
Towards a Methodology for the Engineering of
Event-driven Process Applications ?

Anne Baumgraß1, Mirela Botezatu2, Claudio Di Ciccio3, Remco Dijkman4,
Paul Grefen4, Marcin Hewelt1, Jan Mendling3, Andreas Meyer1,

Shaya Pourmirza4, Hagen Völzer2

1 Hasso-Plattner-Institut, University of Potsdam, Germany
2 IBM Research – Zurich, Switzerland

3 Institute for Information Business at WU Vienna, Austria
4 Eindhoven University of Technology, The Netherlands

Abstract. Successful applications of the Internet of Things such as smart cities,
smart logistics, and predictive maintenance, build on observing and analyzing
business-related objects in the real world for business process execution and moni-
toring. In this context, complex event processing is increasingly used to integrate
events from sensors with events stemming from business process management
systems. This paper describes a methodology to combine the areas and engi-
neer an event-driven logistics processes application. Thereby, we describe the
requirements, use cases and lessons learned to design and implement such an
architecture.

Key words: Event-Driven Process Applications, Business Process Management,
Architecture Design, Methodology, Logistics

1 Introduction

Traditionally, Business Process Management Systems (BPMSs) execute and monitor
business process instances based on events that stem from the process engine itself
or from connected client applications. However, recently, successful applications of
the Internet of Things such as smart cities, smart logistics, and predictive maintenance
emerge that include and provide sensors tracking objects via Global Positioning System
(GPS) or Radio-Frequency Identification (RFID), measuring the temperature, the energy
consumption, or other types of data. Thus, information from the environment in which
processes are executed is available but often not considered in the design of traditional
BPMSs [1].

Such external applications offer new possibilities to control and evaluate the business
process execution, yet they require a novel concept of integration with a BPMS. Complex
Event Processing (CEP) is often considered as a suitable technique for tackling this
challenge [2], especially in logistics [3].
? The research leading to these results is part of the GET Service project and has received funding

from the European Commission under the 7th Framework Programme (FP7) for Research and
Technological Development under grant agreement 2012-318275.

2 A. Baumgrass et al.

In the GET Service project2, we analysed typical logistics scenarios, explored their
environments, and evaluated BPMSs for their execution and monitoring. GET Service
aims at techniques and systems to plan transportation routes more efficiently and to
respond quickly to unexpected events such as adverse weather or strikes, during trans-
portation. In recent studies [4], disruptions due to such events mainly cause a loss of
productivity and revenue as well as an increased cost of working. Therefore, timely
notifications are important in logistics to reduce the impact. Nowadays, these disruptions
are handled manually and often by phone – an ineffective and not reliable (in terms
of fast reaction and prevention) source of interaction. In this paper, we document how
the aim of the project to automate these notifications is addressed, specifically by the
selection of a process engine in combination with a CEP system and a process modelling
tool that got extended to support the required functionalities like automatic event query
generation.

In particular, we present – in terms of a methodology – the course of actions we
conducted from the description of the logistics scenarios to the iterative design and
implementation of the systems supporting these scenarios. In this line, we present an
architecture that supports the execution and monitoring of the business processes across
distributed BPMSs and the consideration of heterogeneous event sources. It is mainly
based on an analysis of transportation scenarios from practice. Although stemming from
logistics, the architecture can be generalized and also used in further domains. Its core
components make use of novel concepts for annotating process models with which
the event subscription can be automated. As a proof-of-concept, we implemented the
architecture such that progress and violations during process execution can be effectively
monitored for process-internal and environmental events; the implementation may be
found in [5].

Against this background, the remainder of this paper is structured as follows: Sec-
tion 2 briefly introduces the methodology used before Section 3 discusses the use case
for this paper. Section 4 presents an architectural overview of our process-based real-time
execution and monitoring approach which is mainly based on use cases similar to the one
presented in Section 3. Thereby, Sections 4.1, 4.2, and 4.3 zoom in to three important
components of our architecture: process modeller, process engine, and event processing
engine. Finally, Section 5 presents the conclusion and outlook.

2 Methodology

The proposed methodology results from the GET Service project that aims to improve
transport planning and execution in terms of transport costs, CO2-emission, and customer
service. Thus, it requires the design of a service platform for joint transport planning
and execution. As starting point, a basic understanding of the logistics domain and
its scenarios were established. In total, five usage scenarios were identified, each one
depicting a particular logistics chain from different industries and focusing on different
transport modes and stakeholders [6]. For each scenario, several use cases, influences of
events, and success criteria were defined. These served as input to specifically define
2 http://www.getservice-project.eu

Methodology for Event-driven Process Applications 3

processes including its data model, roles, and actors. For further investigation in the
project, we specifically decided to support three use cases [7]: 1) Export of containers
through a port requiring an efficient synchronization of transport participants, 2) Air-
freight transportation including the possibility of shifts from one airport to another, and
3) Synchromodal transport synchronizing multiple transports for the same order at once.
In the remainder of the paper, we consider the process of a freight-shift in use case (2) to
reflect our requirements, the corresponding architecture, and its implementation. It is
presented in Section 3.

Scenarios Processes Roles/Actors

Alternatives

Use Cases

Data Model Requirements

4+1 View

Structuring

Implementation DesignLessons learned

Refactoring

1

2

3

4

Figure 1. Procedure of stepwise refinement of information towards the final artefact: the imple-
mented software system

Figure 1 shows the procedure of our methodology. The main input for the require-
ments analysis (step 2) were the process models we created together with domain experts
and users from this field in step 1. Using those we were able to exactly identify the right
roles and actors as well as a joint data model for all use cases. In the requirement analysis,
we determined the functional and non-functional aspects of the GET Service platform
necessary for transportation planning. Specifically, we defined how planning relies on
historic and real-time information and in which way this information should serve as its
input. For example, how real-time information like an accident of a truck is recognized,
correlated with a transport plan and changing it as well as how this information is
forwarded to the user.

After eliciting the requirements, they need to be transitioned into a system architec-
ture. Thereby, views on processes, system interfaces, domain model, system functionality,
and the utilized physical hardware must be considered – a wide spectrum of information.

We used Kruchten’s 4+1 view model [8] to structure all requirements in step 3 as
input to design, implement, and refactor GET Service’s architecture in step 4. This
model combines aspects of architectural models, layers, and principles from the field of
software and systems engineering. As such, it is used to create distinct views for each of
the stakeholders’ viewpoints. Figure 2 shows the application of this model to our project
and the above mentioned views.

Considering the example of the functional requirement to provision real-time infor-
mation, the description of such is dealt with in the logical view. From those, the process
models are constructed in the process view to deal while the scenarios are used to derive
the specific behaviour. The components enabling the functionality are designed in the

4 A. Baumgrass et al.

Hardware

Systems’-
reliability

Offline-
planning Provide-

status-
updates

System-
compo;
nents Interface-

descrip;
tions

Logical-
view

Planning-
functions

Event-
detection

Development-
view

Process-
view

Physical-
view

Scenarios Freight-
Shift

Low-
Water;
levels

Synchro;
modal-

transport

Multi;
modal-

transport

… …

……

… …

Figure 2. Kruchten’s 4+1 [8] model applied to GET Service

development view. Finally, the physical view shows the concrete implementation and
the set-up of the infrastructure to enable the provisioning of real-time information. To
meet the interests of this workshop, we focus, in the remainder of this paper, on the parts
of GET Service that deal with execution and monitoring of logistics processes.

3 Running Example of a Freight-Shift in Transportation

As a example, we consider the part of a logistic process instance pertaining to the
transportation of a container from a storage area in Nice to a distribution centre located
in Frankfurt. The whole multi-modal transport plan comprises a first truck-based leg
from the French storage area to Nice Côte d’Azur Airport, then a second aircraft-based
leg brings the cargo to Frankfurt Airport, and finally a truck-based leg towards the
distribution centre in Germany. Such a transport is managed by a logistics service
provider (LSP) that can utilise a fleet of trucks of its own, distributed Europe-wide,
or some subcontractor, another LSP. Airfreight, however, is usually handled from a
commercial cargo airline company which thus is in charge of the air-based leg of the
transport.

From recent studies [4] and the scenarios we surveyed in the GET Service project
we learned that numerous disruptions might occur even in such simple transports as
described here. Not all of them are known a-priori but happen unexpectedly. For example,
an air-plane may have to unexpectedly land at a different airport due to adverse weather
or a strike. Alternatively, an air-plane might suddenly have more transportation capacity
available, because of transportation order cancellations. In the end, both occurrences
lead to a shift of transportation capacity or demand from one location to another. How-
ever, nowadays, real-time information of transport progress or disruptions are often
communicated late, incomplete, or by no means at all among the affected actors.

In our process, for instance, a strike at Frankfurt airport could force the pilot to divert
the flight to another location, namely Brussels Airport. This would certainly compromise
the successful completion of the multi-modal transportation activity, because empty
trucks would wait for the air-plane to land in Frankfurt, since the logistics service

Methodology for Event-driven Process Applications 5

provider did not get informed about the diversion. This would not happen before the
actual landing in Brussels, with clear negative effects on (i) productivity, due to the longer
waiting times and empty trucks, (ii) costs, caused by the re-routing or re-booking of
additional trucks to move the containers from Brussels to Frankfurt, and (iii) timeliness
of the delivery, due to the fact that compensation actions would be taken after landing.

Obviously, freight-shifts and other events influencing the completion of the process
should be detected as quickly as possible to properly act on them. This means, they have
to be considered by the process engine enacting the process model. In consequence, the
possible occurrence of events and a reaction to them have to be integrated into the process
model. With current technology, this would restrict the monitoring only to events known
at design time, require the determination of a reaction, which might differ from instance
to instance, and increase the complexity of process models drastically. Furthermore, the
process engine must collect events relevant for the process during execution of a process
and evaluate the impact of them. In contrast to the freight-shift, for example, a small
congestion on a road might only cause a delay for the truck that does not influence the
transport chain, while a problem with the motor of the truck might enforce the planner to
pick another truck for the transport. Section 4 details the architecture and highlights the
requirements leading to its design and the corresponding implementation. The system
including the interaction between different components is provided as screencast at
http://youtu.be/JE2Df7iaERk.

4 Design of an Architecture for Event-driven Logistics Processes

The Workflow Management System (WfMS) Reference architecture [9] served as
blueprint for the design of our event-driven logistics process architecture. As central
component it shows the workflow enactment service that is connected via 5 interfaces to
other components for modelling (IF1), for controlling client applications and devices
(IF2), for invoking external applications (IF3), for monitoring and administration (IF4),
and also for invoking other WfMSs (IF5). Currently, WfMSs are designed to operate
with static control structures. Dynamic environments, such as logistics with a lot of
events (e.g. weather, congestions, or strikes influencing the process execution), require
more flexibility and interfaces to consider external events. Therefore, dynamism is the
key requirement in our architecture.

Based on investigations on the connection between events and process models in
[3], we added a new interface from the workflow enactment service to the event engine
fostering flexibility. In this setup, for each task in a process model, not only the workflow
execution semantics need to be evaluated, but also the associated event notifications
have to be considered. Therefore, this design alternative may reduce the performance
of the whole system. However, it can increase the dynamism of our architecture. This
design allows all the tasks in a process model to communicate with the event processing
engine, and consequently, one task can be executed ’both’ manually by a user in the user
interface of the process engine or automatically based on high-level events.

From this high-level we designed the architecture for connecting environment sources
and consider them during process execution as shown in Figure 3. This architecture
also shows the necessary components to enable event-driven logistics processes and

6 A. Baumgrass et al.

their interfaces: (i) The Event Engine, responsible for event processing, definition of
high-level events, and provisioning of subscriptions mechanisms, (ii) the BPMS, which
allows to model (Modeller) and enact (Process Engine) processes, and (iii) the set of
Event Sources providing the information processed by the event engine.

Event Source

Event Source

Event Engine

Event Handler

Event Service

Event
Processing

Business Process
Management System

Process Engine

Modeller

Adapter

Notification

Subscription

Deployment

Normalized
Event Provider

Subscription
Forwarder

Notification
Forwarder

BPMS

Figure 3. High-level architecture for real-time monitoring of business processes through CEP

This architecture shows how real-time event data can be correlated automatically to
real-time process data and vice versa through publish subscribe mechanisms. Several
event sources provide event streams, e.g. GPS locations, which input event data into
the Event Engine. This may happen constantly or in chunks. The BPMS allows to
model business processes which are then enacted within a Process Engine. The event
information is automatically correlated to the actual process instances – the run-time
equivalents of process models – such that subscriptions must be defined that are provided
to the Event Service which in turn provides notifications to the affected process instances
for each set of events corresponding to a subscription.

In the following sections, we discuss the requirements, the design, the implemen-
tation, and the lessons learned for the three main components in our architecture: the
modeller, the process engine, and the event engine. This is in line with the steps dis-
played in the lower part of Figure 1 and the logical, development, and physical views in
Figure 2.

4.1 Process Modelling

In general, a process model can be used to integrate different IT systems and services
based on Service-Oriented Architecture (SOA) and a process execution engine.

Requirements Based on the use case described in Section 3, the process modelling
language must (1) support modelling of tasks, events and messages occurring in a supply
chain, (2) have execution semantics and suitable engines supporting this semantics,
(3) introduce roles for different parts in the process model to specify the responsible
client or external IT system for its execution, (4) include a specification that the progress
of some tasks is determined by external information, (5) provide means to specify
time- and location-related constraints in the process model that are relevant for the
process engine to reveal the adherence of process execution with the process model, and

Methodology for Event-driven Process Applications 7

(6) support semantics for a process engine to use process models not only for execution
but also for status tracking and visualization of disruptions.

In our literature review, we observed that there is no off-the-shelf process mod-
elling language that fully supports all requirements [10]. Thus, we decided to extend
the industry standard Business Process Model and Notation (BPMN) [11], since it is
widely supported by tools and engines, has a suitable expressiveness, provides standard
mechanisms for its extension, and has high emphasis on both, the design and analysis as
well as the process automation of use cases. BPMN provides a XSD-specification of its
metamodel. Thus, BPMN-conform process models can be exchanged via XML.

Design To adequately address the requirements of logistics processes, such as the
detection of a flight diversion from our use case, we enriched the BPMN metamodel
with annotations that capture the time and location constraints of a logistics process as
well as annotations to consider the internal and external event sources either driving the
process or influencing its execution. Details on the extension are provided in [10].

The annotations may be explained using the automatic generation of event subscrip-
tions from process models. For the purpose of automation, we pre-define various event
subscription templates that are then filled by the modeller component with process model
information (e.g. the deadline to execute a task) and extended by the process engine
with process instance information (e.g. the truck that actually transports the cargo). Note
that these templates are written in Esper [12] to be conform with the event processing
language of the event engine. An example of such a subscription template is shown
in Listing 1. It aims at notifying about strikes (type="strike") at a specific destination
airport before a certain deadline is reached. Case-dependent information is marked by
preceding ’$’. Thus, while the name of the destination airport ($destination) and the
deadline ($deadline) in this example should be extracted from the process model, the
specific case for which this query is relevant ($caseId) must be set by the process engine
itself. Given the specific task ”Drive to destination” in Figure 4 the process engine
uses the annotations in the process model and subscribes to be notified about strikes at
’Frankfurt’ before ’2015-07-04T08:00’ (resp. latest arrival of the truck in Frankfurt).

Listing 1. Event subscription template for strikes at an airport.

1 SELECT type,timestamp,description,url,title,latitude,longitude, $caseId as
caseId FROM Warning where type="strike" and description like "%$
destination%" and timestamp.before($deadline)

Drive to
destination

destination = ‘Frankfurt‘
deadline = 2015-07-04T08:00

Figure 4. Annotated task
”Drive to destination”.

An event subscription is associated with a BPMN
element, encapsulated in the documentation. The types
of events that result from an event subscription are de-
termined by the event type given in the documentation
((<eventType>Warning</eventType>)). It furthermore includes
a scope defining when the query has to be activated and
how the responses of the event engine to this query have
to be interpreted, see Listing 2. The scope in this exam-
ple does not trigger any status update of the task (trigger="false") and the observa-
tion of corresponding events is within the task execution (<startTask>Task2</startTask>

8 A. Baumgrass et al.

<endTask>Task2</endTask>), i.e. the subscription starts when the truck starts driving and
ends when the truck arrives at the airport, which can be captured in further queries.
Obviously, in this example, the modeller, the process engine and the event engine have
to have a common understanding of the annotations and how to understand their content.

Listing 2. Excerpt of an event subscription in the XML-based T-BPMN process model.

1 <task id="Task2" name="Drive to destination">
2 <documentation> <queryAnnotation> <query>
3 <queryText> [Query of Listing 1] </queryText>
4 <eventType>Warning</eventType>
5 <scope trigger="false">
6 <startTask>Task2</startTask>
7 <endTask>Task2</endTask>
8 </scope>
9 </query> </queryAnnotation> </documentation> ... </task>

Lessons Learned The provisioning of subscription templates is essential in our ap-
proach, since the low level of modelling competence of modellers in process documen-
tation projects is a well-known problem in the Business Process Management (BPM)
field [13]. From the practical experience in the GET Service project, further chal-
lenges arise when users are not used to model process models at all. Furthermore,
closely related to our event engine (see Section 4.3), we defined aggregation rules
that hide the complexity of event processing from the user to ease the utilization
and understanding of event subscriptions. For instance, we specify rules in the event
engine that produce high-level events whenever a truck reaches a destination. Thus,
the modeller does not need to define queries comparing all truck positions to reason
about destination arrival himself. Instead, she can simply subscribe via “Select * from
ArrivedAtTransportNode(operatorId=$truckId)”.

4.2 Executing Annotated Process Models

In this section, we review the features that need to be supported by our process engine.

Requirements We employed a systematic review approach to create a list of all possible
process engines that can execute any kind of process model. We considered both service
orchestration engines or business process management execution engines. Based on the
general requirements derived from the components functionality, the architecture, and the
required interfaces, we identified 6 generic criteria the 36 identified engines are evaluated
against: (i) Does the system have an open-source license? (ii) Does the system have
an in-depth documentation? (iii) Does the system support BPMN language? (iv) Has
the system been implemented in Java? (v) Does the system have an active developer
community for communication? (vi) Does the system support runtime adaptability?

The third criterion considers our decision for BPMN as business process modelling
language as discussed in Section 4.1. The sixth criterion evaluates the ability to change
the process model during runtime of the system. This is required due to re-planning
activities in logistics. In [14], we discussed the process engine evaluation in detail.

Methodology for Event-driven Process Applications 9

Summarized, based on our requirements, we chose the Activiti 3 process engine as our
base process engine.

Design The process engine requires algorithms to parse and interpret the annotated
process models (cf. Section 4.1) and needs to ensure that activities specified therein are
properly executed and monitored. To achieve this, the process engine enacts process
models, by generating process instances. A process instance captures for each activity
(i) when, (ii) by whom, and (iii) how its state can be updated.

Most interesting for the interaction between the introduced systems, all notifications
the process engine receives are extracted from the annotated process model and extended
with process instance information. While notifications about progress or status updates do
not affect the design of the process model, the process engine may receive notifications
about violations in the business process, as either actual or predicted ones. Please note
that violations often involve updates both in the design and execution of the process
model. Thus, we require the implementation of a dynamic reconfiguration of process
instances which we discuss in detail in [15].

Implementation We extended the Activiti [16] process engine in three main aspects: (i)
We allow full support of runtime adaptations of the process; (ii) we integrate the process
engine with the event processing engine in order to react to the external events; and (iii)
we provide additional access to the process engine through external devices, e.g. mobile
clients. As mentioned in the previous section, an algorithm has been developed in order
to apply the instance migration after process adaptation and address extension (i).

Extension (ii) was discussed in Section 4, where we discussed the integration of a
WfMS with an event processing engine. We designed an additional interface to facilitate
this extension. As consequence of this integration, the Activiti engine can subscribe to
listen to predefined query notifications (e.g. position update of a vehicle) it can produce
events about the executions (e.g. status of each task). Therefore, the process engine can
always publish events; however in order to listen to a specific event, the prerequisite is
the existence of a process model that is sufficiently annotated with the query notifications
(cf. [10]).

Extension (iii) to the Activiti engine provides different RESTful services that contain
both: information about the execution of a process instance and query notifications.
Therefore, any web-based client (e.g. mobile device) can employ these services in order
to interact with the WfMS remotely.

Lessons learned We revealed that the assignment of tasks to users may differ from
the user who is interested in the notifications for a task; e.g. a driver executes some
driving while the planner monitors this execution. For the former, we utilize the concept
of swimlanes (provided by BPMN and Activiti) while for the latter, we introduced
additional policies by extending the developed interface IF6 (cf. Figure 3) such that it
now supports both: user specific event queries and an integration of our WfMS with our
event processing engine (extension (iii)).
3 http://www.activiti.org/

10 A. Baumgrass et al.

4.3 Event Processing

Event sources are meant to provide streams of data, i.e. a series of updated digital
information objects (henceforth, events). In our context, events pertain to the applicants,
devices, and means of transportation under control that are utilized for executing a
logistics process. Knowledge can be extracted from events that (i) permits to monitor the
carry-out of related activities, (ii) detects anomalies in their execution, and (iii) predicts
possible disruptions in the process execution.

Requirements Corresponding to [17] and the use case and requirements described
before, an event engine must provide: (1) a generic interface to different sources which
streams events concerning trucks, air-planes and their environment, (2) technologies to
normalize data in heterogeneous formats for processing, (3) support to define high-level
events, (4) a publish-subscribe interface for other systems to receive events or respective
notifications about events, and (5) perform ex-ante predictions on the future evolution of
the process instance.

Design The Event Handler is designed to read multiple sources by means of dedicated
Adapters to publish them as uniform events for event processing. This entails that the
event engine not only has to provide the possibility to register queries to be informed on
events of interest, but it also needs to be capable of automatically correlating events to
transport processes. In our architecture, event processing is based on the subscriptions
forwarded by the process engine that derived them from sufficiently annotated process
models, e.g. for progress updates and violation detection. For a correlation with exter-
nal event data, instance-specific information is required in the subscriptions, e.g. the
container id or the destination of a transport.

To match high-level events to subscriptions of the process engine, the event engine
must also be capable of aggregating events of finer granularity, such as the subsequent
positional updates of the air-planes, to more informative ones, such as the changes of
speed, altitude, and direction in a time interval. To this end, techniques coming from the
area of Complex Event Processing [18] are exploited.

Finally, the event engine is demanded to predict diversions ahead of time. While pre-
dicting violations based on deterministic events such as congestions can be done through
subscriptions as shown above, probabilistic predictions correspond to exceptional sit-
uations that turn out to be hard to encode by means of human-specified subscriptions.
Therefore, we resort on automated classification and regression techniques, well estab-
lished in the research field of Machine Learning [19]. The objective is to make the event
processing module capable of automatically classifying anomalies in harmful or not
significant for the correct process execution based on conditions learned through analysis
of past executions. When possible, the quantification of foreseen effects on the process
are also expressed in terms of, e.g. of delays.

Implementation Technically, the core functionality of event processing is provided
by the open source platform Esper4, which we extended based on the requirements
4 http://www.espertech.com/

Methodology for Event-driven Process Applications 11

identified. We included an event hierarchy and aggregation rules for the logistics do-
main. Additionally, we included custom function calls for geographic calculations and
to access static data on transport nodes. For the management of event sources, aggrega-
tion rules, subscriptions, and logistics process specific services, we built a framework
around Esper [12]. The event engine, in which Esper is embedded and used in the GET
Service project, is called UNICORN5. UNICORN is implemented in Java and devises
several ways to receive events: through a web service, using the web-based UI, through
ActiveMQ6, and through configurable adapters that pull events from different sources.
Consumers, like the process engine in our scenario, subscribe to events by sending Esper
queries via a web service. Another web service allows to register transports by passing
their parameters, in which case the event engine handles all subscriptions. Notifications
are distributed via ActiveMQ queues. Alternatively, the web UI of the event engine can
be used to display notifications.

Consider the air-plane from our use case in Section 3. The processing and analysis
of events tracing its position would contribute to observe its anomalous behaviour by
changing the route and to foresee the disruption of the transportation process [20].
The event monitoring, the anomaly detection, and the disruption prediction are the
functionalities that are also encapsulated in the event service component (see Figure 3).

Lessons Learned Rather than be unified under a single general-purpose component
to derive or predict high-level events, the dedicated modules can be plugged in. Each
module adopts its own algorithm to interpret the current status and recent history of
the process instance according to the scope of its predictive analysis. For instance, the
module that raises alerts in case of delays of trucks differs from the one utilised for the
flight route anomalies. At the same time, they also act as event sources that publish their
outcomes as fine-granular events that are then aggregated and retransmitted as prediction
events. In the scenario, a diversion prediction would be notified when a given number of
consecutive flight route anomalies were received and aggregated by the Event Processing
component. This actually reflects the technique adopted in [21], a technique applying
event processing in the context of flight diversions within logistics transports.

5 Conclusion

Guided execution and monitoring the status of business processes is of vital importance,
if an organization needs to promptly react to occurring problems. We presented a
methodology to engineer a logistics process application that is driven by events for
execution and monitoring. This allows utilization of information from several event
sources, pre-processed and refined by an event engine, to not only execute or monitor
processes, but also predict potential problems. We argue that the event subscriptions,
necessary for such purposes, must be contained as annotations in the process model which
are automatically registered by a process engine with the event engine. Exemplified, we
discussed the design of such a system, presented the corresponding implementation, and
5 http://bpt.hpi.uni-potsdam.de/UNICORN
6 http://activemq.apache.org/

12 A. Baumgrass et al.

highlighted lessons learned for the modelling, execution, and monitoring. The complete
implementation and the interaction between the components is provided as screencast
provided at http://youtu.be/JE2Df7iaERk.

In future work, we aim to establish a reference model for the whole process and
describe it along the whole architecture of the GET Service project. We also expect our
approach to be generalizable to other domains such as manufacturing or healthcare, in
which external events play a central role in the proceeding of business processes.

References

1. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer (2013)

2. Luckham, D.C.: Event processing for business: organizing the real-time enterprise. John
Wiley & Sons (2011)

3. Cabanillas, C., Baumgrass, A., Mendling, J., Rogetzer, P., Bellovoda, B.: Towards the
Enhancement of Business Process Monitoring for Complex Logistics Chains. In: BPM
Workshops, LNBIP 171, Springer (2013)

4. Business Continuity Institute: SUPPLY CHAIN RESILIENCE 2014 - An international survey
to consider the origin, causes & consequences of supply chain disruption (2014)

5. Baumgrass, A., Di Ciccio, C., Dijkman, R., Hewelt, M., Mendling, J., Meyer, A., Pourmirza,
S., Weske, M., Wong, T.: GET Controller and UNICORN: Event-driven Process Execution
and Monitoring in Logistics. In: BPM Demo track, CEUR Workshop Proceedings (2015)

6. Treitl et al.: Use Cases, Success Criteria and Usage Scenarios, Deliverable report 1.1, GET
Service (2014)

7. Baumgrass, A., Dijkman, R., Grefen, P., Pourmirza, S., Voelzer, H., Weske, M.: A Software
Architecture for Transportation Planning and Monitoring in a Collaborative Network. In: 16th
IFIP Working Conference on Virtual Enterprises. IFIP AICT Series, Springer (2015)

8. Kruchten, P.: Architectural Blueprints - The ”4+ 1” View Model of Software Architecture.
Tutorial Proceedings of Tri-Ada 95 (1995) 540–555

9. Hollingsworth, D., Hampshire, U.: Workflow management coalition the workflow reference
model. Workflow Management Coalition 68 (1993)

10. Botezatu, M., Völzer, H.: Language and Meta-Model for Transport Processes and Snippets,
Deliverable D4.1, GET Service (2014)

11. Object Management Group: Business process model and notation (BPMN) v2.0 (2011)
12. Bernhardt, T., Vasseur, A.: Esper: Event Stream Processing and Correlation (2007)
13. Mendling, J., Reijers, H., van der Aalst, W.: Seven process modeling guidelines (7PMG).

Information and Software Technology 52(2) (2010) 127–136
14. Pourmirza, S., Dijkman, R.: A Survey of Orchestration Engines,, Deliverable report 7.1 , GET

Service (2014)
15. Pourmirza, S., Dijkman, R., Grefen, P.: Switching parties in a collaboration at run-time. In:

EDOC, IEEE (2014) 136–141
16. Rademakers, T.: Activiti in Action : Executable business processes in BPMN 2.0. First edn.

Manning Publications, Shelter Island, NY (2012)
17. Baumgrass, A., Breske, R., Cabanillas, C., Ciccio, C.D., Eid-Sabbagh, R., Hewelt, M., Meyer,

A., Rogge-Solti, A.: Conceptual architecture specification of an information aggregation
engine, Deliverable report 6.2 , GET Service (2014)

18. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer (2006)

Methodology for Event-driven Process Applications 13

19. Mitchell, T.M.: Machine Learning. 1 edn. McGraw Hill series in computer science. McGraw-
Hill, Inc., New York, NY, USA (1997)

20. Baumgrass, A., Hewelt, M., Meyer, A., Raptopoulos, A., Selke, J., Wong, T.: Prototypical
Implementation of the Information Aggregation Engine, Deliverable D6.3, GET Service
(September 2014)

21. Cabanillas, C., Di Ciccio, C., Mendling, J., Baumgrass, A.: Predictive Task Monitoring for
Business Processes. In: BPM, Springer (2014) 424–432

