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ABSTRACT
About eight decades ago, Zipf postulated that the word frequency

distribution of languages is a power law, i.e., it is a straight line on a

log-log plot. Over the years, this phenomenon has been documented

and studied extensively. For many corpora, however, the empirical

distribution barely resembles a power law: when plo�ed on a log-

log scale, the distribution is concave and appears to be composed

of two di�erently sloped straight lines joined by a smooth curve. A

simple generative model is proposed to capture this phenomenon.

�e word frequency distributions produced by this model are shown

to match the observations both analytically and empirically.

1 INTRODUCTION
�e distribution of word frequencies is a fundamental phenotype

of a language. Word frequency distributions have been studied

by statisticians and linguists since the statistics of word usage

yield valuable insights into the language, its construction, and its

evolution. �ese distributions have been long-studied outside of

statistics and linguistics as well. In information retrieval, word fre-

quency distributions (and sometimes the ranks of word frequency)

are directly used by many algorithms for many tasks, e.g., weight-

ing the signi�cance of documents and query terms [2, 36], text

classi�cation [6, 26], topic distillation [7, 13, 38], latent semantic

analysis [24, 25], and so on. �e word frequency distribution plays

a central role in determining the size of inverted indices [14, 30],

the compression ratio of natural texts [11, 12].

In his pioneering work, Zipf postulated that the frequency of

any word in the language is inversely proportional to a power of

its rank [44, 45]. On a log-log plot, with the x-axis representing the

rank, and the y-axis representing the frequency, the distribution

would thus appear as a straight line with a negative slope. Sub-

sequent studies have con�rmed similar phenomena on di�erent

corpora and genre. Even though the actual parameters can depend

on the corpus, the power-law phenomenon itself was shown to be

pervasive and robust. �ere have been many a�empts to explain
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and re�ne Zipf’s law [10, 15, 19, 20, 28, 29, 31, 34, 40, 41]. Addition-

ally, Zipf’s law has been considered in the context of document

retrieval by IR systems [1–3, 8, 9].

In large-scale empirical studies, however, the rank-vs-frequency

distributions do not appear as straight lines on a log-log plot. In-

stead, they exhibit a bend that makes the curve look concave; we

call the rank value at which the bend occurs as the knee. Interest-

ingly, the bend is consistent with Zipf’s original plot: the maximum

rank in his plots is close to 10
3
, whereas the knee is usually ob-

served at a rank that is an order of magnitude higher. It is likely

that the lack of computing power and automated tools made it in-

feasible for Zipf to move to a rank signi�cantly larger than 10
3
. �is

concavity-in-the-tail phenomenon has been noted empirically [23].

In this work we focus on the concavity phenomenon of the word

frequency distribution. We postulate that the concavity arises from

a seamless fusion of two power laws around the knee; this fusion

is the byproduct of a natural corpus generative model that we

introduce. To validate our model, we examine a variety of corpora,

ranging from novels to news articles, and �t the functional form

that comes out of our process to their word frequency distributions.

�e �t is surprisingly accurate, at the head, the tail, and the knee

of the distributions.

Informally stated, our model works in two stages. In the �rst

stage, a vocabulary for the corpus is generated by choosing the

words from a power law distribution on the language. In the second

stage, the corpus is generated by sampling the vocabulary words

according to the same or another power law distribution. We show

that this two-stage process gives rise to a distribution that is made

up of two fused power laws. We validate this model by showing

that the distortion between the distributions produced by our model

and the empirical distributions is quite small. We also argue that a

double Pareto distribution, which is a natural candidate to explain

two fused power laws, would not be able to produce such a small

distortion. �e use of a two-stage process is convenient for mod-

eling corpora obtained from di�erent topics (e.g., sports, politics),

where the �rst stage selects the topic vocabulary. Latent factor

models [24, 25] also use a two-level process for text generation;

however, each word in the text is determined by a mixture of topics

rather than a single topic.

We then turn our a�ention to the distribution of k-grams, which

has also been studied [17, 21]. It has been observed for some English

and Chinese corpora that the distribution becomes �a�er as k
increases [22, 23]. However, to the best of our knowledge, no work

has tried to explain this phenomenon. We prove analytically that

the k-gram distributions become �a�er as k increases, under the

simple assumption that the head of the word frequency distribution

is a power law.
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2 RELATEDWORK
Power laws, also known as Pareto distributions or Zipf’s laws, have

been observed in a broad range of se�ings, i.e., city populations,

sizes of earthquakes, number of citations received by papers, sales

of books, number of hits on webpages, etc. [33]. According to

Mitzenmacher [32], “�e �rst known a�ribution of the power law

distribution of word frequencies appears to be due to Estoup [18],

although generally the idea (and its elucidation) are a�ributed to

Zipf [44–46].”

�e power law, as stated by Zipf [46] (y = Kx−α ), appears as a

straight line on a log-log plot. Mandelbrot [29] extended this form

to y = K (B + x )−α to obtain a more accurate �t for high-frequency

words. On the other hand, Simon [41] developed a stochastic pro-

cess based on the work of Yule [43]. Sichel [40] studied empirical �t

of word frequencies with compound Poisson distribution. Baayen

[5] compared di�erent statistical models proposed in previous work

for word frequency distribution. �ese early papers used small-

scale datasets (by today’s standards) and therefore do not neces-

sarily provide a good �t to the tail of large datasets. Ha et al. [23]

noted that on large-scale datasets, the word frequency distribution

clearly has a concavity when plo�ed on the log-log scale. �at is,

the curve bends away from the single straight line predicted by

Zipf’s law. �is phenomenon was more pronounced when they

looked at the distribution of Chinese characters. Ha et al. [23] did

not a�empt to explain the form of the curves. �e double Pareto

distribution, which approximates the concavity with two straight

lines, has also been considered for approximating word frequency

distributions [14]; the �t achieved by our model is signi�cantly

more accurate than the one achievable by double Pareto distri-

butions (see Section 5.3). Baayen [4] studied similarity relations

between words and word frequency distribution. He also noted

that function words straighten out the head of the distribution and

complex words straighten the tail. Samuelsson [37] related Zipf’s

law to Turing’s local re-estimation formula and van Leijenhorst

and van der Weide [42] related Zipf’s law to Heap’s law.

�ere has been some work on studying the distribution of k-

grams as well. Ha et al. [22, 23] studied k-grams in English and

Chinese and observed that the distribution became �a�er as k
increased. Character k-grams and k-tuple distributions were also

studied in [17] and [21]. None of these works a�empted to explain

these phenomena; in our work, we analytically establish the form

of the k-gram distributions and show these become �a�er as k
increases.

Various generative models have been proposed for producing

power laws. Zipf [46] hypothesized that the power law is the

result of the “principle of least e�ort”; this was re-examined later

by Mandelbrot [29], Ferrer i Cancho and Sole [20], and Ferrer i

Cancho et al. [19], who developed arguments for deriving power

law distributions based on information-theoretic considerations.

In another line of research, people have argued that preferential

a�achment can lead to power laws. �e general argument can

be traced back to Yule [43], and a generalization was proposed

by Simon [41]. Perc [34] proposes a preferential a�achment process

for the evolution of a language, and uses it to derive the Zipf’s law.

Power laws can also be obtained through the “monkeys typing

randomly” (or “not-so-randomly”) processes [15, 28, 31]. None of

these works a�empted to explain the concavity in the tail of the

word frequency distribution. Mitzenmacher [32] provides a good

survey on the topic of power laws.

3 EMPIRICAL ANALYSIS
We �rst study if the concavity in word frequency distribution is

pervasive and robust, i.e., does it exist over a broad range of datasets

and does it exist even when we restrict the data to a speci�c genre

or topic? A plausible hypothesis for observing the concavity could

be that for a collection of text restricted to a given genre or a

given topic, the distribution would be straighter; and mixing such

distributions leads to the concavity. To test this hypothesis, we

constructed di�erent datasets that can be split by di�erent criteria.

What we observe is that the concavity exists for each sub-sample.

3.1 Datasets
We conducted our empirical studies over the following four datasets.

�e �rst is Gutenberg, which is a mixed-genre, multi-topic, multi-

lingual, and multi-author corpus of electronic books that are in the

public domain from the Gutenberg project. We use the average of

the birth and death years of the author as the approximation for the

publication year of the book. We took the subset of 16,797 books

that were wri�en in English and has a publication year between

the 17th century and the 20th century, and grouped them into four

disjoint time periods (by century). �e vocabulary sizes range from

100K words to over 800K words, and corpus sizes from 10 million

to over 500 million tokens. In addition, we can also sample this

dataset by authors.

�e second dataset is News, which is a large-scale collection of

news articles on two topics, namely, sports and politics. �e third

dataset is ANC (American National Corpus), which is a collection

of American English, with wri�en texts of di�erent genres and

transcripts of spoken data produced post 1990. �e fourth dataset

is Europarl, which is a multilingual collection of European Parlia-

ment proceedings [27]. It includes semantically equivalent content

in 21 European languages. �e size of the text in each language

ranges from 10 million to 50 million tokens. �is allows us to exam-

ine the word frequency distribution in multiple languages without

having to worry whether di�erences were due to di�erences in

topics or genres.

All datasets went through the same preprocessing, where all

punctuation marks were removed, and all remaining tokens lower-

cased. Table 1 shows the main statistics of each of these four

datasets.

vocabulary size corpus size

dataset (# types) (# tokens)

Gutenberg 19
th

400,876 185M

News (politics) 256,758 31M

ANC (wri�en) 115,806 8.6M

Europarl 87,554 56M

Table 1: Details of the four datasets
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Figure 1: Word frequency distribution in the Gutenberg
datasets: books in di�erent time period (centuries), as well
as a random subset of authors, and the subset of authors
whose names begin with “J”.

Figure 2: Word frequency distribution in news articles: pol-
itics vs sports

3.2 Word frequency distribution
First, we plot the empirical observations of word frequency distri-

butions in di�erent datasets on a log-log scale. We observe a clear

concave shape over a broad range of corpora (Figures 1–3). Figure

1 shows word frequency distributions for di�erent time periods in

the Gutenberg dataset. As we can see, while the time periods (and

vocabulary sizes) di�er greatly, all curves closely resemble each

other. In fact, the curve for AuthorJ (authors whose names begin

with “J”) largely follows the same shape. In subsequent plots, we

include the AuthorJ curve as a reference point.

Figure 3: Word frequency distribution in 21 European lan-
guages. English is shown in blue solid line, other languages
shown in dotted lines

Figure 2 shows word frequency distributions for two di�erent

topics (politics vs sports) in News. We observe a similar concave

shape for both of them as AuthorJ. Figure 3 shows that the concave

shape exists in a broad range of (21 European) languages. Further-

more, one could have hypothesized that smaller vocabulary leads to

a straighter line (given previous studies with smaller datasets that

focused on the straight-line Zipf distribution); but note the curve

for English exhibits a more concave shape than that for AuthorJ,

even though it is a smaller corpus and arguable over a more focused

range of topics with less variations in styles.

3.3 k-gram frequency distribution
Figure 7 plots the empirical distribution of k-grams for k = 1 up

to 5. Given the space constraints, we include only the plot for the

Europarl data (where the unigram frequency distribution exhibits

the highest degree of concavity). As observed in [22, 23] for some

English and Chinese corpora, the lines get �a�er as k grows.

4 MODEL
We de�ne a simple and natural stochastic process for generating a

corpus in a language. �e process takes place in two stages. In the

�rst stage, a founding text for the topic is wri�en by choosing words

from the language; the set of distinct words used in the founding

text will form the vocabulary of the topic. In the second stage, the

corpus itself is generated using the words in the vocabulary.

Let the parameters α , β ∈ (0, 1), γ > 0, and a positive integer n,

be given. Here, α is the exponent of the power law P
(α )
|U | de�ned

over the universe of words U ; n will be length of the founding text;

β determines the position of knee (which will be located around

nβ ). �e parameter γ is not necessary, but lends more �exibility to

our model as we will see below.

We set N =
⌈
n

1−α β
1−α

⌉
= |U |, i.e., N is the number of words in the

language. �e distribution on the language will be the power law
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corpus α β γ n

Gutenberg 19
th

0.618 0.795 1.034 400,876

News (politics) 0.569 0.725 0.898 256,758

ANC (wri�en) 0.595 0.866 0.996 115,806

Europarl 0.691 0.800 0.986 87,554

Table 2: Fitted parameters for various corpora.

P
(α )
N . As we will see later, this choice of N guarantees that the knee

will be positioned close to the rank nβ .

(i) In the �rst stage, we choose n words independently from U

according to the power law P
(α )
N to produce the founding text of

the topic. �e vocabulary V of the topic will be the set of words

that appeared at least once in the founding text. As we will see

below, with high probability we will have |V | ≈ n.

(ii) In the second stage, we use a second power law P
(γ )
N over

the language, possibly but not necessarily di�erent from P
(α )
N . A

corpus for the topic is generated by choosing words independently

from P
(γ )
N restricted to the vocabulary (i.e., support) V .

�e use of a two-stage process is convenient to model corpora

belonging to di�erent topics (e.g., sports, politics): the �rst stage

e�ectively determines the vocabulary of the topic. �e assumption

of choosing words fromV according to the original power law P
(α )
N

has been made before; see, for example [40].

In our model, the parameter γ gives additional �exibility, since

one is not forced to use the same power law exponent α to choose

words from the vocabulary. If we insist on model parsimony, the γ
parameter can be removed by choosing γ as a function of α .

Figure 5 shows the best �t of our model (formalized in the next

Section) to four empirical corpora. Note that the �t from our model

traces the empirical distribution quite accurately (we discuss this

in Section 5.4). We include the parameters for each �t in Table 2.

5 THEORETICAL ANALYSIS
We prove in this section that, while having a very small number

of parameters, our model is able to generate curves that match

the empirically observed curves. We then study the distribution of

k-grams and prove that the distribution gets �a�er as a function of

k , which matches the empirical observation as well.

All the proofs missing from this section can be found in the

Appendix.

5.1 Preliminaries
We begin with some basic notation. Let the upper incomplete

Gamma function be given by Γ(a,b) =
∫ ∞
b xa−1e−xdx ; let Γ(a) =

Γ(a, 0). �e function Γ(a,b) is well-de�ned for every real a if b > 0

and is well-de�ned for every a > 0 if b = 0. For each integer k ≥ 1,

we have Γ(k ) = (k − 1)!.
Let ζ (α ) =

∑∞
i=1

i−α be the value of the Riemann Zeta function

at α > 1. For α > 0, and an integer N ≥ 1, let ζN (α ) =
∑N
i=1

i−α .

Suppose that α > 1, and let Pα (i ) = i−α /ζ (α ) for each integer

i ≥ 1. �en, P (α ) is the power law distribution with exponent α ,

de�ned on the universe U = {1, 2, . . .} = N.

Also, let [N ] = {1, 2, . . . ,N }. For α > 0, if we let U = [N ], we

have that the truncated power law distribution on U is given by

P
(α )
N (i ) = i−α /ζN (α ), for i ∈ U .

We �rst obtain some bounds on ζN (α ) and P
(α )
N (i ).

Lemma 5.1. For each 0 < α < 1, it holds that ζN (α ) = N 1−α

1−α ±

O (1) and P
(α )
N (i ) =

(
1 ±O

(
N α−1

))
i−α 1−α

N 1−α .

5.2 Word frequency distribution
In this section we analyze the word frequency distribution produced

by the generative model. We proceed to study the probability R (i )
that the ith word, 1 ≤ i ≤ N , appears in the vocabulary V . Since V
was constructed using n independent samples, we have

R (i ) = 1 − (1 − P
(α )
N (i ))n .

By N =
(
1 +O

(
n−

1−α β
1−α

))
· n

1−α β
1−α , and by Lemma 5.1, we have

P
(α )
N (i ) =

1 − α

iαn1−α β
−O

(
i−αn2α β−2

)
.

�at is,

P
(α )
N (i ) =

(
1 −O

(
nα β−1

))
1 − α

iαn1−α β
.

Since 0 < α , β < 1 the multiplier is no worse than 1 − o(1).
Our analysis begins by showing thatR (i ) — that is, the probability

that the ith term of the language appears in the vocabulary — can

be expressed by a simple exponential term.

Lemma 5.2. R (i ) = (1 ± o(1))

(
1 − e−(1−α )

nα β
iα

)
.

Lemma 5.2 can be shown by approximating P
(α )
N (i ) as in Lemma 5.1,

since the error term in Lemma 5.1 is small enough to prove the

statement of Lemma 5.2.

We then use the new expression of R (i ) to compute the expected

number of terms with rank at most k that appears in the vocabulary.

Speci�cally, let Uk ⊆ U be the set of words that have rank at most

k in P
(α )
N . We focus on the number of words in Uk that make it to

the vocabulary V . I.e., we focus on the random variable |V ∩Uk |.

Observe that E[|V ∩Uk |] =
∑k
i=1

R (i ). Lemma 5.3 shows that this

expectation is very well approximated by the function D (k ) (we

use this notation as a shorthand for Dα,nβ (k )):

D (k ) = k −
(1 − α )1/α

α
nβ Γ *

,
−

1

α
, (1 − α ) *

,

nβ

k
+
-

α
+
-
.

Lemma 5.3. E[|V ∩Uk |] = (1 ± o(1))D (k ).

�e above lemma can be shown by integrating the expression of

R (i ) that we obtained in Lemma 5.2, and by controlling the error

term.

�e next step of the proof is showing that D (k ) behaves like a

simple polynomial in the ranges k < o(nβ ) and k > ω (nβ ), i.e., for

all k far enough from the knee. �is will be key for proving that

the head and the tail of the �nal distribution will be power laws.

Lemma 5.4. If k < o
(
nβ

)
, then D (k ) = (1±o(1))k . If k > ω

(
nβ

)
,

then D (k ) = (1 ± o(1))nα βk1−α .
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�e proof of Lemma 5.4 is relatively simple. We just have to use

the approximations of the R (i )’s given by Lemma 5.2, i.e., R (i ) =

1 − o(1) if i < o
(
nβ

)
, and R (i ) = (1 ± o(1))nα β 1−α

iα if i > ω
(
nβ

)
.

�en, the linearity of expectation, and Lemma 5.2, directly entail

the claim.

Negative dependence can be used to prove the next Lemma,

which simply states that with high probability for each k ∈ [N ],

the random variable |V ∩Uk | will be quite close to its expectation

E[|V ∩Uk |]; by Lemma 5.3, that random variable will then be very

close to the function D (k ) itself.

Lemma 5.5. With probability 1 − o(1), we will have that for each
k ∈ [N ],

|V ∩Uk | = (1 ± o(1)) · D (k ).

Lemma 5.5 allows us to get an expression for the frequency curve

of the corpus. For k ≥ 1, the frequency curve can be expressed

parametrically as

x (k ) = D (k ), and y (k ) =W · k−γ ,

whereW is the normalization factor. In other words, the abscissa

x (y) that one has to associate to a given ordinate y is equal to

x (y) = D
((

W
y

)1/γ
)
.

Finally, we can state our main result about the word frequency

distribution of the generative model. It follows as a corollary from

Lemma 5.4 and Lemma 5.5.

Theorem 5.6. With probability 1 − o(1), we will have:
(i) |V | = (1 ± o(1))n, and
(ii) for each rank 1 ≤ k ≤ |V |, the probability associated to the word
of rank k in V will be proportional to

(1 ± o(1)) · k−γ , if k = o
(
nβ

)
,

(1 ± o(1)) ·
(

k
nα β

)− γ
1−α , if k = ω

(
nβ

)
.

�eorem 5.6 states the main properties of the word frequency

distribution: the model produces a vocabulary of size close to n,

the head of the vocabulary frequency curve follows a power law

with exponent −γ , and the tail follows a power law with exponent

−γ/(1−α ). Moreover, our parametric de�nition of the curve gives a

precise description of how the two power laws merge in one another.

�is is important for us since we want to precisely �t the curve to the

datasets we have. Figure 4 shows the word frequency distribution

produced by our model. Observe that our model produces two

power laws that are joined around the knee at nβ , as expected.

5.3 Relation with double Pareto
One might wonder why we did not use a simple double Pareto curve

(as in [14]) to model the distributions. �e main reason is that the

ratio of the probability at the rank i ' nβ of the double Pareto curve

(with the correct power laws, and the correct knee) and of our curve

at the same i is quite large. We will show in this section that (i)

the multiplicative distortion is at least

(
e

e−1

)γ
= (1.5819 . . .)γ for

α → 0, and (ii) the distortion diverges exponentially to ∞ as α
approaches 1. Moreover, we numerically obtain that at α = 0.6

(close to empirical numbers; see Table 2), the distortion becomes

(3.0270 . . .)γ . Later in Section 5.4, we empirically analyze the dis-

tortion in two of our corpora.

Figure 4: �e result of an execution of the stochastic process
with α = 1

2
, β = 2

3
, γ = 9

10
, n = 10

6 and N = n
1−α β
1−α = 10

8. In this
execution, the vocabulary V ended up with a cardinality of
|V | = 984328, i.e., so many distinct words were randomly se-
lected in the �rst stage of the process. �e curve represents
the probability distribution of the vocabulary. �e head of
the curve follows a power law with exponent −γ = −0.9

and the tail of the curve follows a power law with exponent
−

γ
1−α = −1.8. Observe that the two power laws cross at an

abscissa value close to nβ = 10
4.

We now show how this distortion can be computed, and obtain

its limiting values at α = 0, 1. First, for a given α , let kα be the

minimum integer such that D (kα ) ≥ nβ . Observe that kα ≥ nβ .

�e probability of the

⌈
nβ

⌉
th word in our model’s dictionary will

then be (1 ± o(1)) ·W · k
−γ
α for some normalizing factorW .

Consider the double Pareto curve having the same head and tail

power laws of our curve, and the same knee nβ . �e value of this

double Pareto curve at the

⌈
nβ

⌉
th word will be (1±o(1)) ·W ·n−βγ .

�erefore, the distortion of the two curves at the

⌈
nβ

⌉
th word (i.e.,

at the knee) for a given α , as n tends to in�nity, is at least (dα )
γ

,

where

dα = lim inf

n→∞

kα

nβ
.

We show in Lemma 5.7 that limα→0
+ dα =

e
e−1

Moreover, we

will show in Lemma 5.8 that, as α converges to 1, dα diverges at

least as fast as c1/(1−α )
for some constant c > 1.

We state the two Lemmas, and brie�y comment on how they

can be proved.

Lemma 5.7. For 0 < α < 1

2
, we have

kα =
( e

e − 1

±O (α ln 1/α )
)
· nβ .

A heuristic proof of the above statement would argue that, if

α = 0, then all the terms are equally likely to be chosen, i.e., they

have probability N−1
, with N = n

1−α β
1−α = n. In other words, the
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vocabulary is constructed by throwing n balls (the words in the

founding text), into N = n bins (the words of the language). By

the Cherno� bound, any given set of t � 1 bins will be hit by

approximately t balls with high probability. Moreover, by classic

balls-in-bins arguments, the
e

e−1
·nβ balls that hit the �rst

e
e−1
·nβ

bins will be distributed across approximately nβ distinct bins with

high probability (essentially because of the Poissonian approxima-

tion of the binomial distribution). Hence, kα ≈
e

e−1
· nβ .

�e above reasoning can be made formal, so that it can be applied

to small α > 0.

Finally, we show that in the opposite regime, α = 1 − ϵ , dα
diverges to in�nity at an exponential rate.

Lemma 5.8. �ere exists a constant c > 1 such that, for all 1

2
<

α < 1, we have

kα ≥ c
1

1−α · nβ .

�e above statement can be proven by partitioning the set of

words of index up to c
1

1−α · nβ into buckets in such a way that

words in a given bucket have roughly the same probability of being

selected in the vocabulary. �e bucketing makes it easy to compute

the expected number of words per bucket that end up in the vocab-

ulary. Finally, adding up these expected numbers gives the above

lower bound.

5.4 Fitting
�e parameters of the ��ing were obtained by minimizing the

Kullback-Leibler divergence DKL (P | |E) of our model’s frequency

distribution P from the empirical distribution E. I.e., given E, we

searched for the P that minimizes DKL (P | |E) =
∑
i

(
P (i ) · ln

P (i )
E (i )

)
.

More precisely, if the empirical distribution E was over n distinct

words then, given a triple of parameters (α , β,γ ), we computed a

candidate distribution P = Pn,α,β,γ by le�ing, for each i = 1, . . . ,n,

P (i ) be proportional to k
−γ
i with ki equal to the solution of i =

Dα,nβ (ki ).
We used a brute-force approach to guess the optimal ��ing

parametersα , β ,γ . �e results are reported in Table 2. �e empirical

curves, and their ��ings, are shown in Figure 5. To show how much

be�er our curve’s �ts are (with respect to the double Pareto �ts),

we plot in Figure 6 the ratios between the probabilities given by our

curve and the actual distribution, and those given by double Pareto

and the actual distribution, for the Gutenberg and News corpora.

6 K-GRAM FREQUENCY DISTRIBUTION
Let P (α ) be the power law distribution with exponent α > 1 over

an in�nite languageU = N. Given an integerk ≥ 1, let P (α,k ) be the

probability distribution onk-tuples 〈u1, . . . ,uk 〉, whereu1, . . . ,uk ∈

U are chosen independently from P (α ) . We now show analytically

that (i) the distribution of P (α,k ) will be close to the original power

law P (α ) and (ii) the curves corresponding to k-grams will become

�a�er as k increases, when plo�ed on a log-log scale; this phenom-

enon can be observed empirically in Figure 7.

Theorem 6.1. If we sort the k-tuples decreasingly by their proba-
bilities in P (α,k ) , then the probability of the r th k-tuple will be equal

Figure 5: �e empirical and the (�tted) theoretical curves of
four corpora.
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Figure 6: A log-log plot of the ratios between our �tted curve
(resp., the Double Pareto curve) and the empirical curve, at
word ranks 500 to 50000 (that is, around the knee). �e verti-
cal dashed line represents the position of the Double Pareto
knee. Our curve is a very good multiplicative approxima-
tion of the empirical curve (the ratios induced by our curve
are quite close to 1), and generally amuch better approxima-
tion thanDouble Pareto; themaximum ratios, or distortions
(see Section 5.3), incurred by Double Pareto happen around
the knees: the ratios, there, are close to 2.8 in the Gutenberg
corpus, and to 2.3 in the News corpus.

to

(1 ± or (1)) · ζ (α )
−k · Γ(k )−α · *

,

ln
k−1 r

r
+
-

α

.

Proof. Our goal is to compute the position (or rank) ri1, ...,ik
of the product P (α ) (i1) · · · P

(α ) (ik ) in the ordered multiset

{
P (α ) (j1) · · · P

(α ) (jk ) | j1, . . . , jk ∈ Z
+

}
.

In other words, we aim to compute the number of tuples 〈j1, . . . , jk 〉

such that P (α ) (i1) · · · P
(α ) (ik ) < P (α ) (j1) · · · P

(α ) (jk ). Rewriting

this condition using the fact p (i ) ∝ i−α and le�ing n = i1 · · · ik , we

get

r = rn = ��
{
〈j1, . . . , jk 〉 | j1 · · · jk < n

}��

=
n ln

k−1 n

Γ(k )
+O (n ln

k−2 n),

Figure 7: k-grams frequency distribution for the Europarl
dataset (English).

Figure 8: Computed k-gram distribution, α = 1.5.

which follows from [35, 39]. Inverting this, we obtain

n = (1 + or (1))Γ(k )
r

ln
k−1 r

.

�e proof is concluded by recalling that the probability of the tuple

〈i1, . . . , ik 〉 is

P (α ) (i1) · · · P
(α ) (ik ) = ζ (α )

−kn−α . �

Observe that our �eorem gives sharp bounds on the probability

of the r th k-gram, as r diverges. Figure 8 shows the k-gram dis-

tribution computed with a synthetic power law distribution with

α = 1.5; Figure 9 shows the curves predicted by �eorem 6.1. We

can see that the empirical curves agree asymptotically with the

theoretical estimates.
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Figure 9: k-grams distribution using �eorem 6.1, α = 1.5.

7 CONCLUSIONS
In this paper we took a closer look at the word frequency distribu-

tion. We observed a knee, leading to a concavity, in the empirical

distributions of many di�erent kinds of corpora, and proposed a

natural text generation model to explain the knee and the concavity.

We then analytically showed that our model produces distributions

nearly identical to the empirically observed ones. We also analyzed

the k-gram distribution that one obtains by picking words indepen-

dently from a power law distribution. We proved that the k-gram

distribution becomes �a�er as k increases; this phenomenon had

only been empirically observed in the literature but never analyzed.

Our generative model opens up many interesting questions: can

the distributions it produces be used in applications such as text

compression, translation, and information retrieval?
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[35] Adolf Piltz. 1881. Über das Gesetz, nach welchem die mi�lere Darstellbarkeit der
natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse
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APPENDIX
Proof of Lemma 5.1
First we upper bound ζN (α ) with one (the �rst term of its sum)

plus the area under x−α in the interval [1,N ],

ζN (α ) ≤ 1 +

∫ N

1

x−α dx =
N 1−α − α

1 − α
.

Analogously, a lower bound is given by the area under (x + 1)−α

in the interval [0,N ],

ζN (α ) ≥

∫ N

0

(x + 1)−α dx ≥
N 1−α − 1

1 − α
.

If α < 1, using the expression for P
(α )
N (i ), we get

i−α
1 − α

N 1−α − α
≤ P

(α )
N (i ) ≤ i−α

1 − α

N 1−α − 1

. �

Proof of Lemma 5.2
If i < o(nβ ), then observe that, by R (i ) = 1 − (1 − P

(α )
N (i ))n and

P
(α )
N (i ) =

(
1 −O

(
nα β−1

))
1−α

iαn1−α β , we have

R (i ) = 1 − o(1). (1)

�e right-hand expression in our claim simpli�es to:

(1 ± o(1))
(
1 − e−ω (1)

)
= 1 ± o(1).

�e claim is thus proved.

Next assume that i is a positive integer such that i > ω (n2β−1/α ).
Observe that, by α , β < 1, this case includes all the i’s that are not

part of the previous case.

For 0 < a < 1

2
, and b > 0, it holds that

e−ab ≥ (1 − a)b ≥ e−ab−2a2b .

Recall that 1−R (i ) = (1− P
(α )
N (i ))n . �en, we bound the following

quantities, using (5.2):

(1) nP
(α )
N (i ) = (1 − α )nα β i−α +O

(
nα β
iα nα β−1

)
. Observe that

the error term is o(1) for each i in our range.

(2) 2n
(
P
(α )
N (i )

)
2

= Θ
((
nP

(α )
N (i )

)
P
(α )
N (i )

)
= O

(
nα β
iα nα β−1

)
,

since P
(α )
N (i ) = O

(
nα β−1

)
for each i ≥ 1.

It follows that

1 − R (i ) = e
−(1−α )nα β i−α±O

(
nα β
iα nα β−1

)

= *
,
1 ±O *

,

nα β

iα
nα β−1+

-
+
-
e−(1−α )n

α β i−α .

Moreover, since 0 ≤ e−(1−α )n
α β i−α ≤ 1, we have

R (i ) = 1 − e−(1−α )n
α β i−α ±O *

,

nα β

iα
nα β−1+

-
Observe that, if i ≤ nβ , then we have 1 − e−(1−α )n

α β i−α ≥ 1 −

e−1+α = Θ(1), while O
(
nα β
iα nα β−1

)
≤ O

(
nα β−1

)
. �at is, R (i ) =

(1 ± o(1))
(
1 − e−(1−α )n

α β i−α
)
.

On the other hand, if i ≥ nβ , then if we let x be the exponent

of the exponential term, we have 0 ≤ x ≤ 1. For this range of

x ’s, it holds e−x ≤ 1 − x
2

— equivalently, 1 − e−x ≥ x
2

. �erefore,

1 − e−(1−α )n
α β i−α ≥ 1

2
(1 − α )nα β i−α . �erefore, even for i ≥ nβ ,

we have

R (i ) = (1 ± o(1))
(
1 − e−(1−α )n

α β i−α
)
. �

Proof of Lemma 5.3
For each integer k ≥ 1 and for each non-decreasing and non-

negative function f (x ) admi�ing a �nite integral in [0,k + 1], we

have

FL =

∫ k

0

f (x )dx ≤
k∑
i=1

f (i ) ≤

∫ k+1

1

f (x )dx = FU .

Suppose that 0 ≤ f (x ) ≤ 1. �en,

FU − FL =

∫ k+1

k
f (x )dx −

∫
1

0

f (x )dx ≤ 1,

and hence

∑k
i=1

f (i ) = FL + ξ for some ξ ∈ [0, 1].

Observe that for all q > 0 and α ∈ (0, 1), the function f (x ) =

e−qx
−α

satis�es the above conditions. We also have∫
f (x )dx =

1

α
q

1/α Γ
(
−

1

α
,qx−α

)
+ c,

where c is a constant. By choosingq = (1−α )nα β , we get e−(1−α )
nα β
iα =

f (i ). Now,

FL =
k∑
i=1

e−(1−α )
nα β
iα − ξ =

lim

ϵ→0
+



(
(1 − α )nα β

)1/α

α
Γ *

,
−

1

α
,
(1 − α )nα β

xα
+
-



k

x=ϵ

=

nβ
(1 − α )1/α

α
Γ *

,
−

1

α
, (1 − α ) · *

,

nβ

k
+
-

α
+
-
,

since by de�nition limx→∞ Γ(a,x ) = 0. �us, we have

k∑
i=1

(
1 − e−(1−α )

nα β
iα

)
= D (k ) − ξ . (2)

Now, consider the �rst o(nβ ) terms of the LHS sum in (2). �e

exponent of e in each of them is ω (1), and therefore each of them

has value 1 − o(1). It follows that the LHS of (2) has value ω (1).
Since 0 ≤ ξ ≤ 1, we have

(1 ± o(1))
k∑
i=1

(
1 − e−(1−α )

nα β
iα

)
= D (k ).

�e claim then follows from Lemma 5.2 and the linearity of expec-

tation. �

Proof of Lemma 5.4
�e �rst part is implied directly by (1) and Lemma 5.3. Hence, let

k = ω
(
nβ

)
. Let us de�ne д =

⌈√
nβk

⌉
to be the ceiling of the

geometric mean of nβ and k . Observe that ω
(
nβ

)
< д < o(k ).
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Since R (i ) ≤ 1, we have

k∑
i=д+1

R (i ) ≤ E[|V ∩Uk |] ≤ д +
k∑

i=д+1

R (i ).

By Lemma 5.2, we have that R (i ) = (1 ± o(1)) · nα β 1−α
iα whenever

i > д, since д > ω
(
nβ

)
. �en, we can write:

k∑
i=д+1

R (i ) = (1 ± o(1)) (1 − α )nα β
k∑

i=д+1

i−α

= (1 ± o(1)) (1 − α )nα β
(
ζk (α ) − ζд (α )

)
= (1 ± o(1))nα βk1−α ,

where the last step follows from Lemma 5.1. �e value of the sum

is Θ
(
nα βk1−α

)
= ω

(
nβ

)
, since k > ω

(
nβ

)
. �erefore,

E[|V ∩Uk |] = (1 ± o(1)) · nα βk1−α .

Lemma 5.3 completes the proof. �

Proof of Lemma 5.5
Observe that, by Lemma 5.3, it is su�cient to prove that, with

probability 1−o(1), it will happen that, for each k ∈ [N ], |V ∩Uk | =
(1 ± o(1))E [|V ∩Uk |].

Let us de�ne X = nβ log
− 1

α n. We will use two arguments for

proving the claim: one that holds if k < o(X ), and one that holds if

k > ω
(
X 1−ϵ

)
, for any constant 0 < ϵ <

β
4

.

First, considerk < o(X ). Recall that we have P
(α )
N (i ) = Θ

(
1

n

(
nβ
i

)α )
.

�erefore, for i < o(X ), we have P
(α )
N (i ) > ω

(
logn
n

)
. For the same

i’s, therefore, we have

R (i ) ≥ 1 −

(
1 − ω

(
logn

n

))n
≥ 1 − n−ω (1) .

By the union bound, the probability that at least one of the terms

of rank i < o(X ) in U does not end up in V is n−ω (1)
. �e claim is

then proved for each k < o(X ).

Now consider k > ω
(
X 1−ϵ

)
. Let Yi, j be the indicator random

variable of the event “the jth term of the founding text happened

to be the ith term of the language”. �en, for each j, the variables

Y1, j ,Y2, j , . . . ,YN , j are negatively associated (see Chapter 3 of [16]).

Moreover, by closure under product, the variables Yi, j , for each

i ∈ [N ], j ∈ [n] are as a whole negatively associated. Finally,

since max is a monotone non-decreasing function the variables

Yi = maxj=1, ...,n Yi, j , i ∈ [N ], are also negatively associated —

the Cherno� bound can then be applied to their sum, that is, to∑k
i=1

Yi = |V ∩Uk |. �us, for each 0 < δ < 1,

Pr [
����V ∩Uk �� − E [

��V ∩Uk ��]�� ≥ δE [
��V ∩Uk ��]]

≤2e−
δ 2

3
E[ |V∩Uk |].

Since k > ω
(
X 1−ϵ

)
, we have E[|V ∩ Uk |] > ω

(
nβ−2ϵ

)
. If we

choose δ = n−
1

2
β+2ϵ

, we get:

Pr [
��V ∩Uk �� = (1 ± 2δ ) · E [

��V ∩Uk ��]] ≤ e−Ω(n2ϵ ) .

By the union bound, the claim is then proved for eachk > ω
(
X 1−ϵ

)
.

�.

Proof of Lemma 5.7
Suppose that i = x · nβ . �en,

R (i ) = (1 ± o(1))
(
1 − e−(1−α )x

−α )
.

Observe that, if x ≥ α , then x−α ≤ α−α = eα ln
1

α = 1+O
(
α ln

1

α

)
.

Moreover, if x ≤ e then, x−α ≥ e−α = 1 −O (α ).
By the monotonicity of x−α we thus obtain that x−α = 1 ±

O
(
α ln

1

α

)
for all x ∈ [α , e].

For all αnβ ≤ i ≤ enβ , we then have

R (i ) = (1 ±O (α ln 1/α )) ·
(
1 − e−1

)
.

For i < αnβ , we have R (i ) ≤ 1. �erefore, for

∑kα
i=1

R (i ) to be at

least nβ , we need

kα

nβ
≥

1

1 − e−1
−O (α ln 1/α ).

Moreover, for the inequality to hold, it su�ces to have

kα

nβ
≤

1

1 − e−1
+O (α ln 1/α ) . �

Proof of Lemma 5.8
Let us de�ne ϵ = 1 − α . Recall that E[|V ∩Uk |] =

∑k
i=1

R (i ). Let

1 = t0 < t1 < . . . < tr = k be integers and, for 0 ≤ j ≤ r − 1, let pj
be any real number such that pj ≥ R (tj ). �en, by the monotonicity

of the R (i )’s, we have pj ≥ R (i ) for 1 ≤ i ≤ tj . �erefore,

E[|V ∩Uk |] =
r∑
j=1

tj∑
i=tj−1

R (i ) ≤
r∑
j=1

tj∑
i=tj−1

R (tj−1)

≤

r∑
j=1

(
tj · pj−1

)
.

We set t0 = 1 and, for j ≥ 1, let tj =
⌈
2

j−2

α · nβ
⌉
. We let r be

unspeci�ed for now. Also, let p0 = 1, and, for j ≥ 1,

pj = 1 − e−(1−α )n
α β t−αj = 1 − e−ϵ2

2−j
≤ O

(
ϵ2
−j

)
.

We have that
1

α − 1 = 1

1−ϵ − 1 ≤ O (ϵ ). For j = 1, we have

tjpj−1 = t1 ≤
⌈
nβ
2

⌉
. Moreover, for j ≥ 2,

tj · pj−1 ≤ O
(
ϵnβ 2

j ( 1

α −1)
)
= ϵnβ 2

O (jϵ ) .

As j ≤ O (1/ϵ ), the la�er is at most O (ϵnβ ). In fact, there exists a

constant b > 0 such that if we let r = db/ϵe, we have

E[|V ∩Uk |] ≤


nβ

2


+

r∑
j=2

O
(
ϵnβ

)
<

3

4

· nβ .

Lemma 5.3 shows that D (k ) = (1 ± o(1))E[|V ∩Uk |]. With our

choice of r , k equals

k = tr =
⌈
2

r−2

α · nβ
⌉
≥ c

1/ϵ · nβ ,

for some constant c > 1.

�erefore, D
(
c1/ϵ · nβ

)
≤ (1 ± o(1)) 3

4
nβ . By the la�er, and by

the monotonicity in k of E[|V ∩Uk |], we have that kα ≥ c1/ϵ · nβ .

�
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