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Abstract. In injection molding production, automatic inspections are needed to 

control defects and evaluate the assigned functional tolerances of components 

and dies. With the “Smart Manufacturing” approach as a point of view, this paper 

resumes part of a wider research aiming the integration and the automation of a 

Reverse Engineering inspection process in components and die set-up. The paper 

compares two fitting approaches for recognition of portions of cylindrical sur-

faces. Therefore, they are evaluated in the respect of an automatic voxel-based 

feature recognition of 3D dense cloud of points for tolerance inspection of injec-

tion-molded parts. The first approach is a 2D Levenberg Marquardt algorithm 

coupled with a first guess evaluation made by the Kasa algebraic form. The sec-

ond one is a 3D fitting based on the RANdom SAmple Consensus algorithm 

(RANSAC). The evaluation has been made according to the ability of the ap-

proaches of working on points associated to the voxel structure that locally di-

vides the cloud to characterize planar and curved surfaces. After the presentation 

of the overall automatic recognition, the cylindrical surface algorithms are pre-

sented and compared trough test cases. 

Keywords: Tolerance Inspection, Injection Molding, Random Sample Consen-

sus algorithm. 

1 Introduction 

In fields like production of electromechanical components through injection molding 

in multicavity dies, automatic inspections, for die set-up and quality controls of com-

ponents, are needed to avoid defects and to guarantee the assigned functional tolerances 

during production. Especially during die set-up, the high number of samples and toler-

ances to be detected makes the inspection process repetitive and time consuming, to 

that, many efforts have been spent to increase its automation during acquisition and in 

data post-processing. In fact, nowadays, automatized procedures are researched and 

developed not only during the productions or finishing phases [1] but, also, in meas-

urement and control procedures. In previous works [2-5], authors presented procedures 

oriented to simplify and optimize standard Coordinate Measurement Machine (CMM) 
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protocols, and to analyse how non-contact measurements may change the data-pro-

cessing procedures. In the last decade, this kind of issues represented a difficult chal-

lenge for researchers in this field [6]. In particular, in this paper, we are going to focus 

on some new results achieved in a research carried out for integrating the Reverse En-

gineering (RE) inspection process in the die set-up, so that the final inspection protocol 

may be automatically filled, performing standard verifications, understanding and ana-

lysing dimensional and geometrical deviation of the manufactured surfaces. 

The treated research is conducted with a non-contact RE system and original imple-

mentations that adopt MATLAB-based algorithms. The hardware system used for the 

acquisition is composed by a laser scanner (Nikon LC15Dx) mounted on a bridge CMM 

3COORD Hera 12.9.7, which, coupled, allow an accuracy of 2,5μm [2-4]. Then, algo-

rithms, developed in MATLAB, are able to perform the data processing and segmenta-

tion of the obtained clouds. Finally, measurement algorithms are able to produce data 

that are useful in PDM. In the electromechanical field, injection molded components 

are mainly characterized by planar and cylindrical surfaces, with sharp angles, low 

thicknesses and many small ribs. Therefore, difficulties arise not from the characteris-

tics of surfaces, but from the necessity of procedure automation on hundreds of sam-

ples. In [2], an original voxel-based implementation has been proposed to distinguish 

planar surfaces in electromechanical parts. Non-planar regions have been then investi-

gated in [3, 4], so that, cylindrical surfaces may be recognized and measured according 

to a 2D fitting algorithm, developed starting from Kasa formulation. This paper com-

pares this algorithm with another one, called Maximum Likelihood Estimate SAmple 

Consensus algorithm (MLESAC), and based on RANdom Sample Consensus algo-

rithm (RANSAC). After a brief outline of the previous developments in Section 2, Sec-

tion 3 presents the new approach and, then, in Section 4, some case studies, used to 

develop and test the procedure, are presented and discussed. Finally, in Section 5, major 

conclusions are highlighted. 

2 Previous developments 

RE encompasses several tools and methods suitable to make digital models of real 

parts. As reported in [7, 8], generally, they can be divided in a sequence of four steps: 

(1) Data Acquisition; (2) Data Processing; (3) Segmentation and Surface (or feature) 

Fitting; (4) CAD Model Creation. The reported research is focused on the development 

and test of algorithms of data processing, feature segmentation and recognition (phases 

2 and 3). The general workflow and phases of the developed procedure are reported in 

Figure 1, [4] and explained in the following. 

2.1 Voxel structure 

The adoption of voxel-based approach was defined considering the requirement of de-

creasing the post-processing duration. Although gradient analysis is one of the most 

adopted solutions [9, 10], it is clear that the number of points, their density and distri-

bution influence the analysis accuracy. This problem is partially solved by filtering 
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[11], but, in case of tolerance analysis and quality inspection, it may lead to a loss of 

data. Moreover, surface reconstruction of filtered acquisition may not represent a good 

solution, even if adaptive filtered, due to high computational time. For these reasons, 

supported also by [10], we decided to work with a voxel-based approach that localizes 

volumes according to a semantic significance, which in our case is a specific feature of 

the shape (planar/curved, planar/cylindrical). This kind of segmentation is related to a 

problem of feature recognition [12]. Doing so, we can analyze the surface recognition 

problem according to a scale larger than the tessellated mesh, without applying prelim-

inary filters, or classical segmentation through curvature [13]. One of the advantages 

of the approach consists in avoiding mesh triangulation and point evaluation of local 

curvatures that are substituted with local surface reconstruction of the points inside 

voxels. Another peculiar point that has to be noticed is the fact that the usage of voxel 

segmentation, in this way, make the amount of segmentation elements not directly de-

pendent from the point density and distribution. 

 

Fig. 1. The developed procedure for data processing, segmentation and surface fitting, [4]. 

The voxel-based approach is based on a grid method similar to an octree grid derived 

from hierarchical space partitioning [14]. In our case, a 3D voxel structure is superim-

posed on the acquired cloud of points. It is defined through an iterative procedure that 

starts from a single parallelepiped. It encompasses acquired cloud completely, then, 

along each direction (x, y and z), it is recursively split into smaller volumes, generating 

a voxel structure, until no more points are included into an element or if the assigned 

limit of a voxel size is reached. The final structure made with the smallest size voxel 

represents the voxel structure of the partition. In [2, 3], implementation details related 

to the voxel structure definition are described and discussed. From this part of the re-

search, it resulted how the voxel ratio and dimensions influence the following results. 

Due to this, some procedures and tests to optimize the voxel lengths and ratio have been 

developed for each kind of component (prismatic, axisymmetrical and boxed-shape 

components). 
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2.2 Voxel surface analysis 

Once the voxel discretization is performed, local surface recognition starts through 

the computation of geometric descriptors. Local surface recognition is carried out 

through best-fitting algorithms. Electromechanical parts made by injection molding are 

predominantly feature-based shapes, thus plane inspection is the starting part of our 

segmentation. For this reason, voxels with planar surfaces are firstly detected, through 

threshold analysis of the fitting parameters [10, 15]. The threshold works on the vari-

ance of the point distances from the local plane fit in the voxel. Thanks to the accuracy 

of the acquisition, planar surfaces populate always the first bin of the variance distribu-

tion on the voxels. The bin major value can be assumed as a threshold to exclude all 

Vijk, which are filled with points that lay on curved surfaces. Optimal values for thresh-

olds can be found with an iterative procedure, already developed, and explained in [4]. 

Local surface recognition is approached by fitting. In the first phase, for each “true” 

state voxel, a local plane is fit by least square minimization, through Single Value De-

composition, obtaining the geometrical descriptors parameters of each local plane. 

Voxel that do not present geometrical descriptors parameters inside the threshold are 

associated to “curved” local surfaces. They can be free-form or cylindrical or boundary 

voxels. In any case, finding their geometrical descriptors, which means recognizing a 

specific type of surface, means assuming a specific equation to be fit. In Section 3, the 

problem of the local fitting of cylindrical surfaces is provided. 

2.3 Region growing 

Following the procedure reported in Figure 1, according to the threshold analyses, the 

voxel structure is partitioned in planar, cylindrical and other curved voxels. From this 

distinction, the global recognition of the component planes or cylindrical surfaces may 

derive by means of a region growing algorithm [4, 16]. This kind of algorithm is able 

to aggregate together, according to an imposed threshold, contiguous voxels that have 

similar geometric descriptors (normal direction and distance from the origin, in the case 

of planes; axis and radius, in case of cylinders). Region growing algorithms define clus-

ters starting from “seeds” able to describe a feature. In planar voxels case, the unit vec-

tors associated to the normal of the best-fit planes inside the voxels, (nx ny nz)ijk, are 

verified to a specific unit direction, (a b c), by means of a threshold condition derived 

from the so-called L2 orientation norm [2, 10] and to an adjacency matrix. This proce-

dure, based on Single Value Decomposition, explained in [2], consent to perform the 

plane clustering according to every significant direction of the acquired components 

that are found in S. 

Analogously, in cylindrical voxel, after the local fitting explained in the following 

section, regardless of the fitting procedure chosen, the clusterization is made according 

to seeds found from other suitable descriptors, as radius, considering that the aggrega-

tion by means of the axes is taken into account by the voxel connection and proximity. 

This conduct to obtain a cylindrical clustering according every significant radius of the 

component. Result of clusterization is the global surface recognition. By that, all the 
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found global features, planar or cylindrical, can be submitted to the measurement pro-

cedure, explained in [5], able to perform tolerance control and to insert the result in a 

PDM file regarding the component, arriving to evaluations of dies and suppliers. 

3 Fitting of cylindrical surfaces inside curved voxels 

In this section, the problem of finding cylindrical surfaces is faced. According to Fig. 2 

it requires a proper local surface analysis inside the voxels associated to curved sur-

faces, then region growing based on eq. 2 must be run. 

3.1 LM(Kasa) approach 

As first approach, local cylindrical surfaces have been recognized through a fitting 

strategy that is related to a common practice in CMM inspection: circle fitting of sec-

tions [4]. Circle fitting can be approached by geometric or algebraic fits. In the first 

case, the unknown parameters (position of the centre, C, and radius, R) are found 

through an iterative regression process, as, for example Levenberg-Marquardt (LM). 

Algebraic approaches like Taubin or Kasa [17, 18]. Kasa is the fastest method that 

works with good results in case of complete circles but it loses accuracy in case of 

points along arcs with small diameters. Regression approaches, like LM, are strictly 

related to the adopted first guess, moreover local minimum cannot be excluded. As 

reported in [4], our firstly developed application, LM(Kasa), couples together Kasa and 

LM, using Kasa to give a rough estimation of the curved voxel surface that is used as 

first guess of LM. It has been demonstrated that LM(Kasa) is, at least, performant as 

Taubin or even more, in some different conditions (high or scattering level, small and 

large arc lengths, small or high values of R). 

Major problem related to LM(Kasa) approach is the necessity of finding proper pro-

jection directions, to find circular sections. It has to be associated with the concept of 

Intrinsic Reference System (IRS), treated in the following, and to the hypothesis of 

having pins and holes with axes along this reference system. 

For satisfying this hypothesis, from the voxel structure over-imposed on the compo-

nent, an IRS may be found, looking for the plane directions associated to the most pop-

ulated sets of voxels. In our case, in fact, it resulted that it may be assumed as a con-

sistent reasoning since these injection molded components are characterized by func-

tional features on orthogonal planes or cylinders whose axes are parallel to three prin-

cipal directions of the component. Thus, the most populated set of voxels are the ones 

that contain planar surfaces oriented along principal directions of the component. By 

this, The IRS computation derives, assigning as first reference axis the planar direction 

of the most populated set of voxels. Then the other two axes are found between the two 

subsequent more populated sets, mutually orthogonal, as tested in [3]. 
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3.2 RANSAC approach 

To release cylinder fitting from IRS, point projection may be avoided. Thus, a second 

fitting strategy has been investigated. It works with a RANSAC-based algorithm, of-

fering a more generalized approach to all the kind of surfaces, also planes [19, 20]. It is 

an iterative algorithm, able to fit the model parameters in case of data with noise. It 

starts with a preliminary evaluation of the model on a minimal data set, taken randomly 

from the point cloud. After this, the remaining points are checked concerning their sig-

nificance with the adopted thresholds (statistical confidence of the parameters, inlier 

maximum distance from the evaluated surface). If they are not significant, they are 

evaluated as outliers. The evolution is iterative until the confidence is reached and, ob-

viously, a proper model must be selected. In our case, to avoid the use of the IRS, the 

first application of RANSAC was made to fit cylinders through the points inside the 

curved voxels. In particular, we adopted the MLESAC algorithm, found in Matlab 

2017. It starts from a sample of 6 points necessary to preliminary estimate the cylinder 

axis. Required thresholds are the maximum distance from the surface, to be an inlier 

point and the confidence (default 99%). Obviously, sometimes the algorithm may fail 

to evaluate an axis direction, thus a first guess must be provide. It means that, in a 

certain way, in some critical cases, MLESAC algorithms cannot work without a first 

guess information, connected to the axes. In general, it resulted that they are IRS-

dependent, in some cases, as LM(Kasa) procedure is. In addition, a preliminary set-up 

of the proper thresholds for the maximum distance inlier-surface and confidence must 

be done.  

Sensitivity analysis for RANSAC parameters. The first goal of the research activity 

is the evaluation of the sensitivity of the algorithm in the respect of the threshold anal-

ysis. We investigated if local fitting inside curved voxels is robust enough to provide a 

threshold for the next region growing. The sensitivity analysis has been carried out on 

the maximum distance, from the evaluated surface, used to define inliers and outliers. 

It has been made and compared with a least squares error fit, made in Catia V5.Two 

sets of points, one representing a whole cylindrical surface, the other only a portion, 

have been used (Figure 2). Their parametes are resumed in Table 1. The following Fig-

ures 3(a) and 3(b) resume the performed sensitivity analyses. Maximum distance (the 

abscissa) is correlated to the entity of “noise” present. A reduction of this value makes 

more stringent the evaluation of the “inlier condition”, assignable to data points.  
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Fig. 2. Distance analysis from the cylinder fit made by CatiaV5R12: (a) Point cloud #1; (b) 

Point cloud #2. 

Table 1. Fitting parameters found by CatiaV5R12. 

 Point Cloud #1 Point Cloud #2 

No. of points 2439 406 

Estimated radius (mm) 0,9728 1.0103 

Axis direction (mm) [0.999, -0.007, -0.002] [0.999, -0.360, -0.0165] 

Mean error (mm) 0,0094 0.0055 

Standard dev. error (mm) 0,0087 0.0033 

 

To understand this effect, we have imposed a range for the distance from 0.5x10-3 

mm to 0.06 mm with steps of 0.25x10-3 mm. These values, as said are reported as ab-

scissa of the figures. The plot in the upper part of both show the fitting mean error in 

respect to MaxDistance. Smaller values of MaxDistance decrease the mean error, and 

obviously the number of inlier points, as reported in the graphs at the bottom of Figure 

3. Plots in the middle represent the trend of Radii of cylinders, varying the MaxDis-

tance. For Figure 3(a), a stable trend for Radius can be seen at about 0.97 mm, with a 

high scattering when MaxDistance increases. This is not suitable and consistent from a 

tolerance inspection point of view. It confirmed the necessity of a rule to define the 

Max Distance For this reason, through the comparison with Catia fittings, we investi-

gate the Max Distance ranges nearby the maximum deviations (respectively 54.1x10-

3mm and 19.2x10-3mm) of the distance analyses (Figure 2). Doing so we are assuming 

that small probability of noisy data may occur and all the points can be inserted in the 

MLESAC computation, as in a standard fit. For first cloud, in a range of MaxDistance 

equal to 0.04÷0.06mm (in red in Figures 3(a) and 3(b)), we found a fitting error of 

0.017±0.004mm and a Radius of 0.9686±0.0157mm. Analogously, for the second set, 

in a range of 0.015÷0.025mm, we found a fitting error of 0.0053±0.0017mm and a 

Radius of 1.0117±0.0644mm 
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Fig. 3. Sensitivity Analysis according to the input parameter related to the maximum distance 

of the inliers from the evaluated surface (MaxDistance). Upper plot: Mean Error of the fit; Mid-

dle plot: Radius of the fitting; Lower plot: percentage of inliers in the respect of the total num-

ber of points: on the left Point Cloud #1, on the right Point Cloud #2. 

4 Set-up and evaluation of the algorithms through case studies 

Two different case-studies are reported: a flange and a latching lever. Both components 

have been used for set-up of the algorithms and their tests. 

4.1 Flange for Aeronautical applications 

 

Fig. 4. Flange for aeronautical applications. 

The flange is not an injection molded part, but it has been selected, as testing case 

study, and already used in [3], to stress the algorithms with large shapes and curvatures, 

and details in a wide range of lengths. It is a component of a Boeing product, obtained 

through β-forging starting from Ti6Al4V Titanium alloy powders. Characteristic lengths 

are 208x208x30 mm, and after multiple view alignment, a point cloud of about 480000 

has been obtained. Due to the fact that our focus is on cylindrical fitting, other param-

eters and parts of the entire procedure will be not treated here (as voxels subdivision 
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and threshold analysis) and considered as optimized for LM(Kasa) (it is used a voxel 

structure of 64x64x16). As said, LM(Kasa) asks for a preliminary knowledge of the 

axes directions, MLESAC does not, with some exceptions. For LM(Kasa), a component 

IRS is defined through a specific elaboration of the most populated planar clusters that 

are derived from the voxel structure. In the flange case, the calculated IRS has the x-

axis coincident with the longitudinal axis of the component. Therefore, LM(Kasa) as-

sumes that axes directions of the founded cylinders are oriented as the x-axis of the 

IRS. This assumption is consistent with datum references. A good resolution of the 

proposed method has been confirmed also by the map of voxel osculating radii of the 

cylindrical features. The surface reconstruction of the cylinders has revealed 0.02mm 

of tolerance from the nominal value and a good predictable ability of this kind of algo-

rithm [3]. 

Regarding MLESAC algorithm, for the flange and the imposed voxel structure 

(64x64x16), it has been found that, in over the 30% of the voxels recognized as curved, 

the algorithm failed the surface fitting. This because of a low amount of points within 

each of these voxels (less than 6 points). This convinced us to use a less accurate voxel 

structure (32x32x16). The obtained result, reported in Figure 5, demonstrated a not ac-

curate fitting and recognition. Table 2 demonstrates this hypothesis according to a re-

duction of the number of voxels, thus, to an increase of the average number of points 

per voxel. 

 

Fig. 5. (a) Final voxel partition in Cylindrical and Planar local surfaces; (b) Frequency distribu-

tion of the occurrence of the mean of the distance errors from the fit radius without axis imposi-

tion; (c) Frequency distribution of the occurrence of the mean of the distance errors from the fit 

radius with axis imposition. 

More in detail, it shows a high scattering in terms of mean of the distance error 

among points in the cylindrical voxels and fit radius, the population of bins higher than 

first or second can be interpreted in this way. This represent the high difficulty of fitting 

cylinders with large curvature. Figure 5(c) shows the situation of the mean error distri-

bution after the axis imposition. It seems to be improved for what concerns the possi-

bility of finding a threshold able to divide inliers from outliers, performing a huge im-

provement for large curvature cylinders, but it resulted to have a higher number of failed 

curved voxels to be fitted as cylinders (up to the 60%). This makes the results obtained 

by MLESAC, in both forms, less accurate than the LM(Kasa) ones. 
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Table 2. Percentage of curved voxels that fail to find MLESAC solution – Maximum distance 

set to 0.1 mm, confidence=99%. 

Resolution Vijk length (mm) 
% of curved Vijk that fail 

MLESAC 

16x16x16 6.5x.6x1.9 1.50% 

32x32x16 3.2x3.2x1.9 8.40% 

64x64x16 1.6*16*1.8 35.80% 

4.2 Latching Lever 

In order to test the two strategies, another case study has been analyzed. It is an injection 

molded Latching Lever, used in assemblies of electromechanical switches of electric 

panels, made in PPS. Characteristic lengths are about 20x10x4 mm, more than one 

sample has been acquired obtaining, after multiple views alignment, point clouds of 

over 60000 points. We used this case study to evaluate performances of LM(Kasa) in 

comparison to the results obtainable through MLESAC, adopting, as imposed axis for 

the fitting, the same direction used in LM(Kasa). Using a 32x32x32 voxel structure, the 

local surface recognition of planar and curved featured is represented in the right side 

of Figure 6. 

 

Fig. 6. Nominal CAD model of the Latching Lever (on the left); local surface recognition of 

planar feature, in green, and curved ones, in blue (on the right). 

 

Fig. 7. The calculated IRS for the lever (on the left); curved voxel partition (in the middle); cy-

lindrical feature recognition through LM(Kasa) (on the right). 

From the planar voxel clusterization, the IRS has been found. As already mentioned, 

the cylindrical features appear, also in this case, to have axis directed according to one 
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of the principal direction, found through voxel population. In fact, in the lever, the x-

axis resulted to be the one coincident with the directions of the two cylinders and the 

rounds present (on the left of Figure 7). The cloud has been partitioned according to the 

found IRS, and the curved voxel are represented in the middle of Figure 7. Then, cylin-

drical features, through LM(Kasa), have been obtained, as showed on the right of Figure 

7. To give an evaluation of this approach, cylinders A, B and C of Figure 8 have been 

compared with interactive post-processing made by Catia. In this case, Cylinder A has 

an effective value of R=0.974 mm, we also obtained R=0.972 mm (for Cylinder B) and 

R=0.999 mm (for Cylinder C). Standard deviation of the fittings are always less than 

0.012 mm. Through the proposed algorithm, the radii of each feature are: 0.974 mm for 

cylinder A and B, 1.036 mm for cylinder C with a standard deviation less than 0.006 

mm. Using MLESAC with imposed axis (1, 0, 0) as input parameter, similar results 

have been obtained, but improved in the detection of the common radii along the voxels 

on the width of the free form part (Figure 9). 

 

Fig. 8. Selected cylinders with R = 1mm. 

 

Fig. 9. MLESAC with imposed axis (1,0,0) applied on Latching Lever. 

4.3 Discussion 

For what concerns the case study of the flange, it can be said that LM(Kasa) showed 

good results despite the fact that asks for preliminary knowledge of the cylinder axis 
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directions, taken out by the IRS calculation. MLESAC may avoid this request, not in 

totality of cases, but more problems arise to find a proper threshold for affirming that 

the voxel is cylindrical with any doubt. It is due to problems about finding large curva-

ture cylinders through points on a small arc length, when no axis direction is given as 

first guess. This makes the fit model highly scattered also among contiguous curved 

voxels, ruining the region growing – hierarchical clustering of large radius areas. Im-

posing a first-guess direction, many curved voxels are not fit (60%), but radius evalua-

tion highly improves. Concerning cylindrical fitting for the flange, MLESAC cannot 

overcome the problems of LM(Kasa) that results more reliable for large curvature cyl-

inders through points distributed on a small arc length. On the contrary, in features with 

lower values of radii, as for latching lever, the two strategies can drive to similar results. 

It has to be noticed that also in this case, in order to perform a significant recognition, 

MLESAC needed the first guess, with the imposition of the cylinder axis direction, 

failing again to what we had thought could be a huge advantage of this method, proved 

instead to be not so disruptive, as depicted also in literature, in respect to that previously 

developed. 

5 Conclusions 

In this work, two kinds of algorithms for cylindrical feature recognition have been 

compared. One, LM(Kasa), already developed by the authors in the past, had already 

proved to be reliable and moderately accurate, presenting the disadvantage of being a 

2D processing of points to be fit, so requiring the axis direction of the cylinder to be 

recognized. Due to this disadvantage, after a literature research, authors developed an-

other procedure, based on RANSAC algorithms. The main advantages of this proce-

dure, as depicted in the literature, were mainly connected to the possibility of avoiding 

a first-guess (6 points, so, a direction), thus, recognizing cylinders without the depend-

ence from the definition of an IRS (Intrinsic Reference System).The comparison has 

been made through two different case studies: a flange for aeronautical application and 

a latching lever for electromechanical of electric panels. Due to the differences between 

the case studies, it has emerged that for what concerns cylinders with high radii, 

LM(KASA) performs better than MLESAC. In addition, this second approach revealed 

its needing of a first-guess direction exactly as LM(Kasa), but without arriving to the 

same level of accurate recognition. For what concerns cylinders with smaller radii, as 

the features present in the lever, the two developed algorithms resulted to be quite sim-

ilar, depending both by the imposition of the axis of the cylinder to be recognized and 

performing results with the same level of accuracy. Further researches and tests are 

needed in order to obtain a more accurate evaluation of these algorithms, but this com-

parison showed that the already developed algorithm, LM(Kasa), remains currently the 

best and more robust choice for performing cylindrical feature recognition oriented to 

tolerance inspection and quality controls. 
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