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Polaronic and Nonadiabatic Phase Diagram from Anomalous Isotope Effects
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Isotope effects (IEs) are powerful tools to probe directly the dependence of many physical properties on
lattice dynamics. In this Letter we investigate the onset of anomalous IEs in the spinless Holstein model by
employing the dynamical mean field theory. We show that the isotope coefficients of the electron effective
mass and of the dressed phonon frequency are sizable also far away from the polaronic crossover and mark
the importance of nonadiabatic lattice fluctuations. We draw a nonadiabatic phase diagram in which we
identify a novel crossover, not related to polaronic features, where the IEs attain their largest anomalies.
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The relevant role of electron-phonon (e-ph) interactions
on the properties of complex materials as the high-Tc
superconductors has been recently revived by a number
of experiments. In particular, the finite, and yet unex-
plained, anomalous isotope effects (IEs) on the penetration
depth [1], on the pseudogap temperature [2], and on the
angle-resolved photoemission spectra [3] in high-Tc cup-
rates open a new challenge in understanding the role of the
e-ph interaction in these materials. Anomalous IEs appear
also in the magnetic and charge-ordering critical tempera-
tures of manganites, pointing out the relevance of the e-ph
coupling also in these materials [4].

Despite the e-ph problem having been thoroughly
studied, only a few partial studies have been devoted to
IEs and to their significance in relation to the underlying
nature of the e-ph interaction [5–7]. Yet, the prediction and
observation of IEs on different physical properties repre-
sent a powerful tool to assess the role of the e-ph interac-
tion in many materials. For instance, the finite isotope shift
on the low temperature penetration depth [1], and hence
indirectly on the charge carrier effective mass m�, is of
particular interest since it contrasts the conventional
Migdal-Eliashberg (ME) scenario which predicts strictly
zero IE on this quantity. In this perspective the understand-
ing of finite IEs on m� cannot rely on the ME framework,
and more general approaches are then required.

A modern tool of investigation that overcomes the limi-
tations of ME theory is the dynamical mean field theory
(DMFT), a nonperturbative method which neglects spatial
correlations in order to fully account for local quantum
dynamics, and which becomes exact in the infinite coordi-
nation limit [8]. In the case of e-ph interactions, this
approach allows us to study with equal accuracy all cou-
pling regimes, and to fully include phonon quantum fluc-
tuations which are only partially taken into account in the
ME approach according to Migdal’s theorem. DMFT has
been successfully employed in the study of multiphonon
effects, polaron instabilities, and metal-insulator transi-
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tions (MIT), as well as quasiparticle regimes of the
Holstein electron-phonon Hamiltonian [9–12], which can
be considered as a paradigmatic lattice model for the e-ph
interaction.

In this Letter, we discuss the anomalies of the IEs on
electronic and phononic properties arising in purely e-ph
systems by employing DMFT to span the whole parameter
space of the Holstein model, determined by the dimension-
less e-ph coupling � and by � � !0=t, i.e., the ‘‘adiabatic’’
ratio between the phonon energy !0 and the electron
hopping rate t. We show that a sizable negative isotope
coefficient on the electronic mass m� characterizes the
whole parameter range, while a divergence of 
m� is
recovered only at the MIT polaron transition at � � �c
and � � 0. Similar features are found for the renormalized
phonon frequency �0 which displays an isotope coefficient

�0

significantly different from the ME limit 
�0
� 1=2.

Based on the dependence of the isotope coefficients on the
adiabatic ratio �, we draw a phase diagram wherein we
identify, beside the strong-coupling polaronic regime [11]:
(i) a nonadiabatic perturbative regime where IEs increase
with �, and (ii) a complex nonadiabatic regime where the
anomalies of the IEs decrease with � and approach the
Lang-Firsov predictions in the !0=t ! 1 limit.

In our study we are interested in the continuous evolu-
tion of the e-ph properties from the quasiparticle to the
polaronic regime. It is well known that the Holstein model
undergoes various instabilities leading to superconductiv-
ity, charge-density-wave ordering, and bipolaron formation
[13]. In order to focus on the metallic properties and to
clarify the origin of anomalous IEs in this regime, we
consider here a half-filled spinless Holstein model, which
enforces the metallic character in the whole �-� space (for
� � 0) [11]. Our Hamiltonian reads

H � �t
X

hi;ji

cyi cj 	 g
X

i

ni
ai 	 ayi � 	!0

X

i

ayi ai; (1)
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FIG. 1. (a) Effective electron mass m�=m, and
(c) renormalized phonon frequency �0=!0 as a function of �
for � � 0:1 (solid line), � � 1 (dashed line), and � � 10 (dot-
dashed line). (b),(d) The corresponding isotope coefficients.
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where cyi (ci) and ayi (ai) are creation (annihilation) op-
erators for electrons and phonons on site i, respectively,
ni � cyi ci is the electron density, and g is the e-ph matrix
element.

The physical properties of Eq. (1) are governed by two
microscopic parameters: the e-ph coupling � � 2g2=!0t
and the adiabatic ratio � � !0=t. In the adiabatic limit
� � 0, the standard Landau Fermi-liquid (FL) picture is
sustained by the ME theory for � < �c, while for � > �c
the FL regime is destroyed due to the polaron localization.
For � > 0, this sharp transition becomes a smooth cross-
over separating well and poorly defined quasiparticle ex-
citations. This phenomenology is reflected in the
appearances of anomalous IEs on various quantities. Let
us consider, for example, the isotope coefficient on the
effective electron mass m�: 
m� � �d ln
m��=d ln
M�,
where M is the ionic mass. Since g / 1=

�����������
M!0

p
and !0 /

1=
�����
M

p
, the e-ph coupling � is independent of M and 
m�

can be rewritten as


m� �
1

2

d ln
m�=m�

d ln
��
: (2)

According to the FL description, m� can be expressed in
terms of a mass-enhancement factor fm� :

m�=m � 1	 fm� 
�; ��: (3)

In the adiabatic regime � � 1, fm� can be expanded in
powers of �, m�=m ’ 1	 fm� 
�; 0� 	 �f1m� 
��, and hence


m� �
�
2

m
m�

f1m� 
��: (4)

The isotope coefficient thus increases with �, and it cor-
rectly reproduces the ME result 
m� � 0 when � ! 0.
Such an increase is, indeed, found by calculations based
on a perturbative expansion in � [5,6], whose validity is,
however, limited only to weak � values. In the opposite
antiadiabatic limit � ! 1 the Holstein-Lang-Firsov ap-
proximation gives m�=m ’ exp
�=2��, leading to


m� � �
�
4�

; (5)

which decreases as � gets higher, as opposed to the pre-
vious case of Eq. (4). The two limiting cases for � � 1 and
� � 1 suggest that for fixed � < �c the strongest isotope
shifts lie in the intermediate nonadiabatic region � & 1,
which can be investigated only by nonperturbative tools as
the DMFT approach.

In this work we consider Eq. (1) on an infinite coordi-
nation Bethe lattice and use exact diagonalization (ED) to
solve the impurity problem that DMFT associates with the
lattice model [8,14]. As usual, the Anderson model is
truncated by considering Ns impurity levels, and a cutoff
on the phonon number is imposed on the infinite phonon
Hilbert space. The DMFT self-consistency is implemented
in the Matsubara frequencies !n � 
2n	 1�� ~T where ~T is
03640
a fictitious temperature. The evaluation of IEs is a particu-
larly difficult task since it requires a high accuracy on both
the electron and phonon properties and of their dependence
on �. In particular, a number of phonon states up to 100 and
~T=t as small as 1=1600 were needed to ensure reliable and
robust results. The number of impurity levels has been
fixed at Ns � 9, having checked that no significant change
occurred for larger Ns. We compute the electron self-
energy �
!n� and the phonon Green’s function D
!m�
which yield the effective electron mass m�=m �
1��
!n�0�=� ~T and the renormalized phonon frequency
�0 as 
�0=!0�

2 � �2D�1
!m�0�=!0. The correspond-
ing isotope coefficients are obtained by means of a finite
shift ��=� � 0:15.

In Fig. 1 we show m�=m and �0=!0 and their corre-
sponding isotope coefficients as a function of the e-ph
coupling � for � � 0:1, 1, and 10, which are representa-
tive, respectively, of the quasiadiabatic, nonadiabatic, and
antiadiabatic regimes. The polaron crossover is reflected in
a strong enhancement of m�=m as � increases. The cross-
over occurs at � � 1:18 for � � 0 [12], and moves to
larger couplings as � increases, all the way up to the
antiadiabatic regime, in which the crossover roughly oc-
curs when the average number of phonons 
2 � �=2� * 1
[9,11,15]. As a consequence, at fixed � the effective mass
becomes smaller as � increases, implying a negative iso-
tope coefficient 
m� as reported in Fig. 1(b). The polaron
regime is thus identified by the huge negative values of

m� . Like m�=m, increasing � smooths the dependence of

m� on �.

A similar behavior is found for the renormalized phonon
frequency �0, as shown in Fig. 1(c), where the polaron
6-2
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instability is reflected in a sharp phonon softening in the
quasiadiabatic case (� � 0:1) close to polaron crossover.
Once again, the softening is weaker as � gets larger. For
fixed � this leads to an anomalous isotope coefficient

�0

> 1=2, as reported in Fig. 1(d).
It is worth noting the apparent phonon hardening ac-

companied by the corresponding decreasing of 
�0
as

reported in Figs. 1(c) and 1(d) for large �. This anomalous
phonon feature is just a consequence of our ‘‘static’’ defi-
nition of renormalized phonon frequency 
�0=!0�

2 �
�2D�1
!m�0�=!0. This definition corresponds to de-
scribe the full phonon spectrum as a single � function at
frequency �2

0 � �1=
�!0�
R
1
0 d! ImD
!	 i0	�=!.

Such a description becomes less representative as the
spectral function acquires a complex structure.

In Fig. 2 we report the evolution of the phonon spectral
function by increasing the e-ph coupling � for � � 1. The
real frequency phonon propagator is directly computed in
the ED scheme. Note that only gross features can be
extracted because of the discreteness of the impurity
model. The average phonon softening (thick red line) at
small � stems from a transfer of spectral weight from ! ’
!0 to a low energy peak which exponentially approaches
! � 0. An opposite behavior occurs for strong e-ph cou-
pling where the lattice potential is a double well with
energy barrier �E � !0. This gives rise to a second
peak at frequency !0 yielding a hardening of the averaged
phonon frequency �0. Similar considerations lead to the
decrease at large � of the IE 
�0

.
The � dependence of m�=m and �0, with their respec-

tive IEs, highlights the appearance of giant IEs related to
the polaronic crossover. However, sizable deviations of IEs
from the ME predictions appear also far from the polaronic
regime, in a region where the system preserves good
metallic properties. Let us then analyze in more detail
the dependence of the IEs on the quantum lattice fluctua-
tions triggered by the finite �. In Fig. 3 we plot the �
0 0.2 0.4 0.6 0.8 1 1.2 1.4
ω / t
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m

D
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)

FIG. 2 (color online). Phonon spectral function (solid lines) for
different values of the e-ph coupling � from 0 to 10 with steps of
0.2. The thick line represents the renormalized phonon frequency
�0 and the thin dashed line !0.

03640
dependence of 
m� and 
�0
for different values of �

ranging from weak (� � 0:6) to intermediate-strong cou-
pling (� � 1:6). Two qualitatively different behaviors are
identified. Dashed lines represent strong-coupling � values
for which the system undergoes a polaronic MIT for � ! 0
signaled by the divergence of the isotope coefficients. Solid
lines are representative of weak-to-moderate � values for
which the system maintains its FL metallic character with
isotope coefficients recovering their standard ME values

m� � 0 and 
�0

� 1=2 as � ! 0. Note that for � � 1:2
we find that 
m� ! 0 and 
�0

! 1 for � ! 0, in agree-
ment with Ref. [12] which predicts two different critical
values �ph

c � 1:18 and �el
c � 1:328 where a double-well

lattice potential and an electronic self-trapping, respec-
tively, occur.

The different physics underlying the regimes sketched
by dashed and solid lines is reflected in the overall �
dependence of the IEs. In the large coupling regime � >
�c the isotope coefficients diverge for � ! 0 and approach
monotonically zero in the antiadiabatic limit, in agreement
with the Lang-Firsov result. On the other hand, for � < �c,
an initial increase of the anomalies of 
m� and 
�0

as a
function of � is followed by a decrease for � > ��, where
�� marks the position of the minima and maxima of 
m�

and 
�0
, respectively.

The values of �� depend strongly on the e-ph coupling
�, and, in principle, a nonadiabatic crossover parameter
��
�� can be defined for both the electronic and phononic
properties. According to our previous reasoning and to
Eqs. (4) and (5), ��
�� can be interpreted as the curve
separating a region in which a perturbative theory based on
the adiabatic FL picture can be safely employed (� < ��)
from a region where the Lang-Firsov approach is a more
appropriate starting point for a 1=� expansion (� > ��). In
the nonadiabatic crossover (� < �c and �� ��) the
anomalies of the IEs are significant (
m� � �0:3 and
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FIG. 3. Dependence of 
m� and 
�0
on the nonadiabatic

parameter �. Curves are plotted for the e-ph coupling � �
0:6; 0:8; 1:0; 1:2; 1:4; 1:6 from top to bottom (bottom to top) in
left (right) panel. Filled circles mark the adiabatic ME limit.
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FIG. 4 (color online). Nonadiabatic phase diagram defined by
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PRL 94, 036406 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
28 JANUARY 2005

�0
� 0:55) despite such a region being well within the

metallic regime and far from the polaronic instability.
The complex phenomenology of the IEs is summarized

in Fig. 4, where the nonadiabatic crossover ��
�� is re-
ported for 
m� (open circles) and 
�0

(crosses). We note
that �� lies on a universal curve for both the electron and
phonon properties, reflecting the fact that electron and
lattice degrees of freedom are strictly mixed in the non-
adiabatic regime. Such universality is lost for � ! 0,
where �� disappears at the two different values �ph

c and
�el
c discussed above. Figure 4 also clearly shows that the

nonadiabatic crossover ��
�� is not related to the onset of
polaronic effects, pinpointed in the figure by the solid line
marking the appearance of a bimodal structure in the lattice
probability distribution function.

Figure 4 defines three regimes: (I) a polaron region
(dashed area) where electrons are almost trapped leading
to significant lattice distortions. This effect is strongly
affected by lattice quantum fluctuations, triggered by finite
!0, leading to giant IEs. (II) A highly nonadiabatic region
(white area) where the system is qualitatively described in
terms of itinerant quasiparticle carrying along its hugely
fluctuating phonon cloud. In this regime quantum lattice
fluctuations relax the mixing between lattice and electronic
degrees of freedom leading to a reduction of the anomalous
IEs. (III) A weakly nonadiabatic region (gray filled area)
where anomalous IEs are tuned by the opening of non-
adiabatic channels in the e-ph interaction. In this region
DMFT qualitatively confirms the results of the nonadia-
03640
batic theory described by vertex diagrams in a perturbative
approach [5,6].

In conclusion, we have defined a phase diagram of the
spinless Holstein model based on the anomalous phenome-
nology of the IEs on both electronic and phonon properties.
In the metallic regime we identified a new nonadiabatic
crossover �� (not related to polaronic instability) between
different weakly and highly nonadiabatic FL quasiparticle
pictures. The largest anomalies in the isotope coefficients
are found in this intermediate crossover region, where
theoretical and experimental studies suggest A3C60 full-
erides [16,17] (see also Fig. 8 of Ref. [18]), cuprates [19],
and MgB2 to be located. A rigorous generalization of our
results in the presence of electronic correlation and away
from the half-filling case is, of course, needed for a quan-
titative analysis in these complex materials. Preliminary
results show that 
m� can be significantly suppressed in
low filled systems even in a highly nonadiabatic regime, in
agreement with recent experimental results on MgB2 [20].
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