
Optimization techniques for large scale finite sum
problems

Scuola di Scienza e Tecnologia dell’informazione e delle comunicazioni

Dottorato di Ricerca in Automatica Bioingegneria e Ricerca Operativa –
XXXII Ciclo

Candidate

Tommaso Colombo
ID number 1308415

Thesis Advisor

Prof. Stefano Lucidi

Co-Advisor

Prof. Alberto De Santis

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Automatica Bioingegneria e
Ricerca Operativa

October 31, 2019

Thesis defended on February 21, 2020
in front of a Board of Examiners composed by:

Prof. Gianluca Antonelli, Prof. Luca Faes, Prof. Marco Sciandrone (chairman)

Optimization techniques for large scale finite sum problems
Ph.D. thesis. Sapienza – University of Rome

© 2019 Tommaso Colombo. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: March 17, 2020

Author’s email: tommaso.colombo@uniroma1.it

mailto:tommaso.colombo@uniroma1.it

3

Abstract

With the explosion of machine learning and artificial intelligence applications, the need for op-
timization methods specialized in the training of such models has been steadily growing for the last
10-20 years. Indeed, given the big data regime and the special structure of the optimization problems
to be solved in these settings, a number of new, efficient optimization methods have been developed.

A large amount of these new methods strongly rely on the finite sum structure of the objective
function to be minimized, namely on the fact that the function f can be written as f (w)= 1

N ∑
N
i=1 fi(w),

where the indices i= 1, . . . ,N often refer to the availability of N input-output pairs on which the model
should be trained, i.e. the training set. Nevertheless, this is not the only application where a finite sum
structure of the objective function appears. Indeed, beyond the training of Neural Networks (NN) and
Support Vector Machines (SVM), which depend by definition on a dataset of input-output pairs, a
finite sum structure can also be recognized in Reinforcement Learning (RL) applications, due to the
need of estimating expected values by sample approximation. In all these cases, N is usually huge,
in the order of millions, or even billions, therefore making the exact computation of the function and
gradient infeasible for many real life applications.

This is one of the reasons why the field has seen a flourishing of publications from the most di-
verse communities, beyond the operations research one, for example the dynamical control, computer
science, stochastic optimization ones. Many new methods have been developed by these communi-
ties, both deterministic and stochastic algorithms, although their comparison is made difficult by the
different approaches coming from the different communities the new algorithms belong to.

Due to the above considerations, the focus of this dissertation is on how to solve optimization
problems where the function is structured as a finite sum of component functions. In this finite sum
setting, a function fi can be referred to as a component function, and its gradient ∇ fi as a component
gradient.

In particular, a deep investigation of the algorithms developed so far to solve such problems is
carried on, with a specific interest in showing the similarities and differences of the convergence
analysis when it is developed in the deterministic vs stochastic cases. The target of the investigation
is the case when the component gradients are continuously differentiable, and easily computable, like
in many machine learning settings (e.g., neural networks training).
In this framework, dynamic minibatching schemes are addressed. These are employed to determine
the size of the sample to be used during the optimization process, especially in gradient-based meth-
ods, when the gradient is estimated by subsampling the component gradients, namely, when it is
estimated based on a subset of the indices {1, . . . ,N}. The aim of dynamic minibatching schemes is
to dynamically test the quality of the gradient approximation, and consequently suggest if the sample
size should grow or not. A new technique is proposed, based on statistical analysis of the gradient
estimates. The new technique is based on the well-known Analysis of Variance (ANOVA) test, and
the convergence of a subsampled gradient-based method is proved when such technique is employed.
Numerical experiments are reported on standard machine learning tasks, like (nonlinear) regression
and binary classification.

Then, the derivative free setting is explored, i.e. the setting where the component functions come
from a black-box-like process and the component gradients are not directly available. An example
of such setting is policy optimization for reinforcement learning, where only sample approximations
of the stochastic reward function are available. Therefore, in literature, Derivative Free Optimization
(DFO) methods have been applied to solve this problem, in particular by trying to estimate the gradient
by computing only sample approximations of the function. An analysis of the convergence guaran-

4

tees of stochastic optimization methods in this setting is performed, showing that approximating the
gradient by only computing sample-based estimates of the function brings a further approximation
error, leading to poorer theoretical results. The special case of policy optimization for reinforcement
learning is analysed, showing that such application is even harder, since the sample approximation of
the function, in general, does not have continuity guarantees.

Finally, a new class of distributed algorithms is introduced to solve linearly constrained, convex
problems, with potential application to the dual formulation of the support vector machines train-
ing problem. This employs augmented Lagrangian and primal-dual theory to develop a simple, dis-
tributable and parallelizable class of algorithms to solve convex problems with simple bound and hard
(i.e. coupling all the variables), linear constraints. Such class of algorithms is of particular interest for
training support vector machines, since it allows to fully distribute the data, i.e. the input-output pairs,
to the available parallel processes, simplifying the (often infeasible) storage of such large amount of
data.

5

Acknowledgments

The author wants to thank Stefano Lucidi and Alberto De Santis, for the daily support and fundamental
advise during these 3 years.

Special thanks to Laura Palagi and Simone Sagratella for the fruitful research carried on together.

7

Contents

1 The finite sum problem 9
1.1 Neural Networks training problem . 9
1.2 Policy optimization problem for Reinforcement Learning 11
1.3 Support Vector Machines training problem . 14

2 General assumptions, definitions and preliminaries 17

3 Optimization for large-scale unconstrained finite sum problems 19
3.1 Deterministic setting . 21

3.1.1 Incremental Gradient method . 27
3.1.2 Incremental Aggregated Gradient method 32
3.1.3 Double Incremental Aggregated Gradient method 34

3.2 Stochastic setting . 36
3.2.1 Stochastic Gradient method . 43
3.2.2 Stochastic Average Gradient method . 44
3.2.3 Finito method . 45
3.2.4 Stochastic Variance Reduced Gradient method 47
3.2.5 SAGA method - a bridge between SAG and SVRG 49

3.3 Comments on the convergence properties of the two settings 50

4 New dynamic batching techniques based on the Fisher test 55
4.1 Motivation . 55
4.2 Introduction and literature review . 56
4.3 The Fisher test for dynamic batching . 60
4.4 Theoretical analysis . 63
4.5 Implementation details . 67

4.5.1 How to leverage input data information . 68
4.6 Numerical experiments . 72

4.6.1 Experimental setup . 72
4.6.2 Results and discussion . 73

4.7 Conclusions and future developments . 74
4.8 Appendix - Complete numerical results . 76

5 DFO approaches for policy optimization in RL 81
5.1 Introduction and motivation . 81

5.1.1 Brief outline of reinforcement learning . 81
5.1.2 DFO algorithms for policy optimization . 83

8 CONTENTS

5.2 Preliminary analysis . 88
5.2.1 Gaussian smoothing . 89
5.2.2 Finite differences . 91

5.3 Convergence analysis of a stochastic DFO method 92
5.3.1 Fixed sample size . 92
5.3.2 Dynamic batching . 94

5.4 Preliminary experiments . 96
5.5 Discussion and future directions . 102

5.5.1 The optimization landscape . 102
5.5.2 Future directions . 104

6 Distributed algorithms for linearly constrained convex problems 105
6.1 Introduction and motivation . 105
6.2 Distributed algorithms for convex problems with linear coupling constraints 109
6.3 Convergence analysis . 112
6.4 Distributed implementation . 117
6.5 Numerical experiments . 119

7 DNN and SVM to detect postural diseases 121
7.1 Introduction . 121
7.2 Data analysis and preprocessing . 123

7.2.1 Rasterstereography acquisition of data . 123
7.2.2 Data preprocessing . 124
7.2.3 Feature selection procedure . 125

7.3 Results and discussion . 131
7.3.1 Classification models . 131
7.3.2 Performance measures . 133
7.3.3 Classifiers tuning and training . 134
7.3.4 Performance of unsupervised classifiers . 135
7.3.5 Performance of supervised classifiers . 135

7.4 Clinical comments and conclusion . 138
7.4.1 Clinical comments . 138
7.4.2 Conclusion . 139

9

Chapter 1

The finite sum problem

The subject of this dissertation is the solution of the so-called finite sum problem, i.e.

min
w∈Rd

{
f (w) =

1
N

N

∑
i=1

fi(w)

}
, (1.1)

where fi : Rd → R, i = 1, . . . ,N, are named the component functions and N is huge, namely in the
order of millions, or even billions.

In Machine Learning (ML), the training phase of three very well-known models need to solve an
optimization problem like problem 1.1: Neural Networks (NN), Reinforcement Learning (RL) and
Support Vector Machines (SVM). In particular,

(i) for Neural Networks training, the gradients of the component functions ∇ fi are assumed to
be Lw-Lipschitz continuous and can be computed efficiently, thanks to the well-known back-
propagation algorithm [51];

(ii) for policy optimization in Reinforcement Learning [107], the components functions fi are output
of a black-box, i.e. the gradients of the component functions can not be computed exactly;

(iii) for Support Vector Machines training [81], the component functions fi are of the type fi =
max{0,gi}, where gi : Rd → R, i = 1, . . . ,N, are convex and continuously differentiable func-
tions.

1.1 Neural Networks training problem

In deterministic optimization, the vast majority of algorithms rely on the computation of the objective
function and its derivative. When applied to the training of Neural Networks, this is not always
possible. In fact, the objective of such training process is the minimization of the expected risk

F(w) =
∫

f (w;x,y)dP(x,y), (1.2)

which is impossible to compute since the joint probability distribution P(x,y) is not known. Therefore,
the empirical risk is minimized

min
w∈Rd

f (w) =
{

1
N ∑

N
i=1 fi(w), 1

N ∑
N
i=1 φ(w;xi,yi)

}
, (1.3)

10 CHAPTER 1. THE FINITE SUM PROBLEM

where fi : Rd → R are assumed to be continuously differentiable for all i = 1, . . . , N with Lipschitz-
continuous gradients and {xi,yi}i, i = 1, . . . ,N, are the input-output samples available.

The reason why problem 1.3 has been deeply investigated for the last decade is that training a
(Deep) NN requires the solution of an unconstrained finite sum problem. Figure 1.1 represents a
NN with 4-dimensional inputs (i.e. n = 4), 3-dimensional outputs and two hidden layers of 5 and 7
neurons respectively. W1 ∈R5×4, W2 ∈R7×5 and W3 ∈R3×7 are the weight matrices between the input
and first hidden, first hidden and second hidden, second hidden and output layers, respectively. The
biases could easily be included by adding a neuron with fixed value of 1 to each hidden layer [48], but
are not fundamental to the aim of this example. g1(·) and g2(·) are the so-called activation functions,
that can be linear, piece-wise linear or nonlinear, depending on the degree of nonlinearity needed in
the model. In particular, the output of a hidden layer h relative to a generic input x can be written as

oh(x) = gh(Whoh−1(x))+bh,

where gh is the (non-)linear activation function just introduced. Altogether, the example in figure 1.1
would imply solving an optimization problem like problem 1.3 with respect to a vector of variables
w ∈ Rd , with d = 20+35+21 = 76, representing the three above mentioned weight matrices.

Figure 1.1. A two-hidden layer Neural Network

More formally, a generic, H-hidden-layered NN produces a predicted output ŷi by computing

ŷi(w) = gO(WO ∗gH(WH ∗gH−1(WH−1 ∗gH−2(...(g2(W1xi)+b1)...)+bH−1)+bH)+bO), (1.4)

where g(·) represents the component-wise application of the activation function g, W1, . . . ,WH and
b1, . . . ,bH represent the weight matrices and biases of the H hidden layers, and WO,bO represent the
weight matrix and bias of the output layer. The objective of the training problem is to solve

min
w∈Rd

{
f (w) = 1

N ∑
N
i=1 fi(w) = 1

N ∑
N
i=1

1
2‖ŷ

i(w)− yi‖2
}
, (1.5)

where d can be very large if, for example, the number of hidden layers H and the number of neurons of
each layer nh, h = 1, . . . ,H, are very large, or if the size of the input samples n is huge. If the activation
functions g(·) are linear, then problem 1.5 is a convex problem and the optimum value is unique. In
general, g(·) is nonlinear since this is necessary to make NN a universal function approximator [54].

1.2. POLICY OPTIMIZATION PROBLEM FOR REINFORCEMENT LEARNING 11

Notice that the function f defined in (1.3) is an approximation of function F defined in (1.2), since
the unknown, continuous probability distribution P is substituted by a discretized sample average
approximation. This notwithstanding, the number of samples N available in current real applications
can be in the order of millions, or billions. For this reason, even computing the function f as the sum
of all the functions fi, i = 1, . . . ,N, may be prohibitive from a computational point of view. The same
applies to the gradient calculation. This is the reason behind the renewed interest in the gradient-based
method, first introduced by Robbins & Monro [84] in 1951, where the gradient is estimated over a
subsample of the available population S⊆ {1, . . . ,N}.

In literature, this led to an increasing number of algorithms that exploit the structure of F and f to
produce a gradient estimate that is as accurate as possible and which computational cost is as low as
possible. These gradient approximation methods will be further detailed in chapter 3, but in general
have the goal of estimating the gradient by computing only a few, or only one, ∇ fi at each iteration.
These methods usually comprise two components: one in high frequency, aiming to inject "novelty"
in the gradient approximation by using the information gained at the current iteration; the other in low
frequency, trying to leverage all the past computations to gather more information on the true gradient
∇ f . This framework is often denoted as the Stochastic Gradient (SG) framework, due to the fact that
the seminal paper [84] comes from the stochastic optimization community. Nevertheless, the analysis
of such methods, i.e. methods approximating gradients via subsampling, has been also carried out in
the deterministic setting , i.e. the Ingremental Gradient (IG) framework, as will be further explained
later.

1.2 Policy optimization problem for Reinforcement Learning

In stochastic optimization, often the aim is to minimize the expected value of a certain quantity,
namely to solve the problem

min
w∈Rd

F(w), (1.6)

where F(w) = Eζ [f 0(w,ζ)], and f 0 is a function of w and the random variable ζ . The solution of
problem 1.6 arises, e.g., in simulation-optimization [5] and policy optimization for reinforcement
learning [106]. Note that problem 1.6, after discretization of the values the random vector ζ can take,
can be seen as the minimization of an infinite sum, i.e.

min
w∈Rd

1
N

N

∑
i=1

f 0
i (w), (1.7)

where f 0
i (w) := φ(w,ζi) and ζi is a realization of the random variable ζ , and f 0→ F as N→ ∞.

In practice, such infinite sum is usually approximated by a finite sum of fixed size, e.g., when in
simulation-optimization the number of replicates over which the average is computed is fixed a priori.

In the following, reinforcement learning is introduced in more details, in order to show how policy
optimization for reinforcement learning can be seen as a finite sum problem too.

In reinforcement learning, an agent acts in a stochastic environment by sequentially choosing
actions over a sequence of time steps, in order to maximize a cumulative reward, as sketched in figure
1.2. The reinforcement learning paradigm was introduced almost 30 years ago, but has regained
popularity in the last years thanks to the introduction of deep networks to parameterize the policy,
aka deep reinforcement learning (DeepRL). These recent advances led to unprecedented results on a
number of tasks, from sophisticated robotic manipulations [2, 64, 82, 108], to the control of complex
dynamical systems like games, e.g. AlphaGo [97] and Atari games [73].

12 CHAPTER 1. THE FINITE SUM PROBLEM

Figure 1.2. Generic reinforcement learning framework

Reinforcement learning aims at finding an optimal control (i.e. the policy) for a dynamical system
that can be described as

st+1 = φt(st ,at ,ζt), (1.8)

where φt is a function mapping a state st to the next state st+1, under the influence of an action at and
a disturbance ζt . The main difference between reinforcement learning and classical optimal control
problems is that, in the former, the function φt is neither known nor identified during the process.
Indeed, the environment is considered a black box, providing the agent, at each time step, with some
quantities representing the current state st (e.g., position, velocity, ...) and some notion of reward.
The goal of the policy optimization is therefore to design a policy that, applied at every time step,
maximizes the cumulative reward received by the agent from the environment.

In the following, the name episode will represent a simulation of the actor movement in the envi-
ronment from time step t = 1 to time step t = T . In RL literature, an episode can be referred to as a tra-
jectory, underlining that a simulation yields a sequence of states and actions {s1,a1,s2,a2, . . . ,sT−1,aT−1,sT}.

A reinforcement learning system can be modeled as a Markov Decision Process (MDP), defined
by a tuple (S ,A ,r,P). In the rest of the section, the focus will be on continuous control tasks, where
the following can be defined:

• the state space S ⊆ Rs, with the states observed at each time step t identified by st ∈S , for
all t = 1, . . . ,T ;

• the action space A ⊆Ra, with the actions taken at each time step t identified by at ∈A , for all
t = 1, . . . ,T . The actions are usually modeled as the realization of a normally distributed random
variable At ∼ N(µA,σA), where µA and σA are, respectively, its mean and standard deviation;

• the total reward function R : S ×A → R

R =
T

∑
t=1

rt ,

where rt ∈ R are the rewards received from the environment at each time step t, modeling the
amount of reward gained by the actor over the entire time horizon of an episode;

1.2. POLICY OPTIMIZATION PROBLEM FOR REINFORCEMENT LEARNING 13

• the state-transition probabilities, modeling the probability of transitioning to a state s′ from the
current state s taking action a, i.e. P : S ×A →S , assumed to satisfy the Markov property

P(st+1|s1,a1, . . . ,st ,at) = P(st+1|st ,at).

A deep neural network, aka policy network, is usually employed to encode the function π : Rs→ Ra

determining a policy, i.e. the function that given a state s returns the action a to be taken by the agent.
A common way of modeling it is to consider the output of the policy network as the mean of the
normally distributed random variable At representing the stochastic actions, namely

µA = π(w;st), for all t = 1, . . . ,T,

where w∈Rd is the vector of parameters (i.e. the weights of the policy network) to be learned. Notice
that the standard deviation is often taken as fixed, i.e. σA = 1, or diminishing during the optimization,
i.e. σ k

A ∼
1
k , where k is the index of the optimization iterations.

The aim of policy optimization for reinforcement learning is to find an optimal policy π? and,
since the policy is parameterized by w, the objective is to find w? such that the expected value of the
total reward is maximized.

Given the function R defined above, one could easily apply a derivative free optimization (DFO)
algorithm to maximize a sample approximation of its expected value with respect to the parameters
w. Indeed, R inherently depends on a black box computation, i.e. the simulation of the episode(s),
and therefore its derivatives are not directly computable.

If, with some abuse of notation, the transition probabilities P include the effect of the policy π ,
the objective of a DFO algorithm for policy optimization in RL is therefore to solve the problem

min
w∈Rd

F(w), (1.9)

where F(w) =−R(w) :=−EP [R]. Observe that there exists stochasticity due to three factors:

1. the sample approximation due to the impossibility of computing an expectation at each iteration,
i.e. the number of episodes (replicates) run at each iteration are finite. It is common to run a
single episode, or a small minibatch of episodes, at each iteration. In the case of multiple
episodes run at each iteration, the episodes can be indexed by j and the total reward would be

R = ∑
j∈B

T

∑
t=1

r j
t ,

where B is a minibatch of episodes;

2. the simulation of the environment, which is stochastic;

3. the normally distributed actions, the means of which come from the outputs of the policy net-
work, but whose standard deviations may not be 0.

Solving problem 5.1 is incredibly hard. Indeed, the function is nonconvex and potentially nons-
mooth and noncontinuous, as will be shown in chapter 5, where some gradient approximation methods
used in the RL literature will be introduced and analyzed.

14 CHAPTER 1. THE FINITE SUM PROBLEM

1.3 Support Vector Machines training problem

Support Vector Machines had been first developed to solve classification problems, namely to find
separating surfaces between (labeled) classes of inputs xi. Assume to have a data set {xi,yi}N

i=1, where
xi ∈ Rn, i = 1, . . . ,N are the input vectors to be classified and yi ∈ {−1,+1}, i = 1, . . . ,N, are the
classes. Note that this definition of the yi implies the problem is a binary classification one. Then, the
most straightforward manner to define a classifier is to find a linear operator allowing to "separate"
the two classes of points, i.e. the yi with value−1 and the yi with value +1. Furthermore, observe that
a linear classifier of this type only exists if the xi are linearly separable. The linear classifier can be
defined by a weights vector w̃ ∈Rn and a bias b̃ ∈R, and the most straightforward way of classifying
the points xi would be to find w̃, b̃ such that

sign(w̃T xi + b̃) = yi ∀ i = 1, . . . ,N,

where the operator sign(t) denotes the sign of t ∈ R, namely it returns +1 if t ≥ 0, −1 otherwise.
One way to do this is to solve the system of inequalities

yi(w̃T xi + b̃)≥ 0, i = 1, . . . ,N

which, if solvable, guarantees that {
yi ≥ 0, w̃T xi + b̃≥ 0,
yi < 0, w̃T xi + b̃ < 0.

Including the bias b̃ in a unique vector w =
[
w̃, b̃
]
∈ Rd with d = n+1 (this can be done by adding a

−1 to each input sample xi), the system of inequalities to be solved is

yiwT xi ≥ 0, i = 1, . . . ,N.

It is well-known that a solution to a system of inequalities, if a solution exists, can be found by solving
an optimization problem. Indeed, in the above case it suffices to solve

minimizew∈Rd ∑
N
i=1 max{0,−yiwT xi}, (1.10)

where N can be in the order of millions, or even billions. Notice that problem 1.10 is a finite sum prob-
lem like problem 1.1. Nevertheless, a solution to problem 1.10 finds one of the hyperplanes, which
are in general infinite, able to separate the two classes of input samples. Support Vector Machines,
instead, aim at finding the maximum margin hyperplane, as shown in figure 1.3. It can be shown [81]
that this is equivalent to solve problem 1.11, which is similar to problem 1.10 and, again, is a finite
sum problem like problem 1.1.

minimizew∈Rn ∑
N
i=1 max{0,1− yiwT xi}+ 1

2‖w‖
2

(1.11)

Problem 1.11 has two issues: (i) it assumes that the the inputs are linearly separable and (ii) it is
a nonsmooth problem. To solve (i), the concept of soft margin SVM was developed [81], together
with the so-called kernel trick that allows to find nonlinear separating curves by implicitly projecting
the input samples to higher (infinite) dimensional spaces thanks to the application of a kernel operator
K(·) to the inputs xi [81].

1.3. SUPPORT VECTOR MACHINES TRAINING PROBLEM 15

Figure 1.3. Linear, soft margin SVM classifier

The linear kernel SVM Problem 1.11 can be rewritten, by including the concept of soft margin, as
a constrained problem

minimize 1
2‖w‖

2 +C ∑
N
i=1 ξi

s.t. yiwT xi ≥ 1−ξi, i = 1, . . . ,N,

ξi ≥ 0, i = 1, . . . ,N,

(1.12)

also known as the SVM primal formulation, where {xi,yi}N
i=1 are the data samples, with xi ∈ Rn, yi ∈

{−1,1}. This is a convex, linearly constrained optimization problem with many inequality constraints,
i.e. one for each data sample. By duality theory (see, e.g., [81]), the corresponding SVM dual formu-
lation can be written as

minimize 1
2 αT Qα−1T α

s.t. 0≤ αi ≤C, i = 1, . . . ,N,

yT α = 0,

(1.13)

where the matrix Q is the so-called kernel matrix.
Problem 1.13 is a quadratic convex problem with one single (difficult) linear constraint over all

the variables αi, i = 1, . . . ,N, and many simple box constraints. The constraint

yT
α = 0 (1.14)

is known in literature as coupling constraint, since it couples all the variables of the problem in one
equality constraint, thus making problem 1.13 hard to parallelize/ distribute. This makes the solution
of problem 1.13 hard in practice, since the huge dimension of the dataset, namely the magnitude of N,

16 CHAPTER 1. THE FINITE SUM PROBLEM

poses severe challenges in the computation and storage of the above introduced matrix Q. This is the
reason why many decomposition algorithms have been proposed in literature to solve problem 1.13 in
a computationally efficient way. These will be further discussed in chapter 6.

17

Chapter 2

General assumptions, definitions and
preliminaries

The assumptions listed below are presented altogether to avoid repetitions throughout the dissertation,
but will be recalled in the analysis when necessary.

Assumption 1 (Lipschitz gradients). Let f : Rd →R be a continuously differentiable function. There
exists a constant Lw > 0 such that

‖∇ f (w1)−∇ f (w2)‖ ≤ Lw‖w1−w2‖ ∀ w1,w2 ∈ Rd . (2.1)

Furthermore, if the function has a finite sum structure, i.e. f (w) = ∑
N
i=1 fi(w), there exist N constants

Li
w, i = 1, . . . ,N, such that

‖∇ fi(w1)−∇ fi(w2)‖ ≤ Li
w‖w1−w2‖ ∀ w1,w2 ∈ Rd , i = 1, . . . ,N.

Observe that, in the finite sum setting where f (w) = ∑
N
i=1 fi(w), one can choose Lw = ∑

N
i=1 Li

w.

Remark 1. Assumption 1 implies that dT ∇2 f (w)d ≤ Lw‖d‖2, for all w.

Assumption 2 (Bound on gradient norm). For all w ∈ Rd , there exists B > 0 such that

‖∇ f (w)‖ ≤ B.

Assumption 3 (Strong convexity). There exists a constant µ > 0 such that for any d ∈ Rd

dT
∇

2 f (w)d ≥ µ‖d‖2 for all w.

Definition 1 (Condition number). Suppose a function f satisfies both assumptions 1 and 3. Then the
condition number can be defined as

κ =
Lw

µ
≥ 1.

Assumption 4 (Strict convexity). For all w,d ∈ Rd it holds that

dT
∇

2 f (w)d > 0.

Assumption 5 (General convexity). For all w,d ∈ Rd it holds that

dT
∇

2 f (w)d ≥ 0.

18 CHAPTER 2. GENERAL ASSUMPTIONS, DEFINITIONS AND PRELIMINARIES

Remark 2. Assumption 3 implies that

2µ(f (w)− f ?)≤ ‖∇ f (w)‖2 ∀ w ∈ Rd ,

where f ? is the optimal value of f .

Remark 3. Assumption 3 implies that there exists a unique minimizer w? and, when assumption 1
also holds, the following relations apply

‖∇ f (w)‖ ≤ Lw‖w−w?‖ ∀ w ∈ Rd ,

f (w)− f (w?)≤ Lw

2
‖w−w?‖2 ∀ w ∈ Rd .

Furthermore, it holds [75] that

∇ f (w)T (w−w?)≥ µLw

µ +Lw
‖w−w?‖2 +

1
µ +Lw

‖∇ f (w)‖2 ∀ w ∈ Rd .

All the above properties will be useful in the subsequent analysis. In particular, in chapter 3 some
of the most important methods to solve the unconstrained finite sum problem 1.3 will be introduced
and analyzed, with the aim of characterizing their main convergence properties, for example:

• the necessary assumptions on the problem, e.g., Lipschitz-continuity, convexity;

• the necessary assumptions on the algorithm, e.g., assumptions on the stepsizes sequence, on the
direction employed;

• whether the whole sequence {wk} generated by the iterative method converges to a finite value;

• whether the sequence {wk} generated by the iterative method converges to a solution (stationary
point) of problem 1.3, or to a neighborhood;

• the rate of convergence of the sequence {wk}.

19

Chapter 3

Optimization for large-scale
unconstrained finite sum problems

In this chapter, a review of the most well-known optimization methods to solve large-scale uncon-
strained finite sum problems is carried on. But first, some results for standard gradient-based opti-
mization methods are reported.

In algorithm 1, a generic gradient-based method is sketched, where the iterate wk ∈Rd is updated
based on a search direction dk ∈ Rd and a stepsize αk > 0.

Algorithm 1: Generic gradient-based scheme

1 for k = 0,1, . . . do
2 Compute a search direction dk such that condition (3.1) is satisfied;
3 Choose a stepsize αk > 0;
4 Update wk+1 = wk +αkdk.
5 end

The typical condition that gradient-based methods assume dk to satisfy is the angle condition (3.1)

dT
k ∇ f (wk)≥−c1‖∇ f (wk)‖2, (3.1)

for some c1 > 0. This condition guarantees that dk is a descent direction, which implies that a stepsize
αk > 0 exists such that, if the iterate update is wk+1 = wk +αkdk, then

f (wk+1)≤ f (wk),

i.e. there is a descent in the objective function value. In such methods, where the angle condition is
guaranteed at each iteration, a wide range of stepsize rules has been developed, including but not lim-
ited to fixed stepsizes, diminishing stepsizes, linesearch techniques. In particular, linesearch methods
guarantee global convergence to (at least) a stationary point if condition (3.2) holds

lim
k→∞

∇ f (wk)
T dk

‖dk‖
= 0. (3.2)

For the fixed stepsize gradient method to converge, instead, it suffices to guarantee that the stepsize is
small enough [11, 49], as shown in theorem 1.

20CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

Theorem 1 (Gradient method with constant stepsize). Let f : Rd → R be continuously differentiable
over Rd and bounded from below. Let assumption 1 holds. Then, employing the iterate update

wk+1 = wk−α∇ f (wk)

with
0 < α <

2
Lw

,

it holds that
lim
k→∞

∇ f (wk) = 0.

Proof. From assumption 1 and Taylor’s expansion it holds

f (wk+1)− f (wk)≤ ∇ f (wk)
T (wk+1−wk)+

Lw

2
‖wk+1−wk‖2

=−α‖∇ f (wk)‖2 +α
2 Lw

2
‖∇ f (wk)‖2

=−α

(
1−α

Lw

2

)
‖∇ f (wk)‖2,

which implies f (wk+1) ≤ f (wk) for all k, since 0 < α < 2
Lw

. The proof follows by recalling that f is
bounded from below.

Unfortunately, for the reasons outlined in section 1.1 of chapter 1, computing the quantity dT
k ∇ f (wk)

is often not feasible in the setting of problem 1.3, due to the computational expensiveness of the full
gradient ∇ f (wk). Therefore, a more complicated algorithmic scheme is necessary, as introduced in
algorithm 2 that presents a general scheme covering most of the methods proposed in the SG frame-
work. In this scheme, the search direction employed at each iteration k of a standard gradient-based
algorithm is split in two components:

(i) a component bringing new (computationally cheap) information at the current iteration, sk,
where s stands for short-term;

(ii) a component aggregating past information, lk, where l stands for long-term.

The key of such an approach is to be able to compute the two components, sk and dk,

(i) in a much cheaper way than if the full negative gradient direction was computed;

(ii) so that the direction dk = sk + lk is as close as possible to the full negative gradient direction.

Algorithm 2: Generic algorithmic scheme for finite sum problems

1 for k = 0,1, . . . do
2 Compute the ’short-term’ component sk;
3 Compute the ’long-term’ component lk;
4 Choose a stepsize αk > 0;
5 Update wk+1 = wk +αkdk, where dk = sk + lk.
6 end

Algorithm 2 is very general and most of the state-of-the-art methods can be recovered by the defi-
nition of sk and lk, including but not limited to the well-known Stochastic Gradient (SG), Incremental

3.1. DETERMINISTIC SETTING 21

Gradient (IG), Stochastic Average Gradient (SAG), Incremental Average Gradient (IAG), Stochastic
Variance Reduced Gradient (SVRG) methods. These methods can roughly be clustered in two groups:
the ones that cyclically choose the indices ik and those that select ik at random, based on a probability
distribution, at each iteration. The former will be denoted as the deterministic setting, the latter as the
stochastic setting. The convergence properties in the two settings rely, respectively, on two closely
related quantities:

1. the error ek of the approximation with respect to the true gradient ∇ f [15]

ek = dk +∇ f (wk);

2. the variance vk of the search direction [19]

vk =Var[dk] = E[‖dk−E[dk]‖2].

Notice that, since in most of the algorithms in the stochastic setting it holds that E[dk] =−∇ f (wk),
this is often referred to as the gradient approximation variance. It is clear that asking the error ek goes
to 0 in the deterministic setting is equivalent to asking the gradient approximation variance vanishes
in the stochastic setting.

Furthermore, these quantities are strictly connected to the stepsize αk. Indeed, unless a diminish-
ing stepsize is employed, a small, fixed stepsize is not enough to guarantee convergence to a solution
(stationary point) of problem 1.3, if the gradient approximation error/ variance does not go to zero.
This is somewhat in contrast with the result in theorem 1, which guarantees convergence if a small
enough, fixed stepsize is employed. Nevertheless, one should recall that the result in theorem 1 relies
on (3.28), which automatically bounds the variance of dk by imposing an angle condition and in turn
guarantees function descent at each iteration.

Indeed, while in theorem 1 one can ensure a function descent condition

f (wk+1)− f (wk)≤−α

(
1−α

Lw

2

)
‖∇ f (wk)‖2,

this is never the case in the methods analyzed in this chapter, which usually can ensure a condition
like

f (wk+1)− f (wk)≤−α

(
1−α

Lw

2

)
‖∇ f (wk)‖2 +C‖ek‖2,

for some positive constant C, where it is clear that ek must be somewhat controlled, in order for the
function to be reduced ’often’ (since it is not possible to ensure function descent at any given iteration).

In the following, the convergence properties of the main methods introduced for solving large-
scale unconstrained finite sum problems are analyzed, with a focus on the differences between the
deterministic and stochastic settings.

3.1 Deterministic setting

In the deterministic setting, the methods applied to problem 1.3 are usually referred to as incremental
gradient methods. The main methods in this category are Incremental Gradient (IG), Incremental
Aggregated Gradient (IAG) and Double Incremental Aggregated Gradient (DIAG).

As already introduced above, for incremental gradient methods it is not possible to guarantee
any conditions on the full gradient ∇ f (wk), since this is never computed. Indeed, even if an angle

22CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

condition like (3.28) was satisfied over the gradient computed based on one sample ∇ fi(wk), this
would not imply anything for the full gradient ∇ f (wk).

At the beginning of this chapter, an open question arouse: what convergence properties can be
ensured, when the angle condition (3.1) is not be guaranteed and a fixed stepsize is employed? A first
answer to this question was given by Solodov [98], who proved a liminf convergence to a neighbor-
hood of a stationary point, as reported in theorem 2, when the iterate update can be written as

wk+1 = wk−α(∇ f (wk)+ ek),

where the term ek =−αδ can be seen as an error term, linearly dependent on the stepsize α > 0.

Theorem 2 (Gradient method with error, fixed stepsize). Let assumptions 1 and 2 hold, and the
iterates be in a bounded set W ⊆ Rd . Apply the iterate update

wk+1 = wk−α(∇ f (wk)+ ek),

where ek =−αδ is such that ‖ek‖ ≤ αC1 > 0, and

0 < α <
2

Lw
.

Then, there exists an accumulation point w and a constant C > 0 such that

‖∇ f (w)‖ ≤Cα. (3.3)

Moreover, if { f (wk)} converges, then every accumulation point w of {wk} satisfies (3.3).

Proof. Lemma 2 yields

f (wk)− f (wk+1)≥−∇ f (wk)
T (wk+1−wk)−

Lw

2
‖wk+1−wk‖2

= α∇ f (wk)
T (∇ f (wk)−αδ)−α

2 Lw

2
‖∇ f (wk)−αδ‖2

≥ α

(
1− Lw

2
α

)
‖∇ f (wk)‖2−α

2(1+Lwα)C1‖∇ f (wk)‖−
Lw

2
α

4C2
1 ,

where the last inequality follows from the Cauchy-Schwartz inequality. Defining

φ(w) :=
(

1− Lw

2
α

)
‖∇ f (w)‖2−α(1+Lwα)C1‖∇ f (w)‖− Lw

2
α

3C2
1 ,

it holds that
f (wk)− f (wk+1)≥ αφ(wk). (3.4)

Now let {wk} denote any sequence generated by the algorithm, and suppose

liminf
k→∞

φ(wk)> 0.

Then there exists an index k and an ε > 0 such that φ(wk)≥ ε for all k ≥ k. Therefore, for all k ≥ k

f (wk)− f (wk+1)≥ α
ε

2
,

3.1. DETERMINISTIC SETTING 23

and, for all k > k,

f (wk)− f (wk) =
k−1

∑
h=k

(f (wh)− f (wh+1))

≥
k−1

∑
h=k

α
ε

2

= (k− k)α
ε

2
> 0,

which contradicts the hypothesis that f is continuous and W bounded, since it implies that { f (wk)}→
−∞. Therefore, it holds that

liminf
k→∞

φ(wk)≤ 0.

Because {wk} is bounded and φ continuous, an accumulation point w exists such that

φ(w)≤ 0,

which implies (
1− Lw

2
α

)
u2−α(1+Lwα)C1u− Lw

2
α

3C2
1 ,

where u := ‖∇ f (w)‖. The solution of the inequality yields

u≤ α

2−Lwα

(
(1+Lwα)C1 +

√
(1+Lwα)2C2

1 +2LwαC2
1(1−Lw

α

2
)

)
,

which can be rewritten as
‖∇ f (w)‖ ≤Cα,

for some scalar C > 0. The proof of the theorem follows by recalling that, if { f (wk)} converges, (3.4)
yields

limsup
k→∞

φ(wk)≤ 0.

Note that theorem 2 assumes that the sequence wk is bounded, which is not restrictive since this is
usually the case in neural networks training [98, 117]. This notwithstanding, there is no guarantee that
the whole sequence will converge, since, as opposed to the full gradient method, there is no guarantee
that the objective function value decreases at each iteration.

In the seminal paper [15], Bertsekas formalized the framework of gradient method with error,
where the directions employed by the algorithm are affected by an error, namely

wk+1 = wk +αk(gk + ek), (3.5)

where gk is a descent direction, e.g. the anti-gradient −∇ f (wk), and ek is an error term, identifying
the error in the gradient estimate at each k.

In the above setting, beyond assumptions on the stepsize sequence, the following assumptions are
needed to prove convergence [15]:

24CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

Assumption 6. gk is a descent direction at wk and there exist positive scalars c1,c2 such that for all k

∇ f (wk)
T gk ≤−c1‖∇ f (wk)‖2, ‖gk‖ ≤ c2(1+‖∇ f (wk)‖). (3.6)

ek is an error vector satisfying for all k and for some positive scalars p and q

‖ek‖ ≤ αk(q+ p‖∇ f (wk)‖). (3.7)

Observe that the above conditions on the error are a generalization of the one by Solodov, where
it was assumed that ‖ek‖ ≤ αC1.

While the first inequality in (3.6) is the standard angle condition, which is assumed to hold on the
gk term of the direction dk, the second inequality, namely

‖gk‖ ≤ c2(1+‖∇ f (wk)‖)

is interesting, if read in conjunction with (3.7). Indeed, since dk = gk + ek, then it can be written that

‖dk‖= ‖gk + ek‖
≤ ‖gk‖+‖ek‖
≤ c2(1+‖∇ f (wk)‖)+αk(q+ p‖∇ f (wk)‖)
= c2 +qαk +(c2 + pαk)‖∇ f (wk)‖,

which, in case αk = α > 0 for all k, is a growth condition for the direction dk of the type

‖dk‖ ≤ β1 +β2‖∇ f (wk)‖,

with β1 = c2 +qα and β2 = c2 + pα .
Furthermore, condition (3.7) asks the norm of the error ek to be somehow ’controlled’ through the

stepsize αk. Therefore, it is reasonable to expect that convergence of such a method, under the above
assumptions, would be difficult in case αk did not go to zero. Indeed, the following results from [15]
are reported to show that a gradient method with error can only converge if the stepsize goes to zero
(unless the error term is controlled and driven to zero).

Lemma 1. Consider three sequences tk, uk and vk such that uk ≥ 0 for all k. If

tk+1 ≤ tk−uk + vk, ∀ k,

and ∑
K
k=0 vk <∞ for K→∞, then either tk→−∞ or else tk converges to a finite value and ∑

∞
k=0 uk <∞.

Theorem 3 (Gradient methods with error - diminishing stepsize). Let the iterate update be

wk+1 = wk +αk(gk + ek)

and the stepsizes sequence {αk}> 0 be such that

∞

∑
k=0

αk = ∞,
∞

∑
k=0

α
2
k < ∞. (3.8)

Let assumptions 6 hold. Then either f (wk)→−∞ or else f (wk) converges to a finite value and

lim
k→∞

∇ f (wk) = 0.

Furthermore, every limit point of {wk} is stationary for f .

3.1. DETERMINISTIC SETTING 25

Proof. Consider two vectors w1,w2 ∈ Rd and a scalar τ . Define

g(τ) = f (w1 + τw2),

from which
d

dτ
g(τ) = wT

2 ∇ f (w1 + τw2).

It holds that

f (w1 +w2)− f (w1) = g(1)−g(0)

=
∫ 1

0

d
dτ

g(τ)dτ

=
∫ 1

0
wT

2 ∇ f (w1 + τw2)dτ

≤
∫ 1

0
wT

2 ∇ f (w1)dτ +

∣∣∣∣∫ 1

0
wT

2 (∇ f (w1 + τw2)−∇ f (w1))dτ

∣∣∣∣
≤ wT

2 ∇ f (w1)+
∫ 1

0
‖w2‖‖∇ f (w1 + τw2)−∇ f (w1)‖dτ

≤ wT
2 ∇ f (w1)+‖w2‖

∫ 1

0
Lτ‖w2‖dτ

= wT
2 ∇ f (w1)+

L
2
‖w2‖2.

Applying the above relation with w1 = wk and w2 = αk(gk + ek) yields

f (wk+1)≤ f (wk)+αk∇ f (wk)
T (gk + ek)+

α2
k L
2
‖gk + ek‖2,

and by using assumption 6 it follows

∇ f (wk)
T (gk + ek) ≤ −c1‖∇ f (wk)‖2 +‖∇ f (wk)‖‖ek‖

≤ −c1‖∇ f (wk)‖2 +αk‖∇ f (wk)‖+αk p‖∇ f (wk)‖2.
(3.9)

Moreover, by the assumption on Lipschitz gradients and 6 it can be written that

‖gk‖2 ≤ 2c2
2(1+‖∇ f (wk)‖2)

and
‖ek‖2 ≤ 2α

2
k (q

2 + p2‖∇ f (wk)‖2),

which together yield

‖gk + ek‖2 ≤ 2‖∇ f (wk)‖2 +2‖ek‖2

≤ 4c2
2(1+‖∇ f (wk)‖2)+4α2

k (q
2 + p2‖∇ f (wk)‖2).

(3.10)

Using (3.9) and (3.10),

f (wk+1)≤ f (wk)−αk(c1−αk p−2αkc2
2L−2α

3
k p2L)‖∇ f (wk)‖2

+α
2
k q‖∇ f (wk)‖+2α

2
k c2

2L+2α
4
k q2L.

26CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

By the definition of the sequence of the stepsizes, αk → 0 and therefore a positive constant c exists
such that, for k large enough,

f (wk+1)≤ f (wk)−αkc‖∇ f (wk)‖2 +α
2
k q‖∇ f (wk)‖+2α

2
k c2

2L+2α
4
k q2L,

and, since ‖∇ f (wk)‖ ≤ 1+‖∇ f (wk)‖2,

f (wk+1)≤ f (wk)−αk(c−αkq)‖∇ f (wk)‖2 +α
2
k (q+2c2

2L)+2α
4
k q2L.

Again, for sufficiently large k, the above can be written as

f (wk+1)≤ f (wk)−αkβ1‖∇ f (wk)‖2 +α
2
k β2, (3.11)

with β1,β2 > 0.
Relation (3.11), coupled with lemma 1 and the assumption on the stepsize (6.7), implies that either

f (wk)→−∞ or else it converges and

∞

∑
k=0

αk‖∇ f (wk)‖2 < ∞. (3.12)

Assume by contradiction that there exist an ε > 0 and an index k̄ such that ∇ f (wk)≥ ε for all k ≥ k̄.
Then, it would follow that

∞

∑
k=k̄

αk‖∇ f (wk)‖2 ≥ ε
2

∞

∑
k=k̄

αk = ∞,

which contradicts (3.12), from which it holds that

liminf
k→∞

‖∇ f (wk)‖= 0.

Assume now by contradiction that limsupk→∞ ‖∇ f (wk)‖ > 0. Consequently, there exists ε > 0 such
that ‖∇ f (wk)‖< ε

2 for an infinite number of iterations k. This yields that an infinite set of integers K̃
exists such that for any k ∈ K̃ there is an index j(k)> k such that

‖∇ f (wk)‖< ε

2 ,

‖∇ f (w j(k))‖> ε,
ε

2 ≤ ‖∇ f (w j)‖ ≤ ε, k < j < j(k).

The relation

‖∇ f (wk+1)‖−‖∇ f (wk)‖ ≤ ‖∇ f (wk+1)−∇ f (wk)‖
≤ Lw‖wk+1−wk‖
= αkLw‖gk‖
≤ αkLwc2‖1+∇ f (wk)‖,

yields that, for any k ∈ K̃ large enough to let αkLwc2 ≤ ε

4 holds,

∇ f (wk)≥
ε

4
,

3.1. DETERMINISTIC SETTING 27

since otherwise the condition ∇ f (wk+1)≥ ε

2 would be violated. Now assume without loss of general-
ity that the condition above and (3.11) hold for any k ∈ K̃. Then, since ‖gk‖ ≤ c2(1+‖∇ f (wk)‖) and
the Lipschitz assumption 1, it holds for all k ∈ K̃ that

ε

2 ≤ ‖∇ f (w j(k))‖−‖∇ f (wk)‖
≤ ‖∇ f (w j(k))−∇ f (wk)‖
≤ Lw‖w j(k)wk‖
≤ Lw ∑

j(k)−1
j=k α j(‖g j‖+‖e j‖)

≤ Lwc2 ∑
j(k)−1
j=k α j(1+‖∇ f (w j)‖)+Lw ∑

j(k)−1
j=k α2

j (q+ p‖∇ f (w j)‖)
≤ Lwc2(1+ ε)∑

j(k)−1
j=k α j +Lw(q+ pε)∑

j(k)−1
j=k α2

j .

(3.13)

Relation (3.13) yields
1

2Lwc2(1+ ε)
≤ liminf

k→∞

j(k)−1

∑
j=k

α j, (3.14)

and by using again (3.11),

f (w j(k))≤ f (wk)−β1

(
ε

4

)2 j(k)−1

∑
j=k

α j +β2

j(k)−1

∑
j=k

α
2
k ∀ k ∈ K̃.

Since f (wk) converges to a finite value and ∑
∞
k=0 α2

k < ∞, the above relation yields

lim
k→∞,k∈K̃

j(k)−1

∑
j=k

α j = 0,

which contradicts (3.14). Therefore, if w̄ is a limit point of {wk}, then f (wk) converges to the finite
value f (w̄). Furthermore, it holds ∇ f (wk)→ 0, and consequently ∇ f (w̄) = 0.

The above theorems show that, in the framework of a gradient method with error, convergence
to the solution of problem 1.3 can only be guaranteed in the diminishing stepsize setting. The next
section applies the above results to prove convergence of the Incremental Gradient (IG) method both
in the constant and diminishing stepsize frameworks.

3.1.1 Incremental Gradient method

The Incremental Gradient method (IG) has been used for a long time in a variety of large-scale op-
timization problems, but the first convergence results date back to the end of the last century/ early
2000s, with the works of Solodov [98] and Bertsekas [15], although the latter is the most well-known.

Algorithm 3: IG scheme

Data: w0 ∈ Rd

1 for k = 0,1, . . . do
2 Choose a stepsize αk > 0;
3 Set the inner iterate ν0 = wk;
4 for i = 1, . . . ,N do
5 Compute ∇ fi(νi−1);
6 Update the inner iterate νi = νi−1−αk∇ fi(νi−1);
7 end
8 Update the outer iterate wk+1 = νN ;
9 end

28CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

Algorithm 3 selects, at each inner iteration, an index i, in a cyclic fashion. Then, the direction is
computed as the negative gradient of the function fi. It is clear that such direction, i.e. −∇ fi, can be
very far from the negative gradient direction, i.e. − 1

N ∑
N
i=1 ∇ fi. For this reason, the convergence of

such algorithm was proven in [15] only with respect to the outer iterations k, imposing a diminishing
updating rule to the stepsizes sequence.

Notice that similar considerations can be made for the minibatch version of algorithm 3, where
at each inner iteration a minibatch of consecutive indices S = {i, i+ 1, . . . , i+ |S| − 1} ⊆ {1, . . . ,N}
is selected, instead of a single index. This case will not be investigated, since it does not change the
convergence guarantees.

Since the proof relies on the concept of gradient method with error, the update in algorithm 3 must
be seen in the framework of (3.5). First, observe that the N inner iterations performed at each outer
iteration k in algorithm 3 can be seen as a unique outer iteration

wk+1 = wk−αk
1
N

N

∑
i=1

∇ fi(νi−1).

Secondly, recall that the standard (full) gradient method can be written in the finite sum setting as

wk+1 = wk−αk
1
N

N

∑
i=1

∇ fi(wk).

Finally, the error can be defined as

ek =
1
N

N

∑
i=1

(∇ fi(νi−1)−∇ fi(wk)). (3.15)

To relate this method to the general algorithm 2, it is necessary to re-index algorithm 3 in order to have
only one iteration loop, i.e. only k, where at each k an index ik is selected cyclically from {1, . . . ,N}.
Then, the short-term component would be sk =−∇ fik(wk) and the long-term one would be null, i.e.

wk+1 = wk +αk(sk + lk) = wk−αk∇ fik(wk).

Lemma 2, reported from [98], shows that the iterate in algorithm 3, with a constant stepsize,
satisfies the relation

wk+1 = wk−α∇ f (wk)+α
2
δ ,

where
‖δ‖ ≤C1

for some C1 > 0.

Lemma 2. Let assumptions 1 and 2 hold. Then the IG iterate in algorithm 3, with a constant stepsize
αk = α > 0 for any k, satisfies

wk+1 = wk−α∇ f (wk)+α
2
δ ,

where
‖δ‖ ≤C1

for some C1 > 0.

3.1. DETERMINISTIC SETTING 29

Proof.
wk+1 = wk−α

1
N ∑

N
i=1 ∇ fi(νi−1)

= wk−α
1
N ∑

N
i=1(∇ fi(νi−1)−∇ fi(wk)+∇ fi(wk))

= wk−α
1
N

(
∑

N
i=1 ∇ fi(wk)+∑

N
i=1(∇ fi(νi−1)−∇ fi(wk))

)
= wk−α∇ f (wk)+α2δ ,

(3.16)

where

δ :=
1

αN

N

∑
i=1

(∇ fi(νi−1)−∇ fi(wk)). (3.17)

Defining
δi := ‖∇ fi(νi−1)−∇ fi(wk)‖, i = 1, . . . ,N, (3.18)

it follows that δ1 = 0 since ν0 = wk. Now, the aim is to show by induction that

δi ≤ αLw

i−1

∑
j=1

(1+Lwα)i−1− j‖∇ f j(wk)‖, i = 2, . . . ,N, (3.19)

It holds

δ2 = ‖∇ f2(ν1)−∇ f2(wk)‖
≤ Lw‖ν1−wk‖
= αLw‖∇ f1(wk)‖.

Therefore, (3.19) was proved for i = 2. Suppose it holds for i = 2, . . . ,m, with m < N. By using (3.18)
and the triangle inequality,

‖∇ fi(νi−1)‖ ≤ ‖∇ fi(wk)‖+δi,

which combined with (3.19) yields

‖∇ fi(νi−1)‖ ≤ ‖∇ fi(wk)‖+αLw

i−1

∑
j=1

(1+Lwα)i−1− j‖∇ f j(wk)‖, i = 2, . . . ,N. (3.20)

Taking in consideration i = m+1, one gets

δm+1 = ‖∇ fm+1(νm)−∇ fm+1(wk)‖
≤ Lw‖νm−wk‖

= Lw

∥∥∥∥∥ m

∑
j=1

(ν j−ν j−1)

∥∥∥∥∥
≤ Lw

m

∑
j=1
‖ν j−ν j−1‖

= αLw

m

∑
j=1
‖∇ j(ν j−1)‖,

which, together with (3.20), yields

δm+1 ≤ αLw

m

∑
j=1

(
‖∇ f j(wk)‖+αLw

j−1

∑
l=1

(1+Lwα) j−1−l‖∇ fl(wk)‖

)

= αLw

m

∑
j=1

(1+Lwα)m− j‖∇ f j(wk)‖,

30CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

which is exactly (3.19) with i = m+1. Therefore, (3.19) is true.
Finally, using (3.17)-(3.19), it holds that

‖δ‖ ≤ 1
α

N

∑
i=2

δi

≤ Lw

N

∑
i=2

i−1

∑
j=1

(1+Lwα)i−1− j‖∇ f j(wk)‖

≤ c
N

∑
i=1
‖∇ fi(wk)‖

≤ cNB,

for some c > 0. The proof follows with
C1 := cNB.

Lemma 2 can be seen as a bound on the error when an incremental method is employed. In fact,
one can write

wk+1 = wk−α(∇ f (wk)−αδ) := wk−α(∇ f (wk)+ ek),

where the norm of the error ek =−αδ is bounded by the quantity αC1 > 0. From the above lemma,
thanks to theorem 2, theorem 4 directly follows.

Theorem 4. Let assumptions 1 and 2 hold. Apply the IG iterate in algorithm 3, with a constant
stepsize αk = α for all k such that

0 < α <
2

Lw
.

Then, there exists an accumulation point w and a constant C > 0 such that

‖∇ f (w)‖ ≤Cα. (3.21)

Moreover, if { f (wk)} converges, then every accumulation point w of {wk} satisfies (3.21).

Theorem 3, presented in the previous section, proved convergence of a generic algorithm with a
diminishing stepsize, where the direction is affected by a deterministic error. Theorem 5 shows how
this framework can be easily applied to the setting of algorithm 3, where the error can be written as in
(3.15).

Theorem 5. Let {wk} be the sequence generated by algorithm 3 under the assumptions that

• C,D > 0 exist such that

‖∇ fi(w)‖ ≤C+D‖∇ f (w)‖ ∀ w ∈ Rd ; (3.22)

• the stepsize αk satisfies
∞

∑
k=0

αk = ∞,
∞

∑
k=0

α
2
k < ∞.

3.1. DETERMINISTIC SETTING 31

Then either f (wk)→−∞ or else f (wk) converges to a finite value and

lim
k→∞

∇ f (wk) = 0.

Furthermore, every limit point of {wk} is stationary for f .

Proof. Without loss of generality, assume N = 2.

ν1 = wk−αk∇ f1(wk),

wk+1 = ν1−αk∇ f2(ν1).

Summing,
wk+1 = wk +αk(−∇ f (wk)+ ek),

where
ek = ∇ f2(wk)−∇ f2(ν1).

Therefore
‖ek‖ ≤ Lw‖wk−ν1‖= αkLw‖∇ f1(wk)‖ ≤ αk(LwC+LwD‖∇ f (wk)‖),

and by using theorem 3 the proof follows.

Observe that assuming relation (3.22) is inherently asking the error ek be dependent on the value
of the true gradient ∇ f (wk). Furthermore, this assumption is very similar to the bounded gradient
approximation variance assumption required for the convergence analysis in the stochastic setting, as
will be shown in the next section. Nevertheless, remark that condition (3.22) do not ask the gradients
of the component functions ∇ fi to be all 0 at a stationary point (where the norm of ∇ f is 0), which is
often assumed and is a strong assumption, rarely true in real applications.

The assumption on the stepsize is also quite strong. Indeed, the sequence {αk} is required to be
squared summable, but not summable, which hinders the rate of convergence. More advanced results,
like IAG and DIAG, rely on the gradient method with errors setting, but at the same time are able to
prove some results on the rate of convergence.

As a final remark, observe that the analysis by Solodov [98] requires the error term ek to satisfy
a stronger condition, i.e. ‖ek‖ ≤ αC1, than the one required by Bertsekas [15], where the error is
required to be ’controlled’ by the sum of a constant and a quantity linear dependent on the norm of
the gradient. Indeed, in order for the condition required by Solodov to hold, a uniform bound on the
gradient norm is necessary, while this is not required in the analysis by Bertsekas.

To the best of the author’s knowledge, these are the first convergence results for an incremental
gradient method. Furthermore, no convergence rate was established. It must be remarked that both
theorems 5 and 2 do not assume anything more than Lipschitz-continuity of the gradients. If (strong)
convexity of the function was assumed, then it would be easy to get similar bounds on the distance of
the function from its optimal value.

Bertsekas [12] more recently proved convergence of IG with a constant stepsize to a neighborhood
of the solution, quantifying the neighborhood size, namely proving that, if the function f is bounded
from below and the component functions fi are convex, then

liminf
k→∞

f (wk)≤ f ?+
α(4N +1)L2

wN
2

, (3.23)

where f ? = f (w?)

32CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

Regarding the analysis of the convergence rate, it is well-known [11] that methods with a dimin-
ishing stepsize like the one in theorem 3 achieve sublinear convergence. Nevertheless, IG algorithms
with a constant, small enough, stepsize can be proven to have linear convergence to a neighborhood of
the solution [11, Proposition 5]. In [12], a bound on such convergence rate was computed, i.e. proving
that to reach the neighborhood in (3.23) with an ε-accuracy one needs to run K iterations, with

K = N
⌊

dist(w0;W ?)2

αε

⌋
, (3.24)

with W ? = {w ∈ Rd : f (w) = f ?}.
In the next subsection a more advanced method, which is a first step to a provable fast convergence

to the solution of problem 1.3 with a constant stepsize, will be introduced.

3.1.2 Incremental Aggregated Gradient method

Algorithm 4: IAG scheme

Data: ∇ f1(w0),∇ f2(w1), . . . ,∇ fN(wN−1), wN ∈ Rd

1 Set ik = 1;
2 for k = N,N +1, . . . do
3 Compute ∇ fik(wk) and store it;
4 Choose a stepsize αk > 0;
5 Update the iterate wk+1 = wk−αk

1
N ∑

N
i=1 ∇ fmod(k−i,N)(wk−i);

6 If ik = N then ik← 1 else ik← ik +1
7 end

The Incremental Aggregated Gradient (IAG) [17] was proposed in 2007 to answer the question:
is it possible to relax the assumptions on the stepsizes sequence made in 5 without compromising
its convergence properties, maintain its efficiency in the computation of the search direction and get
faster convergence?

The idea behind IAG is pretty simple, namely to compute the gradient on one sample only,
∇ fik(wk), at each iteration, but improving the search direction by using all the information gathered
from gradients computed in past iterations. In the framework of algorithm 2,

sk =−
1
N

∇ fik(wk) and lk =−
1
N ∑

i 6=ik

∇ fmod(k−i,N)(wk−i),

which corresponds to an iterate that can be written as

wk+1 = wk +αkdk = wk−αk
1
N

N

∑
i=1

∇ fmod(k−i,N)(wk−i). (3.25)

The objective of an iterate like (3.25) is clear: compute the gradient of one only component function,
but also leverage past information, although that is not computed at the current iterate and therefore
is a source of error. Indeed, if ‖wk+1−wk‖ → 0, then one would have 1

N ∑
N
i=1 ∇ fmod(k−i,N)(wk−i)→

∇ f (wk).
Theorems 6-8 report the main convergence results of the method just outlined. These consider two

common settings, namely when the functions fi are Lipschitz-continuous and when those are convex
quadratic.

3.1. DETERMINISTIC SETTING 33

Theorem 6. Assume the iterate update (3.25) is executed. Let assumptions 1 and 2 hold, f (w) be
bounded and the stepsize be αk = α > 0 for all k, satisfying

α <
1

2Lw
.

Then

liminf
k→∞

‖∇ f (wk)‖ ≤
2LwB

1−2αLw
.

Theorem 6 guarantees convergence of a subsequence of {wk}, just like theorem 2 for IG method.
Before introducing theorem 7, which improves the convergence properties of IAG when the function
has better properties, two stronger assumptions are needed.

Assumption 7. f : Rd → R has a unique global solution w? and ∇2 f (w) is continuous and positive
definite at w?. It follows that a neighborhood B(w?) and positive constants A1,A2,B1,B2 exist such
that for any w ∈B(w?) it holds

A1‖w−w?‖2 ≤ f (w)− f (w?)≤ B1‖w−w?‖2,

A2‖w−w?‖2 ≤ ‖∇ f (w?)‖2 ≤ B2‖w−w?‖2.

Assumption 8. For any sequence {wk}, if limk→∞ f (wk) = f (w?) or limk→∞ ‖∇ f (wk)‖ = 0, then
limk→∞ wk = w?.

Observe that the above assumptions yield that there exists an ε > 0 such that w∈B(w?) if f (w)−
f (w?)< ε or ‖∇ f (w?)‖< ε .

One final remark is that if assumption 7 is satisfied and the function is strictly convex, then as-
sumption 8 holds. Furthermore, there exist nonconvex functions that satisfy assumptions 7-8.

Theorem 7. Let assumptions 1, 2, 7 and 8 hold. If the fixed stepsize αk = α > 0 for all k satisfies

α < min

 1
9Lw

,
1

Lw max
{

3
√

B1B2
A1A2

, 2
1−2αLw

} , ε

3LwB
,

1
3LwB

√
A2ε

B1

 ,

then
lim
k→∞

wk = w?.

Theorem 8. Let the functions fi be defined as

fi(w) =
1
2

wT Qiw− cT
i w, i = 1, . . . ,N,

where ∑
N
i=1 Qi is positive definite. Then a constant stepsize α > 0 exists such that

lim
k→∞

wk = w?

at a linear rate.

34CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

Theorem 7 is the first convergence result, to the best of the author’s knowledge, proving conver-
gence to the solution of a finite sum problem by employing an incremental method with a constant
stepsize. This is done at the cost of storing N d-dimensonal vectors, which can be expensive from a
memory point of view. The key of such a result lies in the aggregation of past computed ∇ fi that, al-
though computed in different iterates, bring enough information to let the error in the search direction
be controlled. A convergence rate result, instead, was developed by Blatt et al. only in the strictly
convex quadratic case, as shown in theorem 8. Observe that the positive definiteness assumption on
Qi implies that assumptions 7 and 8 hold.

The work in [110] proved linear convergence rate to a solution using a strong-convexity-like as-
sumption, but without the computation of an explicit linear rate constant. This was derived in the
strongly convex case in [50], from which the following theorem is reported

Theorem 9. Let assumptions 1 and 3 hold. Then the IAG iterate wk with a constant stepsize 0 < α <
α , where

α =

(
8µ

25NLw

)
1

µ +Lw
,

is globally linearly convergent to the unique solution of problem 1.3. Furthermore, if α = α

2 the
following hold

‖wk−w?‖ ≤
(

1− cN

(κ +1)2

)k

‖w0−w?‖,

f (wk)− f (w?)≤ Lw

2

(
1− cN

(κ +1)2

)2k

‖w0−w?‖2,

where κ ≥ 1 is the condition number as defined in definition 1 and

cN =
2

25N(2N +1)
.

3.1.3 Double Incremental Aggregated Gradient method

Algorithm 5: DIAG scheme

Data: w0,w1, . . . ,wN−1 ∈ Rd , ∇ f1(w0),∇ f2(w1), . . . ,∇ fN(wN−1)
1 Set ik = 1;
2 for k = N,N +1, . . . do
3 Compute ∇ fik(wk) and store the pair {wk,∇ fik(wk)};
4 Choose a stepsize αk > 0;
5 Update the iterate wk+1 =

1
N ∑

N
i=1 wk−i+1−αk

1
N ∑

N
i=1 ∇ fmod(k−i,N)(wk−i+1);

6 If ik = N then ik← 1 else ik← ik +1
7 end

DIAG algorithm [74] was introduced to answer the even harder question: is it possible to design an
incremental gradient algorithm, i.e. computing the gradient over only one sample ik at each iteration,
with a convergence rate that is provably better than the one of the full gradient method?

Algorithm 5 answers this question by setting the short- and long-term components of the search
direction, respectively, to

sk =
1
N
(wk−∇ fik(wk)) and lk =

1
Nα

N

∑
i=2

wk−i+1−
1
N ∑

i 6=ik

∇ fmod(k−i,N)(wk−i).

3.1. DETERMINISTIC SETTING 35

Therefore, the average is computed over both the last N iterates and the last N component gradients
∇ fi computed. The authors of [74] justify the idea by comparing DIAG iterate to IAG one. Indeed,
IAG iterate can be seen as the solution of the optimization problem

wk+1 = arg min
w∈Rd

{
1
N

N

∑
i=1

fi(yi
k)+

1
N

N

∑
i=1

∇ fi(yi
k)

T (w− yi
k)+

1
N

N

∑
i=1

1
2α
‖w−wk‖2

}
,

where y is updated as

yi
k+1 =

{
wk+1, i = ik,
yi

k, otherwise.

This shows that IAG uses, at each iteration k, an approximation of each component function that can
be written as

fi(w)≈ fi(yi
k)+∇ fi(yi

k)
T (w− yi

k)+
1

2α
‖w−wk‖2,

where the first two terms are a first-order approximation of fi around yi
k and the last one is a proximal

term. This is not customary for proximal algorithms, indeed the proximal term is evaluated around wk
instead of yi

k. Thus, the idea of the authors in [74] was to modify the approximation to get

fi(w)≈ fi(yi
k)+∇ fi(yi

k)
T (w− yi

k)+
1

2α
‖w− yi

k‖2,

which corresponds to an iterate that is the solution of the optimization problem

wk+1 = arg min
w∈Rd

{
1
N

N

∑
i=1

fi(yi
k)+

1
N

N

∑
i=1

∇ fi(yi
k)

T (w− yi
k)+

1
N

N

∑
i=1

1
2α
‖w− yi

k‖2

}
.

Solving the above, and recalling the definition of yi
k, it follows that DIAG iterate can be written as

wk+1 =
1
N

N

∑
i=1

wk−i+1−αk
1
N

N

∑
i=1

∇ fmod(k−i,N)(wk−i+1).

The convergence results depend on the following fundamental lemma.

Lemma 3. Consider the method defined in algorithm 5. Let assumptions 1 and 3 hold and let the
stepsize be αk = α = 2

µ+Lw
for all k. Then the sequence {wk} satisfies

‖wk+1−w?‖ ≤
(

κ−1
κ +1

)(
‖wk−w?‖+ · · ·+‖wk−N+1−w?‖

N

)
, (3.26)

where κ is the condition number of the function.

Lemma 3 makes a fundamental statement: the new iterate wk+1 is always closer (or has the same
distance) to the solution of the problem than the average of the last N iterates. This notwithstanding,
observe that such a result holds for an exact value of the stepsize α: an open question is if the result
would hold if the stepsize was smaller than the given quantity.

Theorem 10. Assume the DIAG algorithm 5 is executed with constant stepsize α = 1
µ+Lw

. Let as-
sumptions 1 and 3 hold. Then it holds that

‖wk−w?‖ ≤ a0γ
k
0‖w0−w?‖, (3.27)

36CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

where

a0 = max
i∈{1,...,N}

ρ

(
1− (i−1)(1−ρ)

N

)
γ
−i
0 ,

ρ = κ−1
κ+1 and γ0 is the unique solution of

γ
N+1−

(
1+

ρ

N

)
γ

N +
ρ

N
= 0.

In [74, Theorem 9], which is not reported for its technicality, the authors prove that the above
convergence rate is better than the full gradient descent one in the worst case. This is an unprecedented
result, since it states that, at the cost of storing N vectors, the unconstrained finite sum optimization
problem can be solved by a method computing only the gradient of one component function at each
iteration, with a convergence rate in the strongly convex case that is faster than the one of the full
gradient method, which computes the gradients of the N component functions at each iteration!

With the introduction and analysis of the DIAG method, the section dedicated to the incremental
gradient methods in the deterministic setting is concluded.

3.2 Stochastic setting

In the stochastic setting, methods that rely on the computation of only one component function (or a
minibatch of component functions) are known as stochastic gradient methods (SG methods), mainly
due to (i) the selection criteria for the index ik at each iteration k and (ii) the techniques adopted for
convergence analysis.

As for IG methods, SG methods can not rely on any deterministic angle condition to hold at each
iteration. Nonetheless, as opposed to IG methods, SG ones usually rely on an angle condition in
expectation, as will be clearer in the next lines. This considerably simplifies the convergence analysis
of such methods, and is the reason why SG methods are more widely known to the ML community.

The standard conditions that a stochastic search direction dk is usually asked to guarantee [19] are:

Assumption 9. There exist constants cg ≥ c > 0, M,Mv ≥ 0 such that for all k ≥ 0

∇ f (wk)
T E[dk]≤−c‖∇ f (wk)‖2, (3.28)

‖E[dk]‖ ≤ cg‖∇ f (wk)‖, (3.29)

Var[dk]≤M+Mv‖∇ f (wk)‖2, (3.30)

where Var[dk] is the variance of the vector dk, namely

Var[dk] := E
[
‖dk−E[dk]‖2]= E

[
‖dk‖2]−E [‖dk‖]2 .

Remark 4. Let assumption 9 hold. Then

E
[
‖dk‖2]≤M+MG‖∇ f (wk)‖2,

where MG = Mv + cg ≥ c2 > 0.

3.2. STOCHASTIC SETTING 37

Condition (3.28) is the stochastic counterpart of the classical angle condition (3.6), assumed in
expectation, while condition (3.29) asks the first moment of the stochastic direction to be proportional
to the norm of the true gradient. The inequality (3.30), instead, imposes a growth condition to the
variance of the direction dk, asking it does not grow more than linearly with respect to the squared
norm of the true gradient. Observe that (3.30), in the case dk = −∇ fik(wk), lets the gradients of the
component functions be bounded away from zero even when at the solution (where the squared norm
of the true gradient, ‖∇ f (wk)‖2 is equal to 0).

Sometimes, a stronger condition like

E[dk] =−∇ f (wk)

is assumed. This, unless needed, will not be assumed in this dissertation. Observe that assuming such
a condition directly implies (3.28) (for any c≤ 1), (3.29) (for any cg ≥ 1) and also E[ek] = 0, where ek
is the error term of the search direction w.r.t. the true gradient, as introduced in the previous section.

Controlling the variance of the direction employed is key in the convergence analysis of stochastic
methods, as the following theorem from [19] shows.

Theorem 11 (Strongly convex case, variance reduced at geometric rate). Assume assumptions 1, 3
and 9 hold. Moreover, assume that there exist C ≥ 0, τ ∈ (0,1) such that, for all k, it holds that

Var[dk]≤Cτ
k−1.

Then, employing algorithm 2 with αk = α , for all k, such that

0 < α ≤min

{
c

Lwc2
g
,

1
µc

}
,

it follows that
E[f (wk)]− f ? ≤ ωρ

k−1,

where

ω := max
{

αLwC
µc

, f (w0)− f ?
}

and
ρ := max

{
1− αµc

2
,τ
}
< 1.

Therefore,
lim
k→∞

E[f (wk)] = f ?,

and the convergence rate is linear.

As shown by the results in theorem 11, letting the variance of the direction go to zero at a geo-
metric rate yields linear convergence to the solution of problem 1.3, in the strongly convex case. This
notwithstanding, many practitioners employ SG methods without any control on the variance of the
direction. The following analysis explains what one should expect from such ’naive’ application of
SG methods.

For the analysis in the stochastic setting, Nocedal et al. [19] assume that the direction dk employed
is a function of both the iterate wk and a random variable ζk, i.e.

dk =−g(wk,ζk),

38CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

from which the generic SG iterate can be written as

wk+1 = wk−αkg(wk,ζk), (3.31)

where ζ is a generic random variable defined by a generic probability distribution Pζ . This random
variable can be seen, in a SG algorithm, as the seed for the selection of the index ik. Nevertheless, the
subsequent analysis holds for any other algorithm satisfying assumptions 9.

The convergence analysis relies on the following two fundamental lemmas, which are reported
from [19]. Observe that all the convergence results presented below hold for any method satisfying
the conditions in assumption 9.

Lemma 4. Let assumption 1 holds. Then the iterate (3.31) satisfies, for all k,

Eζk
[f (wk+1)]− f (wk)≤−αk∇ f (wk)

T Eζk
[g(wk,ζk)]+

1
2

α
2
k LwEζk

[‖g(wk,ζk)‖2]. (3.32)

Proof. Assumption 1 yields

f (wk+1)− f (wk)≤ ∇ f (wk)
T (wk+1−wk)+

1
2

Lw‖wk+1−wk‖2 (3.33)

=−αk∇ f (wk)
T g(wk,ζk)+

1
2

α
2
k Lw‖g(wk,ζk)‖2. (3.34)

The proof follows by taking the expectation of the above inequality with respect to ζk.

From lemma 4, the reason why assumptions 9 are necessary is immediately clear. Indeed, condi-
tion 3.28 ensures that the first term in (3.33) is negative, while 3.30 gives a bound on the second term,
which depends on the true gradient ∇ f .

Lemma 5. Let assumptions 1 and 9 hold. Then iterate (3.31) yields, for all k,

Eζk
[f (wk+1)]− f (wk)≤−

(
c− 1

2
LwMG

)
αk‖∇ f (wk)‖2 +

1
2

α
2
k LwM. (3.35)

Proof. Using lemma 4 and assumptions 9, it holds

Eζk
[f (wk+1)]− f (wk)≤−αk∇ f (wk)

T Eζk
[g(wk,ζk)]+

1
2

α
2
k LwEζk

[‖g(wk,ζk)‖2]

≤−cαk‖∇ f (wk)‖2 +
1
2

α
2
k LwEζk

[‖g(wk,ζk)‖2]

≤−
(

c− 1
2

LwMG

)
αk‖∇ f (wk)‖2 +

1
2

α
2
k LwM.

Observe that, if Var[dk]→ 0, then the constants M,Mν can be taken small enough in order for
condition (3.35) to imply a function descent (in expectation) condition on the function f .

Based on the above lemmas, which proof is straightforward thanks to the nice properties of the
expectation operator, convergence results can be derived for both the nonconvex and convex cases,
and both the constant and diminishing stepsize settings. These are reported, again, from [19]. In the
following, the expected value with respect to ζk may be omitted, in which case it will hold

E[·] := Eζk
[·].

Theorems 12 and 13, reported from [19], give the convergence properties of a SG method applied
to general (nonconvex) objective functions. When a constant stepsize is employed, the result is very
weak, only guaranteeing a liminf convergence to a neighborhood of a stationary point.

3.2. STOCHASTIC SETTING 39

Theorem 12 (Nonconvex, fixed stepsize case). Let assumptions 1 and 9 hold. Let f be bounded from
below by fin f and suppose to apply iterate (3.31) with αk = α for all k such that

0 < α ≤ c
LwMg

.

Then it holds

lim
K→∞

E

[
1
K

K

∑
k=0
‖∇ f (wk)‖2

]
≤ αLwM

c
. (3.36)

Proof. Using lemma 5 and the assumption on the stepsize, taking total expectation,

E[f (wk+1]−E[f (wk)]≤−
(

c− 1
2

αLwMG

)
αE[‖∇ f (wk)‖2]+

1
2

α
2LwM

≤−1
2

cαE[‖∇ f (wk)‖2]+
1
2

α
2LwM.

Summing the above inequality for k = 0, . . . ,K−1 yields

fin f − f (w0)≤ E[f (wK)]− f (w0)≤−
1
2

cα

K−1

∑
k=0

E[‖∇ f (wk)‖2]+
1
2

Kα
2LwM.

Rearranging and dividing by K, the result follows.

Observe that the result in (3.36) implies that

P
{

lim
k→∞

‖∇ f (wk)‖2 ≤ αLwM
c

}
≤ 1− ε,

for any ε > 0.
In the nonconvex setting, even with a diminishing stepsize, the best one can ensure is that

liminf
k→∞

E[‖∇ f (wk)‖2] = 0,

as proven by the following theorem. Notice that this is a worse result than the one in the deterministic
setting, where convergence of the whole sequence was proved in theorem 3.

Theorem 13 (Nonconvex, diminishing stepsize case). Let assumptions 1 and 9 hold. Let f be bounded
from below by fin f and suppose to apply iterate (3.31) with αk satisfying

∞

∑
k=0

αk = ∞,
∞

∑
k=0

α
2
k < ∞.

Then it holds

lim
K→∞

E

[
1

AK

K−1

∑
k=0

αk‖∇ f (wk)‖2

]
= 0,

where

AK =
K−1

∑
k=0

αk.

40CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

Proof. Since {αk}→ 0, without loss of generality let the following holds for all k

αkLwMG ≤ c.

Using lemma 5 and taking the total expectation,

E[f (wk+1]−E[f (wk)]≤−
(

c− 1
2

αLwMG

)
αE[‖∇ f (wk)‖2]+

1
2

α
2LwM

≤−1
2

cαE[‖∇ f (wk)‖2]+
1
2

α
2LwM.

Summing the above inequality for k = 0, . . . ,K−1 yields

fin f − f (w0)≤ E[f (wK)]− f (w0)≤−
1
2

c
K−1

∑
k=0

αkE[‖∇ f (wk)‖2]+
1
2

LwM
K−1

∑
k=0

α
2
k .

Multiplying by 2 and dividing by c, the above inequality yields

K−1

∑
k=0

αkE[‖∇ f (wk)‖2]≤
2(f (w0)− fin f)

c
+

LwM
c

K−1

∑
k=0

α
2
k .

Letting K go to ∞, the right hand side is finite by the assumption on the stepsize sequence. Further-
more,

lim
K→∞

AK =
K−1

∑
k=0

αk = ∞,

from which the proof follows.

As in the deterministic setting, stronger convergence results can be proved in the (strongly) convex
case.

Theorem 14 (Strongly convex, fixed stepsize case). Let assumptions 1, 3 and 9 hold. Let the optimal
value of f be f ? and suppose to apply iterate (3.31) with αk = α for all k, such that

0 < α ≤ c
LwMg

. (3.37)

Then it holds that
lim
k→∞

E[f (wk)]≤ f ?+
αLwM

2µc
. (3.38)

Proof. Recalling lemma 5 and remark 2, it holds that

E[f (wk+1)]− f (wk)≤−
(

c− 1
2

LwMG

)
αk‖∇ f (wk)‖2 +

1
2

α
2
k LwM

≤−1
2

αc‖∇ f (wk)‖2 +
1
2

α
2
k LwM

≤−αµc(f (wk)− f ?)+
1
2

α
2
k LwM,

where the second inequality follows from the stepsize (3.37) and the last inequality from remark 2.
Taking the expectation of the above inequality and subtracting f ? from both sides, it follows that

E[f (wk+1)]− f ? ≤ (1−αµc)(E[f (wk)]− f ?)+
1
2

α
2
k LwM.

3.2. STOCHASTIC SETTING 41

Now, subtract the quantity αLwM
2µc from both sides, obtaining

E[f (wk+1)]− f ?− αLwM
2µc

≤ (1−αµc)(E[f (wk)]− f ?)+
1
2

α
2
k LwM− αLwM

2µc

≤ (1−αµc)
(

E[f (wk)]− f ?− αLwM
2µc

)
,

and by iterating the above one gets

E[f (wk+1)]− f ?− αLwM
2µc

≤ (1−αµc)k
(

f (w0)− f ?− αLwM
2µc

)
.

Recalling that

0 < αµc≤ µc2

LwMG
≤ µc2

Lwc2 =
µ

Lw
≤ 1,

the result follows.

The above result is very similar to the one in the deterministic setting for the IG method. Indeed,
theorem 14 proves that the SG method, applied with a constant, small enough stepsize, ensures linear
convergence to a neighborhood of the solution. Unfortunately, there is no guarantee on what could
happen after the neighborhood has been reached. Indeed, one could expect instability in the iterate
sequence {wk}, which may oscillate in and out of the neighborhood with no control.

The proof of the convergence in the diminishing stepsize case is reported again from [19], where
the stepsize is assumed to satisfy

αk =
β

γ + k
, (3.39)

with β ,γ > 0 such that α0 ≤ c
LwMG

. Note that requiring α0 ≤ c
LwMG

is not restrictive, since even if that
did not hold for k = 0, then a k > 0 would exist such that it would hold for all k ≥ k. Furthermore,
observe that (3.39) guarantees the standard requirement for a diminishing stepsize, i.e.

∞

∑
k=0

αk = ∞,
∞

∑
k=0

α
2
k < ∞.

Theorem 15 (Strongly convex, diminishing stepsize case). Let assumptions 1, 3 and 9 hold. Let the
optimal value of f be f ? and suppose to apply iterate (3.31) with αk such that (3.39) holds. Then

lim
k→∞

E[f (wk)] = f ?. (3.40)

Proof. Using the strong convexity, lemma 5 and (3.39), the following holds

E[f (wk+1)]− f (wk)≤−
(

c− 1
2

αkLwMG

)
αk‖∇ f (wk)‖2 +

1
2

α
2
k LwM

≤−1
2

αkc‖∇ f (wk)‖2 +
1
2

α
2
k LwM

≤−αkµc(f (wk)− f ?)+
1
2

α
2
k LwM.

Subtracting f ? from both sides and rearranging, it yields

E[f (wk+1)]− f ? ≤ (1−αkµc)(E[f (wk)]− f ?)+
1
2

α
2
k LwM.

42CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

Defining ν > 0 as

ν := max
{

β 2LwM
2(β µc−1)

,(γ +1)(f (w0)− f ?)
}
,

for k = 0 it holds that
E[f (wk)]− f ? ≤ ν

γ + k
.

To prove the above inequality by induction, it is necessary to prove it for some k≥ 0. Setting k̃ = γ +k
and recalling that k̃2 ≥ (k̃+1)(k̃−1),

E[f (wk)]− f ? ≤
(

1− β µc

k̃

)
ν

k̃
+

β 2LwM

2k̃2

=

(
k̃−β µc

k̃2

)
ν +

β 2LwM

2k̃2

=

(
k̃−1

k̃2

)
ν−

(
β µc−1

k̃2

)
ν +

β 2LwM

2k̃2

≤ ν

k̃+1
,

where in the last inequality it was used that

−
(

β µc−1

k̃2

)
ν +

β 2LwM

2k̃2
≤ 0,

by the definition of ν . Therefore, the inequality

E[f (wk)]− f ? ≤ ν

γ + k

holds for all k. The proof follows by taking the limit of the above inequality for k→ ∞.

As expected, the introduction of a diminishing stepsize ensures convergence to the exact solution
of the problem. The cost, exactly as in the deterministic setting, is a sublinear rate of convergence,
instead of a linear one.

It is interesting to compare the above results from [19] with the earlier ones presented in [15],
where, beyond all the analysis in the deterministic setting, Bertsekas analyzed the convergence prop-
erties of a gradient method with error, when the error is of a stochastic nature. In [15], only the
nonconvex setting was analyzed, with assumptions very similar to the ones by Nocedal et al. in [19].
Indeed, the assumptions in [15] are:

• Iterate update
wk+1 = wk +αk(gk + ek),

where ek is an error term of stochastic nature, and gk is a deterministic descent direction;

• A diminishing, squared summable but not summable, stepsize sequence {αk} such that

∞

∑
k=0

αk = ∞,
∞

∑
k=0

α
2
k < ∞;

3.2. STOCHASTIC SETTING 43

• Assumptions 6 hold;

• For all k, it holds with probability 1 that

E[ek] = 0, (3.41)

which implies

E[(gk + ek)
T

∇ f (wk)]≥ c3‖∇ f (wk)‖2,

for some c3 > 0, and

E[‖ek‖2]≤ A(1+‖∇ f (wk)‖2), (3.42)

for some A > 0.

Observe that condition (3.42) from [15] is indeed very similar to the last condition in assumptions 9
from [19], namely a condition bounding the growth of the variance in the gradient approximation error
at each iteration. Under the above assumptions, convergence with probability 1 of any accumulation
point of the sequence {wk} to a stationary point was proven.

Now that the main assumptions and results for a generic gradient method with a stochastic search
direction have been presented, the basic Stochastic Gradient method can be introduced.

3.2.1 Stochastic Gradient method

The most basic way of computing dk is by choosing an index ik at random from {1, . . . , N} and setting

dk =−∇ fik(wk). (3.43)

Algorithm 6: SG scheme

Data: w0 ∈ Rd

1 for k = 0,1, . . . do
2 Compute ∇ fik(wk), where ik is chosen uniformly at random from {1, . . . ,N};
3 Choose a stepsize αk > 0;
4 Update the iterate wk+1 = wk−αk∇ fik(wk);
5 end

This is the stochastic counterpart of the IG method. The convergence analysis of algorithm 6 di-
rectly follows from the analysis above, by assuming that the direction dk in (3.43) satisfies assumption
9.

Thanks to the analysis in the previous section, the convergence of the basic SG method and of any
other algorithms satisfying assumption 9 can be proven. Nevertheless, to overcome the diminishing
stepsize, and consequently the sublinear convergence, issue, more sophisticated methods must be
introduced. These use aggregated gradient information to reduce the gradient approximation variance.
The aim is to get convergence to a solution, without the need for a diminishing stepsize.

44CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

3.2.2 Stochastic Average Gradient method

Algorithm 7: SAG scheme

Data: y1
0 = y2

0 = · · ·= yN
0 = 0,w0 ∈ Rd

1 for k = 0,1, . . . do
2 Choose a stepsize αk > 0;
3 Compute ∇ fik , where ik is chosen uniformly at random from {1, . . . ,N}, and store it;

4 Compute ∇ f̃ (wk) =
1
N ∑

N
i=1 yi

k, yi
k =

{
∇ fi(wk), i = ik,
yi

k−1 otherwise;

5 Update the iterate wk+1 = wk−αk∇ f̃ (wk);
6 end

The stochastic counterpart of IAG is the Stochastic Average Gradient (SAG) [89], where the iterate
update can be written as

wk+1 = wk−
α

N

N

∑
i=1

yi
k, yi

k =

{
∇ fi(wk), i = ik,
yi

k−1 otherwise,
(3.44)

in which the index ik is selected uniformly at random from {1, . . . , N} at every iteration k.
To interpret SAG in the framework of algorithm 2, it suffices to set the short- and long-term

components of the search direction to, respectively,

sk =−
1
N

∇ fik(wk) and lk =−
1
N ∑

i 6=ik

yi
k.

The SAG method is interestingly tightly connected to the well-known SG method with momen-
tum. SG with momentum is very often used in real applications, and employs an iterate update of the
type

wk+1 = wk−αk∇ fik(wk)+βk(wk−wk−1),

where αk,βk > 0. The above can be rewritten, in the common case where βk = β > 0 for all k, as

wk+1 = wk−
k

∑
h=1

αkβ
k−h

∇ fih(wh),

which is a geometric weighting of past computed gradients of the component functions. SAG, instead,
can be written as

wk+1 = wk−
k

∑
h=1

αkS(h, i1:k)∇ fih(wh),

where S(h, i1:k) is equal to 1
N if h is the closest iteration where ih was selected, 0 otherwise. This is

an average of the most recent evaluations of the gradients of each component function. Observe that
SG with momentum, instead, does not guarantee that the gradient of each component function has
the same weight in the weighted average. Indeed, SG with momentum has no provable convergence
guarantees with a constant stepsize, and is therefore usually employed with a diminishing one.

Theorem 16 proves convergence of SAG to the solution, at a linear rate, with a small, constant
stepsize, in the convex case.

3.2. STOCHASTIC SETTING 45

Theorem 16. Let assumptions 1 and 5 hold for each composite function fi. Let yi
0 = 0 for all i and

αk = α =
1

16Lw
∀ k.

Then it holds for all k

E[f (wk)]− f ? ≤ 32N
k

C0, (3.45)

where

wk =
1
k

k−1

∑
h=0

wh

and

C0 = f (w0)− f ?+
4Lw

N
‖w0−w?‖2 +

σ2

16Lw
,

with σ2 = 1
N ∑

N
i=1 ‖∇ fi(w?)‖2. It follows that

liminf
k→∞

E[f (wk)] = f ?. (3.46)

Furthermore, if assumption 3 holds for f , then

E[f (wk)]− f ? ≤
(

1−min
{

µ

16Lw
,

1
8N

})k

C0, (3.47)

from which
lim
k→∞

E[f (wk)] = f ?. (3.48)

Observe that the authors in [89] numerically tested SAG vs IAG, noticing that IAG usually needs
a stepsize of around 1

NLw
to converge, compared to SAG’s that can be N times larger. This is in line

with the theoretical results of IAG and SAG.
The last remark on the SAG method is that, to the best of the author’s understanding, no results

have been proved in the nonconvex setting. Whether some mild convergence guarantees, like the ones
obtained for IAG in the deterministic setting, can be given is still an open question.

3.2.3 Finito method

Algorithm 8: Finito scheme

Data: y1
0 = y2

0 = · · ·= yN
0 = w0 ∈ Rd , ∇ f1(y1

0),∇ f2(y2
0), . . . ,∇ fN(yN

0)
1 for k = 0,1, . . . do
2 Compute ∇ fik(y

i
k), where ik is selected uniformly at random from {1, . . . ,N}, and store it;

3 Choose a stepsize αk > 0;
4 Update the iterate wk+1 =

1
N ∑

N
i=1 yi

k−αk
1
N ∑

N
i=1 ∇ fi(yi

k);

5 Set yi+1
k =

{
wk+1, i = ik,
yi

k otherwise;
6 end

Finito method [35] is the stochastic counterpart of DIAG method. As the other methods, also
Finito can be put in the framework of algorithm 2, by setting sk and lk to

sk =
1
N
(wk−∇ fik(wk)) and lk =

1
αkN

N

∑
i=1

yi
k−

1
N ∑

i6=ik

∇ fi(yi
k),

46CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

where yi
k, i = 1, . . . ,N, are updated as

yi+1
k =

{
wk+1, i = ik,
yi

k otherwise.

Proposed in 2014, this method aims at finding a better linear rate of convergence with respect
to SAG. The convergence rate of Finito is, indeed, better than SAG one, as shown in theorem 18.
Nevertheless, such convergence rate can be proved in the regime the authors in [35] call big data
regime, where they assume

N ≥ 2
Lw

µ
.

When this does not hold, then theorem 17 only proves convergence of the function computed at the
average iterate f (w) to the optimal value f ?.

Theorem 17. Let assumptions 1 and 3 hold. Assume c≥ 2, β ≥ 2 and

2
c
− 1

c2 −β +
β

c
≤ 0.

If y1
0 = y2

0 = · · ·= yN
0 = w0 and αk = α = 1

cµ
for all k, then

E[f (wk)]− f ? ≤ C
µ

(
1− 1

cN

)k

‖∇ f (w0)‖2,

where C = 1− 1
2c , from which

lim
k→∞

E[f (wk)] = f ?.

Theorem 18. Let assumptions 1 and 3 hold. Assume N ≥ 2 Lw
µ

. Therefore, c = 2 is admissible. If
y1

0 = y2
0 = · · ·= yN

0 = w0 and αk = α = 1
2µ

for all k, then

E[f (wk)]− f ? ≤ 3
4µ

(
1− 1

2N

)k

‖∇ f (w0)‖2.

To compare the convergence rate of Finito with SAG one, note that while for Finito it depends on
the quantity

1− 1
2N

,

for SAG it depends on

1− 1
8N

.

Since 1
8N is smaller than 1

2N , then SAG rate is worse than Finito one. As a last comment, observe
that both SAG and Finito converge under the assumption of a stepsize exactly equal to a small con-
stant quantity, which is difficult to compute. Therefore, it seems to be an open question whether the
convergence results are maintained if the stepsize is smaller (which is usually the case when, in real
applications, the constant stepsize must be guessed).

3.2. STOCHASTIC SETTING 47

3.2.4 Stochastic Variance Reduced Gradient method

Algorithm 9: SVRG scheme

Data: m > 0,s = 0, w̃ = ws = w0 ∈ Rd , ∇ f (w̃)
1 for k = 0,1, . . . do
2 Compute ∇ fik(wk), where ik is selected at random from {1, . . . ,N};
3 Choose a stepsize αk > 0;
4 Update the iterate wk+1 = wk−αk(∇ fik(wk)−∇ fik(w̃)+∇ f (w̃));
5 if mod(k+1,m) = 0 then
6 Compute ∇ f (w̃), where w̃ = wk+1;

7 Set ws+1 =

{
wk+1, option I,
wk+1− j, j random from {1, . . . ,m} option II;

8 s← s+1;
9 end

10 end

In the SVRG scheme, the short-term component sk of the direction dk is the negative gradient of
the component function fik , while the long-term one, lk, is the correction based on the full gradient
computed in the ’snapshot’ iterate w̃, namely ∇ fik(w̃)−∇ f (w̃):

sk =−∇ fik(wk) and lk = ∇ fik(w̃)−∇ f (w̃).

Analyzing the search direction dk in algorithm 9, one can recognize that it is an approximation of
the negative gradient, i.e.

dk =−∇ f̃ (wk),

where

∇ f̃ (wk) = ∇ fik(wk)−∇ fik(w̃)+
1
N

N

∑
i=1

∇ fi(w̃)

=
1
N

N

∑
i=1

∇ fik(wk)−
1
N

N

∑
i=1

∇ fik(w̃)+
1
N

N

∑
i=1

∇ fi(w̃)

=
1
N

N

∑
i=1

[∇ fik(wk)−∇ fik(w̃)+∇ fi(w̃)]

=
1
N

N

∑
i=1, i6=ik

[∇ fi(w̃)+(∇ fik(wk)−∇ fik(w̃))]+
1
N

∇ fik(wk)

=
N

∑
i=1

yi
k

where

yi
k =

{
∇ fik(wk), i = ik,
∇ fi(w̃)+(∇ fik(wk)−∇ fik(w̃)), otherwise.

The idea behind SVRG is therefore the following: given the full gradient evaluated in the snapshot
∇ f (w̃), when at iteration k a new component ∇ fik(wk) of the summation composing the full gradient
at wk is computed, then do the following:

48CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

1. substitute the ik-th sum component of the snapshot with the new one;

2. correct every other sum component i : i 6= ik with the quantity ∇ fik(wk)−∇ fik(w̃),

where the correction term is an approximation of the error in the sum component ∇ fi due to its
evaluation in the old snapshot of the iterate w̃. SVRG algorithm (9) is proven to converge to the
optimal solution of problem (1.3) with a constant stepsize if f is convex. Such convergence was
extended to a nonconvex setting in [3]. It must be underlined nonetheless that such linear convergence
results are proven on the iterates ws, which are updated every m iterations, and therefore it can be
slower than expected.

The convergence results in the strongly convex case are reported from [58].

Theorem 19 (Strongly convex case). Let assumptions 1 and 3 hold for f , and assumption 5 for all the
fi. Let SVRG be run with option II, αk = α ∈

(
0, 2

Lw

)
for all k and m > 0 large enough to guarantee

c =
1

µα(1−2Lwα)m
+

2Lwα

1−2Lwα
< 1.

Then

E[f (ws)]≤ f ?+ cs(f (w0)− f ?),

where f ? is the optimal value of f , and it follows that

lim
s→∞

E[f (ws)] = f ?.

Theorem 19 shows that the SVRG method guarantees, in the strongly convex case, linear conver-
gence of the sequence { f (ws)}∞

s=0 to the optimal value of the objective. The SVRG method is the
only stochastic method that enjoys convergence, although in expectation and at a sublinear rate, to a
stationary point in the nonconvex case. Such convergence result is reported from [83].

Theorem 20 (Nonconvex case). Let assumption 1 hold, f be bounded from below by fin f and cm,β >
0 be constants such that

Γi = α− ci+1α

β
−α

2Lw−2ci+1α
2 > 0, i = 1, . . . ,m

where

ci = ci+1(1+αβ +2α
2L2

w)+α
2L3

w, i = 1, . . . ,m.

Define γ := mini=1,...,m Γi and let algorithm 9 be run with option II. Then it holds that

E[‖∇ f (ws)‖2]≤
f (w0)− fin f

sγ
,

which yields

lim
s→∞

E[‖∇ f (ws)‖2] = 0.

3.2. STOCHASTIC SETTING 49

3.2.5 SAGA method - a bridge between SAG and SVRG

Algorithm 10: SAGA scheme

Data: y1
0,y

2
0, . . . ,y

N
0 ,w0 ∈ Rd

1 for k = 0,1, . . . do
2 Choose a stepsize αk > 0;
3 Compute ∇ fik , where ik is chosen uniformly at random from {1, . . . ,N}, and store it;

4 Compute ∇ f̃ (wk) = ∇ fik(wk)−∇ fik(y
ik
k−1)+

1
N ∑

N
i=1 yi

k, yi
k =

{
∇ fi(wk), i = ik,
yi

k−1 otherwise;

5 Update the iterate wk+1 = wk−αk∇ f̃ (wk);
6 end

The last method analyzed in the stochastic setting is SAGA [34]. SAGA was introduced in 2014
and aims at combining the good properties of SAG and SVRG. The method employs the short-term
and long-term components

sk =−∇ fik(wk) and lk = ∇ fik(y
i
k)−∇ f (yi

k),

therefore having an iterate update

wk+1 = wk−∇ fik(wk)+∇ fik(y
ik
k−1)−

1
N

N

∑
i=1

yi
k,

where

yi
k =

{
∇ fi(wk), i = ik,
yi

k−1 otherwise.

Just like for SVRG, the search direction dk in algorithm 10 can be seen as an approximation of the
negative gradient, i.e.

dk =−∇ f̃ (wk),

where

∇ f̃ (wk) = ∇ fik(wk)−∇ fik(y
i
k)+

1
N

N

∑
i=1

∇ fi(yi
k)

=
1
N

N

∑
i=1

∇ fik(wk)−
1
N

N

∑
i=1

∇ fik(y
i
k)+

1
N

N

∑
i=1

∇ fi(yi
k)

=
1
N

N

∑
i=1

[
∇ fik(wk)−∇ fik(y

i
k)+∇ fi(yi

k)
]

=
1
N

N

∑
i=1, i 6=ik

[
∇ fi(yi

k)+
(
∇ fik(wk)−∇ fik(y

i
k)
)]

+
1
N

∇ fik(wk),

where the correction is not based on the last ’snapshot’ w̃, as in SVRG, but based on yi
k, which is

equal, for each i = 1, . . . ,N, to the most recent gradient of the component function fi. Observe that
this modification allows SAGA to never compute anything else than the gradient of the currently
selected component function fik .

The convergence results of SAGA are reported from [34]. As can be seen from theorems 21 and
22, linear convergence in expectation to the solution of problem 1.3 can be proven both in the strongly

50CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

convex and general convex cases. Nevertheless, in the general convex case the convergence can be
proven over the average iterate wk only.

Theorem 21 (Convergence in the strongly convex case). Let assumptions 1 and 3 hold. Then, running
algorithm 10 with a stepsize αk = α for all k such that

α =
1

2(µN +Lw)
.

Then

E[‖wk−w?‖2]≤
(

1− µ

2(µN +Lw)

)k(
‖w0−w?‖2 +

N
µN +Lw

(f (w0)−∇ f (w?)T (w0−w?)− f (w?))

)
.

Theorem 22 (Convergence in the general convex case). Let assumptions 1 and 5 hold. Then, running
algorithm 10 with a stepsize αk = α for all k such that

α =
1

3Lw
.

Then

E[‖wk−w?‖2]≤
(

1−min
{

1
4N

,
µ

3Lw

})k(
‖w0−w?‖2 +

2N
3Lw

(f (w0)−∇ f (w?)T (w0−w?)− f (w?))

)
,

where

wk =
1
k

k

∑
h=1

wh.

Now that the main stochastic methods to solve problem 1.3 have also been introduced, a compar-
ison between their convergence properties and those of the incremental methods is presented in the
next section.

3.3 Comments on the convergence properties of the two settings

In the previous two sections, some of the most well-known methods to solve large-scale unconstrained
finite sum problems are introduced and analyzed. All of them have the aim of getting convergence
guarantees in the setting where only the gradient of a single component function is computed at each
iteration (except for SVRG, which needs the computation of a full gradient every m > 0 iterations).
It is interesting to notice that the convergence properties of such methods are quite different, based
on whether the analysis is carried on in the deterministic or the stochastic settings. Nevertheless,
most of them are just the same method, calculating the gradient of a component function ∇ fik at each
iteration, and differing only in the criterion of selection for the index ik (i.e. cyclic vs random) and
the analysis setting (i.e. deterministic vs stochastic). This is the case, e.g., of IG vs SG methods, IAG
vs SAG methods, and DIAG vs Finito methods. Tables 3.1-3.3 report a summary of the convergence
properties of such methods in the two settings. Observe that the following tables are to give a quick
view of the convergence properties of the algorithms. Nevertheless, small theoretical differences are
not reported, e.g., when the convergence is a liminf-type one vs a lim-type one.

3.3. COMMENTS ON THE CONVERGENCE PROPERTIES OF THE TWO SETTINGS 51

Method Type Stepsize Convergence Rate
IG Deterministic fixed neighborhood ?
IG Deterministic diminishing OK sublinear
SG Stochastic** fixed neighborhood linear
SG Stochastic** diminishing OK sublinear
IAG Deterministic fixed neighborhood* ?
SAG Stochastic** fixed ? ?
DIAG Deterministic fixed ? ?
Finito Stochastic** fixed ? ?
SVRG Stochastic** fixed OK sublinear
SAGA Stochastic** fixed ? ?

Table 3.1. Nonconvex case.
* liminf result
** All the stochastic methods’ convergence results hold in expectation.

Method Type Stepsize Convergence Rate
IG Deterministic fixed neighborhood linear
IG Deterministic diminishing OK sublinear
SG Stochastic** fixed neighborhood linear
SG Stochastic** diminishing OK sublinear
IAG Deterministic fixed OK linear*
SAG Stochastic** fixed OK*** linear
DIAG Deterministic fixed ? ?
Finito Stochastic** fixed ? ?
SVRG Stochastic** fixed OK ?
SAGA Stochastic** fixed OK*** linear***

Table 3.2. Convex case.
* Only in the quadratic case.
** All the stochastic methods’ convergence results hold in expectation.
*** The result holds over the average iterate.

One of the most interesting comparisons is the one between assumption 6 for the deterministic
analysis of incremental methods and assumption 9 for the stochastic analysis of stochastic methods.
In particular, the last condition in assumption 6 asks the following to hold for all iterations k:

ek ≤ αk(q+ p‖∇ f (wk)‖),

for some p,q > 0, where ek is the error in the direction employed by a gradient method with error,
namely

wk+1 = wk +αkdk = wk +αk(gk + ek).

In contrast, the last condition in assumption 9 asks the stochastic direction dk to satisfy for each
iteration k:

E[‖dk‖2]≤M+MG‖∇ f (wk)‖2,

for some M,MG > 0. Both the conditions can be read as a bound on the variance of the direction em-
ployed by the method. Nevertheless, in the deterministic setting the assumption is stronger, namely

52CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

Method Type Stepsize Convergence Rate
IG Deterministic fixed neighborhood linear
IG Deterministic diminishing OK sublinear
SG Stochastic** fixed neighborhood linear
SG Stochastic diminishing OK sublinear
IAG Deterministic fixed OK linear
SAG Stochastic** fixed OK linear
DIAG Deterministic fixed OK linear
Finito Stochastic** fixed OK linear
SVRG Stochastic** fixed OK linear
SAGA Stochastic** fixed OK linear

Table 3.3. Strongly convex case
** All the stochastic methods’ convergence results hold in expectation.

the error term ek is asked to be somehow ’controlled’ through the stepsize αk. Notice that this con-
dition is satisfied [15] by an IG method applied to problem 1.3, if the following holds for all indices
i:

‖∇ fi(wk)‖ ≤C+D‖∇ f (wk)‖2,

which is very similar to the stochastic condition on the squared norm of the direction. Using this
assumption, in the deterministic setting a deterministic convergence to the solution, with a diminishing
stepsize, can be obtained, as shown in the previous sections. In the stochastic setting, instead, only a
convergence in expectation can be proved.

Another difference, which deserves to be discussed, between the stochastic analysis and the de-
terministic one is the following. Taking in consideration the Incremental Gradient and the Stochastic
Gradient recall how the algorithms 3 and 6 are defined. The convergence results are proven for the
sequences {wk}, which are updated based on the rules, respectively,

wk+1 = wk−αk
1
N

N

∑
i=1

∇ fi(νi−1)

for IG, and
wk+1 = wk−αk∇ fik(wk), ik random from {1, . . . ,N}

for SG. Therefore, although the convergence results of the two methods are with respect to wk, one
fundamental difference is that the update of the iterate wk in the deterministic setting has the same cost
of N iterations in the stochastic setting. One would therefore expect SG methods to be much more
efficient when applied to real, large-scale finite sum problems. Nevertheless, this is not what happens
in real applications. Indeed, numerically the index selection criterion that seems to work consistently
better than any other is the so-called reshuffling one, where the indices are selected cyclically, but the
order is reshuffled after each epoch (i.e., after all the N component functions have been employed
exactly once). This implementation actually falls under the deterministic setting, where all the indices
are employed exactly one time every N iterations, although the reshuffling of the order in which the
indices are selected makes it similar to the stochastic one. Below, an extract from [12] is reported,
which supports the above point.

Bertsekas’ comment on reshuffling the order of the indices

3.3. COMMENTS ON THE CONVERGENCE PROPERTIES OF THE TWO SETTINGS 53

Another technique for incremental methods, popular in neural network training practice,
is to reshuffle randomly the order of the component functions after each cycle. This
alternative order selection scheme leads to convergence, like the preceding two. More-
over, this scheme has the nice property of allocating exactly one computation slot to each
component in an m-slot cycle (m incremental iterations). By comparison, choosing com-
ponents by uniform sampling allocates one computation slot to each component on the
average, but some components may not get a slot while others may get more than one. A
nonzero variance in the number of slots that any fixed component gets within a cycle, may
be detrimental to performance, and indicates that reshuffling randomly the order of the
component functions after each cycle may work better; this is consistent with experimen-
tal observations shared with the author by B. Recht (private communication). However,
establishing this fact analytically seems difficult, and remains an open question.

A fundamental difference between any deterministic method and its stochastic counterpart is that all
the results in the stochastic setting hold in expectation, while the ones in the deterministic setting hold
deterministically. This notwithstanding, the stochastic results are usually tighter, e.g., better rates
can be achieved, mainly due to the characteristic that the expected value of the search direction is an
unbiased estimate of the negative gradient direction.

Considering the Incremental Aggregated Gradient (IAG) method and its stochastic counterpart,
the Stochastic Average Gradient (SAG) method,

• IAG employs a fixed stepsize

α <

(
8

25Nκ

)
1

µ +Lw
,

achieving a convergence rate to the optimal value f ? of

(1− cN

(κ +1)2)
2,

where cN = 2
25N(2N+1) ;

• SAG employs a fixed stepsize

α =
1

16Lw
,

achieving a convergence rate to the optimal value f ? of

1−min{ 1
16κ

,
1

8N
}.

Observe that the IAG method employs a stepsize that depends, beyond Lw, on a quantity, µ , that is
hardly known in practice, whereas SAG only needs the Lipschitz constant Lw. Furthermore, IAG’s
rate has a quadratic dependence on the condition number, while SAG has linear dependence, since the
expected value of the direction is the true gradient and therefore E[ek] = 0. Last but not least, it must
be remarked that SAG’s convergence results rely on the exact stepsize, which depends on not known
constants, while IAG’s ones hold for any stepsize smaller than a constant.

DIAG and Finito methods were introduced to improve the convergence rates of IAG and SAG. In
summary,

54CHAPTER 3. OPTIMIZATION FOR LARGE-SCALE UNCONSTRAINED FINITE SUM PROBLEMS

• DIAG employs a fixed stepsize

α =
2

µ +Lw
,

achieving a convergence rate to the optimal value f ? better than the full gradient one, namely

1− 1
κ

;

• Finito employs a fixed stepsize

α =
1

cµ
,

with c≥ 2, achieving a convergence rate to the optimal value f ? of

1− 1
cN

.

Observe that, in this case, the DIAG method relies on an exact stepsize that depends on both the strong
convexity constant µ and the Lipschitz constant Lw, while Finito’s results hold for any stepsize smaller
than a threshold, which depends on the Lipschitz constant only. Nevertheless, it must be underlined
that the Finito method assumes the ’big data assumption’, as stated by the authors, which could not
hold in real applications.

Finally, to the best of this dissertation author’s understanding, a deterministic counterpart to the
SVRG method has not been proposed yet, and it is not clear whether similar convergence results could
be proved, or not.

55

Chapter 4

New dynamic batching techniques based
on the Fisher test

4.1 Motivation

Dynamic minibatching gradient methods to solve problem 1.3 employ the iteration

wk+1 = wk−αk∇ fSk(wk),

with
∇ fSk(wk) =

1
|Sk| ∑i∈Sk

∇ fi(wk),

where Sk ⊆ {1, . . . ,N} is called a minibatch, i.e. a subset of indices drawn from {1, . . . ,N}, and |Sk|
is its cardinality.

The aim of this chapter is to introduce a new test to determine whether the minibatch size |Sk|
of a dynamic minibatching gradient method should be increased, or not. Indeed, when developing
a dynamic batching technique, the main question that needs be answered is whether the gradient
estimate ∇ fSk(wk), where Sk is a minibatch of samples, is a good approximation of the true gradient
∇ f (wk). Furthermore, one may want to answer the even more difficult question: is the estimate
∇ fSk(wk) consistently a good approximation of the true gradient ∇ f (wk), as the algorithm updates
wk ∈ Rd? In the literature, significant effort has been put in defining a good test in order to determine
whether the current gradient estimate is similar enough to the true gradient [22, 18], although the true
gradient is usually unknown in the SG/ IG settings.

Looking at the above question from a different angle, one may recognize that it may be reformu-
lated as: are the gradient estimates produced by the algorithm similar to each other? In fact, in the
extreme case where all the estimates are produced similar to each other at any iteration, one would
have that the probability of having consistently estimated the true gradient with a good level of ac-
curacy is high. Indeed, this second question may be seen as: is the current estimate of the mean of
the population, based on a subsample (i.e. the minibatch gradient), a good approximation of the true
mean of the population (i.e. the true gradient)? Therefore, in a way, the problem of estimating the
gradient based on a minibatch may be considered as a mean estimate problem, which is a well-known
problem. Indeed, it has been addressed by statisticians for decades, in a slightly different manner, by
employing the Fisher test (aka ANOVA - Analysis of Variance) [88]. The Fisher test was designed to
determined whether the means within the groups of a population were statistically different from the
mean of the population.

56 CHAPTER 4. NEW DYNAMIC BATCHING TECHNIQUES BASED ON THE FISHER TEST

The comparison with dynamic batching techniques is evident: the objective is to determine whether
the mean of a group, i.e. a minibatch gradient ∇ fSk(wk), is representative of the mean of the entire
population, i.e. the full gradient ∇ f (wk).

Although the Fisher test seems a natural way of developing a test to check the quality of the
minibatch gradient approximations, it must be noticed that an exact Fisher test can not be applied
in the SGD regime, since the minibatch gradients are computed at a different point wk ∈ Rn at each
iteration k of the algorithm. Therefore, comparing minibatch gradients computed at different iterations
may be misleading, since those may be different due to the combination of two effects: (i) the effect
of sampling in the data space and (ii) the effect of computing the gradients in different points in the
variable space.

These and other issues will be addressed in the next sections.

4.2 Introduction and literature review

Algorithm 11: Generic SG/ IG method with minibatch size control

1 for k = 0,1, . . . do
2 Identify a minibatch Sk ⊆ {1, . . . ,N} of size |Sk|;
3 Compute a search direction dk based on Sk;
4 Choose a stepsize αk > 0;
5 Update wk+1 = wk +αkdk;
6 Determine |Sk+1| ≥ |Sk|.
7 end

Dynamic minibatching methods employ a minibatching scheme of the form

wk+1 = wk +αkdk, dk =−∇ fSk(wk) =−
1
|Sk| ∑

i ∈ Sk

∇ fi(wk), (4.1)

and control the minibatch dimension and composition throughout the optimization procedure. Ob-
serve that a framework like algorithm 11 can be analyzed both from the stochastic and deterministic
viewpoint, i.e. by considering the computation of a minibatch of gradients of the component functions
as a means to get gradient approximation variance/ error reduction.

Observe that, when employing an iterate like (4.1), it holds that

• in the stochastic setting, where the indices included in Sk are selected at random from {1, . . . ,N},

E[dk] =−∇ f (wk);

• in the deterministic setting, where the indices included in Sk are selected cyclically from {1, . . . ,N},

dk = gk + ek,

where
gk =−∇ f (wk) and ek = ∇ f (wk)−∇ fSk(wk).

Therefore, both the analyses carried on in the previous chapter for the deterministic and stochastic
settings apply. Remark that, below the two facts above, assumptions on the gradient approximation
error/ variance must hold. Indeed in the stochastic setting, it was proved, see e.g. [44, 19], that an

4.2. INTRODUCTION AND LITERATURE REVIEW 57

increase in the minibatch size at geometric rates not only guarantees convergence without the need of
a diminishing stepsize like (3.8), but preserves the linear convergence rate of the full gradient method.
Unfortunately this hardly works well in practice, since such a speed of increase in the minibatch size
would imply high computational costs after a few iterations.

For these reasons several works on how to adaptively determine the minibatch size [18, 22, 67]
and composition [113] were proposed in order to let the variance/ error of the search direction go to
zero. In particular, in [22] the test

E [‖∇ fSk(wk)−∇ f (wk)‖]≤ δ‖∇ f (wk)‖, δ ∈ [0,1), (4.2)

later named norm test, was proposed to check if the search direction given the current size of the batch
would be close to the steepest one, i.e. the anti-gradient, "with high probability". It must be remarked
that

E
[
‖∇ fSk(wk)−∇ f (wk)‖2]= ‖Var(∇ fSk(wk))‖1,

based on which, the following approximation of (4.2) was proposed:

‖Vari∈Sk(∇ fi(wk))‖1

|Sk|
≤ δ

2‖∇ fSk(wk)‖2, δ ∈ [0,1). (4.3)

Based on this test, Byrd et al. [22] proved the following result in the strongly convex case.

Theorem 23. Let assumptions 1 and 3 hold. Let the iterate update be

wk+1 = wk−α∇ fSk(wk),

where

0 < α <
1

Lw

and
‖∇ fSk(wk)−∇ f (wk)‖ ≤ θ‖∇ fSk(wk)‖,

for some θ ∈ (0,1). Then

f (wk+1)≤
(

1− β µ

Lw

)
f (wk),

with β = (1−θ)2

2(1+θ)2 , and
lim
k→∞

wk = w?,

where w? is the unique solution of problem 1.3. Furthermore, the number of iterations k to get f (wk)≤
f (w?)+ ε are

Lw

β µ

[
log
(

1
ε

)
+ log(f (w0))

]
,

and

‖∇ fSk(wk)‖2 ≤ 1
(1−θ)2

2L2
w f (w0)

µ

(
1− β µ

Lw

)k

.

Theorem 23 shows that linear convergence to a solution can also be ensured by requiring the
gradient estimate ∇ fSk(wk) satisfy a norm condition, at each iteration k.

58 CHAPTER 4. NEW DYNAMIC BATCHING TECHNIQUES BASED ON THE FISHER TEST

In [18], the norm test was substituted by a weaker one named inner product test

E
[(

∇ fSk(wk)
T

∇ f (wk)−‖∇ f (wk)‖2)2
]
≤ δ

2‖∇ f (wk)‖4, (4.4)

an approximation of which can be written as

Vari∈Sk(∇ fi(wk)
T ∇ fSk(wk))

|Sk|
≤ δ

2‖∇ f (wk)‖4, (4.5)

where

Vari∈Sk(∇ fi(wk)
T

∇ fSk(wk)) =
1

|Sk|−1 ∑
i∈Sk

(
∇ fi(wk)

T
∇ fSk(wk)−‖∇ fSk(wk)‖2)2

.

In order to get linear convergence of a gradient method employing the inner product test, it must be
ensured that the gradient estimate ∇ fSk(wk) is never too close to orthogonality w.r.t. the true gradient
∇ f (wk). This is done by asking the gradient estimate to satisfy another test, i.e. the orthogonality test

E

[∥∥∥∥∇ fSk(wk)−
∇ fSk(wk)

T ∇ f (wk)

‖∇ f (wk)‖2 ∇ f (wk)

∥∥∥∥2
]
≤ τ

2‖∇ f (wk)‖2.

Just like the inner product test, this can be approximated, by substituting the quantities ∇ fSk(wk) and
∇ f (wk) by their sample approximations, to be actually computable.

Bollapragada et al. proved [18] convergence of a gradient method employing the exact inner
product and orthogonality tests to a solution of problem 1.3, in the stochastic setting, as shown in
theorem 24 for the nonconvex case, in theorem 25 for the strongly convex one.

Theorem 24. Let assumption 1 hold and let f be bounded from below by fin f . Let the iterate update
be

wk+1 = wk−α∇ fSk(wk),

where
0 < α ≤ 1

(1+δ 2 + τ2)Lw

and the exact inner product and orthogonality tests are satisfied, with some δ ,τ > 0, at each iteration.
Then

lim
k→∞

E[‖∇ f (wk)‖2] = 0.

Furthermore,

min
0≤k≤K−1

E[‖∇ f (wk)‖2]≤ 2
αK

(f (w0)− fin f).

Theorem 25. Let assumptions 1 and 3 hold. Let the iterate update be

wk+1 = wk−α∇ fSk(wk),

where
0 < α ≤ 1

(1+δ 2 + τ2)Lw

and the exact inner product and orthogonality tests are satisfied, with some δ ,τ > 0, at each iteration.
Then

E[f (wk)]− f (w?)≤ ρ
k(f (w0)− f (w?)),

where
ρ = 1−µα.

4.2. INTRODUCTION AND LITERATURE REVIEW 59

It is interesting to study the similarities between the norm and inner product tests. In fact one can
write:

Vari∈Sk(∇ fi(wk)
T

∇ fSk(wk)) = E
[(

∇ fi(wk)
T

∇ fSk(wk)−‖∇ fSk(wk)‖2
)2
]
=

= E
[(

∇ fi(wk)
T

∇ fSk(wk)
)2
]
−‖∇ fSk(wk)‖4 ≤

≤ E
[
‖∇ fi(wk)‖2 ‖∇ fSk(wk)‖2

]
−‖∇ fSk(wk)‖4 =

= ‖∇ fSk(wk)‖2
(

E
[
‖∇ fi(wk)‖2

]
−‖∇ fSk(wk)‖2

)
=

= ‖∇ fSk(wk)‖2Vari∈Sk(‖∇ fi(wk)‖).

Therefore the test

‖∇ fSk(wk)‖2Vari∈Sk(‖∇ fi(wk)‖)
|Sk|

≤ δ
2‖∇ f (wk)‖4,

that by simplifying equals the norm test (4.3), i.e.,

Vari∈Sk(‖∇ fi(wk)‖)
|Sk|

≤ δ
2‖∇ f (wk)‖2,

implies the inner product test (4.5), which is less restrictive.
All of the methods to reduce gradient approximation variance described up to now are based on

the function structure, namely the fact that f has a finite sum structure. Nevertheless, recalling that in
ML the function components are defined as

fi(w) = φ(w;xi,yi),

another approach to control the gradient approximation error/ variance is to leverage the dataset struc-
ture, i.e. how the input-output pairs {zi}N

i=1 = {xi,yi}N
i=1 are structured in the input-output space.

In [52] a neighboring system is introduced to give aggregation methods, like the ones introduced
in chapter 3, a higher degree of information when updating the sum components ∇ fi. In fact, if an
index ik is extracted at iteration k of, say, SAG, then the newly computed ∇ fik(wk) can be used to
update not only the ik-th sum term, but also the sum terms of the indices in the neighborhood of zik .
In [52], the dimension of the neighborhood must be fixed a priori.

In [4], the concept of raw clustering is introduced and applied to improve SVRG [58]. Given
a clustering C1 ∪ ·· · ∪CNc of {1, . . . , N} and denoting by ci ∈ {1, . . . , Nc} the cluster that index i
belongs to, the following iterate update is performed

wk+1 = wk−η∇̃ f (wk), ∇̃ f (wk) =
1
N

N

∑
i=1

(∇ fi(w̃)+χci)+∇ fik(wk)− (∇ fik(w̃)+χcik
), (4.6)

where w̃ is a snapshot of the iterate, as introduced in algorithm (9), and ik is chosen uniformly at
random from {1, . . . , N}. The authors propose two different options for updating χcik

, one of which
being

χcik
= ∇ fik(wk)−∇ fik(w̃). (4.7)

To better understand how (4.6) works, assume that at iteration k the selected index is ik and zik

belongs to cluster C jk : jk ∈ {1, . . . , Nc}. Then the summation in (4.6) has three types of terms:

60 CHAPTER 4. NEW DYNAMIC BATCHING TECHNIQUES BASED ON THE FISHER TEST

1. those which index i 6= ik represents input-output pairs zi in clusters C j : j ∈ {1, . . . , Nc}, j 6= jk.
In this case the term in the summation becomes

(∇ fi(w̃)+∇ fi(w)−∇ fi(w̃))+∇ fik(wk)− (∇ fik(w̃)+∇ fik(wk)−∇ fik(w̃)),

that simplified turns out to be
∇ fi(w),

where w is the value of the iterate at the last iteration in which an index from the same cluster
was selected;

2. those indexed by i 6= ik, representing input-output pairs zi in the same cluster C jk . In this case
the term in the summation becomes

(∇ fi(w̃)+∇ fik(wk)−∇ fik(w̃))+∇ fik(wk)− (∇ fik(w̃)+∇ fik(wk)−∇ fik(w̃)),

which yields
∇ fi(w̃)+∇ fik(wk)−∇ fik(w̃);

3. the one with index i = ik, which term in the summation turns out to be

(∇ fi(w̃)+∇ fi(wk)−∇ fi(w̃))+∇ fi(wk)− (∇ fi(w̃)+∇ fi(wk)−∇ fi(w̃)) = ∇ fi(wk).

Therefore, the raw clustering information is leveraged to update the snapshot gradient more fre-
quently, namely a sum component ik is updated every time an input-output pair in the same cluster is
selected. Obviously, this update is affected by a certain degree of noise. Indeed, the gradient com-
puted at an input-output pair in the same cluster is different, up to a certain degree, depending on the
number of clusters and the quality of the clustering, from the gradient computed at the input-output
pair under consideration.

In the following section, a Fisher test-based dynamic batching technique is introduced and adapted
to the SG/ IG settings to solve problem 1.3. Then, the convergence properties of the introduced method
are analyzed in section 4.4. Finally, some implementation details and numerical results on standard
ML tasks are presented.

4.3 The Fisher test for dynamic batching

The algorithm proposed in this section employs a gradient-based iterate update

wk+1 = wk−αk∇ f
S

jk
k
, (4.8)

where αk > 0 is a step length and ∇ f
S

jk
k
(wk) is a gradient estimate based on the minibatch S jk

k ⊆
{1, . . . ,N}, namely

∇ f
S

jk
k
(wk) =

1
|Sk| ∑

i∈S
jk
k

∇ fi(wk).

Let jk = 1, . . . ,Mk be the indices of a partition of {1, . . . ,N}, i.e.

S1
k ,S

2
k , . . . ,S

Mk
k :

Mk⋃
jk=1

S jk
k = {1, . . . , N} ∀k and S j1

k
k

⋂
S j2

k
k =∅ ∀ j1

k 6= j2
k .

4.3. THE FISHER TEST FOR DYNAMIC BATCHING 61

One of the crucial points of the algorithm is how to update the size of the minibatch |Sk|, when strictly
necessary. Ideally, one could do so by comparing the "within-minibatch" variance to the "between-
minibatches" one, like in the well-known F-test [32, 88], which aim is to verify if the variance of the
values within a group of samples is significant when compared to the variance between the means of
the groups. The F-test, also known as Analysis of Variance (ANOVA), is based on the decomposition of
the total variance of a population divided in groups in the variance within the groups and the variance
between the means of the groups. In the above setting, if the aim is to control the variance of the
distance of the gradient approximation to the true gradient, the total variance at epoch k, Tk, can be
decomposed in:

• Vk, the variance within all the minibatches of samples S1
k ,S

2
k , . . . ,S

Mk
k that could be employed at

a given iteration;

• Wk, the variance between the means (i.e. the gradient estimates) of such minibatches.

Therefore the following can be written ([32])

Tk =Vk +Wk, (4.9)

where

Tk =
1
N

N

∑
i=1
‖∇ fi(wk)−∇ f (wk)‖2 =

1
N

Mk

∑
jk=1

∑
h∈S

jk
k

∥∥∇ f jkh(wk)−∇ f (wk)
∥∥2

, (4.10)

Vk =
1
N

Mk

∑
jk=1

∑
h∈S

jk
k

∥∥∥∇ f jkh(wk)−∇ f
S

jk
k
(wk)

∥∥∥2
, (4.11)

and

Wk =
1
N

Mk

∑
jk=1
|S jk

k |
∥∥∥∇ f

S
jk
k
(wk)−∇ f (wk)

∥∥∥2
. (4.12)

Similarly to the above, where a norm condition is enforced, one could be interested [18] in controlling
an angle condition between the gradient approximation and the true gradient, in order to guarantee
that the search direction in (4.8) is a descent direction. In this framework, the total variance of the
angle can be decomposed as

Tk =Vk +Wk, (4.13)

where

Tk =
1
N

N

∑
i=1

∣∣∇ fi(wk)
T

∇ f (wk)−‖∇ f (wk)‖2∣∣2 = 1
N

Mk

∑
jk=1

∑
h∈S

jk
k

∣∣∇ f jkh(wk)
T

∇ f (wk)−‖∇ f (wk)‖2∣∣2 ,
(4.14)

Vk =
1
N

Mk

∑
jk=1

∑
h∈S

jk
k

∣∣∣∇ f jkh(wk)
T

∇ f
S

jk
k
(wk)−‖∇ f

S
jk
k
(wk)‖2

∣∣∣2 , (4.15)

and

Wk =
1
N

Mk

∑
jk=1
|S jk

k |
∣∣∣∇ f

S
jk
k
(wk)

T
∇ f (wk)−‖∇ f (wk)‖2

∣∣∣2 . (4.16)

62 CHAPTER 4. NEW DYNAMIC BATCHING TECHNIQUES BASED ON THE FISHER TEST

In the following, the analysis will be carried on the norm condition and the total variance as defined
in (4.10). Under the assumptions of data normality and homoscedasticity, the exact Fisher test can be
defined as

Wk
d1
Vk
d2

≥ Fd1,d2,εk , (4.17)

where Fd1,d2,εk is the εk-percentile of a Fisher distribution with degrees of freedom d1 = Mk− 1 and
d2 = N−Mk. If the test is satisfied, then the minibatch gradient estimates are significantly different
one to another (i.e. at least one is different from the others). Therefore no minibatch gradient can be
considered as a reliable estimate of the true gradient. Indeed, this decision might be wrong with prob-
ability εk, which defines the test significance level. If the normality and homoscedasticity assumptions
are violated, the test remains valid providing that the minibatches have sufficiently large size and are
balanced (i.e. the sizes are similar) [90, 46]. If (4.17) is satisfied, the size |Sk| of the minibatch should
be increased. The rationale behind such a choice is that in order for a minibatch to be representative
of the whole population, the minibatch should include most of the total variance. It must be observed
that, for fixed d1,d2 > 0, the percentile Fd1,d2,εk goes to 0 as εk goes to 1 (see e.g. [32] for the theo-
retical properties of the Fisher distribution). Letting Fd1,d2,εk go to 0 means that the test is more easily
satisfied and therefore the minibatch size is increased until Wk becomes small enough to fail the test.
As a consequence, as one gets further with the optimization, the minibatch size is increased implying
that the gradient estimates get closer to the true gradient.

It is then convenient to reformulate the test in the following form

Wk

Vk
≥ ηk‖∇ f (wk)‖2, (4.18)

where ηk > 0, and the term ‖∇ f (wk)‖2 is multiplied to the right hand side for scaling ηk with the
gradient norm. Note that ηk can be chosen either fixed, e.g. such that the significance of the F-test is
fixed, or diminishing.

Algorithm 12 implements the above rationale to dynamically control the minibatch size, by the
use of the exact Fisher test (4.18).

Algorithm 12: Exact F-test cyclic dynamic batching algorithm

1 Data: w0 ∈ Rn, ∆0,η0 > 0;
2 while a convergence test is not satisfied do
3 Compute dk =−∇ f

S
jk
k
(wk);

4 Compute a step length αk > 0;
5 New iterate: wk+1 = wk +αkdk;
6 Compute the between- and within-minibatches variance as in (4.11) and (4.12);
7 If condition (4.18) is satisfied, |Sk+1|> |Sk|;
8 Compute ηk+1 ≤ ηk;
9 k← k+1.

10 end

At step 3, the gradient estimate is computed and the search direction is set to the negative gradient
estimate, while at step 4 a stepsize is computed: note that the procedure to compute the stepsize is not
explicitely mentioned, thus a small, fixed stepsize may be employed. At step 5 the iterate is updated
and at step 6 the quantities Wk and Vk are computed. Finally, at step 7 the Fisher test is employed to

4.4. THEORETICAL ANALYSIS 63

decide wether the minibatch size should be increased or not, and at step 8 the parameter ηk is updated.
Note that steps 7 and 8 are vague, just like step 4, and will be further developed in section 4.5.

4.4 Theoretical analysis

In this section, the convergence properties of Algorithm 12 are investigated. First, an assumption on
the total variance of the gradients is reported.

Assumption 10 (Bound on total variance). For all w ∈ Rd , there exist constants C,D > 0 such that
T ≤C+D‖∇ f (w)‖2, with T defined as in (4.10).

Theorem 28 proves convergence of Algorithm 12 with a dynamic, automatically updated stepsize to
a solution of problem 1.3 when assumptions 1, 3 and 10 hold. The following lemma is useful in the
proof of the theorem.

Lemma 6. Let θk =
ηkTk

1+ηk‖∇ f (wk)‖2 as defined in (4.10) and let Assumptions 2 and 10 hold. Let

η0 ≤
1

C+(D−1)B2 . (4.19)

Then we have
θk < 1 ∀ k. (4.20)

Proof. By the definition of θk, it holds that

θk =
ηkTk

1+ηk‖∇ f (wk)‖2

≤ ηk(C+D‖∇ f (wk)‖2)

1+ηk‖∇ f (wk)‖2

≤ ηk(C+DB2)

1+ηkB2 .

Recalling that ηk+1 ≤ ηk for all k and (4.19), we get (4.20).

Theorem 26 (Exact Fisher test - function descent). Let assumptions 1, 2, 3 and 10 hold. Let iteration
k be such that test (4.18) is not satisfied, ηk = η ≤ 1

C+(D−1)B2 and αk =
1−θk

Lw
, where

θk =
ηTk

1+η‖∇ f (wk)‖2 , (4.21)

with Tk defined as in (4.10). Then

f (wk+1)≤ f (wk)−
βk

Lw
‖∇ f (wk)‖2, (4.22)

where βk =
(1−θk)

3

2 .

64 CHAPTER 4. NEW DYNAMIC BATCHING TECHNIQUES BASED ON THE FISHER TEST

Proof. If test (4.18) is not true, this means that

Wk

Vk
≤ η‖∇ f (wk)‖2. (4.23)

Recalling (4.9), the following can be written

Wk

Tk−Wk
≤ η‖∇ f (wk)‖2,

where Tk is the total variance, i.e. Tk =
1
N ∑

N
i=1 ‖∇ fi(wk)−∇ f (wk)‖2. By simple calculation it holds

Wk ≤
ηTk‖∇ f (wk)‖2

1+η‖∇ f (wk)‖2 , (4.24)

from which

‖∇ f
S

jk
k
(wk)−∇ f (wk)‖2 ≤ ηTk‖∇ f (wk)‖2

1+η‖∇ f (wk)‖2 −
Mk

∑
h6= jk

‖∇ f
S

jk
k
(wk)−∇ f (wk)‖2 (4.25)

≤ ηTk‖∇ f (wk)‖2

1+η‖∇ f (wk)‖2 (4.26)

≤ θk‖∇ f (wk)‖2, (4.27)

for any jk = 1, . . . ,Mk, where

θk =
ηTk

1+η‖∇ f (wk)‖2 .

Observing that, by Assumption 10, θk < 1, one gets

‖∇ f
S

jk
k
(wk)‖2−‖∇ f (wk)‖2 ≤ ‖∇ f

S
jk
k
(wk)−∇ f (wk)‖2 ≤ θk‖∇ f (wk)‖2

and
‖∇ f (wk)‖2−‖∇ f

S
jk
k
(wk)‖2 ≤ ‖∇ f

S
jk
k
(wk)−∇ f (wk)‖2 ≤ θk‖∇ f (wk)‖2.

Therefore, from (4.25) and the relations above, the following holds

(1−θk)‖∇ f (wk)‖2 ≤ ‖∇ f
S

jk
k
(wk)‖2 ≤ (1+θk)‖∇ f (wk)‖2. (4.28)

Furthermore,

‖∇ f
S

jk
k
(wk)−∇ f (wk)‖2 = ‖∇ f (wk)‖2 +‖∇ f

S
jk
k
(wk)‖2−2∇ f (wk)

T
∇ f

S
jk
k
(wk)≤ θk‖∇ f (wk)‖2,

from which, using the l.h.s. of (4.28), it can be written

2∇ f (wk)
T

∇ f
S

jk
k
(wk)≥ (1−θk)‖∇ f (wk)‖2 +‖∇ f

S
jk
k
(wk)‖2 ≥ 2(1−θk)‖∇ f (wk)‖2,

which yields
∇ f (wk)

T
∇ f

S
jk
k
(wk)≥ (1−θk)‖∇ f (wk)‖2. (4.29)

4.4. THEORETICAL ANALYSIS 65

Combining (4.28) and (4.29), recalling Taylor’s theorem and Assumption 3,

f (wk+1)≤ f (wk)−
(1−θk)

Lw
∇ f (wk)

T
∇ f

S
jk
k
(wk)+

Lw

2

(
1−θk

Lw

)2

‖∇ f
S

jk
k
(wk)‖2

≤ f (wk)−
(1−θk)

Lw
(1−θk)‖∇ f (wk)‖2 +

Lw

2

(
1−θk

Lw

)2

‖∇ f
S

jk
k
(wk)‖2

≤ f (wk)−
(1−θk)

2

Lw
‖∇ f (wk)‖2 +

Lw

2

(
1−θk

Lw

)2

(1+θk)‖∇ f (wk)‖2

≤ f (wk)−
(
(1−θk)

2

Lw
− (1+θk)(1−θk)

2

2Lw

)
‖∇ f (wk)‖2

≤ f (wk)−
(1−θk)

3

2Lw
‖∇ f (wk)‖2

≤ f (wk)−
βk

Lw
‖∇ f (wk)‖2,

where βk =
(1−θk)

3

2 , which completes the proof.

Theorem 27 proves convergence of algorithm 12 to stationary points in the nonconvex case.

Theorem 27 (Exact Fisher test - convergence in the nonconvex case). Let assumptions 1, 2 and 10
hold. Let {wk} be the sequence generated by Algorithm 12 with ηk = η ≤ 1

C+(D−1)B2 and αk =
1−θk

Lw
,

where

θk =
ηTk

1+η‖∇ f (wk)‖
, (4.30)

with Tk as defined in (4.10). Let f be bounded from below. Then

lim
k→∞

‖∇ f (wk)‖= 0. (4.31)

Proof. Like in theorem 28, assume there exists a k > 0 such that |Sk|< N for all k≥ k. Then, recalling
4.22, it holds that

f (wk+1)≤ f (wk) ∀ k ≥ k,

from which, recalling the continuity and boundedness from below of f ,

lim
k→∞

f (wk) = f .

By assumption θk is bounded away from 1 and therefore βk is bounded away from 0. This yields

lim
k→∞

‖∇ f (wk)‖2 = 0,

which completes the proof.

The convergence properties of Algorithm 12 for strongly convex objectives are stated in the next
theorem.

66 CHAPTER 4. NEW DYNAMIC BATCHING TECHNIQUES BASED ON THE FISHER TEST

Theorem 28 (Exact Fisher test - convergence in the strongly convex case). Let assumptions 1, 2, 3
and 10 hold. Let {wk} be the sequence generated by Algorithm 12 with ηk = η ≤ 1

C+(D−1)B2 and

αk =
1−θk

Lw
, where

θk =
ηTk

1+η‖∇ f (wk)‖2 ,

with Tk as defined in (4.10). Then
lim
k→∞

f (wk) = f (w?), (4.32)

and
lim
k→∞

wk = w?, (4.33)

where w? is a solution of problem 1.3.
Furthermore, if a k > 0 exists such that |Sk| < N for all k ≥ k, the number of iterations K to obtain
f (wK)≤ f (x?) + ε is at most

Lw

λβ

(
log f (wk)+ log

(
1
ε

))
, (4.34)

where

β = min
k≥k

βk and βk =
(1−θk)

3

2
.

Proof. There exist two cases:

(i) there exists a k̂ > 0 such that |Sk|= N for all k ≥ k̂;

(ii) there exists a k > 0 such that |Sk|< N for all k ≥ k.

In case (i), the iteration reduces to a standard full gradient iteration, i.e.

wk+1 = wk−αk∇ f (wk),

where αk =
1−θk

Lw
with θk ∈ (0,1), which trivially yields convergence (see e.g. [11]).

The next lines will focus on case (ii), and in particular iterations with k ≥ k, where |Sk| is not
increased. Following the lines of [22, Section 4.1], by Assumption 1,

‖∇ f (wk)‖2 ≥ λ (f (wk)− f (w?)) ,

where w? is a solution of problem 1.3. Combining this with (4.22), it holds that

f (wk+1)≤ f (wk)−
λβk

Lw
(f (wk)− f (w?)) . (4.35)

Now, assuming that test 4.18 returns False at every iteration, i.e. (4.23) holds at any k it can be written
at iteration k

f (wk)− f (w?) =
k

∏
k−k+1

(
1− λβk

Lw

)(
f (wk)− f (w?)

)
(4.36)

≤

(
1− λβ

Lw

)k−k (
f (wk)− f (w?)

)
, (4.37)

4.5. IMPLEMENTATION DETAILS 67

where β =mink≥k βk. Since the term inside the brackets is less than 1, this implies f (wk)→ f (w?) = 0
and, by uniform convexity, {wk}→ w?.

Assume now, without loss of generality, that k = 0. By taking the log on both sides of (4.36), one
gets

log(f (wk))≤ k log

(
1− λβ

Lw

)
+ log f (wk) (4.38)

≤−k
λβ

Lw
+ log f (wk), (4.39)

where the last inequality uses the concavity of the log function, from which log(1− x)≤−x. There-
fore, it follows for all k ≥ k that

k ≤ Lw

λβ

(
log f (wk)− log(f (wk))

)
. (4.40)

If one wants f (wk)< ε , this yields

k >
Lw

λβ

(
log f (wk)+ log

(
1
ε

))
,

which completes the proof.

The theorems just stated show that test (4.18), if applied at each iteration of algorithm 12 to
determine whether the minibatch size |Sk| should be increased or not, yields convergence in both the
strongly convex and nonconvex cases. It must be noticed, nonetheless, that test (4.18) is ’exact’, in the
sense that computing the quantities in (4.18) equals to computing the full gradient at each iteration.
Since this is not feasible in practice, in the next section some an ’inexact’ approximation of test (4.18)
will be introduced.

4.5 Implementation details

Unfortunately, the quantities ∇ f (wk), Var
i∈S

jk
k

∇ f
S

jk
k
(wk) and ∇ f

S
jk
k
(wk), jk = 1, . . . ,Mk, are not avail-

able in practice. These "ideal" quantities would imply computing, at each iteration k, the full gradient,
but this is not feasible in the SG/ IG regime. For this reason, in algorithm 13 ∇ f̃ (wk), W̃k and Ṽk are
computed based on a memory m of past iterations. In particular,

∇ f̃ (wk) =
1

∑
k
h=k−m+1 |Sh|

k

∑
h=k−m+1

|Sh|∇ fSh(wh), (4.41)

and the approximate Fisher test is
W̃k

Ṽk
> ηk‖∇ f̃ (wk)‖2, (4.42)

where

W̃k =
1

∑
k
h=k−m+1 |Sh|

k

∑
h=k−m+1

|Sh|
∥∥∥∇ fSh(wh)−∇ f̃ (wh)

∥∥∥2
, (4.43)

68 CHAPTER 4. NEW DYNAMIC BATCHING TECHNIQUES BASED ON THE FISHER TEST

and

Ṽk =
k

∑
h=k−m+1

|Sh|Vari∈Sh(∇ fSh(wh)). (4.44)

Consequently, the approximate total variance is

T̃k = W̃k +Ṽk, (4.45)

which will be used in computing the adaptive stepsize, by computing

θ̃k =
η T̃k

1+η‖∇̃ f (wk)‖
. (4.46)

Algorithm 13, where ‖∇̃ f (wk)‖, W̃k and Ṽk are computed by keeping memory of only m past obser-
vations of the minibatch gradients and within-minibatch variances, can now be proposed. Algorithm

Algorithm 13: Approximate F-test cyclic dynamic batching

1 Data: w0, . . . ,wm ∈ Rn, αm > 0, ∇ f̃ (wm) ∈ Rn, W̃m ∈ R, Ṽm ∈ R, θm,∆m,ηm > 0;
2 for k = m+1, . . . do
3 Select Sk ⊆ {1, . . . , N};
4 Compute ∇ fSk(wk) and Vari∈Sk(wk);
5 Update ∇ f̃ (wk), W̃k and Ṽk as in (4.41),(4.43),(4.44);

6 Compute θ̃k =
η T̃k

1+η‖∇̃ f (wk)‖
;

7 Compute αk = (1−θk)αm;
8 Update wk+1 = wk−αk∇ fSk(wk);

9 if W̃k
Ṽk

> ηk‖∇ f̃ (wk)‖2 then
10 Compute |Sk+1|> |Sk|
11 end
12 Compute ηk+1.
13 end

13 relies on two main parameters that must be determined, i.e. the memory m and η . Section 4.6 will
show how those were chosen in the numerical experiments.

One important open question is how to compute the new minibatch size |Sk+1| once test (4.42)
is violated. A heuristic to do so is to make |Sk| grow by a quantity proportional to the ratio between
the sum of the within-minibatch variances and the variance between the means of the minibatches,
namely by employing the formula

|Sk+1|=

(
1+

W̃k

Ṽk

)m

|Sk|, (4.47)

which represents the amount of violation of test (4.42).

4.5.1 How to leverage input data information

This section will focus, for simplicity and without loss of generality, to a nonlinear regression problem
of the type

y = φ(w,x),

4.5. IMPLEMENTATION DETAILS 69

where w ∈ Rd is a parameter vector and φ is a generic function that needs be identified based on the
available data samples

{xi,yi}N
i=1,

where xi ∈ Rd and yi ∈ R for all i.
The aim is to show how information on the input samples can be leveraged to reduce the gradient

approximation error/ variance in an SG/ IG setting.
In this new setting, problem 1.3 can be reformulated as

min
w ∈ Rd

f (w) =
1
N

N

∑
i=1

φ(w,zi) =
1
N

N

∑
i=1

fi(w), (4.48)

where w ∈ Rd represents the vector of parameters of the model. Lipschitz-continuity is assumed
both with respect to the parameters vector w and with respect to inputs zi, i = 1, .., N, with constant
bounded by Lz for all i, namely the following relation, beyond the classical one stated in assumption
1, holds:

|∇φ(w,zi1)−∇φ(w,zi2)| ≤ Lz‖zi1− zi2‖, ∀ i1, i2 ∈ {1, . . . , N}, ∀w ∈ Rd , (4.49)

A typical example where problem 4.48 must be solved is the training of NN.
A further assumption is that data samples are clustered in Nc clusters Ch, h ∈ {1, . . . , Nc}, where

each cluster Ch contains |Ch|= Nh data samples and that an η(Nc)≥ 0 exists such that

‖z1− z2‖ ≤ η(Nc), ∀ z1, z2 ∈ Ch, h ∈ {1, . . . , Nc}, (4.50)

and the maximum distance between two data samples can be defined as

η
max = max

i1,i2∈{1,...,N}
{‖zi1− zi2‖}. (4.51)

Obviously, it holds that
η(Nc)≤ η

max ∀ Nh ≥ 1. (4.52)

Observe that condition (4.50) is trivially satisfied by any finite data set.
Assuming Nc clusters Ch, h = 1, . . . , Nc, exist with |Ch| = Nh and jh = 1, . . . , Nh for all h, the

function can be reindexed to get

f (w) =
N

∑
i=1

φ(w,zi) =
Nc

∑
h=1

Nh

N
1

Nh

Nh

∑
jh=1

φ(w,zh jh).

Similarly, the gradient at a given w is

∇ f (w) =
Nc

∑
h=1

Nh

N
1

Nh

Nh

∑
jh=1

∇φ(w,zh jh).

The straightforward strategy to leverage clustering information may be to set the dimension of the
minibatches to |Sk| = Nc for all k = 0, 1, . . . , and employ a procedure building each minibatch such
that it contains exactly one point from each cluster:

wk+1 = wk−αk∇ fSk(wk), (4.53)

70 CHAPTER 4. NEW DYNAMIC BATCHING TECHNIQUES BASED ON THE FISHER TEST

where

∇ fSk(w) =
Nc

∑
h=1

Nh

N
∇φ(w,zh jk

h), jk
h ∈ {1, . . . , Nh}. (4.54)

Above, jk
h represents the index of the sample chosen at iteration k from cluster Ch. Therefore

‖∇ fSk(w)−∇ f (w)‖=

∥∥∥∥∥ Nc

∑
h=1

Nh

N

[
∇φ(w,zh jk

h)− 1
Nh

Nh

∑
jh=1

∇φ(w,zh jh)

]∥∥∥∥∥ ,
from which it can be easily proved that an M(Lz,η(Nc)) = M(Lz,Nc)> 0 exists s.t.

‖∇ fSk(w)−∇ f (w)‖ ≤M(Lz,Nc), (4.55)

as shown in theorem 29.

Theorem 29. Given Lz,η(Nc) > 0 defined in (4.49) and (4.50), an M(Lz,η(Nc)) = M(Lz,Nc) > 0
exists such that

‖∇ fSk(w)−∇ f (w)‖ ≤M(Lz,Nc).

Proof.

‖∇ fSk(w)−∇ f (w)‖=

∥∥∥∥∥ Nc

∑
h=1

Nh

N

[
∇φ(w,zh jk

h)− 1
Nh

Nh

∑
jh=1

∇φ(w,zh jh)

]∥∥∥∥∥
≤

Nc

∑
h=1

Nh

N

∥∥∥∥∥∇φ(w,zh jk
h)− 1

Nh

Nh

∑
jh=1

∇φ(w,zh jh)

∥∥∥∥∥
=

Nc

∑
h=1

Nh

N

∥∥∥∥∥ 1
Nh

Nh

∑
jh=1

[
∇φ(w,zh jk

h)−∇φ(w,zh jh)
]∥∥∥∥∥

≤
Nc

∑
h=1

Nh

N
1

Nh

Nh

∑
jh=1

∥∥∥∇φ(w,zh jk
h)−∇φ(w,zh jh)

∥∥∥ ,
where jk

h is the index selected at iteration k from the indices jh ∈ {1, . . . , Nh}. Therefore, recalling
(4.49) and (4.50), we can write

‖∇ fSk(w)−∇ f (w)‖ ≤
Nc

∑
h=1

Nh

N
1

Nh

Nh

∑
jh=1

∥∥∥∇φ(w,zh jk
h)−∇φ(w,zh jh)

∥∥∥
≤

Nc

∑
h=1

Nh

N
1

Nh

Nh

∑
jh=1

Lz

∥∥∥zh jk
h− zh jh

∥∥∥
≤

Nc

∑
h=1

Nh

N
1

Nh

Nh

∑
jh=1

Lzη(Nc)

= M(Lz,Nc),

which completes the proof.

Clearly, M(Lz,Nc) decreases with the increase of the number of clusters. Furthermore, it can be
proved that

∇ f (w)T (−∇ fSk(w))≤ 0⇔‖∇ f (w)‖ ≥M(Lz,Nc),

i.e. the direction is a descent direction, as shown in Proposition 30.

4.5. IMPLEMENTATION DETAILS 71

Theorem 30. Given M(Lz,Nc)> 0 as defined in theorem 29, the following holds for all w ∈ Rn:

∇ f (w)T (−∇ fSk(w))≤ 0⇔‖∇ f (w)‖ ≥M(Lz,Nc).

Proof. It holds that

∇ f (w)T (−∇ fSk(w)) = ∇ f (w)T [(∇ f (w)−∇ fSk(w))−∇ f (w)] =

= ∇ f (w)T [(∇ f (w)−∇ fSk(w))]−‖∇ f (w)‖2 ≤
≤ ‖∇ f (w)‖‖∇ f (w)−∇ fSk(w)‖−‖∇ f (w)‖2 ≤
≤ ‖∇ f (w)‖(M(Lz,Nc)−‖∇ f (w)‖).

Imposing the condition
∇ f (w)T (−∇ fSk(w))≤ 0,

yields
‖∇ f (w)‖ ≥M(Lz,Nc).

This means such ’approximate’ direction is a descent direction up to a certain distance from a
stationary point.

The results presented so far express "local" (in time) bounds on the approximation error of the
gradient estimate with respect to the true gradient. It can also be proved that similar bounds can be
computed for the variance of these approximations in the evolution of the iterates. This has important
impacts on the final quality of the solutions found, as seen in assumptions 9 and 6. In fact, if the
approximation variance can not be led to zero, then a diminishing stepsize, namely not summable but
squared-summable, is needed to prove convergence.

The next theorem goes in this direction, by proving a bound on the gradient approximation vari-
ance which depends on the clustering quality, i.e. the maximum intra-cluster distance (4.50).

Theorem 31. Given M(Lz,Nc) > 0 as defined in theorem 29, assume the number of samples N is
finite. Then it holds

Var[‖∇ fSk(wk)‖]≤M2(Lz,Nc).

Proof.

Var[‖∇ fSk(wk)‖] = E
[
‖∇ fSk(wk)−∇ f (wk)‖2]

=
1
K

K

∑
k=1
‖∇ fSk(wk)−∇ f (wk)‖2 ,

where K is the number of different minibatches of dimension |Sk| that can be sampled from {1, . . . ,N}.
This number is finite and it follows from theorem 29 that

Var[∇ fSk(wk)] =
1
K

K

∑
k=1
‖∇ fSk(wk)−∇ f (wk)‖2

≤ 1
K

K

∑
k=1

M2(Lz,Nc)

≤M2(Lz,Nc).

72 CHAPTER 4. NEW DYNAMIC BATCHING TECHNIQUES BASED ON THE FISHER TEST

Dataset Task N d
Covertype Binary classification 581,012 54

ijcnn1 Binary classification 35,000 22
SUSY Binary classification 5,000,000 18

SkinNonskin Binary classification 245,057 3
YearPred Regression 463,715 90

CaliforniaHousing Regression 20,640 8
Table 4.1. Datasets. Source: https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

The analysis above obviously applies also to dynamic batching strategies, like the one proposed
in Section 4.3. Indeed, once the decision to increase the dimension of the minibatch is taken, one
needs to determine which samples will be included in the next minibatch. This is usually done in a
random/ cyclic way, but the results in this section suggest that leveraging the information on clusters
in data samples can bring improvements in dynamic batching schemes, namely it allows to increase
the dimension of the minibatch less frequently and less heavily.

4.6 Numerical experiments

In this section, some numerical results on real ML data sets are reported. In particular, in section
4.6.1 the experimental setup is described, in section 4.6.2 a summary of the results is presented and
in section 4.7 some conclusions and potential next steps are explained. Finally, in section 4.8 the
complete numerical results are reported.

4.6.1 Experimental setup

The experimental setup was carried on the datasets listed in table 4.1, a mix of binary classification
and regression problems. For linear binary classification (LBC), when the labels are in {−1,1}, the
training problem formulation can be written as

min
w∈Rd

L(w) =
1
N

N

∑
i=1

log(1+ e−yiwT xi
).

For regression, both Linear (LLS) and Nonlinear Least Squares (NLS) were tested, with the training
problem formulation being

min
w∈Rd

L(w) =
1
N

N

∑
i=1

(φ(wT xi)− yi)
2,

where the function φ(·) determines whether it is LLS or NLS.
All the experiments were run for a maximum of 100 epochs (i.e. 100N single gradient evaluations

were computed), unless a given accuracy was reached, namely

f (wk)− f (w?)≤ 10−6

for convex problems (i.e. LBC and LLS), or

‖∇ f (wk)‖∞ ≤ 10−6

4.6. NUMERICAL EXPERIMENTS 73

Parameter Grid
α

{
2−10, . . . ,210

}
m {10,100,1000}
η

{
10−4, . . . ,10−1

}
Table 4.2. Parameters tuning grid

for nonconvex ones (i.e. NLS).
All the tests were run with a constant stepsize, which was tuned for both the algorithms together

with the other parameters, as detailed in table 4.2. For the norm test, the parameter θ was set to 0.9,
as proposed in [22].

4.6.2 Results and discussion

In this section, a fixed-stepsize SGD method equipped with the Fisher test is compared to a fixed-
stepsize SGD equipped with the Norm test [22]. As explained in the previous section, both the al-
gorithms’ parameters were tuned to their (locally) optimal values by means of a grid search. Figures
4.1-4.4 show the results on two convex problems defined by two of the datasets introduced in table
4.1, namely covertype (logistic regression) and californiaHousing (linear least squares).

Figures 4.1 and 4.3 plot the distance of the objective function to the optimum vs the number of
single gradient evaluations, where a single gradient evaluation represents the gradient evaluated over
one sample, while figures 4.3 and 4.4 plot the relative minibatch size |Sk|% vs the iterations, where
the relative minibatch size is defined as

Sk% =
|Sk|
N

.

Figure 4.1. Covertype dataset. Function value distance from the optimum with respect to single gradient
evaluations. In blue the Fisher test, in red the Norm test.

As the figures show, controlling the minibatch size growth, and letting it grow slowly, can be
efficient in terms of total single gradient evaluations. In fact, a trade-off between computing cheap
but poor-quality gradient estimates and expensive high-quality ones must be found. In many machine
learning applications, letting the minibatch size grow slowly and exploiting the properties of SGD is

74 CHAPTER 4. NEW DYNAMIC BATCHING TECHNIQUES BASED ON THE FISHER TEST

Figure 4.2. Covertype dataset. Minibatch size |Sk| as percentage of the population size N, with respect to
iterations. In blue the Fisher test, in red the Norm test.

Figure 4.3. CaliforniaHousing dataset. Function value distance from the optimum with respect to single gradi-
ent evaluations. In blue the Fisher test, in red the Norm test.

often beneficial. Nevertheless, it is not clear if this is always beneficial, or if it depends on the dataset
at hand. In fact, recalling the norm test definition

‖Vari∈Sk(∇ fi(wk))‖1

|Sk|
≤ δ

2‖∇ fSk(wk)‖2,

the rhs of the test is proportional to the square of the gradient norm. In many machine learning
applications, where the optimization landscape is characterized by flat regions (i.e. regions where the
objective function is almost flat and therefore its gradient close to zero), this may cause the norm test
to fail too often, too early.

4.7 Conclusions and future developments

In conclusion, coupling a norm test with a statistically sound test, i.e. the Fisher test 4.17, can bring
stability to the growth of the minibatch size in a SG/ IG setting. Indeed, slowing down the minibatch

4.7. CONCLUSIONS AND FUTURE DEVELOPMENTS 75

Figure 4.4. CaliforniaHousing dataset, LLS (convex). Minibatch size |Sk| as percentage of the population size
N, with respect to iterations. In blue the Fisher test, in red the Norm test.

size growth showed to be beneficial in most of the datasets, in terms of total computational complexity,
namely, the total number of visited data samples to reach a given accuracy are lower, or the accuracy
reached given a maximum number of visited data samples is higher.

Nevertheless, it is not clear whether this behavior is true for any dataset, or if there exist datasets
where a faster growth is necessary and datasets where a slower one is advised. Further tests on other
applications where the optimization problem has a finite sum structure may shed light on this open
question.

Potential next steps of this line of research may be:

• the extension and theoretical analysis of the Fisher test coupled with the inner product test, like
already sketched in (4.14),(4.15),(4.16);

• a formal characterization of the structure of the problems where a slower growth of the mini-
batch size is desirable and beneficial, as opposed to problems with a structure that needs a steady
growth of the minibatch from the beginning of the iterations;

• the definition of a dynamic batching algorithm that leverages the structure in the data set, i.e.
by employing clustering information over the data samples in order to reduce the gradient ap-
proximation error/ variance.

76 CHAPTER 4. NEW DYNAMIC BATCHING TECHNIQUES BASED ON THE FISHER TEST

4.8 Appendix - Complete numerical results

Figure 4.5. CaliforniaHousing dataset, NLS (nonconvex). Function value (right) and gradient norm (left) with
respect to single gradient evaluations. In blue the Fisher test, in red the Norm test.

Figure 4.6. Ijcnn1 dataset. Function value distance from the optimum with respect to single gradient evalua-
tions. In blue the Fisher test, in red the Norm test.

4.8. APPENDIX - COMPLETE NUMERICAL RESULTS 77

Figure 4.7. SkinNonSkin dataset. Function value distance from the optimum with respect to single gradient
evaluations. In blue the Fisher test, in red the Norm test.

Figure 4.8. Yearpred dataset, LLS (convex). Function value distance from the optimum with respect to single
gradient evaluations. In blue the Fisher test, in red the Norm test.

Figure 4.9. YearPred dataset, NLS (nonconvex). Function value (right) and gradient norm (left) with respect to
single gradient evaluations. In blue the Fisher test, in red the Norm test.

78 CHAPTER 4. NEW DYNAMIC BATCHING TECHNIQUES BASED ON THE FISHER TEST

Figure 4.10. SUSY dataset. Function value distance from the optimum with respect to single gradient evalua-
tions. In blue the Fisher test, in red the Norm test.

Figure 4.11. CaliforniaHousing dataset, LLS (convex). Minibatch size |Sk| as percentage of the population size
N (right) and function value (left) with respect to iterations. In blue the Fisher test, in red the Norm test.

Figure 4.12. Covertype dataset. Minibatch size |Sk| as percentage of the population size N (right) and function
value (left) with respect to iterations. In blue the Fisher test, in red the Norm test.

Figure 4.13. Ijcnn1 dataset. Minibatch size |Sk| as percentage of the population size N (right) and function
value (left) with respect to iterations. In blue the Fisher test, in red the Norm test.

4.8. APPENDIX - COMPLETE NUMERICAL RESULTS 79

Figure 4.14. SkinNonSkin dataset. Minibatch size |Sk| as percentage of the population size N (right) and
function value (left) with respect to iterations. In blue the Fisher test, in red the Norm test.

Figure 4.15. YearPred dataset, NLS (nonconvex). Minibatch size |Sk| as percentage of the population size N
(right) and gradient norm (left) with respect to iterations. In blue the Fisher test, in red the Norm test.

Figure 4.16. YearPred dataset, LLS (convex). Minibatch size |Sk| as percentage of the population size N (right)
and function value (left) with respect to iterations. In blue the Fisher test, in red the Norm test.

Figure 4.17. SUSY dataset. Minibatch size |Sk| as percentage of the population size N (right) and function
value (left) with respect to iterations. In blue the Fisher test, in red the Norm test.

80 CHAPTER 4. NEW DYNAMIC BATCHING TECHNIQUES BASED ON THE FISHER TEST

Figure 4.18. CaliforniaHousing dataset, NLS (nonconvex). Minibatch size |Sk| as percentage of the population
size N (right) and gradient norm (left) with respect to iterations. In blue the Fisher test, in red the Norm
test.

81

Chapter 5

DFO approaches for policy optimization
in RL

This chapter is the output of the 6-month visiting period spent at Northwestern University (Chicago,
US), in collaboration with prof. Jorge Nocedal.

5.1 Introduction and motivation

5.1.1 Brief outline of reinforcement learning

Figure 5.1 shows a block diagram representing the reinforcement learning framework. In this case,
the probability distribution mapping a state to the action, i.e. π , is encoded by a deep neural network
(aka policy network).
In the following, an episode will represent the simulation of the environment, starting from state s0,
from time step t = 0 to time step t =T . An episode generates a trajectory {s0,a0,s1,a1, . . . ,st ,at , . . . ,sT−1,aT−1,sT},
where each action at is generated by π , given the current state st .

For continuous control tasks like the ones object of this chapter, the above framework can be
represented by a MDP (S ,A ,r,P), where:

• the state space is real-valued, i.e. S ⊆ Rs;

• the action space is real-valued, i.e. A ⊆ Ra;

Figure 5.1. DeepRL block diagram

82 CHAPTER 5. DFO APPROACHES FOR POLICY OPTIMIZATION IN RL

• r : S ×A → R is the reward function, through which the total reward of an episode can be
written as

R =
T

∑
t=1

rt ,

where rt ∈ R are the rewards received from the environment at each time step t;

• the state-transition probabilities, modeling the probability of transitioning to a state s′ from the
current state s taking action a, i.e. P : S ×A →S , satisfy the Markov property.

Observe that the state transition probabilities P can be seen, in the framework of figure 5.1, as the
composition of (i) the probability of taking an action a, based on the current state s, modeled by π and
(ii) the probability of transitioning to state s′, given the current state s and the action taken a.

If π is encoded by a (deep) neural network, as is often the case in the RL community, then π :
Rs→ Ra determines a policy, i.e. the function that given a state s returns the action a to be taken by
the agent. A common way of modeling it is to consider the output of the policy network as

µA = π(w;st), for all t = 1, . . . ,T,

where µA is the mean of the normally distributed random variable At representing the stochastic ac-
tions, σA is its standard deviation, and w ∈ Rd is the vector of parameters (i.e. the weights of the
policy network) to be learned. Notice that the standard deviation is often taken as fixed, i.e. σA = 1, or
diminishing during the optimization, i.e. σ k

A ∼
1
k , where k is the index of the optimization iterations.

The aim of policy optimization for reinforcement learning is to find an optimal policy π? and,
since the policy is parameterized by w, the objective is to find w? such that the expected total reward
is maximized. In this setting, the expected reward function R can be written as

R(w) = EP [R],

where R = ∑
T
t=1 rt . If, with some abuse of notation, all the randomicity is indicated by a unique

random variable ζ , the objective of policy optimization is therefore to solve the problem

max
w∈Rd

R(w), (5.1)

where R(w) = EP [R].
Based on the well-known policy gradient theorem [105]

∇R(w) = EP [R∇ logπ(w)] , (5.2)

policy gradient (PG) algorithms employ gradient-based iterations, where the gradient is estimated
through (5.2). Observe that (5.2) gives an estimate of the gradient of the cumulative reward with re-
spect to the policy network parameters w, which can be computed even if the ’simulation block’ in
figure 5.1 is nonsmooth/ noncontinuous, which is often the case in policy optimization for reinforce-
ment learning. Therefore, PG algorithms are based on sample estimates of the gradient defined by
(5.2) and then perform gradient ascent in the gradient estimate direction. Notice that PG algorithms
are usually online algorithms, meaning that the policy network parameters w are updated at each time

5.1. INTRODUCTION AND MOTIVATION 83

step t of an episode. One of the most basic, yet much used, example is the REINFORCE algorithm
14.

Algorithm 14: REINFORCE algorithm

1 for k = 0,1, . . . do
2 Starting from wk, set w1

k = wk;
3 Generate a trajectory based on πwk ;
4 for t = 1,2, . . . ,T do
5 Estimate the gradient of the expected reward through (5.2);
6 Update wt+1

k in the gradient direction;
7 end
8 Set wk+1 = wT

k ;
9 end

PG methods will not be analyzed further, since those are not the target of this chapter. See, e.g.,
[107, 92, 96] for the details of some of the most common policy gradient algorithms. In [40], many
state-of-the-art algorithms are tested on several continuous control tasks.

Given the function R defined above, one could easily apply a derivative free optimization (DFO)
algorithm to maximize it. Indeed, R inherently depends on a black box computation, i.e. the simu-
lation of the episode(s), and therefore its derivatives are not directly computable. This setting will be
further investigated in the following section.

5.1.2 DFO algorithms for policy optimization

Recalling figure 5.1, note that the optimization process can be read in different ways, depending on the
online vs batch policy optimization setting. Indeed, in the online setting the process can be described
by the repetition of the following steps:

(i) the state st is observed;

(ii) the action at is generated through the policy, parameterized by the network weights wt
k;

(iii) the reward rt and new state st+1 are observed;

(iv) the new network weights wt+1
k are computed in order to maximize the expected reward;

(v) repeat.

Above, the index k represented an episode, while the index t represented a time step during the
episode. In the batch setting, instead,

(i) an entire episode is run with network weights wk the state vector st is observed, the rewards
sequence {rt}T

t=1 is output and the cumulative reward R is computed;

(ii) the new network weights wk+1 are computed in order to maximize the expected reward;

(iii) repeat.

In the analysis of the following sections, it will be assumed that the policy network weights are updated
only at the end of an entire episode. Observe that the exact same distinction can be made in the case
a minibatch of episodes is run at each iteration k.

84 CHAPTER 5. DFO APPROACHES FOR POLICY OPTIMIZATION IN RL

The problem can therefore be considered in the simulation-optimization framework, where at each
iteration of the solution algorithm some simulations are run, the objective functions are observed (and
averaged), a suitable search direction is chosen and the parameters are updated. The objective of the
optimization is to maximize the expected cumulative reward R. To put the problem in the standard
optimization framework, problem 5.3 is the minimization of the expected value of a function f of a
generic d-dimensional variable w.

min
w∈Rd

F(w), (5.3)

where F(w) = Eζ [f 0(w,ζ)] :=−EP [R] and ζ is a random variable.
From now on, the analysis will focus on the function

f (w,ζ),

where the random variable ζ represents, with some abuse of notation, the stochasticity of the environ-
ment and of the potential subsampling, i.e. the estimation of the function based on a finite number of
episodes. Therefore, f is a sample estimate of the function f 0.

In example 1 below, the calculation of the reward function from an environment of the mujoco
[109] library from OpenAI Gym [21] is reported. The aim of the example is to show how the reward,
i.e. the objective function of the DFO algorithm, is computed, and how there are no guarantees on its
smoothness properties.

Example 1 (HalfCheetah environment example). The goal of the HalfCheetah environment is to teach
a halfcheetah to run in the 2-dimensional space. Therefore, given a state (including, e.g., position,
velocity, ...), the aim is to design a policy letting the halfcheetah run.

The reward at any time step t of an episode is

r(t) = c1
xt+1− xt

dt
− c2‖at‖2,

where c1,c2 are two positive constants, dt > 0 is the duration of a time step in the environment
simulator (i.e. time is discretized), xt is the current position (one component of the state vector st) and
at is the action vector.

Since the policy is parameterized by a neural network with weight vector w ∈ Rd , the function π

s.t.
at = π(w;st)

is continuously differentiable w.r.t. w if the activation functions of the neural network are continuously
differentiable.

Unfortunately, the continuity of the policy function π does not guarantee continuity of the reward
function. Indeed, the function φ s.t.

xt+1 = φ(at ,st ;ζ) = φ(π(w;st),st ;ζ)

is not fully specified and, in general, depends on a random variable ζ , which depends on how the
environment simulator is built. Therefore, the function r(t), which depends on xt+1, can not be ensured
to be smooth.

Furthermore, even if the function φ was assumed to be continuously differentiable, which would
imply r(t) to be continuously differentiable for each t, this would not imply smoothness of the total
reward R! Indeed, given the definition of the total reward

R =
T

∑
t=0

r(t)

5.1. INTRODUCTION AND MOTIVATION 85

this is not clear, since the time is discretized and the total reward function is the sum of T rewards, with
T varying based on the simulator. In fact, if close to instability, a small variation in the parameters
w may cause a large variation in the total reward - for example in the case the simulation would end
earlier (therefore having a smaller T) because of the instability of the controlled system.

In DFO algorithms, the gradient is estimated based on function evaluations only. Being the func-
tion to minimize the negative total reward on the whole episode (or minibatch of episodes), such
algorithms are inherently batch and can be sketched as in algorithm 15.

Algorithm 15: DFO RL algorithm

1 for k = 0,1, . . . do
2 Generate mk perturbations of wk;
3 Run mk episodes based on the perturbed policy and collect the returns

f j(wk,ζ), j = 1, . . . ,mk;
4 Estimate the gradient direction g(wk,ζ) based on f j(wk,ζ), j = 1, . . . ,mk;
5 Update wk+1 = wk−αkg(wk,ζ);
6 end

Derivative-free optimization algorithms are sometimes referred to, in the RL community, as evolu-
tion strategies. In [87, 27], such algorithms have been applied to several continuous control problems,
showing promising results. In [9], instead, several DFO algorithms were compared on a small set
of continuous control problems. Among others, the authors applied finite differences (FD), Gaussian
Smoothing (GS) and Linear Interpolation (LI) to estimate gradients based on function evaluations
only, then employed a linesearch "with error" to compute the stepsize αk. It must be noted that in
[9] the number of function evaluations to estimate the gradients was determined such that a norm
condition was satisfied with high-enough probability, therefore in contrast with the common belief (in
the RL community), that approximation methods like GS perform well even with a small number of
function evaluations per iteration.

One of the most interesting open questions in optimization applied to reinforcement learning is
why, given a highly nonlinear, nonconvex, nonsmooth problem can be solved at good-enough accuracy
by gradient-based methods, where, furthermore, the gradients are approximated via a small number
(e.g., only one) of function evaluations. The seminal work [42] tries to shed light on this open question,
analyzing a simple, theoretical continuous control problem, the linear quadratic regulator (LQR), and
proving that such problem, although nonconvex, can be solved to optimality by gradient methods
(even if the gradient is approximated).

In [70], instead, a numerical investigation was carried out on several reinforcement learning tasks.
The goal was to show that, even with simple models, i.e. a linear mapping instead of a neural network
to parameterize the policy π , good results could be achieved on many state-of-the-art tasks. Inter-
estingly, the results were surprisingly good. Nevertheless, the method employed, a DFO based on
Gaussian Smoothing gradient approximation, was enhanced by several heuristics. Therefore, it is not
clear if the good results were due to the simplicity of the linear mapping to encode the policy, or to
the heuristics employed to improve the quality of the search directions.

Now, gradient approximation techniques will be further detailed, in the setting where only function
values are available. In particular, the analysis will refer to a generic function φ : Rd → R. Observe
that the main difficulty in the RL framework is that not only the function can not be computed in a
deterministic manner, i.e. the function could be seen as affected by noise, but every function calcu-
lation can be computationally very expensive. In particular, employing gradient-based methods can
be highly ineffective, since estimating a gradient based on function evaluations only can (i) be very

86 CHAPTER 5. DFO APPROACHES FOR POLICY OPTIMIZATION IN RL

expensive and (ii) give poor approximation quality, due to noisy function evaluations. Nevertheless,
much attention has been lately put in this field.

In [7], the gradient approximation method first proposed in [100, 101] and later named Gaussian
Smoothing, was applied to the training of overparameterized Machine Learning problems, with the
aim of exploiting some kind of sparsity in the function mapping. Gaussian Smoothing is based on the
so-called Stein identity, i.e.

∇φ
ν(w) = Eu

[
φ(w+νu)

ν
u
]
, (5.4)

where
φ

ν(w) = Eu[φ(w+νu)] (5.5)

is a smoothed function, u ∼ N(0, Id) is a normally distributed random vector and ν > 0. By the fact
that E[u] = 0 and simple calculations, the (Forward) Gaussian Smoothing (FGS) gradient estimate can
be computed by

∇φ
FGS(wk) =

1
mk

mk

∑
j=1

∇φ
FGS(wk) =

1
mk

mk

∑
j=1

φ(wk +νu j
k)−φ(wk)

ν
u j

k, (5.6)

where u j
k ∼ N(0, Id) for all j,k. The appeal of the Gaussian Smoothing method is that a (biased)

gradient estimate can be computed by as few as just one function evaluation. Obviously, the quality of
the estimate gets better as the number of function evaluations, i.e. mk, employed in (5.6) increases. In
contrast, the well-known (Forward) Finite Difference (FFD) gradient estimator needs d + 1 function
evaluations

∇φ
FFD(wk) =

[
φ(wk +νei)−φ(wk)

ν

]d

i=1
, (5.7)

where ei ∈ Rd represents the i-th coordinate direction. Although more expensive than Gaussian
Smoothing, Forward Differences gives very accurate gradient estimates. Indeed, in [10] a bound
on the number of function evaluations necessary to get the norm condition

‖gk−∇φ(wk)‖ ≤ θ‖∇φ(wk)‖ (5.8)

verified with more than 50% probability was given, showing that FGS needs O(3d) function evalua-
tions, compared to the d+1 of FFD. Central versions of the two methods exist, at the cost of doubling
the number of function evaluations,

∇φ
CGS(wk) =

1
mk

mk

∑
j=1

∇φ
CGS(wk) =

1
mk

mk

∑
j=1

φ(wk +νu j
k)−φ(wk−νu j

k)

2ν
u j

k, (5.9)

∇φ
CFD(wk) =

[
φ(wk +νei)−φ(wk−νei)

2ν

]d

i=1
. (5.10)

A method to compute computationally cheap search directions, which can be thought of as a
bridge between GS and FD, is the one employed in Random Coordinate Descent (RCD) methods,
where the gradient approximation is computed as

∇φ
RCD(wk) =

[
φ(wk +νei)−φ(wk)

ν

]
i∈Sk

, (5.11)

5.1. INTRODUCTION AND MOTIVATION 87

where Sk is a subset of the indices {1, . . . ,d} of size mk. What the RCD method does is to randomly
select mk coordinate directions and then compute a finite difference along each of those. Therefore,
given a budget mk of function evaluations, its computational cost is exactly the same of Gaussian
Smoothing.

Another gradient approximation method is the Simultaneous Perturbation Stochastic Approxima-
tion (SPSA) method, aka Spall’s method, [99], which is very well-known in the Stochastic Optimiza-
tion community, since it allows to estimate gradients by only two function evaluations.

∇φ
SPSA(wk) =

1
mk

mk

∑
j=1

∇φ
SPSA(wk) =

1
mk

mk

∑
j=1

[
φ(wk +νu j)−φ(wk−νu j)

2ν [u j]i

]d

i=1
, (5.12)

where u j, j = 1, . . . ,mk are random variables which expected value must be bounded away from zero.
Although the formula is very similar to GS, the reasoning behind it is quite different: Spall’s method
is based on the conjecture that the gradient estimated in a random direction can be representative of
all the gradient components.

It is clear that Gaussian Smoothing and Spall’s method are not the go-to approaches when in need
of an accurate gradient estimation. Nevertheless, applying an orthogonalization technique [9] to the
mk random directions generated at each iteration may be beneficial, since it would avoid to waste
function evaluations in directions that may not bring any further information.

Another common gradient approximation method is based on interpolation. This is done by build-
ing a model, which is usually linear or quadratic, of the objective function around the current iterate
[10]. A linear model centered in x ∈ Rd can be written as

M(y) = φ(x)+g(x)T (y− x), (5.13)

where y ∈ Rd and g : Rd → Rd represents the gradient approximation function. Under the hypothesis
of computing mk = d function evaluations, one can estimate g by solving the interpolation linear
system of equations

σQU g = ΦU , (5.14)

where

QU =

u1
u2
...

ud

and

ΦU =

φ(x)−φ(x+σu1)
φ(x)−φ(x+σu2)

...
φ(x)−φ(x+σud)

 ,
respectively being the matrix which rows are the d directions ui and the vector with entries φ(x)−
φ(x+σui).

In summary, the main objectives of this line of research are:

(i) to extend the standard results of stochastic optimization to the case where the gradients can not
be computed explicitely, but need be approximated by means of function evaluations only, with
particular interest in the Finite Differences vs Gaussian Smoothing cases;

88 CHAPTER 5. DFO APPROACHES FOR POLICY OPTIMIZATION IN RL

(ii) to gain a thorough understanding of the optimization landscape addressed by derivative free
optimization methods applied to policy optimization for reinforcement learning;

(iii) to compare the performance of standard derivative-free approaches applied to stochastic opti-
mization with state-of-the-art algorithms designed by the RL community;

(iv) to numerically investigate the conjecture that in zeroth-order stochastic optimization one can
design an efficient algorithm employing less than d function evaluations at each iteration.

5.2 Preliminary analysis

The stochastic optimization problem object of the analysis is problem 5.3, which can be approximated
by a finite sum-structured problem

min
w∈Rd

F(w), (5.15)

where

F(w) = Eζ [f
0(w,ζ)]∼ 1

N

N

∑
i=1

f 0
i (w) :=

1
N

N

∑
i=1

φ(w,ζi).

Here, ζ is a random variable representing stochasticity due to the reinforcement learning environment
simulation and ζi represents the i-th realization of ζ . Notice that problem 5.15 is a finite sum ap-
proximation of problem 5.3 in the case the expected value of the objective function is approximated,
throughout the solution algorithm, by the average over N replicates of the simulation.

To simplify the subsequent analysis, the function f (w,ζ) will identify a sample approximation of
the true function F . Sometimes, the stochastic function f (w,ζ) will be referred to as a noisy function
evaluation.

The generic iteration of a (approximate) gradient-based method is

wk+1 = wk−αkgk, (5.16)

where αk is a positive steplength that may vary or be fixed during the optimization process, and gk is
an approximation to the gradient of F .

The analysis will consider a standard zeroth-order stochastic gradient descent algorithm 16, where
gk is a gradient approximation computed, e.g., by means of Gaussian Smoothing or Finite Differences.
More details on the two methods will be described in the following subsections.

Algorithm 16: Zeroth-order Stochastic Gradient Method

Data: w0 ∈ Rd , ν > 0, positive sequences {αk}K
k=1

1 for k = 1, . . . ,K do
2 Compute gk, based on noisy function evaluations only;
3 Compute wk+1 = wk−αkgk;
4 end

The assumption below will be useful in the theoretical analysis.

Assumption 11. There exists σ > 0 such that for any w ∈ Rd it holds

E
[
‖∇ f (w,ζ)−∇F(w)‖2

]
≤ σ

2.

5.2. PRELIMINARY ANALYSIS 89

In subsections 5.2.1 and 5.2.2, the properties of Gaussian Smoothing and Finite Differences, re-
spectively, will be shown. The main reason why a thorough analysis of these methods is needed is
that, in the stochastic optimization case, they introduce a bias in the gradient approximation. Indeed,
throughout the following theoretical analysis, the hypothesis that the direction employed by the DFO
method is an unbiased estimator of the true gradient will never hold. To relate this fact to the analysis
in the stochastic setting of chapter 3, employing a direction that is a biased estimate of the gradient di-
rection implies that there exist a neighborhood of the solution (stationary point) of problem 1.3 where
the expected value of the direction can be an ascent direction. Thus, convergence to a solution (sta-
tionary point) of the problem can not be ensured, even with a diminishing stepsize, as will be clearer
in the next two sections.

5.2.1 Gaussian smoothing

If the direction gk is computed through a (forward) Gaussian Smoothing approximation, then

gGS(wk;ζ ,u) =
1

mk

mk

∑
j=1

f (wk +νu j;ζ)− f (wk;ζ)

ν
u j, (5.17)

where u j
k ∼ N(0, Id) for all j,k and mk is the budget of function evaluations at iteration k. Notice that

the random variables ζ and u are assumed to be independent. The subsequent analysis will assume,
without loss of generality, mk = 1, i.e.

gGS(wk;ζ ,u) =
f (wk +νu;ζ)− f (wk;ζ)

ν
u. (5.18)

Observe that, by estimating ∇F(w) by means of a Gaussian Smoothing method like in (5.17),
there are two sources of error:

(i) the unavoidable error in trying to approximate an expected value, i.e. ∇F(w) = E[∇ f 0(w,ζ)],
by its sample approximation ∇ f (w,ζ);

(ii) the error given by the GS approximation, which only uses function values computed in random
directions to estimate the gradient.

In the analysis, the following quantities may appear:

• the smoothed function and the smoothed gradient, i.e. the expected value, with respect to the
random direction u, of the gradient approximation (5.18)

f ν(w;ζ) = Eu[f (w+νu;ζ)], ∇ f ν(w;ζ) = Eu[gGS(wk;ζ ,u)]; (5.19)

• the expected value, with respect to the random variable ζ , of the gradient approximation (5.18)

G(w;u) :=
F(w+νu)−F(w)

ν
u = Eζ [g

GS(wk;ζ ,u)]; (5.20)

• the expected value, with respect to both the random variable ζ and the random direction u, of
the gradient approximation (5.18)

∇Fν(w) = Eζ ,u[g
GS(wk;ζ ,u)]. (5.21)

90 CHAPTER 5. DFO APPROACHES FOR POLICY OPTIMIZATION IN RL

Recalling the above definitions, the following theorem 32, reported from [76], shows some im-
portant properties for the smoothed function and its derivative, with respect to the true function.

Theorem 32. Let u∼ N(0, Id). Then

Eu[‖u‖p]≤ (d + p)
p
2 ∀ p≥ 2.

Furthermore, if ∇ f (w;ζ) is Lw-Lipschitz continuous for any realization of ζ :

(i) f ν is Lν -Lipschitz continuous with Lν ≤ Lw;

(ii) for all w ∈ Rd , and for any realization ζ of ζ ,

| f ν(w;ζ)− f (w;ζ)| ≤ τν , (5.22)

‖∇ f ν(w;ζ)−∇ f (w;ζ)‖ ≤ ην ; (5.23)

(iii) for all w ∈ Rd , and for any realization ζ of ζ ,

1
ν2 Eu

[
(f (w+νu;ζ)− f (w;ζ))2‖u‖2

]
≤ ν2

2
L2

w(d +6)3 +2(d +4)‖∇ f (w;ζ)‖2, (5.24)

where τν = ν2

2 Lwd > 0 and ην = ν

2 Lw(d +3)
3
2 > 0.

Theorem 32 bounds the bias of the smoothed function and gradient with respect to the true ones,
in particular

τν =
ν2

2
Lwd → Bound on | f ν(w;ζ)− f (w;ζ)|, (5.25)

ην =
ν

2
Lw(d +3)

3
2 → Bound on ‖∇ f ν(w;ζ)−∇ f (w;ζ)‖, (5.26)

Based on the above results, the following lemma from [7] bounds the variance of the Gaussian
Smoothing gradient estimate with respect to the true gradient.

Lemma 7. Let gGS(wk;ζ ,u) be computed as in (5.17) and let assumption 11, 1, 2 hold. Then

E
[
‖gGS(wk;ζ ,u)−∇Fν(w)‖2]≤ 2(d +5)(B2 +σ2)

mk
+

ν2

2mk
L2

w(d +3)3, (5.27)

and
E
[
‖gGS(wk;ζ ,u)−∇F(w)‖2]≤Cν

k , (5.28)

where

Cν
k =

4(d +5)(B2 +σ2)

mk
+

3ν2

2
L2

w(d +3)3. (5.29)

Such variance is bounded by the sum of two terms, one depending on the bound on the gradient
approximation variance in assumption 11, the other depending on the differencing interval ν . Notice
that computing the function f by a sample estimate with a sample of size |S| > 1 would modify the
constant in (5.29) in the following, simple way:

Cν
k =

4(d +5)(B2 + σ2

|S|)

mk
+

3ν2

2
L2(d +3)3. (5.30)

5.2. PRELIMINARY ANALYSIS 91

5.2.2 Finite differences

Another, simple method to compute gk in algorithm 15 is (forward) Finite Differences, where the
gradient estimator is

gFD(wk;ζ) =

[
f (wk +νei;ζ)− f (wk,ζ)

ν

]d

i=1
, (5.31)

where ei ∈ Rd represents the i-th coordinate direction.
Lemma 8 shows that, under assumption 11 and 1, the gradient approximation variance of (5.31)

is bounded above by a constant term.

Lemma 8. Let gFD(w;ζ) be computed as in (5.31) and let assumptions 1 and 11 hold. It follows that,
for any realization ζ of ζ ,

E[‖gFD(w;ζ)−∇F(w)‖2]≤ 2d
(

Lwν

2
+

2εm

ν

)2

+2σ
2. (5.32)

Proof.

E[‖gFD(w;ζ)−∇F(w)‖2] = E[‖gFD(w;ζ)−∇ f (w;ζ)+∇ f (w;ζ)−∇F(w)‖2]

≤ 2‖gFD(w;ζ)−∇ f (w;ζ)‖2 +2E[‖∇ f (w;ζ)−∇F(w)‖2]

≤ 2σ
2 +2‖gFD(w;ζ)−∇ f (w;ζ)‖2.

The quantity ‖gFD(w;ζ)−∇ f (w;ζ)‖2 can be bounded above, i.e.

‖gFD(w;ζ)−∇ f (w;ζ)‖2 =
d

∑
i=1

(
f (w+νei;ζ)− f (w,ζ)

ν
−
[
∇ f (w;ζ)

]
i

)2

≤
d

∑
i=1

(
Lwν

2
+

2εm

ν

)2

= d
(

Lν

2
+

2εm

ν

)2

,

where εm represents the machine precision. The above two relations combined give (5.32).

Observe that the optimal choice for ν > 0 is

ν =

√
2εm

Lw
, (5.33)

since the following holds

E[‖gFD(w;ζ)−∇F(w)‖]≤ E[‖∇gFD(w;ζ)−∇ f (w;ζ)‖]+σ

≤
√

d
(

Lwν

2
+

2εm

ν

)
+σ ,

and, by minimizing with respect to ν , one gets (5.33).

92 CHAPTER 5. DFO APPROACHES FOR POLICY OPTIMIZATION IN RL

5.3 Convergence analysis of a stochastic DFO method

Now that a bound on the gradient approximation variance has been computed for both Gaussian
Smoothing and Finite Differences, the main convergence analysis will rely on the assumption that a
generic constant bound C > 0 on the gradient approximation variance exists, namely ∃ C > 0 such
that

E[‖gk−∇F(wk)‖2]≤C. (5.34)

Observe that such constant C is defined by (5.32) in the finite differences case, by (5.29) in the Gaus-
sian smoothing approach. Furthermore, recalling the analysis in chapter 3, remark that the above
gradient approximation variance is not controlled by the stepsize α . This will impact the convergence
properties, since letting the stepsize go to zero will not help in reducing the gradient approximation
error.

Initially, it will be assumed that the function F is estimated via sample approximation with a fixed
sample size |S| throughout the iterations. Then, the dynamic batching case will be analysed.

5.3.1 Fixed sample size

Theorem 33 makes it explicit that function descent can not be ensured at each iteration and depends
on the gradient approximation variance.

Theorem 33. Let {wk} be the iterates generated by (5.16) and let 0 < αk <
1

Lw
. Let assumptions 11

and 1 hold. Then
E[F(wk+1)]≤ F(wk)−

αk

2
‖∇F(wk)‖2 +

αk

2
C. (5.35)

Proof. Following the lines of [8, Theorem 4.1], by assumption 1,

E[F(wk+1)]≤ F(wk)−αk∇F(wk)
T gk +

Lwα2
k

2
‖gk‖2.

Recalling assumption 11, for all k such that αk <
1

Lw
it holds that

E[F(wk+1)]≤ F(wk)−αk∇F(wk)
T gk +

Lwα2
k

2
‖gk‖2

= F(wk)−αk∇F(wk)
T (∇F(wk)+ e(wk))+

Lwα2
k

2
‖∇F(wk)+ e(wk)‖2

= F(wk)−αk

(
1− αkLw

2

)
‖∇F(wk)‖2−αk(1−αkLw)∇F(wk)

T e(wk)+
Lwα2

k
2
‖e(wk)‖2

≤ F(wk)−αk

(
1− αkLw

2

)
‖∇F(wk)‖2 +αk(1−αkLw)‖∇F(wk)‖‖e(wk)‖+

Lwα2
k

2
‖e(wk)‖2

≤ F(wk)−
αk

2
‖∇F(wk)‖2 +

αk

2
‖e(wk)‖2

where e(wk) = gk−∇F(wk) and it was used the fact that (1√
2
‖F(wk)‖− 1√

2
‖e(wk)‖)2 ≥ 0. Taking the

total expectation and recalling (5.34), the proof of (5.35) follows.

5.3. CONVERGENCE ANALYSIS OF A STOCHASTIC DFO METHOD 93

In the following, convergence analysis for algorithm 16 in the nonconvex and strongly convex
cases is presented. All the analysis will consider a setting where the stepsize is fixed, i.e. αk = α > 0
for all k. The analysis for a diminishing stepsize is not reported, since there is no theoretical gain in
employing a diminishing stepsize: indeed, being the gradient approximation a biased estimator of the
true gradient, convergence to a neighborhood of the solution is the best that can be achieved.

Theorem 34 (nonconvex objectives - fixed stepsize). Let {wk} be the iterates generated by (5.16) and
let assumptions 11, 1, 2 hold. Let F be bounded from below and let Fin f be its lower bound. Let the
stepsize be

0 < α <
1

Lw
.

Then

lim
K→∞

E

[
1
K

K

∑
k=1
‖∇F(wk)‖2

]
≤ 2

Kα
(F(w1)−Fin f)+

α

2
C. (5.36)

Proof. From (5.35),

E[F(wk+1)]−F(wk)≤−
α

2
E[‖∇F(wk)‖2]+

α

2
C,

and by summing over k = 1, . . . ,K one gets

Fin f −F(w1)≤ E[F(wK+1)]−F(w1)≤−
α

2
E

[
K

∑
k=1
‖∇F(wk)‖2

]
+K

α

2
C,

which yields

E

[
K

∑
k=1
‖∇F(wk)‖2

]
≤ 2

α
(F(w1)−Fin f)+K

α

2
C.

Taking the limit for K→ ∞ and dividing by K, (5.36) follows.

Theorem 35 (µ-strongly convex objectives - fixed stepsize). Let {wk} be the iterates generated by
(5.16) and let assumptions 11, 1, 2 and 3 hold. Let the stepsize be

0 < α <
1

Lw
.

Then, after K iterations,

E[F(wK+1)]−F(w?)≤ ρ
K [F(w1)−F(w?)]+

C
2µ

, (5.37)

where ρ = 1−µα . Therefore, if K→ ∞,

lim
K→∞

E[F(wK)]−F(w?)≤ C
2µ

. (5.38)

94 CHAPTER 5. DFO APPROACHES FOR POLICY OPTIMIZATION IN RL

Proof. From assumption 3 and (5.35), since α < 1
Lw

, it holds for any k = 1, . . . ,K

E[F(wk+1)]−F(w?)≤ F(wk)−F(w?)− α

2
‖∇F(wk)‖2 +

α

2
C

≤ F(wk)−F(w?)−µα(F(wk)−F(w?))+
α

2
C

= (1−µα)(F(wk)−F(w?))+
α

2
C

= ρ(F(wk)−F(w?))+
α

2
C

≤ ρ(F(wk)−F(w?))+
α

2
C,

where ρ = 1−µα < 1. The above relation yields

E[F(wK+1)]−F(w?)≤ ρ
K(F(w1)−F(w?))+

αC
2(1−ρ)

,

which implies (5.37). Since ρ < 1 , by taking the limit for K→ ∞, (5.38) follows.

Theorem 35 explicitely shows the dependence of the neighborhood reached by algorithm 16 on
the gradient approximation variance bound C.

The above results are very similar to the ones in the analysis of SG methods of chapter 3. Observe,
nevertheless, that in this case, where the direction gk is not an unbiased estimate of the true gradient,
even employing a diminishing stepsize would not yield convergence to the solution of problem 1.3.

5.3.2 Dynamic batching

Recalling (5.32) and (5.28), when a sample approximation based on a sample of size |S| is employed,
the bound on the gradient approximation variance E[‖gk−∇F(w)‖2] depends on σ2 in the following
way, respectively in the GS and FD cases,

4(d +5)(B2 + σ2

|S|)

mk
+

3ν2

2
L2

w(d +3)3,

2d
(

Lwν

2
+

2εm

ν

)2

+2
σ2

|S|
.

Therefore, a basic approach to dynamic batching could be to let the sample size |S|→∞, in order to let
the term σ2

|Sk| → 0. To preserve linear convergence to a neighborhood of the solution, in the µ-strongly
convex case, one can employ an updating scheme for the sample size satisfying |S| ∼ O

(
γk
)
, for a

γ > 1 [44]. Nevertheless, in a setting where an unbiased estimate of the gradient is not available, there
is no reason why the sample size should grow to infinity, since the variance of the error E[‖ek‖2] will
never go to zero. Therefore, for example in the finite differences case, it seems reasonable to only
require

|S| → O

(
σ2

d

(
Lwν

2
+

2εm

ν

)−2
)
.

A more advanced approach is the norm test [22], defined to decide, at each iteration, whether the
size of the sample size should be increased or not:

‖gk−∇F(wk)‖ ≤ θ‖gk‖, (5.39)

5.3. CONVERGENCE ANALYSIS OF A STOCHASTIC DFO METHOD 95

where θ ∈ (0,1). The test checks whether the gradient approximation is close enough to the true gra-
dient, although the latter is not available in real cases and therefore an approximation was proposed.
Nevertheless, the test in (5.39) is not appropriate in the zeroth-order setting, since gk is a biased esti-
mator of ∇F(wk) and (5.39) would eventually never hold in a neighborhood of the solution. Therefore,
by taking the finite differences example and recalling that in the FD case the biased estimate of the
gradient is

∇FFD(wk) = Eζ [g
FD(wk,ζ)],

the following modification to the norm test can be proposed

‖gk−∇FFD(wk)‖ ≤ θ‖gk‖, (5.40)

where θ ∈
(

0,
√

2−1
)

. This modification is based on property (5.32), which yields

‖gk−∇F(wk)‖ ≤ ‖gk−∇FFD(wk)‖+‖∇FFD(wk)−∇F(wk)‖ ∼ O

(
σ√
|S|

)
+C,

and from which it is clear that employing a dynamic batching scheme will impact the term O
(

σ√
|S|

)
,

but the constant term C will never be driven to zero.
Lemma 9 is useful for the following convergence analysis.

Lemma 9. Assume (5.40) holds. Then

‖gk‖2 ≤ 2θ 2

(1−θ)2 ‖∇F(wk)‖2 +
2

(1−θ)2C. (5.41)

Proof. Equation (5.40) immediately yields

‖gk‖ ≤
1

1−θ
‖∇FFD(wk)‖.

Therefore

‖ek‖ ≤ ‖gk−∇FFD(wk)‖+‖∇FFD(wk)−∇F(wk)‖
≤ θ‖gk‖+

√
C

≤ θ

1−θ
‖∇FFD(wk)‖+

√
C

≤ θ

1−θ
(
√

C+‖∇F(wk)‖)+
√

C

=
θ

1−θ
‖∇F(wk)‖+

(
1+

θ

1−θ

)√
C.

Taking the square of the above,

‖ek‖2 ≤ 2
θ 2

(1−θ)2 ‖∇F(wk)‖2 +2
(

1+
θ

1−θ

)2

C

= 2
θ 2

(1−θ)2 ‖∇F(wk)‖2 +
2

(1−θ)2C.

96 CHAPTER 5. DFO APPROACHES FOR POLICY OPTIMIZATION IN RL

Theorem 36 shows the convergence properties of a dynamic batching scheme based on a norm
test applied to the zeroth-order SGD setting with strongly convex objectives.

Theorem 36 (µ-strongly convex objectives - norm test). Let Assumptions 1 and 3 hold. Assume that
the test (5.40) holds at any iteration k = 1, . . . ,K with θ ∈ (0,

√
2−1) and that

αk = α <
1

Lw
∀ k. (5.42)

Then

lim
k→∞

F(wk)−F(w?)≤ C
µ(1−2θ −θ 2)

. (5.43)

Proof. By assumption 1 and recalling lemma 9,

F(wk+1)≤ F(wk)−
α

2
‖∇F(wk)‖2 +

α

2
‖ek‖2

≤ F(wk)−
α

2
‖∇F(wk)‖2 +α

[
θ 2

(1−θ)2 ‖∇F(wk)‖2 +
1

(1−θ)2C
]

= F(wk)−
α

2

[
1−2

θ 2

(1−θ)2

]
‖∇F(wk)‖2 +α

C
(1−θ)2 .

Therefore, by Assumption 3,

F(wk+1)−F(w?)≤ F(wk)−F(w?)−µα

(
1−2

θ 2

(1−θ)2

)
[F(wk)−F(w?)]+α

C
(1−θ)2

=

[
1−µα

(
1−2

θ 2

(1−θ)2

)]
[F(wk)−F(w?)]+α

C
(1−θ)2

= ρ [F(wk)−F(w?)]+α
C

(1−θ)2 ,

where ρ = 1−µα

(
1−2 θ 2

(1−θ)2

)
< 1. By taking the limit for k→ ∞, it follows

lim
k→∞

F(wk)−F(w?)≤
α

C
(1−θ)2

1−ρ
,

and by simplifying the above one gets (5.43).

5.4 Preliminary experiments

One of the goals of these preliminary experiments was to compare Gaussian Smoothing (GS) ap-
proaches, much used in the RL community, to more standard gradient approximation techniques,
like Finite Differences (FD) and Random Coordinate Descent (RCD). Indeed, given a fixed budget
of function evaluations that can be computed at each iteration, one would expect GS and RCD to
be comparable, since the two methods both compute function evaluations in random directions to
compute a gradient approximation. The final aim is to get a better understanding of the optimization
landscape and, if GS is confirmed to be the best performing gradient approximation method, to relate
its performance to the structure of the optimization problem.

5.4. PRELIMINARY EXPERIMENTS 97

The RL environments tested in the following preliminary experiments are taken from the OpenAI
gym library [21]. In particular, the continuous control tasks from MuJoCo [109], in which both the
state and action spaces are real-valued, were used. Table 5.1 summarizes the characteristics of the 5
reinforcement learning tasks on which the DFO algorithms were applied.

The policy was parameterized by a neural network, with two hidden layers and a number of
neurons for each layer that was tuned based on the environment. Since the action space is constrained
to be in [−1,1]dA , tanh nonlinearities were employed in the neural networks.

Environment State dim Action dim Num neurons per layer Num of parameters d
Swimmer 8 2 20 642
HalfCheetah 17 6 60 5106
Walker2d 17 6 60 5106
Hopper 11 3 40 723
Reacher 11 2 20 702

Table 5.1. MuJoCo continuous control environments

To make the experiments replicable, the seeds to be used throughout the optimization procedure
were always fixed in advance, by generating a list of random integers, based on an initial seed, that
were then used as seeds for each step of the optimization procedure. In particular, the seeds were
used for (i) initializing the initial state for each episode run (one at each iteration) and (ii) determining
the realization of the actions random variable. Doing so, the optimization procedure reduces to a
deterministic simulation-optimization framework, where the randomness is controlled by the seed.

At each iteration, the gradient estimate was computed:

• for Full (Forward) Finite Differences, by computing d function evaluations along the coordinate
directions and then differencing;

• for Random Coordinate Descent, by computing 1 function evaluation in a random coordinate
direction and then differencing only along such coordinate direction, namely computing only a
gradient component and setting all the others to 0;

• for Gaussian Smoothing, by computing 1 function evaluation in a random, normally distributed
direction and then differencing.

The ’true’ objective function (necessary for plots), which is an expected value and therefore needs be
approximated by sample averaging, was computed as the average over M = 100 replicates, i.e.

F(wk)≈
1
M

M

∑
i=1

φ(wk,ζi),

where the index i in the random variable ζi represents different seeding.
One of the crucial parameters to be tuned is the differencing interval ν > 0, which is present

in both the gradient approximation methods considered in this section, namely Gaussian Smoothing
and Finite Differences. Indeed, although there exists a theoretical optimal value for ν , this is not
applicable in this setting, since the function evaluations are affected by noise which can not easily be
bounded. Furthermore, being the function potentially noncontinuous, a too small value of ν may lead
to numerical instability and extremely high variance in the gradient estimate (the continuity properties

98 CHAPTER 5. DFO APPROACHES FOR POLICY OPTIMIZATION IN RL

of the objective function will be further discussed in the next section). Therefore, the parameter ν was
tuned by a grid search, which led to the choice of ν = 0.1.

Another design choice is the standard deviation of the actions σA. This was chosen to diminish to
zero with a rule

σA =
1

1+ τk
,

where k is the iteration counter and τ > 0 controls the speed of decrease, in order to allow for more
exploration in the early iterations of the algorithm. The parameter τ , which controls the speed of
decay of the actions standard deviation σA, was chosen through a grid search, together with the fixed
stepsize α > 0. The two parameters were tuned for each environment and gradient approximation
method separately, specifically α ∈ [10−8,100] and τ ∈ [10−3,100]. As reported in tables 5.2-5.4, the
chosen stepsize was always very small, which is expected due to the high variance in the gradient
estimate. This will also be further developed in the next section.

Environment α τ

Swimmer 10−4 1
HalfCheetah 10−6 0.1
Walker2d 10−6 1
Hopper 10−4 0.1
Reacher 10−6 0.01

Table 5.2. Gaussian Smoothing: values chosen for the stepsize α and the action std decay parameter τ

Environment α τ

Swimmer 10−4 1
HalfCheetah 10−4 0.1
Walker2d 10−4 1
Hopper 10−6 0.1
Reacher 10−4 1

Table 5.3. Random Coordinate Descent: values chosen for the stepsize α and the action std decay parameter τ

Environment α τ

Swimmer 10−4 1
HalfCheetah 10−4 1
Walker2d 10−4 1
Hopper 10−6 1
Reacher 10−4 1

Table 5.4. Full Finite Differences: values chosen for the stepsize α and the action std decay parameter τ

Figures 5.2-5.6 seem to suggest that GS is the better gradient approximation method for these
continuous control RL tasks. The open question, which will be further discussed in next section, is

5.4. PRELIMINARY EXPERIMENTS 99

Figure 5.2. Swimmer-v2 environment, function value (fk) vs function evaluations for Gaussian Smoothing
(GS), Random Coordinate Descent (RCD) and Full Finite Differences (FFD)

Figure 5.3. HalfCheetah-v2 environment, function value (fk) vs function evaluations for Gaussian Smoothing
(GS), Random Coordinate Descent (RCD) and Full Finite Differences (FFD)

why this happens, given that GS computes gradient approximations by function evaluations in random
directions, just like RCD.

100 CHAPTER 5. DFO APPROACHES FOR POLICY OPTIMIZATION IN RL

Figure 5.4. Walker2d-v2 environment, function value (fk) vs function evaluations for Gaussian Smoothing
(GS), Random Coordinate Descent (RCD) and Full Finite Differences (FFD)

Figure 5.5. Reacher-v2 environment, function value (fk) vs function evaluations for Gaussian Smoothing (GS),
Random Coordinate Descent (RCD) and Full Finite Differences (FFD)

5.4. PRELIMINARY EXPERIMENTS 101

Figure 5.6. Hopper-v2 environment, function value (fk) vs function evaluations for Gaussian Smoothing (GS),
Random Coordinate Descent (RCD) and Full Finite Differences (FFD)

102 CHAPTER 5. DFO APPROACHES FOR POLICY OPTIMIZATION IN RL

5.5 Discussion and future directions

In this section, a discussion of the results shown above is presented, with some considerations on
the potential reasons behind the results. In particular, the focus will be on the characterization of the
optimization landscape and on potential approaches to improve the DFO methods applied to such a
landscape.

5.5.1 The optimization landscape

In this sub-section, some plots of the reward function along the search directions employed at dif-
ferent stages of the optimization process are presented for the policy optimization of the ’Swimmer’
environment, one of the continuous control tasks introduced in the previous section.

These plots are intended to be indicative of the behavior of the function to be maximized during
the optimization. Indeed, the aim is to support the conjecture that such function is not only highly
nonlinear, nonconvex and nonsmooth, but also discontinuous, questioning the convergence properties
of virtually any optimization algorithm employed so far in the RL literature.

In particular, the plots show the objective function behavior along search directions, which are

1. coordinate directions in Random Coordinate Descent algorithm;

2. random Gaussian directions in Gaussian Smoothing algorithm.

These were plotted at different stages of the optimization process, i.e. when far from a good solution
and when close to a good solution. Furthermore, the objective function was plotted on a single episode
(namely, a single noisy function evaluation, named from now on sampled function) and as the average
over 100 episodes (namely, a sample approximation of the true function, named from now on true
function).

Figure 5.7 shows the comparison of the sampled and true functions along coordinate and random
Gaussian directions, in a point close to a solution of the Swimmer environment (i.e., the Swimmer
environment is considered solved with a reward of 360 - recall that the aim of the DFO algorithm is
to minimize the negative reward).

Figure 5.7. Swimmer environment, close to solution. In yellow, the sampled function over a random Gaussian
direction, in orange the full function over the same random Gaussian direction. In blue, the sampled
function over a random coordinate direction, in grey the full function over the same random coordinate
direction.

Clearly, the function is almost flat in the random coordinate direction, while this is not the case
in the random gaussian direction. Furthermore, it is already possible to notice in figure 5.7 that

5.5. DISCUSSION AND FUTURE DIRECTIONS 103

although the sampled function is nonsmooth and noncontinuous, the true function can be continuous
and smooth. This is in line with the results in [59], where it is proven that, when approximating the
expected value of a stochastic function by sample approximation, every sample approximation may
be noncontinuous, but the true function may be continuous and smooth.

In figure 5.8, instead, the comparison between the sampled and true functions along coordinate
and random Gaussian directions is shown when far from a solution of the Swimmer environment (i.e.,
the Swimmer environment is considered solved with a reward of 360 - recall that the aim of the DFO
algorithm is to minimize the negative reward).

Figure 5.8. Swimmer environment, far from solution. In grey, the sampled function over a random Gaussian
direction, in orange the full function over the same random Gaussian direction. In blue, the sampled
function over a random coordinate direction, in yellow the full function over the same random coordinate
direction.

Here, the ’flatness’ along a random coordinate direction is even more evident. Indeed, by ’zoom-
ing’ in and plotting only the sampled and full functions over the random coordinate direction, see
figures (5.9) and (5.10), the noncontinuity of the sampled function is even clearer.

Figure 5.9. Swimmer environment, far from solution. In blue, the sampled function over a random coordinate
direction.

Therefore, it is not surprising that random coordinate descent methods perform so bad on these
tasks, since it seems that the function is often flat (and with ’jumps’) in coordinate directions. This
is in line with the conjecture that, due to over-parameterization induced by the use of deep neural
networks, it is often useless to compute derivatives in many coordinate directions. As a final remark,
these experiments were replicated several times in several phases of the optimization, on more than

104 CHAPTER 5. DFO APPROACHES FOR POLICY OPTIMIZATION IN RL

Figure 5.10. Swimmer environment, far from solution. In blue the full function over the same random coordi-
nate direction.

one RL environment. For brevity, only a subset of the experiments performed on the Swimmer dataset
are reported here.

5.5.2 Future directions

Concluding, the main open questions that remain unresolved are:

(i) how can a DFO method approximate the gradient, when the sampled function can be noncontin-
uous? Are these methods the right ones to employ in this setting?

(ii) How can a DFO method leverage the fact that the objective function is often flat in many coor-
dinate directions? Do GS directions, which span the whole space Rd , overcome this issue? Are
there better ways of doing so?

In order to deal with the two open questions introduced above, the future work will focus on two
main issues:

1. how to produce gradient estimates, in a setting where the sampled functions are highly affected
by noise;

2. how to extend classic linesearch-based DFO methods, in order to leverage random, GS-like
search directions in a convergent framework. Furthermore, including a controlled nonmono-
tonicity to get convergence of the iterates, without hindering the good numerical properties of
GS-based methods.

105

Chapter 6

Distributed algorithms for linearly
constrained convex problems

This is a joint work with Simone Sagratella, published on the Journal of Global Optimization [31].
The aim of this project was to develop a simple, distributable and parallel algorithm for convex prob-
lems with linear coupling constraints (i.e. constraints over all the variables), with application to the
dual formulation of SVM’s training problem.

The popularity of distributed and parallel algorithms to solve optimization problems has risen
consistently in recent years. Indeed, their importance has been even more stressesd by the exponential
growth of the amount of data available. While the reason for employing parallelism comes from
computational time constraints, the possibility of distributing the data can bring further benefits. In
fact, block decomposition and partitioning of the data can be required by, e.g., privacy concerns
[23, 33, 47, 93, 94, 95, 112].

Nevertheless, in some applications such data decomposition may be impossible due to the formu-
lation of the optimization problem, e.g., in support vector machines training dual formulation, where
the variables are coupled by a single equality constraint, which makes it difficult to distribute the data
[66, 69, 71, 72, 81].

A typical solution in optimization, when dealing with complex constraints, is to include those
in the objective function, like in the well-known augmented Lagrangian method [16, 36, 37, 68].
Unfortunately, all of these methods usually require the solution of a subproblem, at least to a given
accuracy, at each iteration.

In the following, a modified augmented Lagrangian method to solve convex problems with linear
coupling constraints is proposed.

6.1 Introduction and motivation

Consider a generalization of problem 1.13,

minimize f (x)

s.t. h(x) = Ax−b = 0

x ∈ X ,

(6.1)

106CHAPTER 6. DISTRIBUTED ALGORITHMS FOR LINEARLY CONSTRAINED CONVEX PROBLEMS

where f ∈ C1,1 is convex with Lipschitz continuous gradients, A ∈ Rm×n, b ∈ Rm, and X ⊆ Rn is
convex, compact and encompasses a structure that is separable in N blocks, namely

X ,
N

∏
ν=1

Xν ,

where Xν ⊆ Rnν , with n = n1 + · · ·+ nN . For the sake of notational simplicity the feasible set of
Problem (6.6) will be denoted by S. We observe that the set S is in general not separable due to the
presence of the constraints h that may tie together variables of different blocks. For this reason we
refer to h as the coupling constraints. Notice that the case with linear inequality constraints can be
included in the above framework by simply adding slack variables.

A solution to problem 6.1 can be found by many (synchronous) distributed algorithms. A dis-
tributed algorithm allows to split the computation at each iteration into N independent blocks, usually
distributed to several parallel processes, which then communicate with each other thanks to a com-
munication phase. One further characteristic one may ask to a distributed algorithm is the possibility

Figure 6.1. General distributed algorithmic scheme

of partitioning the data into N blocks, where each data block is only known by the respective process.
This property may be desirable, or even necessary, when the data comes from several sources and can
not be stored in a unique place, for example when there exist privacy issues or the dimension of the
data is huge.

One way of solving problem 6.1 is the classical gradient projection algorithm [14]:

xk+1 = PS

[
xk−αk∇ f (xk)

]
, (6.2)

where αk is a positive stepsize and PS(z) denotes the projection of z over the convex set S. The
convergence of iteration (6.2) can be proven if the steplength αk is computed by one of the following
[11]:

(i) a linesearch procedure;

(ii) a diminishing rule;

(iii) a fixed, sufficiently small, αk = α ∈
(

0, 2
L

)
.

6.1. INTRODUCTION AND MOTIVATION 107

Unfortunately this method does not fall into the class of distributed algorithms because the projec-
tion on S, in general, can not be decomposed with respect to the N blocks, because of the coupling
constraints.

A solution to this difficulty is the Augmented Lagrangian Method (ALM), where some (or all)
of the constraints are moved to the objective function in order to make the optimization easier. The
Lagrangian function can be defined as

Lρ(x,µ), f (x)+µ
T h(x)+

1
2

ρ‖h(x)‖2, (6.3)

where only the equality constraints where included, since X represents "simple" constraints, µ ∈ Rm

is the vector of Lagrangian multipliers and ρ > 0 is the parameter of the penalty term. It is well
known that finding a solution to problem 6.1 is equivalent to finding a saddle point x̃ ∈ X of (6.3)
[14, 20]. In a general augmented Lagrangian method (see e.g. [16] for an efficient version of such
method) a solution of Problem (6.6) can be found by using the scheme described in Algorithm 17.

Algorithm 17: Basic augmented Lagrangian method

1 for k = 0,1, . . . do
2 xk+1 = argmin

x∈X
Lρk(x,µ

k);

3 µk+1 = PC
[
µk +βk∇µLρk(x

k+1,µk)
]
;

4 ρk+1 ≥ ρk.
5 end

At step 2, the augmented Lagrangian function is minimized with respect to x ∈ X ; then, the multi-
pliers µk are updated in the gradient direction with a positive stepsize βk, in order to perform an ascent
step; finally, at step 4 the penalty parameter ρk is (possibly) increased, usually only if a sufficient
decrease in the constraints violation is not obtained.

The above general scheme converges under a suitable choice of the sequence of positive stepsizes
βk, or by updating the penalty parameter ρk based on the amount of violation of the coupling con-
straints h. Furthermore, convergence can be guaranteed even if the exact minimization at step 2 is sub-
stituted by an inexact minimization: in this case, xk+1 must satisfy Lρk(x

k+1,µk) ≤Lρk(x,µ
k)+ εk,

for all x ∈ X , with εk ↓ 0 during the optimization process.

Algorithm 17 can itself be distributed by distributing the minimization at step 2 as in the scheme
described in figure 6.1. Indeed, X is separable in N blocks and therefore the projection operation may
be distributed, leading to an algorithm that iteratively performs a distributed minimization over X ,
divided in N sub-minimizations. Such algorithm can be viewed as a distributed algorithm [72, 93].
This notwithstanding, the (inexact) solution of an optimization problem at each iteration may be a
burden from a computational perspective.

Another primal-dual method that has been much studied in the last years is the Alternating Di-
rection Method of Multipliers (ADMM), presented in algorithm 18. ADMM was developed to solve
problems of the form

minimize f (x)+g(z)

s.t. h(x) = Ax+Bz− c = 0,
(6.4)

108CHAPTER 6. DISTRIBUTED ALGORITHMS FOR LINEARLY CONSTRAINED CONVEX PROBLEMS

where both the variables and the objective function can be divided in two separable blocks.
Algorithm 18: Alternating Directions Method of Multipliers

1 for k = 0,1, . . . do
2 xk+1 = argmin

x
Lρk(x,z

k,µk);

3 zk+1 = argmin
z

Lρk(x
k+1,z,µk);

4 µk+1 = µk +ρk(Axk+1 +Bzk+1− c);
5 ρk+1 ≥ ρk.
6 end

At any iteration k, ADMM performs:

(i) a minimization of the Lagrangian function over x;

(ii) a minimization of the Lagrangian function over z;

(iii) a maximization step over the multipliers µ with stepsize ρk.

In the framework of problem 6.1, ADMM reduces to the method of multipliers [14], which can be
seen as a variant of algorithm 17 with βk = ρk. This means that the above considerations apply to the
ADMM setting, given that an (inexact) minimization with respect to the primal variables x must be
performed at each iteration (see e.g. [20, 53]).

A natural question that may arise is if the substitution of the (inexact) minimization with just a
gradient projection step would still yield convergence. The answer is no, in general, as explained by
the following counterexample.

Example 2. Consider the problem

minimize x1

s.t. h(x) = x1− x2 = 0

x ∈ [−1,1]2,

(6.5)

which has a unique solution x? =
(
−1
−1

)
.

In [16] the authors prove that Algorithm 17 globally converges to a solution of the problem, with
C = {0} and the update

ρk+1 = 2ρk if ‖h(xk+1)‖2 > τ‖h(xk)‖2, ρk+1 = ρk otherwise,

where τ ∈ (0,1). Indeed, this setting implies that µ vanishes and the Lagrangian function is

Lρk(x) = x1 +
ρk

2
‖x1− x2‖2,

with gradient

∇Lρk(x) =
(

1+ρk(x1− x2)
ρk(x2− x1)

)
.

The substitution of step 2 with a gradient projection step would yield the following modified version
of the algorithm, for any iterate k ≥ 0:

6.2. DISTRIBUTED ALGORITHMS FOR CONVEX PROBLEMS WITH LINEAR COUPLING CONSTRAINTS109

(i) αk =
1

L+ρk‖A‖2 =
1

2ρk
;

(ii) xk+1 = P[−1,1]2
[
xk−αk∇Lρk(x

k)
]
;

(iii) ρk+1 = 2ρk if ‖h(xk+1)‖2 > τ‖h(xk)‖2; ρk+1 = ρk otherwise.

In particular, by choosing the parameters as τ ∈
(
0, 1

4

)
, ρ0 = 2 and x0 =

(
0
1
2

)
, it holds, for any k,

that condition ‖h(xk)‖2 > τ‖h(xk−1)‖2 is satisfied and:

ρk = 2ρk−1 = 2k+1,

∇Lρk(x
k) =

(
0
1

)
,

xk =

(
0
1

2k+1

)
,

h(xk) =−x2 =−
1

2k+1 .

But this implies

lim
k→∞

xk =

(
0
0

)
6= x?,

that is, such modification of algorithm 17 does not converge to the solution of the problem.

6.2 Distributed algorithms for convex problems with linear coupling
constraints

The general formulation of a convex programming problem with linear coupling constraints can be
written as

minimize f (x)

s.t. h(x) = Ax−b = 0

x ∈ X ,

(6.6)

where S is assumed to be non-empty. Therefore, an optimal solution x? exists such that

x? ∈ S, f (x?)≤ f (x) ∀ x ∈ S.

Algorithm 19 employs the well-known projected gradient to solve the augmented Lagrangian
reformulation of Problem (6.6). It is characterized by two main parameters:

(i) µ̂ > 0, used to define the compact set for the multipliers µk;

(ii) ρ̂ > 0, namely an upper bound for the penalty parameter ρk.

Both parameters will play a key role in the convergence of the algorithm, as will be shown in the
following sections.

The following are the main two properties of algorithm 19:

110CHAPTER 6. DISTRIBUTED ALGORITHMS FOR LINEARLY CONSTRAINED CONVEX PROBLEMS

Algorithm 19: Gradient projection augmented Lagrangian method

Data: ρ̂ > 0, µ̂ > 0, x0 ∈ X , µ0 ∈ [−µ̂, µ̂]
m, ρ0 ∈ (0, ρ̂), γ > 0, δ > 0, τ ∈ (0,1), k̂ = 0

1 for k = 0,1, . . . do

2 αk =
1

L+ρk‖A‖2+γ(k−k̂)

3 xk+1 = PX [xk−αk∇xLρk(x
k,µk)]

4 if ρk < ρ̂ then
5 µk+1 ∈ [−µ̂, µ̂]

m

6 k̂ = k̂+1
7 end
8 else

9 µ
k+1
i =

{
−µ̂, i : hi(xk+1)< 0
µ̂, otherwise

, i = 1, . . . , m

10 end

11 ρk+1 ∈

{
[min{ρk +δ , ρ̂}, ρ̂] , ‖h(xk+1)‖> τ‖h(xk)‖
{ρk}, otherwise

12 end

• distribution of the computation is easy and, if f is quadratic, the data can be distributed;

• each iteration only requires the computation of a gradient projection step over x.

Observe that when the steplength αk is computed at step 2, this is to ensure that, whenever k̂ = k
(i.e. ρk < ρ̂), it dynamically estimates the quantity 1

Lk
L

, where Lk
L = L+ρk‖A‖2 (with L being the

Lipschitz constant of ∇ f) is the Lipschitz constant of ∇xLρk(x
k,µk) over X . Furthermore, it holds

that when k̂ < k (i.e. ρk = ρ̂), αk ↓ 0 and αk is squared summable, but not summable, namely

∞

∑
k=0

α
2
k < ∞,

∞

∑
k=0

αk = ∞. (6.7)

The following sections will show how such stepsize updating rule is key to the convergence of the
algorithm.
After the stepsize update at step 2, algorithm 19 computes the new iterate xk+1 by a gradient projection
step, then performs an update of the multipliers µk (steps 5-8). Notice that if ρk < ρ̂ then the choice
of the new multiplier vector µk+1 is free, as long as it is included in the compact set Mµ̂ , [−µ̂, µ̂]

m,
that is, the update may be the same as in algorithm 17. If, instead, ρk = ρ̂ , then µk+1 is computed so
that the following holds

µ
k+1 ∈ arg max

µ∈Mµ̂

Lρk(x
k+1,µ).

From now on, the set Mµ̂ will be referred to as M when the dependence on µ̂ is not of interest. The last
step of the algorithm is the update of the penalty parameter ρk, which is increased (up to a threshold
ρ̂ > 0) if the equality constraint did not achieve a sufficient decrease in the last iteration. As a last
comment, observe that algorithm 19 generates a bounded sequence {(xk,µk,ρk)}.

6.2. DISTRIBUTED ALGORITHMS FOR CONVEX PROBLEMS WITH LINEAR COUPLING CONSTRAINTS111

Recalling example 2 shown in the introduction, in example 3 algorithm 19 is applied to the same
problem to outline the differences between the two algorithms.

Example 3. Consider again the problem in Example 2. Assume that the penalty parameter is updated
such that ρk+1 = 2ρk if ‖h(xk+1)‖2 > τ‖h(xk)‖2, where τ ∈

(
0, 1

4

)
, ρk+1 = ρk otherwise. Algorithm

19 is applied with µ̂ = 0, ρ̂ = 2, γ = 1
10 , δ = 1. The Lagrangian function and its gradient are

Lρk(x) = x1 +
ρk

2
‖x1− x2‖2,

∇Lρk(x) =
(

1+ρk(x1− x2)
ρk(x2− x1)

)
.

Algorithm 19 performs the following steps at each iteration:

(i) αk =
1

L+ρk‖A‖2+γ(k−k̂)
= 1

2ρk+γ(k−k̂)
;

(ii) xk+1 = P[−1,1]2
[
xk−αk∇Lρk(x

k)
]
;

(iii) ρk+1 = min{2ρk, ρ̂} if ‖h(xk+1)‖2 > τ‖h(xk)‖2, ρk+1 = ρk otherwise.

By choosing again ρ0 = 2 and x0 =

(
0
1
2

)
, the same starting point of Example 2 and for which the

naive modification of Algorithm 17 does not converge, it follows

x1 =

(
0
1
4

)
and, for any k ≥ 1,

ρk = ρ̂ = 2, k̂ = 0 and αk =
10

40+ k
.

Then, the algorithm outputs the following sequence for k = 2, . . . ,9:

xk =

(
−1

2 ∑
k−1
i=1 αi

1
4 −

1
2 ∑

k−1
i=1 αi

)
.

In k = 10, the lower bound for x1 is reached:

x10 =

(
−1

1
4 −

1
2 ∑

9
i=1 αi

)
.

Finally, for all k ≥ 11,

xk =

(
−1(1

4 −
1
2 ∑

9
i=1 αi

)(
∏

k−1
i=10 (1−2αi)

)
−∑

k−1
i=10 2αi

(
∏

k−1
j=i+1 (1−2α j)

)) .

Such sequence
{

xk
}

converges (from above) to the optimal solution x? =
(
−1
−1

)
.

112CHAPTER 6. DISTRIBUTED ALGORITHMS FOR LINEARLY CONSTRAINED CONVEX PROBLEMS

6.3 Convergence analysis

In order to give the main convergence result, some preliminary results must be outlined. But first, the
nonsmooth value function φµ̂,ρ̂ , related to the Lagrangian function (6.3) and to Problem (6.6), must
be introduced:

φµ̂,ρ̂(x), f (x)+ µ̂‖h(x)‖1 +
ρ̂

2
‖h(x)‖2. (6.8)

Notice that φ relies on the same parameters µ̂ and ρ̂ used in algorithm 19.
Propositions 1 and 2 underline some properties of φµ̂,ρ̂ .

Proposition 1. Let µ̂, ρ̂ be two positive scalars. Then, φµ̂,ρ̂ is convex and locally Lipschitz continuous.

Proof. Since the sum of convex functions is convex, the proof follows by noticing that f is convex

by assumption, ‖h(x)‖1 = ‖Ax−b‖1 =
m
∑

i=1
|Ai∗x−bi|=

m
∑

i=1
max{Ai∗x−bi,−Ai∗x+bi} is convex, and

‖h(x)‖2 = xT AT Ax−2bT Ax+bT b is also convex. Local Lipschitz continuity follows by recalling that
any convex function is locally Lipschitz continuous [28, Proposition 2.2.6].

Observe that the linearity of the constraints h is necessary to prove that the nonsmooth function
φµ̂,ρ̂ is convex.

Proposition 2. The subdifferential ∂φµ̂,ρ̂(x) of φ is non-empty and

∇ f (x)+ µ̂

m

∑
i=1

ξi +
ρ̂

2
∇h(x)h(x) ∈ ∂φµ̂,ρ̂(x),

with

ξi ∈

{AT

i∗}, if Ai∗x−bi > 0,
{−AT

i∗}, if Ai∗x−bi < 0,
conv{−AT

i∗,A
T
i∗}, if Ai∗x−bi = 0.

Proof. From [28, Corollary 3], the subdifferential of the sum of convex functions equals the sum of
the subdifferentials of the functions. Therefore, it holds

∂φµ̂,ρ̂(x) = ∂ f (x)+ µ̂∂‖h(x)‖1 +
ρ̂

2
∂‖h(x)‖2,

where
∂ f (x) = ∇ f (x), ∂‖h(x)‖2 = ∇h(x)h(x) = 2AT (Ax−b),

∂‖h(x)‖1 =

(
m

∑
i=1

∂ |Ai∗x−bi|

)
=

(
m

∑
i=1

∂ max{Ai∗x−bi,−Ai∗x+bi}

)
3

m

∑
i=1

ξi,

with

ξi ∈

{AT

i∗}, Ai∗x−bi > 0,
{−AT

i∗}, Ai∗x−bi < 0,
conv{−AT

i∗,A
T
i∗}, Ai∗x−bi = 0,

where conv{x,y} denotes the convex hull of the vectors x,y ∈ Rn (see e.g. [85, Exercise 8.31]).

6.3. CONVERGENCE ANALYSIS 113

Now that φ has been introduced and its properties shown, proposition 3 states that any solution to the
problem

min
x∈X

φµ̂,ρ̂(x)

is an ε-approximate solution of problem (6.6), where ε = min
{

f max− f min

µ̂
,
√

f max− f min

ρ̂

}
.

Proposition 3. Given µ̂ > 0 and ρ̂ > 0, let x be a minimum for φµ̂,ρ̂ over X. Then the following holds:

1. f (x)≤ f (x?),

2. ‖h(x)‖ ≤min
{

f max− f min

µ̂
,
√

f max− f min

ρ̂

}
,

where x? is a solution of problem (6.6), f min = min
x∈X

f (x) and f max = max
x∈X

f (x).

Proof. To prove the first inequality, it suffices to write

f (x)≤ f (x)+ µ̂‖h(x)‖1 +
ρ̂

2
‖h(x)‖2 ≤ f (x?)+ µ̂‖h(x?)‖1 +

ρ̂

2
‖h(x?)‖2 = f (x?),

since µ̂‖h(x)‖1 +
ρ̂

2 ‖h(x)‖
2 ≥ 0, x? ∈ X and h(x?) = 0.

To prove the second assertion of this proposition, let x̃ ∈ X be such that h(x̃) = 0, i.e. x̃ is a
feasible point of problem (6.6). Then it holds that

f min ≤ f (x) and f (x̃)+ µ̂‖h(x̃)‖1 +
ρ̂

2
‖h(x̃)‖2 = f (x̃)≤ f max.

The two inequalities above yield

f min + µ̂‖h(x)‖1 ≤ f (x)+ µ̂‖h(x)‖1 +
ρ̂

2
‖h(x)‖2 ≤ f (x̃)+ µ̂‖h(x̃)‖1 +

ρ̂

2
‖h(x̃)‖2 ≤ f max,

which implies

‖h(x)‖ ≤ ‖h(x)‖1 ≤
f max− f min

µ̂
.

On the other hand,

f min +
ρ̂

2
‖h(x)‖2 ≤ f (x)+ µ̂‖h(x)‖1 +

ρ̂

2
‖h(x)‖2 ≤ f (x̃)+ µ̂‖h(x̃)‖1 +

ρ̂

2
‖h(x̃)‖2 = f (x̃)≤ f max,

from which

‖h(x)‖2 ≤ f max− f min

ρ̂
,

which completes the proof.

It easily follows that a minimal point of φµ̂,ρ̂ that is feasible for problem (6.6) is a solution of
problem (6.6), as shown by the following corollary.

Corollary 1. Let the same setting of proposition 3 applies. Then, if ‖h(x)‖ = 0, x is an optimal
solution of problem (6.6).

114CHAPTER 6. DISTRIBUTED ALGORITHMS FOR LINEARLY CONSTRAINED CONVEX PROBLEMS

Proof. From proposition 3, it holds that

f (x)≤ f (x∗),

where x∗ is a solution of problem (6.6). By the definition of minimal point, it must hold

f (x) = f (x∗),

that is, since h(x) = 0 by hypothesis, x is also a solution.

One may question whether the viceversa of proposition 3 holds or not. The following counterex-
ample proves that this is not true in general.

Example 4. Consider the problem
min

x ∈ [0,2]: x=1
x2,

which trivial solution is x? = 1. By definition, this is an ε-approximate solution for any ε > 0.
Fixing µ̂ = 1 and ρ̂ = 0, the corresponding φµ̂,ρ̂ is

φ1,0(x) = x2 + |x−1|,

which unique solution over [0,2] is x = 1
2 , that is different from x?.

A final remark is that, as µ̂ grows to infinity, the minimizer of φµ̂,ρ̂ goes to the minimizer of |x−1|,
which is the solution of the original problem.

Proposition 3 shows that a minimizer of φµ̂,ρ̂ is an ε-approximate solution of Problem (6.6). Specifi-
cally, the bigger the parameters µ̂ and ρ̂ , the smaller the value of ε , the better the approximate solution.
The next proposition shows that if one of the parameters goes to infinity, then ε goes to zero.

Proposition 4. Let {xk} be a sequence of minimizers of φµ̂k,ρ̂k(x) over X. If either lim
k→∞

µ̂k = ∞ or

lim
k→∞

ρ̂k = ∞, then any accumulation point x of the sequence {xk} is a solution of problem (6.6).

Proof. Assume, without loss of generality, that the first limit applies. By proposition 3, it holds for
any k that

xk ∈ X , f (xk)≤ f (x∗), ‖h(xk)‖ ≤ f max− f min

µ̂k .

By the continuity of ‖h(xk)‖,

‖h(x)‖= lim
k→∞

‖h(xk)‖ ≤ lim
k→∞

f max− f min

µ̂k = 0

and therefore h(x) = 0. Similarly, by recalling that x? is a solution of problem (6.6), f (x)≤ f (x?).

In theorem 37 algorithm 19 is proven to converge in the worst case to an ε-approximate solution
of Problem (6.6), i.e. a point x such that

x ∈ X , ‖h(x)‖ ≤ ε, f (x)≤ f (x) ∀ x ∈ S.

On the other hand, if ρ̂ is large enough the algorithm provably converges to a solution x? of problem
(6.6), that is a 0-approximate solution. Observe that f (x) ≤ f (x?), namely the value of the objective
function at x is a lower bound of the optimal value. Furthermore, it can be shown that the value of ε

can be controlled by suitably choosing the parameters µ̂ and ρ̂ .

6.3. CONVERGENCE ANALYSIS 115

Theorem 37. Let {(xk,µk,ρk)} be the sequence generated by algorithm 19 and (x,µ,ρ) be any of its
limit points. Then there are two cases:

1. if ρ < ρ̂ , then x is a solution of problem (6.6);

2. otherwise, ρ = ρ̂ and x is an ε-approximate solution of problem (6.6) with ε =min
{

f max− f min

µ̂
,
√

f max− f min

ρ̂

}
.

Proof. The proof starts with showing that if ρ < ρ̂ then x is a solution of problem (6.6).
Recalling step 10 of algorithm 19, if ρ < ρ̂ then a k ≥ 0 exists such that for all k ≥ k

‖h(xk+1)‖ ≤ τ‖h(xk)‖< ‖h(xk)‖, (6.9)

by recalling that τ ∈ (0,1). This yields, together with the positiveness of the sequence {‖h(xk)‖},
that

lim
k→∞

‖h(xk)‖= h≥ 0.

Taking the limit for k→ ∞ in (6.9), one gets

h≤ τh,

which, since τ ∈ (0,1), is true only if h = 0. Therefore, by the continuity of h, it holds that

h(x) = 0. (6.10)

Moreover, recalling a well-known property of the projection operator, it holds for all z ∈ Rn

(y−PX [z])
T (z−PX [z])≤ 0 ∀y ∈ X .

Therefore(
xk−PX [xk−αk∇xLρ(xk,µk)]

)T (
xk−αk∇xLρ(xk,µk)−PX [xk−αk∇xLρ(xk,µk)]

)
≤ 0,

and by expanding the products∥∥xk−PX [xk−αk∇xLρ(xk,µk)]
∥∥2

+αk∇xLρ(xk,µk)T
(
PX [xk−αk∇xLρ(xk,µk)]− xk

)
≤ 0,

from which, by recalling that xk+1 = PX [xk−αk∇xLρ(xk,µk)], it follows

∇xLρ(xk,µk)T
(

xk+1− xk
)
≤− 1

αk

∥∥xk+1− xk
∥∥2

. (6.11)

The descent lemma [14, Lemma 2.1] and (6.11) therefore yield

Lρ(xk+1,µk)≤Lρ(xk,µk)+∇xLρk(x
k,µk)T (xk+1− xk)+

Lk
L

2
‖xk+1− xk‖2 ≤

≤−
(

1
αk
−

Lk
L

2

)
‖xk+1− xk‖2

and consequently

f (xk+1)− f (xk)+µ
kT
(h(xk+1)−h(xk))+

ρ

2
(‖h(xk+1)‖2−‖h(xk)‖2)≤−L+ρ‖A‖2

2
‖xk+1− xk‖2.

116CHAPTER 6. DISTRIBUTED ALGORITHMS FOR LINEARLY CONSTRAINED CONVEX PROBLEMS

By taking the limit for k→ ∞ of the above inequality,

lim
k→∞

(f (xk+1)− f (xk))+

(
lim
k→∞

µ
k
)T

(h−h)+
ρ

2
(h

2−h
2
)≤−L+ρ‖A‖2

2
lim
k→∞

‖xk+1− xk‖2,

from which
lim
k→∞

(
f (xk+1)− f (xk)

)
≤ 0.

This yields
lim
k→∞

f (xk) = f (x) = f̄ , (6.12)

because f is continuous and bounded from below over X . It follows that

lim
k→∞

‖xk+1− xk‖2 = 0.

Focusing on step 3 of the algorithm, by the limit above and since αk = α = 1
L+ρ‖A‖2 for all k ≥ k, this

yields
∇xLρ(x,µ)T (x− x)≥ 0 ∀ x ∈ X . (6.13)

Suppose by contradiction that f̄ is greater than the optimal value of Problem (6.6). Therefore a point
x̃ ∈ X exists such that h(x̃) = 0 and f (x̃)< f = f (x). The following can be written

0≤
(
∇ f (x)+AT

µ
)T

(x̃− x) = ∇ f (x)T (x̃− x)≤ f (x̃)− f (x)< 0,

where the first inequality comes from (6.13), the equality is a consequence of the fact that h(x̃) = 0
and (6.10), the second inequality is due to the convexity of f and the last inequality comes from the
hypotheses that x is not optimal and x̃ is optimal. But this is impossible. Finally, x is a solution of
problem (6.6) and this completes the proof of the first part.

To prove the second assertion, i.e. if ρ = ρ̂ then x is an ε-approximate solution of Problem

(6.6) with ε = min
{

f max− f min

µ̂
,
√

f max− f min

ρ̂

}
, the first step is to prove that the updates at steps 3 and

8 of Algorithm 19 are eventually equivalent to employ a gradient projection method to minimize the
nonsmooth function φµ̂,ρ̂(x), defined in (6.8), over X . Proposition 2 showed that the subdifferential of
φ satisfies for all x ∈ X

∇ f (x)+ µ̂

m

∑
i=1

ξi +
ρ̂

2
∇h(x)h(x) ∈ ∂φµ̂,ρ̂(x),

with

ξi ∈

{AT

i∗}, if Ai∗x−bi > 0,
{−AT

i∗}, if Ai∗x−bi < 0,
conv{−AT

i∗,A
T
i∗}, if Ai∗x−bi = 0.

The gradient of Lρ̂(xk,µk) with respect to x is

∇Lρ̂(x
k,µk) = ∇ f (xk)+AT

µ
k +

ρ̂

2
∇h(x)h(x),

where, recalling the update rule of µk at step 8 of Algorithm 19, AT µk can be rewritten as

AT
µ

k =
m

∑
i=1

µ
k
i Ai∗ = µ̂

(
∑

i:hi(xk)≥0

AT
i∗+ ∑

i:hi(xk)<0

−AT
i∗

)
= µ̂

m

∑
i=1

ψi,

6.4. DISTRIBUTED IMPLEMENTATION 117

where

ψi =

{
AT

i∗, if Ai∗x−bi ≥ 0,
−AT

i∗, if Ai∗x−bi < 0,

which yields
∇xLρ̂(x

k,µk)⊆ ∂xφµ̂,ρ̂(x
k) ∀ k ≥ k̂.

This proves that step 3 of algorithm 19 is eventually equivalent to employ a gradient projection method
to minimize the nonsmooth function φµ̂,ρ̂(x), which is a convex and Lipschitz-continuous function by
proposition 1. This implies that (see e.g. [13, Theorem 3.2.6]) x is the optimal solution of the problem

min
x∈X

φµ̂,ρ̂(x).

The proof of the second assertion, and therefore of the theorem, follows by proposition 3.

The following facts must be remarked:

(i) the updating rule of the stepsize αk defined in step 2 of algorithm 19 can be modified, as long as
it satisfies (6.7) when ρk = ρ̂ , namely it must be squared summable, but not summable;

(ii) as long as ρk < ρ̂ , the updating rule of the multipliers at step 5 does not play any role and
therefore any bounded µk is acceptable; this can be useful in the first phase of algorithm 19
where different updating rules for µk can be developed;

(iii) algorithm 19, with µ̂ = 0, is a modified version of a sequential penalty algorithm and therefore
the above theoretical analysis can be directly applied to such framework.

6.4 Distributed implementation

In the following, a possible distributed implementation of algorithm 19 will be introduced. In partic-
ular, the quadratic case will be considered, i.e. where the objective function can be written as

f (x) =
1
2

xT Qx+ cT x.

The aim is to show how algorithm 19 can easily distribute the computation and, in the quadratic case,
the data to the available processes. Indeed, each process ν = 1, . . . , N is expected to

• update only its assigned block of variables x(ν) ∈ Rnν ,

• employ only its assigned block of data, namely the columns Q∗(ν) ∈ Rn×nν of the matrix
Q ∈ Rn×n, c(ν), Xν and A∗(ν),

• exchange only vectors (never matrices) with the other processes and converge to a (ε-approximate)
solution of problem (6.6).

Observe that, given the quadratic assumption, the objective function f can be rewritten as

∇ f (x) =
(
∇ f (x)(ν)

)N
ν=1 .

Algorithm 20 meets all the above expectations.

118CHAPTER 6. DISTRIBUTED ALGORITHMS FOR LINEARLY CONSTRAINED CONVEX PROBLEMS

Algorithm 20: Gradient projection augmented Lagrangian method - distributed implementation

Data: ρ̂ > 0, µ̂ > 0, x0 ∈ X , µ0 ∈ [−µ̂, µ̂]
m, ρ0 ∈ (0, ρ̂), γ > 0, δ > 0, τ ∈ (0,1), k̂ = 0

1 for k = 0,1, . . . do

2 αk =
1

L+ρk‖A‖2+γ(k−k̂)

3 h(xk) =
N
∑

ξ=1
hξ ,k−b

4 (where all the hξ ,k = A∗(ξ) xk
(ξ) come from the communication phase at step 12)

5 µ
k+1
i =

{
−µ̂, i : hi(xk+1)< 0
µ̂, otherwise

, i = 1, . . . , m

6 ρk =

{
min{ρk−1 +δ , ρ̂}, ‖h(xk)‖> τ‖h(xk−1)‖
ρk, otherwise

7 ∇Lρk(x
k,µk)(ν) =

N
∑

ξ=1
aξ ,k
(ν)+ c(ν)+AT

∗(ν)µ
k +ρkAT

∗(ν)h(x
k)

8 (where all the aξ ,k = Q∗(ξ) xk
(ξ) come from the communication phase at step 11)

9 xk+1
(ν) = PXν

[
xk
(ν)−αk∇Lρk(x

k,µk)(ν)

]
10 k̂ =

{
k+1, ρk < ρ̂

k̂, otherwise

11 aν ,k+1 = Q∗(ν) xk+1
(ν) and broadcast

12 hν ,k+1 = A∗(ν) xk+1
(ν) and broadcast

13 end

Observe that algorithm 20 exchanges only vectors between the processes, in particular aν ,k+1 and
hν ,k+1 at steps 11 and 12, which is not a heavy computational overhead if the number of processes N
is not too big. Then, every process ν works only on its block of variables x(ν) and needs only to access
its data block Q∗(ν), A∗(ν), c(ν), Xν and b. Data partitioning can be very beneficial from a hardware
point of view, and sometimes is requested by the application, like e.g. support vector machines.

At step 2, each process ν computes the stepsize αk > 0 such that

(i) it is squared summable but not summable for all k such that ρk = ρ̂;

(ii) it satisfies αk =
1

Lk
L

for all k : ρk < ρ̂ .

At step 5 µk is updated in order for µk+1 to be the maximum of Lρk(x
k,µ) over Mµ̂ with respect to

µ . At step 6 the penalty parameter is increased if a sufficient descent in the violation of the coupling
constraints defined by h is not achieved. Finally, at steps 7-9 every process ν updates its block of
variables x(ν) by a gradient projection step over Xν . Recall that such update requires only the compu-
tation of a gradient, and not the (approximate) solution of any subproblem over Xν , which instead is
required in algorithm 17.

6.5. NUMERICAL EXPERIMENTS 119

6.5 Numerical experiments

Some preliminary tests employing the proposed distributed implementation are reported in this sec-
tion.

The quadratic case is considered, namely

min
x∈[−10,10]n:Ax=0

xtQx+ cT x,

where n = 1000, m = 100, Q is a positive definite matrix and ‖Q‖= 1 (i.e. L = 1), c is the vector of
all ones, ‖A‖= 1, b = 0, X = [−10,10]n.

Algorithm 20 is applied with γ = 1, δ = 0.5, τ = 0.9, x0 = 0, µ0 = 0, ρ0 = 1.
To experiment the impact of the main two parameters µ̂ and ρ̂ , these were set to two different

values each. This resulted in four experiments, as reported in table 6.1.

Experiment µ̂ ρ̂

exp1 1e-1 1e3
exp2 1e1 1e3
exp3 1e-1 1e4
exp4 1e1 1e4

Table 6.1. Experimental setup for algorithm 20

The tests were run on a PC Windows with CPU Intel Core i7-8650U - 4 cores (base frequency 1.9
GHz, turboboost up to 4.2 GHz) and RAM 16 GB, Python 3.6.3, and MPI 3.0.

Figures 6.2-6.5 report, for all the 4 experiments: in solid line the objective relative error (i.e.
max{1e-4,(f (xk)− f ∗)/ f ∗}, where f ∗ is the optimal value of the problem), and in dashed line the
coupling constraints violation (i.e. ‖h(xk)‖/

√
n), versus iterations (the first 120k iterations are re-

ported).
In all the experiments the algorithm returns an ε-approximate solution of the problem, i.e. a point

x ∈ X such that f (x)≤ f (x∗) and ‖h(x)‖ ≤ ε . As theoretically observed in theorem 37, figures 6.2-6.5
confirm that the larger µ̂ and ρ̂ , the smaller ε .

Furthermore, it is clear by the results that algorithm 20 has a slower convergence rate when ρk ≥ ρ̂ .
Indeed, exp1 and exp2 present a slower convergence with respect to exp3 and exp4, and this seems
to depend on the fact that ρk reaches its upper bound ρ̂ earlier in the former two (around iteration
2k), later in the latter two (around iteration 20k). This suggests that reasonable guidelines for the
parameters ρ̂ , δ , and τ should be a big enough ρ̂ , a small δ and a close-to-1 τ , in order to grand a
large amount of iterations in phase 1 (i.e. when ρk < ρ̂). The choice of µ̂ is even more critical: in
fact, although theorem 37 states that large values of µ̂ yield smaller values of the approximation ε , if
such value is too big then the joint convergence of the objective function and the constraints violation
may be negatively affected. Indeed, the performance deterioration can be seen in exp3 and exp4,
where around iteration 20k (i.e. when switching from phase 1 to phase 2) the dashed line presents a
discontinuity.

The algorithm was tested with N = 1, 2, and 4 parallel processes, with every process updating
1000/N variables. The speedup in terms of CPU time was almost ideal, namely the execution of
200k iterations took around 700 seconds with N = 1, around 360 seconds with N = 2, and around 190
seconds with N = 4, for all the experiments.

120CHAPTER 6. DISTRIBUTED ALGORITHMS FOR LINEARLY CONSTRAINED CONVEX PROBLEMS

Figure 6.2. Exp1

Figure 6.3. Exp2

Figure 6.4. Exp3

Figure 6.5. Exp4

121

Chapter 7

DNN and SVM to detect postural diseases

This project was conducted in collaboration with prof. Laura Palagi and the Department of Physical
Medicine and Rehabilitation (PMR), which was responsible for the acquisition of data (i.e. the patient
selection, the postural evaluation, the scoliosis/healthy diagnosis and the acquisition by the rasterstere-
ography). The aim of the project was to develop automatic procedures to detect adolescent idiopathic
scoliosis (AIS) based on data extracted by a rasterstereographic machine and fed to machine learning
models. The results of this work are published in the technical report [30] and will be submitted to
journal.

The classifiers employed in the project were implemented in Python, by using ScikitLearn [41]
library for Machine Learning, which employs many (and variations) of the SG/ IG methods from
chapter 3. Indeed, to the best of author’s knowledge, such methods are the core of any library for
Machine Learning.

7.1 Introduction

Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of the spine, which is charac-
terized by deformation of spinal curvatures on the sagittal, frontal and transverse plane. The diagnosis
of AIS is made by X-rays, that allow to detect vertebral rotation and to compute Cobb angle, needed
for AIS classification. X-rays, however, carry health risk from repetitive exposure to ionizing radiation
[38] and cannot aid physician to detect postural changes associated to AIS. Postural assessment with
the study of the “static” standing posture represents a relevant issue in routinely practice of physicians
involved in the management of back diseases, especially those involving children and adolescents, in
whom a particular attention should be payed that the developing body is growing up correctly. Nowa-
days physicians usually perform postural evaluation on the basis of a clinical examination, mainly
supported by their own experience, aimed to detect deformities in bending, by means of the Adams
test, as well asymmetries between the two sides of the body. The main difficulty, here, is to define
which postural parameters need to be considered for diagnosis, and the border line between normal
and pathologic features.

Recently, rasterstereography has been proposed as an objective method for instrumented three-
dimensional (3D) back shape analysis and reconstruction of spinal curvatures and deformities without
radiation exposure [77, 39]. Rasterstereography is based on stereophotogrammetric surface measuring
of the back, and it provides more than one-hundred different quantitative parameters concerning 3D
subject’s posture with a single exam. The main problem with the application of rasterstereography
to clinical practice, as well as, for example, to its use on AIS screening, is represented by the lack

122 CHAPTER 7. DNN AND SVM TO DETECT POSTURAL DISEASES

of a codified system to analyze and to interpret the whole amount of parameters derived from any
single acquisition. No ranges of normality still exist for many of rasterstereography parameters, often
resulting in a subjective interpretation of objective data.
Indeed, the analysis of data either from a single patient or from a population of subjects is one of
the most critical issues in modern medicine. Despite technological advances, too much data could
be difficult to understand and could slow down the diagnostic and therapeutic approach, potentially
causing unpleasant consequences for patients and operators.

Data Mining (DM) and more specifically Machine Learning (ML) techniques have obtained much
interest in medicine field to obtain relevant information from different medical data sets. The use of
these techniques in medical areas are changing the way to approach to the patients, because they could
simplify and make clinical processes faster [1, 78]. The hypothesis is that DM techniques could be
useful in the field of postural analysis, due to the above mentioned difficulties in finding patterns of
normality, and that they could be applied to parameters objectively derived from rasterstereography.
Particularly, the aim is to determine specific datasets of a limited number of features able to assist
physicians in distinguishing between AIS subjects and healthy ones, only on the basis of rasterstere-
ographic measurements.
For these reasons, the objective of the present study has been to apply unsupervised and supervised
ML techniques to automatically distinguish AIS from healthy subjects, using a subset of rasterstere-
ography parameters that can be identified as those that bring most of the information.

The first step of the project was therefore to adopt an unsupervised strategy (i.e. clustering) to
check how good is the information tied to the only features without driving the classification by the
known labels of the subjects. In a second phase, the same data were fed to supervised models to see
how supervision would improve results. Unsupervised learning or clustering consists in detecting if
samples can be split into groups, i.e. the clusters, which possess some similarities in a defined metric.
In this project, the number of clusters is inherently defined by the disease, indeed scoliotic and healthy
subjects form the two groups, and the interest is in determining if the two groups are identifiable by an
unsupervised model, or if supervision is needed. The most common algorithm to perform clustering
is K-means [57], where the number of groups K one wants to identify must be given in input. For
supervised learning, two standard models were selected, namely support vector machines (SVM)
[25, 81] and deep networks (DN) [48]. Notice that SVM has been already used for detecting postural
diseases tied to scoliosis in [1] with a different settings of data. DN, instead, have been mainly used in
the medical field for image recognition to identify damaged vertebrae in the spine (see e.g. [26, 45]).
Besides obtaining a good classifier to detect healthy vs scoliotic subjects, the aim of this study lies also
in the comparison between SVM and DN on this task. Feature selection techniques were also used,
indeed different feature selection methods were combined in a unified strategy. The features selected
were then validated by the physicians and are not trivially obtainable by medical observations.

The rest of the chapter is organized as follows: in section 7.2 the acquisition of data and the
first cleaning based on physician observations are described. Furthermore, the features extraction
procedure, classification models and performance measures considered are introduced. In section
7.3 the results and presented and, finally, in section 7.4 some comments and concluding remarks are
reported.

7.2. DATA ANALYSIS AND PREPROCESSING 123

Figure 7.1. Formetric’s output representation (from https://diers.eu)

7.2 Data analysis and preprocessing

7.2.1 Rasterstereography acquisition of data

The acquisition of data was performed through rasterstereography by the Formetric™4D system, re-
ported in figure 7.1. Briefly, parallel light lines are projected onto the back surface of undressed
patients. The three-dimensional back shape leads to a deformation of the parallel light lines, which
can be detected by a camera positioned at a different angle from the projector (triangulation system).
Using a standardized mathematical analysis, the following specific landmarks are automatically de-
termined by assigning concave and convex areas to the curved light pattern:

(i) the spinous process of 7th cervical vertebra (Vertebra Prominens – VP);

(ii) the spinous process of 12th thoracic vertebra (Th12);

(iii) the midpoint between the lumbar dimples;

(iv) the cervical-thoracic inflexion point (ICT);

(v) the thoracic-lumbar inflexion point (ITL);

(vi) and the lumbar-sacral inflection point (ILS).

The patient is asked to stand still in an upright posture at a fixed distance from the camera for 6
seconds, during which a total number of 12 scans are performed. The mean value of the 12 measures
is reported as output. Based on these landmarks, a three-dimensional model of the whole spine, the
sagittal profile, and shape parameters describing this profile are generated. The accuracy of such
measures and Formetric™functioning can be found in [79, 61]. Derived parameters from automatic

124 CHAPTER 7. DNN AND SVM TO DETECT POSTURAL DISEASES

landmarks are, among the others, thoracic kyphosis angle, lumbar lordosis angle, fléche lumbaire,
fléche cervicale and kyphotic apex as described by Stagnara.

For each patient, the total number of rasterstereography features calculated by Formetric™is 40.
The features are all numerical and the full list is reported in Table 7.1 together with the units of
measure.

Feature Unit of Measure Feature Unit of Measure
Trunk length_VP-DM mm Fléche lombaire_(Stagnara) mm
Trunk length_VP-SP mm Kyphosis angle_ICT-ITL degree
Trunk length_VP-SP % Kyphosis angle_VP-ITL degree
Dimple distance-DR mm Kyphosis angle_VP-T12 degree
Dimple distance_DL-DR % Lordotic angle_ITL-ILS_(max) degree
Trunk inclination_VP-DM degree Lordotic angle_ITL-DM degree
Trunk inclination_VP-DM mm Lordotic angle_T12-DM degree
Lateral_flexion_VP-DM degree Pelvic inclination degree
Lateral_flexion_VP-DM mm Surface rotation_(rms) degree
Pelvic obliquity_DL-DR degree Surface rotation_(max) degree
Pelvic obliquity_DL-DR mm Surface rotation_(+max) degree
Pelvic torsion_DL-DR degree Surface rotation_(-max) degree
Pelvic inclination_(dimple) degree Surface rotation_(width) degree
Pelvis rotation degree Pelvic torsion degree
Inflexion point_ICT mm Lateral deviation_VPDM_(rms) mm
Kypothic apex_KA_(VPDM) mm Lateral deviation_VPDM_(max) mm
Inflexion point_ITL mm Lateral deviation_VPDM_(+max) mm
Lordotic apex_LA_(VPDM) mm Lateral deviation_VPDM_(-max) mm
Inflexion point_ILS mm Lateral deviation_(width) mm
Fléche cervicale_(Stagnara) mm Pain_index_(Dr_Weiss)_rel number

Table 7.1. The full list of Formetric™features

7.2.2 Data preprocessing

The rasterstereographic collection of data was conducted for clinical purposes in the Department of
PMR of Sapienza during the period January 1st , 2010 – December 31st , 2016. Each sample compos-
ing the initial database represents the rasterstereography record of one subject, selected according to
the following inclusion criteria: (i) male or female and (ii) age between 14 and 30. The following sub-
jects were excluded: (i) subject with a clinical history of congenital/acquired pathologic condition of
vertebrae (e.g. Scheuermann’s disease, spondylolysis, spondylolisthesis); (ii) subjects with a history
of vertebral fractures and/or vertebral surgery; (iii) subjects with a diagnosis of disc protrusion/hernia
at any spinal level; (iv) subjects with a diagnosis of scoliosis secondary to neurologic, rheumatologic
and/or congenital conditions; (v) subjects with a diagnosis of AIS with Cobb angle measured on X-
rays > 45 degrees; (vi) subjects with a diagnosis of any neurologic and/or rheumatologic conditions.
Once analyzed inclusion and exclusion criteria of patients screened for eligibility, a total of 298 sub-
jects were enrolled. For each patient, Formetric™ returns more than one measure each representing a
sample in the dataset. In particular patients enrolled with diagnosis of scoliosis were 272 (∼ 90% of
total) for a total of 1111 Formetric™ samples. Healthy patients were 26 for a total of 194 Formetric™
samples. The number of samples of healthy/scoliotic is strongly imbalanced and this is a well-known
cause of bias in the learning process [63]. To overcome drawbacks due to imbalance the Formetric™
measures of the scoliotic patients (that were about 4 for each subject) were averaged, obtaining 272

7.2. DATA ANALYSIS AND PREPROCESSING 125

AIS averaged samples.

Acquisition date 2010 - 2016
Number of distinct patients 298
Healthy/scoliosis ratio of patients 0.1
Number of samples after balancing 466
Number of healthy samples after balancing 194
Number of AIS samples after balancing 272
Healthy/scoliosis ratio in the target set 0.7

Table 7.2. Summary of statistics on the dataset

Finally, the target set was obtained by merging samples for the two population of AIS (averaged)
and healthy (not averaged) patients, so that a dataset of m = 466 samples was obtained, each sample
represented by the 40 Formetric™ features and a label in {−1,1} that corresponds to healthy/scioli-
otic status. The main statistics of the target set are summarized in table 7.2.
As mentioned in the introduction, before undergoing the learning phase, data must go through a clean-
ing and feature selection phase which usually reduces both the number of samples and the number of
features which can be redundant with respect to the learning aim. Indeed learning machines perfor-
mance are influenced both by the number of samples and the number of features of the target set used
for training (see e.g. the surveys [24, 80]).

Before the automatic feature selection phase, which is described in section 7.2.3, data were briefly
analyzed together with the physicians, for cleaning and scaling purpose. Indeed, the physicians rec-
ognized that some of the features obtained by the Formetric™ contained duplicate information, in the
sense that they correspond to measures of the same quantity, expressed in different units (e.g. mm or
degrees). Hence those duplicate measures were eliminated and the final number of distinct features
were equal to 33. The eliminated features are reported in table 7.3.

After this basic feature reduction, a first run of classification using the tools described in section
7.2 was performed. Since the results obtained by unsupervised and supervised classification presented
inconsistencies a deeper analysis led to the finding that there were features directly tied to trunk length,
therefore related to the age of the patient. Those features had a dominant role in classification, thus
resulting in poor generalization. Such features, which were eliminated, are reported in table 7.4. Thus
the number of total features in the target set reduced further to 27.

Among the 27 remaining features, some still were somewhat indirectly dependent on trunk length:
those features, reported in table 7.5, were normalized by dividing each value by the trunk length in
mm, thus obtaining an adimensional value. In this way the target set was not biased by the age of the
patients.

At the end of this process the target set was made up of m= 467 samples (referring to 299 patients),
each characterized by n = 27 input features xi ∈ R27, which are reported in table 7.6, and one output
label yi ∈ {−1,1} which identifies healthy/scoliotic samples. The target set will be denoted by

T = {(xi,yi) ∈ Rn×{−1,1}, i = 1 . . . ,m}

7.2.3 Feature selection procedure

Before entering a feature selection phase using standard tools in machine learning, basic statistical
analysis of the target set was applied to check if it is possible to identify a high degree of correlation

126 CHAPTER 7. DNN AND SVM TO DETECT POSTURAL DISEASES

Feature Unit of Measure Eliminated
Trunk inclination_VP-DM degree Y
Trunk inclination_VP-DM mm N
Lateral_flexion_VP-DM degree Y
Lateral_flexion_VP-DM mm N
Pelvic obliquity_DL-DR degree Y
Pelvic obliquity_DL-DR mm N
Kyphosis angle_ICT-ITL_(max) degree N
Kyphosis angle_VP-ITL degree Y
Kyphosis angle_VP-T12 degree Y
Lordotic angle_ITL-ILS_(max) degree N
Lordotic angle_ITL-DM degree Y

Table 7.3. Duplicated features eliminated with physicians’ support: ’Y’=eliminated, ’N’=mantained

Feature Unit of Measure
Trunk length_VP-DM mm
Trunk length_VP-SP mm
Trunk length_VP-SP %
Dimple distance_DL-DR mm
Dimple distance_DL-DR %

Table 7.4. Eliminated features since highly dependent on trunk length

Feature Unit of Measure
Inflexion point_ICT mm
Kypothic apex_KA_(VPDM) mm
Inflexion point_ITL mm
Lordotic apex_LA_(VPDM) mm
Inflexion point_ILS mm

Table 7.5. Features dependent on trunk length normalized by trunk length_VP-DM in mm

7.2. DATA ANALYSIS AND PREPROCESSING 127

Feature Name Unit of Measure
xi

1 Trunk inclination_VP-DM mm
xi

2 Lateral_flexion_VP-DM mm
xi

3 Pelvic obliquity_DL-DR mm
xi

4 Pelvic torsion_DL-DR degree
xi

5 Pelvic inclination_(dimple) degree
xi

6 Pelvis rotation degree
xi

7 Inflexion point_ICT/trunk length_VP-DM adim
xi

8 Kypothic apex_KA_(VPDM)/trunk length_VP-DM adim
xi

9 Inflexion point_ITL/trunk length_VP-DM adim
xi

10 Lordotic apex_LA_(VPDM)/trunk length_VP-DM adim
xi

11 Inflexion point_ILS/trunk length_VP-DM adim
xi

12 Fléche cervicale_(Stagnara) mm
xi

13 Fléche lombaire_(Stagnara) mm
xi

14 Kyphosis angle_ICT-ITL degree
xi

15 Lordotic angle_ITL-ILS_(max) degree
xi

16 Pelvic inclination degree
xi

17 Surface rotation_(rms) degree
xi

18 Surface rotation_(max) degree
xi

19 Surface rotation_(+max) degree
xi

20 Surface rotation_(-max) degree
xi

21 Surface rotation_(width) degree
xi

22 Pelvic torsion degree
xi

23 Lateral deviation_VPDM_(rms) mm
xi

24 Lateral deviation_VPDM_(max) mm
xi

25 Lateral deviation_VPDM_(+max) mm
xi

26 Lateral deviation_VPDM_(-max) mm
xi

27 Lateral deviation_(width) mm
Table 7.6. List of features constituting the row xi ∈ R27 of the clean data set

128 CHAPTER 7. DNN AND SVM TO DETECT POSTURAL DISEASES

either among pairs of input features or among input features and the output class. In particular, a
Pearson test was performed on the target set T . None of the features present a strong correlation
with the output being the max score 0.59. However, some pairs of features are highly correlated with
each other, i.e. they present a Pearson score greater than 0.8 (e.g x5 and x16 which represent different
procedures to measure the pelvic inclination). The full Pearson matrix is reported in table 7.8, where
variables with Pearson score greater than 0.8 are boldface in a green box. The identified relationships
will be used in connection with the feature selection procedure in the next section 7.2.3. In table 7.7
a summary of max/min indices in the Pearson matrix is also reported.

features vs features vs
features output

Max abs correlation 0.96 0.59
Min abs correlation 0.00 0.04
Avg abs correlation 0.19 0.26

Table 7.7. Summary of Pearson coefficients (absolute values)

x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 y
x1 -0.10 0.10 -0.02 0.18 -0.03 -0.26 -0.41 -0.06 0.06 -0.03 0.33 -0.88 -0.36 -0.22 0.18 0.10 -0.11 -0.04 -0.12 0.05 -0.17 0.19 0.08 0.12 -0.06 0.17 0.26
x2 -0.20 -0.33 -0.01 0.13 -0.04 0.10 0.09 0.06 0.09 -0.06 0.09 -0.05 -0.02 -0.02 -0.04 0.21 0.18 0.14 0.06 0.36 -0.02 -0.09 -0.08 -0.05 -0.03 0.05
x3 -0.14 0.05 -0.04 -0.06 0.05 0.04 0.05 0.04 -0.04 -0.09 -0.07 0.02 0.05 -0.01 0.01 0.06 -0.03 0.07 0.13 0.09 -0.00 0.03 -0.11 0.10 -0.04
x4 0.02 -0.16 0.02 0.00 0.01 -0.01 -0.04 -0.06 0.00 0.00 0.05 0.03 0.18 -0.14 -0.06 -0.16 0.07 -0.13 0.09 0.09 0.10 -0.02 0.10 0.11
x5 -0.09 -0.09 -0.20 -0.31 -0.38 -0.44 -0.50 -0.32 -0.26 0.72 0.85 0.42 -0.07 0.14 -0.27 0.34 -0.04 0.24 0.14 0.18 -0.00 0.14 0.59
x6 0.06 0.08 0.11 0.11 0.12 0.03 0.03 0.00 -0.11 -0.10 -0.07 0.27 0.26 0.18 0.10 0.24 -0.01 0.05 0.01 0.03 -0.01 -0.11
x7 0.31 0.19 0.18 0.15 0.07 0.02 0.11 -0.02 -0.03 0.04 0.24 0.25 0.09 0.16 0.15 0.08 -0.02 0.08 -0.14 0.15 -0.21
x8 0.74 0.73 0.70 -0.21 0.35 -0.09 0.03 -0.10 -0.12 0.13 0.06 0.10 -0.03 0.10 -0.04 0.09 0.03 0.11 -0.07 -0.38
x9 0.90 0.86 0.07 0.09 -0.15 -0.17 -0.20 -0.23 0.11 -0.03 0.17 -0.15 -0.01 -0.11 0.04 -0.05 0.12 -0.14 -0.39

x10 0.96 0.14 -0.01 -0.20 -0.27 -0.23 -0.25 0.11 -0.04 0.19 -0.18 -0.03 -0.09 0.07 -0.02 0.13 -0.11 -0.45
x11 0.19 0.11 -0.14 -0.29 -0.30 -0.34 0.14 -0.05 0.26 -0.25 -0.03 -0.17 0.03 -0.10 0.16 -0.20 -0.47
x12 -0.25 0.14 -0.65 -0.51 -0.35 -0.06 -0.23 0.16 -0.34 -0.10 -0.21 -0.08 -0.16 0.03 -0.13 -0.19
x13 0.44 0.12 -0.31 -0.32 0.05 -0.13 0.23 -0.30 0.13 -0.34 -0.12 -0.24 0.15 -0.32 -0.39
x14 0.09 -0.21 -0.30 0.00 -0.15 0.20 -0.29 -0.05 -0.40 -0.17 -0.34 0.13 -0.38 -0.14
x15 0.79 0.23 -0.02 0.09 -0.11 0.16 0.01 -0.01 0.01 -0.04 0.07 -0.11 0.37
x16 0.33 -0.04 0.13 -0.18 0.26 -0.00 0.16 0.12 0.11 0.05 0.05 0.48
x17 -0.13 0.32 -0.65 0.79 -0.03 0.59 0.27 0.52 -0.17 0.54 0.46
x18 0.83 0.70 0.23 0.48 -0.09 -0.25 -0.20 -0.20 -0.06 -0.08
x19 0.31 0.69 0.49 0.24 -0.07 0.12 -0.29 0.27 0.18
x20 -0.48 0.32 -0.49 -0.39 -0.55 -0.01 -0.47 -0.31
x21 0.21 0.60 0.23 0.53 -0.26 0.61 0.41
x22 0.07 -0.07 0.02 -0.16 0.15 -0.06
x23 0.30 0.72 -0.34 0.84 0.26
x24 0.80 0.67 0.22 0.08
x25 0.21 0.69 0.16
x26 -0.52 -0.10
x27 0.20

Table 7.8. Pearson Correlation matrix among features: in a green box the most correlated ones

A critical aspect for the success of any learning procedure stays in the reduction, if needed, of the
number of input features. Indeed it may happen that some features are redundant and/or add noisy
information, so that eliminating them will help the learning task. Furthermore, the feature selection
can give insights on which features are the ones that hold the most significant information and hence
can give doctors indications about the key measures of Formetric 4D. To this aim, a feature selection
phase was performed before entering the true learning phase. In the literature different methods for
feature selection have been proposed. Four different algorithms, described below, were employed in
this work, with the aim of defining a ranking of the features by assigning "votes" based on the number
of algorithms that selected it. Then, this ranking was used to reduce the dimension of the training
set in the experiments, to test whether the most selected features actually include the most significant
patterns. To this aim, the minimal features set can be defined as the set of those features chosen by at
least 3 of the 4 algorithms.

As tools for feature selection the following techniques, both supervised and unsupervised, were

7.2. DATA ANALYSIS AND PREPROCESSING 129

employed:

1. L2-regularized SVM [25]

min
w∈Rn
‖w‖2

2 +C
m

∑
i=1

max{0,1− yi(wT xi +b)};

2. L1-regularized SVM [118]

min
w∈Rn
‖w‖1 +C

m

∑
i=1

max{0,1− yi(wT xi +b)};

3. Mutual information (MI), which is a non-negative value that measures the dependency between
two random variables. The function relies on nonparametric methods based on entropy estima-
tion from k-nearest neighbors distances as described, e.g., in [60, 86];

4. Analysis Of Variance (ANOVA) [55].

It must be emphasized that the selection of the features depends on the data at hand. In order
to take care of this aspect, the selection was replicated M times, selecting 70% of the available data
randomly in each replicate. For each technique, the features selected more than 80% of the times over
the M replicates were chosen.

The feature selection procedure can then be described as:

• Given the target set in a table m−by−(n+1) = 466×28;

• Repeat M times

– Randomly extract 70% of the target set;

– Apply the four different feature selection algorithms;

• For each algorithm, rank the features according to the number of times selected over the M runs;

• For each algorithm, choose the features selected more than 80% of the times;

• Construct the minimal features set by choosing the features selected by at least 3.

At the end of the feature selection, a reduced target set was identified, namely obtained from the
full target set by considering only the minimal set of features. The results on the reduced target set
were then compared to the ones on the full target set.

The feature selection procedure led to the results summarized in table 7.9. In particular, for each
feature selection technique, the features selected at least in the 80% of the M random runs are indicated
by an "x". Furthermore, the count of how many algorithms selected each feature is also reported.

The selected features are the ones that are selected by at least 3 out of the 4 algorithms. These are
the first 14 rows in table 7.9, which constitutes the minimal feature set:

{x4,x5,x7,x9,x10,x11,x13,x15,x16,x17,x19,x20,x25,x26}.

In order to check the effectiveness of the selection procedure with respect to standard statistical tools,
a selection by the analysis of Pearson’s correlation matrix was also performed. The results are reported

130 CHAPTER 7. DNN AND SVM TO DETECT POSTURAL DISEASES

Variables name L2 SVM L1 SVM MI ANOVA Final score
x4 Pelvic torsion_DL-DR x x x x 4
x5 Pelvic inclination_(dimple) x x x x 4
x7 Inflexion point_ICT /trunk length_VP-DM x x x x 4
x9 Inflexion point_ITL /trunk length_VP-DM x x x x 4
x10 Lordotic apex_LA_(VPDM) /trunk length_VP-DM x x x x 4
x13 Fléche lombaire_(Stagnara) x x x x 4
x17 Surface rotation_(rms) x x x x 4
x25 Lateral deviation_VPDM_(+max) x x x x 4
x11 Inflexion point_ILS /trunk length_VP-DM x x x 3
x15 Lordotic angle_ITL-ILS_(max) x x x 3
x16 Pelvic inclination x x x 3
x19 Surface rotation_(+max) x x x 3
x20 Surface rotation_(-max) x x x 3
x26 Lateral deviation_VPDM_(-max) x x x 3
x1 Trunk inclination_VP-DM x x 2
x2 Lateral_flexion_VP-DM x x 2
x6 Pelvis rotation x x 2
x8 Kypothic apex_KA_(VPDM) /trunk length_VP-DM x x 2
x12 Fléche cervicale_(Stagnara) x x 2
x14 Kyphosis angle_ICT-ITL x x 2
x18 Surface rotation_(max) x x 2
x21 Surface rotation_(width) x x 2
x24 Lateral deviation_VPDM_(max) x x 2
x27 Lateral deviation_(width) x x 2
x3 Pelvic obliquity_DL-DR x 1
x23 Lateral deviation_VPDM_(rms) x 1
x22 Pelvic torsion 0

Table 7.9. Features ranking

in table 7.8 and the selected features in this case are the ones having a Pearson correlation with the
output ≥ 0.2, namely

{x1,x5,x7,x8,x9,x10,x11,x13,x15,x16,x17,x20,x21,x23,x27}.

One interesting analysis is to add the selection based on Pearson’s correlation matrix to the voting
procedure shown in table 7.9. Doing so, and choosing the features that obtained at least 4 "votes", the
following feature set is obtained:

{x4,x5,x7,x9,x10,x11,x13,x15,x16,x17,x20},

which will be denoted as Pearson minimal set. Note that the Pearson minimal set is not the intersection
of the Pearson’s feature set and the minimal features set. Indeed the feature x4 (Pelvic torsion_DL-DR)
has a low value of the Pearson coefficient (0.11) and it would not be selected by solely the Pearson
selection rule but it is instead selected by all the other four algorithms.

After the features selection has been performed, four training sets with the same number of sam-
ples are available, i.e. the full set of 27 features and the three reduced introduced above. The learning
process, both unsupervised and supervised, was applied to these four datasets, namely the full dataset,
the minimal set, the Pearson set and the Pearson minimal set, to verify how these selections impact
the performance. Nonetheless, it turned out that among the three, the best performance was on the

7.3. RESULTS AND DISCUSSION 131

minimal set. Hence, in the results only the comparison between the full set and the minimal set is
detailed.

The results reported in sections 7.3.4 and 7.3.5 show that such a cut in dimensionality does not
strongly affect performance of the ML, which is measured by the KPIs introduced above. This sug-
gests that features in table 7.6 have a key role in classifying scoliosis.

7.3 Results and discussion

7.3.1 Classification models

In this section the three main classes of ML classification methods used to analyze data in the target
set are described. In particular, as mentioned in the introduction, both unsupervised clustering and
supervised classification are of interest.

Unsupervised learning does not use any a priori information on the labels of the input data, with
the aim of grouping ‘similar’ samples in clusters, on the basis of the input features only. The known
label yi are used in the ’a posteriori’ analysis to evaluate the performance, as explained in section 7.3.2.
The aim, from a clinical point of view, is to check whether the features describing each patient contain
enough ’good’ information to allow a natural division into two clusters. Similarity is usually measured
by a metric distance between samples both intra-group and extra-group with the aim of maximizing
the distance between samples in different clusters, while minimizing the distance between samples
belonging to the same cluster. The clustering method employed is a variant of the basic K-Means [56]
algorithm called K-Means++ [6], where the number of clusters K is set to K = 2 (healthy vs scoliosis).
As metric distance the standard Euclidean norm was used. The distance between x1 and x2 ∈ Rn is
therefore defined as

d(x1,x2) = ‖x1− x2‖=

√
n

∑
i=1

(x1
i − x2

i)
2.

The comparison of the results obtained by unsupervised learning versus those obtained by a supervised
procedure using the label to drive the learning procedure can help in checking the existence of biasing
features. Actually this happened in the first stage of this study and led to the normalization of some
features, in order to avoid clusters that are implicitly based on the age of the patient. The results are
reported in section 7.3 and they highlight that the data can be clustered sufficiently well.

On the other hand in supervised classification the task is to learn from ’labelled’ examples (xi,yi)
i = 1, . . . ,m as given in the target set T . Support Vector Machines (SVM) (see e.g. [111] and the
survey [81]) and Deep Neural Networks (DN) [48] were used as supervised classification models. The
aim, beyond the classification performance, is to compare the performance among these two tools.
Support Vector Machines (SVMs) are supervised binary classifiers in the class of kernel methods that
learn the possibly nonlinear border between data belonging to different classes. Linear SVM classify
points using hyperplanes defined by (w,b) ∈ Rn×R and obtained by solving the following (Primal)
optimization problem:

min
w∈Rn
‖w‖2

2 +C
m

∑
i=1

max{0,1− yi(wT xi +b)} (7.1)

where C plays the role of a penalty parameter on the misclassified points to be set in the tuning phase
of the model. However, usually nonlinear SVM, which define a nonlinear decision function to predict

132 CHAPTER 7. DNN AND SVM TO DETECT POSTURAL DISEASES

the class of a new input x, are used. Such nonlinear decision function can be written as

class(x) = sign

(
m

∑
i=1

αik(xi,x)+β

)
,

where k(·, ·) is a kernel function which represents a measure of similarity, i.e. a scalar product among
data points in a transformed nonlinear space. The use of kernels allows to define nonlinear separa-
tion surface avoiding the explicit nonlinear transformation in a higher dimensional space [91], thus
avoiding the so called curse of dimensionality. Indeed the parameters αi ∈ R, i = 1, . . . ,m and β ∈ R
appearing in the nonlinear decision function are obtained as the solution of the dual formulation of
the SVM training problem

minα

1
2

m

∑
i=1

m

∑
j=1

yiy jk(xi,x j)αiα j−
m

∑
j=1

α j

m

∑
i=1

y j
α j = 0

0≤ α j ≤C j = 1, . . . ,m

The kernel function may depend on hyper-parameters too and suitable values of those were found
during the tuning process, using a k-fold cross validation procedure. DN are multilayer feedforward
neural networks organized into layers numbered from ` = 0 (input layer) to ` = L, the last layer
corresponding to the output layer, as reported in picture 7.2. Assuming a linear output unit and hidden

y(x)-

-

-

x2 �
�
�
�
�
��

��
��

��1

PPPPPPq

x1 PPPPPPq

��
��

��1

@
@
@
@
@
@R����
����
����PPPPPPq@

@
@
@
@
@R

PPPPPPq

��
��

��1

��
��

��1

�
�
�
�
�
��

����
����

��
��

��1

PPPPPPq����t
t

hidden layer
`= 1

hidden layer
`= 2

outputInput
`= 3`= 0

Figure 7.2. DN with two inputs (n = 2), two hidden layers (L = 3) and a single output

units with activation function given by g(·) (assumed to be the same for all the layers) the expression
of the output is

ỹ(w;x) =W Lg
(
W L−1;g(. . . ;g(W 1;x))) . . .

)
(7.2)

where W ` with `= 1, . . . ,L is the vector of weights from layer `−1 to layer ` and its size depends on
the number of units in each layer. In particular, being N` the number of units in layer `, W ` ∈RN`−1·N`

.
The parameters W l , l = 1, . . . ,L are obtained by minimizing the regularized empirical error

R =
m

∑
i=1

(yi− ỹ(w;xi))2 +C‖w‖2

where C is a hyper-parameter. In the numerical experiments, no regularization was used, i.e. C = 0.
Since the problem is a binary classification one, a sigmoid activation function was applied to the
output ỹ(w;x) of the network, so that the final output is tanh(ỹ(w;x)), returning a value in {−1,1}.

7.3. RESULTS AND DISCUSSION 133

7.3.2 Performance measures

The ultimate task of a ML model is to give good performance on new unseen samples with unknown
label. This task is called generalization and it may be in contrast with the perfect learning of the
training data that leads to the so-called over-fitting phenomenon (see e.g. [80] and references therein).
Hence, both in supervised and in unsupervised learning, two main phases must be distinguished: the
training phase, where the machine is trained using the samples of the target set, and a prediction
phase, where the trained machine is used to predict the label (namely the belonging class or cluster)
of future unseen data samples. In order to check the performance of a learner without being biased by
the learning process itself, usually the training phase is repeated by inserting some randomness in the
process.

In particular, for unsupervised learning, the whole target set was used as training set, the K-
means++ procedure [6] was repeated M times, due to the randomly seeded initial conditions, and the
results were averaged. In particular, to check the correctness of the clusters Ci, i = 1,2 obtained at the
end of each of the M runs of the training phase, the known labels yi were used. The correctness of the
clusters was measured by means of the so called purity, which is a simple and transparent accuracy
measure. In such performance measure, each cluster is assigned to the class which most frequently
appears as label for the points in the cluster, and then the accuracy is measured by counting the average
number of correctly assigned samples. Formally it can be written as:

ACC =
1

2m
max

{
m

∑
i=1
|yi + classi|,

m

∑
i=1
|yi− classi|

}
,

with

classi =

{
+1, xi ∈ C1,

−1, xi ∈ C2.

In supervised learning, the target set is usually split into two parts: a training set, used only in the
learning phase to train the machine, and a test set, used only in a post-learning analysis to quantify
the generalization performance. In this way the performance indicators of the learning machine are
computed on patients never shown to the learning process. In particular, at each run the available data
were split randomly in training and test set, on which the Key Performance Indicators (KPIs) were
computed. The average of these KPIs over the M runs represents an estimation of the generalization
performance.

The KPIs to measure the quality of a classification machine used in this work were:

• a 2× 2 confusion matrix, where each element represents the (averaged) percentage of True
Negatives (TN), True Positives (TP), False positives (FP) and False Negatives (FN), as shown
below

Real / Predicted Scoliotic Healthy
Scoliotic TP FN
Healthy FP TN

• classification accuracy (i.e. percentage of correct classified patients)

ACC =
T P+T N

T P+FN +T N +FP

134 CHAPTER 7. DNN AND SVM TO DETECT POSTURAL DISEASES

• balanced classification accuracy (BACC)

BACC =
1
2

[
T P

T P+FN
+

T N
T N +FP

]
The above KPIs are reported as an average on the test set when supervised learning is used. The
perfect learning corresponds to a 100% accuracy and it consists in having the sum over the diagonal
of the confusion matrix being 100. This situation, whenever it appears, is in general untrustworthy,
being often a signal of overfitting.

The training procedure, both in the case of unsupervised and supervised learning, is summarized
below:

• Given the target set T given by m−by−(n+1) = 466×28 samples;

• Repeat M times

1. Extract randomly the training and the test sets as a percentage of the m samples (patients):
- for supervised learning respectively 70% and 30%
- for unsupervised learning respectively 100% and 0% ;

2. Train a classifier using the training set;

3. Compute the KPIs of the obtained classifier;

• Average the KPIs over the M runs.

7.3.3 Classifiers tuning and training

In both the two models used for supervised classification, DNN and SVM, some hyper-parameters
must be chosen in order to get the best performance of the machines.

The SVM classifiers has two type of parameters: the regularization parameter C, which controls
misclassified points, and the kernel parameters. Both linear and Gaussian kernels were tested. Linear
kernel k(xi,x) = xiT x does not depend on hyper-parameters, while Gaussian kernel

k(xi,x) = e−γ‖xi−x‖2
,

which corresponds to a transformation of the data points xi into an infinite dimensional space, presents
the hyper-parameter γ , called the width of the kernel.

Regarding DN, the number of layers L, neurons per layer N`, `= 1, . . .L and the activation func-
tion g(z) needs be chosen. Both the ReLU (Rectified Linear Unit), g(z) = max{0,z}, and the sigmoid,
g(z) = ez

ez+1 , functions were tested from the library ScikitLearn [41]. The tuning procedure was there-
fore applied for different values of L and N`, `= 1, . . .L. The hyper-parameters to be chosen for each
classifier are summarized in table 7.10.

The selection of the correct hyper-parameters C,γ has been done by using a k-fold cross validation
procedure with a grid search. The average of these errors over the k runs represents an estimation of the
generalization performance and the setting of hyper-parameters that gave the best average validation
error was selected. The process can be summarized as:

• Given the target set T ;

• Define a grid H of hyper-parameters values;

7.3. RESULTS AND DISCUSSION 135

Model Hyper-parameters
SVM C γ

DNN N` L

Table 7.10. Hyper-parameters for SVM/DN classifiers

Full / Selected features Healthy Scoliotic
Healthy 25.7 / 32.4 16.1 / 9.2
Scoliotic 22.2 / 18.7 36.0 / 39.8

Table 7.11. Confusion matrix of the unsupervised classifier: the first number refers to the full target set whilst
the second number refers to the minimal set.

• For each h ∈H , select the h-th hyperparameter pair;

– Repeat M times

1. Extract randomly the training and the validation sets;
2. Train a classifier using the training set;
3. Compute the KPIs on the validation set;

– Average the KPIs over the M runs;

• Select the h ∈H that gives the best average KPIs.

7.3.4 Performance of unsupervised classifiers

First, an unsupervised learning process was applied to the two target sets defined in section 7.2.3,
from which the labels are ’hidden’ to the machine. The unsupervised learner was then applied with
the task of grouping the patients with the aim of ’identifying’ the two original classes.

The results in terms of accuracy and confusion matrix are reported in table 7.11. The accuracy
reached using the full set of 27 features and only the 14 selected features of the minimal set 61.7% and
72.2%, respectively. It is interesting to see how the accuracy increased with the features reduction. In-
deed this was foreseeable since lower dimension makes the task easier for a learning machine that does
not exploit the labels to cluster the samples in groups. The confusion matrices of the unsupervised
learning machine obtained on the two target sets are shown in table 7.11. In both the experiments,
false positives and false negatives are well balanced, showing once more the robustness of the tar-
get data, namely that the rastereographic information allows to clearly separate the two clusters, i.e.
subjects with scoliosis vs healthy ones.

It is worth to mention that the clustering procedure was performed as a first step at the very
beginning of the project, in order for the results to point out any biases in the data that induced wrong
clusters. Such information derived from the first clustering results were then used to clean up the data,
as explained in the previous sections.

7.3.5 Performance of supervised classifiers

The number of replicates M was set to 100 in the training procedure. The DNN classifiers were first
trained on the full data set using different architectures with the aim of exploring the role of wideness

136 CHAPTER 7. DNN AND SVM TO DETECT POSTURAL DISEASES

Figure 7.3. Test (blue) and Training (red) accuracy for increasing number of neurons in the unique hidden layer

Data set ACC BACC
Full set 87.5% 87.4%
Minimal set 83.7 % 83.4%

Table 7.12. Accuracy (ACC) and Balanced Accuracy (BACC) of a shallow NN with N1 = 40.

and deepness. Both sigmoid and ReLu activation functions were tested, but the ReLu performed
significantly worst. Hence, the results are reported only for the sigmoid.

In particular, a shallow network (i.e. one hidden layer) was trained with increasing number of
neurons N in order to understand the role of wideness. The number of neurons N was increased from
5 to 200 and the results in terms of average test (blue) and training accuracy (red) are reported in figure
7.3. The averaged classification accuracy is almost everywhere higher than 80% being 40 ≤ N ≤ 50
the best range of neurons. Observe that the training accuracy reaches almost 100% for N ≥ 50. In table
(7.12), the accuracy and balanced accuracy of the best configuration, which corresponds to N1 = 40,
are reported.

A test increasing the deepness from L = 2 to L = 10 was also performed, with a fixed number of
neurons per layer of N` = 20 for all `= 1, . . . ,L. The results are reported in figure 7.4.

Figure 7.4. Test (blue) and Training (red) accuracy for increasing number of layers with N` = 20 for all
`= 1, . . . ,L

The best results correspond to L = 3 (two hidden layers). The picture shows that increasing the
deepness of the network beyond such number does not produce any better results. This may also be

7.3. RESULTS AND DISCUSSION 137

ACC BACC
Full set 86.3% 86.6%
Minimal set 85.5 % 85.5%

Table 7.13. Accuracy (ACC) and Balanced Accuracy (BACC) of Deep Network with L = 3.

Full / minimal set Healthy Scoliotic
Healthy 16.82/16.25 2.59/3.55
Scoliotic 3.81/4.11 23.78/23.09

Table 7.14. Confusion matrix of shallow network with N = 40 with all the features and the 14 in the minimal
set respectively

due to the well known difficulties in training such deep networks using (stochastic) gradient based
methods, like Adam. The accuracy and balance accuracy are reported in table (7.13).

The behavior on the target set with only the 14 features selected as described in section 7.2.3 is
also analyzed.

For a comparison, the average confusion matrix obtained in the two cases, full vs reduced target
set, are reported in tables 7.14 and 7.15.
From the above results, it seems that the performance decreases with the reduction of the features only
by 2−3%. This seems to suggest that the 14 features selected bring the most significant information.
Indeed the physicians analyzed them and the comments are reported at the end of the section.

The nonlinear SVM classifier employed was the one implemented in LIBSVM library, with a
Gaussian kernel function with spread γ . The best values of the parameters C and γ were set with the
tuning procedure as described in section 7.3.3. The procedure has been replicated both for the full
dataset and the minimal features set. The resulting values of C and γ are reported in table 7.16.
The classification accuracy and balanced accuracy reached by the SVM classifier both for the full and
the minimal dataset are reported in table 7.17.

The confusion matrix of the SVM classifier for the two sets, i.e. full dataset and minimal fea-
tures set, is also reported in table 7.18. In both cases, the false positives and false negatives are
well balanced, namely the percentage of healthy patients classified as scoliotic is almost equal to the
percentage of scoliotic patients classified as healthy.

Observe that a reduction of the input dimensionality by almost 50% brought only a slight deteri-
oration of the accuracy, thus confirming the potential strong role played by the selected features, in
line with the results of the DNN classifier. This result could help physicians in the diagnostic process,
when it is usually needed to look at multiple different variables and potentially invasive tests (i.e.
X-ray) to detect a scoliosis.

Full / minimal set Healthy Scoliotic
Healthy 35.77/ 33.62 6.15/ 7.43
Scoliotic 8.32/ 8.64 49.77/ 50.32

Table 7.15. Confusion matrix of deep network with L = 3 with all the features and the 14 in the minimal set
respectively

138 CHAPTER 7. DNN AND SVM TO DETECT POSTURAL DISEASES

Full Minimal
C 10 10
γ 10−3 10−2

Table 7.16. Parameters of SVM defined by the tuning procedure

ACC BACC
Full set 84.9% 84.7%
Minimal set 82.2 % 81.5%

Table 7.17. Accuracy (ACC) and Balanced Accuracy (BACC) of SVM.

7.4 Clinical comments and conclusion

7.4.1 Clinical comments

In this section, the 14 features (i.e. rasterstereography parameters) identified by means of the the fea-
ture selection process are analyzes, with the aim of verifying their clinical role. Among the identified
parameters reported as the first 14 in table 7.9 there are measures on the three planes, i.e. lateral, sagit-
tal and frontal plane. Five of the selected parameters, identified by the features x17,x19,x20,x25,x26,
are commonly related to the evaluation and diagnosis of scoliosis, in fact lateral deviation and verte-
bral rotation are well known clinical signs of the disease. Indeed the scoliosis is defined as a lateral
curvature of more than 10 degrees as measured by the Cobb Technique on standing anterior poste-
rior radiograph of the spine. Scoliosis is a complex three-dimensional spinal deformity, that forms a
complex curve that leads to deformities not only in the coronal plane but in all three planes, which is
caused by the self-rotating movement of the spine. An important feature of idiopathic scoliosis de-
formity is the vertebral axial rotation which accompanies the vertebral lateral deviation. Mechanical
interactions within the spine have been implicated in causing vertebral rotation with lateral deviation.
This rotation is thought to be significant for initiation and progression of scoliosis. The magnitude of
vertebral axial rotation correlates with the lateral deviation of vertebrae from the spinal axis, and the
rotation is maximal near the curve apex [29, 103, 114, 115].

Nine parameters, identified by th x4,x5,x7,x9,x10,x11,x13,x15,x16, are instead related to the sagit-
tal plane and these results may seem unexpected because the scoliosis is predominantly characterized
by alterations on the frontal and the transversal plane. However recent clinical papers seem to suggest
a role of these parameters. Sullivan et al [104] underlined the importance of sagittal plane and the
need of a global assessment in the evaluation of scoliosis. They find a strong correlation between
scoliosis severity and loss of 3D kyphosis. Increasing severity of coronal plane curvature is associated
with a progressive loss of thoracic kyphosis. Moreover previous study have suggested that thoracic

Full / Minimal set Healthy Scoliotic
Healthy 34.0 / 31.9 7.0 / 9.6
Scoliotic 8.1 / 8.3 50.9 / 50.3

Table 7.18. Results of the supervised SVM classifier on the full and minimal features set

7.4. CLINICAL COMMENTS AND CONCLUSION 139

hypokyphosis is a primary event in the development of Idiopatic Scolisis (IS) [102]. However, because
of historic restrictions of planar imaging of this multidimensional deformity, there is little information
regarding the correlation of thoracic kyphosis with increasing severity of idiopathic scoliosis. Mod-
ern, low-radiation-exposure 3D imaging systems have now made routine clinical 3D imaging feasible.
These imaging modalities offer the possibility to study the components of the scoliotic deformity in
the planes of origin for each vertebra, free of the distortions on 2D images [77]. Sullivan et al [104]
found a strong linear correlation between the magnitude of the main thoracic coronal curve and loss
of 3D thoracic kyphosis. Three of these sagittal parameters, x4,x5,x16, are related to sagittal align-
ment of the pelvis, but this was expected since an influence of the sagittal parameters of the column
in the identification of patients is known. Legayeet et al [62] demonstrated the key importance of
the anatomical parameter of pelvic incidence in the regulation of the sagittal curves and this is main-
tained when the scoliosis desease occurs. Moreover Fei Han et al [43] underlined that patients with
degenerative scoliosis (DS) may have a higher pelvic incidence, which may impact the pathogenesis
of DS. In fact an unbalancing of incidence pelvic should cause scoliosis if the degeneration speed of
the two sides differs [65]. The limits of traditional 2D imaging have restricted the evaluation of the
adolescent idiopathic scoliosis effects on the sagittal plane, in fact it is impossible to perform simul-
taneous evaluation of the frontal and sagittal profiles of the spine. Moreover when sagittal evaluation
is performed, the patient is asked to put arms forward which is a non-natural position. Since RX eval-
uation exposes the patients to ionizing radiations, it can not be made frequently in clinical follow up
frequency. The rasterstereography provides a three-dimensional reconstruction of the spine curvature
and the patient can assume a natural position. Moreover it provides a dynamic evaluation: indeed,
in six seconds, twelve frames are recorded and the average results are obtained. So it is particularly
suited to the sagittal plane parameters of the spine without any ionizing radiations exposure and any
risk for the patient [116]. Summarizing, the features selected by the procedure seems to have some
clinical usefulness thus validating the overall learning procedure based on DNN or SVM.

7.4.2 Conclusion

In this study, both supervised and unsupervised learning were proven to give high accuracy results in
classifying AIS patient versus healthy ones, using rasterstereography data. As expected, the accuracy
is higher in the supervised case than in the unsupervised one. Indeed, the supervised algorithms
used, i.e. DNN and SVM, performed quite well, with an accuracy over 80%. However, the use of a
clustering procedure also allowed to group patients in well-separated clusters, which showed strong
intra-group similarity.

The above evidences confirm that data mining can represent a new approach to identify patients
with AIS from healthy ones. Moreover, the results confirm that a subset of rasterstereography pa-
rameters can be used in the screening of AIS patients, although X-ray imaging cannot be replaced
by this method. Indeed, rasterstereography can be used to perform a scoliosis screening in order to
improve the selection of patients that need to undergo X-ray examination. Finally, thanks to the fact
that Formetric is easily transportable, it can be used to propose scholar screening for pre-adolescent
pupils.

141

List of Figures

1.1 A two-hidden layer Neural Network . 10
1.2 Generic reinforcement learning framework . 12
1.3 Linear, soft margin SVM classifier . 15

4.1 Covertype dataset. Function value distance from the optimum with respect to single
gradient evaluations. In blue the Fisher test, in red the Norm test. 73

4.2 Covertype dataset. Minibatch size |Sk| as percentage of the population size N, with
respect to iterations. In blue the Fisher test, in red the Norm test. 74

4.3 CaliforniaHousing dataset. Function value distance from the optimum with respect to
single gradient evaluations. In blue the Fisher test, in red the Norm test. 74

4.4 CaliforniaHousing dataset, LLS (convex). Minibatch size |Sk| as percentage of the
population size N, with respect to iterations. In blue the Fisher test, in red the Norm test. 75

4.5 CaliforniaHousing dataset, NLS (nonconvex). Function value (right) and gradient
norm (left) with respect to single gradient evaluations. In blue the Fisher test, in red
the Norm test. 76

4.6 Ijcnn1 dataset. Function value distance from the optimum with respect to single gra-
dient evaluations. In blue the Fisher test, in red the Norm test. 76

4.7 SkinNonSkin dataset. Function value distance from the optimum with respect to sin-
gle gradient evaluations. In blue the Fisher test, in red the Norm test. 77

4.8 Yearpred dataset, LLS (convex). Function value distance from the optimum with
respect to single gradient evaluations. In blue the Fisher test, in red the Norm test. . . 77

4.9 YearPred dataset, NLS (nonconvex). Function value (right) and gradient norm (left)
with respect to single gradient evaluations. In blue the Fisher test, in red the Norm test. 77

4.10 SUSY dataset. Function value distance from the optimum with respect to single gra-
dient evaluations. In blue the Fisher test, in red the Norm test. 78

4.11 CaliforniaHousing dataset, LLS (convex). Minibatch size |Sk| as percentage of the
population size N (right) and function value (left) with respect to iterations. In blue
the Fisher test, in red the Norm test. 78

4.12 Covertype dataset. Minibatch size |Sk| as percentage of the population size N (right)
and function value (left) with respect to iterations. In blue the Fisher test, in red the
Norm test. 78

4.13 Ijcnn1 dataset. Minibatch size |Sk| as percentage of the population size N (right) and
function value (left) with respect to iterations. In blue the Fisher test, in red the Norm
test. 78

142 LIST OF FIGURES

4.14 SkinNonSkin dataset. Minibatch size |Sk| as percentage of the population size N
(right) and function value (left) with respect to iterations. In blue the Fisher test,
in red the Norm test. 79

4.15 YearPred dataset, NLS (nonconvex). Minibatch size |Sk| as percentage of the popu-
lation size N (right) and gradient norm (left) with respect to iterations. In blue the
Fisher test, in red the Norm test. 79

4.16 YearPred dataset, LLS (convex). Minibatch size |Sk| as percentage of the population
size N (right) and function value (left) with respect to iterations. In blue the Fisher
test, in red the Norm test. 79

4.17 SUSY dataset. Minibatch size |Sk| as percentage of the population size N (right) and
function value (left) with respect to iterations. In blue the Fisher test, in red the Norm
test. 79

4.18 CaliforniaHousing dataset, NLS (nonconvex). Minibatch size |Sk| as percentage of
the population size N (right) and gradient norm (left) with respect to iterations. In
blue the Fisher test, in red the Norm test. 80

5.1 DeepRL block diagram . 81
5.2 Swimmer-v2 environment, function value (fk) vs function evaluations for Gaussian

Smoothing (GS), Random Coordinate Descent (RCD) and Full Finite Differences (FFD) 99
5.3 HalfCheetah-v2 environment, function value (fk) vs function evaluations for Gaussian

Smoothing (GS), Random Coordinate Descent (RCD) and Full Finite Differences (FFD) 99
5.4 Walker2d-v2 environment, function value (fk) vs function evaluations for Gaussian

Smoothing (GS), Random Coordinate Descent (RCD) and Full Finite Differences (FFD)100
5.5 Reacher-v2 environment, function value (fk) vs function evaluations for Gaussian

Smoothing (GS), Random Coordinate Descent (RCD) and Full Finite Differences (FFD)100
5.6 Hopper-v2 environment, function value (fk) vs function evaluations for Gaussian

Smoothing (GS), Random Coordinate Descent (RCD) and Full Finite Differences (FFD)101
5.7 Swimmer environment, close to solution. In yellow, the sampled function over a

random Gaussian direction, in orange the full function over the same random Gaussian
direction. In blue, the sampled function over a random coordinate direction, in grey
the full function over the same random coordinate direction. 102

5.8 Swimmer environment, far from solution. In grey, the sampled function over a ran-
dom Gaussian direction, in orange the full function over the same random Gaussian
direction. In blue, the sampled function over a random coordinate direction, in yellow
the full function over the same random coordinate direction. 103

5.9 Swimmer environment, far from solution. In blue, the sampled function over a random
coordinate direction. 103

5.10 Swimmer environment, far from solution. In blue the full function over the same
random coordinate direction. 104

6.1 General distributed algorithmic scheme . 106
6.2 Exp1 . 120
6.3 Exp2 . 120
6.4 Exp3 . 120
6.5 Exp4 . 120

7.1 Formetric’s output representation (from https://diers.eu) 123

LIST OF FIGURES 143

7.2 DN with two inputs (n = 2), two hidden layers (L = 3) and a single output 132
7.3 Test (blue) and Training (red) accuracy for increasing number of neurons in the unique

hidden layer . 136
7.4 Test (blue) and Training (red) accuracy for increasing number of layers with N` = 20

for all `= 1, . . . ,L . 136

145

List of Tables

3.1 Nonconvex case. * liminf result ** All the stochastic methods’ convergence results
hold in expectation. 51

3.2 Convex case. * Only in the quadratic case. ** All the stochastic methods’ convergence
results hold in expectation. *** The result holds over the average iterate. 51

3.3 Strongly convex case ** All the stochastic methods’ convergence results hold in ex-
pectation. 52

4.1 Datasets. Source: https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/ 72
4.2 Parameters tuning grid . 73

5.1 MuJoCo continuous control environments . 97
5.2 Gaussian Smoothing: values chosen for the stepsize α and the action std decay pa-

rameter τ . 98
5.3 Random Coordinate Descent: values chosen for the stepsize α and the action std

decay parameter τ . 98
5.4 Full Finite Differences: values chosen for the stepsize α and the action std decay

parameter τ . 98

6.1 Experimental setup for algorithm 20 . 119

7.1 The full list of Formetric™features . 124
7.2 Summary of statistics on the dataset . 125
7.3 Duplicated features eliminated with physicians’ support: ’Y’=eliminated, ’N’=mantained

. 126
7.4 Eliminated features since highly dependent on trunk length 126
7.5 Features dependent on trunk length normalized by trunk length_VP-DM in mm . . . 126
7.6 List of features constituting the row xi ∈ R27 of the clean data set 127
7.7 Summary of Pearson coefficients (absolute values) 128
7.8 Pearson Correlation matrix among features: in a green box the most correlated ones . 128
7.9 Features ranking . 130
7.10 Hyper-parameters for SVM/DN classifiers . 135
7.11 Confusion matrix of the unsupervised classifier: the first number refers to the full

target set whilst the second number refers to the minimal set. 135
7.12 Accuracy (ACC) and Balanced Accuracy (BACC) of a shallow NN with N1 = 40. . . 136
7.13 Accuracy (ACC) and Balanced Accuracy (BACC) of Deep Network with L = 3. . . . 137
7.14 Confusion matrix of shallow network with N = 40 with all the features and the 14 in

the minimal set respectively . 137

146 LIST OF TABLES

7.15 Confusion matrix of deep network with L = 3 with all the features and the 14 in the
minimal set respectively . 137

7.16 Parameters of SVM defined by the tuning procedure 138
7.17 Accuracy (ACC) and Balanced Accuracy (BACC) of SVM. 138
7.18 Results of the supervised SVM classifier on the full and minimal features set 138

147

Bibliography

[1] ADANKON, M. M., DANSEREAU, J., LABELLE, H., AND CHERIET, F. Non invasive classi-
fication system of scoliosis curve types using least-squares support vector machines. Artificial
Intelligence in Medicine, 56 (2012), 99.

[2] AL BORNO, M., DE LASA, M., AND HERTZMANN, A. Trajectory optimization for full-body
movements with complex contacts. IEEE transactions on visualization and computer graphics,
19 (2012), 1405.

[3] ALLEN-ZHU, Z. AND HAZAN, E. Variance reduction for faster non-convex optimization. In
International Conference on Machine Learning, pp. 699–707 (2016).

[4] ALLEN-ZHU, Z., YUAN, Y., AND SRIDHARAN, K. Exploiting the structure: Stochastic gra-
dient methods using raw clusters. In Advances in Neural Information Processing Systems, pp.
1642–1650 (2016).

[5] AMARAN, S., SAHINIDIS, N. V., SHARDA, B., AND BURY, S. J. Simulation optimization: a
review of algorithms and applications. Annals of Operations Research, 240 (2016), 351.

[6] ARTHUR, D. AND VASSILVITSKII, S. k-means++: The advantages of careful seeding. In Pro-
ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–
1035. Society for Industrial and Applied Mathematics (2007).

[7] BALASUBRAMANIAN, K. AND GHADIMI, S. Zeroth-order nonconvex stochastic optimiza-
tion: Handling constraints, high-dimensionality and saddle-points. -, (2018).

[8] BERAHAS, A. S., BYRD, R. H., AND NOCEDAL, J. Derivative-free optimization of noisy
functions via quasi-newton methods. SIAM Journal on Optimization, 29 (2019), 965.

[9] BERAHAS, A. S., CAO, L., CHOROMANSKI, K., AND SCHEINBERG, K. Linear interpolation
gives better gradients than gaussian smoothing in derivative-free optimization. arXiv preprint
arXiv:1905.13043, (2019).

[10] BERAHAS, A. S., CAO, L., CHOROMANSKI, K., AND SCHEINBERG, K. A theoretical
and empirical comparison of gradient approximations in derivative-free optimization. arXiv
preprint arXiv:1905.01332, (2019).

[11] BERTSEKAS, D. P. Nonlinear programming. Athena scientific Belmont (1999).

[12] BERTSEKAS, D. P. Incremental proximal methods for large scale convex optimization. Math-
ematical programming, 129 (2011), 163.

148 BIBLIOGRAPHY

[13] BERTSEKAS, D. P. AND SCIENTIFIC, A. Convex optimization algorithms.

[14] BERTSEKAS, D. P. AND TSITSIKLIS, J. N. Parallel and distributed computation: numerical
methods, vol. 23. Prentice hall Englewood Cliffs, NJ (1989).

[15] BERTSEKAS, D. P. AND TSITSIKLIS, J. N. Gradient convergence in gradient methods with
errors. SIAM Journal on Optimization, 10 (2000), 627.

[16] BIRGIN, E. G. AND MARTINEZ, J. M. Practical augmented Lagrangian methods for con-
strained optimization, vol. 10. SIAM (2014).

[17] BLATT, D., HERO, A. O., AND GAUCHMAN, H. A convergent incremental gradient method
with a constant step size. SIAM Journal on Optimization, 18 (2007), 29.

[18] BOLLAPRAGADA, R., BYRD, R., AND NOCEDAL, J. Adaptive sampling strategies for
stochastic optimization. arXiv preprint arXiv:1710.11258, (2017).

[19] BOTTOU, L., CURTIS, F. E., AND NOCEDAL, J. Optimization methods for large-scale ma-
chine learning. arXiv preprint arXiv:1606.04838, (2016).

[20] BOYD, S., PARIKH, N., CHU, E., PELEATO, B., ECKSTEIN, J., ET AL. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations
and Trends® in Machine learning, 3 (2011), 1.

[21] BROCKMAN, G., CHEUNG, V., PETTERSSON, L., SCHNEIDER, J., SCHULMAN, J., TANG,
J., AND ZAREMBA, W. Openai gym (2016). arXiv:arXiv:1606.01540.

[22] BYRD, R. H., CHIN, G. M., NOCEDAL, J., AND WU, Y. Sample size selection in optimization
methods for machine learning. Mathematical programming, 134 (2012), 127.

[23] CANNELLI, L., FACCHINEI, F., AND SCUTARI, G. Multi-agent asynchronous nonconvex
large-scale optimization. In 2017 IEEE 7th International Workshop on Computational Ad-
vances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 1–5. IEEE (2017).

[24] CHANDRASHEKAR, G. AND SAHIN, F. A survey on feature selection methods. Computers &
Electrical Engineering, 40 (2014), 16.

[25] CHANG, C.-C. AND LIN, C.-J. Libsvm: a library for support vector machines. ACM transac-
tions on intelligent systems and technology (TIST), 2 (2011), 27.

[26] CHEN, H., SHEN, C., QIN, J., NI, D., SHI, L., CHENG, J. C. Y., AND HENG, P.-A. Au-
tomatic localization and identification of vertebrae in spine ct via a joint learning model with
deep neural networks. In Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2015 (edited by N. Navab, J. Hornegger, W. M. Wells, and A. Frangi), pp. 515–522.
Springer International Publishing, Cham (2015). ISBN 978-3-319-24553-9.

[27] CHOROMANSKI, K., ROWLAND, M., SINDHWANI, V., TURNER, R. E., AND WELLER, A.
Structured evolution with compact architectures for scalable policy optimization. arXiv preprint
arXiv:1804.02395, (2018).

[28] CLARKE, F. H. Optimization and nonsmooth analysis, vol. 5. Siam (1990).

http://arxiv.org/abs/arXiv:1606.01540

BIBLIOGRAPHY 149

[29] COBB, J. Outline for the study of scoliosis. Instr Course Lect AAOS, 5 (1948), 261.

[30] COLOMBO, T., MANGONE, M., BERNETTI, A., PAOLONI, M., SANTILLI, V., AND PALAGI,
L. Supervised and unsupervised learning to classify scoliosis and healthy subjects based
on non-invasive rasterstereography analysis. DIAG Technical Reports 2019-08, Department
of Computer, Control and Management Engineering, Universita’ degli Studi di Roma "La
Sapienza" (2019).

[31] COLOMBO, T. AND SAGRATELLA, S. Distributed algorithms for convex problems with linear
coupling constraints. Journal of Global Optimization, (2019), 1.

[32] CRAMER, H. Mathematical Methods of Statistics. Princeton University Press (1946).

[33] DANESHMAND, A., SUN, Y., SCUTARI, G., FACCHINEI, F., AND SADLER, B. M. De-
centralized dictionary learning over time-varying digraphs. arXiv preprint arXiv:1808.05933,
(2018).

[34] DEFAZIO, A., BACH, F., AND LACOSTE-JULIEN, S. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in neural
information processing systems, pp. 1646–1654 (2014).

[35] DEFAZIO, A., DOMKE, J., ET AL. Finito: A faster, permutable incremental gradient method
for big data problems. In International Conference on Machine Learning, pp. 1125–1133
(2014).

[36] DI PILLO, G. AND LUCIDI, S. On exact augmented lagrangian functions in nonlinear pro-
gramming. In Nonlinear Optimization and Applications, pp. 85–100. Springer (1996).

[37] DI PILLO, G. AND LUCIDI, S. An augmented lagrangian function with improved exactness
properties. SIAM Journal on Optimization, 12 (2002), 376.

[38] DOODY, M. M., LONSTEIN, J. E., STOVALL, M., HACKER, D. G., LUCKYANOV, N., LAND,
C. E., ET AL. Breast cancer mortality after diagnostic radiography: findings from the us
scoliosis cohort study. Spine, 25 (2000), 2052.

[39] DRERUP, B. AND HIERHOLZER, E. Back shape measurement using video rasterstereography
and three-dimensional reconstruction of spinal shape. Clinical Biomechanics, 9 (1994), 28.

[40] DUAN, Y., CHEN, X., HOUTHOOFT, R., SCHULMAN, J., AND ABBEEL, P. Benchmarking
deep reinforcement learning for continuous control. In International Conference on Machine
Learning, pp. 1329–1338 (2016).

[41] ET AL., P. Scikit-learn: Machine learning in python. JMLR, 12 (2011), 2825.

[42] FAZEL, M., GE, R., KAKADE, S. M., AND MESBAHI, M. Global convergence of policy
gradient methods for the linear quadratic regulator. arXiv preprint arXiv:1801.05039, (2018).

[43] FEI, H., LI, W.-S., SUN, Z.-R., JIANG, S., AND CHEN, Z.-Q. Effect of patient position on
the lordosis and scoliosis of patients with degenerative lumbar scoliosis. Medicine, 96 (2017).

[44] FRIEDLANDER, M. P. AND SCHMIDT, M. Hybrid deterministic-stochastic methods for data
fitting. SIAM Journal on Scientific Computing, 34 (2012), A1380.

150 BIBLIOGRAPHY

[45] GAONKAR, B., HOVDA, D., MARTIN, N., AND MACYSZYN, L. Deep learning in the small
sample size setting: cascaded feed forward neural networks for medical image segmentation
(2016). doi:10.1117/12.2216555.

[46] GLASS, G. V., PECKHAM, P. D., AND SANDERS, J. R. Consequences of failure to meet
assumptions underlying the fixed effects analyses of variance and covariance. Review of edu-
cational research, 42 (1972), 237.

[47] GONDZIO, J. AND GROTHEY, A. Exploiting structure in parallel implementation of interior
point methods for optimization. Computational Management Science, 6 (2009), 135.

[48] GOODFELLOW, I., BENGIO, Y., AND COURVILLE, A. Deep Learning. MIT Press (2016).
http://www.deeplearningbook.org.

[49] GRIPPO, L. AND SCIANDRONE, M. Metodi di ottimizzazione non vincolata. Springer Science
& Business Media (2011).

[50] GURBUZBALABAN, M., OZDAGLAR, A., AND PARRILO, P. A. On the convergence rate of
incremental aggregated gradient algorithms. SIAM Journal on Optimization, 27 (2017), 1035.

[51] HAYKIN, S. Neural networks: a comprehensive foundation. Prentice Hall PTR (1994).

[52] HOFMANN, T., LUCCHI, A., LACOSTE-JULIEN, S., AND MCWILLIAMS, B. Variance re-
duced stochastic gradient descent with neighbors. In Advances in Neural Information Process-
ing Systems, pp. 2305–2313 (2015).

[53] HONG, M. AND LUO, Z.-Q. On the linear convergence of the alternating direction method of
multipliers. Mathematical Programming, 162 (2017), 165.

[54] HORNIK, K. Approximation capabilities of multilayer feedforward networks. Neural networks,
4 (1991), 251.

[55] IVERSEN, G. R., WILDT, A. R., NORPOTH, H., AND NORPOTH, H. P. Analysis of variance.
1. Sage (1987).

[56] JAIN, A. K. Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31 (2010),
651 . Award winning papers from the 19th International Conference on Pattern Recognition
(ICPR). doi:https://doi.org/10.1016/j.patrec.2009.09.011.

[57] JAIN, A. K., MURTY, M. N., AND FLYNN, P. J. Data clustering: a review. ACM computing
surveys (CSUR), 31 (1999), 264.

[58] JOHNSON, R. AND ZHANG, T. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In Advances in neural information processing systems, pp. 315–323 (2013).

[59] KIM, S., PASUPATHY, R., AND HENDERSON, S. G. A guide to sample average approximation.
In Handbook of simulation optimization, pp. 207–243. Springer (2015).

[60] KRASKOV, A., STÖGBAUER, H., AND GRASSBERGER, P. Estimating mutual information.
Physical review E, 69 (2004), 066138.

http://dx.doi.org/10.1117/12.2216555
http://www.deeplearningbook.org
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2009.09.011

BIBLIOGRAPHY 151

[61] KUMAR, V., COLE, A., BREAKWELL, L., AND MICHAEL, A. L. R. Comparison of the diers
formetric 4d scanner and plain radiographs in terms of accuracy in idiopathic scoliosis patients.
Global Spine Journal, 6 (2016), s.

[62] LEGAYE, J., DUVAL-BEAUPERE, G., HECQUET, J., AND MARTY, C. Pelvic incidence: a
fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Euro-
pean Spine Journal, 7 (1998), 99.

[63] LEMAÎTRE, G., NOGUEIRA, F., AND ARIDAS, C. K. Imbalanced-learn: A python toolbox
to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning
Research, 18 (2017), 1.

[64] LEVINE, S., FINN, C., DARRELL, T., AND ABBEEL, P. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17 (2016), 1334.

[65] LI, W.-S., SUN, Z.-R., AND CHEN, Z.-Q. Radiographic analysis of sagittal spino-pelvic
alignment in asymptomatic chinese adults. Chinese Journal of Orthopaedics, (2013), 447.

[66] LIN, C.-J., LUCIDI, S., PALAGI, L., RISI, A., AND SCIANDRONE, M. Decomposition al-
gorithm model for singly linearly-constrained problems subject to lower and upper bounds.
Journal of Optimization Theory and Applications, 141 (2009), 107.

[67] LOSHCHILOV, I. AND HUTTER, F. Online batch selection for faster training of neural net-
works. arXiv preprint arXiv:1511.06343, (2015).

[68] LUCIDI, S. New results on a class of exact augmented lagrangians. Journal of Optimization
Theory and Applications, 58 (1988), 259.

[69] LUCIDI, S., PALAGI, L., RISI, A., AND SCIANDRONE, M. A convergent decomposition algo-
rithm for support vector machines. Computational Optimization and Applications, 38 (2007),
217.

[70] MANIA, H., GUY, A., AND RECHT, B. Simple random search provides a competitive approach
to reinforcement learning. arXiv preprint arXiv:1803.07055, (2018).

[71] MANNO, A., PALAGI, L., AND SAGRATELLA, S. Parallel decomposition methods for linearly
constrained problems subject to simple bound with application to the svms training. Computa-
tional Optimization and Applications, pp. 1–31.

[72] MANNO, A., SAGRATELLA, S., AND LIVI, L. A convergent and fully distributable svms
training algorithm. In Neural Networks (IJCNN), 2016 International Joint Conference on, pp.
3076–3080. IEEE (2016).

[73] MNIH, V., ET AL. Human-level control through deep reinforcement learning. Nature, 518
(2015), 529.

[74] MOKHTARI, A., GURBUZBALABAN, M., AND RIBEIRO, A. Surpassing gradient descent
provably: A cyclic incremental method with linear convergence rate. SIAM Journal on Opti-
mization, 28 (2018), 1420.

[75] NESTEROV, Y. Introductory lectures on convex programming volume i: Basic course. Lecture
notes, 3 (1998), 5.

152 BIBLIOGRAPHY

[76] NESTEROV, Y. AND SPOKOINY, V. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, (2017).

[77] NEWTON, P. O., FUJIMORI, T., DOAN, J., REIGHARD, F. G., BASTROM, T. P., AND MIS-
AGHI, A. Defining the “three-dimensional sagittal plane” in thoracic adolescent idiopathic
scoliosis. JBJS, 97 (2015), 1694.

[78] NGAN, P. S., WONG, M. L., LAM, W., LEUNG, K. S., AND CHENG, J. C. Medical data
mining using evolutionary computation. Artificial Intelligence in Medicine, 16 (1999), 73.

[79] PADULO, J. AND ARDIGÒ, L. P. Formetric 4d rasterstereography. BioMed research interna-
tional, 2014 (2014).

[80] PALAGI, L. Global optimization issues in deep network regression: an overview. Journal of
Global Optimization, (2018), 1.

[81] PICCIALLI, V. AND SCIANDRONE, M. Nonlinear optimization and support vector machines.
4OR, (2018).

[82] RAJESWARAN, A., KUMAR, V., GUPTA, A., VEZZANI, G., SCHULMAN, J., TODOROV, E.,
AND LEVINE, S. Learning complex dexterous manipulation with deep reinforcement learning
and demonstrations. arXiv preprint arXiv:1709.10087, (2017).

[83] REDDI, S. J., HEFNY, A., SRA, S., POCZOS, B., AND SMOLA, A. Stochastic variance
reduction for nonconvex optimization. In International conference on machine learning, pp.
314–323 (2016).

[84] ROBBINS, H. AND MONRO, S. A stochastic approximation method. Ann. Math. Statist.,
22 (1951), 400. Available from: https://doi.org/10.1214/aoms/1177729586, doi:10.
1214/aoms/1177729586.

[85] ROCKAFELLAR, R. T. AND WETS, R. J.-B. Variational analysis, vol. 317. Springer Science
& Business Media (2009).

[86] ROSS, B. C. Mutual information between discrete and continuous data sets. PloS one, 9
(2014), e87357.

[87] SALIMANS, T., HO, J., CHEN, X., SIDOR, S., AND SUTSKEVER, I. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, (2017).

[88] SCHEFFE, H. The analysis of variance, vol. 72. John Wiley & Sons (1999).

[89] SCHMIDT, M., LE ROUX, N., AND BACH, F. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162 (2017), 83.

[90] SCHMINDER, E., ZIEGLER, M., DANAY, E., BEYER, L., AND BÜHNER, M. Is it really
robust? reinvestigating the robustness of anova against violations of the normal distribution.
European Research Journal of Methods for the Behavioral and Social Sciences, 6 (2010), 147.

[91] SCHOLKOPF, B. AND SMOLA, A. J. Learning with kernels: support vector machines, regu-
larization, optimization, and beyond. MIT press (2001).

https://doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1214/aoms/1177729586

BIBLIOGRAPHY 153

[92] SCHULMAN, J., LEVINE, S., ABBEEL, P., JORDAN, M., AND MORITZ, P. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897 (2015).

[93] SCUTARI, G., FACCHINEI, F., AND LAMPARIELLO, L. Parallel and distributed methods for
constrained nonconvex optimization—part i: Theory. IEEE Transactions on Signal Processing,
65, 1929.

[94] SCUTARI, G., FACCHINEI, F., LAMPARIELLO, L., SARDELLITTI, S., AND SONG, P. Par-
allel and distributed methods for constrained nonconvex optimization-part ii: applications in
communications and machine learning. IEEE Transactions on Signal Processing, 65, 1945.

[95] SCUTARI, G., FACCHINEI, F., LAMPARIELLO, L., AND SONG, P. Parallel and distributed
methods for nonconvex optimization. In Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on, pp. 840–844. IEEE (2014).

[96] SILVER, D., LEVER, G., HEESS, N., DEGRIS, T., WIERSTRA, D., AND RIEDMILLER, M.
Deterministic policy gradient algorithms (2014).

[97] SILVER, D., ET AL. Mastering the game of go with deep neural networks and tree search.
nature, 529 (2016), 484.

[98] SOLODOV, M. Incremental gradient algorithms with stepsizes bounded away from zero.
Computational Optimization and Applications, 11 (1998), 23. Available from: https:
//doi.org/10.1023/A:1018366000512, doi:10.1023/A:1018366000512.

[99] SPALL, J. C. ET AL. Multivariate stochastic approximation using a simultaneous perturbation
gradient approximation. IEEE transactions on automatic control, 37 (1992), 332.

[100] STEIN, C. ET AL. A bound for the error in the normal approximation to the distribution of
a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 2: Probability Theory. The Regents of the
University of California (1972).

[101] STEIN, C. M. Estimation of the mean of a multivariate normal distribution. The annals of
Statistics, (1981), 1135.

[102] STIRLING, A. J., HOWEL, D., MILLNER, P. A., SADIQ, S., SHARPLES, D., AND DICKSON,
R. A. Late-onset idiopathic scoliosis in children six to fourteen years old.: A cross-sectional
prevalence study. JBJS, 78 (1996), 1330.

[103] STOKES, I. A. AND GARDNER-MORSE, M. Analysis of the interaction between vertebral
lateral deviation and axial rotation in scoliosis. Journal of biomechanics, 24 (1991), 753.

[104] SULLIVAN, T. B., REIGHARD, F. G., OSBORN, E. J., PARVARESH, K. C., AND NEWTON,
P. O. Thoracic idiopathic scoliosis severity is highly correlated with 3d measures of thoracic
kyphosis. JBJS, 99 (2017), e54.

[105] SUTTON, R. S. AND BARTO, A. G. Reinforcement Learning: An Introduction. MIT Press
(2017).

[106] SUTTON, R. S., BARTO, A. G., ET AL. Introduction to reinforcement learning, vol. 2. MIT
press Cambridge (1998).

https://doi.org/10.1023/A:1018366000512
https://doi.org/10.1023/A:1018366000512
http://dx.doi.org/10.1023/A:1018366000512

154 BIBLIOGRAPHY

[107] SUTTON, R. S., MCALLESTER, D. A., SINGH, S. P., AND MANSOUR, Y. Policy gradi-
ent methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pp. 1057–1063 (2000).

[108] TASSA, Y., EREZ, T., AND TODOROV, E. Synthesis and stabilization of complex behaviors
through online trajectory optimization. In 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 4906–4913. IEEE (2012).

[109] TODOROV, E., EREZ, T., AND TASSA, Y. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE (2012).

[110] TSENG, P. AND YUN, S. Incrementally updated gradient methods for constrained and
regularized optimization. Journal of Optimization Theory and Applications, 160 (2014),
832. Available from: https://doi.org/10.1007/s10957-013-0409-2, doi:10.1007/
s10957-013-0409-2.

[111] VAPNIK, V. N. Statistical Learning Theory. Wiley (1998).

[112] WOODSEND, K. AND GONDZIO, J. Hybrid mpi/openmp parallel linear support vector ma-
chine training. Journal of Machine Learning Research, 10 (2009), 1937.

[113] XIAO, L. AND ZHANG, T. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24 (2014), 2057.

[114] YAMAN, O. AND DALBAYRAK, S. Idiopathic scoliosis. Turkish neurosurgery, 24 (2014), 646.

[115] YANG, M., ZHAO, Y., YIN, X., CHEN, Z., YANG, C., LI, L., AND LI, M. Prevalence,
risk factors, and characteristics of the “adding-on” phenomenon in idiopathic scoliosis after
correction surgery: A systematic review and meta-analysis. Spine, 43, 780.

[116] ZAINA, F., DONZELLI, S., LUSINI, M., AND NEGRINI, S. How to measure kyphosis in
everyday clinical practice: a reliability study on different methods. Studies in health technology
and informatics, 176 (2012), 264.

[117] ZHI-QUAN, L. AND PAUL, T. Analysis of an approximate gradient projection method
with applications to the backpropagation algorithm. Optimization Methods and Software,
4 (1994), 85. Available from: https://doi.org/10.1080/10556789408805580, doi:
10.1080/10556789408805580.

[118] ZHU, J., ROSSET, S., TIBSHIRANI, R., AND HASTIE, T. J. 1-norm support vector machines.
In Advances in neural information processing systems, pp. 49–56 (2004).

https://doi.org/10.1007/s10957-013-0409-2
http://dx.doi.org/10.1007/s10957-013-0409-2
http://dx.doi.org/10.1007/s10957-013-0409-2
https://doi.org/10.1080/10556789408805580
http://dx.doi.org/10.1080/10556789408805580
http://dx.doi.org/10.1080/10556789408805580

	The finite sum problem
	Neural Networks training problem
	Policy optimization problem for Reinforcement Learning
	Support Vector Machines training problem

	General assumptions, definitions and preliminaries
	Optimization for large-scale unconstrained finite sum problems
	Deterministic setting
	Incremental Gradient method
	Incremental Aggregated Gradient method
	Double Incremental Aggregated Gradient method

	Stochastic setting
	Stochastic Gradient method
	Stochastic Average Gradient method
	Finito method
	Stochastic Variance Reduced Gradient method
	SAGA method - a bridge between SAG and SVRG

	Comments on the convergence properties of the two settings

	New dynamic batching techniques based on the Fisher test
	Motivation
	Introduction and literature review
	The Fisher test for dynamic batching
	Theoretical analysis
	Implementation details
	How to leverage input data information

	Numerical experiments
	Experimental setup
	Results and discussion

	Conclusions and future developments
	Appendix - Complete numerical results

	DFO approaches for policy optimization in RL
	Introduction and motivation
	Brief outline of reinforcement learning
	DFO algorithms for policy optimization

	Preliminary analysis
	Gaussian smoothing
	Finite differences

	Convergence analysis of a stochastic DFO method
	Fixed sample size
	Dynamic batching

	Preliminary experiments
	Discussion and future directions
	The optimization landscape
	Future directions

	Distributed algorithms for linearly constrained convex problems
	Introduction and motivation
	Distributed algorithms for convex problems with linear coupling constraints
	Convergence analysis
	Distributed implementation
	Numerical experiments

	DNN and SVM to detect postural diseases
	Introduction
	Data analysis and preprocessing
	Rasterstereography acquisition of data
	Data preprocessing
	Feature selection procedure

	Results and discussion
	Classification models
	Performance measures
	Classifiers tuning and training
	Performance of unsupervised classifiers
	Performance of supervised classifiers

	Clinical comments and conclusion
	Clinical comments
	Conclusion

