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Abstract: Parkinson Disease (PD) is a common neurodegenerative disorder of intricate etiology, caused by
progressive loss of aminergic neurons and accumulation of Lewy bodies. The predominant role of genetics in
the etiology of the disease has emerged since the identification of the first pathogenetic mutation in SNCA
(alpha-synuclein) gene, back in 1997. Mendelian parkinsonisms, a minority among all PD forms, have been
deeply investigated, with 19 loci identified. More recently, genome wide association studies have provided
convincing evidence that variants in some of these genes, as well as in other genes, may confer an increased
risk for late onset, sporadic PD. Moreover, the finding that heterozygous mutations in the GBA gene (mutated
in Gaucher disease) are among the strongest genetic susceptibility factors for PD, has widened the scenario of
PD genetic background to enclose a number of genes previously associated to distinct disorders, such as
genes causative of spinocerebellar ataxias, mitochondrial disorders and fragile X syndrome. At present, the
genetic basis of PD defines a continuum from purely mendelian forms (such as those caused by autosomal
recessive genes) to multifactorial inheritance, resulting from the variable interplay of many distinct genetic

variants and environmental factors.
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INTRODUCTION

Parkinson disease (PD) is the second most frequent
neurodegenerative disorder after Alzheimer disease in
aged populations, with a prevalence rate reaching up to
3% by age 75 years [1]. The main clinical features of
PD are resting tremor, rigidity, bradykinesia and
postural instability, but non-motor features such as
cognitive decline, neuropsychiatric disturbances and
autonomic failure often coexist with motor impairment.
Pathological hallmarks of the disease are the
degeneration of aminergic neurons in the substantia
nigra pars compacta and other brain areas, as well as
the deposition of alpha-synuclein and other proteins
within intracytoplasmic inclusions known as Lewy
bodies (LBs) [2, 3].

A genetic predisposition in PD has long been
suspected, based on the detection of positive family
history in up to 20% of patients [4]. However, only in
recent years the role of genetics in PD has been deeply
investigated, leading to major discoveries that have
greatly improved knowledge of the disease basis.
Through linkage studies, positional cloning strategies
and high throughput techniques, 19 loci and 15 genes
have been linked to monogenic autosomal dominant
(AD) or autosomal recessive (AR) forms of PD (Table 1),
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that are collectively responsible only for less than 10%
cases [5]. More recently, whole-genome association
studies (GWAS) have identified polymorphic variants in
several genes as susceptibility factors for the sporadic
form of the disease, and mutations in genes apparently
unrelated to PD, such as the glucocerebrosidase A
(GBA) gene that is mutated in Gaucher's disease, have
also been discovered as important risk factors.

At present, the etiology of PD is thought to be
multifactorial, resulting from the variable interplay of
distinct genetic and environmental factors. The
contribution of these factors seems to be inversely
prevalent in the different forms of PD, spanning a broad
spectrum where monogenic and idiopathic PD are at
the opposite ends (Fig. 1). This review aims to discuss
the contribution of genetics in determining PD
phenotypes, from the highly penetrant autosomal
recessive and dominant forms to the more complex
scenario in which genetic variations in distinct genes
variably influence the susceptibility to develop the
disease.

MENDELIAN FORMS OF PD
Autosomal Recessive PD and Parkinsonisms

Among those parkinsonisms caused by recessively
inherited mutations, three genes (PARK2/Parkin,
PARKS6/PINK1, PTEN-induced kinase 1 and PARK7/
DJ-1, Daisuke-Junko-1) have been identified as
causative of pure PD phenotypes [6-8]. The main
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Table 1. Mendelian PD genes and loci.
Locus Chromosome Gene Inheritance PD Phenotype Mutation Types MM
Typical PD
PARK1/PARK4 4q21-22 SNCA AD Variable onset PD point mutations, whole gene multiplications | 163890
PARK2 6q25.2-q27 PRKN AR Early onset PD point mutations, exonic rearangements | 602544
PARKB 1p36 PINK1 AR Early onset PD point mutations, exonic rearrangements | 608309
PARK?7 1p36 DJ-1 AR Early onset PD point mutations, exonic rearrangements | 602533
PARKS 12q12 LRRK2 AD Variable onset PD point mutations 603007
PARK17 16q11.2 VPS35 AD Variable onset PD point mutations 601501
PARK18 3q27.1 EIF4G1 AD Late onset PD point mutations 600495
Atypical Parkinsonisms
PARK9 1p36 ATP13A2 AR KRS point mutations 610513
PARK14 22q131 PLA2G6 AR Juvenile dystonia-parkinsonism point mutations 603604
PARK15 22q12-q13 FBX07 AR Pallido-pyramidal syndrome point mutations 605648
PARK19 1p31.3 DNAJCE AR Juvenile parkinsonism® point mutations 608375
PARK20 21g22.11 SYNJ1 AR Juvenile parkinsonism® point mutations 604297
Putative PD-Assoclated Loci and Genes
PARK3 2p13 SPR? AD Late onset PD - 602404
PARKS 4p14 UCHL1 AD Late onset PD point mutations 191342
PARK10 1p32 unknown unclear Late onset PD - 606852
PARK11 2q37.1 GIGYF2 AD Late onset PD point mutations 612003
PARK12 Xq21-q25 unknown unclear Late onset PD - 300557
PARK13 2pt2 OmiHtrA2 unclear Late onset PD paint mutations 606441
Non-PD Genes Causative of PD Phenotypes
not assigned 12q24.1 ATXN2 AD Late onset PD CAG expansions 801517
not assigned 14q32.12 ATXN3 AD Late onset PD CAG expansions 607047
not assigned Xq27.3 FMR1 X-linked Late onset PD CGG expansions (41-54, gray zone) 309550
not assigned 9p21.2 CSorf72 AD Late onset PD GGGGCC expansions 614260
not assigned 15q26.1 POLG1 AR/AD Late onset parkinsonism point mutations 174763
not assigned 10q24.31 Twinkle AD Variable onset parkinsonism point mutations 606075
not assigned 1q21 GBA risk factor/AD* Variable onset PD point mutations 606463

AD, autosomal dominant; AR autosomal recessive; MIM: Mendelian Inheritance in Man online catalogue; PD, Parkinson disease; KRS, Kufor Rakeb Syndrome,

considering the small number of reported cases and their clinical variability, the phenotypic spectrum related to these genes still has to be delineated (see text for
details); *given the very high Odd's Ratio (>5), heterozygous mutations in the GBA gene can be considered as autosomal dominant with very low penetrance.

distinctive feature of these forms is represented by the
early age at onset, slow progression and good resp-
onse to Levodopa therapy. Other genes (PARKY/
ATP13A2, PARK14/PLA2G6, phospholipase A2, group
VI and PARK15/FBXO7, F-box only protein 7) are
known to cause AR atypical parkinsonisms, that also
present early age at onset but are characterized by a
more rapidly progressive, complex phenotypes, in
which parkinsonian signs are variably associated to
other neurological features.

More recently, autosomal recessive mutations in
two other genes (DNAJ/HSP40 homolog, subfamily C
member 6, DNAJC6, and Synaptojanin 1, SYNJT) have
been described in members of consanguineous

families with juvenile parkinsonism, often associated to
other neurological signs [9-12). In all these forms,
penetrance is usually complete and age-dependent.

Autosomal Recessive “Pure” Early Onset PD

Exonic rearrangements and/or point mutations in
the Parkin gene are the commonest genetic alterations
found in pure early onset PD (<40-45 years), with an
overall mutation frequency of about 8-9%. Mutations in
the PINK1 and DJ-1 genes are rarer, being identified in
3-4% and <1% of early onset PD, respectively [13).

Pathologically, a significant loss of dopaminergic
neurons in the substantia nigra and locus coeruleus,
without LBs in all but rare cases, have been described
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Fig. (1). Genetic factors associated to Parkinson disease and relative risks (RR).

in Parkin-mutated PD brains. At difference, the only
PINK1 autoptic case reported so far was more similar
to idiopathic PD, with nigral neuronal loss and LB
pathology {14, 15]. No neuropathological data are yet
available for DJ-1 mutated patients.

The occurrence of Parkin biallelic mutations is
inversely correlated to the age at onset of parkinsonism:
the earlier the onset, the higher the probability to detect
mutations in this gene, with mean onset ages around 30
years. Other typical features of the Parkin-related
phenotype are a slow and benign progression of the
disease, usually without cognitive or vegetative
impairment, and a good and long-lasting response to
Levodopa and dopamine agonists. However, motor
fluctuations and Levodopa-induced diskynesias may
occur. A symmetrical presentation of symptoms, dystonia
at onset, hyperreflexia, sleep benefit and psychiatric
disturbances may also be present [16]. In PINK7-related
parkinsonism, mean age at onset is in the fourth decade
(usually later than Parkin), atypical features such as
dystonia at onset, hyperreflexia and diurnal fluctuations
are rarer, but psychiatric disturbances have been reported
in a substantial subset of mutated patients [17]. Finally,
only few patients with DJ-7 biallelic mutations have been
identified to date: the phenotype seems to be
characterized by a very early onset (in the twenties), with
frequent occurrence of dystonia at onset that may have
atypical distributions such as cervical dystonia and
blepharospasm, and psychiatric disturbances [18, 19].

Autosomal Recessive Atypical
Parkinsonisms

Early Onset

These atypical early onset parkinsonisms are
characterized by the association with other neurological

signs, such as dystonia, spasticity, dementia, and
abnormal ocular movements.

Kufor Rakeb syndrome (KRS), caused by mutations
in PARK9/ATP13A2 gene, is a rare pallido-pyramidal
syndrome presenting with juvenile Levodopa-
responsive parkinsonism (average onset age in the
second decade), associated to supranuclear gaze
palsy, pyramidal signs, mini-myoclonus of the face and
fingers, dementia, and progressive brain atrophy [20,
21}]. Although only few mutated patients have been
reported to date, there is phenotypic variability, insofar
patients have been described presenting with later
ages at onset, subtle parkinsonism, ataxia and axonal
neuropathy, or variable neuroimaging features
including iron brain deposition, absence of atrophy, or
degenerative cerebellar involvement [22]. Surprisingly,
a ATP13A2 homozygous mutation was recently
detected in a family with neuronal ceroid
lipofuscinoses, a metabolic storage disease, further
widening the phenotypic spectrum of this gene [23].
Heterozygous ATP13A2 mutations have been reported
in rare patients with early onset pure PD, implicating
this gene as a possible susceptibility factor for
idiopathic PD [24]. Besides KRS, two other genes
(PARK14/PLA2G6 and PARK15/FBX07) cause
atypical early onset forms of parkinsonism. Mutations in
PLA2G6 are responsible for infantile neuroaxonal
dystrophy and neurodegeneration with brain iron
accumulation (NBIA) but, in rare cases, they can be
found in patients with a Levodopa-responsive form of
dystonia-parkinsonism that is rapidly complicated by
the occurrence of cognitive impairment, psychiatric
disturbances and pyramidal signs [25]. Conversely, the
rare FBX07-related disease is primarily a pyramidal
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syndrome without cognitive impairment, in which
levodopa-responsive parkinsonian features appear well
after the onset of spasticity [26].

Novel AR PD Genes: PARK19/DNAJC6 and
PARK20/SYNJ1

Using homozygosity mapping and whole exome
sequencing, pathogenetic biallelic mutations in the
DNAJC6 gene have been detected in patients with
autosomal recessive juvenile parkinsonism, either
isolated or associated to other neurological features
such as mental retardation, pyramidal signs and
epilepsy [9, 10]. More recently, homozygous mutations
in the SYNJ?1 gene have been identified in patients
from a consanguineous ltalian family with
parkinsonism, dystonia and cognitive deterioration and
in an Iranian kindred with early onset PD and
generalized epilepsy [11, 12]. Despite the limited
number of cases reported to date, a wide clinical
variability seems to characterize both these two novel
forms of parkinsonism. More studies are required in
order to better delineate the DNAJC6 and SYNJ1
related phenotypes and the role of these genes in the
pathogenesis of PD.

Autosomal Dominant PD

To date, at least eight genes and loci have been
linked to AD PD, but only few of them (PARK1-
PARK4/SNCA, alpha synuclein;, PARKB/LRRK2,
leucine-rich repeat kinase 2; PARK17/VPS35, vacuolar
protein sorting 35 and PARK18/EIF4G1, eukaryotic
translation initiation factor 4-gamma 1) have been
unequivocally proved to be causative of the disease;
conversely, the pathogenic role of other genes (such as
PARKS5/UCHL1, ubiquitin carboxyl-terminal esterase
L1; PARK11/GIGYF2, GRB10-interacting gyf protein 2
and PARK13/HTRA2, HTRA serine peptidase 2) still
remains controversial. While SNCA and LRRK2 genes
have been studied in depth, available data are still
scarce for VPS35 and EIF4G1 genes, that were more
recently identified.

Excluding rare exceptions, AD parkinsonisms share
common features, such as a later age at onset
compared with AR PD, the occurrence of cognitive
impairment of variable degree, and incomplete
penetrance [27].

In terms of neuropathology, LBs have been
detected in brains from patients with AD PD, with the
exception of VPS35 mutated cases, for whom data are
still lacking. However, pathology is highly variable in
LRRK2-related PD, in which LBs can be absent or
present with variable distribution in the brain, possibly
associated to ubiquitine positive inclusions as well as
Tau pathology [28, 29].

PARK1- PARK4/ SNCA (Alpha Synuclein)

Five distinct point mutations, as well as whole
duplications or triplications of the SNCA gene, have
been detected in a few patients with AD PD. The SNCA
p.AS3T change was the first genetic mutation to be
identified in a large Italian PD kindred with dominant
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inheritance back in 1997 (the Contursi kindred),
opening up an entirely new avenue of research on PD
pathophysiology [30]. The same mutation was
subsequently found in several Greek/Italian families all
sharing a common ancestor, in two other PD families of
Korean and Swedish origin and in an apparently
sporadic Polish case. The phenotype of mutated
patients carrying the p.AS83T mutation ranged from
typical late-onset PD to atypical PD with more severe
features, such as earlier age at onset, rapid
progression, and high prevalence of cognitive,
psychiatric and autonomic impairment [30-35]. The
other four SNCA mutations have been reported: i) in a
single German family with PD (p.A30P) [36]; ii) in
several Basque families with a severe form of early
onset parkinsonism or Lewy body dementia (p.E46K)
[37]; iii) in a unique familial case of Caucasian origin
(p.H50Q) [38, 39]; iv) in a three-generation French PD
pedigree with early onset and rapidly progressive
parkinsonism associated to frequent psychiatric
disturbances and marked pyramidal signs (p.G51D)
[40].

At difference from point mutations, that are
extremely rare, SNCA locus multiplications represent a
more frequent cause of AD PD. Triplications of the
whole gene have been described in few families
presenting a severe form of early onset parkinsonism,
while SNCA duplications are even commoner, being
reported in several familial and sporadic PD cases
worldwide [41-43).

In this genetic condition, the disease severity
appears to correlate well with the dosage of the SNCA
gene, rather than with the extension of the multiplicated
genomic region. Indeed, the presence of four SNCA
copies is always causative of a fully penetrant,
aggressive and rapidly progressive phenotype, with
early onset (usually in the third to fourth decade) of
parkinsonian signs and precocious non motor features
(dementia, psychiatric disturbances and dysautonomia)
[44-46]. Conversely, in patients with SNCA duplications
the disease presentation is highly variable, even within
families: in some patients it resembles idiopathic late-
onset PD while others are more similar to patients
bearing SNCA triplications [43, 47, 48]. Penetrance is
estimated to be up to 30%, as several healthy carriers
of the SNCA duplication have been reported [49-52].

PARK8 /LRRK2

At difference from SNCA-related phenotypes, the
parkinsonian phenotype caused by LRRK2 is usually
more similar to idiopathic PD. The LRRK2 gene
comprises 51 exons, and more than 100 missense
variations have been described to date
(http:/mww.molgen.ua.ac.be/PDmutDB). However,
only seven nucleotide changes are considered surely
pathogenetic (p.N1437H, p.R1441C, p.R1441G,
p.R1441H, p.Y1699C, p.G2019S and p.12020T), based
on functional studies and segregation analysis in large
families [53). Among these mutations, the p.G2019S
missense change is the most frequent due to a founder
effect, with variable frequencies worldwide that seems
to decrease with increasing distance from the
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Mediterranean areas. In fact, its prevalence reaches up
to 40% among the Ashkenazi Jewish and the North
African Arab communities, while it has been detected in
about 5-7% of familial and about 0,5- 2% of sporadic
cases in the Caucasian populations [54, 55]. There is
incomplete age-dependent penetrance, ranging from
28% at age 59 to 74% at age 79, as demonstrated by
the detection of this mutation in many sporadic
patients, in pedigrees with unconventional patterns of
inheritance and in aged healthy subjects [56]. LRRK2-
related phenotype presents a variable age at onset
(ranging from the fourth to the eight decade); unilateral
tremor is often the initial sign of disease, and response
to ftreatment is good and sustained, although
phenotypic variability has been observed even within
families.

Novel AD PD Genes: PARK17 /VPS35 and PARK18/
EIF41G

Recently, two novel PD-causing genes, VPS35 and
EIF4G1, have been identified using high throughput
strategies. The VPS35 p.D620N mutation has been
recurrently detected in tremor-dominant PD familiai
cases from different ethnicities [57, 58], with age at
onset ranging from 40 to 52 years and a relative
frequent occumrence of cognitive impairment.
Penetrance seems to be reduced and age dependent.
Other missense variants have been identified in very
few cases, but their pathogenetic significance still
remains undetermined [58-60]. Since the estimated
prevalence is 0,4%, VPS35-related parkinsonism can
be considered a rare cause of AD PD [61].

Similarly to VPS35, the pathogenetic role of EIF4G1
mutations in PD is still not well defined. Among the
genetic variations identified in PD patients, only the
p.R1205H substitution was found to clearly co-
segregate with the disease in nine families, manifesting
as a late onset parkinsonism with slow progression,
good response to Levodopa therapy and spared
cognitive functions in all but a few cases [60, 62]. The
frequency of the p.R1205H mutation was estimated to
be about 0,2% in European and African PD cohorts,
while mutation screening studies failed to find EIF4G1
mutations in other ethnicities [63, 64]. Asymptomatic
carriers have been reported, some older than 80 years
[60].

Other AD PD Genes Requiring Genetic Validation

Other AD loci and genes have been associated to
PD (Table 1), but their pathogenicity was not confirmed
in subsequent studies. in the PARK3 locus (mapped to
chromosome 2p13 by linkage analysis performed in
large AD PD families), the underlying causative gene
has not been identified yet. A single gene mapping
within the region, the sepiapterin reductase (SPR) gene
(involved in dopamine synthesis) has been possibly
implicated in PD, but the presence of other causative or
susceptibility genes for late-onset PD within this region
cannot be excluded [65-69]. The PARKS5/UCHL1
(mapping to chromosome 4p14) and PARK11/GIGYF2
(chromosome 2q) genes initially seemed good PD
candidates based on the identification of potentially
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pathogenic mutations in few PD familial cases;
however, further screenings in large cohorts of patients
failed to identify additional pathogenetic variants [70-
73). Finally, the mitochondrial serine protease gene
(PARK13/Omi/HTRA2) has been proposed as a
possible candidate since a genetic variant (p.G399S) in
this gene was found significantly over-represented in
PD patients compared to controls; these findings were
not confirmed in subsequent studies, the same variant
being detected at a similar frequency in patients and
controls [74-76].

Non-PD Related Genes Causative of Mendelian
Parkinsonisms

Parkinsonism may be the phenotypic expression of
mutations in genes that are usually related to other
neurologic diseases. Trinucleotide repeat expansions
in the ATXN2 (ataxin-2) or ATXN3 (ataxin-3) genes,
that cause two forms of spinocerebellar ataxia, have
been found in familial cases with pure Levodopa-
responsive PD [77]. Other interesting examples are the
trinucleotide repeat expansions in the FMR1 (fragile X
mental retardation protein) gene on chromosome X,
that are responsible of different phenotypes, such as
mental retardation in males (>200 CGG repeats, full
mutation) or FXTAS, the Fragile X tremor/ataxia
syndrome, in both genders (45-54 CGG repeats,
premutation). A form of parkinsonism, resembling
idiopathic PD, may be the initial presentation of FXTAS
in premutated subjects, but it can be the unique
phenotype in female and male carriers of milder
expansions (41-54 CGG, gray zone) [78]. Finally,
pathogenetic expansions in the C90rf72 gene, recently
identified as causative of familial frontotemporal
dementia (FTD) and amyotrophic lateral sclerosis
(ASL), have been reported in a few patients with typical
PD and a positive family history of other
neurodegenerative diseases, including FTD and ALS
[79]

A Blurred Boundary Between Causative and Sus-
ceptibility Mutations in PD

The GBA Gene

Gaucher disease is an AR lysosomal storage
disorder caused by biallelic mutations in the
glucocerebrosidase gene (GBA, on chromosome
1921), encoding the glucocerebrosidase enzyme
(GCase). Almost 300 GBA mutations have been
identified, but the most frequent cluster is in the
catalytic domain of the enzyme [80]. Frequency and
distribution of GBA mutations vary among populations,
being more common in Ashkenazi Jews (in particular
the p.N409S and p. L444P mutations) [81-83]. The
intuition of a possible link between this gene and PD
first arose from the observation of a frequent
occurrence of parkinsonian symptoms in GD patients
or in heterozygous relatives, leading to perform
molecular screening of the GBA gene in large cohorts
of PD patients [81, 84-89]. These studies unraveled an
impressive high frequency of GBA heterozygous
mutations in patients compared to healthy controls,
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ranging from 7% to 15% in various populations. Based
on these resuits, GBA heterozygous mutations are now
considered to be the commonest genetic risk factor for
PD, with an average odds ratio of 543 and an
estimated cumulative risk for PD of 2.2% by age 65
and of 10.9% by age 85 [81, 90]. Indeed, based on
these high relative risk values, heterozygous GBA
mutations can be considered more than susceptibility
factors, gaining the same genetic weight as autosomal
dominant mutations with reduced penetrance [91].
Moreover, GBA mutations have been recently
proposed also as madifiers of PD progression,
increasing four fold the risk to reach a higher Hoehn
and Yahr stage, and five-fold the risk to develop earlier
cognitive impairment and eventually dementia [92].

Compared to idiopathic PD, patients with GBA
mutations have on average an earlier age at onset,
more symmetrical clinical signs, and an increased
occurrence of non-motor symptoms, including cognitive
impairment, neuropsychiatric  disturbances  and
automomic dysfunctions [93]. The parkinsonian
phenotype observed in GBA heterozygous carriers can
be heterogeneous, ranging from classical late-onset
levodopa-responsive PD to more severe presentations
consistent with the diagnosis of PD-dementia and
Dementia with Lewy body [81]. Not surprisingly,
abundant a-synuclein inclusions and prominent diffuse
Lewy bodies-type pathology have been found in brains
from GBA-mutated PD patients [94]). Recently, a
widespread decrease of GCase catalytic activity and of
related protein levels have been reported in brains of
PD patients either with or without GBA mutations,
leading to increased a-synuclein aggregation as a
result of the compromised neuronal lysasomal activity.
In tum, these increased levels of a-synuclein may
inhibit intracellular trafficking and lysosomal function of
normal GCase, suggesting a bidirectional, positive
feedback loop between a-synuclein accumulation and
GCase deficiency [95, 96].

Mitochondrial Parkinsonisms

There is a close tie between mitochondrial
dysfunction and the risk to develop PD and
parkinsonism: for instance, high levels of mitochondrial
DNA (mtDNA) deletions were detected in the
substantia nigra of PD patients [97] and, on the other
hand, parkinsonian signs may frequently occur in
mitochondrial diseases (MDs) caused by mutations or
deletions in mitochondrial genes, such as ND1, ND2
and ND3, the mtDNA tRNA(Lys), the mtDNA
tRNA(GIn), Cytb and Ng [98].

A parkinsonism partially responsive to Levodopa
has been occasionally reported in patients with single
or biallelic mutations in POLG1 (mitochondrial DNA
polymerase gamma), a nuclear gene that, when
altered, causes multiple deletions in the mtDNA.
However, additional signs suggestive of an underlying
mitochondrial defect (such as external progressive
ophthalmoplegia, ataxia, neuropathy and miopathy)
often coexisted with PD in these patients [99]. PD
features were also described in members of a family
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with autosomal dominant external progressive
opthalmoplegia caused by a missense mutation in the
Twinkle (C100RF2) gene, encoding a mitochondrial
DNA helicase involved in the maintenance of the
mtDNA stability [100].

Besides their pathogenetic role in complex forms of
parkinsonism, these nuclear and mitochondrial genes
may play as risk factors in the pathogenesis of PD. The
POLG1 polymorphic poliglutamine tract (poly-Q),
commonly encoded by 10 or 11 repetitions of the CAG
triplet, has been associated to PD in the presence of
non-10/11Q, although controversially in different
studies [99]. Even mitochondrial haplogroups
(characterized by common polymorphisms evolved
from the same ancestor) have been deeply
investigated in relation to PD pathogenesis, and the
protective role of haplogroups J and T has been
confirmed by a recent metanalysis study [101, 102].

Genetic Risk Factors for PD

We only have crumbs of knowledge about the
complex environmental-genetic interactions that may
cause the common form of “idiopathic” PD. Genetic
research has long been attempting to unravel this
intricate interplay, through case-control association
studies and, more recently, GWAS. Moreover, recent
evidence has pointed towards a potential role of
heterozygous mutations in AR PD genes as risk
factors, by detecting endophenotypes in healthy
carriers.

Heterozygous Mutations in AR PD Genes

While biallelic mutations in genes such as Parkin,
PINK1 and DJ-1 have been unequivocally linked to AR

early onset parkinsonism, the role of single
heterozygous mutations in these genes is still
controversial and debated. Extensive mutation

screenings of these genes have shown that a
substantial proportion of patients only carried a single
heterozygous variant, and such variants were
occasionally detected also in healthy controls [103].
Bearing in mind that PD is a common condition, the
presence of these single mutations might be accidental
and unrelated to the disease. However, cumulative
evidence from many studies and comparison of the
frequencies of these mutations among cohorts of
patients and controls, now suggests that they may
represent minor susceptibility factors that could mildly
contribute to the risk of sporadic PD (Parkin odds ratio
2,53, PINK1 odds ratio 1,65) [104, 105]. Interestingly,
some healthy subjects carrying heterozygous Parkin or
PINK1 mutations were found to present mild signs of
parkinsonism not fulfilling the diagnostic criteria for
clinically definite PD, or subclinical signs definable as
endophenotypes (e.g. abnormal responses to
neurophysiological testing, hyperechogenicity of the
substantia nigra, nigrostriatal dysfunction on functional
neuroimaging, discrete abnormalities in voxel-based
morphometric analyses, and so on). However, no
evidence of progression to classical PD could be
observed in the majority of these cases [106]. Further
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studies are needed, in particular neurological follow up
of healthy heterozygous carriers, in order to establish
the real impact of such variants on the disease
susceptibility [106).

Polymorphic Variants in Autosomal Dominant PD
Genes

Before the advent of whole genome techniques, case-
control association studies of selected polymorphisms
within candidate genes had been largely adopted to
search for genetic susceptibility factors of PD. However,
only a few of the proposed associations could be
replicated and confirmed in other populations or in meta-
analysis. Among these, several variants in the SNCA
gene, including the NACP-Rep1 polymorphism and
variants in the 3'UTR region, have been consistently
associated to an increased PD risk [107, 108]. The H1
haplotype of the MAPT gene, encoding the microtubule
associated protein tau, has been recognized as a PD risk
factor with an odds ratio of 1.5, while two common
variants in LRRK2 (p.G2385R and p.R1628P) increased
the risk of PD about two-fold, particularly in Asian
populations. Intriguingly, the most reliable risk factors
resulted to be polymorphic variants within the same
genes mutated in monogenic forms of PD or other
neurodegenerative diseases, establishing a direct link
between the pathogenesis of familial and sporadic forms
of PD [109].

Other Genetic Risk Factors for PD
Thanks to GWAS, an increasingly popular approach

Current Molecular Medicine, 2014, Vol. 14, No. 8 1085

to identify genetic factors influencing complex traits,
and the creation of large patients samples consortia
from many research PD study groups worldwide,
association studies have highly reinforced their
capability in finding low risk variants. To date, multiple
GWAS and three different meta-analyses have been
published. Besides confirming the previously
ascertained associations with SNCA, MAPT and
LRRK?2 variants, these studies have highlighted many
other genes and loci implicated in genetic PD
susceptibility (Table 2) [110-112]. However, the
combined population-attributable risk across all
identified loci was 60.3% and 25.6% for the MAPT and
SNCA loci alone, confirming the strong influence of
these two genes on PD susceptibility.

CONCLUSION

Over the last decade, impressive evidence has
highlighted a central role for genetic factors not only in
determining the probability to develop PD, but also
influencing the disease onset, progression and
phenotypic manifestation. Rare highly penetrant
pathogenic mutations and more common susceptibility
variants in several distinct genes variably interplay with
still largely unknown environmental factors to even-
tually determine if, when and how a single individual
will become affected. Despite this tremendous prog-
ress, our knowledge is still largely incomplete, and it is
foreseeable that many additional genetic determinants
will have to be identified. The advent of innovative next

Table 2. Genetic risk factors in sporadic Parkinson Disease (from published GWAS).

Chromosome Gene Risk Variants Odds Ratios (OR) References
12q12 LRRK2 (PARKS) G2385R, R1628P 2.3* [51
1922 SYT11 SNPs 1,43’ {110}
17q21.31 MAPT H1 haplotype 1,4 (5
4p16.3 GAK SNPs 1,35 [112]
4q21-22 SNCA (PARK1/PARK4) Rep1; 5' and 3' UTR variants; SNPs 1,2-1,4 [107, 108, 112)
18q12.3 RIT2 SNPs 1,2 {112]
2q24.3 STK39 SNPs 1,19 111}
12q24.31 CCDC62/HIP1R SNPs 1,15 (111}
16p11.2 STX18 SNPs 1,14 (111]
4p15 BST1 SNPs 11 [(112]
2q21.3 ACMSD SNPs 1,02° [110]
6p21.32 HLA-DRBS SNPs 0,95"-0,98* {110}
3q27.1 MCCC1/LAMP3 SNPs 0,9 [111]
4g21.1 STBD1 SNPs 0,9 [111]
7p15.3 GPNMB SNPs 0,89 [111]
8p22 FGF20 SNPs 0,89 (111}
10p13 ITGA8 SNPs 0,88 [111]
1q32 PARK18 locus SNPs 0,88 (111}

AD: autesomal dominant, GWAs Genome Wide Association Studies, SNP. single nucleotide polymorphism. European population; "Asiatic population
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generation sequencing (NGS) techniques is expected
to give new acceleration to this research path, with the
possibility to sequence the entire exome or even
genome of an individual with high efficiency and in a
time- and cost-effective way. NGS techniques are now
expected to unravel rare pathogenetic variants acting
as genetic modifiers of PD risk or progression that, due
to their “rare” nature, cannot be picked up by GWAS. A
perfect example is the GBA gene, that had never
emerged in GWA studies despite being one of the
strongest genetic factors influencing PD susceptibility.
On the other hand, this innovative approach is
unraveling a complexity of the human genome that is
much greater than previously thought, with the
identification even in the genome of ‘healthy”
individuals of several genetic variants whose
significance remains difficult to decipher. As a
consequence, the interpretation of NGS data is going
to pose major challenges when trying to link specific
genetic variants to the disease risk or to certain
phenotypic manifestations. Studies on large cchorts of
well-phenotyped patients and guidelines for the
analysis and interpretation of sequencing data are
sought in order to make the most of this innovative
technique to advance our knowledge on PD
pathogenesis and natural history.
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