
Remote attestation to ensure the security of future
Internet of Things services

PhD School in Computer Science
Dipartmento di Informatica
Sapienza University of Rome, Italy

Dottorato di Ricerca in Informatica – XXXII Ciclo

Candidate

Edlira Dushku
ID number 1753542

Thesis Advisor

Prof. Luigi Vincenzo Mancini

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Informatica

February 2020

Thesis defended on 28 February 2020
in front of a Board of Examiners composed by:

Prof. Andrea Torsello (chairman)
Prof. Francesco Lo Presti
Prof. Raffaele Montella

Remote attestation to ensure the security of future Internet of Things services
Ph.D. thesis. Sapienza – University of Rome

© 2020 Edlira Dushku. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Website: https://sites.google.com/di.uniroma1.it/dushku/

Author’s email: dushku@di.uniroma1.it

https://sites.google.com/di.uniroma1.it/dushku/
mailto:dushku@di.uniroma1.it

iii

Thesis Committee

Prof. Luigi Vincenzo Mancini (First Member)
Department of Computer Science
Sapienza University of Rome, Italy

Prof. Alessandro Mei (Second Member)
Department of Computer Science
Sapienza University of Rome, Italy

Daniele Venturi (Third Member)
Department of Computer Science
Sapienza University of Rome, Italy

iv

External Reviewers

Prof. Albert Levi
Faculty of Engineering and Natural Sciences
Sabanci University
Istanbul, TURKEY

Prof. Elhadj Benkhelifa
Department of Computer Science
Staffordshire University
Stoke-on-Trent, UK

To my mother and my father

vii

Abstract

The Internet of Things (IoT) evolution is gradually reshaping the physical world
into smart environments that involve a large number of interconnected resource-
constrained devices which collect, process, and exchange enormous amount of (more
or less) sensitive information. With the increasing number of interconnected IoT
devices and their capabilities to control the environment, IoT systems are becoming
a prominent target of sophisticated cyberattacks. To deal with the expanding attack
surface, IoT systems require adequate security mechanisms to verify the reliability
of IoT devices.

Remote attestation protocols have recently gained wide attention in IoT systems
as valuable security mechanisms that detect the adversarial presence and guarantee
the legitimate state of IoT devices. Various attestation schemes have been proposed
to optimize the effectiveness and efficiency of remote attestation protocols of a single
IoT device or a group of IoT devices. Nevertheless, some cyber attacks remain
undetected by current attestation methods, and attestation protocols still introduce
non-negligible computational overheads for resource-constrained devices.

This thesis presents the following new contributions in the area of remote attes-
tation protocols that verify the trustworthiness of IoT devices.

First, this thesis shows the limitations of existing attestation protocols against
runtime attacks which, by compromising a device, may maliciously influence the
operation of other genuine devices that interact with the compromised one. To detect
such an attack, this thesis introduces the service perspective in remote attestation
and presents a synchronous remote attestation protocol for distributed IoT services.

Second, this thesis designs, implements and evaluates a novel remote attestation
scheme that releases the constraint of synchronous interaction between devices and
enables the attestation of asynchronous distributed IoT services. The proposed
scheme also attests asynchronously a group of IoT devices, without interrupting the
regular operations of all the devices at the same time.

Third, this thesis proposes a new approach that aims to reduce the interruption
time of the regular work that remote attestation introduces in an IoT device. This
approach intends to decrease the computational overhead of attestation by allowing
an IoT device to securely offload the attestation process to a cloud service, which
then performs attestation independently on the cloud, on behalf of the IoT device.

ix

Acknowledgements

This journey would not have been possible without the presence, patience and help
of all the people I travelled with, and I am profoundly thankful to all of them!

Foremost, I want to express my profound gratitude to my PhD advisor, Prof.
Luigi V. Mancini, for welcoming and supporting me in the research world, starting
from scratch, literally! I sincerely appreciate his approach of smoothly injecting
Cybersecurity into my head and eventually turning Cybersecurity into my default
mindset. His willingness to give me freedom in choosing my research field unlocked
my imagination and enlightened the first steps of my research path. I am extremely
indebted to him for his trust, guidance, dedication, and everything: from research
brainstorming and paper writings to conversations beyond PhD and free ice-creams.

During my PhD, I had the great pleasure to collaborate with very inspiring
researchers, in particular with Prof. Mauro Conti, Dr. Alexander Kott, Dr. Paul
Theron, Masoom Rabbani, and Dr. Silvio Ranise. The meetings with Alexander
and Paul, since at the very beginning of my PhD, have been fascinating and very
inspiring for my research. I want to thank Mauro for his suggestions during the last 3
years and especially for his efforts in shrinking his schedule to come for brainstorming
in Rome. I enjoyed the collaboration with Masoom, and I appreciate his unique
ability to listen to all my loud thoughts. I want to thank also Silvio for his dedication
and his insightful comments during our collaboration.

I am very thankful to my thesis’ internal committee: Prof. Luigi V. Mancini,
Prof. Alessandro Mei and Prof. Daniele Venturi, and the external reviewers of my
thesis: Prof. Albert Levi and Prof. Elhadj Benkhelifa, for generously offering their
time out of their busy schedules and providing me invaluable constructive feedback
that significantly improved the content and the structure of this thesis.

My life in PhD and in Rome would not have been the same without my friends
of Computer Security Research Group of Sapienza: Gabriele Gualandi, Fabio de
Gaspari and Dorjan Hitaj, thank you guys for interesting discussions, valuable advice,
and for all the beautiful lunches with un caffè al vetro! I would also like to thank
all the great colleagues, friends, and researchers that I met in Sapienza University
of Rome. In particular, I acknowledge the many helpful discussions with Angelo
Spognardi, Daniele Venturi, and Emiliano Casalicchio.

I am especially very grateful to my friend Briland Hitaj for all his positivity,
suggestions, and also for the encouragement for starting a PhD. Without him, I
would not have been writing a PhD thesis now. Thank you Briland for believing in
me more than I believed in myself!

I consider myself lucky that in high school I worked with a humble and amazing

x Acknowledgements

person, my math teacher, Ndriçim Balliu, who was also the first one (before me)
who believed that I would be “fine” in Computer Science.

I owe a special thank you to my amazing friends in Toastmasters Roma for
helping me out to overcome the terrifying fear of public speaking. Virginia, Michelle,
Francesco, Carlo, Fiore, Laura, Cinzia, I can never thank you enough for your
support, patience, and inspiration.

Finally, the unconditional love and constant support of my parents and my
brother have been extremely precious (especially) during the last 3 years. Mom and
daddy, thank you for being always there!

Thank you to everyone who has been with me on this journey, I hope this is just
the beginning of my research.

Edlira Dushku
Rome, Italy, February 2020

xi

List of Abbreviations

ABE Attribute-based Encryption
AMQP Advanced Message Queuing Protocol
APDR Average Packet Delivery Ratio
AWS Amazon Web Services
CFG Control Flow Graph
DAG Direct acyclic graph
DDoS Distributed Denial of Service
DDS Data Distribution Service
DOP Data Oriented Programming
FaaS Function-as-a-Service
FSM Finite-State machine
IoT Internet of Things
ISTR Symantec Internet Security Threat Report
LC Logical Clock
MAC Message authentication code
MITM Man in the middle
MQTT Message Queuing Telemetry Transport Protocol
RAM Random Access Memory
ROM Read-Only Memory
ROP Return Oriented Programming
RTC Real Time Clock
SDN Software Defined Networking
SFC Service Function Chaining
SGX Intel Software Guard Extensions
TPM Trusted Platform Module
VC Vector Clock

xiii

Contents

Abstract vii

Acknowledgements ix

List of Abbreviations xi

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Motivation and Challenges . 3
1.2 Research Aim and Objectives . 6
1.3 Contributions . 7

1.3.1 Publications . 9
1.4 Thesis Outline . 10

2 Review of Remote attestation protocols in IoT systems 11
2.1 Overview of Remote attestation . 11
2.2 Background . 13

2.2.1 Memory architecture of IoT devices 13
2.2.2 Code injection attacks . 15
2.2.3 Run-time Attacks . 15

2.3 The State of the Art . 16
2.3.1 Dynamic attestation . 18
2.3.2 Collective attestation . 19
2.3.3 Discussion . 23

3 Synchronous Remote attestation 25
3.1 Motivation . 25

3.1.1 Contributions . 27
3.1.2 Chapter outline . 27

3.2 Problem Description . 28
3.3 System model . 32
3.4 Adversary model and Security Requirements 34

3.4.1 Adversary model . 34
3.4.2 Security requirements . 35

xiv Contents

3.5 Remote attestation of distributed IoT services: RADIS 36
3.5.1 Preliminaries . 36
3.5.2 Setup phase . 37
3.5.3 Attestation phase . 40

3.6 Experimental setup and evaluation 42
3.6.1 Experimental Setup . 43
3.6.2 Evaluation . 44

3.7 Security Analysis . 46
3.8 Conclusions and Open issues . 47

4 Asynchronous Remote attestation 49
4.1 Motivation . 49

4.1.1 Contributions . 51
4.1.2 Chapter outline . 52

4.2 Problem Description . 52
4.3 Background . 55

4.3.1 Architectural properties of Publish/Subscribe 56
4.3.2 Logical Clock Synchronization 57

4.4 System model . 58
4.5 Adversary model and Security Requirements 59

4.5.1 Adversary model . 59
4.5.2 Security requirements . 61

4.6 Asynchronous Remote Attestation: SARA 61
4.6.1 Setup phase . 61
4.6.2 Attestation phase . 63
4.6.3 Verification phase . 65
4.6.4 SARA working mechanism 68

4.7 Experimental setup and evaluation 70
4.7.1 Experimental setup . 70
4.7.2 Evaluation . 71

4.8 Security Analysis . 76
4.9 Limitations . 78
4.10 Conclusions and Open issues . 80

5 Remote attestation as a Service 81
5.1 Motivation . 81

5.1.1 Contributions . 83
5.1.2 Chapter outline . 83

5.2 Background . 83
5.2.1 Cloud architecture for IoT . 84
5.2.2 Distributing Cloud in Fog . 85

5.3 System model . 85
5.4 Adversary Model . 88
5.5 Remote attestation as a Service: RAaS 88

5.5.1 Protocol Overview . 88
5.5.2 RAaS Working mechanism 89
5.5.3 RAaS components . 91

Contents xv

5.6 Security Analysis . 93
5.7 Limitations . 94
5.8 Conclusions and Open issues . 95

6 Conclusions and Future Works 97
6.1 Thesis summary . 98

6.1.1 Synchronous remote attestation 98
6.1.2 Asynchronous remote attestation 98
6.1.3 Remote attestation as a service 99

6.2 Future research directions . 99

xvii

List of Figures

1.1 Size of the Internet of Things (IoT) market worldwide from 2017 to
2025 (in billion U.S. dollars) according to [100]. 3

1.2 Top IoT threats in 2018 according to [102] 4
1.3 Top device types performing IoT attacks in 2018 according to [102] . 5

2.1 Typical remote attestation paradigm 12
2.2 Von Neumann Memory Architecture 14
2.3 Harvard Memory Architecture . 15
2.4 Code injection attack . 16

3.1 Service Flow of IoT devices . 28
3.2 Device interaction in Smart Home IoT System 29
3.3 Pseudo-code of the service flow in Figure 3.2 29
3.4 Control flow of the distributed service in Figure 3.2 30
3.5 System model of remote attestation of a distributed IoT service, which

consists of two services Siu and Sjv. 33
3.6 Hashing algorithm of Control Flow Graph 37
3.7 Hashing procedure for a legitimate Service Flow in RADIS 40
3.8 The algorithm of RADIS attestation protocol 41
3.9 Comparison of RADIS performance for SHA-1 and SHA-384 for two

and three services in a distributed service 45
3.10 RADIS performance in various number of services in a distributed

system . 45

4.1 Toy example of interacting services in a Smart city scenario 53
4.2 Overview of service interactions in publish/subscribe paradigm . . . 54
4.3 SARA system model . 59
4.4 The algorithm of SARA attestation protocol 64
4.5 SARA approach . 66
4.6 Overview of service interactions in publish/subscribe paradigm . . . 68
4.7 SARA FSM for Verifier . 69
4.8 SARA FSM for Prover . 70
4.9 Runtime of SARA, varying number of services 71
4.10 SARA comparison for varying number of services when motes use

MD5 encryption . 72

xviii List of Figures

4.11 SARA comparison for varying number of services when motes use
SHA-256 encryption . 73

4.12 SARA comparison for varying number of services when motes use
AES encryption . 73

4.13 APDR with respect to increasing simulation time in the network . . 74
4.14 Runtime of SARA, varying simulation area 74

5.1 Serverless architecture in Cloud . 84
5.2 Overview of Fog Computing paradigm 86
5.3 System model of remote attestation as a cloud service. 87
5.4 The algorithm of RAaS attestation protocol 89
5.5 FSM-s of RAaS (cloud service) . 90
5.6 FSM-s of Verifier . 92

xix

List of Tables

2.1 State-of-the-art Remote attestation protocols in IoT. 17
2.2 Contributions w.r.t. gaps in the state-of-the-art 23

3.1 Notation Summary of RADIS protocol 38
3.2 RADIS run-time in seconds (s) . 44

4.1 Notation Summary of SARA protocol 62
4.2 Energy Consumption of SARA Simulation on Sky motes 75

1

1

C
h

a
p

t
e

r

Introduction

Interactions between a large set of heterogeneous smart devices are continuously

providing a representation of the physical world into a massively interconnected

network, empowering the paradigm of the so-called Internet of Things (IoT). The

ability of these smart devices to connect and interact among themselves enables IoT

systems to ultimately support the deployment of large-scale IoT applications. The

recent IoT evolution is leading towards multi-functional IoT devices that provide

a set of services; for instance, the development kits such as ST [24], Arduino [7],

SensorTile [23] have simplified the development of multi-sensor solutions. With

IoT services increasingly provided by IoT devices, service interaction in IoT is the

fundamental facilitator of delivering wide range IoT applications in various domains

such as healthcare, smart city, industrial control. Likewise, in the military domain,

cyberdefense autonomous agents need to collaborate and negotiate among themselves

to accomplish their mission-critical goals and confront adversarial actions [78]. Service

interaction is also supported by Software Defined Networking (SDN), that uses service

function chaining (SFC) to connect in a virtual chain different network services, such

as firewalls, network address translation, and intrusion protection.

Due to a large number of interacting IoT services, the importance of the operations

2 1. Introduction

that these services perform, and the lack of sophisticated security protection, the

IoT systems are becoming prone to many cyberattacks. Many adversaries aim to

exploit these services to access sensitive information of the IoT devices, disrupt

their normal operation, and even corrupt the data and software to violate the

legitimate operations of the devices [58,87,89,103]. Indeed, the inter-connectivity

and the internet-wide deployment of IoT devices amplifies the attack’s impact. For

instance, Mirai botnet [77] exploited vulnerabilities on thousands IoT devices, and

instrumented the compromised devices to launch a Distributed Denial of Service

(DDoS) attack against Dyn, the primary DNS provider in the U.S. As a result,

major US websites including Paypal, Twitter and Amazon faced connectivity issues

while Dyn lost approximately 8% of its customers [105]. More recently, researchers

have shown how cyber criminals could infiltrate any home or corporate network by

exploiting a vulnerability in the fax protocol used in tens of millions of fax machines

globally. The exploitation of a printer-fax device could allow the cyberattacker to

gain complete control over the printer and possibly infiltrate the rest of the network

connected to it [69].

To improve the security, Remote attestation serves as a promising malware

detection technique that reports the adversarial presence and provides evidence

about the integrity of individual devices. In general, a remote attestation protocol

runs between two parties: a trusted party called Verifier and an untrusted party

called Prover. During the attestation, the Prover sends evidence about its current

memory content to the Verifier, whereas the Verifier checks the information, and

establishes whether the Prover is trustworthy. Existing remote attestation protocols

consider different parts of the device’s memory during the verification process, and

they may perform attestation over one single device or a group of devices.

This thesis enhances existing state-of-the-art remote attestation on IoT devices

by introducing the service perspectives in remote attestation protocols. In particular,

this thesis presents novel remote attestation mechanisms to check the integrity of

interacting IoT services that communicate synchronously or asynchronously among

themselves. In addition, this thesis proposes a novel approach of providing the remote

attestation as a service for IoT devices to offload IoT attestation to a cloud service.

1.1 Motivation and Challenges 3

1.1 Motivation and Challenges

With billions of devices, services and systems getting connected, IoT devices are

becoming more pervasive and are emerging as an integral part of our everyday life.

Overall, IoT has been considered as a key enabler of digital transformation in various

domains such as healthcare, transportation, industrial systems and many others.

Artificial Intelligence breakthroughs and advances in real-time communications are

also contributing in an exponential growth of IoT. The global IoT market exceeded

100 billion dollars in market revenue for the first time in 2017, and it is expected to

reach to around 1.6 trillion by 2025 [100] as shown in Figure 1.1.

Figure 1.1. Size of the Internet of Things (IoT) market worldwide from 2017 to 2025 (in

billion U.S. dollars) according to [100].

The enormous expansion of IoT devices and their limited capabilities to adopt

advanced security techniques are increasingly exposing IoT systems to a broad

range of exploitations [58, 77, 84, 89]. Symantec Internet Security Threat Report

4 1. Introduction

(ISTR) [102] lists the most common IoT threats in 2018 (as shown in Figure 1.2),

among which Mirai botnet was the third most common IoT threat in 2018, with 16

percent of the attacks. Considering the type of IoT devices, IoT attacks involving

connected cameras were increased from 3.5% in 2017 to 15% of attacks in 2018.

Figure 1.3 shows the top IoT device types that have been mostly exploited in 2018.

Routers and wired cameras were the most compromised devices, accounting for 75%

and 15% of the attacks respectively.

THREAT NAME PERCENT

Linux.Lightaidra 31.3

Linux.Kaiten 31.0

Linux.Mirai 15.9

Trojan.Gen.2 8.5

Downloader.Trojan 3.2

Trojan.Gen.NPE 2.8

Linux.Mirai!g1 1.9

Linux.Gafgyt 1.7

Linux.Amnesiark 1.1

Trojan.Gen.NPE.2 0.8

Figure 1.2. Top IoT threats in 2018 according to [102]

To guarantee secure operation of IoT devices, Remote attestation serves as a

promising security technique that detects the malware presence in an IoT device

by allowing a remote trusted party (i.e., Verifier) to check the trustworthiness of a

potentially untrusted device (i.e., Prover). In a typical remote attestation protocol,

the Verifier initiates the attestation by sending a challenge to the Prover. Upon the

attestation request, the Prover stops the regular operation to perform the attestation

immediately. In IoT systems, the existing remote attestation protocols propose

various approaches to detect software and/or physical tampering attacks. Recent

works in the literature suggest a variety of solutions to aggregate the integrity report

of each individual device in a scalable manner across a large number of devices.

1.1 Motivation and Challenges 5

Despite the advancements of the state-of-the-art remote attestation schemes, the

existing remote attestation schemes have some limitations in the context of commu-

nication data exchanged among IoT devices. In an IoT system, where IoT devices

interact autonomously among themselves, the data produced from a compromised

device may lead a legitimate IoT device to exhibit a malicious behaviour when it

interacts with the compromised device. The existing remote attestation schemes

that attest a group of IoT devices, typically detect only the compromised devices,

skipping the detection of devices that perform a malicious behaviour but run a

genuine software.

DEVICE TYPE PERCENT

Router 75.2

Connected Camera 15.2

Multi Media Device 5.4

Firewall 2.1

PBX Phone System 0.6

NAS (Network Attached Storage) 0.6

VoIP phone 0.2

Printer 0.2

Alarm System 0.2

VoIP Adapter 0.1

Figure 1.3. Top device types performing IoT attacks in 2018 according to [102]

In addition, the complexity of the attestation protocol may result in a long

suspension of the usual work of devices while performing attestation. Thus, from

the device’s perspective, remote attestation is an overhead operation that consumes

computational power and battery life. These drawbacks can cause intolerable dis-

ruptions, especially in time-critical infrastructures, e.g., medical facilities, nuclear

plants.

6 1. Introduction

1.2 Research Aim and Objectives

In this thesis, we investigate remote attestation solutions to guarantee the legitimate

operation of IoT devices.

We focus on IoT scenarios which involve synchronous or asynchronous interactions

between devices. For this reason, we do not consider solutions that aggregate the

individual attestation results of a group of devices without validating the exchanged

data among devices. Instead, we explore solutions that trace and validate the

interactions among IoT devices, in addition to verifying the individual attestation

result of each device.

Moreover, we aim to address the problem of remote attestation overhead and

interruption time that remote attestation introduces on IoT devices deployed in

time-critical infrastructures. In this context, we explore a novel approach to offload

the remote attestation of the IoT devices to a cloud/fog service.

We summarize the objectives of this thesis in the following research questions.

• Question 1: What is the influence of the interactions among IoT devices on

the effectiveness of the existing remote attestation protocols that aim to detect

the compromised devices in an IoT network?

• Question 2: How can a remote attestation protocol detect malicious devices in

a group of IoT devices that interact between each other and run a distributed

IoT service?

• Question 3: How can a remote attestation protocol check the integrity of a

group of devices in which the service invocation happens asynchronously?

• Question 4: Considering the resource-constrained capabilities of low-end IoT

devices, can we design an attestation protocol that reduces the attestation

overhead and the interruption time of the regular work for such devices?

1.3 Contributions 7

1.3 Contributions

The contributions of this thesis can be summarized as follows:

• Synchronous Remote attestation (Question 1-2).

In this thesis, we show that in a distributed IoT service, a compromised service

can produce a corrupted output that affects the integrity of the other legiti-

mate invoked services that interact with the compromised one. In particular,

a run-time adversary can compromise a service of a distributed service by

corrupting the data pointers, which may influence the behaviour of the legiti-

mate invoked services by deviating the control-flow of their software towards a

valid but non-authorized direction. The naive approach of running a control-

flow attestation protocol for each individual service would not detect such

control-flow deviation because the software of the invoked service is genuine,

and the deviation is caused due to the corrupted input received. To this end,

this thesis considers interacting IoT devices and aims to check the integrity of

distributed IoT services that run on these devices. Considering that services

interact synchronously among themselves, this thesis proposes a synchronous

Remote Attestation protocol for Distributed IoT Services (RADIS) [48] that

detects the control-flow deviation of legitimate services, which is caused by an

adversary that has not directly compromised this service but has compromised

another service that interacts with the former.

The results of this contribution are published in [47, 48]. We present this

contribution in Chapter 3.

• Asynchronous Remote attestation (Question 3).

In large-scale systems, IoT devices adopt the use of asynchronous protocols

which pose particular challenges in tracing interactions and the communication

data in remote attestation schemes of IoT devices. This thesis proposes a

novel protocol for Secure Asynchronous Remote Attestation (SARA) [54] of a

group of devices that communicate asynchronously. SARA aims at providing

each Prover with historical information about its own interactions with other

8 1. Introduction

IoT services. This allows SARA to detect not only the malicious IoT devices,

but also other devices which are performing a non-intended operation due to

their interactions with the infected device. However, collecting secure historical

evidence is challenging in event-driven asynchronous communication models

because it is difficult to predict the time and the order of the service interactions.

To address such an ordering problem, SARA uses the concept of vector clock

to precisely trace event occurrences. In this way, SARA is able to attest the

integrity of asynchronous distributed IoT services. Moreover, SARA performs

the attestation of a group of IoT devices without interrupting the normal

operation of all the devices at the same time. The design of the remote

attestation protocol based on this paradigm allows a device that completes

the local attestation to resume its normal operation although the attestation

may progress on other devices.

The results of this contribution are published in [54]. We present this contribu-

tion in Chapter 4.

• Remote attestation as a service (Question 4).

To reduce the interruption time of the regular work that remote attestation

protocols introduce in a single IoT device, we propose a novel attestation

approach, Remote Attestation as Service (RAaS) [49], that utilizes the cloud

systems resources. In particular, RAaS enables an IoT device to offload the

attestation to a cloud service, and then the cloud service will be able to perform

independently the attestation on behalf of an IoT device. In this work, we

outline a possible solution for designing RAaS to guarantee a secure copy of

the memory of the device to the cloud and the reduce the communication

overhead between the device and the cloud. By offloading the attestation

to cloud, the remote attestation procedure reduces the computations of the

low-end devices, does not suspend a device for a long time to perform usual

work, and consequently saves their battery lifetime.

The results of this contribution are published in [49, 53]. We present this

contribution in Chapter 5.

1.3 Contributions 9

1.3.1 Publications

This thesis includes results previously published in:

• Edlira Dushku, Md Masoom Rabbani, Mauro Conti, Luigi V. Mancini, Silvio

Ranise. SARA: Secure Asynchronous Remote Attestation. (In press)

In IEEE Transactions on Information Forensics and Security. 2020. [54].

• Mauro Conti, Edlira Dushku, Luigi V. Mancini, Md Masoom Rabbani, Silvio

Ranise. Remote Attestation as a Service for IoT. In 6th IEEE Interna-

tional Conference on Internet of Things: Systems, Management and Security

(IOTSMS 2019). 2019. [49].

• Mauro Conti, Edlira Dushku, Luigi V. Mancini. RADIS: Remote Attesta-

tion of Distributed IoT Services. In 6th IEEE International Conference

on Software Defined Systems (SDS-2019). 2019. [48].

• Alexander Kott, Paul Théron, Luigi V. Mancini, Edlira Dushku, Agostino

Panico, Martin Drašar, Benoît LeBlanc, Paul Losiewicz, Alessandro Guar-

ino, Mauno Pihelgas, Krzysztof Rzadca. An introductory preview of Au-

tonomous Intelligent Cyber-defense Agent reference architecture,

release 2.0. The Journal of Defense Modeling and Simulation. 2019. [80].

• Alexander Kott, Paul Théron, Martin Drasar, Edlira Dushku, Benoît LeBlanc,

Paul Losiewicz, Alessandro Guarino, Luigi V. Mancini, Agostino Panico, Mauno

Pihelgas, Krzysztof Rzadca.Autonomous Intelligent Cyber-Defense Agent

(AICA) Reference Architecture, Release 2.0. CCDC Army Research

Laboratory Adelphi United States. 2019. [79].

• Edlira Dushku. POSTER: Towards Remote Attestation as a Service

for IoT. In 6th ACM Celebration of Women in Computing. 2019. [53].

• Mauro Conti, Edlira Dushku, Luigi V. Mancini. Distributed Services At-

testation in IoT. In From Database to Cyber Security. Springer, ISBN 978-

3-030-04834-1, 261-273, 2018. [47].

10 1. Introduction

1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 introduces the necessary background to

understand remote attestation protocols, and it provides an overview of the state-of-

the-art remote attestation protocols for IoT devices. Next, Chapter 3 introduces the

idea of attesting IoT services and presents a synchronous remote attestation protocol

for distributed IoT services (RADIS). To release the constraint of synchronous

interactions, Chapter 4 presents a novel asynchronous remote attestation protocol

(SARA) that attests asynchronous distributed IoT services without interrupting

simultaneously the regular work of a group of IoT devices. Chapter 5 proposes

remote attestation as a service (RAaS) as a beyond-state-of-the-art approach of

attestation that aims to deal with the remote attestation overhead and interruption

time that remote attestation introduces in a single IoT device. Finally, Chapter 6

summarises the contributions and suggests the future work directions that follow

this thesis.

11

2

C
h

a
p

t
e

r

Review of Remote attestation pro-

tocols in IoT systems

This chapter presents a brief review of the recent literature on remote attestation

protocols for IoT systems, with an emphasis on the remote attestation of a group of

IoT devices. To fully grasp the state-of-the-art remote attestation techniques, first

this chapter provides basic background information. Hence, in Section 2.1, we present

an overview of remote attestation. Then, since the designs of remote attestation

schemes rely on the attack models and device architecture, in Section 2.2 we provide

a short background of memory architecture and common exploitation techniques for

IoT devices. Next, we discuss the state-of-the-art remote attestation techniques in

Section 2.3.

2.1 Overview of Remote attestation

Remote attestation has emerged as a valuable security mechanism that provides

evidence about the trustworthiness of a remote untrusted device. The main goal

of a remote attestation protocol is to guarantee the reliability of the evidence that

12 2. Review of Remote attestation protocols in IoT systems

an untrusted Prover provides to a trusted Verifier, such that the Verifier can check

remotely the trustworthiness of the Prover.

In a typical remote attestation paradigm (shown in Figure 2.1), the Verifier

knows the expected legitimate configuration h′ of the Prover. Even though the

Prover it is untrusted, it is generally assumed that the Prover is equipped with a

trusted component which is typically a hardware-protected memory. Additionally,

Prover and Verifier share an attestation key k. At the attestation time, Verifier sends

a challenge or a Nonce N to the Prover (Step 1). Upon receiving the challenge,

the trusted component of the Prover measures the state of the untrusted software

(Step 2), concatenates the measurement h with the challenge N , signs the result

with key k and returns an authentic response δ to the Verifier (Step 3). Since

the Verifier knows the expected legitimate configuration of the Prover h′ and the

challenge N , the Verifier computes δ′ (Step 4). When the Verifier gets the response

δ from the Prover, compares it with the computed δ′, and if δ matches with δ′, the

Verifier claims that the Prover is trusted, otherwise the Prover is compromised.

Verifier

Challenge N

Authenticated Response
δ = MACk(N || h)

 Prover

Measure
software state

δ’ == MACk(N || h’)

Untrusted
Software

Trusted
Component

δ’ = δ ? If there is a match,
confirm the trustworthy state

1

2

3

4

h=HASH(Software)

Figure 2.1. Typical remote attestation paradigm

Remote attestation protocols are generally classified into three main categories;

(1) software-based attestation (e.g., [93, 96, 99]), (2) hardware-based attestation

schemes (e.g., [33, 72, 91]), and (3) hybrid attestation schemes (e.g., [41, 55, 73]).

Each of the aforementioned schemes provides distinct advantages and guarantees

2.2 Background 13

different security level. Software-based attestation schemes, for instance, are low-

cost solutions due to the lack of requirement for a tamper-proof hardware, but

they provide less security guarantees [34, 45]. On the other side, hardware-based

attestation schemes base their security on the use of a specialized hardware platform

as secure execution environment, such as Trusted Platform Module (TPM) [35], ARM

TrustZone [11], and Intel Software Guard Extensions (SGX) [21], which guarantee

that the execution of security-critical parts of the attestation protocol is shielded from

compromised software on the device. However, the requirement for costly specialized

hardware-security modules makes hardware-based schemes usually unsuitable for

low-cost Internet of Things (IoT) devices. The recent remote attestation protocols

for IoT devices have generally adopted the hybrid architecture which is based on

hardware/software co-design. The hybrid architecture relies on the presence of a

minimal read-only hardware-protected memory to guarantee uninterrupted, safe

and secure code execution of the remote attestation protocol [61]. For instance, the

research platforms such as SMART [55], SPM [101], SANCUS [85] and TyTAN [41]

follow the hybrid architecture.

2.2 Background

In this section, we briefly summarize some fundamental concepts on IoT memory

architectures and present the common attack techniques on IoT devices.

2.2.1 Memory architecture of IoT devices

The memory of a device is a collection of hardware elements into which the device

stores information. Read Only Memory (ROM) is a non-volatile type of memory

where the information is programmed or burned into the device. In contrast, Random

Access Memory (RAM) is used to store temporary information, thus, the information

in the RAM is volatile.

The device memory architectures can be classified as Von Neumann and Harvard

architectures. The Von Neumann architecture (see Figure 2.2) consists of a single bus

14 2. Review of Remote attestation protocols in IoT systems

shared among ROM which contains program code (i.e., instructions), RAM which

contains data, and the I/O which performs either output or input to the environment.

Several of the most popular sensor node platforms today use microcontrollers that

are based on the Von Neumann architecture, e.g., the Tmote Sky [1], Telos [88], Arm

Cortex-M0 [8]. Since in the IoT devices following the Von Neumann architecture,

both instructions and data are stored in the same memory space, an attacker is able

to inject and execute a new arbitrary malicious code inside the device’s memory,

known as code injection attack.

CPU
ROM and RAM

(Program and
Data Memory)

I/O

BUS

Figure 2.2. Von Neumann Memory Architecture

Different from Von Neumann architecture, the Harvard architecture has two

buses (see Figure 2.3). The first bus is ICode BUS which connects the processor

and the ROM and allows the processor to fetch opcodes. The second bus, called a

System BUS, connects RAM with I/O that perform either output or input to the

environment. The second bus allows the processor to fetch an opcode and to write

data to RAM at the exact same time. Arm Cortex M4 [9] and Arm Cortex M7 [10]

follow Harvard architecture.

Due to the characteristics of Harvard architecture, in which data and code are

physically and logically separated, this architecture does not allow an attacker to

directly inject and execute her own malicious code inside the device’s memory.

However, an attacker can redirect the program execution to existing sequences of

instructions that are present in the program memory, known as code-reuse attack.

2.2 Background 15

CPU

ROM

(Program)

RAM

(Data)

I/O

System
BUS

ICode
BUS

Figure 2.3. Harvard Memory Architecture

2.2.2 Code injection attacks

Code injection is an attack that introduces and executes an arbitrary malicious

code into the address space of a vulnerable application [60]. An adversary typically

performs a code injection attack by sending the malicious code along with the input

data to the target application. When the adversary sends larger input data than

the application expects and the application does not validate the input length, the

malicious input data will overwrite the content of the stack above the local buffer

(see Figure 2.4). By sending input data and the malicious code to overflow the local

buffer, the adversary overwrites the address of Saved Based Pointer with the address

of the malicious code. Next, the application will read the address of the malicious

address and then execute the malicious code of the adversary.

2.2.3 Run-time Attacks

While in code-injection attacks the adversary directly injects malicious code into

the memory space of an application, in run-time attacks the adversary exploits a

memory corruption vulnerability and uses Return Oriented Programming (ROP)

technique [94] to hijack program control-flow execution. ROP allows a runtime

attacker to manipulate the execution order of the legitimate sequences of code

already present on the device. In particular, the adversary can corrupt and insert

16 2. Review of Remote attestation protocols in IoT systems

code pointers into the system to modify the flow of command in the running service.

For instance, in general when a service calls another service, the return address for

the caller is stored in the stack. An adversary with access to memory vulnerabilities

can manipulate the saved address and point towards a malicious code. The part of

the code that is targeted this way is called gadgets.

Local buffer

Program memory

Function argument

Saved Based
Pointer

Return address

Stack

Padding

Program memory

Function argument
Stack

Pointer Address of malicious
code

Stack

Adversary

Before attack After attack

Malicious code
Stack

Pointer

Figure 2.4. Code injection attack

2.3 The State of the Art

In analyzing the literature on the remote attestation, we primarily consider the

following attributes of existing protocols: dynamic attestation, collective attestation

and distributed attestation. Overall, remote attestation protocols differ primarily

in the parts of the device’s memory that these protocols attest, the number of

the devices included in the attestation, and the adversarial mitigation capabilities.

Table 2.1 summarizes some of the attestation protocols in IoT that we survey in this

chapter.

Memory. Based on the parts of the device memory that the attestation protocols

attest, the attestation schemes fall in two categories: static and dynamic. Static

attestation protocols verify only the integrity of the program memory that contains

the program binaries. That is the part of the memory that remains static during the

software execution. Dynamic attestation protocols aim at checking the integrity of

2.3 The State of the Art 17

Table 2.1. State-of-the-art Remote attestation protocols in IoT.

Name
Memory Devices Adversaries Additional characteristics

SEDA [36] Static Many Software Static network

SANA [30] Static Many Software Static network

DARPA [66] Static Many Software, Physical Static network

SCAPI [74] Static Many Software, Physical Static network

SAP [86] Static Many Software Static networks

ERASMUS [44] Static Many Software, Mobile Self-attestation

SALAD [75] Static Many Software Dynamic network

PADS [31] Static Many Software Dynamic network

LISA [43] Static Many Software, Physical Static network

SeED [67] Static One Software Self-attestation

C-FLAT [28] Dynamic One Software (Control-flow attacks) -

ATRIUM [107] Dynamic One Software (Data attacks) -

ESDRA [81] Dynamic Many Software Distributed verification

DIAT [29] Dynamic Many Software (Control-Flow) Distributed verification

US-AID [64] Dynamic Many Software, Physical Distributed verification

the data memory, the part of the memory that changes during the software execution.

The prominent need for the deployment of dynamic attestation schemes derives from

the necessity of detecting run-time attacks, which produce malicious behaviour of a

device without injecting and executing a new malicious code, but only by changing

the execution order of the existing legitimate code present on the device’s memory.

Number of devices. Considering the number of the devices involved in the

attestation process, we classify remote attestation protocols in two categories (1)

single-device attestation: at the attestation time, the protocol attests only one device,

and (2) collective attestation: attestation protocols aims to check a group of devices.

Furthermore, based on the assumptions of the network topology of the IoT devices,

collective attestation schemes can attest dynamic or static IoT networks.

18 2. Review of Remote attestation protocols in IoT systems

Adversaries. In general, remote attestation schemes aim to detect the following

adversarial presence:

1. Software attacks. The adversary manipulates the software running on a devices

either by performing code-injection attacks or run-time attacks (e.g., control-

flow attack, data-attacks).

2. Physical attacks. A physical adversary is capable of capturing a device to

extract its secret information.

3. Mobile adversary. The adversary may destroy or relocate itself into different

regions of device’s memory or into other devices in the network in order to

evade detection at the attestation time.

While remote attestation schemes are typically initiated from a Verifier, some

remote attestation protocols proposed in literature are self-initiated. Ibrahim et

al. proposed SeED [67] as a self-attestation single-device protocol which relies on

pseudo-random function to trigger attestation at unpredictable times and uses a

Real Time Clock (RTC) to timestamp the attestation result. ERASMUS [44] is a

collective attestation which aims to detect malware presence on unattended resource-

constrained devices by performing self-measurement and registration of attestation

results according to a pre-scheduled time. By verifying and comparing the historical

attestation results, the Verifier will be able to identify the presence of a mobile

adversary which, during the attestation, may relocate itself into different regions of

device’s memory or into other devices of the network.

2.3.1 Dynamic attestation

Dynamic attestation approaches aim to verify the run-time state of the Prover

during the usual software execution. Abera et al. [28] propose C-FLAT, a complete

attestation of the run-time state of the Prover. During the execution, each software

instruction is reported into a so-called “trusted anchor” and from there, a hash engine

mechanism accumulates the sequence of the instructions into a single hash value that

represents the entire control flow of the Prover’s state. A Verifier, who has initially

2.3 The State of the Art 19

computed and stored a set of all the possible valid hashes of the Prover, can detect

control-flow attacks since a Prover targeted with a control-flow run-time attack will

report an unexpected hash value to the Verifier. This work is extended by Dessouky

et al. in LO-FAT [50] which presents a practical version of C-FLAT. Instead of the

software instrumentation used in C-FLAT, LO-FAT explores the features of the

microcontroller to intercept the instructions, providing in this way an implementation

of C-FLAT with low overhead. ATRIUM [107] proposes a hardware-based runtime

attestation protocol that is resilient against Time of Check Time of Use attacks.

ATRIUM attests both executed instructions and the control-flow. However, the

existing dynamic attestation protocols typically follow the one-device-attestation

approach and do not provide a complete evidence of the integrity of the services

that compose a distributed IoT system.

2.3.2 Collective attestation

In IoT systems, collective attestation schemes aim to verify the internal state of

a large group of devices in a more efficient way than attesting each of devices

individually. The large networks are often described as swarm network.

Swarm attestation. Asokan et al. propose SEDA [36] as an attestation approach

which constructs the interconnected network as a spanning-tree. In this scheme, each

device statically attests its children and reports back to its parent the number of

children that successfully passed the attestation protocol. In the end, an aggregated

report with the total number of the devices successfully attested will be transmitted

to the Verifier. The weakest point of this protocol is that a compromised node

can impact the integrity of the attestation result of all its children nodes in the

aggregation tree. This problem was later tackled in the work presented by Ambrosin

et al. [30]. There, the authors propose a scalable attestation protocol with untrusted

aggregators (SANA) which relies on the use of a multi-signature scheme. In SANA,

devices sign the attestation responses and an aggregation of the signatures is used

to validate the network in a constant time. In the aforementioned schemes, devices

interact synchronously during the attestation: each device attests its children and

20 2. Review of Remote attestation protocols in IoT systems

reports back to its parent the attestation report. Carpent et al. [43] proposed two

Lightweight Swarm Attestation (LISA) protocols, LISAα and LISAs which aim to

improve [36] regarding the scalability and the detection of physical adversaries. In

LISAα, which is the asynchronous version of the LISA protocol, the nodes are not

constructed in a parent-child relationship when they are performing the attestation.

Instead, in LISAα, nodes perform independently and simultaneously their own

individual attestation, and they collaborate only for propagating the attestation

requests and responses.

To release the assumption of the aforementioned collective attestation schemes

that the network is static and interconnected, Kohnhäuser et al. in SALAD [75]

and Ambrosin et al. in PADS [31] rule out this assumption and propose an efficient

protocol for highly dynamic networks. In these proposals, each device performs the

local attestation at the same point in time and shares the individual result with

other devices in the network. Then, devices use the consensus algorithm to gain

knowledge about the state of the other devices in the network. At the attestation

time, the Verifier can perform the attestation over a random device, which will

report the consensus state of the entire network.

In order to detect an adversary that physically tampers devices of an IoT network,

Ibrahim et al. proposed DARPA [66] which is able to detect invasive physical attacks

by following the assumption that an adversary needs to shut a device down for a

non-negligible amount of time in order to physically tamper the device. In DARPA,

each device periodically runs the protocol by self-generating “heartbeat” messages

from a secure local clock or by receiving a heartbeat message from its neighbours.

Once a device has a heartbeat message, it associates it with a timestamp, signs it

with its secret key and sends the result to the neighbours. This protocol follows the

approach used in [36] to aggregate the timestamp-based heartbeats of the devices. By

observing the final attestation report, the Verifier will be able to check whether all

the devices of the network have been present or not. Thus, DARPA allows the Verifier

only to detect the presence of a physical attack in a network, without identifying the

missing devices. This work has later been enhanced by Kohnhäuser et al. [74] who

proposed SCAPI in order to detect precisely the devices which have been physically

2.3 The State of the Art 21

captured. In SCAPI, some “leader” devices are responsible for generating periodically

new secret session keys. In order to receive the updated session key, devices should be

authenticated with their old session key and distribute the message to the neighbours

using the approaches on [30,36]. In this way, the physically compromised devices,

which will be turned off for a non-negligible time, will miss the latest session key,

and thus will not be able to get authenticated to send their messages. In this way,

the Verifier is able to detect precisely the physically compromised devices.

Nunes et al. propose Timely Collective Attestation (TCA) [101] and design a

Synchronous Attestation Protocol (SAP) based on the proposed TCA. The TCA

identifies the main design requirements for collective attestation schemes such as

adversarial model, network communication, device capabilities, and network topology.

SAP constructs the network of a group of devices as a balanced binary tree which is

rooted at the Verifier. At the attestation time, the attestation challenge is propagated

along the tree. When a device receives the challenge, it performs the attestation and

sends the result to its parent. Next, the parent performs its own attestation and XORs

the result with the attestation result received from the child. Finally, the Verifier

receives the completed XORed result of the group of devices and then validates

the report. However, the aforementioned collective attestation schemes verify only

the static program memory and do not detect run-time attacks. Additionally, these

collective attestation schemes do not consider the communication data exchanged

among devices.

Distributed attestation. Recent collective remote attestation schemes propose

different approaches that employ distributed Verifiers instead of the presence of the

traditional centralized Verifier. Ibrahim et al. proposed US-AID [64] as a collective

attestation scheme that allows the devices mobility within a given network during

the attestation phase. US-AID is an attestation mechanism for autonomous devices

for a dynamic network, in which devices mutually attest each other and keep the

snapshot of the network. There, during the attestation each pair of neighbour devices,

upon mutual authentication, will exchange their respective attestation result. In

this way, the autonomous devices store their respective neighbours attestation

22 2. Review of Remote attestation protocols in IoT systems

results which provide the network health status. Kuang et al. propose an Efficient

and Secure Distributed Remote Attestation (ESDRA) [81], which, to perform an

efficient attestation, divides large IoT networks into several clusters according to

the communication distance. Overall ESDRA considers the previous behaviors of

the devices in order to implement a reputation mechanism. For this, each Prover

in ESDRA gets attested by three different neighbours, which challenge the Prover

and then, based on the behaviour of the Prover, will record a corresponding score.

Next, the cluster-head will check the Prover’s corresponding score and report it

to the Verifier. Ibrahim et al. propose HEALED [65] as an attestation mechanism

which not only detects malicious devices but also "heals" the infected devices. In

HEALED, each device periodically acts as a Verifier and attests a random Prover.

HEALED constructs the segments of the Prover’s software as a Markle Hash Tree

(MHT), where the root of the tree is the measurement of the software state of the

Prover. Thus, a compromised code segment will generate a non-valid hash value

along the path to the MHT root. Later, the compromised parts will be replaced with

the legitimate code retrieved from another devices with the same software code.

Abera et al. propose DIAT [29] as a protocol in which the communication

data exchanged among two devices are authenticated along with the control-flow

attestation of the software module involved in generation of the data. DIAT associates

the communication data with an under approximated list of control-flow paths that

produced those data. Here, the execution path representation relies on Multiset

Hash (MSH). In DIAT, each device contains the valid approximated control-flow

paths and the verification is done for each pair of interacting devices. Thus, DIAT

requires each device P to store in advance the valid information of each other

device D, to which P will potentially communicate in the future. Additionally,

the adoption of MSH does not allow the precise verification of the control-flow

execution of the interacting services, but only an approximately one. Kohnhäuser

et al. proposed PASTA [76], an attestation scheme for autonomous devices that

enables the attestation of many Provers. Here, low-end embedded Provers collaborate

periodically to generate timestamped-“tokens", which in turn attests the integrity

of the joining devices and also detects “missing" devices. The tokens are validated

2.3 The State of the Art 23

using Schnorr-based multi signature.

2.3.3 Discussion

Different from the aforementioned remote attestation techniques, this thesis proposes

novel protocols that attest the trustworthiness of distributed IoT services. Unlike

single-device attestation protocols that attest only one single device, the protocols

proposed on this thesis attest distributed services that run on many devices. Unalike

existing swarm attestation protocols that do not consider the exchanged communica-

tion data, the protocols of this thesis aim to detect not only the compromised services

but also the legitimate services that are maliciously influenced due to the interactions

with a compromised service. Table Table 2.2 summarizes the contributions of the

protocols proposed in this thesis w.r.t. the gaps in the literature.

Table 2.2. Contributions w.r.t. gaps in the state-of-the-art

Scheme
Number Communication Synchronous Asynchronous Offload attestation

of devices data interactions attestation to cloud/fog

RADIS [48] Many 3 3 7 7

SARA [54] Many 3 3 3 7

RAaS [49] One 7 7 7 3

In order to detect the compromised devices, the existing distributed attestation

schemes rely on distributed Verifiers and validate the trustworthiness for each pair

of devices. Instead, the protocols on this thesis rely on the presence of a centralized

Verifier that knows the legitimate state of the devices and the legitimate interactions

of the devices among themselves. In this way, the proposed protocols are able to

check also the integrity of the devices that influence indirectly each other.

In addition, this thesis focuses on checking the integrity of the devices that have

indirectly influenced each other due to asynchronous interactions. For instance, in a

network where devices communicate through publish/subscribe protocols, a device

may receive simultaneous messages to act on. Considering the wide adoption of the

asynchronous mechanisms on large-scale distributed applications, the asynchronous

24 2. Review of Remote attestation protocols in IoT systems

attestation protocol become a fundamental necessity to provide secure evidence about

the asynchronous interactions between services and the exchanged data between

them. The existing remote attestation protocols do not consider such asynchronous

interactions.

Despite the advancement in remote attestation schemes, performing attestation

rather than usual work may not be practical for the scenarios where devices are

deployed in time-critical infrastructures (e.g., medical facilities, nuclear plants), that

require continuous monitoring. To make remote attestation applicable for real-time

applications, this thesis introducing the idea of reducing the overhead of remote

attestation by offloading the attestation computation to the cloud.

25

3

C
h

a
p

t
e

r

Synchronous Remote attestation

In this chapter, we present a protocol for Remote Attestation of Distributed IoT

Services (RADIS), which verifies the trustworthiness of synchronous distributed IoT

services. RADIS introduces the idea of service attestation and it attests only the

services involved in performing a certain functionality. RADIS relies on a control-flow

attestation technique to detect IoT services that perform an unexpected operation

due to their interactions with a malicious remote service.

3.1 Motivation

The enormous expansion of the Internet of Things (IoT) devices induces the necessity

of interoperable IoT systems. The IoT interoperability will allow heterogeneous IoT

devices to interoperate and ultimately to support the deployment of large-scale

IoT applications. However, due to the limited capabilities of the IoT devices to

adopt complex security techniques, IoT systems are increasingly exposed to a huge

number of potential attacks [77,89]. Hence, a security mechanism that guarantees

secure interoperation between devices plays a key role in establishing trust in an

interoperable IoT system.

26 3. Synchronous Remote attestation

Remote attestation is used as a security protocol that provides reliable evidence

about the trustworthiness of an untrusted device. Typically, the internal state of

resource-constrained devices comprises the program binaries stored in the program

memory of the device and the run-time state of the software stored in data memory.

During a software execution, the content of the program memory remains static,

whereas the data memory’s contents always change. Most of the existing remote

attestation protocols attest only the program memory, thus leaving undetected the

run-time attacks, which target the data memory and do not modify the program

memory of a device. For instance, a code-reuse attacker may exploit the Return-

Oriented Programming (ROP) technique [94] to change at run-time the control-

flow of genuine sequences of code (i.e., gadgets) loaded on the device’s memory

and, consequently, produce a malicious code execution. Other run-time attacks do

not change the control-flow of a software, but only the data of the software by

manipulating the data pointer through Data-Oriented Programming (DOP) [63]

technique. As the run-time attacks can become pervasive in IoT systems, some

recent remote attestation approaches [28,50,72] have been proposed in the literature

to check the integrity of the data memory. However, the existing run-time remote

attestation schemes can perform attestation only on single devices. Additional

research works [30, 31, 36, 75], which have proposed efficient protocols that run

attestation over a large number of devices, do not consider the communication data

exchanged among devices.

In this work, we focus on distributed IoT services, and we show that due to

the communication data exchanged between services, a compromised service can

affect the integrity of the other legitimate invoked services that interact with the

compromised one. In particular, a compromised service may maliciously deviate the

control-flow of the legitimate invoked services towards a valid but non-authorized

state. The naive approach of running a control-flow attestation protocol for each

service would not detect such control-flow deviation because the software of the

invoked service is genuine and the deviation is caused due to the corrupted input

received. To this end, our work considers interoperable IoT devices and aims to

check the integrity of distributed IoT services that run on these devices. We propose

3.1 Motivation 27

a remote attestation protocol that detects the control-flow deviation of legitimate

services, which is affected by an adversary who has not directly compromised this

service but has compromised another service that interacts with the former.

3.1.1 Contributions

In this work, we attest the trustworthiness of distributed IoT services. Unlike

single-device attestation protocol that attests a single device, our scheme attests

a distributed service that runs on many devices. Different from existing collective

remote attestation protocols that perform static attestation and do not consider the

exchanged communication data, our protocol traces the exact control-flow across

many IoT services that compose a distributed service. The contributions of this work

are threefold:

• We highlight the need for the attestation of distributed IoT services by demon-

strating that a compromised service in a distributed IoT service can induce

malicious behavior on genuine services.

• We define the required security properties for distributed IoT services and

describe the adversary model.

• We present RADIS, a remote attestation protocol for distributed IoT services

and provide the performance evaluation.

3.1.2 Chapter outline

We present the motivation of this work in Section 3.1 and explain the problem setting

in Section 3.2. In Section 3.3, we present the system model, and in Section 3.4, we

describe the adversary model and the required security properties. Next, we provide

the protocol details in Section 3.5. The evaluation of protocol is shown in Section 3.6

and security analysis in Section 3.7. Finally, the chapter concludes in Section 3.8.

28 3. Synchronous Remote attestation

3.2 Problem Description

We consider an interoperable IoT system as shown in Figure 3.1, where different

IoT devices provide a set of services that interact together to perform a task. The

sequence of all the services involved in performing a task is called Service Flow, and

the notation for the Service Flow depicted in Figure 3.1 is Si1→ Sj3→ Sx2. The

set of services Si1 → Sj3 → Sx2 communicating with each other to support the

operation forms also a distributed service. Note that a given distributed service can

follow a different service flow based on different invocations, depending, for example,

on the input parameters.

Device i Device xDevice j

Si1 Sj1 Sx1 Sx2

Devices

Services

1 2 3

Input

Sj2 Sj3

Service flow

Figure 3.1. Service Flow of IoT devices

As a motivating example, we consider a Smart Home IoT system enabled by

the interoperation between services of three IoT devices: an Outdoor Camera, a

central Security Monitor, and a Smart Door. A motion sensing Outdoor Camera

observes outside the main door of the home, and when any movement of objects

or people is detected, the camera captures an image and reports it to a Security

Monitor. Once the Security Monitor gets the captured image, it analyzes the image,

and if it identifies a family member, it sends an unlock command to open the Smart

Door, as shown in Figure 3.2. The service flow in this scenario is: captureImage()

→ checkImage() → unlockDoor().

In order to verify whether individual devices are performing the intended software

execution, it is required the execution of a single-device control-flow attestation

protocol that detects subverted control flows. One possible example of such attestation

protocol is C-FLAT [28]. In the case the device is not compromised, a control-flow

3.2 Problem Description 29

2

Outdoor camera

Adversary

Input from
Motion Sensor

checkImage() unlockDoor()
captureImage()

Security Monitor Smart Door

4 response5 response

Environment

1
3

Figure 3.2. Device interaction in Smart Home IoT System

Device i: Outdoor Camera Device j: Security Monitor Device x: Smart door

1: captureImage() {

2: motion← sensor.value();

3: if motion then

4: img ←

camera.capture();

5: checkImage(img);

6: end if

7: }

1: checkImage(img) {

2: member ←

searchF amily(img);

3: if member is false then

4: cmd← false;

5: else

6: cmd← true;

7: end if

8: unlockDoor(cmd);

9: }

10: service: searchF amily()

1: unlockDoor(cmd) {

2: if cmd is true then

3: unlock();

4: else

5: lock();

6: end if

7: }

8: service: lock()

9: service: unlock()

Figure 3.3. Pseudo-code of the service flow in Figure 3.2

attestation protocol, running on a single device, will report the benign state of the

device. For instance, when a single-device control-flow attestation protocol attests

a genuine Smart Door, it will ensure its correctness. Now, consider an adversary

that attacks another device of the distributed service, e.g., the Security Monitor

device. In particular, the adversary can corrupt the security monitor’s data pointers

at run-time or modify the communication data yielded by the Security Monitor.

After this attack, a single-device control-flow attestation procedure executed on the

Smart Door will report again the correctness of the Smart Door. This is because

the adversary has not changed the software of Smart Door and has not deviated

its control-flow. However, even though the adversary is located only in the Security

30 3. Synchronous Remote attestation

Monitor and the Smart Door passes all the checks of the control-flow attestation

procedure, we show that the Smart Door can be forced into an incorrect state.

Ni1

Ni2

Ni4

Ni5

Nj1

Nx1

Nx2

Nx3

Input 1

2
3

Device i Device j Device x

Control flow path
Service Request

Service init

Remote Service invocation
Control Flow Graph Nodes

Nx9

Nx5

Nx8

Nj10

Nj3

Nj4

Nx7

Nj2

Nj6

Ni3

Nj9
Ni7

45

Service Response

Sx2
Sj3Si1

Ni8

Figure 3.4. Control flow of the distributed service in Figure 3.2

By compromising the Security Monitor device, the adversary is able to generate

malicious software executions on the Security Monitor that can produce malicious

data and can influence the current behavior of the other interconnected devices. As

a consequence, the state of the Smart Door may be corrupted by the commands

invoked maliciously from the Security Monitor to the Smart Door. For example,

an unlockDoor() command initiated as result of an attack in Security Monitor can

open the door even if the camera has not captured the image of a family member.

We thus argue that the Smart Door may have a genuine software, but its behavior

is not legitimate if it is performing an unexpected operation due to the command or

input that it received from a malicious code executed in the Security Monitor device.

To detect this attack, one could think to run a single-device control-flow attesta-

tion protocol on every device of the IoT system. Indeed, the control-flow attestation

protocols, running on each individual IoT device, will detect the devices which

contain corrupted control-flow information on their data memory. Since the adver-

sary has modified only the value of one variable on the Security Monitor and has

3.2 Problem Description 31

not performed any control-flow attack to any device, the control-flow attestation

protocols, running on each of the three devices of our scenario, would report all the

devices in a legitimate state. Hence, the control-flow deviation of the Smart Door

remains undetected.

To clarify the effect of an attack on a distributed service, in Figure 3.3 we

illustrate the pseudo-code of the three services involved in the aforementioned service

flow: captureImage() → checkImage() → unlockDoor(). Based on the instructions

of this pseudo-code, for each service is constructed a Control Flow Graph, where

each node of the graph presents an instruction, as shown in Figure 3.4. During the

usual operation, each service follows the intended control-flow and then invokes a

service call to the next device.

The adversary located in Security Monitor (Device j) performs an attack in Nj4

to maliciously assign the variable cmd with the value “true”. The service execution

will then proceed to Node Nj8 to call the service unlockDoor (cmd), as shown in

Figure 3.4. Note that when the execution flow reached at Node Nj4, the variable

cmd was assigned as “false”. The compromised argument cmd, produced by the

adversary in Security Monitor, is used in node Nx2 of Smart Door (Device x) as a

decision-making variable that defines the further operations of Smart Door. This

means that Smart Door, even though is running a genuine software, can maliciously

run unlock () command in Node Nx3 because of the compromised argument received

(Nx2 goes into Nx3 instead of going into Nx5).

Consider now another type of adversary that does not change the software of the

services, but modifies the communication data between Security Monitor and the

Smart Door. For instance, an adversary that is able to carry out a man-in-the-middle

attack in the network can modify the data between node Nj8 and Sx2 to set cmd

as “true”. Such adversary will still be able to deviate the control-flow of the Smart

Door even though the software of Security Monitor and software of the Smart Door

are both genuine.

The attacks described above show that a compromised device (Device j) induces

a malicious control-flow deviation into a subset of IoT devices, even though the

32 3. Synchronous Remote attestation

software running on the subset of the devices is not altered in any way by the

attacker. Therefore, to produce a correct attestation response of a distributed service,

the attestation protocol should not only detect the compromised services, but also

the services that are performing a non-intended operation due to their interactions

with the infected service.

Note. The goal of our work is to verify whether a distributed services is perform-

ing an intended operation and we do not intend to check the integrity of the entire

data processed by each service. Considering that some data attacks can have only an

isolated impact on the overall operation of a distributed service, our protocol does

not consider the data attacks which impact neither the control-flow of an individual

service nor the control-flow of the invoked services.

3.3 System model

We consider a distributed IoT system, where each heterogeneous IoT device Di

provides a number ni of services. In a typical distributed IoT service, each service

invokes an explicit service request to another service according to a predefined

interaction model. A distributed IoT service may follow various service flows at

run-time„ thus, the aim of the attestation mechanism is to check the integrity of a

distributed service by verifying that a given service flow is legitimate. In modelling

the attestation scheme of a distributed IoT service, we consider the presence of the

following entities:

• Device Di: a number of interconnected devices that compose a distributed IoT

system. Each device hosts ni different services, each uniquely identified as Siu,

for 1 ≤ u ≤ ni.

• System operator OP : responsible for the trusted deployment of the distributed

IoT system.

• Verifier V rf : a trusted external party who checks the integrity of a service flow

of the distributed IoT system. V rf may be different from OP . V rf has access

3.3 System model 33

to the binaries of all the services deployed on the distributed IoT system. The

attestation runs periodically at an arbitrary time determined by V rf .

 1
Build a Service
Flow Graph for
each service
flow

 2
Build the
Control Flow
Graph for
each service

 3
Generate the
measurement
for each service
flow

 4
Store
measurements
in a
database

Service measurement (One-time-only offline procedure)

Ch = {Siu, inputSiu}

callatt

respatt

Result

Service attestation procedure

 1

 7

 8 Verify Result with known measurements

Database with
valid

measurements

servatt 2
servatt

getrespatt6

Verifier

 3

 5
 4

Service:Siu Service:Sjv

Figure 3.5. System model of remote attestation of a distributed IoT service, which consists

of two services Siu and Sjv.

Initially, an IoT system operator OP validates the identities of the devices,

authorizes their access, and verifies the correct version of the software and services

available on them. Then, a Verifier V rf , responsible for the integrity check of the

distributed services, performs an offline procedure to measure all genuine services that

compose the distributed IoT system. During the service measurement procedure, V rf

considers the legitimate service flows and all possible legitimate control-flows of the

genuine services that compose a service flow. Next, V rf generates the measurement

for each service flow, and at the end of this procedure, V rf stores in a database

a single hash value for each legitimate service flow. A conceptual overview of our

34 3. Synchronous Remote attestation

system model is depicted in Figure 4.3.

At the attestation time, V rf sends an attestation request 1 to the device hosting

the first service of a given service flow. Upon receiving the attestation request, the

device initiates the attestation process for the intended service 2 . During the

execution of the service, a run-time trace module traces all the instructions of the

services and invokes a hash module to compute an accumulative hash for the entire

control-flow path that the service follows at run-time. Then, each service invocation

comprises also the attestation result. This process binds all the services attestation

reports generated through the entire service flow 2 - 6 . After completion, the

first service of the service flow sends to V rf the final attestation report of the

entire service flow 7 . In the end, V rf validates the received result with the known

measurements stored previously in the database 8 . If the final attestation result

matches with one of the pre-calculated values, V rf ensures that the distributed

service is in the legitimate state. Otherwise, the distributed service is compromised.

3.4 Adversary model and Security Requirements

In this section, first we describe an adversary model in a distributed IoT service

setting, and then we define the required security properties for a distributed remote

attestation protocol.

3.4.1 Adversary model

The main goal of an adversary Adv is to compromise the execution or the results

of a distributed IoT service. Thus, the aim of remote attestation is to detect the

distributed services which are compromised or maliciously influenced by Adv. We

consider the following possible actions of an Adv against distributed IoT services:

• Software adversary. Adv can compromise the binaries of the services, can

inject malicious code in the free space of the program memory of a device, or

can exploit at run-time a service vulnerability to manipulate the data memory

of a device (e.g., by corrupting control-flow pointers or data pointers).

3.4 Adversary model and Security Requirements 35

• Communication adversary. Adv can eavesdrop on and alter the communi-

cation data between services. Adv will be particularly interested to alter the

communication data in such way that it will change the intended control-flow

of the invoked service.

• Replay attack. Adv precomputes the operations of the attestation procedure,

and reports to V rf a previous valid response which hides the attack.

Assumptions. Like in other attestation schemes, we rule out physical attacks,

and we assume that a software adversary cannot compromise hardware-protected

memory. While we do not consider Denial of Service (DoS) attacks, we limit these

attacks by using a symmetric key for the service invocations, thus, a device does not

perform intensive computations to refuse a fake service request. We also assume that

software attacks and Man in the middle (MITM) attacks impact the control-flow

of a service software. Furthermore, we rule out an adversary that relocates itself

without affecting the control-flow of the distributed services at the attestation time.

We also assume that services will respond during the attestation procedure. However,

since RADIS includes the attestation result in the service invocations, typically a

non-responding service will generate a timeout message, and consequently, the final

attestation result will not comprise the information about the non-responsive service.

3.4.2 Security requirements

In order to be resilient to the above attacks, the remote attestation scheme of

distributed services should satisfy the following security properties:

• Authenticity and integrity of services: The attestation scheme should

perform software integrity verification of a distributed service to guarantee that

the distributed service has not been modified by any software adversary. In

particular, the protocol should provide authentic and reliable evidence to prove

that at run-time a distributed service has followed a legitimate control-flow.

The attestation scheme should guarantee the integrity and authenticity of each

of the services that compose a distributed service.

36 3. Synchronous Remote attestation

• Integrity of communication data: The attestation scheme should detect

the compromised state of distributed services when a MITM attack, which

alters the communication data between two distributed services, causes the

invoked service to execute a non-intended control-flow.

Each distributed service should be able to verify the trustworthy origin of

its inputs, and it should reject any service calls invoked by an unauthorized

device.

• Freshness: To be resilient to replay attack, any service should not be able to

reply to the attestation request of V rf with a pre-computed value that could

hide an ongoing attack on the service. Likewise, an invoked service should

prove to the calling service the freshness of the response it provides to the

caller.

3.5 Remote attestation of distributed IoT services: RADIS

3.5.1 Preliminaries

In order to achieve all security properties described above, our attestation scheme

requires the following components.

Signature scheme. A signature algorithm σ ← sig(sk;m) takes as input a

message m and a secret signing key sk and outputs a signature σ. A verification

algorithm {0, 1} ← vrfsig(pk;m,σ) verifies whether σ is valid or invalid on input

of a message m, a signature σ, and a public verification key pk.

Message authentication code (MAC). MAC is a pair of polynomial time

algorithms signMac() and verifyMac() such that µ← signMac(k;m) outputs a

MAC tag µ on input of m and k, and {0, 1} ← verifyMac(k;m,µ) verifies µ on

input of m and k.

Graph hashing. A Control Flow Graph represents the legitimate execution

flows of a given software. For instance, Figure 3.6 depicts two valid execution flows:

N1 → N2 → N4 and N1 → N3 → N4, where each graph node N1 .. N4 denotes

3.5 Remote attestation of distributed IoT services: RADIS 37

a software instruction or a group of uninterrupted sequences of instructions, i.e.,

basic blocks. We borrow the hash engine from C-FLAT, which associates each

valid execution flow of a single device with a unique hash value, computing Hl =

Hash(Hl−1, Nl).

N1

N2 N3

N4

H1 = H (0, N1)

H2 = H (H1, N2) H3 = H (H1, N3)

 H4 = H (H2, N4) OR H (H3, N4)

Figure 3.6. Hashing algorithm of Control Flow Graph

RADIS has two main operation modes: setup mode and attestation mode. Setup

mode is an initial procedure, executed only once, which allows trustworthy execution

of the remote attestation protocol. Attestation mode is a periodical procedure

initiated by V rf at an arbitrary time. In Table 3.1, we summarize the terms used in

RADIS.

3.5.2 Setup phase

Setup phase includes two operations: key setup and service measurement, executed

respectively by OP and V rf .

Key setup. To establish a secure communication between V rf and Prv, each

deployed device Di knows V rf ’s public key PKV rf and owns an asymmetric key-

pair (pki, ski). In addition, two devices Di and Dj that will interact in the network

establish a shared symmetric attestation Message Authentication Code (MAC) key

kij . The secret signing key ski and the shared attestation key kij are both stored

within hardware-protected memory, preventing untrusted parties from using these

keys. Alternatively, as a lightweight key exchanging scheme between devices can

be used a random key predistribution scheme [46, 56] which rely on probabilistic

key sharing among devices. The basic idea is that each device is initialized with m

keys, selected from a large pool of S keys, such that two random subsets of size m

38 3. Synchronous Remote attestation

Table 3.1. Notation Summary of RADIS protocol

Term Description

OP System Operator

V rf Verifier of a distributed IoT system

SKV rf Secret key of V rf

PKV rf Public key of V rf

Di Device i

Prvi Prover i

ski Secret key of Di

pki Public key of Di

kij shared symmetric key between Di and Dj

Siu Unique name of a service running on Di

SFG Service Flow Graph

GHVi Global Hash Value stored in Di for the

control-flow execution of a service flow

Procedure Description

signMac(k;m) generates MAC tag on m

verifyMac(k;m,µ) verifies MAC tag µ on m using k

sig(sk;m) encrypts a message m using a secret key sk

vrfsig(pk;m,σ) verifies σ on m using public key pk

servatt() performs attestation for a given service

callatt() a calling service sends an attestation

request to an invoked service

respatt() reports attestation result from an invoked

service to a calling service

getrespatt() retrieves the attestation response from an

invoked service to a calling service

3.5 Remote attestation of distributed IoT services: RADIS 39

in S will share at least one key with some probability p. Next, devices will perform

shared-key-discovery to find out which of other devices they share a key with.

Note that RADIS is independent from the underlying key management schemes

used in IoT devices. RADIS aims to attest a set of services that have already estab-

lished an interaction among themselves. Although probabilistic key predistribution

schemes do not guarantee a shared key among all parties, RADIS aims to attest the

set of devices that share a common key. Thus, for simplicity, we assume that two

device Di and Dj share a symmetric key kij . The key setup process between devices

is managed by OP , and the details of the key management scheme are out of scope

of this thesis.

Service measurement. Service measurement is a one-time-only procedure that

V rf performs offline to measure the legitimate service flows of a distributed service.

Service measurement procedure follows the assumption that V rf has access to the

binaries of all the services and V rf knows in advance the legitimate interactions

between IoT devices. First, V rf builds a graph, in which the nodes represent services

and the edges determine the execution order of the services in a distributed service.

Next, V rf builds the Control Flow Graph of every service and builds a Service Flow

Graph (SFG) to represent all the possible valid transitions that a distributed service

may follow at run-time. Then, starting from each valid transition, V rf executes a

measurement function to associate each legitimate service flow with a single hash

value as shown in Figure 3.7. Finally, V rf stores all the generated hash values in

a database. In this initial setup phase, although the measurement of the Control

Flow Graph can introduce high complexity, the V rf generates the measurements

offline, so the complexity of software measurement does not impact the performance

of the remote attestation procedure on the device. Moreover, a typical IoT service is

expected to be less complex than traditional applications, and V rf has sufficient

processing resources.

40 3. Synchronous Remote attestation

3.5.3 Attestation phase

The attestation procedure starts with V rf who sends an attestation request Ch =

Siu, inputSiu, R, σV rf , where Siu is the name of the service to be attested, inputSiu

is the initial input for the given service Siu, R is a randomized nonce to ensure the

freshness of the communication, and σV rf is V rf ’s signature over Siu, inputSiu and

R (as shown in Step 1 in Figure 3.8). Upon receiving the attestation request Ch,

the device Di, which serves as a prover Prvi, verifies the signature by using the V rf ’s

public key PKV rf . If the signature is valid, RADIS protocol, which is running on

Prvi, invokes the procedure servatt (Step 2) to attest Siu with the provided input

inputSiu. Since Siu is the first service of the service flow, GHVi will be initialized

with 0. The invocation of servatt triggers the tracing of the execution flow of Siu,

to compute a hash value for each instruction, and to store the accumulated hash

value in GHVi.

A

B

D

C

Siu

E

F
G

Sjv

H

Control-flow path
Service Flow path

Service init
Node of CFG

H1 = Hash (0, Siu)

H2 = Hash (H1, A)

H3 = Hash (H2, B)

H9 = Hash (H8, C)

H4 = Hash (H3, Sjv)

H5 = Hash (H4, E)

H6 = Hash (H5, F)

H8 = Hash (H7, H)

H7 = Hash (H5, G)

H10 = Hash (H9, D)

Figure 3.7. Hashing procedure for a legitimate Service Flow in RADIS

When Siu invokes another service Sjv, the code of Siu that handles the service

invocation will be attested by the procedure callatt (Step 3). Among the arguments

of the service call, the service invocation will also include the attestation result

of Siu and a nonce Ri to initiate the attestation for Sjv. Specifically, to initiate

the request, callatt computes a MAC signature µi = signMac(kij ;msgi) over the

message msgi = Sjv ‖ outputSiu ‖ GHVi ‖ Ri, where Sjv is the name of the invoked

service, outputSiu is the output Siu which serves as input data in the service call,

3.5 Remote attestation of distributed IoT services: RADIS 41

 Verifier

 R ←{0,1}n;
 σVrf←sig(SKVrf; Siu i⃦nputSiu R⃦);

 vrfsig(pki; outputSiu, R, σPrv)

 Device i

 if (vrfsig(PKVrf; Siu ⃦inputSiu ⃦R, σVrf)) then
Begin
 GHVi ⟵ 0;
 servatt(Siu, inputSiu, GHVi)
 Begin
 ∀ Nl ∈ CFG(Siu)
 begin

 GHVi ⟵ Hash(GHVi, Nl);
 end
 return outputSiu ⃦GHVi;
 End

callatt()
 Begin
 Sjv ⟵ name of invoked service;
 Ri ←{0,1}n;
 msgi ⟵ Sjv o⃦utputSiu G⃦HVi R⃦i;
 µi⟵ signMac(kij; msgi);
 End

getrespatt()
 Begin
 if (verifyMac(kij;msgj)) then
 outputSjv ⃦GHVj ⃦Ri ⟵ resp;
 GHVi ⟵ GHVj;
 End

possibly more code to attest by calling
again the procedures in

 σPrv ⟵ sig(ski; R o⃦utputSiu ⃦GHVi);
Result = { R, outputSiu, GHVi, σPrv}

Else

 Reject Ch;
End.

 Device j

if (verifyMac(kij; msgi, µi)) then
Begin
Sjv ⃦inputSjv ⃦GHVi ⃦Ri ⟵ msgi;
res ⟵ servatt(Sjv, inputSjv, GHVi);
outputSjv G⃦HVj ⟵ res;

respatt()
 Begin
 msgj ⟵ Ri ⃦outputSjv ⃦GHVj;
 µj ⟵ signMac(kij; msgj);
 End

Else
 Reject req;
End.

Ch = {Siu, inputSiu, R, σVrf}

 req = {msgi, µi}

 Result

resp = {msgj, µj}

1

2

3

4

5

6

7

2 3 6

Figure 3.8. The algorithm of RADIS attestation protocol

42 3. Synchronous Remote attestation

GHVi is the attestation result of Siu, and Ri is a randomized nonce. On receiving the

service request, Dj uses kij to verify the MAC signature verifyMac(kij ;msgi, µi)

and prove the authenticity and integrity of the request. In case the service call

is valid, RADIS protocol running on Dj starts the attestations for Sjv by calling

servatt (Step 4) on the received input data. The code of Sjv which handles the

response will be attested by respatt (Step 5). Next, Di handles the response of

Dj by calling getrespatt (Step 6) and updates GHVi with the hash value GHVj

produced by Dj . After the response, in case Siu continues code execution or invokes

other services, RADIS will trigger again servatt, callatt, and getrespatt.

Upon a complete execution of all the service that compose a service flow, Prvi

retrieves GHVi stored locally, and it sends back to V rf the signed attestation result

σP rv =sig(ski;R ‖ outputSiu ‖ GHVi) (Step 7). V rf verifies the signature of the

response vrfsig(pki;R ‖ outputSiu ‖ GHVi ‖ σP rv)) and then proceeds with hash

validation. Since V rf has initially stored the valid hash for each service, to validate

the attestation response, V rf checks in the database whether GHVi is among the

legitimate hash values saved in the database. If it matches, then GHVi serves as an

evidence to prove that each service of the service flow is legitimate.

3.6 Experimental setup and evaluation

This section describes our experiments and presents the performance evaluation of

RADIS.

Recall from Figure 3.8 that RADIS protocol computes a hash value for every

running service in a distributed system, and it is composed of two main computations:

(1) the attestation of each individual service that composes a distributed service

(performed by servatt()) and (2) the service request invocation and the reply

obtained along with each remote service attestation (performed by callatt(), respatt(),

getrespatt()). The attestation for each individual service is performed based on the

control-flow of the service. As the complexity of this computation is similar to the

protocol described in [28], the complexity of the hash computation for the individual

3.6 Experimental setup and evaluation 43

attestation is linear to the number of control-flow instructions that the service has

to execute. Considering that in RADIS, the hash computation for each service starts

either from an initial service (from 0) or from a previous calculated hash (as described

in Section 3.5), RADIS does not introduce additional overhead with respect to the

work [28] to compute the hash of each individual service.

However, in order to transmit the attestation result among services, RADIS

sends a hash value in every service call in addition to the standard parameters.

Due to the communication of the hash value, RADIS introduces an additional

overhead compared to the service calls where no attestation of distributed services

is performed. Considering that RADIS computes a single hash over a previous

calculated hash (as described in Figure 3.8, procedure servatt()), the hash length

remains constant despite the number of services that can compose a distributed

service. In the following, we describe the experiment and the evaluation of the

additional overhead that RADIS introduces.

3.6.1 Experimental Setup

To attest individual services, we developed a hash module and customized a trace

module1 to trace the control-flow at run-time. During execution, the customized

trace module invokes the hash module to compute and accumulate a single hash

value for each executed control-flow. We assume that an adversary will not be able

to disable or modify the trace module and the hash module. For a secure deployment

of the protocol on real devices, trace module and hash module can run within a

lightweight hardware-assisted secure environment based on ARM TrustZone.

In order to measure the overhead for transmitting a hash value in every service

call, we implemented a distributed service scenario composed of three services:

captureImage()→ checkImage()→ unlockDoor(). We implemented each service

in Python v3.6.3 using Python Flask v1.0.2. We deployed each service inside a

Docker container with 1GB RAM and 1.2GHz CPU running on Alpine Linux v3.8

1We customized trace which is an open-source python module

https://docs.python.org/2/library/trace.html.

44 3. Synchronous Remote attestation

and establish a HTTP communication among the services. We use SHA-1 and SHA-

384 as a cryptographic hash function and a Keyed-Hash Message Authentication

Code (HMAC) based on SHA-256 as a MAC in order to show the complexity and

computational overhead of the implemented distributed service.

3.6.2 Evaluation

For single service attestation, the overhead to compute a hash for the entire control-

flow of a service with 10 lines of code is ≈ 36 microseconds. We evaluated the

communication overhead of RADIS by measuring the run-time of distributed services

without performing the attestation protocol and with performing the attestation

with the two cryptographic hash functions, namely, SHA-1 and SHA-384.

Table 3.2. RADIS run-time in seconds (s)

Services No attest SHA-1 SHA-384

captureImage− checkImage 0.00383s 0.01164s 0.01213s

checkImage− unlockDoor 0.00441s 0.01211s 0.01298s

captureImage− checkImage− unlockDoor 0.00750s 0.02355s 0.02503s

From Table 3.2 one can see that the communication overhead of SHA-1 and

SHA-384 among two services is respectively ≈ 8 milliseconds and ≈ 9 milliseconds

with respect to the case of no attestation. While in the case of three services, the

communication overhead is ≈ 16ms for SHA-1 and ≈ 17.5ms for SHA-384. The time

of signature verification HMAC SHA-256 of each service is ≈ 1 millisecond, and it is

included in the measured run-time shown in Table 3.2. The runtime measurements

of RADIS are also shown in Figure 3.9 which illustrates a comparison of RADIS

performance for SHA-1 and SHA-384 for the services that compose the distributed

service of our case study application.

Our experiments show that the communication overhead between two services

is constant. Therefore, for a distributed service which comprises N services, the

overhead is linear in (N-1). Let Tnoattest be the time of interaction between services

3.6 Experimental setup and evaluation 45

captureImage-
checkImage

checkImage-
unlockDoor

captureImage-checkImage-
unlockDoor

Services

0.000

0.005

0.010

0.015

0.020

0.025

Ru
nt

im
e(

s)

no attestation
SHA-1
SHA-384

Figure 3.9. Comparison of RADIS performance for SHA-1 and SHA-384 for two and three

services in a distributed service

when no attestation is performed and Toverhead is the overhead of RADIS between

two services. The runtime TRADIS of the communication between N services in

RADIS can be given as TRADIS = Tnoattest + Toverhead ∗ (N − 1). The scalability of

RADIS for N services depends on scalability properties of the underlying architecture

of a distributed service. See Figure 3.10 that reports the overhead of RADIS for

SHA-1 in a various number of services that compose a distributed system. The

results confirm that the performance of RADIS is reasonable for attesting distributed

IoT services.

2 services 3 services 4 services 5 services 8 services 10 services

Number of services in a distributed service

0.00

0.02

0.04

0.06

0.08

0.10

Ru
nt

im
e

(s
)

Comparison of RADIS
no-attestation
RADIS SHA-1

Figure 3.10. RADIS performance in various number of services in a distributed system

46 3. Synchronous Remote attestation

3.7 Security Analysis

This section presents some arguments to give an insight into the proof that RADIS

meets the security requirements described in Section 4.5.2.

Authenticity and Integrity of software: In RADIS, a trace module intercepts

the control-flow of each service at run-time and invokes a hash module to compute

a cumulative hash. Thus, Adv will not be able to execute an arbitrary code or

change the control-flow that will not be observed by the hash module. Following

the assumptions that the hash functions are collision-resistant, and that Adv cannot

disable or modify the code of the trace and hash module, then Adv will not be

able to generate a valid hash value for an altered control-flow. Additionally, RADIS

intercepts the service calls, and each invoked service first registers the attestation

result of the calling service, and then starts the execution. Hence, a data attack on

the calling service that produces a corrupted output which changes the control-flow

of the invoked service will produce an unknown hash value to V rf . As only RADIS

can access the secret signing key sk, the final attestation result is authenticated and

cannot be tampered by Adv.

Integrity of communication: Any changes of the communication data by Adv

that effects the execution flow of the invoked service will produce an unknown hash

value to V rf . The communication data between two devices is authenticated with a

MAC symmetric encryption kij . Given a secure MAC function, it will be infeasible

for Adv to forge the data without knowing kij .

Freshness: The freshness of the attestation is ensured by a randomized nonce

R sent by V rf , and randomized nonces Ri exchanged among device Di. Assuming

that the probability of sending a randomized nonce R, where R = Rold is negligible,

two different attestation results will not match. Therefore, V rf can detect the replay

attack.

3.8 Conclusions and Open issues 47

3.8 Conclusions and Open issues

While IoT systems become interoperable, an important challenge for the remote

attestation schemes is to guarantee the trustworthy state of the IoT services that

compose a distributed service. A secure interaction between devices is a key issue in

IoT systems, and in this chapter, we emphasize the need for a distributed services

attestation in IoT systems. We presented RADIS, as a protocol that provides a

comprehensive and reliable integrity check of a distributed service. Our solution

gives evidence about the trustworthiness of the services that compose a distributed

services and the interaction flow between services.

Since RADIS protocol attests distributed services in which services communicate

synchronously, the problem of attestation of asynchronous distributed IoT services

remains an open issue. In addition, the optimization of attestation computation for

resource-constrained IoT devices needs to be addressed.

49

4

C
h

a
p

t
e

r

Asynchronous Remote attestation

To deal with real-time communication in a large-scale network of interacting services,

IoT applications mainly adopt publish/subscribe messaging pattern. In this chapter,

we focus on collecting timestamped historical evidence and tracing the invocation

of services in an asynchronous IoT system. We present a novel protocol for Secure

Asynchronous Remote Attestation (SARA). SARA enables the attestation of a group

of IoT devices without suspending their regular work for the entire attestation time

and performs the attestation of asynchronous distributed IoT services.

4.1 Motivation

Large-scale systems require scalable communication mechanisms that can deal with

potential network reliability issues. In IoT setting, asynchronous communication is

accepted as an effective communication method which allows the communication

among IoT devices that are decoupled in space (i.e., interacting parties may not

address directly each other) and time (i.e., interacting parties are not online at the

same time during the communication). For this reason, the major asynchronous

protocols which adopt the publish/subscribe paradigm [57,62] such as MQTT [4],

50 4. Asynchronous Remote attestation

DDS [5], AMQP [2] etc., are very popular and stable communication protocols in IoT

systems [52,71]. Also, the asynchronous protocols are de-facto present in real-life IoT

applications, for instance, both Google Core IoT1 and Amazon Web Services (AWS)

IoT2 adopt MQTT protocol to handle the communications among IoT services.

Due to the large number of interacting IoT services, the importance of the

operations that these services perform, and the lack of complex security protection,

the IoT systems are becoming a favorite target for cyberattacks. Many adversaries

aim to exploit these services to access sensitive information of the IoT devices,

disrupt their normal operation, and even corrupt the data and software to violate

the legitimate operations of the devices [77,87,103]. Remote attestation can serve

as a suitable security protocol to provide evidence about the integrity of individual

devices.

The execution of remote attestation protocol is typically uninterrupted, enabling

the detection of mobile adversaries which try to evade detection by getting relo-

cated during the attestation. The non-interruptibility is generally preserved even

for collective attestation protocols which attests a large number of devices syn-

chronously [29–31,36,47,48,75,86]. In these schemes, when a Prover A interacts with

Prover B during the attestation, Prover A has to wait for a response from Prover

B and then proceeds with further operations. Further, the integrity of the Prover

does not only depend on the integrity of the software and the data that are running

on Prover’s memory. The communication data exchanged among previous service

interactions also affect the current state of the Prover [29, 47, 48]. Therefore, an

important prerequisite for remote attestation protocols is to provide evidence about

the interactions and the communication data exchanged during these interactions.

In this chapter, we propose a novel protocol for Secure Asynchronous Remote

Attestation (SARA) of a group of devices that communicate among themselves by

publish/subscribe paradigm [57,62] to provide distributed IoT services.

1https://cloud.google.com/iot-core/
2https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html

4.1 Motivation 51

4.1.1 Contributions

Overall, SARA provides the following main contributions:

1. Asynchronous attestation. SARA performs the attestation of a group of IoT

devices without interrupting the normal operation of all the devices at the same

time. In particular, SARA considers the typical and most common scenario of

IoT systems where the interaction among devices is event-driven and follows

the publish/subscribe paradigm. The design of the remote attestation protocol

based on this paradigm allows a device that completes the local attestation to

resume its normal operation although the attestation may progress on other

devices.

2. Selective attestation. SARA allows the Verifier to establish both the trust-

worthiness and the legitimate operations of a portion of the IoT system by

interacting only with a subset of the devices in the network. For example, after

that SARA has collected asynchronously the historical data of the services

in a large-scale IoT system, the Verifier can interact only with the actuators

that perform the final action, to establish the trustworthiness of all the devices

involved in the provision of that specific service and verify their legitimate

operations.

3. Historical evidence. SARA aims at providing each Prover with historical

information about its own interactions with other IoT services. This allows

SARA to detect not only the malicious IoT devices, but also other devices

which are performing a non-intended operation due to their interactions with

the infected device. However, collecting historical secure evidence is particularly

challenging in event-driven asynchronous communication models because it

is difficult to predict the time and the order of the service interactions. In

this context, the existing approaches that aim to periodically check software

integrity and data integrity (e.g., in [44, 67]) will not be useful. Also, some

of the proposed attestation protocols that require the synchronization of

clocks between devices does not seem realistic in large IoT systems. In order

52 4. Asynchronous Remote attestation

to overcome the challenge of ordering asynchronous events, SARA uses the

concept of vector clock [59, 83] which enables the precise tracing of event

occurrences.

4. Performance evaluation. SARA is implemented in Cooja, the Contiki [6]

network simulator. The simulation results are promising, and demonstrate the

effectiveness of SARA for asynchronous IoT communication.

4.1.2 Chapter outline

We describe the problem setting in Section 4.2 and provide a background overview

in Section 4.3. In Section 4.4 we present the system model. In Section 4.5, we present

the adversary model and define the required security properties. Section Section 4.6

presents the protocol details. In Section 4.7, we provide the evaluation of the protocol

along with security analysis in Section 4.8. Finally, we discuss the proposed solution

in Section 4.9 and the chapter concludes in Section 4.10.

4.2 Problem Description

We consider an IoT system which involves many multi-functional IoT devices. Each

functionality offered by a specific device is performed by an independent software

component called Service. To determine the state of a service, we define a Service

as trustworthy when its software has not been modified by an attacker. We say

that a Service is performing a legitimate operation when the service is currently

performing an intended operation and the current operation is not maliciously

affected directly or indirectly by the previous interactions among services. A subset

of Services across an IoT system may interact among themselves and compose what

we call a Distributed IoT Service.

Figure 4.1 shows a toy example of a distributed IoT service in a smart city that

consists of four IoT devices: a Brightness sensor, a Smart bulb, an Electric power-hub

and a Fire sensor. For simplicity, we assume that each of these four devices runs

only one service. In general, a large-scale IoT application, such as smart cities, smart

4.2 Problem Description 53

homes, connected cars, etc., can be seen as a collection of many devices running

many distinct distributed IoT services, each composed by many services that interact

with each other.

Fire sensor

Electric power

fire alert

Smart bulbBrightness sensor
Verifier

Attest

Figure 4.1. Toy example of interacting services in a Smart city scenario

Here, a Brightness sensor monitors continuously the light intensity of the envi-

ronment and provides the measurements to the Smart bulbs of a building. Based

on the light intensity, a Smart bulb automatically turns on and off. When a Fire

sensor detects fire in a building, it will also send an alert to the nearby Electric

power-hub which will stop providing power to the building. As a consequence, the

Smart bulb will turn off. For simplicity, the goal of the Verifier in this scenario is to

check both the trustworthiness and the legitimate operations executed by the Smart

bulb device. Note that, the data received directly from the Brightness sensor and

indirectly from the Fire sensor define the correct behavior of the Smart bulb. For

example, even though it is dark and the light is off, the Smart bulb can still be in a

legitimate state if a fire alarm has happened. Consider an attacker that compromises

the Brightness sensor and influences maliciously the Smart bulb by reporting always

high light intensity which will affect the Smart bulb to remain turned off even in

darkness. Therefore, any of the existing remote attestation protocols that validates

only the program binaries and the data memory of the Smart bulb device, without

considering the exchanged communication data with the Brightness sensor, will

report the Smart bulb as not compromised even though the Smart bulb is in an

54 4. Asynchronous Remote attestation

incorrect state, that is, being off instead of on. In order to verify the trustworthiness

and the legitimate operation executed by the Smart bulb, the Verifier has to know

the previous interactions of the services that directly or indirectly affected the

current state of the Smart bulb. Note that the verification process of the Verifier is

particularly complex, since the Smart bulb could be correctly off if a fire alarm has

happened.

One crucial point has to do with the interactions that happen concurrently.

Consider for instance the abstract model of event-driven interactions among 5 services

depicted in Figure 4.2. Here, these services implement a distributed publish/subscribe

communication pattern where the publisher can multicast events (i.e., messages or

data) to subscribers. In Figure 4.2, Service 2 and Service 3 concurrently receive

an event from Service 1, while Service 3 is triggered by events of anyone of the

two services: Service 1 or Service 2. Thus, for a Verifier that checks both the

trustworthiness and the legitimate operations of Service 5, it is critical to determine

whether the interaction Service 1 → Service 3 has happened before or after the

interaction Service 2→ Service 3. Indeed, different order of these interactions may

possibly yield different results, and consequently the expected legitimate state of

Service 5 would be different. Thus, the legitimate state of a service depends on the

ordering of the service interactions.

Service 1

Service 2

Service 3

Service 4

Service 5

Figure 4.2. Overview of service interactions in publish/subscribe paradigm

One could think of solving such an ordering problem by relying on a centralized

publish/subscribe model [57], in which a broker receives all the events, assigns

a sequence order to each event, and routes the events toward the subscribers by

4.3 Background 55

enforcing the order. In realistic IoT scenarios, a publish/subscribe model consists

of multiple distributed brokers that route the events from publishers to subscribers

through different multi-hop paths. When distributed brokers handle overlapping

groups of subscribers, events ordering still remains an issue. For instance, when two

subscribers share several subscriptions managed by different brokers, each broker will

assign the same events with different sequence order which may differ among brokers.

Thus, the published events will be notified in different order to the subscribers. To

develop a solution that has general applicability, we consider completely decentralized

publish/subscribe model (with or without brokers), and we focus on a secure solution

to guarantee events ordering among IoT services.

In an event-driven interaction model, in which a publisher publishes an event

that triggers the next action, the occurrence of events is not predictable. Moreover,

the clocks in IoT devices are typically inaccurate which makes impossible the perfect

synchronization of different clocks among IoT devices. Even if the devices are initially

synchronized, their clock will drift. Given the different communication delays that

the event delivery may introduce, it is difficult to determine exactly when the events

occurred. However, it is fundamental for the Verifier to know what is the logical

sequence of the events interacting with a device, i.e., the order of occurrence of the

events and the data exchanged.

This chapter proposes a solution, in the context of the issues described above,

both to verify the integrity of the device D, and to detect if D has been maliciously

influenced by another compromised service.

4.3 Background

We now provide some background knowledge about Publish/Subscribe paradigm

and Clock Synchronization across IoT devices.

56 4. Asynchronous Remote attestation

4.3.1 Architectural properties of Publish/Subscribe

Large-scale distributed IoT applications usually implement Publish/subscribe com-

munication paradigm to enable the asynchronous communication among the services.

In a typical publish/subscribe communication pattern, publishers produce data in

the form of events, subscribers use subscriptions to register their interests on an

event or a pattern of events [57,62]. Each subscriber gets notified when a published

event matches at least one of its subscriptions. In principle, the interacting services in

a publish/subscribe paradigm are decoupled on space and time. This means that the

interacting services do not need to know each other and do not need to participate

on the interaction at the same time.

Publish/subscribe paradigm can be categorized in centralized and distributed

model. In a centralized publish/subscribe, publishers and subscribers are both

attached to a message broker which handles the implicit invocation of the services.

The IoT protocols such as CoAP [97], MQTT [4], AMQP [2] follow the centralized

approach. In practice, publish/subscribe protocols in large IoT systems may consist

of multiple distributed brokers such as MQTT brokers.

On the other side, other popular IoT protocols such as Data Distribution Service

(DDS) [5] rely on publish/subscribe pattern to provide a completely decentralized

architecture with dynamic service discovery that automatically establishes commu-

nication between matching peers. This model offers scalability, increases reliability,

and is suitable for efficient and secure data sharing.

Considering that the focus of this chapter is on checking the trustworthiness and

the legitimate operations of the asynchronous interactions among services, recording

events in the order of their occurrence is very important. When an IoT system consist

of multiple brokers, the order of the events handled on a single broker and across

different distributed brokers becomes fundamental. To preserve the generality of our

work, we assume that IoT devices employ distributed publish/subscribe model.

4.3 Background 57

4.3.2 Logical Clock Synchronization

Clock synchronization is an important procedure that allows a large number of

IoT devices to agree on the same time reference. In general, the accuracy of a

typical quartz-based oscillator is affected by the manufacturing imprecision and

environmental conditions to which the clock is exposed, in particular temperature [68].

These factors affect mostly the accuracy of the clocks deployed on IoT devices due

to their low-cost design and their usual exposure to environment. Since a global

reference time is usually not available for IoT devices and the local physical clocks

are not accurate, the clock synchronization among IoT devices is a challenging issue.

To get around the physical clocks synchronization problem, this chapter proposes

the usage of logical clocks, in particular, vector clocks. The concept of logical clock

(LC) was introduced by Lamport [82] to produce “happens-before" relation among

distributed events, in which a → b denotes that the event a happens before the

event b. Here, a function LC assigns an integer timestamp to events to satisfy the

condition: a → b ⇒ LC(a) < LC(b). In this way, the causally ordered events are

represented as a linearly ordered set of integers. This approach does not order every

pair of events, since there can be distinct events with the same timestamp.

Since Lamport’s logical clock does not allow a precise time-stamping of the

messages, we use vector clocks. Vector clocks (VC) [59, 83] enhance Lamport’s

logical clock by identifying precisely the events that are causally related. When

events are not causally related, they are concurrent. Overall, a vector clock algorithm

follows three basic steps:

• Each service Si maintains a vector clock V Ci, where the value V Ci[i] is initially

assigned to zero.

• When a service Si sends a message, it first computes V Ci[i] = V Ci[i] + 1, and

then includes V Ci with the message.

• Upon receiving a message with another vector clock OV C, Si will set:

(1) V Ci[j] = max{V Ci[j], OV C[j]}, ∀j ∈ [1..N]

(2) V Ci[i] = V Ci[i] + 1.

58 4. Asynchronous Remote attestation

In our work, each service maintains a vector clock that is updated during a remote

attestation execution according to the aforementioned algorithm.

4.4 System model

We consider an IoT distributed system, in which devices adopt asynchronous com-

munication mechanisms by following a completely distributed publish/subscribe

communication pattern for the interaction among their services. Our system model

consists of the following entities:

• Devices (D): Each IoT device D provides many services. Each service instance

is identified by a unique id servID. Devices adopt publish/subscribe communi-

cation pattern to implement the interaction among services across the network.

One service can be both a publisher and a subscriber.

• Verifier (V rf): The Verifier is an external trusted party that verifies both the

trustworthiness and the legitimate operations of the services running on IoT

devices. We assume that V rf has access to the binaries of each service and

has precomputed the legitimate hash values for each genuine service. We also

assume that Verifier knows the legitimate interactions among services. This is

a realistic assumption since publish/subscribe protocols generally provide an

interface that handles the subscription process.

• Network Operator (OP): OP guarantees the secure bootstrap of the software

deployed on each Di and the secure key distribution among devices at the

beginning of the IoT system operation.

The Verifier performs the attestation in two steps: initialization at time T0 and

attestation at time T1, as shown in Figure 4.3. During the initialization time, V rf

initiates the attestation procedure to one (or more) services which will be typically

publishers. (Step 1). Upon receiving the attestation request, the publisher performs

the local attestation process and publishes the attestation result together with the

data that it produces (Step 2 - 3). Consequently, every subscriber service which

4.5 Adversary model and Security Requirements 59

retrieves the published data will also perform the attestation (Step 4).

Publisher: P

Subscriber: S

Verifier
Time T0

Verifier
Time T1

Initiate attestation1 Compute:
GHV1 = Hash(P)2

Publish:
Output data + GHV1

3

Compute:
GHV2 = Hash(S) + GHV1

4

Send a challenge5

6 Challenge + GHV2

initialization

Attestation

Figure 4.3. SARA system model

At attestation time, V rf sends an attestation request to one (or more) subscriber

services (Step 5) which will act as Prover for the entire distributed IoT service. Each

subscriber will report to V rf an attestation result that includes the attestation result

of all the previous services that were directly or indirectly involved in triggering

a given event to which the subscriber was registered (Step 6). Note that the

initialization and the attestation can be launched at any services of the IoT devices.

However, considering that the functionality of a distributed IoT service typically

flows from sensors to actuators, the Verifier’s action is more effective if the attestation

procedure starts from publishers and gets verified from subscribers.

4.5 Adversary model and Security Requirements

4.5.1 Adversary model

We consider the following possible actions of an Adv against distributed IoT services:

60 4. Asynchronous Remote attestation

Software adversary (Advsw). Adv can compromise the program binary of an

IoT service either remotely by introducing malware (i.e., remote adversary), or by

being present physically near (i.e., local adversary). In both the scenarios the Adv

can also eavesdrop or control the communications among services.

Mobile adversary (Advmob). Adv is intelligent and able to move be.tween different

devices within the IoT system in order to avoid being detected.

Replay attack. Any of the Adv listed above can also launch replay attack, that

is, Adv precomputes the results of the attestation procedure, and reports to V rf a

previous valid response which hides the attack.

Assumptions. Like in other remote attestation schemes in the literature, we

assume that Adv cannot compromise hardware-protected memory. In addition, a

Physical Adversary (Advphy) that is capable of physically manipulating the services

and Denial of service (DoS) attacks are out of our current scope. An adversary may

also delay or refuse to publish the result. However, if the Verifier expects that a

particular interaction happens in a predicted time interval, a long delayed message

will be noticed. Likewise, the Verifier can detect a missing interaction in case the

service does not publish the data.

Device trust assumptions. Following common assumptions reported in the

literature, we assume the presence of three trusted components that reside on a

device:

• Read-Only Memory (ROM): Memory region in ROM where is loaded the code

of attestation protocol SARA along with the attestation-related details.

• Secure Key Storage: Memory region that stores keys and is read-accessed only

by SARA. This memory region is generally not updated during attestation.

• Secure writable memory: Memory region that can be read-write accessed only

by SARA and is used to securely store the vector clock value.

4.6 Asynchronous Remote Attestation: SARA 61

The aforementioned memory regions are secure and can be accessed only by autho-

rized entities.

4.5.2 Security requirements

Any asynchronous remote attestation protocol for IoT services should satisfy the

following security properties:

Trustworthiness of services. The protocol should provide secure evidence to

guarantee the integrity of each individual service that compose a asynchronous

distributed IoT system.

Legitimate operations. The protocol should provide timestamped evidence such

as: the previous interactions, the interactions timestamp, and the exchanged data.

In this way, the Verifier will be able to verify the legitimate operation of the Prover

as defined in Section 4.2.

Freshness. The protocol should be able to detect a compromised service that

reports a precomputed value that could hide an ongoing attack on the service.

4.6 Asynchronous Remote Attestation: SARA

SARA consists of three main phases: (1) Deployment and measurement, (2) Attesta-

tion, and (3) Verification. We present the notation of SARA in Table 4.1, and in the

following, we provide comprehensive details for each of the phases of the protocol.

4.6.1 Setup phase

Setup phase is an offline phase for deployment and measurement that is performed

to guarantee a secure setup of the devices on an IoT system before the attestation

procedure. A network operator OP is responsible for deploying the devices in a

secure manner. Moreover, OP is responsible for the key management of the network

62 4. Asynchronous Remote attestation

Table 4.1. Notation Summary of SARA protocol

Term Description

V rf Verifier

Di IoT Device i

P ID of a Publisher

S ID of a Subscriber

servID Unique ID of a service

LHVP Local Hash of the service P

GHVP Global Hash of the service P

GHVprev Global Hash of previous service

interactions

PKV rf Public key of Verifier

SKV rf Secret key of Verifier

kps shared key among service P and S

At Number of active services

at time t

Procedure Description

Enc(pk;m) encrypts a message m with a public

key pk

Dec(sk;m) Decrypt a message m with a secret

key sk

σ ← sig(sk;m) signs a message m using a secret

signing key sk and outputs

a signature σ

{0, 1} ← vrfsig(pk;m,σ) verifies validity of σ on a message

m using public key pk

attest() performs attestation of a service

publish() include attestation result on the data

4.6 Asynchronous Remote Attestation: SARA 63

and the installation of the secure applications on the device. A trusted external party

called Verifier V rf knows the installed version of the applications on the devices

and has access to the device binaries. During the measurement, V rf measures all

the legitimate states of each services running on a device. In addition, the Verifier

knows the services that are publishers and subscribers and the legitimate interactions

among them.

Key management. We assume that V rf uses an asymmetric key-pair

(SKV rf , PKV rf) to communicate to each Prover. For simplicity, we assume that each

Prover uses an asymmetric key-pair (SKP rv, PKP rv) to communicate to the Verifier

and to other devices. In Section 4.9 we describe the alternative key management

schemes that devices may potentially adopt to communicate among themselves.

4.6.2 Attestation phase

Clock Synchronization. As we discussed in Section 4.3, it is challenging to have

the clock counter synchronized among devices. Therefore, we adopt the concept of

vector clock to obtain a consistent view of time across all the services in an IoT

system. In the logical vector clock model, initially all clocks are set to zero. From this

moment onward, each time a service sends a message, it increments its own logical

clock in the vector by one and then sends a copy of its own vector. To preserve the

generality of our protocol SARA, we use the term timestamp to refer to the vector

clock of a given service at a given time. Note that in our approach timestamp is not

the taken from the physical clock, it is an array that represents the vector clock. We

assume that timestamp is running in a protected memory and can be updated only

by SARA.

Attestation. To describe the attestation protocol, we assume that an asyn-

chronous distributed IoT service is composed of two services: a publisher P and a

subscriber S. Each service takes an input from another service or from the sensed

data. Figure 5.4 depicts SARA’s algorithm for attestation of asynchronous distributed

IoT services. At time T0, the V rf initiates the attestation protocol by sending an

attestation challenge to P (Step 1). Upon receiving the challenge, P reads an

64 4. Asynchronous Remote attestation

 Verifier

Time T0

R ⟵{0,1}n;
σVrf←sig(SKVrf; P || R);

vrfsig(PKS ; msg, σPrv)

Time T1
R ⟵{0,1}n;
σVrf ⟵sig(SKVrf; S || R);

vrfsig(PKS ; GHVS, R, σPrv)

 Publisher P

 if (vrfsig(PKVrf; P || R, σVrf)) then
 Begin

if (timestampP is null) then
 timestampP [P] = 0;
ServID ⟵ P;
GHVprev ⟵ 0;
InputP ⟵ read();
OutputP ⟵ exec (ServID, Input);
attest()

 Begin
 LHVP⟵ checksum(P);

 timestampP [P] ⟵ timestampP [P] +1;
 τ⟵ ServID || timestampP || LHVP ||
 || OutputP || InputP || GHVprev;
 GHVP ⟵ Enc(PKVrf; τ);
 End

publish()
 Begin

 msgp ⟵ OutputP || GHVp || timestampP ;

 σp⟵ sig(SKp; msgp);
 End

 Else
 Reject Ch;

 End.

 Subscriber S

If (vrfsig(PKp; msgP, σP)) then
Begin
If (timestampS is null) then
 timestampS [S] = 0;
ServID ⟵ S;
OutputP || GHVp || timestampP ⟵ msgP;
for (i=0; i< length(timestampp); i++) {
 timestampS [i] =
 max(timestampp [i], timestamps [i]);
}
InputS ⟵ OutputP;
GHVprev⟵ GHVp;
OutputS ⟵ exec (ServID, InputS);

attest()
 Begin
 LHVS⟵ checksum(S);
 timestampS [S] ⟵ timestampS [S] + 1;
 τ⟵ ServID || timestamp || LHVS ||

 || OutputS || InputS || GHVprev;
 GHVS⟵ Enc(PKVrf ; τ);
 End
Else

Reject data;
 End.

 /* optional */
publish_to_verifier()
Begin
 timestampS [S] ⟵ timestampS [S] + 1;
 msg ⟵ OutputS || GHVS || timestampS;
 σPrv ⟵ sig(SKS ; msg);
End

if (vrfsig(PKVrf; S || R, σVrf)) then

σPrv ⟵ sig(SKS ; R || GHVS);

 Ch = {P, R, σVrf}

data = {msgP, µP}

 Result = {GHVS, R, σPrv}

1

2

3

4

6

 Ch = {S, R, σVrf}5

 Result = {msg, σPrv}

Figure 4.4. The algorithm of SARA attestation protocol

4.6 Asynchronous Remote Attestation: SARA 65

input from environment and registers the input to InputP . SARA uses GHV to

accumulate the attestation results among interacting services. Since P is not triggered

by any previous service, SARA sets GHVprev = 0. Afterwards, P performs its own

operation, registers the output data to OutputP , and then starts attestation. The

attestation procedure (Step 2) consists on computing the checksum3 of P’s program

binary which gets assigned to LHVP . Then, P increments by one its timestampP

and computes = servID||timestampP ||LHVP ||OutputP ||InputP ||GHVprev. This in-

formation will serve as a complete evidence of service P for the Verifier and does

not need to be accessed by other services. Therefore, SARA encrypts this evidence

with PKV rf and assigns it to GHVP .

When P publishes a message (Step 3), P computes a message msgP =

OutputP ||GHVP ||timestampP and signs this message with SKP . Once S gets the

signed message from P , S verifies the signature of the received message and stores

the input and timestamp sent by P . Next, S gets executed on the received input and

uses the received timestamp to update its own timestamp timestampS following the

vector clock algorithm explained in Section 4.3.2. Next, S triggers the attestation

procedure (Step 4), increments by one its corresponding value of the vector clock

and computes GHVS . An abstract overview of this process is shown in Figure 4.5.

At time T1, V rf will send an attestation request to S (Step 5). Upon verifying

the request, Service S will send to the Verifier the GHVS (Step 6). Optionally, the

V rf can register its subscription to S. In this case, when S completes the attestation,

S executes the function publish_to_verifier() in order to send the final attestation

result GHVS to V rf .

4.6.3 Verification phase

In SARA, the verification starts when the Verifier retrieves the attestation result

GHVS from service S which acts as a Prover (see the interaction at time T1 shown

in Figure 5.4, where service S is called subscriber). Along with the timestamped

3Note that the checksum can be replaced with the protocol that performs data-memory attestation,

however, it does not affect the generality of SARA.

66 4. Asynchronous Remote attestation

attestation result of S, GHVS contains also the timestamped attestation result of

previous interacting services i.e., P . In order to read the evidence GHVS , the Verifier

uses its own secret key SKV rf to decrypt the attestation result of each service

included in GHVS . Then, the V rf uses the timestamp of each attestation result to

construct accurately the interaction order among services P and S (i.e., P caused

S). Next, the Verifier verifies the checksum of each service P and S that has been

included in the evidence GHVS and checks the exchanged data among these services.

Publisher: P

Hash of previous
service (GHVprev) Input Output TimestampHash of current

service (LHVP)

Input Hash of previous
service = 0

Start

Subscriber: S

GHVP

Hash of previous
service (GHVprev) Input Output TimestampHash of current

service (LHVP)

GHVS

Figure 4.5. SARA approach

For instance, consider the service interactions in Figure 4.2 where the Verifier

collects the final attestation result from Service 5. In this scenario, the attestation

result may contain two different sequences of services: (1) Evidence 1: Service 1→

Service 3→ Service 4→ Service 5, or (2) Evidence 2: Service 1→ Service 2→

Service 3→ Service 4→ Service 5 (see Figure 4.6). The V rf uses the timestamps

to construct a graph with the accurate interaction order of the services. By checking

the checksum of each service and the exchanged communication data between them,

the V rf detects the compromised services.

Once a compromised service is detected, the Verifier will identify the cases when

4.6 Asynchronous Remote Attestation: SARA 67

the occurrence of a compromised service has caused the malicious execution of other

services. In particular, the identification of services that directly or indirectly have

influenced the current state of the Prover relies on the properties of the vector clock

mechanism that represent the casuality among events [59, 83]. According to the

vector clock implementation, each service has a vector of pairs (j, k), where j is the

service’s id and k is number of the events the service j produced. The Verifier claims

that Service P has influenced the state of Service S, if all the pairs of the vector

clock of P (i.e., V CP) have a k value less or equal to the corresponding k value in

the vector clock of S (i.e., V CS), and at least one k value is smaller:

V CP < V CS ⇔ ∀j, V CP [j] ≤ V CS [j]

∧ ∃ j′ | V CP [j′] < V CS [j′]
(4.1)

where V CP [j] denotes the value of k in the pair (j, k) of the vector clock V CP .

For example, note the scenario in Figure 4.6 where the Verifier retrieves the

Evidence 2 from Service 5 and detects a non-valid checksum reported by Service 2,

associated with the timestamp V C2 = [(1, 1), (2, 1)]. In this case, the Verifier will

identify those services “X" included in Evidence 2 (i.e., services 1, 2, 3, 4, and 5), for

which V C2[1] ≤ V CX [1] ∧ V C2[2] ≤ V CX [2], and ∃ j′ such that V C2[j′] < V CX [j′].

Note that when a pair (j, k) is missing in the vector, the value k is considered

as 0. From Figure 4.6 we see that V C2[1] = V C ′′3 [1] ∧ V C2[2] = V C ′′3 [2], while

V C2[3] < V C ′′3 [3]. Thus, in this case V C2 < V C ′′3 (i.e., Service 2 caused Service 3).

Likewise, we notice that V C2 < V C ′′4 and V C2 < V C ′′5 . Thus, from Evidence 2

the Verifier identifies that the compromised Service 2 has influenced Service 3,

Service 4, and Service 5.

In addition, the vector clock allows the service interactions to be represented

as a direct acyclic graph (DAG). This derives from the definition of vector clocks

properties, in which the values can only be incremented (see Section 4.3.2). At

the time of attestation, a malicious service might attempt to evade the detection

by sending precomputed legitimate data to other services. In this case the “used"

timestamp (i.e., vector clock) is old and it will create a cycle in the final graph that

68 4. Asynchronous Remote attestation

Service 1

Service 2

Service 3 Service 4 Service 5

Service 3 Service 4 Service 5

VC1 = (1,1)

(1,1)
(3,1)
(4,1)VC4' =

(1,1)
(3,1)VC3' =

(1,1)
(3,1)
(4,1)
(5,1)

VC5' =

(1,1)
(2,1)

VC2 =

(1,1)
(2,1)
(3,1)VC3'' =

(1,1)
(2,1)
(3,1)
(4,1)

VC4'' =

(1,1)
(2,1)
(3,1)
(4,1)
(5,1)

VC5'' =

Evidence 1

Evidence 2

Figure 4.6. Overview of service interactions in publish/subscribe paradigm

the Verifier constructs. Thus, DAG structure of vector clocks allows the Verifier to

detect a replay attack by identifying the presence of a cycle in the DAG graph.

4.6.4 SARA working mechanism

In this section, we provide a simplified explanation of the attestation procedures

of SARA (described in Section 4.6) using finite-state machine (FSM) diagrams. In

SARA, the main entities that operate to perform attestation are the V rf and the

device Di, which runs one or many services.

Interaction: SARA-Verifier

The V rf in SARA performs the following main actions:

• Initialization: The V rf initializes the attestation process at a random time.

• Sending challenge: The V rf sends the attestation challenge to any of the

services in Di to initiate the attestation.

4.6 Asynchronous Remote Attestation: SARA 69

• Report collection: The V rf collects the attestation result from any of the

devices in the network at any random point of time (i.e., after the initialization

of the attestation).

• Verify: The V rf verifies the attestation result received from the device(s) in

the network.

Initialize
Attestation

Send
challenge

to a Service

Collect
Attestation

Report

Start

Verify

FSM of Verifier

Figure 4.7. SARA FSM for Verifier

Interaction: SARA-Prover

In SARA, the Prover has four main functions as follows:

• Receiving challenge: Prover(s) takes part in attestation process once it receives

the attestation challenge from the Verifier.

• Perform attestation: Upon receiving the attestation challenge, the Prover

performs attestation by computing the checksum over the program binary.

• Global Hash Operation: The Prover computes the global hash by including

GHVP = servID||timestampP ||LHVP ||OutputP ||InputP ||

GHVprev, where timestampP is the current timestamp, LHVP is the hash of

the program binary of the current service P , Output is output of the current

service, InputP is the input of the current service and GHVprev is the previous

hash value.

• Publish: The current service publishes the global hash.

70 4. Asynchronous Remote attestation

Global hash
computation

Figure 4.8. SARA FSM for Prover

4.7 Experimental setup and evaluation

In this section, we present our simulation environment and evaluation results.

4.7.1 Experimental setup

We evaluated SARA on realistic (random) networks using the Instant Contiki

environment, and in particular, the Cooja simulator [6]. Cooja is a platform that

can be used to emulate networks of resource-constrained devices, communicating

with realistic protocols. We used Cooja to investigate the robustness of SARA

in a scenario where devices (i.e., Provers): (1) run one or multiple services, (2)

are resource-constrained, and (3) opportunistically communicate using the IEEE

802.15.4 protocol. Even though mobility is not our main focus, we modelled Prover’s

mobility by randomly deploying Provers over a simulated area of 100× 100 m2. Each

Prover repeatedly selects a random speed as well as random direction. The random

movement of Provers make the network dynamic and loosely connected.

We simulated the execution of SARA on a network of Tmote Sky devices [1]. The

Tmote sky is equipped with a 16-bits 8 MHz MCU, 10 KB of RAM, and 48 KB of

non-volatile memory. Communications among services in SARA are carried out over

the IEEE 802.15.4 MAC layer protocol and use 6LoWPAN as an adaptation layer

4.7 Experimental setup and evaluation 71

(using Contiki modules). This configuration is very popular in IoT settings [30,32,36].

IEEE 802.15.4 is a wireless standard that supports up to 250 Kbps data rate, 75 m

coverage and 127 B frame size.

4.7.2 Evaluation

In the following, we present our evaluation results in terms of runtime, energy-

consumption, and memory-consumption.

Runtime

SARA considers that communication among different devices is asynchronous, thus,

each device can receive or send multiple messages concurrently.

50 100 150 200 250

Number of services

4

6

8

10

12

14

16

18

Ru
nt
im

e
(s
)

SARA runtime

Figure 4.9. Runtime of SARA, varying number of services

In order to provide an idea of runtime of SARA, we present a simulated result of

runtime for 250 services which communicate asynchronously among themselves. In

our simulation environment of 250 services, SARA takes ≈ 19 seconds to perform

attestation for the whole network. Figure 4.9 shows the runtime for SARA over a

network comprising an increasing number of services from 50 to 250. The result

proves that SARA is lightweight and does not introduce significant overhead during

the attestation.

Although, SARA’s runtime grows linearly, nevertheless, SARA shows a remark-

72 4. Asynchronous Remote attestation

ably manageable overhead for large networks. This makes SARA a realistic remote

attestation technique for practical IoT applications.

In addition, we provide a runtime comparison of SARA over a IoT network

of 100 services by deploying these services on skymote [1], ESB4 and Z15. We

measured SARA’s overhead for three different cryptographic functions: SHA-256,

AES and MD5 and present comparative runtime differences of skymote, ESB and

Z1 in Figure 4.10, Figure 4.11 and Figure 4.12. Considering the runtime for all three

different cryptographic functions, skymote performs better than ESB and Z1 mote

even though the differences among the three motes are negligible. The simulation

results show that SARA can be employed by any sensor motes on real networks.

25 50 75 100

Number of Devices

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ru
nt
im

e
(s
)

Comparison of motes that use MD5 encryption
SKY
ESB
Z1

Figure 4.10. SARA comparison for varying number of services when motes use MD5

encryption

Figure 4.13 shows the Average Packet Delivery Ratio (APDR) of SARA with

increasing simulation time in a network of 200 nodes. The messages considered for the

simulations include attestation messages along with usual network communication

messages among nodes. For our simulation purpose we use “UDGM: constant loss for

message communication" (provided by Contiki platform) among nodes in SARA. The

APDR is shown w.r.t. SHA-256, AES and MD5 encryption schemes. The performance

among these schemes are not substantially different from each other.

4http://contiki.sourceforge.net/docs/2.6/a01781.html
5https://zolertia.io

4.7 Experimental setup and evaluation 73

25 50 75 100

Number of Devices

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ru
nt
im

e
(s
)

Comparison of motes that use SHA-256 encryption
SKY
ESB
Z1

Figure 4.11. SARA comparison for varying number of services when motes use SHA-256

encryption

25 50 75 100

Number of Devices

4

6

8

10

12

14

16

18

Ru
nt
im
e
(s
)

Comparison of motes that use AES encryption
SKY
ESB
Z1

Figure 4.12. SARA comparison for varying number of services when motes use AES

encryption

Figure 4.14 shows the runtime variation of SARA w.r.t. increasing simulation

area and cryptographic measures using Tmote sky nodes. As expected, time required

to perform attestation over a large network will increase. The simulated experiments

show that 200 network devices (each device provides one service) requires ≈ 25 to 30

seconds (for 200×200 m2) to ≈ 58 seconds (for 600×600 m2) to perform attestation

for the entire network. The significantly higher time required is due to distance

related packet loss which also affects the APDR of the network.

74 4. Asynchronous Remote attestation

20 40 60

Simulation Time (seconds)

93

94

95

96

97

98

AP
DR

 in
 th

e
ne

tw
or
k
(%
)

SHA2
AES
MD5

Figure 4.13. APDR with respect to increasing simulation time in the network

200 400 600

Simulated area (square meters)

25

30

35

40

45

50

55

Ti
m
e
(s
)

SHA2
AES
MD5

Figure 4.14. Runtime of SARA, varying simulation area

Energy Consumption

We measured the energy consumption for SARA based on the energy required to send

and receive one byte of data and the energy required to perform the cryptographic

operation for attestation process. Let Esend be the required energy to send a byte,

Erecv be the required energy to receive a byte, Egh be the required energy to calculate

global hash, Emac be the required energy to sign the message, Emsg be the energy

required to communicate the attestation result, Eatt be the energy required to

compute checksum, and N be the total number of services participating in the

attestation. Then, the required energy to send a message in SARA is:

4.7 Experimental setup and evaluation 75

EDi
send ≤ Emac + Egh + Emsg.

Similarly, the required energy for receiving messages in SARA is:

EDi
recv ≤ Emac + Egh + Emsg.

In an asynchronous network that consists of N number of services, the V rf aims to

attest a subset of services (At). The overall energy consumption for the subset of

services attested in SARA is given as follows:

EDi
SARA ≤ Eatt + Emac + Egh + EDi

send + (Emac + EDi
recv) ∗ (N ∩At).

We compute the energy consumption based on standard Contiki measurement6.

The CPU energy consumption are demonstrated in Table 4.2.

Table 4.2. Energy Consumption of SARA Simulation on Sky motes

Time (In sec) CPU Energy consumption (mJ)

10 0.58503296

20 0.1965921

30 0.38838043

40 0.39161316

50 0.39992157

60 0.19716614

Based on our simulation results, the energy consumption of the nodes performing

SARA is low and, SARA does not introduce a significant overhead for the energy

consumption of the nodes that are performing attestation. Given that IoT nodes

are resource-constrained, the energy consumption results confirm that SARA is an

appropriate attestation protocol for these devices.

6http://thingschat.blogspot.com

76 4. Asynchronous Remote attestation

Memory consumption

We simulated our experiment using Tmote sky which has memory of 48k Flash +

1024k serial storage7. In our experimental setup, each Prover (Di) needs to store

at least the (1) services running on the particular device; (2) key pairs (ski and

pki); (3) Local hash for recording the result at attestation time; (4) Global hash

value. Thus, in our experimental setting the storage cost for SARA in a random

device is 3.03 KB of storage for the services (i.e., running by skymotes) and 93B for

storing the local hash and global hash. Nevertheless, the memory consumption can

vary based on different size of services and cryptographic choices. However, Tmote

sky node has considerable amount of memory which can contributes to scale the

operation based on future need.

4.8 Security Analysis

In this section, we discuss the security guarantees of SARA in satisfying the security

properties introduced in Section 4.5. In an asynchronous distributed IoT service,

the goal of an Adv is to compromise and/or affect maliciously one or more services

and evade detection from the V rf . Our main objective is to prove that it is com-

putationally infeasible for an Adv to forge the attestation result and persuade the

V rf .

Trustworthiness of services. An Advsw can attempt to manipulate remotely

the program binary of Prover(s). By infecting one service, the adversary can create

a cascade effect and maliciously affect other services. Following the assumptions

that the attestation code in SARA runs inside a hardware-protected memory which

cannot be modified by Advsw, then the checksum performed by SARA will be able to

report the Advsw that compromises the program binary of any service. In addition,

the output of checksum is encrypted with the public key of the V rf , PKV rf . Given

a secure encryption function, it will be infeasible for other interacting services to

modify this checksum output.

7http://www.snm.ethz.ch/Projects/TmoteSky

4.8 Security Analysis 77

Legitimate operations. For each services, SARA stores the current timestamp,

the input and the output of the given service, along with the checksum. Following

the assumption that SARA is able to securely intercept the input and output data,

SARA securely stores these results in ROM memory that is not modifiable by a

Advsw. At the end of the attestation procedure, the V rf will receive the attestation

result that reports for each executed service the checksum, the timestamp, and the

exchanged communication data. By checking the checksum of each service and the

exchanged communication data between them,the V rf detects the compromised

services. Following the assumption that the timestamps are stored in a secure

writable memory, the Verifier is able to identify all the compromised services and

their malicious impact over other services. Such an identification of the services

relies on the properties of the vector clock mechanism that represent the casuality

among events. Thus, SARA guarantees the legitimate operations of asynchronous

distributed IoT service against a software adversary (Advsw). In addition, SARA is

able to detect a mobile adversary Advmob that tries to evade detection by changing

location. Since SARA attests the program binary along with the communication

data, when the Advmob gets relocated across different the services, the historical

evidence will report the adversarial presence.

Freshness. Adv can launch a replay attack to evade detection by sending

precomputed valid attestation results. However, in SARA all the services include

timestamps maintained by the vector clock (as discussed in Section 4.3) with their

published output. This evidence allows the V rf to construct a graph using the

timestamps included in the attestation report. When all the service interactions

occur in a legitimate timestamp, the service interactions can be represented as a

directed acyclic graph (DAG) (as discussed in Section 4.6.3) in which timestamps

are the edges and services are the vertices over the attestation report. The presence

of a loop in the graph will represent the usage of an old timestamp and will allow

the V rf to detect the cases when the Adv launched a replay attack.

78 4. Asynchronous Remote attestation

4.9 Limitations

In SARA, each service stores a timestamped evidence, encrypts this evidence and

then sends it to other services. SARA stores such evidence for each service interaction.

Bounding the length of the attestation evidence. While SARA allows the

Verifier to accurately reconstruct historical attestation evidence, the length of the

attestation evidence increases with the number of the services that are executed. In

real IoT scenarios, the de-facto communication protocols (i.e., 6LoWPAN, ZigBee

etc.) provide a maximum packet length of 128 Bytes out of which 102 bytes can

be used for data transfer [51]. In a large network (e.g., with more than N devices),

this packet size will be insufficient to transmit whole network attestation results.

Thus, devices need to send multiple packets, which will eventually increase their

energy consumption. One promising direction to bound the length of the attestation

evidence in SARA could be the possibility of flagging some of the services in the

IoT network as cluster-heads. In this approach, the cluster-heads are pre-configured

with the maximum length of the evidence. The cluster-heads check the cases when

the length of the attestation results exceeds the maximum predefined length-limit

and then notify the Verifier.

The Verifier communicates with the cluster-heads through the publish/subscribe

protocol. Specifically, upon initiating the attestation procedure, the Verifier will

register a subscription to the cluster-heads. The Verifier chooses as cluster-heads those

services that are more likely to be called based on the potential service interactions

for a given attestation procedure. Once the length exceeds a predefined length limit,

the cluster-heads will notify the Verifier. The cluster-heads publish the attestation

result to the Verifier according to the function publish_to_verifier() as shown in

Figure 5.4. The freshness of the attestation result published from the cluster-heads is

guaranteed by the vector clock mechanism which gets incremented by one when the

function publish_to_verifier() is getting executed. Upon receiving the attestation

results from the cluster-heads, the Verifier can immediately decide to re-initiate the

attestation procedure starting from the cluster-heads in order to check the rest of

4.9 Limitations 79

the services that have not been attested yet. In this case, the attestation will be

initialized using the latest vector clocks published by the cluster-heads, thus, at the

end the Verifier will still be able to reconstruct a complete history of the service

interactions.

As an alternative way of bounding the length of the attestation evidence and

reducing the computational cost of signing attestation results, SARA could adopt

the usage of an aggregate signature scheme [40,70] which allows n different signers

to sign n original messages with a single compressed signature. Considering that

each service in SARA has a unique servID, SARA can use a combination of an

ID-based cryptography [95] with an aggregate signature scheme, such as identity-

based aggregate signature scheme presented in [98]. The basic idea of this approach

is that some of the IoT devices, flagged as cluster-heads, will produce the aggregate

signature and send it to the Verifier along with the messages for the attestation

results generated by the other IoT devices.

Key management. For simplicity we assumed that SARA uses public/private

key pair for every device in the network. SARA could also employ the naive symmetric

key sharing approach among devices which reduces the operational cost in terms of

memory and computation with respect to the use of public/private key structure.

However, this approach does not provide a secure communication among services

since an attacker that manages to extract one key will be able to encrypt/decrypt all

the exchanged messages over the network. One potential alternative could be to use

Attribute-based Encryption (ABE) [38,39]. ABE allows the data publishers to specify

the access policy by defining the attributes of the entities that are allowed to access

the data. In the publish/subscribe paradigm, this authentication mechanism can

ensure only the subscribers that match with the predefined attributes can decrypt

the received data.

80 4. Asynchronous Remote attestation

4.10 Conclusions and Open issues

This chapter presents SARA, an efficient and effective remote attestation protocol

that performs attestation over a potentially large number of resource-constrained IoT

devices. The main achievement of SARA is to overcome the shortcomings of other

attestation schemes by performing attestation of asynchronous communication in IoT

systems. We demonstrated SARA’s performance through realistic simulation over the

Contiki platform in terms of runtime and energy consumption of the devices. While

SARA addresses the issue of interruption time that remote attestation introduces to

a group of IoT devices, the problem of reducing the interruption time that remote

attestation introduces on an IoT device still remains an issue.

81

5

C
h

a
p

t
e

r

Remote attestation as a Service

In this chapter, we use cloud/fog computing to attest an IoT device in an efficient

way. We propose Remote Attestation as a Service (RAaS) which allows IoT devices

to securely offload the attestation process to the cloud. We argue that RAaS could

reduce the number of attestation operations running on the real IoT device, saving

energy consumption, and reducing the downtime of the regular operation of an IoT

device during the execution of remote attestation.

5.1 Motivation

The deployment models of the Internet of Things (IoT) systems consist of a large

number of low-end devices supported by cloud platforms. The interactions between

an IoT device and cloud are usually facilitated by some devices in the network

that have more computational power, e.g., a base station, a smartphone, a fog

node. The distribution of the computational power closer to the low-end devices

seems a promising deployment model to enable the rapid deployment of large-scale

IoT applications that require real-time decision making and low latency [22]. At

the same time, the rapid deployment and tremendous growth of the IoT devices

82 5. Remote attestation as a Service

have increasingly exposed IoT systems to numerous types of attacks. Incidents like

Distributed Denial of Services (DDoS) [77], Stuxnet [3], Jeep-hack [92] have shown

that cyber attacks can cause serious consequences in IoT systems.

While IoT devices are usually deployed in distant environments, remote attesta-

tion has emerged as a convenient malware detection technique that aims to check

remotely the integrity of the software running on these remote untrusted IoT devices.

In a typical remote attestation protocol, one trusted party called Verifier (Vrf) initi-

ates the remote attestation by sending a challenge to a potentially untrusted device

called Prover (Prv). Upon the attestation request, the Prv stops the usual operation

to perform the attestation immediately. The complexity of the state-of-the-art remote

attestation protocols consumes energy and may cause a long suspension of the usual

work of the device while performing attestation. Thus, from the Prover’s perspective,

remote attestation is an overhead operation that consumes computational power

and battery life. These drawbacks can cause intolerable disruptions especially in

time-critical infrastructures such as medical facilities, nuclear plants, etc.

Motivation. Cloud computing has played a key role in broadening IoT appli-

cations through data offload, offline data analysis, service management, framework

integration, just to name a few. Data collected from IoT devices are currently stored

and processed in cloud systems, either directly or through an intermediary device.

However, the application of remote attestation in cloud is currently overlooked. To

optimize the attestation protocol for IoT devices, instead of improving the attestation

protocols deployed on an IoT device, we focus on utilizing the resources offered

by the cloud systems. We propose a cloud service (RAaS) that is able to securely

perform the remote attestation on behalf of an IoT device. RAaS will be able to get

the content of the memory from a low-end IoT device and then run independently

the attestation protocol on the cloud.

The basic idea is to enhance the existing ability of low-end devices to upload

data on cloud by enabling the device to upload also the content of its memory blocks.

This is not a trivial task. While sending the content in cloud, an adversary may

destroy or relocate itself on the other memory blocks to avoid uploading on the

5.2 Background 83

cloud service, and consequently remain undetected by the attestation protocol.

5.1.1 Contributions

In this chapter, we outline a possible approach for designing RAaS. By offloading the

attestation to cloud, the remote attestation procedure will reduce the computations

of the low-end devices, will not impede a device for a long time to perform usual

work, and will consequently save their battery lifetime. The contribution of this work

is three-fold.

• We introduce a novel idea of the Remote Attestation as Service (RAaS) for

low-end IoT devices.

• We describe a possible approach for designing RAaS. RAaS could be a promising

solution for IoT networks which work in intermittent connectivity by performing

attestation on the cloud and help low-end IoT devices to save precious energy.

• We present the adversary model of RAaS and provide security analysis w.r.t.

adversarial assumptions.

5.1.2 Chapter outline

The remainder of this chapter is organized as follows. In Section 5.1 we present the

motivation and contribution of this work. Next, we provide a brief background in

Section 5.2. We describe the system model in Section 5.3 and the adversary model in

Section 5.4. We provide the protocol description in Section 5.5 and security analysis

in Section 5.6. In Section 5.7 we identify the limitations of the approach, and this

chapter concludes in Section 5.8 with conclusions and future works directions.

5.2 Background

In this section, we present a brief background on the deployment models of IoT in

cloud and fog computing.

84 5. Remote attestation as a Service

5.2.1 Cloud architecture for IoT

Cloud computing technology offers the potential to use on-demand and scalable

resources both in terms of storage and processing services. Cloud computing is the

on-demand delivery of compute power, database storage, applications, and other

IT resources through a cloud services platform via the internet with pay-as-you-go

pricing [27]. Cloud services are particularly beneficial for IoT systems due to the

requirements for scalable management of a large number of interconnected IoT

devices and the requirements for real-time analysis of the vast quantities of data

associated with IoT systems.

IoT devices

Machine Learning

Data Analytics

Data storage Customized
Business Logic

Web apps

Mobile apps

IoT Framework Function Handler

CLOUD

Serverless Architecture

Send data
Trigger
Event

API call

API call

API call

API call

Figure 5.1. Serverless architecture in Cloud

Currently, various cloud platforms (such as Cloud IoT Core [19], AWS IoT [12],

IBM Watson IoT [25]) facilitate the connectivity of IoT devices to the cloud and

other devices. In addition, the major cloud providers have recently launched their

serverless computing platforms such as Google Cloud Functions [18], Microsoft

Azure Functions [15], Amazon Lambda [14], IBM Cloud Functions [20]. Serverless

computing in a new software development paradigm which decomposes monolithic

cloud-native applications into a set of functions. With Serverless computing, the

setup, capacity planning, and server management are invisible to the developer

because these tasks are handled by the cloud provider [26]. Overall, the goal of

5.3 System model 85

Serverless computing is to handle the execution management of functions, completely

separating it from data management. Each function can be launched through an API

call and instantiated in an isolated virtual environment, e.g., Docker container [16]. In

this way, the presence of serverless computing platforms allows the cloud providers to

offer compute runtimes, also known as Function-as-a-Service (FaaS), which execute

application logic but do not store data. While cloud follows "only paying for what you

use", the serverless computing can be described as pay-as-you-go computing as the

customers are charged only based upon the time and memory allocated to run your

code, without paying for idle time. The integration ofserverless computing platforms

with cloud IoT platforms, simplifies the management of IoT devices, enabling the

IoT devices to trigger event-driven execution of functions (as shown in Figure 5.1).

5.2.2 Distributing Cloud in Fog

The requirements of fast response time and low bandwidth usage bring a fundamental

necessity to move the data processing from cloud to edge devices. This shift of the

computations closer to the data producers is the foundation of the so-called Fog

Computing paradigm [22]. In fog computing, facilities or infrastructures that can

provide resources for services at the edge of the network are called fog nodes [106].

Many major cloud providers have adopted the fog computing paradigm in various

frameworks such as Azure IoT Edge [15], AWS Greengrass [13], EdgeX [17] etc.

These edge-oriented frameworks implement the function-based programming model,

triggering edge functions based on a topic-based publish/subscribe system (as shown

in Figure 5.2). The IoT edge computing frameworks can be programmed to filter

device data and send back to the cloud only necessary information.

5.3 System model

The aim of RAaS is to check the integrity of an untrusted device by performing the

attestation computation on the cloud. In our system, we consider three main entities

as shown in Figure 5.3.

86 5. Remote attestation as a Service

IoT devices

pub/sub

pub/sub

pub/sub

Fog Node

IoT Edge
framework

IoT Framework Function Handler

CLOUD

Trigger
Event

Figure 5.2. Overview of Fog Computing paradigm

• Prover (Prv): it is a low-end IoT device (i.e., sensors and actuators). This is a

potentially untrusted device that will perform attestation.

• Remote attestation as a service (RAaS): it is a cloud-service, clone of the Prv,

that will perform the attestation on behalf of the Prv and sends attestation

result to the Vrf upon completion of the attestation.

• Verifier (Vrf): it is an external trusted entity that knows in advance the

legitimate state of the Prv. The purpose of the Vrf is to initiate the attestation

process and verify the trustworthiness of the Prv.

At the attestation time, Vrf will send a challenge to RAaS to initiate the

attestation (1 in Figure 5.3). When RAaS gets the challenge, RAaS will requests

the memory data of the Prv (2). Next, the Prv will read the memory (3) and

will send the content of the memory to RAaS (4). Once the memory is delivered

to RAaS, Prv will continue the usual work, while RAaS will perform the necessary

computation to run the attestation (5). At the end, RAaS will send the attestation

response to the Vrf (6), which can afterwards check whether Prv is compromised

or trustworthy.

Although the cloud model can introduce communication delays between a low-end

device and the cloud, our model can also be used on a low-end intermediate device.

5.3 System model 87

1
Initiate
attestation

Normal Zone

RAaS

TRUSTED
COMPONENT

UNTRUSTED
PLATFORM

2
Request
memory data

3
Read

memory

4
Send

memory data

5
Perform

attestation 6 Return
response

PROVER

VERIFIER

CLOUD	SERVICE

Figure 5.3. System model of remote attestation as a cloud service.

For example, the RAaS can be offered by a fog node in a fog computing paradigm

that can provide services at a low latency. In addition, this model can also be

extended in edge computing, where the edge device performs some of the calculations

and deliver the rest of the attestation protocol in cloud. Certainly, fog computing and

edge computing approaches require additional assumptions concerning the trusted

execution environments that should be present on each intermediary. To preserve

the generality of our approach and to avoid architectural assumptions that do not

necessarily affect our vision, we regard the RAaS as a cloud service, and we assume

the cloud platform is trusted.

In addition, we assume that Vrf is an external entity (e.g., person or device) that

periodically monitors the reliability of IoT devices. Alternatively, the cloud service

itself can also function as a Vrf. This approach could be particularly useful in the

Fog computing model, where fog nodes act as Vrf of the IoT devices with which

they communicate. Since the operations of the Vrf do not influence the internal

operations of RAaS, to preserve the generality of the system model, we consider the

Vrf as an external trusted party.

88 5. Remote attestation as a Service

5.4 Adversary Model

The goal of the RAaS is to detect a software-only attacker that infects either remotely

or being present physically near to the device. The adversary will try to be passive

during attestation in order to evade detection. In particular we assume:

• Software-adversary (Advsw). The Advsw exploits a software vulnerability to

compromise the device by injecting and executing an unauthorized malicious

code. In addition, a Advsw can also mount replay attack or man-in-the middle

attack by sending fake or “old" challenges.

• Mobile-adversary (Advmob). The attacker runs malware on the device and

during attestation will try to relocate itself in order to evade detection.

In line with other remote attestation techniques in literature, we exclude hardware

attacks (i.e., physical adversary) and network-wide Distributed Denial of Service

(DDoS) attacks from the current scope of this work. For simplicity, we assume that

the cloud-based service is secure and can not be compromised. However, we describe

possible approaches that address software attacks in cloud platforms.

5.5 Remote attestation as a Service: RAaS

The main objective of our protocol is to make remote attestation lightweight for

low-end IoT devices. Therefore, we introduce RAaS as a mechanism that is able

to perform attestation on behalf of the Prv and consequently reduces the overhead

that remote attestation introduces in the device.

5.5.1 Protocol Overview

In Figure 5.4, we present a general overview of the algorithm performed by RAaS.

The Vrf initiates the attestation by sending a challenge Ch to the RAaS (Step 1

in Figure 5.4). Upon receiving the challenge, RAaS will verify the request vrfsig()

and then will request a copy of the memory blocks from the Prv (Step 2). The

5.5 Remote attestation as a Service: RAaS 89

Prv will read the memory blocks (Step 3) and send it to RAaS (Step 4). We

describe the secure memory offload mechanism in Section 5.5.3. Once the RAaS gets

the memory blocks, it will perform attestation on the memory content (Step 5)

and send the result along with the challenge to the Vrf (Step 6). The challenge

serves two purposes: first, it initiates the attestation process; second, it proves the

freshness of the attestation computation.

←
σ ←

σ

σ

←
⟵

σ ⟵ ⃦
σ

⟵
⟵ ⃦

⟵

Ch = {R, σVrf}

 req = {msgi, µi}

 Result

1

2

5

3

4

6

resp = {msgj, µj}

Figure 5.4. The algorithm of RAaS attestation protocol

The RAaS will perform authentication1 of the Prv before copying the memory

content. The authentication can be achieved through secure key-mechanism which

can be chosen based on network and application requirements.

5.5.2 RAaS Working mechanism

In the following, we describe the main steps of the operations of RAaS (i.e., cloud

service) and the Verifier (Vrf).

RAaS operations

The RAaS performs the following main operations:
1Authentication can prevent proxy attacks.

90 5. Remote attestation as a Service

• Receive Attestation request: The cloud service (RAaS) receives challenge from

the Vrf to initiate the attestation process.

• Verify request: RAaS verifies the attestation initiation challenge to prevent

replay and man-in-the-middle attacks.

• Memory block request: RAaS sends a request to a Prv to retrieve the content

of the memory blocks.

• Perform attestation: Upon receiving the entire memory blocks, RAaS performs

attestation.

• Report to Vrf: Upon completion of attestation, RAaS sends the attestation

report to the Vrf.

Algorithm 1: RAaS operations

Step1: Receive attestation initiation request with a

challenge.

Step2: Verify the challenge.

Step3: Send request to the Prv for memory block

initiation.

Step4: Perform attestation over received memory blocks.

Step5: send attestation result to the Vrf

Receive
attestation

request

Verify
request

Send memory
block request to

the device

Start

Perform
attestation

Send report
to the Vrf

Figure 5.5. FSM-s of RAaS (cloud service)

5.5 Remote attestation as a Service: RAaS 91

Figure 5.5 presents the aforementioned operations of RAaS in the finite state

machine (FSM) model.

Verifier operations

The Vrf has four main functions as follows:

• Attestation initiation: Vrf initiates the attestation process.

• Send challenge to RAaS: To counter replay attacks, Vrf sends challenge to the

RAaS.

• Attestation report gathering: Upon completion of attestation operation over

Prv ’s memory blocks, Vrf receives the attestation result from RAaS.

• Verify: Vrf compares the received attestation report with the expected legiti-

mate one.

Algorithm 2: Verifier operations

Step1: Initiate attestation request.

Step2: Send attestation request to the RAaS.

Step3: Collect attestation report from RAaS.

Step4: Verify the received attestation report.

The operations of the Vrf are shown in Figure 5.6 in the finite state machine

(FSM) model.

5.5.3 RAaS components

Data transmission vs Computational overhead

In evaluating the efficiency of the RAaS approach, one crucial consideration has to

do with the overhead of data transmission that the Prv has to send to the cloud

service. RAaS is an efficient approach in the scenarios when the overhead of data

transmission to the cloud is lower than the overhead of performing attestation locally

in the device. We argue that IoT devices are becoming multi-functional; for instance,

92 5. Remote attestation as a Service

Figure 5.6. FSM-s of Verifier

ST [24], Arduino [7], SensorTile [23] have simplified the development of multi-sensor

solutions. Considering that in some scenarios, not all the IoT services are active

all the time, a context-aware remote attestation procedure may need to attest only

the relevant services instead of attesting the entire IoT device. In this way, the

amount of data transmitted to the cloud service will be reduced to only a portion

of the Prv’s memory that has recently been changed. Moreover, we expect that

remote attestation performed by the cloud service increases the effectiveness of the

attestation. That is because, unlike resource-constraint IoT systems that perform

lightweight remote attestation, the cloud service will have unlimited resources to

conduct profound memory content analysis and identify prospective new threats.

Secure memory Offload

To securely copy Prv’s data-memory blocks, we rely on the usage of “memory-locking"

mechanism by operating system. Based on this mechanism, the entire memory of the

Prv will be locked at the beginning of the attestation process and individual memory

blocks will be released once the offload for that specific block is completed. Main

advantages of this approach are two-fold; firstly, Prv’s entire memory-content is not

locked for the whole attestation period and secondly, individual memory blocks upon

their release from RAaS can perform their usual work. Specifically, locked-memory

5.6 Security Analysis 93

blocks prevent other tasks from accessing these blocks during the attestation phase.

Thus, this mechanism prevents Advmob to evade detection by relocating itself in

different positions during the memory copy process from the Prv to the cloud service.

Additionally, since this technique does not lock the entire Prv’s memory for the

whole duration of the attestation process, the usual work of the Prv will not be

hindered for a long time.

Execution of cloud service

The cloud platform may pose serious security and privacy concern [42,90,104] for end

users. Although this work do not provide details how to cope with these concerns, a

possible solution can be “shielding applications" as discussed in [37]. In this approach,

an application can securely use hardware protection2 to execute applications in an

untrusted cloud environment.

5.6 Security Analysis

This section provides a discussion of the security analysis of RAaS w.r.t. the adversary

model introduced in Section 5.4.

• Software-adversary (Advsw). In RAaS, any malicious code present in the

IoT device will be reported to the clone of the IoT device in the cloud. The

communication data between the IoT device and the clone is authenticated

with a MAC symmetric encryption key kij . Given a secure MAC function,

it will be infeasible for Advsw to forge the data without knowing kij . This

guarantees that a identical copy of the memory of the IoT device will be

replicated in the cloud clone. Furthermore, the use of a randomized nonce R

preserves the freshness of the attestation result. Assuming that the probability

of sending a randomized nonce R, where R=Rold is negligible, two different

attestation results will not match. Therefore, a replay attack will be detected.
2In [37] authors employ Intel SGX as the hardware protection against privileged code and

physical attacks.

94 5. Remote attestation as a Service

• Mobile-adversary (Advmob). In RAaS, a secure memory lock mechanism

guarantees that the regions of the memory that are not copied yet to the

clone in the cloud will be locked for writing. Only after the content of a given

memory region has been replicated to the clone, the IoT device will gains full

permission in that memory region. In this way, a Advmob will not be able to

delete and relocate itself to different regions of the memory.

5.7 Limitations

In this work, our main aim is to obtain clear security guarantees and maximize the

efficiency of IoT devices by employing cloud-based services for performing remote

attestation on behalf of resource-constrained IoT devices. Mainly, we aim to propose

an efficient remote attestation scheme of IoT devices that is able to reduce the

suspension time of their regular work during the attestation. However, despite its

many advantages, RAaS has also limitations.

In particular, in line with other state-of-the-art remote attestation techniques [30,

36] we do not consider physical adversaries. A physical adversary can tamper with

the attestation process. A more comprehensive approach is missing in RAaS to

counter this threat.

Additionally, the use of the challenge helps to counter replay attacks, but the

same may not contribute to counter network-wide DDoS attacks. In real network

applications, DDoS attacks are a real threat. Thus we need a counter mechanism to

thwart any DDoS attack on RAaS.

Further, we have to improve three main areas for RAaS; (1) A secure communi-

cation process should be employed between the cloud service and the underlying IoT

devices, (2) the implementation of RAaS over a large heterogeneous IoT network (i.e.,

swarm), to validate its performance, and (3) energy-consumption, average packet

delivery ratio (APDR) data needs to be checked while performing attestation in

RAaS.

5.8 Conclusions and Open issues 95

5.8 Conclusions and Open issues

Providing security for low-end devices is a difficult task. Remote attestation protocols

intend to improve the security of these devices by detecting the adversarial presence.

However, remote attestation is significantly expensive in terms of computational

power and battery consumption. To address these challenges, we propose a cloud-

hosted remote attestation protocol that aims to offload the computation of the

attestation protocol. This work is a promising direction towards making remote

attestation applicable in real-time infrastructures. We believe that this research

direction opens up new perspectives in developing lightweight remote attestation

protocols for low-end devices that rely on the cloud.

97

6

C
h

a
p

t
e

r

Conclusions and Future Works

Considering the wide deployment of IoT systems in safety-critical domains, the

security of the IoT devices plays a crucial role in protecting IoT data and operations.

To improve the security of IoT devices, many research works have proposed new

remote attestation techniques, which aim to detect the presence of malware in a

remote untrusted IoT device. At the attestation time, an IoT device typically has to

stop the regular operation and perform computations to attest a single or a group

of IoT devices.

The main objective of this thesis is to explore the limitations of the existing

remote attestation protocols, and propose novel remote attestation schemes that

increase efficiency and effectiveness of remote attestation protocols. In particular,

this thesis focuses on IoT services that are becoming more present on IoT devices

due to the recent IoT evolution which allows IoT devices to be multi-functional and

to be able to perform concurrent tasks.

98 6. Conclusions and Future Works

6.1 Thesis summary

This thesis brings three main contributions in the context of remote attestation

schemes for IoT systems (1) Synchronous remote attestation, (2) Asynchronous

remote attestation, and (3) Remote attestation as a service. In the following, we

summarize the results of this thesis.

6.1.1 Synchronous remote attestation

Chapter 3 presented Synchronous remote attestation. We first showed that a compro-

mised service in a distributed IoT service can induce malicious behaviour on genuine

services through the corrupted exchanged data. We then highlighted the need for the

attestation of distributed IoT services and presented RADIS, a remote attestation

protocol for synchronous distributed IoT services. Instead of attesting the complete

memory content of the entire interacting IoT devices, RADIS attests only the ser-

vices involved in performing a certain functionality. RADIS relies on a control-flow

attestation technique to detect IoT services that perform an unauthorized operation

due to their interactions with a malicious remote service.

6.1.2 Asynchronous remote attestation

Chapter 4 introduced SARA, a novel Secure Asynchronous Remote Attestation

protocol that considers the communication data exchanged among IoT services while

interactions among services occur in an asynchronous manner. This protocol provides

secure evidence regarding the order of the asynchronous interactions between different

services and the exchanged data between them. To the best of our knowledge, SARA

is the first asynchronous remote attestation protocol that executes asynchronously

the attestation of a group of devices, preventing the suspension of the regular

operation of all the devices at the same time. Additionally, SARA enables selective

attestation, by allowing the Verifier to establish both the trustworthiness and the

legitimate operations of a portion of the IoT system by interacting only with a subset

of the devices in the network.

6.2 Future research directions 99

6.1.3 Remote attestation as a service

Chapter 5 proposed RAaS as a new remote attestation approach for low-end IoT

devices, which optimizes the attestation protocol for IoT devices by securely offloading

the attestation computation to the cloud. RAaS could be a promising approach

towards reducing the attestation overhead of the low-end IoT device, their energy

consumption, and the downtime of their regular operations during the attestation.

Moreover, IoT networks which work in intermittent connectivity can adopt RAaS

to perform attestation on the cloud and help low-end IoT devices to save precious

energy.

6.2 Future research directions

In this section, we discuss our prospective future works that follow this thesis.

• Mobile remote attestation.

Remote attestation schemes perform the network deployment and measurement

as an “offline" and static phase and do not consider any new node joining or

leaving the network during attestation. Thus, as a future work we are planning

to design a remote attestation technique that facilitates the attestation of

distributed IoT services in large mobile IoT networks, in which nodes join or

leave during the remote attestation procedure.

• Scalable remote attestation.

Remote attestation schemes consider the presence of a centralized trusted party

that initiates the attestation procedure and verifies the trustworthiness of an

IoT network. Future work includes the implementation of a distributed trust

mechanism to achieve scalable remote attestation for large IoT networks. One

possible solution could be the design of a lightweight multi-party computation

scheme, in which a group of devices collaboratively identify malicious services

in an IoT network, and in this way, self-attesting their IoT network without

the presence of a centralized trusted party.

100 6. Conclusions and Future Works

• Robust framework for IoT devices which operate in intermittent

connectivity.

Often IoT devices are deployed in the hostile region or assigned to perform

a critical task such as oil-gas exploration, nuclear plant monitoring. Due

to resource-constrained nature, these devices often stay in sleep-mode upon

completion of the assigned task to save energy. Thus maintaining the sanity

of the systems, even during intermittent connection, is an exigent task. We

are planning to extend and apply RAaS approach in designing robust security

mechanism for IoT devices that often stay in sleep mode, for which the on-

demand remote attestations is not always feasible.

• Enhancement of IoT Cloud frameworks.

Many major cloud providers are recently shifting their business model towards

Function-as-a-Service (FAaS) adopting serverless computing which allows

splitting monolithic cloud applications into a set of independent functions

or services. The execution of these services can be triggered by the events

generated from other systems, e.g., from IoT cloud frameworks which allow

IoT devices to interact easily among themselves and with cloud platforms.

Future work includes the implementation of the secure cloning of IoT devices in

major cloud IoT frameworks. This approach could be fundamental on providing

high-level security in IoT systems utilizing the cloud computing resources and

benefiting from the well-establishment deployment model of IoT application

on the cloud.

• Blockchain-based application for distributed security.

The exponential deployment of IoT devices in safety-critical domains require

continuous device monitoring to thwart any malicious activities. One interesting

approach could be employing blockchain-enabled decentralized approach where

devices can collaboratively perform network attestation and securely preserve

the historical evidence of device trustworthiness. Following this approach, a

network Verifier could validate the historical evidence at any given time to

have “knowledge" about the network state.

6.2 Future research directions 101

• Integration of Remote attestation with other security mechanisms.

The service perspective that this thesis introduces in the field of remote

attestation opens up new research directions in designing remote attestation as

a building block for other security mechanisms applied in IoT systems such as

authentication, access control etc. Integrated with other security mechanisms,

remote attestation strengthens the security guarantees and helps in increasing

the reliability of the IoT systems.

103

References

[1] Tmote sky details. http://www.snm.ethz.ch/snmwiki/pub/uploads/

Projects/tmote_sky_datasheet.pdf, 2006. [Online; accessed October 15,

2019].

[2] OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0.

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-

v1.0-os.html, 2012. [Online; accessed October 15, 2019].

[3] Countdown to Zero Day: Stuxnet and the Launch of the World’s First Dig-

ital Weapon. https://www.wired.com/2014/11/countdown-to-zero-day-

stuxnet, 2014. [Online; accessed October 15, 2019].

[4] MQTT. http://mqtt.org/, 2014. [Online; accessed October 15, 2019].

[5] DDS. https://www.omg.org/spec/DDS/1.4/, 2015. [Online; accessed October

15, 2019].

[6] Instant Contiki. http://www.contiki-os.org/start.html, 2017. [Online;

accessed October 15, 2019].

[7] Arduino. https://www.arduino.cc/, 2019. [Online; accessed October 15,

2019].

[8] Arm Cortex M0. https://developer.arm.com/docs/ddi0432/c, 2019. [On-

line; accessed October 15, 2019].

[9] Arm Cortex M4. https://developer.arm.com/ip-products/processors/

cortex-m/cortex-m4, 2019. [Online; accessed October 15, 2019].

http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf
http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet
https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet
http://mqtt.org/
https://www.omg.org/spec/DDS/1.4/
http://www.contiki-os.org/start.html
https://www.arduino.cc/
https://developer.arm.com/docs/ddi0432/c
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4

104 References

[10] Arm Cortex M7. https://developer.arm.com/ip-products/processors/

cortex-m/cortex-m7, 2019. [Online; accessed October 15, 2019].

[11] Arm TrustZone Technology. https://developer.arm.com/ip-products/

security-ip/trustzone, 2019. [Online; accessed October 15, 2019].

[12] AWS IoT Core. https://aws.amazon.com/iot-core/, 2019. [Online; accessed

October 15, 2019].

[13] AWS IoT Greengrass. https://aws.amazon.com/greengrass/, 2019. [Online;

accessed October 15, 2019].

[14] AWS Lambda. https://aws.amazon.com/lambda/, 2019. [Online; accessed

October 15, 2019].

[15] Azure IoT Edge. https://docs.microsoft.com/en-us/azure/iot-edge/,

2019. [Online; accessed October 15, 2019].

[16] Docker: Enterprise Container Platform. https://www.docker.com, 2019. [On-

line; accessed October 15, 2019].

[17] EdgeX. https://www.edgexfoundry.org/, 2019. [Online; accessed October

15, 2019].

[18] Google Cloud Functions. https://cloud.google.com/functions/, 2019. [On-

line; accessed October 15, 2019].

[19] Google IoT Core. https://cloud.google.com/iot-core/, 2019. [Online;

accessed October 15, 2019].

[20] IBM Cloud Functions- Functions-as-a-Service (FaaS) platform based on Apache

OpenWhisk. https://cloud.ibm.com/functions/, 2019. [Online; accessed

October 15, 2019].

[21] Intel Software Guard Extensions. https://software.intel.com/en-us/sgx,

2019. [Online; accessed October 15, 2019].

[22] Open fog consortium. https://www.openfogconsortium.org/, 2019.

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://aws.amazon.com/iot-core/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/lambda/
https://docs.microsoft.com/en-us/azure/iot-edge/
https://www.docker.com
https://www.edgexfoundry.org/
https://cloud.google.com/functions/
https://cloud.google.com/iot-core/
https://cloud.ibm.com/functions/
https://software.intel.com/en-us/sgx
https://www.openfogconsortium.org/

References 105

[23] SensorTile development kit. https://www.st.com/en/evaluation-tools/

steval-stlkt01v1.html, 2019. [Online; accessed October 15, 2019].

[24] STMicroelectronics. https://www.st.com/content/st_com/en.html, 2019.

[Online; accessed October 15, 2019].

[25] The Internet of Things delivers the data. AI powers the insights. https:

//www.ibm.com/internet-of-things, 2019. [Online; accessed October 15,

2019].

[26] Serverless computing. https://azure.microsoft.com/en-us/overview/

serverless-computing/, 2020. [Online; accessed February 25, 2020].

[27] What is cloud computing? https://aws.amazon.com/what-is-cloud-

computing/, 2020. [Online; accessed February 25, 2020].

[28] Abera, T., Asokan, N., Davi, L., Ekberg, J.-E., Nyman, T., Paverd,

A., Sadeghi, A.-R., and Tsudik, G. C-FLAT: Control-Flow Attestation

for Embedded Systems Software. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security CCS ’16. (2016).

[29] Abera, T., Bahmani, R., Brasser, F., Ibrahim, A., Sadeghi, A., and

Schunter, M. DIAT: Data Integrity Attestation for Resilient Collaboration

of Autonomous System. In 26th Annual Network & Distributed System Security

Symposium (NDSS). (2019).

[30] Ambrosin, M., Conti, M., Ibrahim, A., Neven, G., Sadeghi, A.-R.,

and Schunter, M. SANA: Secure and Scalable Aggregate Network Attesta-

tion. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security CCS ’16. (2016).

[31] Ambrosin, M., Conti, M., Lazzeretti, R., Masoom Rabbani, M.,

and Ranise, S. PADS: Practical Attestation for Highly Dynamic Swarm

Topologies. ArXiv e-prints (2018).

[32] Ambrosin, M., Hosseini, H., Mandal, K., Conti, M., and Pooven-

dran, R. Despicable me (ter): Anonymous and fine-grained metering data

https://www.st.com/en/evaluation-tools/steval-stlkt01v1.html
https://www.st.com/en/evaluation-tools/steval-stlkt01v1.html
https://www.st.com/content/st_com/en.html
https://www.ibm.com/internet-of-things
https://www.ibm.com/internet-of-things
https://azure.microsoft.com/en-us/overview/serverless-computing/
https://azure.microsoft.com/en-us/overview/serverless-computing/
https://aws.amazon.com/what-is-cloud-computing/
https://aws.amazon.com/what-is-cloud-computing/

106 References

reporting with dishonest meters. In Proceedings of the 2016 IEEE Conference

on Communications and Network Security CNS ’16 (2016).

[33] Arbaugh, W. A., Farber, D. J., and Smith, J. M. A secure and reliable

bootstrap architecture. In Proceedings of the 1997 IEEE Symposium on

Security and Privacy SP ’97. (1997).

[34] Armknecht, F., Sadeghi, A.-R., Schulz, S., and Wachsmann, C. A

security framework for the analysis and design of software attestation. In

Proceedings of the 2013 ACM SIGSAC Conference on Computer and Commu-

nications Security CCS ’13. (2013).

[35] Arthur, W., and Challener, D. A Practical Guide to TPM 2.0: Using

the Trusted Platform Module in the New Age of Security. 2015.

[36] Asokan, N., Brasser, F., Ibrahim, A., Sadeghi, A.-R., Schunter,

M., Tsudik, G., and Wachsmann, C. SEDA: Scalable Embedded Device

Attestation. In Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security CCS ’15. (2015).

[37] Baumann, A., Peinado, M., and Hunt, G. Shielding Applications from

an Untrusted Cloud with Haven. ACM Transactions on Computer Systems.

(2015).

[38] Bethencourt, J., Sahai, A., and Waters, B. Ciphertext-Policy Attribute-

Based Encryption. In 2007 IEEE Symposium on Security and Privacy (SP

’07). (2007).

[39] Boneh, D., and Franklin, M. Identity-based encryption from the Weil

pairing. SIAM Journal on Computing. (2003).

[40] Boneh, D., Gentry, C., Lynn, B., and Shacham, H. Aggregate and

verifiably encrypted signatures from bilinear maps. In Proceedings of the

22Nd International Conference on Theory and Applications of Cryptographic

Techniques EUROCRYPT’03. (2003), pp. 416–432.

References 107

[41] Brasser, F., El Mahjoub, B., Sadeghi, A.-R., Wachsmann, C., and

Koeberl, P. TyTAN: tiny trust anchor for tiny devices. In Proceedings of

the 52nd Design Automation Conference DAC ’15. (2015).

[42] C. C. Miller. Revelations of N.S.A. spying cost U.S. tech com-

panies. https://www.nytimes.com/2014/03/22/business/fallout-from-

snowden-hurting-bottom-line-of-tech-companies.html/, 2014. [Online;

accessed October 15, 2019].

[43] Carpent, X., ElDefrawy, K., Rattanavipanon, N., and Tsudik, G.

LIghtweight Swarm Attestation: a Tale of Two LISA-s. In Proceedings of the

2017 ACM on Asia Conference on Computer and Communications Security

ASIACCS ’17. (2017).

[44] Carpent, X., Tsudik, G., and Rattanavipanon, N. Erasmus: Efficient

remote attestation via self-measurement for unattended settings. In 2018

Design, Automation Test in Europe Conference Exhibition (DATE). (2018).

[45] Castelluccia, C., Francillon, A., Perito, D., and Soriente, C. On

the difficulty of software-based attestation of embedded devices. In Proceedings

of the 16th ACM Conference on Computer and Communications Security CCS

’09. (2009).

[46] Chan, H., Perrig, A., and Song, D. Random key predistribution schemes

for sensor networks. In Proceedings of the 2003 IEEE Symposium on Security

and Privacy SP ’03. (2003).

[47] Conti, M., Dushku, E., and Mancini, L. V. Distributed Services Attesta-

tion in IoT. In From Database to Cyber Security. Springer, 2018, pp. 261–273.

ISBN: 978-3-030-04834-1.

[48] Conti, M., Dushku, E., and Mancini, L. V. RADIS: Remote Attestation

of Distributed IoT Services. In 6th IEEE International Conference on Software

Defined Systems, SDS 2019 (2019), pp. 25–32.

https://www.nytimes.com/2014/03/22/business/fallout-from-snowden-hurting-bottom-line-of-tech-companies.html/
https://www.nytimes.com/2014/03/22/business/fallout-from-snowden-hurting-bottom-line-of-tech-companies.html/

108 References

[49] Conti, M., Dushku, E., Mancini, L. V., Rabbani, M. M., and Ranise, S.

Remote Attestation as a Service for IoT. In 6th IEEE International Conference

on Internet of Things: Systems, Management and Security (IOTSMS 2019)

(2019).

[50] Dessouky, G., Zeitouni, S., Nyman, T., Paverd, A., Davi, L., Koeberl,

P., Asokan, N., and Sadeghi, A.-R. LO-FAT: Low-Overhead Control

Flow ATtestation in Hardware. In Proceedings of the 54th Annual Design

Automation Conference 2017 on DAC ’17. (2017).

[51] Devadiga, K. IEEE 802.15.4 and the Internet of Things. (2011).

[52] Dizdarević, J., Carpio, F., Jukan, A., and Masip-Bruin, X. A Survey

of Communication Protocols for Internet of Things and Related Challenges of

Fog and Cloud Computing Integration. ACM Computing Surveys 51, 6 (2019).

[53] Dushku, E. POSTER: Towards Remote Attestation as a Service for IoT. In

In the 6th ACM Celebration of Women in Computing: womENcourage 2019.

(2019).

[54] Dushku, E., Rabbani, M. M., Conti, M., Mancini, L. V., and Ranise,

S. SARA: Secure Asynchronous Remote Attestation. In IEEE Transactions

on Information Forensics and Security. (In press). (2020).

[55] Eldefrawy, K., Tsudik, G., Francillon, A., and Perito, D. SMART:

Secure and Minimal Architecture for (Establishing Dynamic) Root of Trust.

In Proceedings of the 19th Annual Network & Distributed System Security

Symposium NDSS ’12. (2012).

[56] Eschenauer, L., and Gligor, V. D. A key-management scheme for

distributed sensor networks. In Proceedings of the 9th ACM Conference on

Computer and Communications Security CCS ’02. (2002).

[57] Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M.

The Many Faces of Publish/Subscribe. ACM Computing Surveys (CSUR).

(2003).

References 109

[58] Fernandes, E., Jung, J., and Prakash, A. Security analysis of emerging

smart home applications. In 2016 IEEE Symposium on Security and Privacy

SP ’16. (2016).

[59] Fidge, C. J. Timestamps in message-passing systems that preserve partial

ordering. Proceedings of the 11th Australian Computer Science Conference.

(1988), 56–66.

[60] Francillon, A., and Castelluccia, C. Code Injection Attacks on Harvard-

architecture Devices. In Proceedings of the 15th ACM Conference on Computer

and Communications Security CCS ’08. (2008).

[61] Francillon, A., Nguyen, Q., Rasmussen, K. B., and Tsudik, G. A

minimalist approach to remote attestation. In Proceedings of the conference

on Design, Automation & Test in Europe DATE ’14. (2014).

[62] Hinze, A., Sachs, K., and Buchmann, A. Event-based Applications

and Enabling Technologies. In Proceedings of the Third ACM International

Conference on Distributed Event-Based Systems DEBS ’09. (2009).

[63] Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P., and Liang,

Z. Data-Oriented Programming: On the Expressiveness of Non-control Data

Attacks. In 2016 IEEE Symposium on Security and Privacy SP ’16. (2016).

[64] Ibrahim, A., Sadeghi, A., and Tsudik, G. Us-aid: Unattended scalable

attestation of iot devices. In 2018 IEEE 37th Symposium on Reliable Distributed

Systems (SRDS) (2018).

[65] Ibrahim, A., Sadeghi, A.-R., and Tsudik, G. HEALED: HEaling &

Attestation for Low-End Embedded Devices. In Financial Cryptography and

Data Security (2019).

[66] Ibrahim, A., Sadeghi, A.-R., Tsudik, G., and Zeitouni, S. DARPA:

Device attestation resilient to physical attacks. In Proceedings of the 9th ACM

Conference on Security & Privacy in Wireless and Mobile Networks WiSec

’16. (2016).

110 References

[67] Ibrahim, A., Sadeghi, A.-R., and Zeitouni, S. SeED: Secure Non-

Interactive Attestation for Embedded Devices. In Proceedings of the 10th

ACM Conference on Security and Privacy in Wireless and Mobile Networks

WiSec ’17. (2017), pp. 64–74.

[68] IEEE Standards Board. IEEE Guide for Measurement of Environmental

Sensitivities of Standard Frequency Generators. IEEE Std 1193-2003 (Revision

of IEEE Std 1193-1994) (2004).

[69] Itkin, E., Livneh, Y., and Balmas, Y. Faxploit: Sending Fax Back to the

Dark Ages. https://research.checkpoint.com/2018/sending-fax-back-

to-the-dark-ages/, 2018. [Online; accessed October 15, 2019].

[70] Kar, J. Provably secure online/off-line identity-based signature scheme for

wireless sensor network. International Journal of Network Security (2014).

[71] Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., and Alonso-

Zarate, J. A survey on application layer protocols for the internet of things.

Transaction on IoT and Cloud computing. (2015), 11–17.

[72] Kil, C., Sezer, E. C., Azab, A. M., Ning, P., and Zhang, X. Remote

attestation to dynamic system properties: Towards providing complete system

integrity evidence. In 2009 IEEE/IFIP International Conference on Dependable

Systems & Networks. (2009).

[73] Koeberl, P., Schulz, S., Sadeghi, A.-R., and Varadharajan, V.

TrustLite: A security architecture for tiny embedded devices. In Proceedings

of the 9th European Conference on Computer Systems EuroSys ’14. (2014).

[74] Kohnhäuser, F., Büscher, N., Gabmeyer, S., and Katzenbeisser,

S. SCAPI: a scalable attestation protocol to detect software and physical

attacks. In Proceedings of the 10th ACM Conference on Security and Privacy

in Wireless and Mobile Networks WiSec ’17. (2017), pp. 75–86.

[75] Kohnhäuser, F., Büscher, N., and Katzenbeisser, S. SALAD: Secure

and Lightweight Attestation of Highly Dynamic and Disruptive Networks. In

https://research.checkpoint.com/2018/sending-fax-back-to-the-dark-ages/
https://research.checkpoint.com/2018/sending-fax-back-to-the-dark-ages/

References 111

Proceedings of the 2018 on Asia Conference on Computer and Communications

Security ASIACCS ’18. (2018).

[76] Kohnhäuser, F., Büscher, N., and Katzenbeisser, S. A Practical

Attestation Protocol for Autonomous Embedded Systems. In 2019 IEEE

European Symposium on Security and Privacy (Euro S & P 2019) (2019),

pp. 263–278.

[77] Kolias, C., Kambourakis, G., Stavrou, A., and Voas, J. DDoS in the

IoT: Mirai and Other Botnets. Computer 50, 7 (2017), 80–84.

[78] Kott, A., Mancini, L. V., Théron, P., Drasar, M., Dushku, E.,

Günther, H., Kont, M., Leblanc, B., Panico, A., Pihelgas, M., and

Rzadca, K. Initial reference architecture of an intelligent autonomous agent

for cyber defense. US Army Research Laboratory ARL-TR-8337 . [Online]

Available: https://arxiv.org/abs/1803.10664.

[79] Kott, A., Theron, P., Drasar, M., Dushku, E., LeBlanc, B.,

Losiewicz, P., Guarino, A., Mancini, L. V., Panico, A., Pihelgas,

M., and Rzadca, K. Autonomous Intelligent Cyber-Defense Agent (AICA)

Reference Architecture, Release 2.0. CCDC Army Research Laboratory Adelphi

United States. (2019).

[80] Kott, A., Théron, P., Mancini, L. V., Dushku, E., Panico, A., Drašar,

M., LeBlanc, B., Losiewicz, P., Guarino, A., Pihelgas, M., and

Rzadca, K. An introductory preview of autonomous intelligent cyber-defense

agent reference architecture, release 2.0. The Journal of Defense Modeling and

Simulation. (2019).

[81] Kuang, B., Fu, A., Yu, S., Yang, G., Su, M., and Zhang, Y. ESDRA: An

Efficient and Secure Distributed Remote Attestation Scheme for IoT Swarms.

IEEE Internet of Things Journal (2019).

[82] Lamport, L. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM. (1978).

112 References

[83] Mattern, F. Virtual time and global states of distributed systems. In

In Proceedings of the International Workshop on Parallel and Distributed

Algorithms. (1989).

[84] Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., and Ghani,

N. Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabili-

ties and a First Empirical Look on Internet-Scale IoT Exploitations. IEEE

Communications Surveys Tutorials. (2019).

[85] Noorman, J., Agten, P., Daniels, W., Strackx, R., Van Herrewege,

A., Huygens, C., Preneel, B., Verbauwhede, I., and Piessens, F.

Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-

software Trusted Computing Base. In USENIX Security Symposium. (2013),

pp. 479–494.

[86] Nunes, I. D. O., Dessouky, G., Ibrahim, A., Rattanavipanon, N.,

Sadeghi, A.-R., and Tsudik, G. Towards systematic design of collec-

tive remote attestation protocols. In The 39th International Conference on

Distributed Computing Systems (ICDCS). (2019).

[87] Pa, Y. M. P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T.,

and Rossow, C. IoTPOT: Analysing the Rise of IoT Compromises. In 9th

USENIX Workshop on Offensive Technologies WOOT ’15. (2015).

[88] Polastre, J., Szewczyk, R., and Culler, D. Telos: Enabling Ultra-low

Power Wireless Research. In Proceedings of the 4th International Symposium

on Information Processing in Sensor Networks IPSN ’05. (2005).

[89] Ronen, E., Shamir, A., Weingarten, A.-O., and OFlynn, C. IoT

goes nuclear: Creating a ZigBee chain reaction. In 2017 IEEE Symposium on

Security and Privacy SP ’17. (2017).

[90] Rong, C., Nguyen, S. T., and Jaatun, M. G. Beyond lightning: A survey

on security challenges in cloud computing. Computers & Electrical Engineering.

(2013), 47 – 54.

References 113

[91] Sailer, R., Zhang, X., Jaeger, T., and van Doorn, L. Design and

Implementation of a TCG-based Integrity Measurement Architecture. In

Proceedings of the 13th Conference on USENIX Security Symposium SSYM’04.

(2004), pp. 16–16.

[92] Schneider, D. Jeep hacking 101. https://spectrum.ieee.org/cars-

that-think/transportation/systems/jeep-hacking-101, 2015. [Online;

accessed October 15, 2019].

[93] Seshadri, A., Perrig, A., Van Doorn, L., and Khosla, P. SWATT:

Software-based attestation for embedded devices. In Proceedings of the 2004

IEEE Symposium on Security & Privacy IEEE S&P ’04. (2004), pp. 272–282.

[94] Shacham, H. The geometry of innocent flesh on the bone. In Proceedings of

the 14th ACM conference on Computer and communications security CCS ’07.

(2007).

[95] Shamir, A. Identity-based cryptosystems and signature schemes. In Proceed-

ings of CRYPTO 84 on Advances in Cryptology. (1985), pp. 47–53.

[96] Shaneck, M., Mahadevan, K., Kher, V., and Kim, Y. Remote software-

based attestation for wireless sensors. In Proceedings of the Second European

Conference on Security and Privacy in Ad-Hoc and Sensor Networks ESAS’05.

(2005).

[97] Shelby, Z., Hartke, K., and Bormann, C. The Constrained Application

Protocol (CoAP). https://rfc-editor.org/rfc/rfc7252.txt, 2014. [Online;

accessed October 15, 2019].

[98] Shen, L., Ma, J., Liu, X., Wei, F., and Miao, M. A Secure and Efficient

ID-Based Aggregate Signature Scheme for Wireless Sensor Networks. IEEE

Internet of Things Journal. (2017), 546–554.

[99] Spinellis, D. Reflection as a mechanism for software integrity verification.

ACM Transactions on Information and System Security. (2000), 51–62.

https://spectrum.ieee.org/cars-that-think/transportation/systems/jeep-hacking-101
https://spectrum.ieee.org/cars-that-think/transportation/systems/jeep-hacking-101
https://rfc-editor.org/rfc/rfc7252.txt

114 References

[100] Statista. Global IoT market size 2017-2025. https://www.statista.com/

statistics/976313/global-iot-market-size/, 2019. [Online; accessed Oc-

tober 15, 2019].

[101] Strackx, R., Piessens, F., and Preneel, B. Efficient isolation of trusted

subsystems in embedded systems. In Security and Privacy in Communication

Networks. 6th International ICST Conference, SecureComm 2010. (2012).

[102] Symantec. Internet Security Threat Report Volume 24. https:

//www.symantec.com/content/dam/symantec/docs/reports/istr-24-

2019-en.pdf, 2019. [Online; accessed October 15, 2019].

[103] T. Yeh, D. C., and Persirai, K. L. New internet of things (IoT) botnet

targets IP cameras. https://blog.trendmicro.com/trendlabs-security-

intelligence/persirai-new-internet-things-iot-botnet-targets-

ip-cameras/, 2017. [Online; accessed October 15, 2019].

[104] Takabi, H., Joshi, J. B. D., and Ahn, G. Security and Privacy Challenges

in Cloud Computing Environments. IEEE Security Privacy. (2010).

[105] Weagle, S. Financial Impact of Mirai DDoS Attack on dyn Revealed

in New Data. https://www.corero.com/blog/797-financial-impact-of-

mirai-ddos-attack-on-dyn-revealed-in-new-data.html, 2017. [Online;

accessed October 15, 2019].

[106] Yi, S., Li, C., and Li, Q. A Survey of Fog Computing: Concepts, Applications

and Issues. In Proceedings of the 2015 Workshop on Mobile Big Data Mobidata

’15. (2015).

[107] Zeitouni, S., Dessouky, G., Arias, O., Sullivan, D., Ibrahim, A., Jin,

Y., and Sadeghi, A. R. ATRIUM: Runtime attestation resilient under

memory attacks. In 2017 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD). (2017), pp. 384–391.

https://www.statista.com/statistics/976313/global-iot-market-size/
https://www.statista.com/statistics/976313/global-iot-market-size/
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
https://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
https://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
https://www.corero.com/blog/797-financial-impact-of-mirai-ddos-attack-on-dyn-revealed-in-new-data.html
https://www.corero.com/blog/797-financial-impact-of-mirai-ddos-attack-on-dyn-revealed-in-new-data.html

	Abstract
	Acknowledgements
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation and Challenges
	Research Aim and Objectives
	Contributions
	Publications

	Thesis Outline

	Review of Remote attestation protocols in IoT systems
	Overview of Remote attestation
	Background
	Memory architecture of IoT devices
	Code injection attacks
	Run-time Attacks

	The State of the Art
	Dynamic attestation
	Collective attestation
	Discussion

	Synchronous Remote attestation
	Motivation
	Contributions
	Chapter outline

	Problem Description
	System model
	Adversary model and Security Requirements
	Adversary model
	Security requirements

	Remote attestation of distributed IoT services: RADIS
	Preliminaries
	Setup phase
	Attestation phase

	Experimental setup and evaluation
	Experimental Setup
	Evaluation

	Security Analysis
	Conclusions and Open issues

	Asynchronous Remote attestation
	Motivation
	Contributions
	Chapter outline

	Problem Description
	Background
	Architectural properties of Publish/Subscribe
	Logical Clock Synchronization

	System model
	Adversary model and Security Requirements
	Adversary model
	Security requirements

	Asynchronous Remote Attestation: SARA
	Setup phase
	Attestation phase
	Verification phase
	SARA working mechanism

	Experimental setup and evaluation
	Experimental setup
	Evaluation

	Security Analysis
	Limitations
	Conclusions and Open issues

	Remote attestation as a Service
	Motivation
	Contributions
	Chapter outline

	Background
	Cloud architecture for IoT
	Distributing Cloud in Fog

	System model
	Adversary Model
	Remote attestation as a Service: RAaS
	Protocol Overview
	RAaS Working mechanism
	RAaS components

	Security Analysis
	Limitations
	Conclusions and Open issues

	Conclusions and Future Works
	Thesis summary
	Synchronous remote attestation
	Asynchronous remote attestation
	Remote attestation as a service

	Future research directions

