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ABSTRACT 

Introduction: Cell-based therapies exploit the heterogeneous and self-sufficient biological environment of 

stem cells to restore, maintain and improve tissue functions. Adipose-derived stem cells (ASCs) are, to this 

aim, promising cell types thanks to advantageous isolation procedures, growth kinetics, plasticity and 

trophic properties. Specifically, bone regeneration represents a suitable, though often challenging, target 

setting to test and apply ASC-based therapeutic strategies. 

Areas covered: ASCs are extremely plastic and secrete bioactive peptides that mediate paracrine functions, 

mediating their trophic actions in vivo. Numerous preclinical studies demonstrated that ASCs improve bone 

healing. Clinical trials are ongoing to validate the clinical feasibility of these approaches. This review is 

intended to define the state-of-the-art on ASCs, encompassing the biological features that make them 

suitable for bone regenerative strategies, and to provide an update on existing preclinical and clinical 

applications. 

Expert opinion: ASCs offer numerous advantages over other stem cells in terms of feasibility of clinical 

translation. Data obtained from in vivo experimentation are encouraging, and clinical trials are ongoing. 



More robust validations are thus expected to be achieved during the next few years, and will likely pave the 

way to optimized patient-tailored treatments for bone regeneration. 
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1. Introduction 

Therapeutic strategies aimed at regenerating bone have undergone a significant boost during the last two 

decades, providing a paradigm shift in reconstructive surgery, which significantly improved clinical 

outcomes. Bone regeneration is needed in skeletal reconstruction of large bone defects resulting from 

trauma, infections, tumor resection and skeletal abnormalities, or whenever the regenerative process is 

compromised [1]. 

The best effective, clinically available, therapeutic options for skeletal reconstruction are currently 

restricted to autologous and allogeneic bone grafts, along with synthetic bone substitutes[2-6]. The main 

disadvantage of bone autografts resides in the morbidity of the donor site, where a skeletal defect is 

created, especially in the presence of overall poor clinical conditions, along with the limited source 

availability [6]. Furthermore, the complexity of autograft procedures raises other technical issues in 

selected skeletal sites [7].The use of allogenic bone is inherently associated with morbidities deriving from 

residual immune-related and infectious burden, along with reduced cost-effectiveness. Finally, synthetic 

bone substitutes often lack sufficient osteoinductive and osteogenic properties, while providing not always 

optimal osteoconduction, resorption times and biomechanical assets, especially for the treatment of large 

skeletal defects [8]. 

Indeed, the limited success of auto- and allografts in some clinical situations has stimulated the scientific 

research to investigate new therapeutic tools, possibly tailored to adapt to specific indications and patients’ 

needs. On this regard, somatic stem cell-based approaches are widely considered the best effective, as they 

enable sustaining the physiologic osteogenic process in vivo and may provide effective osteoinductive 

stimuli [9].  

Bone marrow stromal cells (BMSCs) have been widely exploited in this context, as they represent the 

physiological precursors for the osteoblastic cell lineage [10-12]. Nonetheless, the limited amount and stem 

cell yield, along with the invasive harvesting procedure, hamper a wide exploitation of bone marrow as a 

clinically available cell therapeutics source and have prompted the identification and characterization of 

additional MSC niches, located within alternative tissue sources. 

To date, MSC-like multipotent stem cells have been isolated from a multitude of adult tissues, including 

muscle, adipose tissue, connective tissue, trabecular bone and periosteum [12], skull sutures [13], synovial 

fluid [14], along with perinatal tissues [15; 16].  More recently, the advent of induced pluripotent stem cells 

(iPSCs), obtained through genetic engineering of somatic cells, and possessing high proliferation and 

differentiation capabilities, has offered additional promising alternative sources for bone regeneration [17; 

18]. In many cases, iPSCs have been demonstrated to exert comparable osteogenic capabilities to those 

displayed by MSCs [19]. Nonetheless, the possibility of reprogramming the genetic background of host 



somatic cells used for iPSCs’ production, may offer to unique chance to address the challenge of treating 

congenital skeletal disorders due to germline mutations [20;21]. 

In particular, tissue sources that may be collected as “waste” tissues resulting from either surgical 

interventions (e.g. adipose tissue from lipoaspiration or abdominoplasty),or delivery (i.e. amniotic fluid, 

term umbilical cord and placenta) offer a significant translational advantages, as they would allow 

overcoming a number of concerns related with local morbidity, safety, and ethical issues. 

In particular, the placenta and related perinatal tissues represent a high-yield reservoir of mesenchymal-

like multipotent stem cells, endowed with increased stemness potential, and displaying extended plasticity 

towards multiple lineages [16]. The osteogenic properties of these cells have been demonstrated in vitro 

[22-23]. Also, a number of preclinical studies have supported the application of these cell-based therapies 

for the regeneration of musculoskeletal tissues [24]. Moreover, the reproducible ability of these cells to 

engraft at the site of inflammation and injury, and to modulate the immune/inflammatory response in host 

tissues, have prompted their potential application in degenerative and immune-based conditions that may 

affect the musculoskeletal system [25-27]. 

Among the adult postnatal tissue sources of MSCs, the adipose tissue (AT), given its ubiquity, the ease of 

retrieval, and the minimally invasive procedure required for harvesting, may be reasonably regarded as an 

attractive source of multipotent somatic stem cells, namely, adipose-derived stem cells (ASCs)  [28]. ASCs 

reside in the stromal vascular fraction (SVF) of AT, from which they are easily isolated through enzymatic 

digestion and plastic adherence. They display BMSC-like features, including immunophenotype, trilineage 

potential and gene expression profile [29-31]. In vitro and in vivo models suggest that the transplantation of 

expanded ASCs improves bone healing through direct differentiation into mature osteoblasts and paracrine 

effects that facilitate migration and differentiation of resident precursors. Indeed, ASCs demonstrated 

relevant trophic properties that suggest the suitability for cell therapy applications: angiogenicity [30; 32-

34], osteogenicity [30; 35], immunomodulation [36], and promotion of tissue remodeling [34; 37-39]. 

This review is, indeed, intended to focus on AT as a valuable reservoir of somatic stem cells, specifically 

considering the state-of-the-art on the osteogenic potential of ASCs. To this aim, we will rely on a careful 

and up-to-date revision of the extant scientific literature, reporting the characterization of ASCs’ biological 

properties along with the functional validation of their capability to induce bone regeneration and healing 

in preclinical studies. Finally, we will report on the clinical trials that have exploited these cells for human 

bone regenerative applications. 

2. AT as a source of somatic stem cells: adipose-derived stem cells (ASCs) 



For a long time AT has been considered exclusively as an energy reservoir, hence usually discarded with 

surgical waste after liposuction. During the last three decades, numerous research efforts have been put 

forth towards recognizing AT as an endocrine organ, which controls metabolism, immunity and satiety. 

Thereafter, a significant breakthrough was made in 2001, when AT was originally described as an attractive 

new source of adult stem cells (namely, adipose-derived stem cells, ASCs) [28]. 

AT is a highly complex tissue comprising mature adipocytes (>90%) and a stromal vascular fraction (SVF), 

which includes preadipocytes, fibroblasts, vascular smooth muscle cells, endothelial cells, resident 

monocytes/macrophages, lymphocytes, and ASCs [40-42]. The density of the AT stem cell reservoir varies 

as a function of type of age, histotype (white or brown AT) and anatomical location (subcutaneous or 

visceral adipose tissue) [43-49]. 

Within the white fat, subcutaneous depots house a higher number of ASCs compared with visceral fat. The 

highest concentrations typically found in the arm region and the greatest plasticity described in cells 

isolated from inguinal AT [50]. Also, our research group have recently characterized the differential 

biological properties between the two AT layers separated by the superficial fascia in selected regions of 

the body, and found a higher cell viability and stemness properties in the superficial compared with the 

deep hypoderm [51]. Noticeably, adherent cells isolated superficial hypodermal AT showed a higher 

plasticity, including osteogenic potential, in vitro [51]. An independent study had previously reported a 

gender-related difference affecting the osteogenic differentiation rates in ASCs, derived from superficial-

versus-deep subcutaneous AT [52]. 

Also, Lee and colleagues had characterized the ASCs isolated from different abdominal fat depots on the 

basis of the regional distribution. This study highlighted that ASCs isolated from superficial subcutaneous 

depots have a higher grow rate and angiogenic capability, confirming this AT layer as the most appropriate 

source for therapeutic fat grafting [53]. 

Human ASCs are usually isolated from subcutaneous AT collected through liposuction or during 

reconstructive surgery, through resection of tissue fragments. Standard isolation procedures imply the 

fractionation of AT and separation of the SVF through centrifugation, and further collagenase disruption 

[54]. One of the main challenges for an adequate translation of AT- and SVF-based therapeutics to the 

clinical setting, is the generation of a clinical grade protocol of isolation, based on minimal tissue 

manipulation. On this regard, a wide variety of medical devices enabling the automatic processing of AT for 

SVF separation and ASC isolation, are being rapidly introduced in the marketplace, sometimes without prior 

adequate preclinical testing and validation [55-58] 

Upon SVF isolation and homogenization, ASCs are selected in vitro based on their plastic adherence 

properties, and display the typical spindle-shaped fibroblastoid morphology. They can be extensively 



subcultivated in monolayer culture, and rapidly expanded, with a basal growth medium containing 10% of 

fetal bovine serum [31; 59; 60].  

ASCs meet most of the minimal criteria set by the International Society for Cellular Therapy (ISCT) to define 

human mesenchymal stem cells (MSCs) [61]: plastic-adherence, in vitro trilineage (osteogenic, 

chondrogenic, and adipogenic) potential, expression of the MSC-specific antigens CD73, CD90, and CD105, 

and lack of hematopoietic lineage markers [61]. 

Nonetheless, their correct immunophenotype characterization has been long debated. Based on the 

hematopoietic marker CD45, the endothelial marker CD31, the perivascular marker CD146, and the stromal 

markers CD34, CD90, CD105 and CD117 (c-kit), four distinct populations have been defined in the SVF 

fraction (in uncultured conditions): putative ASCs (CD31-, CD34+/-, CD45-, CD90+, CD105-, CD117- and 

CD146-), endothelial-progenitor cells (CD31+, CD34+, CD45-, CD90+, CD105-, CD117+ and CD146+), vascular 

smooth muscle cells or pericytes (CD31-, CD34+/-, CD45-, CD90+, CD105-, CD117+ and CD146+), and 

hematopoietic cells (CD45+) [54; 62]. Studies on whole AT have revealed that within the stem/progenitor 

components, organized around small vessels, stromal multipotent cells with CD34+, CD31-, CD104-, SMA-

,immunophenotype are prevalent in the supra-adventitial layer [62-64]. Pericytes and other cells defined 

bythe differential expression of CD34, CD31, and CD146 were sorted from the SVF of human white AT. 

Besides pericytes, CD34+ CD31- CD146- CD45- cells, which reside in the outmost layer of blood vessels (i.e. 

tunica adventitia), natively express MSC markers and give rise to clonogenic multipotent progenitors, in 

culture, identical to BMSCs [46; 65]. Finally, studies from Cinti’s group have identified a small subset of 

capillary endothelial cells that are plausibly capable to give rise to adipose lineage cells too [65; 66]. 

The average frequency of ASCs in processed lipoaspirate is 2% of nucleated cells, and the yield is 

approximately 5,000 fibroblast colony-forming units (CFU-F) per gram of AT. In the bone marrow, the yield 

of BMSCs is approximately 100–1,000 CFU-F per milliliter [67], suggesting that AT could be a best efficient 

source of multipotent stromal stem cells.  

Recently, the fluid portion separated by centrifugation of liposucted AT (i.e. lipoaspirate fluid, LAF) contains 

an ASC-like population (LAF cells) suspended in blood/saline fluid, along with tissue fractions and cell 

secretome (40; 68). LAF cells display the same biological features as ASCs, hence could be reasonably 

exploited for regenerative applications (40; 55; 69). 

3. Osteoinductive properties of ASCs 

The secretome of ASCs contains different pro-angiogenic and endocrine factors (adipokines) with bone 

inducing activity [70]. The expression of these factors can be modulated by different culture conditions, 

such as proliferation, differentiation and hypoxia. In particular, low oxygen levels in culture inhibit the 



expression of ECM remodeling proteins, such as osteonectin, collagen type 1, collagen type 2, fibronectin 1 

and TGF-β1-induced protein, while 3D culture activates the expression of several genes involved in ECM 

structure and related functions i.e. HGF, VEGF, KGF, b-FGF, MMP-2, and MMP-14 [44]. Interestingly, 

Kalinina and colleagues highlighted a specific immunophenotype (CD90+/CD73+/CD105+/CD45-/CD31-

/PDGFRβ+/NG2+/CD146+(-) that induces ASCs secretion of ECM proteins (i.e. laminins, fibronectin 1, 

osteoblast specific factors, osteonectin, periostin, collagens and collagens interacting proteins) [71]. The 

effects of specific molecules both on the secretome composition and on its pro-osteogenic activity have 

been largely investigated [72-76]. In particular, the effect of TGF-β1 on ASCs’ secretome was assessed by 

Rodriguez and colleagues. The Authors concluded that TGF-β1 exposure modulates the expression of 

several molecules in ASCs, including HGF, leptin, FGF-7 and OPN, involved in bone resorption [77]. Similarly, 

Overman and colleagues analyzed how osteoinductive treatments, scaffold interaction, and the cell 

differentiation status, affect the ASCs secretome. This study revealed that BMP2-induced osteogenic 

differentiation causes the increase of cytokines, such as IL-6, growth factors, such as FGF7, and adhesion 

molecules, such as VCAM1, in the ASCs’ secretome [78]. Moreover, the vascular endothelial growth factor 

(VEGF), present in the secretome of both whole fresh SVF and isolated ASCs, plays a major role in the repair 

of fractures or bone defects. VEGF is able to activate the formation of a new network of blood capillaries, 

which is required during physiological bone formation and healing. In addition, VEGF plays a direct role in 

the recruitment of hematopoietic stem cells, involved in the formation of new bone [54]. 

Reasonably, the ASC secretome contribute to the composition of the acellular portion of the lipoaspirate 

fluid (LAF). We have previously demonstrated that this fluid is able to exert angiogenic and osteoinductive 

properties in vitro [55]. We have further investigated the proteome-peptidome composition of LAF through 

a top down/bottom up approach [68]. This study allowed identifying numerous bioactive proteins, peptides 

and paracrine factors, such as albumin and hemoglobin fragments (i.e. VV- and LVV-hemorphin-7), 

ubiquitin and acyl-CoA binding protein, adipogenesis regulatory factor, and perilipin-1 fragments. In 

addition, several molecules directly or indirectly involved in osteogenic process have been reported. In 

particular, the thymosin beta 4 (T.4) and beta 10 (T.10) peptides, along with their C-terminal-truncated 

forms, have been identified. These molecules promote angiogenesis, wound healing and tissue repair, in 

addition to anosteo- inductive activity. The LAF also featuredS100A6, a member of the S100 Ca2+-binding 

protein family. S100A6 induces bone formation modulating the capability of cells to sense extracellular 

cations [68].The documented presence ASC-like cells and bioactive molecules in the LAF, along with its 

rapid and easy isolation, make this fluid attractive and suitable for regenerative medicine applications, 

specifically as a “minimally manipulated tissue” to be tested in vivofor a potentially wide range of 

applications. 

4. Age-related changes in ASCs’ biology and regenerative properties 



An aging population is inevitably going to demand more in terms of regenerative strategies, including those 

based on fat transfer and grafting. Nonetheless, adipose tissue is not spared by the degenerative processes 

occurring in elderly. Aging is indeed accompanied by a loss of adipocytes’ energy-expending capacity, which 

may contribute to the development of obesity. In this condition the accumulation of senescent cells, 

including perivascular stem cells and endothelial cells, along with an increase in circulating pro- 

inflammatory cytokines, including TNFα and IL-6, is described [79]. Aging of the adipose tissue niche leads 

to proliferative defects due to changes in external signals originating in the microenvironment [80]. Several 

studies demonstrated the effect of age on ASCs’ viability and function, in both humans and animal models 

[79]. In particular, Rogers and colleagues demonstrated that age-related quantitative and functional loss of 

subcutaneous AT is associated with a selective decline in brown thermogenic adipocytes in mice [81].  

Zhu and collaborators demonstrated that ASCs isolated from human liposucted subcutaneous AT display a 

reduced plasticity (in terms of osteogenic potential), in older compared with younger female donors, 

regardless of the cellular yield [82].  The gene expression profiles of human senescent subcutaneous AT 

specimens, also pointed to a significant a decreased ASCs’ yield, growth kinetics and differentiation 

capacities in older donors [83; 84]. In addition, ASCs from older donors display increased oxidative stress 

markers, coupled with a reduced detoxification capability [85], possibly explaining their impaired 

proliferation and plasticity [86]. 

Ye and collaborators compared ASCs isolated from orbital AT of old-versus-young donors, and found fewer 

progenitor cells, reduced proliferative rates, increased senescent features and decreased trilineage 

potential, despite no significant differences in overall cellular yield and immunophenotype [87]. Finally, a 

significant decrease in ASCs’ yield and angiogenic capacity, has been demonstrated also in visceral fat 

depots of elder individuals [88]. Taken together, these data strongly highlight the dramatic effect of aging 

on ASCs’ properties that must be taken into account in the design and development of autologous AT-

based regenerative treatments in the elderly. 

5. OSTEOGENIC PROPERTIES: Preclinical studies 

In vitro assays aimed at demonstrating ASCs’ multipotency have been widely utilized as part of the standard 

characterization protocols. These involve the induction with culture medium supplemented appropriate 

differentiation stimuli, followed by lineage-specific stainings and gene expression profiling [66]. 

Nonetheless, in order to achieve robust and sound scientific evidence of the functionally effective cell 

plasticity, in vivo transplantation assays are mandatory [89]. 

A plethora of studies have been conducted attempting to obtain valid in vivo data demonstrating the 

osteogenic potential of ASCs and to adequately translate in vitro findings to a clinical level [90]. Several 

animal models have been designed, employing either allogenic or xenogenic cells transplantation. When 

employing human ASCs, nude or athymic animals embody a reliable model for studying osteogenic 



processes, as injured bone repair requires the participation of both the immune and hematopoietic niches. 

Although nude animals demonstrate a blunted inflammatory response, they can still mount an 

inflammatory B-cells and NK-cells response and possess the surrounding osteogenic precursor cells from 

the periosteum [90; 91]. 

The in vivo osteogenic potential of experimental design can be evaluated in an elementary model, relying 

on local intramuscular injection inducing ectopic bone formation [30; 92-102]. Calvarial defects offer the 

benefit of studying bone healing in animal models, allowing an easy quantification of the amount of newly 

formed bone within a bidimensional defect [92; 103-135].  Several models, mostly rodent, have been 

described to assess calvarial defects and it has been reported that a 4mm mouse parietal bone defect is 

sufficient to offer a reliable and easily repeatable prototype [91]. Long bone skeletal defect models have 

been widely employed, as they are able to mimic the clinical condition of bone fracture or injury under load 

bearing stress [117; 136-153]. In particular, the femur offers special benefits, due to its larger shaft, 

tolerating a wider defect and allowing the placement of external fixator devices or distracters [136-142; 

151; 152].  

The study of ASCs for bone regeneration has largely involved the insertion of biomaterials in rat and nude 

mouse models. Furthermore, to demonstrate the application and optimization of ASC therapies, these 

defect models have been also experimented in other different species, achieving successful results. To this 

aim, either undifferentiated ASC (i.e. in the absence of any prior ex vivo osteogenic induction) or uncultured 

SVF [92; 100; 111] have been exploited, paving the way to an easier translation of preclinical evidence to 

the clinical setting. 

Taken together, the numerous studies published so far on this topic, have reported a huge amount of data 

demonstrating the efficacy of ASC-based approaches for inducing bone regeneration/healing in vivo. 

Nonetheless, based on the heterogeneity of experimental designs, a direct comparison and systematic 

account of all studies would be ineffective. Instead, Table 1 reports a tabular view of the most relevant 

studies designed on this topic, categorizing publications according to the experimental model and species 

employed, the use of scaffolds or additional treatments, and the origin of graft [22; 23; 30; 92-159]. 

Growth factors, which are naturally expressed within the healthy bone matrix or during fracture healing, 

have been explored as promoter of the direct development of the structures of osteogenic tissue and the 

differentiation of bone cells [160]. The osteoinductive potential of recombinant BMPs has been broadly 

demonstrated in animal models and clinical studies [90-92; 161].  Since the Food and Drug Administration 

(FDA) approved the use of recombinant human BMP-2 for spine fusion and granted a device exemption for 

the use of BMP-7 to treat recalcitrant nonunions, the interest in BMPs increased rapidly as long as the 

number of published studies [142]. However, the results of both animal and clinical studies have been 



somewhat disappointing and recent evidence has suggested that BMPs, even in combination with ASCs, 

should not be considered the best viable strategy for inducing bone healing [142]. Furthermore, although 

high doses of recombinant BMPs induce bone formation, recombinant proteins are expensive, and there 

are concerns about potential oncogenic effects, considering their pleiotropic functions. 

New transcription factors involved in the osteogenic process have been, also, reported, including runt-

related transcription factor 2 (RUNX2), vascular endothelial growth factor (VEGF), LIM mineralization 

protein (LMP), Sonic Hedgehog (SHH) and Nell-1. Several studies, reviewed by Romagnoli and colleagues 

[2], demonstrated that the over-expression of these genes significantly increases the osteogenic potential 

of ASCs. 

Finally, the limited success of auto- and allo-bone grafts in some clinical situations has stimulated the 

investigation of a wide variety of biomaterials to design osteoconductive scaffolds for clinical applications. 

Well characterized biomaterials, such as hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), biphasic 

calcium phosphate (BCP), implemented or not with bioactive glasses, have been widely explored in 

preclinical studies and are currently used in different clinical applications [162; 163]. Taken together, these 

results demonstrated the potential of bioactive scaffold in bone remodeling, providing an additional 

effective strategy for treating bone defects. Indeed, in the last years, several in vitro and in vivo studies 

highlighted the osteo-inductive role of biomimetic scaffolds on ASCs, showing how the use of the 

biopolimers as substrate to growth could embody a useful trigger for the differentiation of the ASCs toward 

the osteoblastic phenotype[54; 164-170]. 

 

6. Clinical use of ASCs for bone regeneration/reconstruction 

Despite the numerous successful preclinical applications of ASCs-based therapy for bone regeneration, few 

clinical trials have been reported, and completed to date. The official international clinical trial database 

(https://clinicaltrials.gov/, keywords: adipose derived stem cells AND bone) counts 19 studies, 7 of which 

focusing on ASCs and bone regeneration/reconstruction, excluding those with “unknown status”. These 

include two completed trials and one terminated. Four studies investigated the use of ASCs in bone or 

composite graft applied to different bone defect models. Two trials were designed to determine whether 

ASCs injection was effective in severe osteoarthritis. One trial aimed on studying ASCs effect on avascular 

necrosis of femoral head. However, no result or relevant data have been reported, to date.  

Lendeckel and colleagues described the use of autologous ASCs combined with bone graft and fibrin glue to 

treat a large pediatric post-traumatic calvarial defect in a case report [171]. Three-month follow-up CT scan 

showed almost complete calvarial healing with a stable osteo-integrated graft. Mesimäki and colleagues 



described a novel method to reconstruct a major maxillary defect in an adult patient using autologous ASCs 

combined with recombinant human BMP-2 and β-TCP granules. The patient’s healing was clinically 

uneventful, obtaining new, mature, vital and vascularized bone eight months after surgery, with good 

osteointegration and stability [172]. Thesleff and colleagues employed ASCs for calvarial reconstruction, 

testing alternative biomaterials (βTCP and resorbable mesh bilaminate scaffold) and obtaining successful 

results in adult patients [173]. Sandor and colleagues reported the successful reconstruction of large 

anterior mandibular bone defects using ASC seeded on a βTCP pre-molded scaffold, custom based on 

patient’s’ CT scans [174]. The same Authors reviewed a 13 cases series of cranio-maxillofacial hard-tissue 

defects reconstructed with either bioactive glass or βTCP scaffolds seeded with ASCs, reporting successful 

integration and bone regeneration in 10 cases [175]. Pak and colleagues described the complete resolution 

of avascular necrosis of the femoral head treated with ASCs and PRP injection [176]. In a clinical trial, 

Castillo-Cardier and colleagues investigated autologous ASCs application in mandibular angle fractures as 

an alternative to conventional reduction treatment, evaluating healing time and ossification rate; at 12 

weeks follow-up CT scan revealed higher percentage of ossification in the experimental group [177]. 

Dufrane and colleagues proved the feasibility of a scaffold-free three-dimensional ASCs graft, designed for 

facing reconstruction of long bone defect in the context of congenital pseudarthrosis or tumor resection 

[178]. Prins and colleagues evaluated the potential effect of freshly isolated SVF seeded on either βTCP or 

biphasic calcium phosphate carriers in patients undergoing maxillary sinus floor elevation, using a one-step 

surgical procedure, proving the feasibility, safety and efficacy of the technique, irrespective of the bone 

substitute [179].  

Despite ASCs are being proven to be suitable candidates for tissue reconstruction in several surgical 

applications, they are still far from being an “off-the-shelf” product, based on the current regulatory issues. 

The national regulatory agencies (i.e. the Food and Drug Administration in US and the European Medicines 

Agency in EU) provide the official rules and guidelines that guarantee safe and controlled procedures, 

requiring Good Manufacturing Practice (GMP) to be fulfilled during cell therapy production and applications 

[180]. Accordingly, whenever cell culture expansion is required to produce a cell-based treatment to be 

used in a clinical setting, this is labeled as an “advanced cell therapy”. GMP-proof facilities (i.e. cell 

factories) are mandatorily needed for the entire cell processing procedure, in this case. It is also 

recommended to use approved GMP-manufactured, or anyway appropriately validated clinical grade 

reagents. Therefore, given that most applications described in the scientific literature imply extensive ex 

vivo processing of AT and SVF for ASCs isolation and expansion, these rules should be satisfied to move 

forward into the clinical setting. Conversely, the procedures involved in the isolation and use of fresh SVF or 

LAF (not requiring cell culture stages) are classified as minimal tissue processing. This setting does not 

require classified environments, hence would be closer to clinical translation, based on the existing 

regulatory issues. 



7. ASCs-based bone regeneration in geriatric applications 

Nowadays, stem cell therapies should inevitably address the increased medical challenges deriving from 

the progressive aging of the population (at least in western countries), associated with an inherently 

increased demand for regenerative applications to treat the structural frailty of older patients. Hence, the 

design and translation of AT-based experimental regenerative strategies are expected to cope with these 

issues [181]. In particular, decreased bone mass and mineral density, along with degenerative joint disease, 

scarcopenia and muscle weakness, are indeed part of the frail phenotype affecting the entire 

musculoskeletal system in elder people. To date, few, although encouraging, results have been achieved in 

clinical studies exploiting ASCs for the treatment of typical geriatric conditions, specifically affecting the 

skeletal system. Pak and colleagues reported the safety and feasibility of percutaneous intraarticular 

injections of uncultured ASC-containing SVF (associated with platelet-rich plasma) in patients suffering from 

chronic or degenerative joint disease [182]. 

Besides the limited data available from clinical trials, several preclinical studies have tested the feasibility 

and efficacy of ASC-based strategies for the treatment of age-related bone disorders, particularly 

osteoporosis. To this aim, animal models of ovariectomy-induced osteoporosis have been widely exploited, 

accounting for a multitude of preclinical reports.  A recent metanalysis of preclinical studies in different 

animal models of osteoporosis attempted to combine this huge amount of data [183] Focusing on ASCs, the 

results consistently indicate that ASCs-based treatments were able to improve bone mineral density and 

reduce bone loss in different osteoporotic animal models [183-185].In addition, local injection of ASCs 

infected with lentiviral vectors expressing human alpha-1 antitrypsin protein improved bone-morphometric 

parameters and succeeded in partially reversing the ovariectomy-induced bone loss [186]. 

 

Furthermore as regenerative stem-cell therapies are almost entirely based on an autologous approaches, it 

is reasonable to consider whether osteoporosis could influence the biological properties of ASCs, when 

harvested from osteopenic patients. Indeed, the cell regenerative capacity and osteogenic potential of 

ASCs, isolated from the inguinal subcutaneous AT were found impaired in osteoporotic mice [187]. 

Similarly, ASCs from ovariectomized rats exhibited a comparable proliferation capacity compared with 

controls, but showed relatively lower osteogenic potential in a critical-size calvarial defect model [188]. 

Another study demonstrated that the recovery of osteoporosis achieved by ASCs transplantation, tended to 

decrease with donor age in osteoporotic mice [185]. 

While the aforementioned studies reported results of local ASCs transplantations, anew regenerative 

therapy for the prevention of bone loss, employing the systemic administration of aspirin and allogeneic 

ASCs, was tested in an ovariectomized mice model and demonstrated temporary recovery of bone loss 

[189]. 



These data collectively provide promising clues towards the design and development of advanced ASC-

based stem cell therapies for the treatment of age-associated bone frailty and osteoporosis. Nonetheless, 

further testing in the clinical setting need to be implemented, and patient-tailored approaches should be 

defined in order to cope with the several co-morbidities affecting an aged patient. 

 

8. Concluding remarks 

During the last decades the scientific literature agreed to indicate ASCs as a new promising tool to be 

exploited in bone regenerative applications. Current regulatory issues in matter of “bioprocess engineering 

products” encouraged the development of closed devices for the isolation of ASCs/SVF, enabling minimal 

tissue manipulation. Preliminary outcomes of clinical studies are confirming the results obtained in animal 

models, suggesting that either native or cultured ASCs, alone or in combination with biomimetic scaffolds 

and/or treatments, are able to improve bone healing. Taken together, these data highlight the growing 

translational relevance of the use of ASCs for bone repair. 

 

9. Expert opinion 

Since the original description, 15 years ago, of adipose-derived stem cells (ASCs), research on these cells 

has become a cutting-edge topic in the field of regenerative medicine, with over 8500 papers published in 

PubMed, to date. Our research group, interested in bone biology and genetics, started focusing on ASCs 

with the aim of identifying a suitable cell source, alternative to BMSCs, to be exploited in experimental 

biological therapies aimed at regenerating bone. 

For the reasons detailed in this review, ASCs potentially offer a number of advantages over adult stem cells 

from other sources (such as bone marrow, amniotic membrane, etc), in terms of feasibility of clinical 

translation. In particular, not only adipose tissue is found basically in all individuals, with extended 

availability and relatively easy harvesting, but it also yields high amounts of viable stem cells, compared 

with other tissue sources. The recently achieved standardization of nomenclature and isolation protocols, 

along with the improved characterization of stem cell niches, is rapidly leading to the development of safer 

and more targeted autologous transplantation protocols, with optimized patient-tailored prioritization of 

harvesting sites.  

Besides their multipotency and trophic features, ASCs display immune-modulatory and paracrine effects 

exerted through their secretome, similarly to mesenchymal stromal cells isolated from other tissue sources. 

These features enlarge significantly the ground of actual and potential applications of ASC-based therapies. 



Despite the limited comparability of the outcomes obtained through in vivo transplantation assays, the 

exploitation of ASCs in bone regenerative strategies has evolved at the same pace as their in vitro and ex 

vivo biological characterization. Even though the adipogenic niche is distinct from the skeletogenic niche, 

by proper definition, a number of biological similarities suggest a reciprocal ex/interchange between these 

two systems. Indeed, adipose tissue is found in spatial proximity with both angiogenic and osteogenic 

precursors within a bone segment, and represents a closely interacting domain, with bi-directional 

plasticity. ASCs indeed indirectly contribute to the homeostasis of bone development, remodeling and 

healing, in vivo, mostly due to the secretion of bioactive molecules exerting paracrine effects on the 

osteogenic lineage. Several preclinical studies, and selected clinical trials, to date, have confirmed that ASCs 

represent suitable cell therapies for regenerating large bone defects, whenever endogenous BMSCs are not 

sufficient, and/or transplanted BMSC are not feasible, to sustain osteogenesis. In most cases, in order to 

achieve successful bone healing, the designed strategies involve genetic engineering and/or ex vivo 

osteoinductive priming of ASCs, prior to in vivo implantation (see details on preclinical studies and clinical 

trials in this review). Nonetheless, distinct studies reported the capability of undifferentiated native ASCs to 

drive the osteogenic process in vivo. This capability is reasonably the result of a fruitful combination of their 

demonstrated plasticity and their bioactive peptide-enriched secretome, enabling the delivery of trophic 

paracrine effects at the site where new bone synthesis is required. 

Despite the already existing evidence, it is likely and highly desirable that, in the next years, uncontroversial 

information would derive from improved and reproducible preclinical studies, from the successful 

completion of clinical trials, and from the implementation of optimal osteoconductive scaffolds. Altogether, 

these scientific facts will enable confirming that ASCs-based treatments could regenerate a fully functional 

bone tissue, with a correct structural architecture and efficient integration, at least in selected skeletal 

sites. Lastly, new challenges are being offered to the biomedical research community, by the progressive 

aging of the Western world population, along with the rapid development of genomic technologies that 

allow defining patient-specific backgrounds. These factors are delineating a rapidly changing medical 

scenario, in which targeted cell-based therapies will need to be as precise as possible, and personalized to 

cope with specific demands of wellbeing and improved performance, from the aging population. 
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ARTICLE HIGHLIGHTS BOX: 

- Adipose tissue houses multipotent somatic stem cells (aka adipose-derived stem cells, ASCs) 

residing in perivascular niches. 

- Significant advancements in ASCs’ research have been achieved in the last decades, leading to 

improved knowledge of their biology and potentialities. 

- ASCs exert osteoinductive properties, by secreting bioactive molecules and growth factors that 

mediate their paracrine trophic effects. 

- ASCs are extremely plastic and proved to be capable of inducing bone regeneration in distinct 

animals models. 

- Strict regulatory issues are to be met in order to achieve a safe and efficient clinical translation of 

the numerous experimental data on ASC-based therapies. 

- Clinical trials are ongoing to provide the final confirmation of the correct and feasible exploitation 

of ASCs for the treatment of bone defects and of disorders characterized by impaired endogenous 

osteogenesis and bone remodeling. 



Table 1. Preclinical studies on ASC osteoregenerative potential. 
 
Experimental model Species Scaffold / administration Additionalex vivo/in vivo treatment Grafttype Reference 
Calvarialdefect Rat PLGA Alendronate Xenogeneic 103 
Calvarialdefect Rabbit HA-PLGA, collagensponge BV-BMP2/ TGF β3 Allogeneic 104 
Calvarialdefect Mouse PLGA Dura mater Xenogeneic 105 
Calvarialdefect Rat β -TCP Lenti-miR-31 Allogeneic 106 
Calvarialdefect Mouse Custom scaffold NOGGIN shRNA-Knockout Xenogeneic 30 
Calvarialdefect Dog HA-PLGA None Xenogeneic 108 
Calvarialdefect Mouse Systemicinjection None Allo/xenogeneic 109 
Calvarialdefect Mouse Local injection None Xenogeneic 110 
Calvarialdefect* Rat DBM, PLA None Xenogeneic 111 
Calvarialdefect Rat MAP-coated PCL/PLGA None Xenogeneic 112 
Calvarialdefect Rat HA- β-TCP None Xenogeneic 113 
Calvarialdefect Rat PLGA None / ostegenic medium Xenogeneic 114 
Calvarialdefect Dog Coral Osteogenicinduction Autologous 115 
Calvarialdefect Dog Coral Osteogenicinduction Allogeneic 95 
Calvarialdefect Pig Collagen sponge Osteogenic induction Autologous 116 
Calvarialdefect* Rat DBX Osteogenic induction Allogeneic 117 
Calvarialdefect Rat PCL-PLGA- β-TCP Osteogenic induction + HUVEC Xenogeneic 118 
Calvarialdefect Mouse pDA-PLGA rhBMP-2 Xenogeneic 119 
Calvarialdefect Rabbit Collagensponge rhBMP-2 Allogeneic 120 
Calvarialdefect Mouse HA-PLGA Sonic hedgehog signaling Induction Xenogeneic 121 
Calvarialdefect Rat Local injection VEGFa Xenogeneic 122 
Calvarialdefect Rat Local injection PRP Allogenic 123 
Calvarialdefect Rabbit Fibronectin-treated PLA/PLA None /  Osteogenic induction Allogenic 124 
Calvarialdefect Rat PLA None/ Osteogenic induction / endothelial induction/ coculture Allogenic 125 
Calvarialdefect Rabbit TCP/BAG BMP-2/ BMP-7/ VEGF Autologous 126 
Calvarialdefect Rat Bio-Oss + Collagen type I None Xenogeneic 127 
Calvarialdefect Dog PCL+β-TCP/ASCs-sheet+ PCL+β-TCP None /  Osteogenic induction Autologous 128 
Calvarialdefect Rabbit BAG/ TCP Iron-labeling Autologous 129 
Cavarialdefect Rabbit Polyamide/ PLGA/DAM Osteogenic induction Autologous 130 
Calvarialdefect Mouse PLGA BMP-2/miR-148b  baculovirus vectors  Xenogenic 131 
Calvarialdefect Rat CH+HA 17β-Estradiol Allogenic 132 
Calvarialdefect Mouse Decellularizedtendon Osteogenic induction Xenogenic 133 
Calvarialdefect Mouse PLGA None Autologous 133 
Calvarialdefect Rat BAG None Autologous 134 
Calvarialdefect Mouse SPCL None Autologous 135 
Ectopic bone formation/ Calvarial defect* Mouse/Rat HC None Xenogenic 92 
Ectopic bone formation Mouse PLGA BMP2/RUNX2 bicistronic vector Xenogeneic 93 
Ectopic bone formation Mouse PRP + alginate microsphere None Allogeneic 94 



Ectopic bone formation Mouse β-TCP None Xenogeneic 95 
Ectopic bone formation Rat HA None Xenogeneic 96 
Ectopic bone formation Rat Matrigel Osteogenicinduction Xenogeneic 97 
Ectopic bone formation Rat DBM Osteogenicinduction Xenogeneic 30 
Ectopic bone formation Mouse Carbon nanotubes rhBMP2 Xenogeneic 99 
Ectopic bone formation Rat PLDA rhBMP2 Xenogeneic 100 
Ectopic bone formation* Mouse BMM+PRP None Allegenic 101 
Ectopic bone formation Mouse β-TCP Chondrogenicinduction / None Xenogenic 102 
Ectopic bone formation Mouse polyurethane + spheroids None /  Osteogenic induction Allogenic 103 
Femurdefect Mouse Systemicinjection None Allogeneic 136 
Femurdefect Rat Fibrinmatrix rhBMP2 Allogeneic 137 
Femurdefect Rat β-TCP Lenti-BMP2/7 Allogeneic 138 
Femur defect Rat Collagen gel None Xenogeneic 139 
Femurdefect Rabbit PLGA BMP2 and VEGF baculovirus vectors Autologous 140 
Femurdefect Sheep Titanium Osteogenic induction / serum deprivation Autologous 141 
Femurdefect Rat Collagen-ceramic BMP-2-carrying adenovirus Xenogenic 142 
Femurdefect + distractor Rat Type I collagen gel None Allogenic 143 
Ulna defect Rabbit PLGA None / osteogenic medium Xenogeneic 117 
Ulna defect Rabbit DBM None /  Osteogenic induction Allogenic 124 
Radialdefect Dog β -TCP None Allogeneic 144 
Radialdefect Rabbit PLA/PCL + vascularizedperiosteum Ad-Cbfa1 Allogeneic 136 
Radial defect Rabbits HA-PLA-COL Ad-hBMP2 Allogeneic 145 
Tibia defect Rabbit HA None Autologous 146 
Tibia defect + distractor Rabbit Local injection None Autologous 147 
Tibia defect Rabbit HA None Autologous 148 
Tibia defect Dog PRP  None Xenogeneic 149 
Tibia defect Mouse  Injection None Autologous 150 
Femurosteochondraldefect Rabbit Local injection Bovine BMP Allogeneic 151 
Femurosteochondraldefect Rabbit Ceramics, biphasicmaterials none allogeneic 152 
Spinal fusion Mouse Local injection rhBMP6 nucleofection Xenogeneic 170 
Spinal fusion Rat Lyophilized human cancellous bone Gal-KO + osteogenicinduction Xenogeneic 169 
Spinal fusion/ Femurdefect Pig 3D-DBM DBM +  Osteogenic induction Autologous 129 
Vertebraldefect Rat Fibrin gel rhBMP6 nucleofection Xenogeneic 171 
Mandibledefect PIg Local-systemicinjection None Allogeneic 174 
Mandibledefect Rat HA/COL None Xenogeneic 173 
Mandibledefect Rabbit CH+CS BMP2 +  NOGGIN shRNA-Knckout Xenogenic 133 
Mandibledefect Pig DBM 3D- Osteogenic induction Autologous 147 
Alveolardefect Rat PLGA None Allogenic 146 
HA: hydroxyapatite; PLGA: poly(lactic-co-glycolic acid); PLA/PCL: polylactic acid/polycaprolacton; Ad-Cbfa1: adenoviral expression vector carrying the Cbfa1 gene; DBM: demineralized bone 
matrix; β -TCP : beta-tricalcium phosphate; Lenti-miR-31: lentivirus expression vector carrying the microRNA-31; p-DA: polydopamine; PRP: platelet-rich plasma; Lenti-BMP2/7: lentivirus 
expression vector carrying either the BMP2 or the BMP7 gene, MAP: mussel adhesive proteins, NOGGIN shRNA : short hairpin ribonucleic acid to knockdown NOGGIN gene, COL: collagen; BAG: 
bioactive glass; DAM decellularized amniotic membrane;  BV-BMP2/ TGF β3: baculovirus expression vector carrying either the BMP2 or the TGF β3 gene; BMP-2/miR-148b: baculovirus vectors  



carrying the microRNA-148b and BMP2 genes; CH: Chitosan; CS: chondroitin sulfate;  Gal-KP: galactosyl-knock-out; a-CaP: amorphous calcium phosphate; 3D-DBM: three-dimentional 
demineralized bone matrix. BMM: bone mineral matrix. SPCL: starch-polycaprolactone. HC: Engineered and devitalized hypertrophic cartilage.   *: these studies were based on uncultured SVF 
instead of culture-amplified ASCs. 
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