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Abstract We employ an effective field theory to study the
detectability of sub-GeV dark matter through its interaction
with the gapless excitations of superfluid 4He. In a quantum
field theory language, the possible interactions between the
dark matter and the superfluid phonon are solely dictated by
symmetry. We compute the rate for the emission of one and
two phonons, and show that these two observables combined
allow for a large exclusion region for the dark matter masses.
Our approach allows a direct calculation of the differential
distributions, even though it is limited only to the region of
softer phonon excitations, where the effective field theory is
well defined. The method presented here is easily extendible
to different models of dark matter.

1 Introduction

The existence of dark matter is one of the most compelling
indications for physics beyond the Standard Model, and the
question about its nature is hence of great interest. In recent
years, following the negative results in the search of Weakly
Interacting Massive Particles, more attention has been paid
to the hypothesis of a dark matter with mass below the GeV,
as suggested by different models – see e.g [1–13] for recent
reviews.

Given the very soft recoils expected, sub-GeV dark mat-
ter particles require new detection methods. Several ideas
have been proposed in the literature, from semiconductor tar-
gets [14–16] to superconductors [17] and Fermi-degenerate
materials [18]. Directionality in two-dimensional materials
has been discussed in [19–22]; an intermediate program for
the direct directional detection of MeV dark matter using
graphene is planned in the Ptolemy experiment [23].
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In this paper we will concentrate on the proposal to search
light invisible particles from scatterings in superfluid 4He
targets, as presented in [24,25]. The calorimetric readout of
a superfluid 4He target is discussed in [26] and an account
on particle detection by evaporation from superfluid helium
can be found in [26–28].

Indeed 4He offers several advantages such as a low target
mass to maximize the energy deposited by the dark matter,
high purity against radioactive decay and a suppressed back-
ground from electronic excitations.

In [24,25] it has been proposed to look for a process where
the dark matter interacts with the helium target, with conse-
quent emission of an off-shell phonon (i.e. not sitting on the
dispersion curve), which then decays into two on-shell ones.
The expectation is that, although phase space suppressed,
this process should maximise the energy released to final
state phonons, potentially allowing for the detection thanks
to an appreciable change in temperature of the superfluid.

In this work we employ an effective field theory (EFT)
approach [29–32] to describe the interaction between the dark
matter and the superfluid phonon. The method we use, being
solely based on symmetry arguments, is general to all super-
fluids (even the strongly coupled ones, like 4He) and allows
to easily couple the dark matter to the phonon, using standard
quantum field theory methods. No approximate models of the
superfluid are required. The parameters of the effective the-
ory are extracted from experiment. We work in a relativistic
setting, and take the nonrelativistic limit when appropriate.

We re-evaluate the relevance of the emission of a single
phonon. When allowed by kinematics, this process is dom-
inant and can offer one additional search channel, which is
relevant for dark matter masses larger than 1 MeV. More-
over, the emission happens at Čherenkov angles, which could
allow to determine the direction of the incoming dark matter.

The plan of action for our analysis is the following. We
write down the effective action, Sbulk, that describes the
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bulk of the superfluid alone, i.e. the phonon and its self-
interactions. We then introduce the dark matter field and write
the most general action, Seff, for its coupling with the super-
fluid phonon. This action comes with effective coefficients
that are a priori unknown. To estimate them, we consider a
microscopic model, Sdark, for the dark matter particle and
its interaction with 4He, which we match with the effective
action above and use to estimate the effective couplings.

In this work, we consider a scalar dark matter charged
under some darkUd(1) group, interacting with ordinary mat-
ter through a heavy mediator. The method illustrated can be
extended to any model of dark matter, the only necessary
input being the symmetries of the dark sector and its cou-
pling to ordinary matter.
Conventions: Throughout this paper we set h̄ = 1 and work
with a metric signature ηµν = diag(−1, 1, 1, 1). In most of
the paper we will also set c = 1, except when explicitly
stated.

2 The EFT for superfluids

The EFT approach to the description of gapless excitations
in generic media describes the latter in terms of spontaneous
symmetry breaking. Indeed, all media spontaneously break
at least part of the Poincaré group. In particular, every con-
densed matter system breaks Lorentz boosts by singling out
a particular reference frame: the one where the system is at
rest. Other components of the group could be broken as well,
and different symmetry breaking patterns characterise dif-
ferent states of matter [32]. The associated Goldstone modes
correspond to the collective excitations of the medium (see
e.g. [29–31,33–38]).

A zero-temperature s-wave superfluid is a system where a
global U (1) charge (particle number) is spontaneously bro-
ken by a background at finite density,1 where the vacuum
expectation value (vev) of its generator, ⟨N ⟩, is the number of
particles [39]. The ground state |µ⟩ of a finite density system
is defined as the state that minimizes the modified Hamilo-
tonian H̄ = H − µN , i.e. H̄ |µ⟩ = 0. It then follows that, if
such a state spontaneously breaks N , then time-translations
must be broken as well, while the combination H̄ remains
unbroken. On this background the energy of the system (i.e.
the vev of the Hamiltonian) is ⟨H⟩ = µ⟨N ⟩.

Given the above symmetry breaking pattern, the simplest
way to describe the low-energy dynamics of a superfluid is
arguably in terms of a real scalar field2 that shifts under the

1 The prototypical example is that of a gas of weakly coupled bosons.
At zero temperature they all condense on the ground state, and the total
wave function spontaneously breaks the particle number operator.
2 In the particular case of a weakly coupled gas of bosons, ψ corre-
sponds to the phase of the superfluid wave function [40,41].

U (1), ψ → ψ +α, and acquires a vev proportional to time,3

⟨ψ(x)⟩ = µt . This background breaks boosts, time transla-
tions and the internal U (1), but preserves the correct linear
combination of the last two, as explained above. Neverthe-
less, the system admits a single Goldstone boson – the super-
fluid phonon – corresponding to the fluctuation of the field
around equilibrium, ψ(x) = µt + π(x). Note that µ is the
relativistic chemical potential, related to the more standard
nonrelativistic one, µnr, by µ = m + µnr, with m the mass
of the constituents of the superfluid.4

Since the breaking of the above symmetries is sponta-
neous, the most general low-energy action for the scalar field
must be invariant under the Poincaré group and the internal
U (1). At lowest order in the derivative expansion the only
possibility is [30,42]

Sbulk =
∫

d4x P(X) with X =
√

−∂µψ∂µψ, (1)

where P is a generic function. Here X is the local chemical
potential, which differs from the background one in presence
of fluctuations. The stress-energy tensor of this theory is

Tµν = ηµν P(X)+ P ′(X)
∂µψ∂νψ

X
, (2)

where the prime denotes derivatives with respect to X (or,
equivalently, µ). From the above equation one deduces that
P(X) is the pressure of the superfluid.

Expanding the lagrangian up to cubic order in small fluc-
tuations, one finds the action for the superfluid phonon

Sbulk ⊃ n̄
µc2

s

∫
d4x

[
1
2
π̇2 − c2

s

2
(∇π)2

+ λ3π̇(∇π)2 + λ′
3π̇

3
]

→
∫

d4x
[

1
2
π̇2 − c2

s

2
(∇π)2

+ λ3

√
µ

n̄
cs π̇(∇π)2 + λ′

3

√
µ

n̄
cs π̇3

]
,

(3)

where in the second line we have canonically normalized the
field (π → √

µ/n̄ csπ). The sound speed cs and effective
couplings are related to the pressure by

c2
s = P ′

µP ′′ , λ3 = c2
s − 1
2µ

, λ′
3 = 1

6
µc2

s

n̄
P ′′′, (4)

3 Even though the vev is divergent for large times, this has no conse-
quences on observables, since the field ψ always appears derived.
4 In fact, the chemical potential corresponds to the energy of the system
per particle. In a relativistic framework, this gets a contribution from
the particle’s rest mass.
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where the derivatives are evaluated on the background, X =
µ. The background number density is given by n̄ = P ′ (again
by inspection of the stress-energy tensor). The only informa-
tion necessary to extract all the effective parameters is the
superfluid equation of state (e.g. P = P(µ) or cs = cs(P))
[43]. Finally, the propagator for a phonon with energy ω and
momentum q reads

Gπ (ω, q) =
i

ω2 − c2
sq2 + iϵ

. (5)

3 Dark matter–phonon interaction

Let us now describe the interaction between the dark matter
and the phonon. In our toy model the dark matter is described
by a scalar field, χ(x), charged under some dark Ud(1). We
also assume that the dark sector is weakly coupled, and that its
interaction to ordinary matter goes through a massive scalar
mediator, φ(x).

Since we are interested in processes with one incom-
ing and one outgoing dark matter particle, we look for the
coupling between two dark matter fields and the superfluid
phonon. The effective theory that describes such an interac-
tion must be invariant under Poincaré transformations, the
superfluid U (1) and the dark Ud(1). The most general low-
energy effective action for the case of interest is then

Seff = −
∫

d4x
[
Z(X)|∂χ |2 + m2(X)|χ |2

+ A(X)χ†∂µχ∂µψ + h.c.

+ B(X)∂µχ∂νχ
†∂{µψ∂ν}ψ

]
,

(6)

where with { . . . } we indicate the traceless combination of
indices. Note that any function of X is invariant under the
full symmetry group. Here m2(X) is the effective mass of
the dark matter in medium, in analogy to the Archimedean
principle. The action above contains all possible interactions
between two dark matter fields and any number of phonons,
at lowest order in the derivative expansion.

From the EFT viewpoint the functions m2, Z , A and B are
completely unspecified. As anticipated in the Introduction, in
order to estimate them we consider a particular toy example
for the microscopic interaction of the dark matter particle
with the superfluid:

Sdark = −
∫

d4x
[
|∂χ |2 + m2

χ |χ |2 +
1
2
(∂φ)2 +

m2
φ

2
φ2

+ gχmχφ|χ |2 + gHeφ n
]
, (7)

(a) (b)

Fig. 1 Leading and next-to-leading order corrections to the dark matter
propagator on the superfluid background. The crossed circle represents
the vev of the superfluid operator O

where n is the helium number density. Note that, in gen-
eral, the mediator φ might couple to any mesoscopic scalar
operator O of the superfluid which play the role of an order
parameter. In general, this operator will be originated in the
UV from a coupling between the dark sector and the Stan-
dard Model as, for example, a coupling between φ and the
quark field. A detailed knowledge of the structure ofO can be
obtained, for example, via Monte Carlo methods [44]. If one
neglects spin-dependent couplings, which are expected to be
suppressed by the nucleon mass, dimensional analysis tells
us that O ∼ n, and for the sake of the present work, and in
absence of a specific model, it is sufficient to choose O = n.
Note that while the coupling gHe between the dark sector
and the helium is necessarily small, the smallness of gχ is an
assumption of our model. We can now match the action (6)
with the one above and extract the unknown couplings.

The scalar coupling between φ and n cannot generate
effective operators with spin different from zero. It then
readily follows that, for the theory under consideration,
A(X) = B(X) = 0.

On the superfluid background, the number density acquires
a vev, n̄, which induces a tadople for the mediator, which can
then modify the dark matter propagator through the processes
reported in Fig. 1. At lowest order in gχ and gHe, this induces
a shift in the dark matter mass given by

m2(µ) = m2
χ − gχgHe

mχ

m2
φ

n̄(µ), (8)

where n̄ is a function of the chemical potential on the back-
ground. Corrections to the dark matter wave function are only
generated by higher order diagrams like the one in Fig. 1b,
which we neglect. Hence Z = 1 at lowest order.5

Now that we have estimated the effective mass of the dark
matter in the superfluid, the action describing the interaction
with the phonon is easily found (in terms of canonical fields)
expanding Eq. (6), with A = B = 0, for small fluctuations

5 It is likely that the Z(X) coupling will be suppressed anyway due to
the nonrelativistic nature of the dark matter. We are grateful to Riccardo
Penco for pointing this out.
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around equilibrium:

Seff ⊃
∫

d4x
[

− g1

√
µ

n̄
cs π̇ + g1

2
c2
s

n̄
(∇π)2

− g2

2
µc2

s

n̄
π̇2

]
|χ |2,

(9)

with the effective couplings being

gn = dnm2

dµn = −gχgHe
mχ

m2
φ

dnn̄
dµn . (10)

From Eqs. (3) and (9) we can then find the Feynman rules
for the dark matter–phonon(s) vertex and the phonon self-
interaction:

(11a)

(11b)

(11c)

Let us stress that the discussion above is completely gen-
eral, true for any relativistic s-wave superfluid at zero tem-
perature. Moreover, the three-phonon vertex (or any other
vertex) is obtained straightforwardly, in contrast with stan-
dard techniques [45], and it is uniquely determined by the
symmetries. In the next section we specify to the case of
4He, and work in the nonrelativistic limit, for which cs ≪ 1
and µ ≃ mHe.

4 Results

4.1 One-phonon emission

When a single phonon is emitted, its energy is not enough
to be detected using calorimetric techniques, which have a
sensitivity of (at best) 1 meV [17]. However, it can travel
ballistically through the medium and bounce off the walls

of the superfluid container until it reaches the surface. It can
then induce the evaporation of a helium atom, which could
eventually be observed [26,28]. In order for this to happen,
the phonon must overcome the surface binding energy of the
atom to the rest of the superfluid, which is ωmin = 0.62 meV.
Note that this energy range is such that the stability of the
phonon against decay is ensured6 [46].

For 4He the maximum energy of a phonon is roughly 1
meV. Above that, the dispersion relation ceases to be linear
and the collective excitations cannot be described in terms of
a phonon degree of freedom. From the EFT viewpoint this
means that higher derivative corrections become relevant,
and the action (1) should be supplemented with higher dimen-
sional operators, hence largely losing its predictive power.

Consider the emission of a single phonon. Its maximum
energy is 2csmχvχ . Since in order for it to be detected it must
be ω ! 0.62 meV, and the dark matter velocity is vχ ∼ 10−3,
it follows that this channel is only effective if mχ ! 1 MeV.
Given the rule (11a) one finds the emission rate as

d,

d-dω
= g2

1

32π2

mHe ω2

vχm2
χ n̄

δ

(
cos θ − cs

vχ
− q

2mχvχ

)
. (12)

As anticipated in the Introduction, energy and momentum
conservation force the phonon to be emitted at a specific angle
which depends on the momentum of the outgoing phonon,
i.e. the Čherenkov angle. Note that the condition that the δ-
function has nonzero support, tells us that one cannot emit a
phonon with momentum larger than qmax = 2mχ (vχ − cs).

Using Eq. (10) together with the thermodynamic identities
dP = n̄dµ and dP/dn̄ = mHec2

s , we can write the effective
dark matter–phonon coupling as

g1 = −gχgHe
mχ

m2
φ

n̄
mHec2

s
. (13)

We then find the rate per unit phonon energy to be

d,

dω
=

g2
χg

2
He

16π m4
φ

n̄
mHec4

s vχ
ω2. (14)

Since the energy deposited in the superfluid by this process
is too small (ω " 1 meV), it can only be detected via the
quantum evaporation. The detection rate per unit target mass
is then obtained counting the number of events for which the
phonon’s energy is in the correct range

N =
∫

dvχ fMB(vχ )
ρχ

mHen̄mχ

∫ ωmax

ωmin

dω
d,

dω
. (15)

6 We are grateful to McKinsey for pointing this out to us.
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+

(a) (b)

Fig. 2 Leading diagrams contributing to the two-phonon emission pro-
cess

Here ωmax = min(2csmχ (vχ −cs), 1 meV) is the maximum
phonon energy, set by either the momentum of the dark matter
times the speed of sound or by the cutoff of the EFT. The
local dark matter mass density is ρχ ≃ 0.3 GeV/cm3 [47],
while the helium number density and sound speed at zero
temperature are n̄ ≃ 8.5 × 1022 cm−3 and cs ≃ 8.2 × 10−7

[43]. Finally the dark matter Maxwell–Boltzmann distribtion
in the Milky Way halo is given by

fMB(vχ ) = 4
v2
χ

v2
0

e−v2
χ /v

2
0 1(vesc − vχ )

√
πv0erf

(
vesc
v0

)
− 2e−v2

esc/v
2
0vesc

, (16)

with v0 ≃ 220 km/s and vesc ≃ 550 km/s [48].
Noticing that the effective coupling for a massive media-

tor is roughly gχgHe/m2
φ , we can estimate the dark matter–

helium cross section as

σHe ∼
g2
χg

2
He

16π m4
φ

m2
χm

2
He

(mχ + mHe)2 ≃ A2σp, (17)

where σp is the dark matter–proton scattering cross section,
and A = 4 for 4He. The combination gχgHe/m2

φ can then be
expressed in terms of σp only.

4.2 Two-phonon emission

Let us now turn to the process of emission of two phonons by
the passing dark matter. Using simple kinematics the authors
of [24,25] claim that the configuration where the two emit-
ted phonons are back-to-back allows to maximize the energy
released to the superfluid, potentially allowing for the detec-
tion.

Here we re-evaluate it using our EFT. At leading order
in gHe, the two diagrams contributing to this process are
the ones reported in Fig. 2. Note that the first one did not
appear explicitly before [24,25]. When the two phonons are
almost back-to-back, both matrix elements are equally rel-
evant to the process under consideration. One can indeed
estimate them with simple dimensional analysis. Reinstat-
ing the speed of light, one finds that, with our normalization,
P ′ = n̄ ∼ r−3

B . Moreover, every derivative of the pressure
scales as mHer2

B , and cs ∼ m−1
Her

−1
B . Given this, one finds,

for example, that λ′
3 ∼ mHec2

s P
′′′/n̄ ∼ mHer2

B . Following

Table 1 Summary of the couplings and parameters extracted from data.
The derivatives of the density with respect to the chemical potential can
be reduced to derivatives of the sound speed with respect to pressure
using standard thermodynamical identities

n̄ 0.65 keV3 λ3 −1.3 × 10−7 keV−1

cs 8.2 × 10−7 λ′
3 −8.5 × 105 keV−1

dn̄/dµ 2.7 × 105 keV2 d2n̄/dµ2 −1.4 × 1012 keV

these lines, we deduce that both matrix elements are roughly

M ∼ gχgHe
mχ

m2
φ

· mHer2
B · ω1ω2 f (θ12,ω1/ω2), (18)

where θ12 is the relative angle between the two outgoing
phonons and f an adimensional function, different for the
two diagrams. Hence, barring particular kinematical config-
urations, the two amplitudes are of similar magnitude, as
it is also verified numerically. Yet another advantage of the
EFT approach is to make manifest the presence of the first
diagram. Importantly, the two diagrams turn out to interfere
destructively.

The effective couplings for the process under considera-
tion can be written in the nonrelativistic limit as

λ3 ≃ − 1
2mHe

, λ′
3 ≃ 1

6mHec2
s

− n̄
3cs

dcs
d P

, (19a)

g2 ≃ −gχgHe
mχ

m2
φ

(
n̄

m2
Hec

4
s

− 2n̄2

mHec3
s

dcs
d P

)
, (19b)

together with the coupling g1 already estimated in Eq. (13).
The derivatives of the sound speed as a function of pressure
are extracted from data [43]. Here we consider reference val-
ues at atmospheric pressure, for which dcs/dP ≃ 8 m/s/atm.
In Table 1 we summarise the numerical values of the effective
couplings and parameters in units of energy.

We now need to evaluate the rate for the emission of
two phonons. In a standard Lorentz invariant framework one
would boost the system to the center-of-mass of the initial
particle, where the computation is simpler, and then boost
back to the lab frame. Here, the presence of the medium
breaks boost invariance, and the rate must be computed
directly in the lab frame.

The final state contains the scattered dark matter particle
with momentum P ′ and energy E ′, and the two phonons with
momenta q1 and q2, and energies ω1 and ω2. Let θ2 be the
angle of one of the two phonons with respect to the direction
of the incoming dark matter particle, P . Let θ12 be the angle
between the phonons in the final state. The two-phonon rate
is given by

, = 1
8(2π)4c5

s E

∫

R
dθ12dθ2dω1dω2

ω2

P
|M|2√
1 − A2

, (20)
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where the matrix element M is obtained by the sum of the
two diagrams in Fig. 2, E is the energy of the incoming dark
matter, and R is a suitable integration region – see below.
The angle θ1 between P and q1, is given by

cos θ1 = cos θ12 cos θ2 − A sin θ12 sin θ2 (21)

with A = cos(φ12 − φ2), where φ12 is the azimuthal angle
of q1 in a frame in which q2 is along the z-axis (θ12 is the
zenith angle), whereas φ2 is the azimuthal angle of q2 in a
frame in which P is along the z-axis.

The momentum delta-function has been integrated over
d3P ′ leaving

d3q1 d3q2 = q2
1dq1dφ12d cos θ12 q2

2dq2dφ2d cos θ2. (22)

The energy delta-function has instead been integrated over
φ12 to obtain the expression for the phase space in (20),
including the Jacobian

J = cs E ′

ω1 sin θ12 sin θ2P
. (23)

It follows that the integration region R is the one over which
the delta-function has support. This is defined by those values
of θ12, θ2,ω1 and ω2 satisfying

R : −1 ≤ A(θ12, θ2,ω1,ω2) ≤ +1, (24)

where

A(θ12, θ2,ω1,ω2) =
1

sin θ12 sin θ2

(

cos θ12 cos θ2

+ω2

ω1
cos θ2 − ω2

cs P
cos θ12 − ω2

1 + ω2
2

2ω1cs P

)

.

(25)

The calculation of the integral is conveniently done using
Monte Carlo techniques (in particular we took advantage of
the Vegas algorithm available in the CUBA library [49]).

Given the above setup, we impose a number of kinematical
cuts to reflect both consistency with the regime of applica-
bility of the EFT as well as experimental constraints. First
of all, as in the previous section, we integrate the phonon’s
momenta only up to qmax = 1 keV. Secondly, we require
that the momentum flowing in the phonon propagator does
not exceed the cutoff of the EFT.7 This is done imposing that
the momenta satisfy

|q⃗1 + q⃗2| ≤ 1 keV. (26)

This cut also cures the collinear divergence coming from the
propagator at θ12 = 0.

7 For dimensional reasons the energy and momentum cutoffs are related
by ωmax ∼ csqmax.

Fig. 3 Differential distribution of the released energy per unit time as
a function of the relative angle between the outgoing phonons. This
sample plot is obtained for a dark matter with mass and momentum
mχ = 1 MeV and P = 1 keV, and for a dark matter–proton cross section
σp = 10−40 cm2. We assumed the detection happens via evaporation

Fig. 4 Exclusion region as refered to 95% C.L., corresponding to 3
events/kg/year, assuming zero background. The data for nuclear recoil
have been taken from [25]. The sharp vertical line in the one-phonon
case corresponds to the value of the dark matter mass for which it
becomes too light to produce a detectable phonon. The two-phonon
emission process remains effective also at masses lighter than 1 MeV

As explained in the Introduction, there are two possible
ways to detect the event. Either the phonons have separately
enough energy to induce quantum evaporation on the surface
of the superfluid, or the net energy released to the detector
is enough to be observed using, say, a Transition Edge Sen-
sor, which we assume to be in thermal equilibrium with the
helium bath. We treat them as two independent signatures8

and, based on which one we are considering, we impose addi-
tional cuts. In particular, in the first case we require that both
phonons satisfy ωi ≥ 0.62 meV, while in the second case we
require that ω1 + ω2 ≥ 1 meV. In the following we refer to
these alternatives respectively as “evaporation” and “energy
deposit”. The total rate per unit time and detector’s mass is

8 It is possible to envision a setup where these two signatures combined
work as a trigger to discriminate the emission of one phonon from that
of two phonons.
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computed integrating Eq. (20) over the Maxwell-Boltzman
distribution, as in Eq. (15).

In Fig. 3 we report a sample distribution for the net energy
released to the superfluid, ER = ω1 + ω2, per unit time as
a function of the relative angle between the two phonons.
As one can see, the maximum energy is released when the
two phonons are almost back-to-back, although the peak is
substantially shifted from θ12 = π . Such a shift is due to
the fact that the θ12 = π configuration is forbidden by phase
space. In fact, when θ12 → π then A → ∞, except for the
zero measure set where ω1 = ω2, and the condition (24) is
never satisfied.

4.3 Exclusion region

Our predicted exclusion region is reported in Fig. 4. We
have assumed no background and the sensitivity necessary
to detect a net energy deposit of 1 meV, as well as to observe
single phonons through quantum evaporation.

As one can see, a combination of observables allows
to cover different orders of magnitude for the dark matter
mass. For masses below the MeV the two-phonon process
is the only one that has the right kinematics to be poten-
tially observed, and it can be relevant for substantially lighter
masses. Recall that here we only account for the phononic
excitations described by our EFT. The inclusion of higher
momentum excitations, like maxons or rotons, opens up a
large portion of phase space. Nevertheless, our framework
allows to compute the rate for this process up to arbitrar-
ily high masses, beyond the limitations of standard tech-
niques. There are, in fact, no available information on the
helium dynamical structure function for this kinematical
regime [24]. Above 1 MeV there are two dominant processes:
hard nuclear recoil and the emission of a single phonon.
The first one is a process where the dark matter energy is
released to short wavelength modes rather than collective,
long wavelength excitations and can then only be detected
via energy deposit. The second one, although less effective,
can be detected via quantum evaporation and offers a valu-
able independent channel, relevant for a different range of
exchanged momentum.

5 Conclusion

In this work we explored a new approach to the problem of the
search for sub-GeV dark matter using superfluid 4He. From
the EFT viewpoint, the interaction between the dark matter
and the superfluid phonon is easily described in a quantum
field theory language. This allowed us to perform a number
of improvements with respect to previous studies (e.g. to
formulate the problem in a quantum field theory language,
and to reach higher values of the dark matter mass), as well

as to have easy access to all sorts of differential distributions,
which are crucial for experimental analyses and were not
available before. The current EFT approach is however only
valid for the description of phonons and does not incorporate
higher momentum excitations.

With these information at hand, one can start envision-
ing different experimental devices that take advantage of the
event distributions. For example, given that the emission of
a single phonon happens at a fixed angle with respect to the
direction of the dark matter, one could think about possible
designs for directional detectors.

Other signatures of the interaction with dark matter can
involve different excitations of 4He, like quantized vortices
and rotons. In particular, the latter ones probably contribute
to a large portion of the available phase space for the pro-
cesses considered in this work. An effective theory for the
description of superfluid vortices has been developed in [50],
while the first important steps towards the development of a
field theory for the description of rotons have been made in
[51].

The EFT we presented here is valid for the ideal case
of a zero-temperature superfluid. It would be interesting to
study the effects that finite temperature has on the observ-
able we considered here, especially on the phonon’s life-
time [26]. Away from the zero-temperature limit a super-
fluid presents two different kinds of excitations: the standard
superfluid phonon and the phonons of an ordinary fluid –
the so-called two-fluid model [52]. The possible interactions
between the two could be relevant for our analysis. An EFT
for the description of a finite temperature superfluid has been
developed in [31], although its quantization is a nontrivial
task (see e.g. [33,53,54]).

Lastly, the only input necessary to our analysis are the
symmetries of the dark sector and its coupling to ordinary
matter. It can then be extended to different models of dark
matter. The exclusion plots and distibutions shown were
determined in a dark matter toy model. We leave these numer-
ous possible upgrades for future work.
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