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ABSTRACT
Stochastic delay differential equations (SDDE’s) have been used for financial mod-
eling. In this article, we study a SDDE obtained by the equation of a CIR process,
with an additional fixed delay term in drift; in particular, we prove that there exists
a unique strong solution (positive and integrable) which we call fixed delay CIR
process. Moreover, for the fixed delay CIR process, we derive a Feynman-Kac type
formula, leading to a generalized exponential-affine formula, which is used to deter-
mine a bond pricing formula when the interest rate follows the delay’s equation. It
turns out that, for each maturity time T , the instantaneous forward rate is an affine
function (with time dependent coefficients) of the rate process and of an auxiliary
process (also depending on T ). The coefficients satisfy a system of deterministic
differential equations.
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1. Introduction

In a seminal paper ([6]) Cox, Ingersoll and Ross proposed a model for the interest
rates, that has found considerable use also as a model for volatility and other financial
quantities. The model is named Cox-Ingersoll-Ross (CIR) model or mean-reverting
square root process (and is also known as Bessel-square process or Feller process), and
is expressed as the solution of the following stochastic differential equation{

dr(t) = ar(γr − r(t))dt+ σr
√
r(t)dWr(t),

r(t0) = r0,
(1)

where Wr(t) is a standard Brownian motion and ar, γr and σr are positive constants.
There are three appealing properties why this model is used so widely. First, Eq. (1)
has a unique nonnegative solution for any positive initial value with probability one,
which is very important since this equation is often used to model the interest rate (or
volatility). Second, it is mean-reverting and the expectation of r(t) converges to γr,
the so-called long-term value, with the speed ar (see, e.g., Higham and Mao [10] and
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the references therein). Third, since its incremental variance is proportional to the
current value, one can compute explicitly the term structure.
In order to better capture the properties of the empirical data, there are many exten-
sions of the CIR model, e.g., Chan, Karolyi, Longstaff and Sander [2] generalize the
CIR model as

dr(t) = ar(γr − r(t))dt+ σrr
θ(t)dWr(t),

where θ ≥ 1
2 . As explained in Hull and White [11], another generalization of the CIR

model can be obtained so that it is consistent with both the current term structure
of interest rates and either the current volatilities of all spot interest rates or the
current volatilities of all forward interest rates. In their paper, the authors consider
the following version of CIR model with time-dependent parameters; i.e., they consider
the following model{

dr(t) = [ϕ(t) + ar(t) (γr − r(t))] dt+ σr(t)r
θ(t)dWr(t),

r(t0) = r0.
(2)

From the financial point view, the interest has focused in models where the under-
lying asset’s dynamics is given by a stochastic delay differential equation (SDDE). In
this regard, we can cite Arriojas, Hu, Mohammed and Pa [1]: the authors consider
a market where the evolution of the stock price S(t) is described by the following
equation {

dS(t) = f(t, St)dt+ g(S(t− b))S(t)dW (t), t ∈ [0, T ]

S(t) = ϕ(t), t ∈ [−τ, 0]
(3)

where the drift coefficient f : [0, T ] × C([−τ, 0];R) → R is a given continuous func-
tional, St ∈ C([−τ, 0];R) stands for the segment process St(u) := S(t+u), u ∈ [−τ, 0],
the diffusion coefficient g is a continuous function, the parameters τ and b are posi-
tive constants, with τ ≥ b, and the process ϕ(t) is F0-measurable with respect to the
Borel σ-algebra of C([−τ, 0];R). Under the suitable hypotheses on f and g, the authors
prove that Eq. (3) has a pathwise unique solution. Furthermore when the drift coeffi-
cient f(t, η) is equal to µη(−a)η(0), i.e., f(t, St) = µS(t− a)S(t), where a is positive
constant; setting τ = max{a, b}, the authors develop an explicit formula for pricing
European options. Moreover, the authors give an alternative model for the stock price
dynamics with variable delay and, also in this case, are able to develop a formula for
the option price.
Although is not present a financial application, we can also cite Wu, Mao and Chen
[19] where the authors generalize the Euler-Maruyama (EM) scheme to the following
model with delay term in diffusion coefficient{

dS(t) = λ(µ− S(t))dt+ σS(t− τ)γ
√
S(t)dW (t), t ∈ [0, T ]

S(θ) = ξ(θ), θ ∈ [−τ, 0],
(4)

where ξ ∈ C([−τ, 0];R+), and prove the strong convergence of the EM approximate
solutions to the (unique and nonnegative) solution of (4).
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In this paper, we assume that the spot rate satisfies the following SDDE with fixed
delay in the drift coefficient{

dr(t) = [ar(γr(t)− r(t)) + brr(t− τ)]dt+ σr
√
r(t)dWr(t),

r(t) = r0(t) t0 − τ ≤ t ≤ t0,
(5)

with ar, σr positive constants, γr(t) a positive function, bounded on bounded time
intervals, and br ≥ 0, so that our model (5) is a generalization of the classical CIR
model (1).

In the first part of this paper, we focus our interests on existence and uniqueness
of the solution of Eq. (5). (We will refer to the unique solution as the fixed delay CIR
process.) In the remaining part of the paper, we derive a Feynman-Kac type formula
in order to determine a formula for the unitary zero-coupon bond (uZCB) price and
a formula for the instantaneous forward rate.

The paper is organized as follows. Section 2 is devoted to state the properties of our
fixed delay CIR process; in particular, under the Assumptions 2.1, Eq. (5) has a unique
and nonnegative solution. Moreover, if the Feller condition (9) holds, the solution is
positive (see Theorem 2.2). Furthermore, under Assumption 3.3, i.e., if the initial seg-
ment r0(t) satisfies an integrability condition, uniformly on the interval [t0− τ, t0] (see
(16)), then the solution is integrable, together with its supremum on any bounded
interval (see Proposition 2.3 and Remark 2). The aim of Section 3 is to determine a
pricing formula for uZCB. Under Assumption 3.4, there exists a risk-neutral proba-
bility measure and hence, the financial market is arbitrage-free (see Theorem 3.2 and
Remark 3). Another important result of this section is an extension of the well-known
Feynman-Kac formula (see Theorem 3.5) that is used to determine a pricing formula
for uZCB. In Section 4, we recall the definition of instantaneous forward rate and
prove that if the spot rate is a fixed delay CIR process, then the instantaneous for-
ward rate is a linear function of the spot rate and of another suitable process (see
Theorem 4.3); this result extends the usual formula of the CIR instantaneous forward
rate. Appendix A is devoted to the proofs of some technical results.

2. Properties of the Fixed Delay CIR Process

Throughout this paper, unless otherwise specified, we use the following notations.
Let (Ω,F ,P) be a complete probability space with a right continuous filtration {Ft}t≥t0
and let Ft0 contain all P-null sets. Let Wr(t) be a scalar Brownian motion defined on
this probability space.
Our aim is to use Eq. (5) as a model for interest rate, volatility and other financial
quantities, therefore, besides existence and uniqueness of the solution, it is crucial that
the solution be positive.

Actually, we examine the equation{
dr(t) = [ar(γr(t)− r(t)) + brr(t− τ)]dt+ σr

√
|r(t)|dWr(t)

r(t) = r0(t) t0 − τ ≤ t ≤ t0,
(6)

Throughout this paper we make the following assumptions.
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Assumptions 2.1. (i) The process Wr(t), t ≥ t0, is a Brownian motion with respect
to the filtration Ft, with Wr(t0) = 0, so that Ft0 is independent of natural
filtration FWr

t ;
(ii) the parameters ar and σr are positive constants, and br is a nonnegative constant;

(iii) the segment r0(·) is a positive continuous random function on [t0 − τ, t0] such
that ∫ t

t0−τ
r0(u)du < +∞, P-a.s.; (7)

moreover, we require that r0(t) is a Ft0-measurable for t0 − τ ≤ t ≤ t0 and
therefore σ{(r0(u) ;u ∈ [t0 − τ, t0])} is independent of FWr

t , t ≥ t0;
(iv) the deterministic function γr(t) is measurable, positive, and bounded on every

bounded interval.

Theorem 2.2. Under the Assumptions 2.1, the Eq. (6) admits a unique solution and
the solution is nonnegative.
Assume that 0 ≤ br ≤ br, and that the initial segment r0(t) is such that r0(t) ≤ r0(t),
for t0 − τ ≤ t ≤ t0. Let r(br)(t) be the solution of (6), and r(br)(t) be the solution
of (6), with br and the initial segment r0(t) in place of br and r0(t), respectively. Then

r(br)(t) ≤ r(br)(t), for all t ≥ t0. (8)

If moreover the following inequality holds

σ2
r ≤ 2arγr(t) for all t ≥ t0, (9)

then the process r(br)(t) is positive.

Proof. Existence, uniqueness and the comparison results can be achieved by induction
on the intervals [t0 + kτ, t0 + (k + 1)τ ], k ≥ 0. In the first interval [t0, t0 + τ ] Eq. (5)
is a particular case of the equations

dX(t) = (2βX(t) + δ(t))dt+ g(X(t))dW (t) for all t ∈ [0,+∞), (10)

studied in Deelstra and Delbaen [9], with 2β = −ar, δ(t) = br r0(t − τ) + arγr(t)

and g(x) = σr
√
|x|. As observed in the latter paper, “ Eq. (6) is a Doléans, Dade

and Protter’s equation, and it is shown by Jacod [12] that there exists a unique strong
solution. Extending comparison results as in Karatzas and Shreve [13] (p. 293) or
Revuz-Yor [17] (p. 394), it is easy to check that the solution remains nonnegative a.s.
(see, e.g., Deelstra [7]),” and that inequality (8) holds. Finally, taking br = 0, (so that
the initial segment r0(t) is irrelevant) under the Feller condition (9) the process r(br)(t)
is the classical CIR model and is positive a.s. Then the comparison (8) immediately
implies that also r(br)(t) remains positive a.s.

Remark 1. The previous result guarantees existence and strong uniqueness of Eq. (5),
for all initial segment with continuous paths. Then Yamada-Watanabe theorem (see,
e.g., Cherny [5]), implies weak uniqueness, i.e., uniqueness in distribution of the solu-
tions.
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The next result deals with the integrability of a fixed delay CIR process, i.e., the
unique solution of Eq. (5).

Proposition 2.3. Suppose that on a probability space (Ω, (Ft)t≥t0 ,P), the process r(t)
is a fixed delay CIR process, defined by Eq. (5). If∫ t0

t0−τ
E [r0(u)] du < +∞, (11)

and

E [r0(t0)] < +∞, (12)

then,

(1) for all t ≥ t0

E
[

sup
t0≤u≤t

r(u)

]
<∞, (13)

(2) the following formula holds, for all t ≥ t1 ≥ t0

E [r(t)] = e−ar(t−t1)E [r(t1)] +

∫ t

t1

e−ar(t−u) (arγr(u) + brE [r(u− τ)]) du. (14)

Proof. Similarly to the previous Theorem 2.2, the proof can be achieved by induction
on the intervals [t0 + kτ, t0 + (k + 1)τ ] by proving that

E

[
sup

t0+kτ≤u≤t0+(k+1)τ
r(u)

]
<∞. (15)

For k = 0 the thesis follows by Lemma 1 in Deelstra and Delbaen [8]: hypotheses (11)
and (12), imply the integrability condition (15) (with k = 0). It is important to stress
that this implication does not appear in the statement of Lemma 1, but it is one of the
steps in the proof of the above mentioned result (see p. 166 in [8]). The induction step
from k to k+1 follows by observing that condition (15) is stronger than necessary.

Remark 2. The following integrability condition (uniform on the interval [t0− τ, t0])

sup
t∈[t0−τ,t0]

E [r0(t)] < +∞, (16)

ensures that the assumptions (11) and (12) of Proposition 2.3 hold true.

3. Term Structure for Bond Valuation

Term structures of interest rates describe the relation between interest rates and bonds
with different maturity times. We recall that, by convention, a unitary zero-coupon
bond with maturity T < +∞, pays one unit of cash at the prescribed date T in
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the future, and its price is denoted by B(t, T ), at time t ≤ T ; it is thus clear that,
necessarily, B(T, T ) = 1 for any maturity T .
At time t, the yield to maturity R(t, T ) of the uZCB B(t, T ) is the continuously
compounded (constant) rate of return that causes the bond price to rise to one a
time T , i.e.,

B(t, T )e(T−t)R(t,T ) = 1,

or, solving for the yield,

R(t, T ) := − 1

T − t
ln(B(t, T )). (17)

For a fixed time t, the curve T 7→ R(t, T ) determines the term structure of interest
rates.

Definition 3.1. The (instantaneous) spot rate r(t) is defined by

r(t) := lim
T→t

R(t, T ). (18)

In an Arbitrage-free market, the Bond price is given by

B(t, T ) = EQ
[

e−
∫ T
t
r(u)du

∣∣∣∣Ft] for all t ∈ [t0, T ], (19)

where EQ is the expectation with respect to the risk-neutral measure used by mar-
ket, r(t) is the Ft-adapted instantaneous interest rate (see, e.g., Lamberton and Lep-
eyre [14] or Musiela and Rutkowski [15]).

When r(t) is a classical CIR process, the existence of a risk-neutral probability
measure Q is guaranteed by the uniqueness of the martingale problem (see, e.g.,
Theorem 2.4 in Cheredito, Filipović and Yor [4]). Cheredito, Filipović and Kimmel [3]
prove the existence of a risk-neutral probability measure Q taking advantage of the
uniqueness in law of the involved processes (see Theorem 1 in Cheredito, Filipović
and Kimmel [3]). We extend the result of Cheredito, Filipović and Kimmel to prove
the existence of Q for a fixed delay CIR process.

In what follows we assume that the interest rate r(t) is the fixed delay CIR process
solution of Eq. (5), and since we need to consider different Brownian motions, under
different probability measure, we will use the notation W P

r (t) instead of Wr(t).

Theorem 3.2. Under Assumptions 2.1, let r(t) be the solution of{
r(t) = r0(t0) +

∫ t
t0
µP(s, r(·))ds+

∫ t
t0
σr
√
r(s) dW P

r (s), t ∈ [t0, T ],

r(t) = r0(t), t ∈ [t0 − τ, t0],

where

µP(t, x(·)) = ar(γr(t)− x(t))) + brx(t− τ)
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and the parameters ar and σr and the function γr(t) satisfy the Feller condition (9).
Assume that bQr ≥ 0, aQr > 0, the function γQr (t) is measurable, positive, and bounded
on every bounded interval, and finally that the Feller condition

σ2
r ≤ 2aQr γ

Q
r (t) (20)

holds. Consider the functional µQ(t, x(·)) so defined

µQ(t, x(·)) := aQr
(
γQr (t)− x(t)

)
+ bQr x(t− τ). (21)

Then, there exists a probability measure Q, such that

(1) Q = P on (Ω,Ft0),
(2) for each T > t0, Q is equivalent to P on (Ω,FT ),
(3) there exists a process WQ

r , which is a Brownian motion under Q, and such that

r(t) = r0(t0) +

∫ t

t0

µQ(s, r(·))ds+

∫ t

t0

σr
√
r(s) dWQ

r (s), t ∈ [t0, T ].

Finally the probability measure Q on (Ω,FT ) is defined by dQ = ZT dP, where

Zt := exp

{
−
∫ t

t0

ξr(s, r(·)) dW P(s)− 1

2

∫ t

t0

ξ2
r (s, r(·)) ds

}
,

with

ξr(t, r(·)) :=
µP(t, r(·))− µQ(t, r(·))

σr
√
r(t)

=
arγr(t)− aQr γQr (t)− (ar − aQr )r(t) + (br − bQr )r(t− τ)

σr
√
r(t)

. (22)

Proof. (See Appendix A).

Besides Assumptions 2.1, we now assume some further conditions.

Assumption 3.3. The fixed delay CIR process r(t) satisfies the integrability condi-
tion (16).

Assumption 3.4. The market price of risk is a one-dimensional process ξr(t) adapted
with respect to the filtration Ft and right continuous such that ξr(t) is given by

ξr(t) =

√
r(t)

σr
ψr, (23)

where ψr is a nonnegative constant, i.e., the risk-neutral measure Q is defined as the
measure on the same space (Ω,FT ) with Radon-Nikodym derivate given by

dQ
dP

∣∣∣∣
FT

= Zξr(T ), that is Q(F ) =

∫
F
Zξr(T )P(dω), F ∈ FT , (24)
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where Zξr(t) is the following one-dimensional P-martingale process

Zξr(t) = e−
∫ t
t0
ξr(s)dWr(s)+

1

2

∫ t
t0
ξ2r(s)ds t ≥ t0. (25)

Remark 3. Under Assumption 3.4, by construction, the probability measures P and Q
are equal on Ft0 . Consequently, Assumption 3.3 holds true also w.r.t. the risk-neutral
measure Q, and the process r(t) is again a fixed delay CIR process w.r.t. the measure Q,
with dynamics described by{

dr(t) = [aQr (γQr (t)− r(t)) + bQr r(t− τ)]dt+ σr
√
r(t)dWQ

r (t),

r(t0) = r0(t) t0 − τ ≤ t ≤ t0,
(26)

where the Q-parameters

aQr = ar + ψr, γQr (t) =
ar

ar + ψr
γr(t), bQr = br (27)

are positive, the function γQr (t) is measurable, positive, and bounded on bounded
intervals, moreover the Feller condition (9) under P automatically implies (20), the
Feller condition under Q. Indeed, with the above positions the market price of
risk ξr(t) in (23) coincides with the process ξr(t, r(·)) in (22), and Theorem 3.2 applies.
As far as Assumption 3.4 is concerned, actually, we could define the market price of
risk also as follows

ξr(t) = ψr0

√
r(t)

σr
+ ψr1

1

σr
√
r(t)

+ ψr2
r(t− τ)

σr
√
r(t)

,

where ψr0, ψr1 and ψr2 are constants satisfying suitable conditions: indeed, if the Q-
parameters

aQr = ar + ψr0, γQr (t) =
arγr(t)− ψr1
ar + ψr0

, bQr = br − ψr2, (28)

are positive and satisfy the Feller condition (20), then Theorem 3.2 guarantees that the
measure Q is a probability measure, and that, under Q, the process r(t) has stochastic
differential given by (26). As already observed, with our choice, i.e., with ψr0 = ψr ≥ 0,
ψr1 = ψr2 = 0, the above conditions are automatically satisfied, while, in general, this
is not the case.

In order to get the bond price for a fixed maturity T , the idea is to get a represen-
tation of the following functional (slightly more general than the functional (19))

EQ
[

e−
∫ T
t
r(u)du−wr(T )

∣∣∣∣Ft] , t ∈ [t0, T ], with T fixed, and w ≥ 0, (29)

as a deterministic function vQ(t, T, r, y;w) evaluated in (r, y) = (r(t), yQ(t, T ;w)),
where the process yQ(t, T ;w) is defined as follows

yQ(t, T ;w) :=

∫ t

t−τ
ΓQ(u, T ;w)r(u)1[t0−τ,T−τ ](u)du, (30)
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with ΓQ(t, T ;w) a suitably chosen deterministic function (for its explicit definition
see (36)). Note that, independently of the definition of ΓQ(t, T ;w), the following final
condition holds

yQ(T, T ;w) = 0. (31)

It turns out that the function vQ is given by

vQ(t, T, r, y;w) =

{
e−α

Q
0 (t,T ;w)−αQ

r (t,T ;w)r−y for t < T ,

e−wr−y for t = T ,
(32)

where w is a nonnegative parameter and the functions αQ
0 (t, T ;w) and αQ

r (t, T ;w) are

deterministic and positive, and such that αQ
0 (T, T ;w) = 0 and αQ

r (T, T ;w) = w.

In the following Theorem 3.5, we give the correct choice of the functions ΓQ(t, T ;w),

αQ
0 (t, T ;w) and αQ

r (t, T ;w). Then the Bond price is obtained by (29), with w = 0, i.e.,

B(t, T ) = vQ
(
t, T, r(t), yQ(t, T ; 0); 0

)
= e−α

Q
0 (t,T ;0)−αQ

r (t,T ;0)r(t)−yQ(t,T ;0), (33)

and we recover B(T, T ) = 1 by the final condition in (32), and by (31).

Theorem 3.5. With the notations and under the assumptions of Theorem 3.2, con-
sider the following differential system

d
dtαr(t) = 1

2σ
2
r (αr(t))

2 + aQr αr(t)− 1 for T − τ ≤ t ≤ T ,

d
dtαr(t) = 1

2σ
2
r (αr(t))

2 + aQr αr(t)− 1− brαr(t+ τ) for t0 ≤ t ≤ T − τ ,

d
dtα0(t) = −aQr γQr (t)αr(t) for t0 ≤ t ≤ T ,

(34)

with the boundary conditions
αr(T ) = w,

αr(T − τ) = αr((T − τ)+),

α0(T ) = 0.

(35)

Then, for all w ∈
[
0,

√
(aQr )2+2σ2

r−aQr
σ2
r

)
,

(1) the system (34)-(35) has a unique solution
(
αQ
r (t, T ;w);αQ

0 (t, T ;w)
)

.

(2) Moreover, the functions αQ
r (t, T ;w) and αQ

0 (t, T ;w) are continuous, positive and
right differentiable w.r.t. w.
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If furthermore Assumption 3.3 holds, and the deterministic function ΓQ(t, T ;w) is
chosen as follows1

ΓQ(t, T ;w) =

{
brα

Q
r (t+ τ, T ;w) for t0 ≤ t ≤ T − τ ,

brw for T − τ ≤ t ≤ T ,
(36)

then the generalized term structure for the one-dimensional fixed delay CIR model is
given by the function vQ (defined in (32)), i.e.,

EQ
[

e−
∫ T
t
r(u)du−wr(T )

∣∣∣∣Ft] = vQ(t, T, r(t), yQ(t, T ;w);w), (37)

where, for t0 ≤ t ≤ T ,

yQ(t, T ;w) =

∫ t

t−τ
brα

Q
r (u+ τ, T ;w)r(u)1[t0−τ,t−τ ](u)du. (38)

Before giving the proof, we make some observations.

Remark 4. In the framework of Remark 3, if Assumptions 2.1 and 3.3 hold, together
with the Feller condition (9) under P, the hypotheses of Theorem 3.2 hold under
the further condition that aQr , bQr and γQr (t) in (28) be positive and satisfy the Feller
condition (20), and therefore, replacing br with bQr , Theorem 3.5 can be applied. In
particular Theorem 3.5 can be applied if Assumptions 2.1, 3.3, and 3.4 hold, together
with the Feller condition (9) under P, with aQr , bQr and γQr (t) as in (27) without any
further assumption.

In accordance to (17), by (33) and (37), the term structure is a linear function
of r(t) and of the process yQ(t, T ; 0):

R(t, T ) =
1

T − t

[
αQ

0 (t, T ; 0) + αQ
r (t, T ; 0)r(t)

+

∫ t

t−τ
br α

Q
r (u+ τ, T ; 0) r(u)1[t0−τ,T−τ ](u)du

]
.

(39)

The previous formula extends the formula of the term structure in the classical CIR
model in which the rate R(t, T ) is affine function of r(t).

Proof of Theorem 3.5.
We start with some preliminary observations. Let r(t) and yQ(t, T ;w) be the stochastic
processes with dynamics described by (26) and (30), with ΓQ(t, T ;w) still to be chosen.

1Actually, the function ΓQ(t, T ;w) can assume whatever value for T − τ ≤ t ≤ T . The choice in (36) has been

made in order to make ΓQ(t, T ;w) a continuous function.
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The process yQ(t, T ;w) has stochastic differential given by

dyQ(t, T ;w) = ΓQ(t, T ;w)r(t)1[t0−τ,T−τ ](t)dt

− ΓQ(t− τ, T ;w) r(t− τ)1[t0−τ,T−τ ](t− τ)dt

= ΓQ(t, T ;w)r(t)1[t0−τ,T−τ ](t)dt− ΓQ(t− τ, T ;w) r(t− τ)1[t0,T ](t)dt,

(40)

and, by construction, the process yQ(t, T ;w), evaluated in t = T , is zero; actually,

yQ(T, T ;w) =

∫ T

T−τ
ΓQ(u, T ;w)r(u)1[t0−τ,T−τ ](u)du = 0,

for any choice of ΓQ(t, T ;w).
Define the process z(t) as follows

z(t) := e−
∫ t
t0
r(u)duvQ(t, T, r(t), yQ(t, T ;w);w), (41)

where vQ(t, T, r, y;w) is defined in (32), with αQ
0 (t, T ;w) and αQ

r (t, T ;w) nonnega-

tive and continuous in t, and such that αQ
0 (T, T ;w) = 0 and αQ

r (T, T ;w) = w, i.e.,
satisfy the boundary conditions (35). The idea is to show that the process z(t) is a Q-

martingale if the functions αQ
0 (t, T ;w) and αQ

r (t, T ;w) satisfy the system (34)-(35) and
ΓQ(t, T ;w) is defined as in (36). Indeed, if z(t) is a martingale, taking into account
that yQ(T, T ;w) = 0, and that therefore

z(T ) = e−
∫ T
t0
r(u)du−wr(T )−yQ(T,T ;w) = e−

∫ T
t0
r(u)du−wr(T ),

we get the result, observing that

z(t) = EQ [z(T )
∣∣Ft] = EQ

[
e−

∫ T
t0
r(u)du−wr(T )

∣∣∣∣Ft] t0 ≤ t ≤ T,

and that, by the definition (41) of z(t), we have

e−
∫ t
t0
r(u)duvQ

(
t, T, r(t), yQ(t, T ;w);w

)
= EQ

[
e−

∫ T
t0
r(u)du−wr(T )

∣∣∣Ft] ,
that is

vQ
(
t, T, r(t), yQ(t, T ;w);w

)
= EQ

[
e−

∫ T
t
r(u)du−wr(T )

∣∣∣Ft] .
The rest of the proof is devoted to show the martingale property of z(t). To this
end, an important observation is that, under Assumption 3.3, recalling Remark 3, the
process r(t) is integrable w.r.t. Q, as immediately follows by Proposition 2.3 with Q
instead of P.

11



The process z(t) (defined in (41)) has stochastic differential given by

dz(t) =d
(

e−
∫ t
t0
r(u)du

)
vQ
(
t, T, r(t), yQ(t, T ;w);w

)
+ e−

∫ t
t0
r(u)dudvQ

(
t, T, r(t), yQ(t, T ;w);w

)
. (42)

By Itô’s formula we obtain, for t0 ≤ t ≤ T ,

dz(t) =− r(t)z(t)dt+ z(t)
[
−
(
∂
∂tα

Q
0 (t, T ;w) + r(t) ∂∂tα

Q
r (t, T ;w)

)
dt

−αQ
r (t, T ;w)dr(t)− dyQ(t, T ;w) + 1

2σ
2
rr(t)(α

Q
r (t, T ;w))2dt

]
=− r(t)z(t)dt+ z(t)

[
−
(
∂
∂tα

Q
0 (t, T ;w) + r(t) ∂∂tα

Q
r (t, T ;w)

)
dt

−αQ
r (t, T ;w)

[
aQr (γQr (t)− r(t)) + brr(t− τ)

]
dt

−αQ
r (t, T ;w)σr

√
|r(t)|dWQ

r (t)

−ΓQ(t, T ;w)r(t)1[t0−τ,T−τ ](t)dt+ ΓQ(t− τ, T ;w)r(t− τ)1[t0,T ](t)dt

+1
2σ

2
r r(t)(α

Q
r (t, T ;w))2dt

]
.

If ΓQ is chosen as in (36), all the terms multiplying r(t− τ) disappear.
Then, the process z(t) is a local martingale if and only if the finite variation term
vanishes, i.e., if and only if, for t0 ≤ t ≤ T ,

− ∂
∂tα

Q
0 (t, T ;w)− ∂

∂tα
Q
r (t, T ;w)r(t)− r(t)− αQ

r (t, T ;w)[aQr (γQr (t)− r(t))]

− brαQ
r (t+ τ, T ;w)r(t)1[t0,T−τ ](t) + 1

2r(t)σ
2
r (α

Q
r (t, s;w))2 = 0.

(43)

Moreover, thanks to the previous observation on the integrability of r(t), the pro-

cess z(t) is a (square integrable) martingale if αQ
0 (u, T ;w) and αQ

r (u, T ;w) are non-
negative continuous functions; indeed, then 0 ≤ z(t) ≤ 1, and setting mr(t) :=

σrz(t)
√
|r(t)|αQ

r (t, T ;w), we have that

EQ
[∫ T

t0

|mr(t)|2dt
]
≤σ2

r max
t0≤u≤T

|αQ
r (u, T ;w)|2

∫ T

t0

EQ [|r(t)|] dt < +∞.

Gathering in (43) the terms multiplying r(t), we get the condition(
− ∂
∂tα

Q
r (t, T ;w) + aQr α

Q
r (t, T ;w)− brαQ

r (t+ τ, T ;w)1[t0,T−τ ](t)

1
2σ

2
r (α

Q
r (t, T ;w))2 − 1

)
r(t) +

(
− ∂
∂tα

Q
0 (t, T ;w)− aQr γQr (t)αQ

r (t, T ;w)
)

= 0.

Since the previous equation holds for all r(t) ≥ 0, the functions αQ
r (t, T ;w)

and αQ
0 (t, T ;w) solve the system (34) with the respective boundary conditions (35).

By Lemma A.3 (see Appendix A), with a = aQr , b = br, and σ = σr, the ordinary
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differential equation{
− d
dtαr(t) + aQr αr(t)− brαr(t+ τ)1[t0,T−τ ](t) + 1

2σ
2
rα

2
r(t)− 1 = 0,

αr(T ) = w,

has a unique solution αQ
r (t, T ;w), positive and right differentiable w.r.t w.

Consequently, also the following ordinary differential equation{
− d
dtα0(t)− aQr γQr (t)αr(t) = 0 for t0 ≤ t ≤ T ,

α0(T ) = 0,

has a unique solution αQ
0 (t, T ;w), given by

αQ
0 (t, T ;w) = aQr

∫ T

t
γQr (u)αQ

r (u, T ;w)du,

positive and right differentiable w.r.t w.

4. Instantaneous Forward Rate

Since very often the traders are interested to determine the future yield on a bond,
given by the instantaneous forward rate f(t, T ), we focus our interest on it.

The main result of this section states that if the spot rate is a fixed delay CIR
process r(t), and if the Assumptions 2.1, 3.3, and 3.4 hold, then the instantaneous
forward rate is a deterministic linear function of the process r(t) and another suitable
process ỹQ(t, T ; 0); that is

f(t, T ) := βQ
0 (t, T ; 0) + βQ

r (t, T ; 0)r(t) + ỹQ(t, T ; 0), (44)

where βQ
0 (t, T ; 0) and βQ

r (t, T ; 0) are deterministic functions (see Theorem 4.3 and the
subsequent Remark 5). Thus we obtain a generalization of the well-known property of
the classical CIR model ([6]).

More precisely ỹQ(t, T ; 0), βQ
0 (t, T ; 0) and βQ

r (t, T ; 0) are obtained by taking the partial

derivatives in w = 0 of yQ(t, T ;w), αQ
0 (t, T ;w) and αQ

r (t, T ;w), respectively (see (51)

and (53)). In Theorem 4.3 we show that βQ
0 (t, T ; 0) and βQ

r (t, T ; 0) are characterized
as the solution of a deterministic linear system of differential equations, and finally
the process ỹQ(t, T ; 0) has an alternative expression (see (57)).
We start by recalling the definition and some properties of the forward rate.
Let f(t, T, S) be the forward rate at time t for the expiry time T and maturity time S.
In an Arbitrage-free market, the following equality holds

eR(t,S)(S−t) = eR(t,T )(T−t)ef(t,T,S)(S−T ),
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so that

f(t, T, S) := − ln(B(t, S))− ln(B(t, T ))

S − T
. (45)

Definition 4.1. The instantaneous forward rate (or shortly forward rate) at time t
with maturity time T > t, f(t, T ) is defined by

f(t, T ) = lim
S→T

f(t, T, S) = − ∂

∂T
(logB(t, T )) = − 1

B(t, T )

∂

∂T
B(t, T ). (46)

It corresponds to the instantaneous interest rate that one can contract at time t,
on a risk-less loan that begins at the date T and is returned on a date later than T .
By (46), we can computed the price of a uZCB as a functional of the instantaneous
forward rate; that is,

B(t, T ) = e−
∫ T
t
f(t,u)du. (47)

Proposition 4.2. Let the spot rate be a nonnegative process r(t). Assume that the
process r(t) is integrable and uniformly in bounded intervals, then in order to ensure
that this financial market satisfies the no-arbitrage condition, the following condition
holds

f(t, T ) =

EQ
[
r(T )e−

∫ T
t
r(u)du

∣∣∣∣Ft]
EQ
[

e−
∫ T
t
r(u)du

∣∣∣∣Ft] . (48)

Furthermore the numerator in the previous equation, can be evaluated as

EQ
[
r(T )e−

∫ T
t
r(u)du

∣∣∣∣Ft] = − ∂

∂w+
EQ
[

e−
∫ T
t
r(u)du−wr(T )

∣∣∣∣Ft] ∣∣∣∣
w=0

. (49)

Proof. Taking into account that f(t, T ) is Ft-measurable, the equality (48) is equiv-
alent to

EQ
[
f(t, T )e−

∫ T
t
r(u)du

∣∣∣∣Ft] = EQ
[
r(T )e−

∫ T
t
r(u)du

∣∣∣∣Ft] . (50)

Observing that, by (47) and (19),

B(t, T )
e−

∫ T+h

T
f(t,u)du − 1

h
=
B(t, T + h)−B(t, T )

h

= EQ

[
e−

∫ T
t
r(u)du e−

∫ T+h

T
r(u)du − 1

h

∣∣∣∣Ft
]
,

and letting h → 0+, the left-hand side converges to B(t, T )f(t, T ), and the right-

hand side converges to EQ
[
r(T )e−

∫ T
t
r(u)du

∣∣∣∣Ft]. The latter limit holds thanks to the

14



observation that, r(t) being nonnegative,∣∣∣∣∣e− ∫ T
t
r(u)du e−

∫ T+h

T
r(u)du − 1

h

∣∣∣∣∣ ≤ sup
T≤u≤T+1

r(u), for all 0 ≤ h ≤ 1,

and the integrability condition on r(t).
Similarly we get

∂

∂w+
EQ
[

e−
∫ T
t
r(u)du−wr(T )

∣∣∣∣Ft] = −EQ
[
r(T )e−

∫ T
t
r(u)du−wr(T )

∣∣∣∣Ft] ,
and therefore, taking w = 0, we get (49).

To obtain formula (44), we need a representation formula for the numerator of (48).
In this regard, as we have seen in the previous section (see Theorem 3.5), if the spot
rate r(t) is a fixed delay CIR process, we can represent

EQ
[

e−
∫ T
t
r(u)du−wr(T )

∣∣∣∣Ft] = vQ(t, T, r(t), yQ(t, T ;w);w),

where the function vQ(t, T, r, y;w) is defined in (32). Then accordingly to (49) in
Proposition 4.2, for all T fixed, we can represent

EQ
[
r(T )e−

∫ T
t
r(u)du−wr(T )

∣∣∣∣Ft] = − ∂

∂w+
vQ(t, T, r(t), yQ(t, T ;w);w) t ∈ [t0, T ],

where yQ(t, T ;w) is the process defined in (30).
As we will prove below, the main observation is that the left-hand side of the previous
equality can be expressed as a function ṽQ(t, T, r, y, ỹ;w) (see its expression in (52)),
evaluated in (r, y, ỹ) = (r(t), yQ(t, T ;w), ỹQ(t, T ;w)), where ỹQ(t, T ;w) is

ỹQ(t, T ;w) =
∂

∂w+
yQ(t, T ;w) =

∫ t

t−τ

∂

∂w+
ΓQ(u, T ;w)r(u)1[t0−τ,t−τ ](u)du

(thanks to the expression (36) of ΓQ(t, T ;w))

=

∫ t

t−τ
br

∂

∂w+
αQ
r (u+ τ, T ;w)r(u)1[t0−τ,t−τ ](u)du, (51)

The function ṽQ is given by

ṽQ(t, T, r, y, ỹ;w) =

{(
βQ

0 (t, T ;w) + rβQ
r (t, T ;w) + ỹ

)
e−α

Q
0 (t,T ;w)−αQ

r (t,T ;w)r−y, t < T,

(r + ỹ)e−wr−y, t = T,

(52)
where we have set

βQ
0 (t, T ;w) =

∂

∂w+
αQ

0 (t, T ;w), βQ
r (t, T ;w) =

∂

∂w+
αQ
r (t, T ;w). (53)
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Indeed, for t < T

ṽQ(t, T, r(t), yQ(t, T ;w), ỹQ(t, T ;w);w) = − ∂
∂w+ v

Q(t, T, r(t), yQ(t, T ;w);w)

=vQ(t, T, r(t), yQ(t, T ;w);w)
(

∂
∂w+α

Q
0 (t, T ;w) + r(t) ∂

∂w+α
Q(t, T ;w) + ∂

∂w+ y
Q(t, T ;w)

)
=vQ(t, T, r(t), yQ(t, T ;w);w)

(
βQ

0 (t, T ;w) + r(t)βQ(t, T ;w) + ỹQ(t, T ;w)
)
,

while for t = T

ṽQ(T, T, r(T ), yQ(T, T ;w), ỹQ(T, T ;w);w) = − ∂
∂w+ v

Q(T, T, r(T ), yQ(T, T ;w);w)

=vQ(T, T, r(T ), yQ(T, T ;w);w)(r(T ) + ỹQ(T, T ;w)).

Observe that, since yQ(T, T ;w) = 0 and ỹQ(T, T ;w) = 0 for all w, the latter formula
coincides with vQ(T, T, r(T ), 0;w)r(T ), from which one can reobtain the obvious
identity f(T, T ) = r(T ).

With the following theorem, we characterize the functions βQ
0 (t, T ;w)

and βQ
r (t, T ;w) as the solutions of a system of linear differential equations.

Theorem 4.3. Let the risk-free interest rate r(t) be the process described by (26),

under the probability measure Q. Let αQ
0 (t, T ;w), αQ

r (t, T ;w) be the continuous so-
lution of system (34)-(35). Assume that the deterministic function ΓQ(t, T ;w) is
chosen as in (36). Then, under Assumptions 2.1, 3.3 and 3.4, we have that, for

all w ∈
[
0,

√
(aQr )2+2σ2

r−aQr
σ2
r

)
,

(1) the following linear differential system

d
dtβr(t) =

(
σ2
rα

Q
r (t, T ;w) + aQr

)
βr(t) for T − τ ≤ t ≤ T

d
dtβr(t) =

(
σ2
rα

Q
r (t, T ;w) + aQr

)
βr(t)− brβr(t+ τ) for t0 ≤ t ≤ T − τ

d
dtβ0(t) = −aQr γQr (t)βr(t) for t0 ≤ t ≤ T

(54)
with the boundary conditions

βr(T ) = 1,

βr(T − τ) = βr((T − τ)+),

β0(T ) = 0,

(55)

has a unique solution with components βQ
r (t, T ;w) and βQ

0 (t, T ;w), coinciding
with the functions defined in (53);

(2) the functions βQ
r (t, T ;w) and βQ

0 (t, T ;w) are continuous and positive;
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(3) the following representation formula holds:

EQ
[
r(T )e−

∫ T
t
r(u)du−wr(T ) |Ft

]
= ṽQ(t, T, r(t), yQ(t, T ;w), ỹQ(t, T ;w);w)

=
(
βQ

0 (t, T ;w) + r(t)βQ
r (t, T ;w) + ỹQ(t, T ;w)

)
·

· e−α
Q
0 (t,T ;w)−αQ

r (t,T ;w)r(t)−yQ(t,T ;w),

(56)

where, for t0 ≤ t ≤ T , yQ(t, T ;w) is given in (38), and

ỹQ(t, T ;w) =

∫ t

t−τ
brβ

Q
r (u+ τ, T ;w)r(u)1[t0−τ,t−τ ](u)du. (57)

Remark 5. The announced linear representation (44) of the instantaneous forward
rate now can be easily derived. Indeed, under the assumptions of Theorem 4.3, (44)
follows by the definition (48) of the instantaneous forward rate, together with (56),
(37), and (32), all evaluated in w = 0.

Furthermore, as a direct consequence of (47), we can also represent the zero-coupon
bond price with the following relation

B(t, T ) = e−
∫ T
t [βQ

0 (t,u;0)+r(t)βQ
r (t,u;0)+ỹQ(t,u;0)]du. (58)

Proof of Theorem 4.3. We prove only points 1. and 2. since thanks to (52) and (53),
the point 3. immediately follows.
Right-differentiating with respect to the variable w, the first equation of system (34),
we obtain for T − τ ≤ t ≤ T

∂
∂w+

(
∂
∂tα

Q
r (t, T ;w)

)
= σ2

rα
Q
r (t, T ;w) ∂

∂w+α
Q
r (t, T ;w) + aQr

∂
∂w+α

Q
r (t, T ;w)

=
(
σ2
r α

Q
r (t, T ;w) + aQr

)
∂

∂w+α
Q
r (t, T ;w).

Then, formally, by the first definition in (53), we have

∂
∂tβ

Q
r (t, T ;w) =

(
σ2
r α

Q
r (t, T ;w) + aQr

)
βQ
r (t, T ;w).

A rigorous proof of the above equation can be achieved by standard results on ordinary
differential equations, depending on a parameter, under global Lipschitz conditions,
thanks to Remark 7 (see Appendix A). Solving this equation with the boundary con-
dition

βQ
r (T, T ;w) = ∂

∂w+α
Q
r (T, T ;w) = 1,

we obtain that the unique solution is given by

βQ
r (t, T ;w) = e−

∫ T
t (σ2

r α
Q
r (u,T ;w)+aQr )du, for T − τ ≤ t ≤ T , (59)

which is positive. Similarly we get

∂
∂tβ

Q
r (t, T − τ ;w) =

(
σ2
rα

Q
r (t, T ;w) + ar

)
βQ
r (t, T − τ ;w)

− brβQ
r (t+ τ, T ;w), for t0 ≤ t ≤ T − τ ,

(60)
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with the boundary condition given by the solution of (59), evaluated in t = T − τ ; the
unique solution is given by

βQ
r (t, T − τ ;w) = βQ

r (t, T ;w) + br

∫ T−τ

t
e−

∫ s
t (σ2

rα
Q
r (u,T ;w)+aQr )duβQ

r (s+ τ, T ;w)ds,

(61)

and is positive. The same procedure applies to the third equation of the system (34),

and recalling the definition (53), of βQ
0 (t, T ;w), we obtain the equation

∂

∂t
βQ

0 (t, T ;w) = −aQr γQr (t)βQ
r (t, T ;w) for t0 ≤ t ≤ T , (62)

with boundary condition

βQ
0 (T, T ;w) = ∂

∂w+α
Q
0 (T, T ;w) = 0.

The unique solution of Eq. (62) is positive and is given by

βQ
0 (t, T ;w) = aQr

∫ T

t
γQr (u)βQ

r (u, T ;w)du. (63)

Appendix A.

Proof of Theorem 3.2 (see page 6).
Since the P-parameters satisfy the Feller condition, the solution the process r(t) is
positive for all t > t0; consequently, the process ξr(t, r(·)) in (22) is a well-defined
continuous process. Therefore, we can define the nonnegative supermartingale given
by Zt = 1, when t ≤ t0, and

Zt := exp

{
−
∫ t

t0

ξr(s, r(·)) dW P(s)− 1

2

∫ t

t0

ξ2
r (s, r(·)) ds

}
, t ∈ [t0, T ].

If Zt is a P-martingale then, as usual, one can define the probability measure Q
on FT , so that

dQ = ZT dP.

By Girsanov theorem

WQ
r (t) := W P(t) +

∫ t

t0

ξr(s, r(·)) ds, t ∈ [t0, T ], (A1)
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is a Brownian motion, under Q and

r(t) = r0(t), t ∈ [t0 − τ, t0],

r(t) = r0(t0) +

∫ t

t0

µQ(s, r(·))ds+

∫ t

t0

σr
√
r(s) dWQ

r (s), t ∈ [t0, T ],

and the thesis is achieved.
The process Zt is a martingale if and only if

EP[ZT ] = 1. (A2)

In order to prove (A2), we define the process r̃(t) on the probability
space (Ω,F , {Ft},P), as the strong solution of the following SDDE

r̃(t) = r0(t0) +

∫ t

t0

µQ(s, r̃(s))ds+

∫ t

t0

σr
√
r̃(s) dW P

r (s), t ∈ [t0, T ],

r̃(t) = r0(t), t ∈ [t0 − τ, t0],

(A3)

By hypotheses, the distribution of r̃(t) is unique (see Remark 1). Since
the Q-parameters also satisfy the Feller condition, the following process

ξr(t, r̃(·)) :=
µP(t, r̃(·))− µQ(t, r̃(·))

σr
√
r̃(t)

=
arγr(t)− aQr γQ(t)− (ar − aQr )r̃(t) + (br − bQr )r̃(t− τ)

σr
√
r̃(t)

is well defined and with continuous paths, as well as the process ξr(t, r(·)). Therefore,
if we denote by τn and τ̃n the stopping times

τn(ω) = inf{t > t0 : |ξr(t, r(·))| ≥ n} ∧ T, τ̃n(ω) = inf{t > t0 : |ξr(t, r̃(·))| ≥ n} ∧ T,

then we get

lim
n→∞

P(τn = T ) = lim
n→∞

P(τ̃n = T ) = 1.

For any n ≥ 1, we can define

ξ(n)
r (t) := ξr(t, r(·)) 1{t≤τn}

so that ∫ t

t0

|ξ(n)
r (s)|2 ds ≤ n2(t− t0).

For each n, the process satisfies the Novikov condition

EP
[
exp

{
1

2

∫ T

t0

|ξ(n)
r (s)|2 ds

}]
≤ exp{n

2(T−t0)
2 } <∞,

19



and, it follows that, for each n ≥ 1, the process defined by

Z
(n)
t := exp

{
−
∫ t

t0

ξ(n)
r (s) dW P

r (s)− 1

2

∫ t

t0

|ξ(n)
r (s)|2 ds

}

is a P-martingale such that EP[Z
(n)
t ] = 1 for all t ≤ T . Consequently, we can define a

probability measure Q(n), on FT as follows

dQ(n) = Z
(n)
T dP.

Since P(τn = T )→ 1, and the sequence τn is monotone increasing, we have that

Z
(n)
T 1{τn=T} = ZT 1{τn=T} ↗ ZT , P− a.s.

By Beppo-Levi’s monotone convergence theorem and the definition of Q(n), we have
that

EP[ZT ] = lim
n→∞

EP[Z
(n)
T 1{τn=T}] = lim

n→∞
EQ(n)

[ 1{τn=T}] = lim
n→∞

Q(n)(τn = T ). (A4)

Moreover, by Girsanov theorem

W (n)
r (t) := W P

r (t) +

∫ t

t0

ξ(n)
r (s) ds, t ∈ [t0, T ]

is a Browniam motion under the measure Q(n) and

r(t) = r0(t0) +

∫ t

t0

µ(n)(s, r(·))ds+

∫ t

t0

σr
√
r(s) dW (n)

r (s), t ∈ [t0, T ],

with

µ(n)(s, r(·)) = µP(s, r(·))− σr
√
r(s) ξ(n)

r (s)

= µP(s, r(·))− (µP(s, r(·))− µQ(s, r(·))) 1{s≤τn}

= µP(s, r(·)) 1{s>τn} + µQ(s, r(·)) 1{s≤τn}.

and therefore

r(t ∧ τn) = r0(t0) +

∫ t∧τn

t0

µ(n)(s, r(·))ds+

∫ t∧τn

t0

σr
√
r(s) dW (n)

r (s), t ∈ [t0, T ]

= r0(t0) +

∫ t∧τn

t0

µQ(s, r(·))ds+

∫ t∧τn

t0

σr
√
r(s) dW (n)

r (s), t ∈ [t0, T ].

Consequently, by the already observed weak uniqueness for the SDDE (A3), the joint
probability laws of

(
{r(t∧τn)}t∈[t0,T ], τn

)
under Q(n) and

(
{r̃(t∧τ̃n)}t∈[t0,T ], τ̃n) under P

are equal. Then by (A4),

EP[ZT ] = lim
n→∞

Q(n)(τn = T ) = lim
n→∞

P(τ̃n = T ) = 1.
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Hence Q is equivalent to P.

Lemma A.1. Consider the following Riccati equation{
ϕ′(t) = 1

2σ
2ϕ2(t) + aϕ(t)− (1 + bg(t)), t ∈ (−∞, T )

ϕ(T ) = ψ,
(A5)

where the parameter a, b and σ are positive constants, g(t) is a continuous and non-
negative function, and ψ ≥ 0.
Then, in (−∞, T ], Eq. (A5) has a unique solution

ϕ(t) = Φ(t, T ;w, g(·)),

which is positive in (−∞, T ). Moreover if the function g(t) = γ is a nonnegative
constant, then the solution is ϕ(t) = Φ(t, T ;ψ, γ), where, for t ∈ (−∞, T ],

Φ(t, T ;ψ, γ) :=

k(γ)−a
σ2

(
ψ + a+k(γ)

σ2

)
+ a+k(γ)

σ2

(
ψ + a−k(γ)

σ2

)
e−k(γ)(T−t)(

ψ + a+k(γ)
σ2

)
+
(
k(γ)−a
σ2 − ψ

)
e−k(γ)(T−t)

, (A6)

with

k(x) =
√
a2 + 2(1 + bx)σ2, x ≥ 0. (A7)

Proof. It is well-known that any equation of the Riccati type can always be reduced
to the second order linear ODE in [0,+∞) (see, e.g., Polyanin and Zaitsev [16]) by a
suitable substitution. In our case the substitution is

z(s) = e
σ2

2

∫ T
T−s ϕ(u) du, (A8)

and the equation is{
z′ ′(s) = (1 + bg(T − s))σ2

2 z(s)− az
′(s), s ∈ (0,∞)

z(0) = 1, z′(0) = σ2

2 ψ.
(A9)

Since Eq (A9) has continuous coefficients (and hence bounded on every bounded in-
terval), existence and uniqueness follow by standard results.

Formally, by (A8),

ϕ(t) =
2

σ2

z′(T − t)
z(T − t)

, t ∈ (−∞, T ),

the final condition ϕ(T ) = ψ being obviously satisfied. The above solution is well
defined and positive in (−∞, T ) under the (sufficient) condition that z(s) and z′(s)
are positive in (0,∞).
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To prove that the unique solution z(s) is positive in (0,∞), together with its deriva-
tive z′(s), we compare Eq. (A9) with the following differential equation{

z′ ′0 (s) = σ2

2 z0(s)− az′0(s),

z0(0) = 1, z′0(0) = σ2

2 w,
(A10)

where 0 ≤ w ≤ ψ, i.e., Eq. (A9), with g(t) = 0 and a (possibly) different initial
condition.
Eq. (A10) has a unique solution z0(s)

z0(s) =
σ2w + a+ k

2k
e
k−a
2
s +
−σ2w − a+ k

2k
e−

k+a

2
s,

where k =
√
a2 + 2σ2 = k(0). The solution z0(s) is positive in (0,∞), together with

its derivative

z′0(s) =
σ2w + a+ k

2k

k − a
2

e
k−a
2
s − −σ

2w − a+ k

2k

k + a

2
e−

k+a

2
s,

indeed, for s ∈ (0,∞), z′0(s) > z′0(0) = σ2

2 w ≥ 0. Moreover, setting

f(s, x, p) = (1 + bg(T − s))σ
2

2
x− ap,

and

Pfu(s) = u′′(s)− f(s, u(s), u′(s)), for u(·) ∈ C2(0,∞),

so that

Pfz0(s) = −bg(T − s)z0(s), and Pfz(s) = 0,

we can use the Comparison Theorem 3.XVI in Walter [18] (see p. 139, and in particular
inequalities (a’) and (b) therein), and assert that

z(s) ≥ z0(s) > 0, z′(s) ≥ z′0(s) > 0, s ∈ (0,∞).

Then by (A8),

ϕ(t) =
2

σ2

z′(T − t)
z(T − t)

≥ 0, t ∈ (−∞, T ], ϕ(t) > 0, t ∈ (−∞, T ),

i.e., the Riccati equation (A5) with final condition ϕ(T ) = ψ has a unique and positive
solution in t ∈ (−∞, T ).

Finally, in the case g(t) = γ > 0, Eq. (A9) is obtained by replacing σ2 with (1 +
bγ)σ2, and w with ψ in Eq. (A10), so that z(s) and z′(s) are obtained by replacing k
with k(γ) in the explicit expressions z0(s) and z′0(s).
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Remark 6. The solution z(t) of Eq. (A9) depends on the parameter ψ, and has partial
derivatives w.r.t. ψ. Therefore also the solution ϕ(t) has partial derivatives w.r.t. ψ.
Similarly, if the function g(·) in the previous Lemma A.1 depends on a parameter µ, i.e.,
if we consider g(t, µ), jointly continuous, with continuous partial derivative w.r.t. µ,
then, by standard results on differentiability with respect to real parameters (see, e.g.
Theorem 13.VI, p. 151 in Walter [18]), the solution depends also on the parameter µ,
and has partial derivatives w.r.t. µ and ψ.

When g(t) is a nonnegative uniformly bounded function, one can obtain an up-
per bound for the solution ϕ(t) of Eq. (A5), under suitable hypotheses on the final
condition ψ, as shown in the following result.

Lemma A.2.
Assume that

0 ≤ g ≤ g1(t) ≤ g2(t) ≤ g, and 0 ≤ ψ ≤ ψ1 ≤ ψ2 ≤ ψ. (A11)

Denote by

ϕ(t) = Φ(t, T ;ψ, g), ϕ(t) = Φ(t, T ;ψ, g),

ϕ1(t) = Φ(t, T ;ψ1, g1(·)), ϕ2(t) = Φ(t, T ;ψ2, g2(·)),

the positive solutions of the Riccati Equation (A5) with

g(t) = g, g1(t), g2(t), g, and ψ = ψ, ψ1, ψ2, ψ,

respectively.
Then, for t ≤ T ,

ψ ∧
k(g)− a
σ2

≤ ϕ(t) ≤ ϕ1(t) ≤ ϕ2(t) ≤ ϕ(t) ≤ ψ ∨ k(g)− a
σ2

. (A12)

Proof. First of all we observe that when g(t) = γ the solutions ϕ(t) of the Riccati
equation (A5) are decreasing, constant, or increasing in t ∈ (−∞, T ], when the final

condition ψ is less than, equal to, or greater than k(γ)−a
σ2 , respectively, as can be easily

deduced from the explicit expression ϕ(t) = ϕ(t, T ;ψ, γ) (see (A6)).
Therefore

ψ ∧ k(γ)− a
σ2

≤ Φ(t, T ;ψ, γ) ≤ ψ ∨ k(γ)− a
σ2

, t ∈ (−∞, T ], (A13)

and the first inequality in (A12) is immediately achieved, together with the last one.
The other inequalities in (A12) can be achieved by standard comparison theorems

(see, e.g., Theorem 9.IX and its Corollary in Walter [18] (see p. 96): focusing on the
solutions ϕ1(t) and ϕ2(t), it is sufficient to note that ϕ1(T ) ≤ ϕ2(T ) by (A11), and
that P2ϕ1(t) = b[g2(t) − g1(t)] ≥ 0 = P2ϕ2(t) in (−∞, T ], where P2ϕ(t) = ϕ′(t) −
F (ϕ(t))+bg2(t), where F is the locally Lipschitz function F (x) = 1

2 σ
2 x2 +ax−1.
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Lemma A.3. Let a, b and σ be constants with a, σ > 0, and b ≥ 0. Let w ∈[
0, k(0)−a

σ2

)
, where the function k(x) is defined as in (A7) of Lemma A.1. Then the

sequence of ordinary differential equations so defined
d
dtϕ0(t) = 1

2σ
2ϕ2

0(t) + aϕ0(t)− 1

for T − τ ≤ t ≤ T ,

ϕ0(T ) = w,

(A14)

and
d
dtϕj(t) = 1

2σ
2ϕ2

j (t) + aϕj(t)− 1− b ϕj−1(t+ τ)

for T − (j + 1)τ ≤ t ≤ T − jτ ,
ϕj(T − jτ) = ϕj−1((T − jτ)+).

(A15)
has a unique solution {ϕj(t, T ;w), j ≥ 0}.
Morever, setting

γ := sup
t∈[t0,T ]

γ(t), w0 :=
k(0)− a
σ2

∨ γ, wj+1 := wj ∨
k(wj)− a

σ2
, j ≥ 0,

ϕ(t) = Φ(t, T ;w, 0), for t ∈ [t0, T ],

and

ϕj(t) = Φ(t, T − jτ ;wj , wj), for t ∈ [T − (j + 1)τ, T − jτ ],

the solutions satisfy the following inequalities

w ≤ ϕ(t) ≤ ϕj(t, T ;w) ≤ ϕj(t) ≤ wj+1 j ≥ 0, for T − (j + 1)τ ≤ t ≤ T − jτ ,

Furthermore the solutions are right-differentiable w.r.t. w.

Proof. The result is achieved by induction with the following steps:

(1) Since ϕ0(t, T ;w) = ϕ(t), for T − τ ≤ t ≤ T , all the statements hold for j = 0,
by the following chain of inequalities

w = w ∧ k(0)− a
σ2

≤ k(0)− a
σ2

≤ w0 ≤ w0 ∨
k(w0)− a

σ2
= w1,

the previous Lemma A.1, Lemma A.2, with g = g1(t),= g2(t) = 0, g = w0,

ψ = ψ1 = ψ2 = w, ψ = w0, and Remark 6.
(2) For j ≥ 1, in the interval [T − (j+ 1)τ, T − jτ), the j− th differential equation is

d

dt
ϕ(t) = F (ϕ(t))− bg(t, w), (A16)

with F (x) = 1
2 σ

2 x2 + ax− 1, g(t, w) = ϕj−1(t+ τ, T ;w), and final condition

ϕj(T − jτ, T ;w) = ϕj−1((T − jτ)+, T ;w).
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By Lemma A.1, we can write

ϕj(t, T ;w) = Φ
(
t, T − jτ ;ϕj−1((T − jτ)+, T ;w), ϕj−1(·+ τ, T ;w)

)
, j ≥ 1.

In the same interval ϕ(t) satisfies the same equation (A16) with g(t, w) = 0
and final condition ϕ(T − jτ); similarly ϕj(t) satisfies the same equation with
g(t, w) = wj , and final condition wj .

(3) Assuming that the statements hold for j − 1, the final condition of the j − th
system is such that

w ≤ ϕ(T −jτ) ≤ ϕj(T −jτ, T ;w) = ϕj−1((T −jτ)+, T ;w) ≤ ϕj−1(T −jτ) ≤ wj ,

and furthermore

0(≤ w) ≤ ϕj−1(t+ τ, T ;w) ≤ wj .

Then
(i) the inequalities hold for j, by applying the previous Lemma A.1, Lemma A.2 with
T replaced by T − jτ , and

g = 0, g = wj , ψ = ϕ(T − jτ), ψ = wj ,

g1(t) = g2(t) = ϕj−1(t+ τ, T ;w), ψ1 = ψ2 = ϕj−1((T − jτ)+, T ;w),

so that ϕ1(t) = ϕ2(t) = ϕj(t, T ;w);
(ii) the differentiability properties follow by Remark 6, taking into account the induc-
tion step.

Remark 7. The differential system (34) has locally Lipschitz coefficients, neverthe-

less, when w ∈ [0, k(0)−a
σ2 ), it is equivalent to a differential system with globally Lips-

chitz coefficients, thanks to the previous Lemma A.3:
The nondecreasing sequence {wj , j ≥ 0} in the previous Lemma A.3 has a finite
limit L, since

x ∨ k(x)− a
σ2

=

{
k(x)−a
σ2 x ∈ [0,

b−a+
√

(b−a)2+2σ2

σ2 ]

x otherwise.

and therefore the functions αQ
r (t, T ;w) ∈ [0, L], for all w ∈ [0, k(0)−a

σ2 ), and t ≤ T .
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