑐 = 1,… , 𝑣 + 1, based on 𝑠𝑡, 𝒬𝑐, 𝑐 = 0,… , 𝐶,

and 𝐾𝑐, 𝑐 = 1,… , 𝐶

▪ If 𝑣 = 𝐶, select

𝑢 = min
𝑢′∈𝐴𝐶(𝑠𝑡)

𝒬0(𝜑0(𝑠𝑡), 𝑢
′|𝜽0)

Otherwise, select

𝑢 = min
𝑢′∈𝐴𝑣(𝑠𝑡)

𝒬𝑣+1(𝜑𝑣+1(𝑠𝑡), 𝑢
′|𝜽𝑣+1)

▪ Execute action 𝑢, observe cost 𝑟𝑡 and next state 𝑠𝑡+1

The L-DQN pseudo-code is reported in Figure 2. As

analyzed in [10], DQN, as the original Q-Learning algorithm,

tends to overestimate the values of the state-action value

function. Even if this problem is not vital in some

applications, where obtaining the optimal policy is the main

objective, it is of great relevance in the proposed L-DeepRL

framework, since it may prevent the algorithm to guarantee

the performance requested, in probability, to the controller.

The overestimation issue was addressed by the introduction

of Double Q-Learning for the tabular algorithm, later

translated into Double DQN (D-DQN) for DeepRL solutions

[10]. Even if the simulations were run using a lexicographic

D-DQN implementation, this section describes the L-DQN

algorithm for the sake of readability.

IV. APPLICATION TO THE CONSTRAINED CART-POLE

PROBLEM

The scenario considered to validate the approach consists

in the classic cart-pole RL problem, originally presented in

[19], that has later become a standard benchmarking

environment for RL/DeepRL solutions. The implementation

is based on the environment implemented via OpenAI in the

Gym toolkit [20], in which the state space is defined by

𝑆 = {𝑠 = (𝑥 �̇� 𝜔 �̇�) s. t. |𝑥| ≤ 2.4𝑚, |𝜔| ≤ 0.21𝑟𝑎𝑑}, (15)

where 𝑥 and �̇� are the cart position and velocity, respectively,

and 𝜔 and �̇� are the pole angle (with 0 𝑟𝑎𝑑 defining the

straight standing position) and angular velocity, respectively.

The two box constraints in (15) define an operative region.

The action space is defined by 𝐴0 = {𝑢|𝑢 ∈

{−10,−5,0,5,10}}, where each action corresponds to

applying the specified force, expressed in Newton. A uniform

initial distribution 𝜒 was selected in the range ‖𝑠‖∞ ≤ 0.05.

A state is said to be terminal if the cart position or the pole

angle are not included in the operative region. In case a

terminal state is reached, the cart-pole is re-started in a

random position according to the distribution 𝜒.

The primary objective of the lexicographic RL (L-RL)

agent consists in maintaining the cart-pole system state within

the operative region while minimizing the required force.

This objective is captured by the reward function 𝜌0 (note that

Algorithm 1, presented for costs minimization, can be

seamlessly adapted to the case of reward maximization):

𝜌0(𝑠𝑡 , 𝑢𝑡 , 𝑠𝑡+1) = {
(10 − |𝑢𝑡|) if 𝑠𝑡+1 is not terminal

−10 otherwise
.

Regarding the chance-constraints, the one with the highest

priority is defined to impose the cart-pole system to maintain

the magnitude of the angle 𝜃 within a threshold of ± 0.03𝑟𝑎𝑑

with a threshold probability 𝐾1, while the second constraint

consists in maintaining the cart within a region ± 0.1𝑚 on the

cart position with a threshold probability 𝐾2. The two reward

functions 𝜌1, 𝜌2 were then set to 1 if the state evolves inside

the corresponding desired region, and 0 otherwise.

As motivated in Section III, the implemented algorithm is

the D-DQN, with target DNN trained according to the soft

target update method ([21]), with the parameter 𝜏 set to 0.1.

All the DNNs were trained with discount factor 𝛾 = 0.995,

decaying learning rate 𝛼(𝑡) = 10−4 ⋅ 0.99max{1,𝑡−500}−1 and

decaying 𝜀(𝑡) = 0.5 ⋅ 0.99max{1,𝑡−500}−1. The experience

replay was played after every time step, i.e., 𝒯 = 1. The

simulation length was set equal to the standard 200 time-

steps, and the other physical parameters of the cart-pole can

be found in [19], [20].

Figure 3. Percentage of time within various position (left plots) and angle

ranges (right plots) with different RL and L-RL agents.

𝐽 0
𝐽 1

𝐽 2
𝐿
𝑒
𝑥
(9

5
)

𝐿
𝑒
𝑥
(

5
)

a)

b)

c)

d)

e)

𝐽

f)

TABLE 1. SIMULATION RESULTS

Reward

function

% of time within

desired positions

% of time within

desired angles

Average

applied force

𝐽0 27.2% 77.7% 0.29𝑁

𝐽1 51.9% 99.3% 0.39𝑁

𝐽2 99. % 4.4% 2.97𝑁

𝐿𝑒𝑥(95) 99.7% 99.4% 1.39𝑁

𝐿𝑒𝑥(5) 7. % 91.5% 1.17𝑁

𝐽 99.5% 9 .7% 2.54𝑁

For all the reported tests, a total of 100 episodes with initial

state 𝑠0 ∈ 𝜒 were executed. The left (right) plots of Figure 3

show the percentage of time that the cart-pole spent in a given

position (angle) range. The figures also highlight the desired

position and angle ranges |𝑥| ≤ 0.1 and |𝜔| ≤ 0.03. Table 1

collects the results in terms of percentage of time within the

desired position and angle ranges and average absolute value

of the force applied during the runs. Figures 3.a)-c) show the

results when controlled by only the DNN trained to maximize

𝐽0 (minimization of the average used force), 𝐽1 (minimization

of the angle displacement) and 𝐽2 (minimization of the

distance from 𝑥 = 0), respectively. All the DNNs are

characterized by two hidden layers of 64 neurons with relu

activation functions, save for 𝒬0 that has 16 neurons on the

second layer, and a linear dense output layer. The training

required approximatively 400 episodes for each DNN.

Figure 3.a) shows that the control policy found by

maximising 𝐽0 is such that the cart position and angle are often

on the positive 𝑥 and 𝜔 values, leading to a percentage of time

spent within the desired region of 27.2% for the position range

and 77.7% for the angle– as reported in Table 1, while the

spent average force is 0.29𝑁. Figure 3.b) shows that, under

the reward 𝐽1, the angle remains almost always within the

desired angle region (99.3% of the time-steps), the

percentage of time spent within the desired position region is

51.9% and the spent average force is 0.39𝑁. As shown in

Figure 3.c), under the reward 𝐽2 the controller maintains the

desired position range for 99. % of the time at the price of a

larger effort, 2.97𝑁. The angle lies in the desired region

 4.4% of the time.

Figures 3.d)-e) show the results with the L-RL agents with

thresholds 𝐾1 = 𝐾2 = 0.95 and 𝐾1 = 𝐾2 = 0. 5. The L-RL

agents exploit the same three DNNs trained for the previous

tests and, in each state, use one of the DNNs to maximize one

of the 𝐽𝑖’s. In the table and figure, they are denoted with

𝐿𝑒𝑥(95) and 𝐿𝑒𝑥(5), respectively. Figure 3.d) shows that

the first L-RL agent manages to keep the cart-pole in the

desired region almost always (above 99% for both position

and angle) by spending an average force of 1.39𝑁,

significantly smaller than the one spent under 𝐽2 as the L-RL

agent uses also the DNN trained for the force minimization

objective. Figure 3.e), shows that also the second L-RL agent

manages to keep the cart-pole in the desired region for more

than its prescribed percentage of time (7. % for the angle,

91.5% for the position). As the prescribed percentages are

smaller than the ones of the previous L-RL agent, the average

spent force is reduced to 1.17𝑁.

During the episodes, the first L-RL agent, 𝐿𝑒𝑥(95), used

𝒬0 (trained based on the primary reward 𝜌0, i.e., to minimize

the control effort) to select the control action in 11% of the

time-steps, 𝒬1 (trained based on the angle reward 𝜌1) in 4%

and 𝒬2 (trained based on the position reward 𝜌2), in 5%. The

second L-RL agent, 𝐿𝑒𝑥(5), which has lower probability

thresholds, manages to increase the percentage of time in

which 𝜌0 is maximized: it uses 𝒬0, 𝒬1 and 𝒬2 in 27%, 3%

and 70% of the time-steps, respectively.

For comparison purposes, Figure 3.f) shows the results

with a RL agent aimed at maximizing the multi-objective

reward function 𝐽 ≔ 𝝀[𝐽0 𝐽1 𝐽2]
𝑇, where 𝝀 = [1 5 25] is

the vector of the Lagrangian weights associated to the reward

functions 𝐽𝑖’s. To achieve the prescribed percentages of 95%,

the weights were tuned by extensive grid-search during the

training phase of an analogous DNN which required

approximately 600 episodes. By using this DNN, the RL

agent manages to achieve similar performance with respect to

the L-RL agent with the same targets (𝐿𝑒𝑥(95)) at the price

of a larger control effort, equal to 2.54𝑁. Better results can be

obtained with finer weight tuning techniques, which are out

of the scope of the paper. Conversely, it is important to remark

that the DNN should be trained again to aim at the prescribed

percentages of 85% and a consequently lower control effort.

V. CONCLUSIONS AND FUTURE WORKS

This paper proposed an extension of the lexicographic

approach to the DeepRL framework, showing how it can be

used to design chance-constrained controllers. The main

advantage with respect to standard methods is that no

additional tuning of hyper-parameters is required in the

training phase to cope with the constraints and that the

probability with which the constraints are met can be changed

without the need of re-training the DNNs.

Future work is aimed at extending the lexicographic

approach to online solutions and continuous action space

scenarios by extending actor-critic methods [21].

REFERENCES

[1] M. P. Vitus, Z. Zhou, and C. J. Tomlin, “Stochastic control with

uncertain parameters via chance constrained control,” IEEE Trans.
Automat. Contr., vol. 61, no. 10, pp. 2892–2905, 2016.

[2] D. Bienstock, M. Chertkov, and S. Harnett, “Chance-constrained

optimal power flow: Risk-aware network control under uncertainty,”
SIAM Rev., vol. 56, no. 3, pp. 461–495, 2014.

[3] D. He, S. Yu, and L. Ou, “Lexicographic MPC with multiple economic

criteria for constrained nonlinear systems,” J. Franklin Inst., vol. 355,
no. 2, pp. 753–773, Jan. 2018.

[4] C. Ocampo-Martinez, A. Ingimundarson, V. Puig, and J. Quevedo,

“Objective prioritization using lexicographic minimizers for MPC of
sewer networks,” IEEE Trans. Control Syst. Technol., vol. 16, no. 1,

pp. 113–121, Jan. 2008.

[5] E. Altman, “Applications of Markov decision processes in
communication networks,” Handb. Markov Decis. Process., 2002.

[6] M. L. Puterman, “Markov decision processes,” Adv. Comput. Vis.

Pattern Recognit., vol. 54, pp. 199–216, Apr. 2015.
[7] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction.

MIT Press, Cambridge, MA, 1998.

[8] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning,”
Dec. 2013.

[9] V. Mnih et al., “Human-level control through deep reinforcement

learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.
[10] D. Van Hasselt, Hado and Guez, Arthur and Silver, “Deep

reinforcement learning with double q-learning,” Thirtieth AAAI Conf.

Artif. Intell., 2016.
[11] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuška, “A survey

of actor-critic reinforcement learning: Standard and natural policy

gradients,” IEEE Transactions on Systems, Man and Cybernetics Part
C: Applications and Reviews, vol. 42, no. 6. pp. 1291–1307, 2012.

[12] P. Geibel, “Reinforcement Learning Approaches for Constrained

MDPs,” Int. J. Comput. Intell. Res., vol. 3, no. 1, pp. 16–20, 2007.
[13] E. Altman, Constrained Markov decision processes. Chapman &

Hall/CRC, 1999.

[14] R. Yang, X. Sun, and K. Narasimhan, “A Generalized Algorithm for
Multi-Objective Reinforcement Learning and Policy Adaptation.”

[15] Z. Gábor, Z. Kalmár, and C. Szcpcsvári, “Multi-criteria

Reinforcement Learning,” in International Conference on Machine
Learning (ICML 1998), 1998, pp. 197–205.

[16] M. Panfili, A. Pietrabissa, G. Oddi, and V. Suraci, “A lexicographic

approach to constrained MDP admission control,” Int. J. Control, vol.

89, no. 2, pp. 235–247, Feb. 2016.

[17] Z. Gábor, Z. Kalmár, and C. Szepesvári, “Multi-criteria reinforcement
learning,” in ICML ’98 Proceedings of the Fifteenth International

Conference on Machine Learning, 1998, pp. 197–205.

[18] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
PhD Thesis, p. 160, 1993.

[19] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike Adaptive

Elements That Can Solve Difficult Learning Control Problems,” IEEE
Trans. Syst. Man Cybern., vol. SMC-13, no. 5, pp. 834–846, 1983.

[20] G. Brockman et al., “OpenAI Gym,” Jun. 2016.

[21] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in 4th International Conference on Learning

Representations, ICLR 2016 - Conference Track Proceedings, 2016.

