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Abstract

We live in the era of data deluge, where billions of gigabytes of data are generated
and collected every day. Such a big amount of data has to be processed with
the aim of improving our life in social, economic, scientific, medical aspects and
more. Machine learning is a growing field that faces the challenges related to this
ever-increasing data amount, like storage and processing, adversaries identification,
denoising, time-variability, etc. Among several machine learning tools, graph-based
methods are well-appreciated for their ability in capturing relevant information,
recognizing patterns in a big amount of data, elaborate high dimensional signals
or recover missing data. However, several existing approaches based on graphs are
limited to tackle too ideal cases, where topology and/or signal perturbations are not
considered.

The present thesis aims at robustifying, against possible perturbations, learning
tools used to accomplish several graph-learning tasks. In fact, in many cases,
the graph underlying a network presents topology uncertainties/perturbations. A
mismatch between the actual graph and the presumed one might be the result of
the presence of graph topology inference errors, outliers, unexpected links failure,
or model mismatch. One of the goals of this thesis is to analyze some graph signal
processing tools taking into account topological perturbations. By incorporating any
available prior knowledge on perturbations statistics, small perturbation theory of
Laplacian matrices plays a key rule in our study.

Small perturbation theory is instrumental also to accomplish the second goal of
this thesis: Given a graph topology, we aim at identifying the edge whose perturbation
causes the largest changes in the connectivity of the network.

Then, we address two graph-based learning tasks in the presence of signal and
topology perturbations. The first, is the topology identification tasks that may be
affected by signal errors, due to outliers, adversaries or observation inaccuracy. To
solve this problem, we rely on structural equation models, where signal errors may
appear in both the input and output matrices. The second task that we analyze is
the signal inference under topology perturbations. In both tasks, we develop total
least squares approaches to take into account signal and/or topology perturbations.

Finally, several numerical results show how perturbation-aware methods outper-
form classical methods that ignore possible perturbations.
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Chapter 1

Introduction

1.1 Motivation

In the last two decades, we have witnessed a huge increase in the data amount
to be analyzed. The increasing collection of data we are experiencing comes not
only from books, texts, audio, video, but data arise also from internet-of-things
(IoT) devices, activity of cell phone users, in health care for recording digital reports
of patients, metabolic or protein interaction networks, social networks, and so on.
Such a huge amount of data needs to be processed and new machine learning tools
are required to capture relevant information. Among several methodologies, in the
last decade, graph-based machine learning has permeated social, biological and
technological systems.

A graph is an abstract representation of the interactions between agents in
complex systems. In the graph representation, nodes are the agents and the edges
describe the interactions, see Fig. 1.1 for a graphical illustration.

vertex
edge

Figure 1.1. Small graph composed by 8 nodes (dots) and 10 edges(lines)

The first benefit of graph representations is that they are important to visualize data
in a way that facilitates the extraction of structural features, especially for graphs
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with a high degree of modularity. The second benefit of graph representations is
to compute several measures and metrics useful to understand what the data are
telling us since in most cases the visualization is not useful. Indeed, measures of
centrality quantify how important vertices or edges are in a networked system. The
degree centrality is one of those measures; it counts the number of edges, i.e. degree,
attached to it. It is useful in a social network, for instance, where the degree of an
individual is the number of friends this person has within the network. The vertices
with high degree are called “hubs”, and their identification is critical to reveal central
vertices of the network. For example, in social networks, the hubs represent few
central individuals with many acquaintances. Both empirical and theoretical results
indicate that hubs can have different effects on the networks, playing a central role
in particular in-network transport phenomena and resilience, despite being few. A
network concept that commonly occurs in real networks and that has practical
implications is the so-called small-world effect [1]. Defining the geodesic distance
between two vertices as the minimum number of edges to traverse, to go from one
vertex to another, the effect observed in real networks is that the mean geodesic
distance between any vertex pair of the network is very short. Commonly, this effect
is also known as the “the six degrees of separation” and it empirically claims that
anyone in the world is linked to anyone else via a sequence of no more than five
intermediate acquaintances. Such a small-world effect has important implications,
for example, in the spread of news in social networks, where news can pass between
any pair of individuals of the network with at most six “hops” [2].

Another important network characteristic is the presence of communities. In
social networks, there are sub-communities of people strongly interconnected within
one another, since groups of people may share most of their friends. In the networks
of business relationships between companies, there are groups of companies strongly
interconnected between one another within the same sector they operate. The
necessity to reveal communities is to capture the level and concept of organization
among data that without graph instruments are impossible to see.

Moreover, graphs can model data and complex interactions among them. Each
node may have attributes and those are modeled as signals over a graph; for example,
the temperature in a given city on a given day in a weather network. Thus, classical
signal processing concepts, such as Fourier transform, filtering and frequency response,
optimal sampling strategies, have been extended to data residing on graphs, from
the rising fields of graph signal processing (GSP) [3].

Similarly to classical signal processing, signals defined over graphs, or graph sig-
nals for short, can have properties, such as smoothness, if the signals of neighboring
nodes tend to have similar values. The Fourier transform is extended to the case of
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graph signals, allowing us to talk for example of frequency and bandlimitedness or
graph signal filtering. Operations like sampling and denoising have been accommo-
dated for the graph case, mimicking the classical ones. Moreover, we can learn the
underlying structure from data, when the graphs cannot be directly observed [4].

Network examples

Examples of networks may appear in different fields, social, biological, commu-
nication science, see figure 1.2 for illustrative examples.

Figure 1.2. Networks examples: social network (top left), brain network (bottom
left) and vehicular network (right).

Table 1.1 collects some examples of social networks. In social network analysis,
the aim is to discover patterns of interaction between social agents in social networks
and the implications of these relationships rather than investigating the social entities
themselves. Such analysis is instrumental to extract knowledge from networks and,
consequently, in the process of problem solving. For example, some companies
operating in the sector of mobile telecommunications, apply graph-based tools to the
phone call networks and use them to identify customer’s profiles and to recommend
personalized mobile phone tariffs, according to these profiles, see [5] and reference
therein.

Networks occur in several situations in biology. A first example is brain networks
useful in clinical and cognitive neuroscience. Recent studies have discovered that
the information processing capabilities of the brain are facilitated by the existence
of a complex underlying network. However, such an underlying network is not
directly observable and must be inferred from processes measured at different
points of the brains (network nodes) [6]. First of all, these processes need to be
observed for example using functional magnetic resonance imaging (fMRI), which
is a powerful tool to capture varying blood oxygenation patterns modulated by
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Table 1.1. Examples of social networks

Examples Applications
Friendship networks College/school students, organizations or web (e.g. Facebook)
Follower networks Twitter, LinkedIn, Pinterest, etc.
Preference similarity networks Pinterest, Instagram, Twitter, etc.
Interaction networks Phone calls, Messages, Emails, Whatsapp, Snapchat, etc.
Co-authorship networks Dblp, Science direct, Wikibooks, other scientific databases, etc.
User–user citation networks Dblp, Science direct, Wikibooks, other scientific databases, etc.
Spread networks Epidemics, Information, Rumors, etc.
Co-actor networks IMDB, etc.

brain activity. Other brain imaging modalities include positron emission tomography
(PET), electroencephalography (EEG), and electrocorticography (ECoG), to name
just a few. Most state-of-the-art tools for inference of brain connectivity leverage
variants of causal and correlational analysis methods applied to time-series obtained
from the imaging modalities. Brain networks, such as neural networks, can be also a
concrete physical network if the nodes are neurons and the links are the connections
between neurons [2].

Figure 1.3. The food web of little Rock Lake, Wisconsin.

Fig. 1.3 depicts another type of biological network, the ecological network where
vertices are species and links are predator-prey relationships between them. In
particular, the presence of the edge says if one species eats the other. The analysis of
such a network helps to understand and quantify ecological phenomena, concerning
in particular energy and carbon flow in the ecosystem. The edges in this network are
asymmetric and are conventionally directed from the prey to the predator, indicating
the direction of the flow of energy when the prey is eaten. Other biological networks
that we should mention are biochemical networks, such as metabolic networks,
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protein-protein interaction networks, and genetic regulatory networks.
Understanding the structure and characteristics of vehicles flow within a road

network is useful for planning the construction of connections (roads and highways)
linking sites, as well as to forecast the vehicular flow for traffic control. Mathematical
modeling and graph-based tools are used to monitor traffic flow and jam problems
to recommend solutions for the urban and inter-city vehicular mobility.

Graph-based tools are particularly useful also in wireless sensor networks, present
in many applications spanning from environmental monitoring, as a tool to control
physical parameters such as temperature, vibration, pressure, or pollutant concen-
tration, to the monitoring of civil infrastructures, such as roads, bridges, buildings,
etc.

1.2 State of the Art

Graph-based learning is a wide area of study applied in diverse sectors. One field
of study is network science that focuses on graph structure analysis. Graph topology
determines a structure of influences among nodes of a network. When processes act
on the network, the role of the nodes in these processes is different depending on
the position of the nodes. Vertices with very few connections, e.g. pending nodes
(1-degree nodes), have limited impact on the dynamics of the network whereas central
nodes, e.g. hubs, have a major effect on the behavior of the whole graph. Different
works studied methodologies to identify the most important nodes, to explain the
network’s dynamics, such as the distribution of power in exchange networks [7]
or migration in biological networks [8], as well as in designing optimal ways to
externally influence the network, e.g., attack vulnerability of networks [9]. Node
centrality measures are tools designed to identify such important agents. However,
node importance can be interpreted in various ways, giving rise to multiple coexisting
centrality measures, the most common ones are degree [10], [11], closeness [12], [13],
eigenvector [14], and betweenness [15] centrality. Network science has connections to
graph signal processing (GSP) due to graph spectra that GSP builds upon, which is
strongly related to the structure of the graph [16, 17]. Spectral graph theory has
been demonstrated to be a very powerful tool for data information extraction [16,18].
The eigenvalues/eigenvectors of the Laplacian matrix of the graph have been used,
e.g., to estimate the connectivity of the network [18], to find densely connected
clusters of nodes [19], and to search for potential links that would greatly improve
the connectivity if they were established [20]. Works in GSP attempt to extend
the classical discrete signal processing (DSP) theory from the classical time signals
or images to signals defined over the vertices of a graph by introducing the basic
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concepts of graph-based filtering [4, 21], graph-based transforms [22], sampling and
uncertainty principle [23,24]. A central role in GSP is played by the graph signal
spectral analysis, due to the introduction of the so called Graph Fourier Transform
(GFT) [3, 4].

Two major learning tasks of GSP are graph inference and signal recovery. There
is a large number of works on network topology identification from nodal observations
[6], see recent tutorial works like [25] and [26]. If nodal observations are modeled
as random variables or processes, the graph topology typically reflects correlations
among nodal signals. However, in many cases looking only at correlations may not
capture appropriate causality relations existing among the data. Thus, alternative
approaches using the partial correlation [6] or Gaussian graphical models [27], [28]
have been studied. GSP has given a strong impulse to find new approaches for the
graph topology inference. Some of them make assumptions on the sparsity and/or
smoothness of the graph signals [29–31]. Some recent works focus on learning the
graph from signals that diffuse over a graph [32–34]. Differently, in [35], authors
associate a graph topology to the data to make the observed signals band-limited
over the inferred graph. On the other hand, the graph signal inference task emerges
in different applications to predict or extrapolate nodal attributes in all the networks
given only the attributes of a subset of them. Many preliminary works assume
time-invariant nodal signal to reconstruct on a graph , like [3], [36]. Thereafter,
reconstruction approaches leverage the notions of graph bandlimitedness [37], [38],
sparsity and overcomplete dictionaries [39], smoothness over the graph [40], [36],
all of which can be unified as approximations of nonparametric graph functions
drawn from a reproducing kernel Hilbert space (RKHS) [41]. In [42], authors jointly
reconstruct the signal from partial observation and infer the graph topology, relying
on Structural Equation Models.

1.3 Contributions

Most of the literature in GSP and network science consider the graph as perfectly
known, except for a few notably works [43–45]. However, there are several situations
in which the topology is uncertain, e.g. outages on physical networks or model
mismatches in data driven networks. In this thesis, we consider that the graph
might be not known perfectly and that, in some cases, the probabilities of links
failures are available. We show that graph-learning tasks need to be robustified
against the uncertainty of the topology. We analyze some graph-based learning tools
under perturbations exploiting in part the small perturbation theory applied to the
Laplacian matrix [46]. Following up, we use small perturbation theory to design a
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new centrality measure that identifies the most critical edges, i.e. the ones that most
influence the way the information flows through the network [47, 48]. Thereafter,
to address the signal reconstruction task, we rely on Structural Equation Models
(SEMs), and we show the benefit of taking into account possible errors in the topology
when this is uncertain. Moreover, the literature on SEM for topology identification
does not consider perturbations on the observed signal, but only additive noise.
This may happen because of the presence of outliers, adversaries or observation
inaccuracy. To fill this gap, in our work we build a total least squares method to
cope with errors on the topology and/or on the observed signals [49].

In particular, part of Chapter 5 will solve the topology ID task. It will be clear
then how the resulting graph is vulnerable to errors. This is a strong motivation to
develop graph learning methodologies, in the Chapter 3, that are robust to graph
topology uncertainties, and to identify the critical links of graphs, in Chapter 4.

1.4 Outline

The outline of this thesis is the following.

• Chapter 1. The present chapter presents the motivation, outline, and contri-
butions of this thesis.

• Chapter 2. In this chapter, we recall basic notions on graph theory, GSP,
topology inference and signal reconstruction.

• Chapter 3. This chapter presents our work on graph signal processing under
topology perturbations. In particular, we expand graph signal processing tools
to deal with cases where the graph topology is not perfectly known. supposing
that the uncertainty affects only a limited number of edges, we make use of
small perturbation analysis to derive closed form expressions instrumental to
propose signal processing algorithms that are resilient to imperfect knowledge
of the graph topology. Then, we formulate a Bayesian approach to estimate
the presence of uncertain edges based only on the observed data and on the
data statistics. Finally, we analyze clustering and semi-supervised learning
algorithms under topology perturbations. Along with the chapter, numerical
tests show the benefits of our perturbation-aware methods.

The main results of this chapter are also presented in the following papers:

– E. Ceci, S. Barbarossa, “Graph signal processing with perturbations,”
IEEE Trans. on Sig. Processing, to appear. [50]
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– E. Ceci, S. Barbarossa, “Robust Graph Signal Processing in the Presence
of Uncertainties on Graph Topology,” IEEE SPAWC Conf., June 2018.

– E. Ceci, S. Barbarossa, “Small Perturbation Analysis of Network Topolo-
gies,” IEEE ICASSP Conf., Apr. 2018.

• Chapter 4. In this chapter, we introduce a new centrality measure, named
perturbation topology measure, to rank the network links according to the
impact of their possible failure. By numerical results, we will see that it identi-
fies the inter cluster edges that disconnect or alter critically the connectivity
and/or the clustering property of the network.

The results of this chapter are presented also in part of the following work:

– S. Barbarossa, S. Sardellitti, E. Ceci, and M. Merluzzi, “The edge cloud: A
holistic view of communication, computation and caching,” in Cooperative
and Graph Signal Processing: Principles and Applications (P.M. Djuric
and C. Richard, Eds.), Amsterdam, Netherlands: Elsevier, 2018.

• Chapter 5. In this chapter, we present our work on graph-based learning
under perturbation via total least-squares. We investigate two major graph-
based learning tasks, such as topology identification and inference of signals
over graphs relying on SEM. To cope with perturbations, this work introduces
a regularized total least-squares (TLS) approach and iterative algorithms
with convergence guarantees to solve both tasks. Further generalizations are
also considered relying on structured and/or weighted TLS when extra prior
information on the perturbation is available. Analyses with simulated and real
data corroborate the effectiveness of the novel TLS-based approaches.

The main results of this chapter are presented also in the following papers:

– E. Ceci, Y. Shen, and G. B. Giannakis, S. Barbarossa, “Graph-based
learning under perturbations via TLS,” IEEE Trans. on Sig. Processing,
to appear. [51]

– E. Ceci, Y. Shen, G. B. Giannakis, S. Barbarossa, “Signal and Graph
Perturbations via Total Least-Squares,” Asilomar Conf. , Oct. 2018.

• Chapter 6. Finally, we conclude the thesis summarizing the main obtained
results.
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Research contributions not presented in this thesis

• P. Di Lorenzo, E. Ceci,“Online recovery of time-varying signals defined over
dynamic graphs,” IEEE EUSIPCO Conf. , Sept. 2018.

• S. Barbarossa, S. Sardellitti, E. Ceci, “Learning from signals defined over
simplicial complexes,” IEEE DSW Conf., June 2018.

• S. Barbarossa, E. Ceci, M. Merluzzi,“Overbooking radio/computation resources
to meet strict latency constraint in mmW Mobile Edge Computing robust to
channel intermittency,” EuCNC Conf., June 2017.

• S. Barbarossa, E. Ceci, M. Merluzzi, E. Calvanese-Strinati, “Enabling effective
mobile edge computing using millimeter wave links,” IEEE ICC Conf., 2017.

• K. Sakaguchi, T. Haustein, S. Barbarossa, E. Calvanese-Strinati, A. Clemente,
G. Destino, A. Pärssinen, I. Kim, H. Chung, J. Kim, W. Keusgen, R. J. Weiler,
K. Takinami, E. Ceci, A. Sadri, L. Xain, A. Maltsev, G. K. Tran, H. Ogawa,
K. Mahler, R. W. Heath Jr, “Where, When and How mmWave is Used in 5G
and Beyond”, IEICE Transactions on Electronics, Vol. E100.C (2017), Oct.
2017, pp. 790-808.
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Notation. Along the thesis, bold lowercase (uppercase) letter will denote column
vector, e.g. a (matrix, e.g. A), and a(k) (or [A]ij) denotes its k-th entry (or the
entry at the i-th row and j-th column of matrix A). Operators (·)>, E{·},vec(·),
and ⊗, will stand for matrix or vector transposition, expectation of random variable
(r.v.), column-wise matrix vectorization, and Kronecker product. We will use |a| to
denote the absolute value of vector a and |A| as determinant of A. The identity
matrix of dimension K ×K will denote by IK , and the i-th canonical vector by si;
while diag(·), and bdiag(·) correspondingly represent a diagonal matrix and a block
diagonal matrix of its arguments. A set of elements is denoted by a calligraphic
letter (e.g., S), while S̄ and |S| represent the complement and the cardinality (i.e.,
the number of elements of S) of the set S, respectively. Finally, the `1, `2, and
Frobenius norms will be denoted by ‖·‖1, ‖·‖2, and ‖·‖F , respectively.
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Chapter 2

Mathematical background

2.1 Graph Theory

In this section, for the reader’s convenience we will recall the notation and basic
results of graph theory that will be used along the thesis.

Definition 1. A graph G is collection of nodes (or vertices) V along with a set
of E of edges linking pairs of nodes. In particular, a graph composed of N nodes
represented as G = (V, E), where V = {1, . . . , N}, and E ⊂ V × V.

Definition 2. A graph is undirected, if the set of relations (edges), E, is symmetric,
that is, if (u, v) ∈ E implies (v, u) ∈ E for all u, v ∈ V.

Definition 3. A directed graph, also called digraph for short, is a network in which
each edge has a direction, pointing from one vertex to another.

There are a number of different ways to mathematically represent a graph. One
representation is by using the adjacency matrix W ∈ RN×N , such that the (i, j)-th
element is

[W ]ij =

wij if there is an edge from j to i

0 otherwise
(2.1)

where wij is the weight of the link between i and j. The graph is said unweighted
if the weights are equal for every nonzero entry. For a directed graph, for each
node is defined an in degree dini =

∑N
j=1wij and an out degree doutj =

∑N
i=1wij . The

degree matrix is defined as a N ×N diagonal matrix D = diag(din1 , . . . , dinN ). For an
undirected graph, the matrix W is symmetric, i.e. wij = wji, hence doutj = dini .

If we label each edge with number from 1 to E, with E the number of edges, an
alternative representation of the graph is given by the incidence matrix B ∈ RN×E
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such as

[B]ij =


−1 if the edge j leaves node i;

1 if the edge j enters node i;

0 otherwise.

(2.2)

Using matrices D and W , the Laplacian matrix is defined as L = D −W . Such
a matrix is an alternative representation of the graph, commonly used due to its
properties. Form the definition of L, it holds that L1 = 0, where 1(or 0) is the vector
with all entries equal to 1(or 0). Then, it is clear that the null space of L (null(L))
contains the all-one vector and the dimension of null(L) is at least one. It can be
proved that the dimension of the null(L) (dim(null(L))) is liked to the connectivity
of the network [52]. For undirected graphs, L is symmetric and semidefinite positive,
and it can be written as L = BB>, thus dim(null(L))=dim(null(B)).

A graph is connected if there is a path from every vertex to every other vertex of
the graph. In this case, dim(null(L))= 1. On the contrary, if the graph is composed
of c disconnected components, then dim(null(L))= c.

For connected graphs, the second smallest eigenvalue has an important role
to measure the connectivity of the graph, for this reason is also called algebraic
connectivity [2]. In fact, if G1 is a subset of a graph G with the same nodes but a
subset of edges then [53]

λ2(G1) ≤ λ2(G) (2.3)

Thus, decreasing the number of edges in a graph, λ2 also decreases, that is,
decreasing the connectivity of G, λ2 decreases. The algebraic connectivity is also
linked to the graph conductance. Such a parameter measures how well knit is the
network.

Definition 4. If G = {V, E} is a graph of N vertices and S a subset of V, i.e.
S ⊆ V, let ∂S denote the set of edges with one end in S and the other in V\S. Then,
the conductance Φ(G) of the graph G is defined as

Φ(G) := min
|S|≤N/2

|∂S|
|S|

(2.4)

It can be proved that for any G, it holds [52]

Φ(G) ≥ λ2/2. (2.5)

The importance of this bound follows from the fact that computing the conductance
of a graph is an NP-hard problem, while λ2 can be computed in polynomial time [52].
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2.2 Graph signal processing

A symmetric matrix can always be written as

L = UΛU> (2.6)

where Λ = diag(λ1, . . . , λN ) is the diagonal matrix of eigenvalues of L, and U =
[u1, . . . ,uN ] the matrix that collects a full set of orthogonal eigenvectors. Since the
Laplacian matrix is semidefinite positive, all its eigenvalues are real and non-negative.
The null eigenvalue appears with multiplicity equal to the number c of connected
components of the graph [16], and thus, considering connected graphs, the graph
Laplacian eigenvalues can be ordered as 0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN := λmax. The
second eigenvalue λ2 of L is non-zero if and only if the graph is connected, i.e. it
consists of a single component.

A signal or function f : V → R defined over the vertices of a graph may be
represented as a vector f ∈ RN , where the i-th component of vector f is the signal
value at the i-th vertex vi ∈ V. Figure 2.1 depicts a graphical example of graph
signal.

Figure 2.1. Example of graph signal where at each node is associated a temperature
value (color of the nodes).

For any signal f ∈ RN , we can define its graph Fourier transform (GFT) f̂ as
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the expansion of f in terms of the eigenvectors of the graph Laplacian:

f̂ = U>f (2.7)

where the columns {ui}Ni=1 of U are interpreted as the graph Fourier basis and
{f̂i}Ni=1 are the corresponding graph signal frequency coefficients. The inverse GFT
is then defined as

f = Uf̂ =
N∑
i=1

f̂iui (2.8)

In classical Fourier analysis, the eigenvalues carry a specific notion of frequency:
the eigenvalues close to zero (low frequencies) are associated to complex exponential
eigenfunctions that are smooth, that is, they are slowly oscillating functions, whereas
for eigenvalues far from zero (high frequencies), the associated complex exponential
eigenfunctions oscillate much more rapidly. For graphs, the Laplacian eigenvalues
and eigenvectors have a similar behavior. In particular, for connected graphs, the
Laplacian eigenvector u1 associated with λ1 = 0 is constant at each vertex. The
graph Laplacian eigenvectors associated with low frequencies have values that vary
slowly within the clusters present in the graph. The eigenvectors associated with
larger eigenvalues oscillate more rapidly and, differently from Fourier analysis of
time series or images, they may be highly concentrated, especially when the graph
topology departs from a regular topology.

In several cases, the graph signal exhibits clustering features, i.e., it may have
similar values within a cluster and vary arbitrarily from one cluster to the other. In
such a case, if the columns of U are chosen to represent clusters, the only nonzero
(or approximately nonzero) entries of f̂ are the ones associated with the clusters
and the signal is said band-limited, as we will see later.

For the symmetric, positive semi-definite matrix L and a signal f ∈ RN , it holds
the following sum-of-squares property

f>Lf =
N∑
i=1

N∑
j=1

wij(fi − fj)2 (2.9)

that is also known as the total variation of the graph signal [3].
A graph signal is smooth if signal samples at neighbouring nodes are similar,

and the total variation is a measure of smoothness. Several examples of smooth
graph signals include natural images [29], average annual temperatures collected by
meteorological stations [31], and product ratings supported over similarity graphs of
items or consumers [54], to name a few.

Returning to the graph Laplacian eigenvalue/eigenvector pairs, we can see them
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as successive minimizer of the Rayleigh-Ritz ratio, i.e. as solutions of [3]

ui = arg min
x

x>Lx
x>x

s. to x ⊥ ui′ , i′ = 1, . . . , i− 1 (2.10)

‖x‖ = 1

and λi = u>i Lui, when ui is of unit length. The total variation in the objective of
(2.10) suggests the notion of frequency of the Laplacian matrix mentioned before.
In fact, GFT provides an orthogonal basis with increased variation, and such that
each additional basis vector minimizes the increase in variation while guaranteeing
orthogonality. In summary, the graph connectivity is encoded in L, which is used to
define both a graph Fourier transform using U and a notion of signal variation.

We define now a band-limited signal, which is a signal that is smooth within
each cluster, while it can assume arbitrary values over different clusters. Fig. 2.2
depicts a real graph signal representing the density of vehicles in a street map of
Rome (piazza Mazzini) and its GFT, we can see that in the frequency domain it is
approximately band-limited.

Figure 2.2. Graph signal of vehicles density in a street map of Rome (piazza Mazzini)
with its GFT.

Let us define the matrix UK ∈ RN×K as the collection of the K columns of U
associated with a set of indices K. Then, we introduce an N × N band limiting
operator

PK = UKU
>
K . (2.11)

The matrix PK projects a vector f onto the subspace spanned by the column of UK .
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Therefore, the signal f is perfectly localized in a frequency set of K dimension if

PKf = f = UKs (2.12)

where s is an K × 1 vector such that [s>,0>N−K ]> = f̂ , and 0k is the k × 1 vector
of zero entries.

Similarly, if S is a subset of V, i.e. S ⊆ V, we define a N × 1 vector dS where
the i-th entry is equal to 1 if vi ∈ S and 0 otherwise, thus the N ×N vertex-limiting
operator is defined as

DS = diag(dS). (2.13)

The signal is perfectly localized on the vertex domain if DSf = f . Denoting PK and
DS the set of all K-bandlimited and S-vertex-limited signals, respectively, operators
PK andDS are self-adjoint and idempotent and they represent orthogonal projectors
into PK and DS , respectively. Differently from the classical continuous-time signals,
a graph signal can be localized perfectly both in the vertex domain and the frequency
domain under certain conditions [24].

Theorem 1. A graph f is perfectly localized over both vertex set S and frequency
set K, i.e. f ∈ DS ∩ PK, if and only if the operator PKDSPK has an eigenvalue
equal to one; in such a case, f is the eigenvector of PKDSPK associated with the
unit eigenvalue [24].

2.3 Semi-supervised and Unsupervised learning

In this section, we will recall the well-known semi-supervised learning problem of
label propagation and the unsupervised learning technique of graph-based clustering,
that will be useful later in the thesis.

In supervised learning, the aim is to infer a function from labeled training data
that will be used for mapping new examples. Each training data is a pair consisting
of an input object x and a desired output value y. Unsupervised learning, on the
other hand, aims at finding patterns from data without existing labels. Among the
unsupervised learning tasks, clustering is the most relevant one. Semi-supervised
learning is somewhere in between unsupervised and supervised. For example semi-
supervised classification have the training data consisting of both l labeled and u
unlabeled instances, such as to be better than the supervised classifier that train
the labeled data alone.

Graph-based semi-supervised learning are based on the construction of a graph
from the training data. If the training data are {(xi, yi)}li=1, {xj}l+uj=l+1, the vertices
of the graph are the labeled and the unlabeled instances {(xi, yi)}li=1 ∪ {xj}

l+u
j=l+1.
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Given the graph, the goal is to assign a label to every unlabeled instances exploiting
the information on the labeled instances (label propagation). A way to accomplish
this task is to solve the following problem

min
f∈Rl+u

l+u∑
i,j=1

wij(f(xi)− f(xj))2 = f>Lf

s. to f(xi) = yi, i = 1, . . . , l (2.14)

where f := [f(x1), . . . , f(xu+l)]>. Problem (2.14) is convex and a closed-form

unique solution can be found [55]. In particular, writing L as L =
(

Luu Lul
Llu Lll

)
the

solution is
f = −L−1

uuLulf l (2.15)

where f l denotes the vector with the l known labels. Moreover, since f ∈ Rl+u, the
values of this function have to be compared with a threshold to produce discrete
labels.

Let us recall now the graph-based clustering problem. The goal is to split the
vertices of a graph in disjoint sets of nodes well connected within the sets and weakly
connected among clusters. Given a graph G(V, E), let V1 ⊂ V and V2 ⊂ V be two
disjoint and complementary subsets of vertices of the graph, such that V1 ∪ V2 = V
and V1 ∩ V2 = ∅, where ∅ is the empty set. Clustering methods aim to find the
disjoint sets, (also known as) a.k.a. clusters, V1 and V2, such that there are few
edges that connect the two sets, while there are many edges joining the vertices
within the clusters.

Let us define V̄1 the complement set of V1, and the value W̃ (V1, V̄1) :=
∑
i∈V1,j∈V̄1

wij .
Hence, for a given number k of subsets, the mincut approach simply consists in
choosing a partition V1, . . . ,Vk that minimizes [18]

ratiocut(V1, . . . ,Vk) =
k∑
i=1

W̃ (Vi, V̄i)
|Vi|

(2.16)

where |Vi| denotes the cardinality of Vi. Note that, the cut in (2.16) assumes small
values when clusters Vi are not too small. Thus, with this normalization the goal is
to find clusters that are “balanced”, as measured by the number of vertices, avoiding
the trivial solution of splitting one vertex from the rest of the graph. Unfortunately,
this problem is NP hard, [56]. Spectral clustering is a way to solve relaxed versions
of this problem [18]. Let us consider for simplicity the case k = 2, such that the
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clustering aims at solving the problem

min
V1⊂V

ratiocut(V1, V̄1). (2.17)

Defining

hi =


√
|V̄1|/|V1|, if vi ∈ V1

−
√
|V1|/|V̄1|, if vi ∈ V̄1

(2.18)

and collecting the hi in the N × 1 vector h := [h1, . . . , hN ]>, it holds

• h>Lh = |V|ratiocut(V1, V̄1).

• h is orthogonal to the constant vector 1.

• ‖h‖2 = N.

Hence, problem (2.17) can be equivalently rewritten as

min
V1⊂V

h>Lh

s.to h>1 = 0

‖h‖ =
√
N

with hi as in eq. (2.18) (2.19)

Unfortunatly, this problem is NP-hard. To cope with this, we can relax allowing
hi to assume arbitrary values in R: By the Rayleigh-Ritz theorem (cf. (2.10)), it is
easy to see that the solution of this problem is given by the vector h equal to the
eigenvector associated with the second smallest eigenvalue of L. However, we need a
discrete indicator vector to obtain a partition of the graph that can be choose asvi ∈ V1, if hi ≥ 0

vi ∈ V̄1, if hi < 0.
(2.20)

For k > 2 the relaxation of the ratiocut problem follows similar principle as the
one above, and it can be proved that its solution is revealed by the Rayleigh-Ritz
theorem (cf. (2.10)) giving a matrix which contains the first k eigenvectors of L as
columns. The standard way to reconvert the real valued solution matrix to a discrete
partition is to use the k-means algorithms on the rows of eigevector matrix [17].

2.4 Maximum flow

When we know the structure of the network we can calculate measures that
capture important features of the network topology. For the later analysis, among
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several centrality measures, we recall the edge betweenness centrality [57]. Edge
betweenness of an edge is defined as the number of shortest paths between pairs of
vertices that run along it.

If there is more than one shortest path between a pair of vertices, each path
is given equal weight such that the total weight of all of the paths is unity. If a
graph is composed of communities or groups that are only weakly connected between
one another by a few links, then all shortest paths between different communities
necessarily pass through one of these few edges. Clearly, inter communities edges
will have an high value of edge betweenness. If we remove all these edges, the graph
will be disconnected. Thus, the definition of betweenness is based on the idea of
maximum flow. The max flow/min cut theorem says that the maximum flow between
two vertices is always equal to the size of the minimum cut set. In other words how
well the information flows through the network depends on how well connected the
network is.

2.5 Graph topology inference

Graph topology inference is a prominent problem in Network Science [6]. The
goal is to infer the graph topology to be associated with a set of signal, to capture
their correlations. Each signal may be associated with a vertex of a graph and the
goal is to find the edges of the graph. The basic idea is that the presence of an edge
captures the similarity between the signals associated with the endpoints vertices of
that edge. Several topology inference approaches build the graph such that their
edge weights correspond to nontrivial correlations or coherence measures between
signal profiles at incident nodes.

Consider the network G(V, E), described by a matrix A ∈ RN×N , having nonzero
(i, j)-th entry, denoted as aij , only if a directed edge is present from node j to node i.
In general aij 6= aji for directed networks. Conversely, if the network is undirected,
so aij = aji is always true. Let us suppose here that the network represents an
abstraction of a complex system whose pairwise relations are not directly observable.
What is known is a set of signal yit at node i and time t.

The topology identification task consists in finding the matrix A from data and
it is solved in Chapter 5 in the case of signal perturbations. The aim of this section
is to recall several topology identification methods to give the reader a broader view
of the existing literature and introduce in the end the topology ID approach that
relies on structural equation models. SEM is the model at the basis of the analysis
in Chapter 5 not only for the topology identification, but also for the signal recovery
task in presence of graph perturbations.
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2.5.1 Statistical methods

The natural starting point when inferring a graph from data is the association
of edges with correlations or coherence measures between signal profiles at incident
nodes. Such methods rely on ad hoc thresholding of user-defined edgewise score
functions. Such thresholds are often tuned manually and are application-dependent.
However, under some conditions like e.g. the case of Gaussian graphical models in
which the edge weights represent the partial correlation coefficients among data,
it can be shown that the graph is correctly inferred with a given probability by
selecting an optimal threshold, when the number of data, say N , is large [58].

A common metric quantifying similarity between nodal random variables yi and
yj , expressed by aij , is the Pearson correlation coefficient. Given the covariance
matrix Σ := E[(y − µ)(y − µ)>] of the random graph signal y = [y1, . . . , yN ], with
mean µ := E[y] and be the entries Σ := σij =cov(yi, yj), the Pearson correlation
coefficient is defined as

ρij := cov(yi, yj)√
var(yi)var(yj)

. (2.21)

Given independent realizations Y = {yy}Tt=1 of y, we can compute the empirical
correlations ρ̂ij by using the sample covariance matrix Σ̂. Selecting a threshold Tfa
to guarantee a prescribed significance level, i.e. a false alarm probability PFA, we
compare such coefficient with the threshold |ρ̂ij | > Tfa. The comparison is used
to assert that an edge exist with a strength aij = ρ̂ij between nodes i and j; see,
e.g., [6].

However, ρij = ρji by definition and it implies that this coefficient cannot reveal
the directionality of the edges. In addition, if we consider for instance a three-node
toy network i → k → j, where nodes i and j are mediated through node k, this
mediation would imply correlation of variables at nodes i and j based on ρij . Hence,
correlation-based connectivity can incorrectly declare presence of an (i, j) edge. To
cope with this, one can use partial correlation coefficients. The partial correlation
coefficient between node i and j is defined as

ρ̃ij := cov(yi, yj |V\ij)√
var(yi|V\ij)var(yj |V|\ij)

(2.22)

where V\ij denotes the set of N − 2 variables {yk} excluding the ones indexed by
nodes i and j. Then, given Y = {yt}Tt=1 independent realizations of y, one can
compare the absolute value of the empirical partial correlation coefficient ˆ̃ρij with a
threshold Tfa to infer the nonzero partial correlations. If the signal y is a Gaussian
random vector, then ρ̃ij = 0 means that yi and yj are conditionally independent
given all of the other variables in the set V\ij. The partial correlation network with
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edges E := {(i, j) ∈ V × V : ρ̃ij 6= 0} is known as Gaussian Markov random field
(GMRF).

Moreover, denoting with P = Σ−1 the inverse of the covariance matrix of y,
namely the precision matrix, one can infer a GMRF by using the following expression
of partial correlation coefficient between i and j [6]

ρ̃ij = −[P ]ij√
[P ]ii[P ]jj

. (2.23)

This link among linear partial correlation coefficients, conditional uncorrelated-
ness of nodal variables (or independence in the Gaussian case), and (non)zero entries
of P is at the basis of the graphical Lasso approach to topology identification. Con-
sider T realizations Y = {yt}Tt=1 from a multivariate Gaussian distribution with zero
mean and positive covariance matrix Σ. The task of graphical lasso is to estimate
the unknown P based of the T samples. The problem is challenging especially when
N � T , when the ordinary maximum likelihood estimate (MLE) does not exist.
Even if it does exist, that is, when T ≥ N , the MLE is often poorly behaved. The
graphical lasso method aims at estimating P , under the assumption that this matrix
is sparse [59]. The graphical lasso problem minimizes a `1-regularized negative
log-likelihood

P̂ = arg max
P�0
{log detP − Tr(Σ̂P )− λ‖P ‖1} (2.24)

where Σ̂ = 1
T

∑T
t=1 yty

>
t is the empirical covariance matrix obtained from the data

Y, and λ is a tuning parameter controlling the amount of `1 shrinkage. Although
Problem (2.24) is convex, log-determinant problems are usually computationally
demanding. A number of approaches to solve (2.24) have been proposed specifically
for graphical Lasso, see [27,60,61].

An alternative way of building the graph is to learn a neighbourhood for each
vertex, that is, to identify the other vertices to which each node is connected. Note
that, in the Gaussian setting, where y ∼ N (0,P−1), the conditional distribution
of yi given y\i := [y1, . . . , yi−1, yi+1, . . . , yN ]> is also Gaussian. We assume that
the observation at a particular vertex may be represented as a function of the
observations at the neighbouring nodes. Based on this assumption, the observation
at each variable yi can be approximated as a sparse linear combination of observations
at other variables y\i [62]. In fact, the minimum mean square error (MMSE) predictor
of yi based on y\i is E[yi|y\i] = y>\iβ

(i), where the regression coefficients β(i) can be
expressed in terms of entries of P :

β
(i)
j = − [P ]ij

[P ]ii
. (2.25)
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Let Y = {yt}Tt=1 be T realizations of a multivariate Gaussian distribution with zero
mean and definite positive covariance matrix P−1, such that yt = [y1t, . . . , yNt]>.
Thus, the neighbourhood-based Lasso regression problem has the form

β̂
(i) = min

β(i)∈RN−1

T∑
t=1

(yit − y>t,\iβ
(i))2 + λ‖β(i)‖1 (2.26)

where yt,\i is yt without yi. The first term of (2.26) can be interpreted as the negative
log-likelihood of β(i) and the `1 penalty enforce sparsity, with λ that balances the
two terms. Thus, a connection between two vertices vi and vj is established if either
β̂

(i)
j or β̂(j)

i is nonzero (OR rule), or both (AND rule).
The neighbourhood-based approach is computationally more appealing with

respect to graphical lasso, since the N lasso problems can be solved in parallel. Such
a decomposability of neighbourhood-based approach is possible, since in (2.26) the
conditional likelihood is per vertex and does not enforce the positive semidefinite
constraint P � 0.

The concept of undirected conditional independence graphs can be also extended
to the multivariate time series. This extension measures the dependence between
two time series after removing the linear time invariant effects of a third, or more,
series [63, 64]. Suppose y(t) = [y1(t), . . . , yN (t)]>, t ∈ Z is a multivariate stationary
time series. The graph is built considering that the edge between i and j is missing
if yi(·) and yj(·) are uncorrelated given the other components of the series. This
characterization of the graph can be obtained from the partial spectral coherence.
Let cij(u) = cyiyj (u) = cov(yi(t+ u), yj(t)) be the covariance function of the process.
If
∑∞
u=−∞ |cij(u)| <∞, then the cross-spectrum fij between yi(t) and yj(t) is defined

by

fij(λ) = 1
2π

∞∑
u=−∞

cij(u)e−iλu. (2.27)

If the time series yi(t+ u) and yj(t) are uncorrelated at all lags u, then the cross-
spectrum fij(λ) = 0, and viceversa. Let us define x\ij(t) = {yz(t) : z 6= i, j}.
Then, a measure of dependence between yi(t) and yj(t) given y\ij(t), is the partial
cross-spectrum fyiyj |y\ij (λ) of yi(t) and yj(t) given y\ij(t), whose rescaling leads to
the partial spectral coherence

Ryiyj |y\ij (λ) =
fyiyj |y\ij (λ)

[fyiyi|y\ij (λ)fyjyj |y\ij (λ)]1/2
. (2.28)

The graph G = (V, E) is called partial correlation graph when (i, j) /∈ E iff
Ryiyj |y\ij (·) = 0 [64].

Interestingly, partial spectral coherence is linked with the inverse of the spectral



2.5 Graph topology inference 23

matrix [63]. In particular, let Θ(λ) := fY Y (λ)−1 and

Q(λ) :=


[Θ]−1/2

11 0
¨

0 [Θ]−1/2
NN

Θ(λ)


[Θ]−1/2

11 0
¨

0 [Θ]−1/2
NN

 . (2.29)

Hence, if fY Y (λ)−1 is a full rank matrix

Ryiyj |y\ij (λ) = −[Q]ij(λ), for i 6= j. (2.30)

Its absolute value is then compared with a threshold Tfa to find the missing edges
(similar to the covariance selection models where the missing edges are characterized
by zeros in the inverse covariance matrix). For certain applications it may be
interesting to analyze the case where [Q]ij(λ) = 0 for particular frequency bands,
leading to the idea of frequency dependent graph.

2.5.2 Smooth graphs

Several GSP applications aim to associate a graph to the data in such a way that
the observed signal admits certain regularity properties, in particular it is smooth
over the inferred graph. Given possibly noisy observations Z := {zt}Tt=1, the goal is
to infer the graph G such that the observations are smooth over the graph. Recall
that a graph signal is smooth when the values of neighbouring nodes tend to be
similar. The smoothness of a graph signal can be quantified making use of the
total variation defined as the quadratic form of the Laplacian matrix (cf. (2.9)).
Specifically, let z = y+ε be the observed noisy signal of dimension N ×1, with ε the
error term. Collecting the T observations in the matrix Z = [z1, . . . ,zT ] ∈ RN×T

and setting Y = [y1, . . . ,yT ] ∈ RN×T , a topology identification method with graph
smoothness prior can be formulated as [30]

min
L,Y
‖Z−Y‖2F + αTr(Y>LY) + β

2 ‖L‖
2
F

s.to Tr(L) = N, L1 = 0, [L]ij = [L]ji ≤ 0, i 6= j (2.31)

where α and β are tunable regularization parameters. The objective function of (2.31)
encourages: (i) data fidelity by using the quadratic loss, penalizing the discrepancies
between Z and Y; (ii) the smoothness of the observed signal over inferred graph
through the total variation regularizer, and (iii) Tr(L) = N avoids the trivial solution
of all-zeros and fixes the `1 norm of L. Moreover, the Frobenius norm of L controls
the sparsity of the resulting graph. Problem (2.31) is bi-convex and can be solved
finding a sub-optimal solution relying on alternating minimization [30].
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Denoting with � the Hadamard product (entry-wise), an alternative approach
of topology ID with smoothness prior is based on the link between smoothness and
sparsity revealed by

Tr(Y>LY) = 1
2‖A�H‖1 (2.32)

where H ∈ RN×N+ is the Euclidean distance matrix with entries [H]ij := ‖ȳi −
ȳj‖22, i, j ∈ V , and ȳi ∈ RT is the i-th row of Y. In this case, the edge is associated
with the pair (i, j) at smaller distance [H]ij . Thus, the general learning graph
problem formulation become [29]

min
A

{‖A�H‖1 + α1> log(A1) + β

2 ‖A‖
2
F }

s. to diag(A) = 0, [A]ij = [A]ji ≥ 0, i 6= j (2.33)

where α and β are the regularization parameters. The log(A1) term enforces each
vertex to have at least one incident node, while the Frobenius norm regularization
over A controls the graph’s edge sparsity pattern penalizing larger edge weights.
Problem (2.33) is convex and can be solved efficiently with complexity O(N2).

The topology identification problem of an unweighted graph can be equivalently
seen as the identification of the edge set E . Let L = N(N − 1)/2 be the maximum
possible number of edges, and matrix B := [b1, . . . , bL] ∈ RN×L be the incidence
matrix of the complete graph on N vertices, where the l-th column bl = [bl1, . . . , blN ]
is a vector of all zeros but bmi = 1 and bmj = −1 when i and j connect the link
l. Thus, if w = [w1, . . . , wL]> ∈ {0, 1}L is the edge selection vector, the Laplacian
matrix can be written as

L(ω) =
L∑
l=1

wlblb
>
l . (2.34)

Thus, the problem formulation is [31]

min
w∈{0,1}L

Tr(Y>L(w)Y)

s.to ‖w‖0 = K (2.35)

where K � N is a prescribe number of edges and constraint ‖w‖0 = K forces the
sparsity level of w to be equal to K. Such problem is non convex because of the
binary nature of w, however it can be solved by a simple rank ordering procedure.
The solver entails the computation of Tr(Y>(blb>l )Y) for all the candidate edges
and setting wl = 1 for the K edges having the smallest scores [31].
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2.5.3 Topology ID of network diffusion process structure

Besides global smoothness, alternative signal models also consider signals evolving
over the graph, as a result of a diffusion process, which can be represented as a
filtering operation over the graph. Such model is appropriate in some real word
scenarios to understand information propagation, for instance in geographical spaces,
the movement of people in the building or vehicles in the cities, and the shift of the
people’s interest on social media platform [65,66].

For this signal model, graph filters and signals may be interpreted as a function
f(G) and coefficients collected in a vector c, respectively. The function f(G) can be
an arbitrary polynomial function of the matrix related to the connectivity of the
graph [32,33], or a diffusion kernel [34]. In this model, the general requirement is
that the covariance structure of the observed signal is explained by the unknown
network structure. In fact, graph learning algorithms estimate first the eigenvectors
of the graph operator (e.g. Laplacian, adjacency) from the sample covariance matrix
of the observations, then the eigenvalues are estimated in a second step to obtain
the operator [32,33].

In particular, assuming stationarity and a finite polynomial degree K, the graph
signal y can be written as

y =
K∑
k=0

αkS
kc (2.36)

where {αk} is a set of parameter, and S is a general graph operator that encodes the
connectivity. Usually, vector c is assumed to be zero-mean with covariance matrix
Σc = E[cc>]. If c is also white, then Σc = I and the model in (2.36) assumes y to
be stationary in S. In fact, in this case we can write the signal covariance matrix
Σy as

Σy = E[yy>] = E
[
K∑
k=0

αkS
kc(

K∑
k=0

αkS
kc)>

]

=
K∑
k=0

αkS
k(

K∑
k=0

αkS
k)> = χ(

K∑
k=0

αkΛk)2χ> (2.37)

where S = χΛχ>, and the eigenvectors of S are also the eigenvectrs of Σy. Thus,
given sufficient number of graph signals, the eigenvectors of S can be approximated
with the ones of the sample covariance matrix. In a second step, the operator S is
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recovered from its eigenvalues as followed

min
S,Ψ

f(S,Ψ)

s. to S = χΨχ>, S ∈ S (2.38)

where f(·) is a convex function that imposed desired properties on S like e.g. sparsity;
and S is the constrained set of S being a valid graph operator, e.g. like non-negativity
of the edge weights.

In (2.38), it is assumed perfect knowledge of the eigenvectors χ. In practice,
it is not true because they are found from a sample covariance, and χ is as more
noisy as the number of data sample is small relative to the number of vertices of
the graph. To take this into account, robust network topology methods relax the
equality constraint in (2.38) and substitute this with the inequality d(S, χ̃Λχ̃>) ≤ ε,
with χ̃ be the noisy covariance eigenvectors, d(·) a convex matrix distance and ε is a
tuning parameter chosen based on a priori information on the noise level [32].

Alternatively, the graph signal can be viewed as observations at different time
instants of a few processes that start at different nodes and diffuse with time. Such a
signal can be represented as graph heat kernels or localized graph kernels, see [34,67].
Algorithms used in [34,67] can be seen as a generalization of dictionary learning to
graph signals. Dictionary learning is a broad research area where signals are modelled
as a linear combination of single components (atoms) in an over-complete basis, and
the relevant characteristics of the signal are revealed by its sparse representation. In
particular, the concatenation of a set of heat diffusion operators at different time
instances defines a dictionary used to model a signal as follows

y = [e−τ1L, . . . , e−τSL]c (2.39)

where τ := [τ1, . . . , τS ] are the heat rates corresponding to each of S diffusion filters
e−τsL. The signal y is then the linear combination of different heat diffusion processes
evolving on the graph, where c ∈ RNS collects the sparse coefficients that combined
with the columns of the dictionary approximate the graph signal y.

If we collect T observed signals in the matrix Y = [y1, . . . ,yT ] ∈ RN×T , the
graph learning problem can be cast as a structured dictionary learning problem
formulated as

min
L,C,τ

‖Y− [e−τ1L, . . . , e−τSL]C‖2F + α
T∑
t=1
‖ct‖1 + β‖L‖2F

s. to {τs}Ss=1 ≥ 0, Tr(L) = N, L1 = 0, [L]ij = [L]ji, i 6= j (2.40)
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where C = [c1, . . . , cS ]. The optimization problem in (2.40) is non-convex and it has
potentially many local minima. It can be solved with proximal alternating linearized
minimization algorithm as in [34], with complexity O(N3).

2.5.4 Structural equation models based Topology ID

Undirected graphs, like correlation networks, cannot capture causality. We
will recall here an alternative topology identification (ID) approach that deal with
directionality that entails structural equation models (SEMs). Such model is at
the basis of our work on topology identification and signal reconstruction tasks in
Chapter 5.

Structural equation model is a statistical modeling method that models causal
relationships between variables in a complex systems, and it has been adopted in
several fields such as economics, social sciences, genetics, and so on [68]. Linear
SEMs postulate that each yit depends on two sets of variables: endogenous yjt and
exogenous xit, see Fig. 2.3.

Figure 2.3. Network with N nodes and directed edges (in blue), and (the t-th sample
of) exogenous measurements per node (red arrows)

This dependency is regulated by the unknown coefficients {aij , bii}, such that

yit =
∑
j 6=i

aijyjt + biixit + vit, j = 1, . . . , N (2.41)

where vit captures the unmodeled dynamics. The term
∑
j 6=i aijyjt in (2.41) models

the network effects, and implies that yit is a linear combination of instantaneous
values yjt of the i-th single-hop neighbors j ∈ Ni. Signal yit also depends on
external sources xit, where bii captures the level of influence of these external
sources. In general, yt := [y1t, . . . , yNt]> can be seen as an output signal while
xt := [x1t, . . . , xNt] is the excitation or a control input. Given samples {yit, xit}, the
topology coefficients aij can be obtained using least squares (LS) estimation possibly
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regularized to effect sparsity. The model can be written in the vector form as

yt = Ayt +Bxt + vt (2.42)

with vt := [v1,t, . . . , vN,t]> and B := diag(b11, . . . , bNN ), or in the matrix form as

Y = AY +BX + V (2.43)

where Y, X and V are the matrices collecting the column vectors yt, xt and vt for
all t, respectively. Thus, the regularized LS problem formulation is the following

{Â, B̂} = arg min
A,B
‖Y−AY−BX‖2F + λ‖A‖1 (2.44a)

s.to aii = 0,∀i (2.44b)

bij = 0, i 6= j (2.44c)

where ‖A‖1 is a sparsity-promoting regularization and λ controls the sparsity level
of A. Constraint (2.44b) enforces the absence of a self-loop at each node, while
(2.44c) ensures that B̂ is diagonal. Both edge sparsity and endogenous inputs have
an important role to guarantee the SEM parameters to be uniquely identifiable,
see [69] for details. Problem (2.44) is convex but not differentiable. It can be solved
by iterative solvers, like the proximal gradient descent [70].

Moreover, the SEM method can be extended to track dynamic network topol-
ogy [71], to deal with highly correlated data [72] and considering present and
past observations, like SVAR leads to the structural vector autoregressive models
(SVARMs).
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Chapter 3

Graph signal processing in the
Presence of Topology
Uncertainties
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Abstract

In this chapter, we will expand graph signal processing tools in the cases of a
not perfectly known graph topology. Under the assumption that the topology
uncertainty affects only few edges, we exploit small perturbation theory to derive
closed form expressions instrumental to formulate signal processing algorithms that
are resilient to imperfect knowledge of the graph topology. Moreover, we formulate a
Bayesian approach for the estimation of the presence/absence of uncertain edges
based only on the observed data and on the statistics of the data. Finally, we make
use of our analysis of perturbations to study clustering and semi-supervised learning
algorithms. Along the chapter, several numerical tests prove the benefits of our
perturbation-aware methods.

3.1 Introduction

In applications like financial, social and biological science, data are often struc-
tured and their pairwise relations can be captured through graphs. In general, the
graph is either directly observable like in physical networks, or it is an abstrac-
tion to represent the structure of the observed data as in data-driven networks.
Examples of physical networks are the Internet network, power grids or wireless
communication networks, where the edges have a physical meaning. On the other
hand, examples of data-driven networks are brain functional activity networks or
financial data networks, where a graph is inferred from the data to capture inner
pairwise relations [25,35,58]. In most cases, the graph topology is assumed to be
either known, as in physical networks, or to be inferred from the observed data.
However, there are many important situations where our knowledge of the graph
topology is neither perfect nor totally absent. In physical networks, like for example
in wireless communication networks, some links may inadvertently drop due to
random blocking or fading [73], so that we can only suppose to know a “nominal”
graph. Similarly, in data-driven networks, the topology is not directly observable
and it is inferred from the data. Thus, the presence of an edge is the result of a
decision that depends on the observed data as well as on the inference algorithm.
In fact, the data may be corrupted by noise or outliers, and the resulting inferred
graph may be imperfect. Therefore, we are interested in the analysis of uncertain,
or probabilistic graphs, i.e. graphs whose edges may be considered to be present
only with a certain probability [74]. The family of uncertain graphs are represented
by the triplet G(V, E ,p), where V is the node set, E is the edge set, and p is the
vector that collects the probabilities of the edges to be present. Generally, all the
edges can be uncertain, and in this case the dimension of vector p coincides with
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the cardinality of the edge set. Alternatively, there is only a subset of edges affected
by uncertainty. In this chapter, we assume that only a small percentage of edges are
unknown. This assumption enables us to make use of small perturbation analysis
and to derive closed form expressions useful to understand the perturbation effects
as well as to derive resilient processing algorithms.

3.1.1 Related works

Uncertain graphs analysis has a long history and it encompasses different research
areas [74], [75]. Indeed, in the presence of uncertain graphs, simple measures, like
computing shortest path distances, which can be performed in polynomial time using
Dijkstra’s algorithm, become much more complicated. In particular, the problem
of computing the probability that two nodes are reachable over an uncertain graph
is known to be NP -complete [75]. One of the key issues in uncertain graphs is
the so-called reliability, defined as the probability that two given (sets of) nodes
are reachable, see e.g., [76, 77]. In particular, there exist a class of measures to
evaluate the reliability of networks with respect to edge removal, such as integrity
measure, toughness, edge vulnerability etc. [77]. Data mining over uncertain graphs
is also a broad area of research [75], which includes clustering over uncertain
graphs [78–80], clique discovery over uncertain graphs [81], strong communities
identification [82], detection of molecular complexes in large molecular interaction
networks [83], nearest-neighbor search in biological databases [84], probabilistic
routing in telecommunication networks [85], core decomposition, i.e. discovery of
dense subgraphs [82,86,87], with applications to task-driven-team-formation [88],
sparsification of highly dense probabilistic graphs [89]. Edge misdetection errors
propagation into global graph macro-parameters, e.g. the edge count, has also been
studied in [90]. Moreover, the authors of [45] analyzed the robustness of different
centrality measures under small perturbations of edge weights.

In this chapter, we study the effect of graph topology uncertainties on signal
processing algorithms running on graph signals. Graph Signal Processing is wide
research area that has received considerably attention in the last few years due to
its many potential applications, see, e.g., [4] and the references therein. In GSP, the
analysis tools come to depend on the graph topology (cf. Sec. 2.2). For example, for
undirected graphs, the GFT has been defined as the projection of the graph signal
onto the space spanned by the eigenvectors of the graph Laplacian matrix [3, 22].
For this reason, if the presence of a subset of edges is a random event with a certain
probability to occur, the Laplacian matrix and its eigendecomposition, become
random as well. This motivates the GFT analysis in probabilistic terms.

Most of the literature on GSP assumes the graph topology perfectly known,
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except few noticeable examples. In [43], the authors analyze FIR and ARMA filtering
of random graph signals over random graphs. Expressing the filtering operator in
terms of powers of the Laplacian matrix and assuming independence between signal
and graph coefficients, the authors of [43] derive the statistical properties of the filter
output and suggest some denoising operations. In [44], the authors study the effect
of graph errors on the performance of independent component analysis (ICA) of
graph signals, whereas in [91] a technique to robustify least mean squares methods
with respect to graph errors is introduced.

3.1.2 Contributions

The main goal of this chapter is to study the effects of topology uncertainties
on some prominent information extraction tools, including graph signal recovery,
detection of possible graph perturbation, semi-supervised learning and clustering.
Then, building on our small perturbation model, we propose robust strategies that
incorporate statistical knowledge about possible graph perturbations.

We suppose to know a nominal graph, which may not coincide whit the real
graph. We also assume that the nominal and real graphs differ only by a small
subset of edges, i.e. the number of uncertain edges is small with respect to the
overall number of edges. Although representing a simplification, this assumption is
well justified in many applications, like in a wireless network where the number of
failing links at a given time is of course very small, or in a social network, where
as rare case some connections may change over time. On the other hand, such an
assumption allows us to derive closed form expressions that, albeit approximate, are
useful to shed light on the impact of random edge addition/removal on the spectrum
of graph signals and to devise new statistical methods to extract information from
signals defined over uncertain graph. More specifically, the main contributions of
this chapter are the following:

• Section 3.2. In this section, we derive derive: i) exact conditions stating
in which cases an eigenvalues/eigenvector pair is altered, or not, from the
perturbation, either addition or deletion, of an edge; ii) approximate closed
form expressions for the Laplacian matrix eigenvalues/eigenvector pairs that
get perturbed by the addition or removal of an edge, valid when the percentage
of uncertain edges is small;

• Section 3.3. In this section, we evaluate the impact of edge uncertainties on
basic GSP tools, such as the GFT;

• Section 3.4. In this section, we exploit the derived closed form perturbation
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model to propose a robust signal recovery algorithm that incorporates some
statistical knowledge about the topology uncertainty;

• Section 3.5. In this section, assuming some a priori knowledge of the signal
statistical model, we propose a method to detect possible alterations of the
nominal graph topology from the observation of a graph signal;

• Section 3.6. In this section, we exploit the derived closed form eigenvalue
perturbation model to devise a robust power allocation strategy, to be used in
wireless ad hoc networks;

• Section 3.7. In this section, we analyze the impact of erroneous assumptions
about the presence of edges of a graph in semi-supervised and unsupervised
algorithms.

• Section 3.8. Finally, in this section, we present concluding remarks and
future directions.

3.2 Small perturbation analysis of graph Laplacian

In this section, we make use of small perturbation theory to analyze how the
eigenpairs of the graph Laplacian are perturbed when a few percentage of edges
is perturbed. Small perturbation theory is a well-established theory introduced
for the first time in the seminal works of Rayleigh and Schrodinger [92, 93], for a
general linear operator, and then applied to matrices [94, 95]. Later, this theory was
applied to graphs in [96], [97] and [98]. Borjigin et al. [96] design spectral clustering
algorithms for normalized Laplacian matrices. They present a theoretical analysis of
the continuity of eigenvalues and eigenspaces that is meaningful in their multiway
normalized cut spectral clustering method. In [97], Hata et al. use perturbation
theory to analyze the localization properties of the Laplacian eigenvectors of random
graphs. Spielman, in [98], recalls the basics of perturbation theory for matrices in
order to analyze the behavior of spectral partitioning heuristics on random graphs
that are generated to have good partitions. An interesting usage of perturbation
theory was suggested by Von Luxburg, in [18], where she presents spectral clustering
from the perturbation theory point of view.

Here below, we briefly recall some basic notions about graphs and then we show
how the uncertainty on the edges translates onto the eigen-decomposition of the
graph Laplacian. For a more specific review of graph theory and GSP see Sec.2.1 and
Sec. 2.2. We consider an unweighted and undirected graph G = (V, E), composed
of a set of nodes V = {1, . . . , N}, and a set E of weighted edges, with cardinality
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|E| = E. We denote by W the adjacency matrix having either entries wij equal to
one, if (i, j) ∈ E , i, j ∈ V , or zero otherwise1. We define D as the diagonal matrix of
nodes degree, with diagonal entries [D]ii =

∑N
j=1wij . Defining the Laplacian matrix

as L := D −W , we denote its eigendecomposition as L = UΛU>, where U is the
matrix whose columns are the eigenvectors ui, i = 1, . . . , N , and Λ is the diagonal
matrix of eigenvalues λi, i = 1, . . . , N . Since the graph is undirected, the Laplacian
matrix is symmetric and its eigenvalues are nonnegative and real.

A signal x defined over a graph G is a mapping x : V → R, associating each
node with a real number. The GFT x̂ of a graph signal x over undirected graphs
is defined as the projection of x onto the space spanned by the eigenvectors of the
Laplacian matrix [22]

x̂ = U>x. (3.1)

The GFT is of interest particularly when dealing with modular graphs, composed of
a set of weakly interconnected clusters, and with signals that are smooth within each
cluster, but are free to assume arbitrary values across different clusters [24]. In such
a case, in fact, the GFT is (approximately) sparse and this sparsity enables efficient
denoising, sampling and recovery algorithms [24]. However, from (3.1) it is clear
that, an imperfect knowledge of the graph topology translates into an imperfect
knowledge of the Laplacian eigenvectors and then, ultimately, on the GFT of the
observed signals. Our purpose is to analyze the impact of an imperfect knowledge of
the graph topology on the GFT and to build analytical models that help to mitigate
this impact. We consider a mismatch between the nominal Laplacian L and the
actual Laplacian L̃ := L + ∆L. It is clear that the perturbation of L induces a
perturbation of its eigenvalue decomposition. We denote by

L̃ := L + ∆L = ŨΛ̃Ũ> (3.2)

the eigndecomposition of the perturbed matrix, with Ũ := U+∆U and Λ̃ := Λ+∆Λ
denoting the eigenvector and eigenvalue matrices of L̃, respectively. In general, find-
ing the exact perturbation in closed form is impossible. Nevertheless,in this work we
show that, in the case of a single edge perturbation, it is possible: i) to determine
which eigenvalue/eigenvector pairs gets perturbed or not by the given edge perturba-
tion, just looking at the eigenvectors of the nominal Laplacian matrix L; ii) to derive
approximate closed form expressions for the perturbed eigenvalues/eigenvector pairs,
valid under a small perturbation assumption. To simplify the analysis, we assume
that
(A0): All the eigenvalues of the nominal Laplacian matrix have multiplicity one.

1We consider for simplicity unweighted graphs, but the analysis can be extended to weighted
graphs with some straightforward extensions.
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Even though (A0) is typically true, there are some exceptions where the multi-
plicity of the eigenvalues of the adjacency matrix reveals some interesting symmetry
properties of the graph [99]. In this work, we restrict our analysis to the case where
(A0) is valid, for the sake of simplicity and of finding closed form expressions. We will
add later a remark on the cases in which we can relax (A0) to the set of eigenvalues
associated with the eigenspace we are interested in.

3.2.1 Single-edge perturbation

Let us start with the simple case where a single edge, said the m-th edge, is
perturbed. We introduce the column vector am ∈ RN , whose entries are all zero
except the two entries am(vm1) = 1 and am(vm2) = −1, where vm1 and vm2 are the
endpoints of edge m. Thus, the perturbed Laplacian is

L̃ := L + ∆L(m) := L + σm ama
>
m, (3.3)

where σm = 1, if edge m is added, or σm = −1, if edge m is removed. We
consider, without loss of generality, that the original graph is connected and the
eigenvalues are listed in increasing order. Since the graph is connected, the smallest
eigenvalue is null and it has multiplicity one. Under assumption (A0), we can
then write 0 = λ1 < λ2 < . . . < λN . Since the perturbation of a single edge
induces a rank-one update of the Laplacian matrix, we can exploit the seminal
works [100], [101] and adapt the methodologies introduced therein to our specific
case. In particular, we know in advance that, whichever is the perturbed edge,
the perturbed matrix will still have the smallest eigenvalue equal to zero and
the associated eigenvectors proportional to the vector of all ones, as the original
Laplacian, so that there is no perturbation on the first eigenvalue/eigenvector pair,
i.e. λ̃1 = λ1 and ũ1 = u1 = 1, where 1 is the vector of all ones. Since λ1 = 0, if we
introduce the N × (N − 1) matrix UN−1 := [u2, . . . ,uN ] and the (N − 1)× (N − 1)
matrix ΛN−1 := diag{λ2, . . . , λN}, we can rewrite the original Laplacian matrix as
L = UN−1ΛN−1U

>
N−1. Let us introduce the column vector of size N − 1, defined

as zm := [zm(2), . . . , zm(N)]> := U>N−1am. Since am is orthogonal to u1 = 1, we
can represent it as am = UN−1zm, so that we can rewrite (3.3) as

L̃ := UN−1(ΛN−1 + σm zmz
>
m)U>N−1, (3.4)

so that we can focus on the eigendecomposition of the diagonal plus rank-one update
matrix ΛN−1 +σm zmz

>
m. The first result we derive states under what conditions an

eigenvalue/eigenvector pair is not altered by the perturbation of an edge, as detailed
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below.

Theorem 2. If ui(vm1) = ui(vm2), then the i-th eigenvalue/eigenvector pair is not
altered by the addition/deletion of edge m.

Proof. Please, see the Appendix.
In general, of course, except under the conditions of Theorem 1, the perturbation of an
edge causes a perturbation of the eigenvalue/eigenvectors pairs. Nevertheless, since
the matrix perturbation is rank-one, this perturbation is limited by the eigenvalue
gap, as clarified next. Adapting the methodology of [100] to our case, in case of
addition of one edge, the perturbed eigenvalues satisfy the inequalities:

λi ≤ λ̃i ≤ λi+1, i = 2, . . . , N − 1
λN ≤ λ̃N ≤ λN + z>mzm.

Conversely, in case of edge removal, the inequalities become

λ2 − z>mzm ≤ λ̃2 ≤ λ2

λi−1 ≤ λ̃i ≤ λi, i = 3, . . . , N

Furthermore, using [101], if the eigenvalues λi are all distinct and all the elements
of zm are nonzero, then all the above inequalities become strict inequalities. Now,
we define the forward eigenvalue gap as g+

i := λi+1 − λi, for i = 2, . . . , N − 1, with
g+
N := z>mzm, and the backward gaps as g−i := λi − λi−1, for i = 3, . . . , N , with
g−2 := z>mzm. Hence, denoting with ∆λi,m := λ̃i − λi the eigenvalue perturbation,
we can write

0 ≤∆λi,m ≤ g+
i , in case of edge addition;

−g−i ≤∆λi,m ≤ 0, in case of edge removal. (3.5)

Now, for the sake of finding closed form expressions for the eigenvalue/eigenvector
perturbations, we make a small perturbation analysis, assuming that

(A1): ‖∆L‖F � ‖L‖F ,

In our case, we are interested in the situation in which only a small percentage
of edges is altered (either removed or added). This hypothesis is of course consistent
with (A1). Under (A1), in the Appendix, we derived approximate closed form
expressions for the eigenvalue and eigenvector perturbations, valid under (A0),
stating that the perturbed eigenvalue can be approximated as
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λ̃i ' λi + u>i ∆L(m) ui

= λi + σm u
>
i ama

>
m ui := λi + δλi,m

= λi + σm [ui(vm1)− ui(vm2)]2. (3.6)

This formula is accurate when [ui(vm1)−ui(vm2)]2 � g+
i , in case of an edge addition,

or [ui(vm1) − ui(vm2)]2 � g−i , in case of an edge deletion, which means that the
eigenvalue perturbation is not only smaller than the eigenvalue gap, but much
smaller. The validity of this assumption will be verified numerically later on.

Furthermore, under the above approximations, the perturbed eigenvector is
approximately

ũi ' ui +
N∑
j=2
j 6=i

u>j ∆L(m) ui

λi − λj
uj

= ui + σm

N∑
j=2
j 6=i

u>j ama
>
mui

λi − λj
uj := ui + δui,m

= ui+σm
N∑
j=2
j 6=i

[uj(vm1)−uj(vm2)][ui(vm1)−ui(vm2)]
λi−λj

uj

:= ui+σm
N∑
j=2
j 6=i

b
(m)
ji uj , (3.7)

apart a scalar coefficient needed to enforce a unit norm.

3.2.2 Multiple-edge perturbation

Let us consider now the case in which multiple edges are perturbed. The
perturbation of the Laplacian matrix can be written as

∆L =
∑
m∈Ep

∆L(m) =
∑
m∈Ep

σmama
>
m, (3.8)

where Ep denotes the set of perturbed edges. We can still apply the previous single-
edge perturbation analysis, provided that the overall eigenvalue perturbation does
not exceed the eigenvalue gap. The new condition becomes then

− g−i �
∑
m∈Ep

σm[ui(vm1)− ui(vm2)]2 � g+
i . (3.9)
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Under the above small perturbation condition, the eigenvalue and eigevector per-
turbation can be expressed as the sum of the perturbations pertaining each edge
perturbation, i.e.,

δλi =
∑
m∈Ep

σmδλi,m (3.10)

δui =
∑
m∈Ep

σmδui,m (3.11)

with δλi,m and δui,m as given in (3.6) and (3.7).
Remark 1: Interestingly enough, the perturbation formulas reported above coincide
with the approximation formulas derived in [94] applying small perturbation theory,
without necessarily assuming rank-one updates.
Remark 2: Our theoretical analysis has been carried out assuming that all eigenval-
ues are distinct. Indeed, if we are interested only in a subset of eigenvalues, what is
strictly necessary is only that the eigenvalues for which we compute the perturbation
are simple. This statement will be later checked numerically. Within their limit of
validity, formulas (3.6), and (3.7) shed light on some relevant aspects of perturbation
and their relation to graph topology. For example, it is known from spectral graph
theory, see e.g. [18], that, if the graph is composed of C clusters, the eigenvectors
associated with the C smallest eigenvalues tend to assume approximately the same
value within each cluster, while they can vary arbitrarily across different clusters. In
such a case, the above perturbation formulas (3.6) and (3.7) give rise to the following
interpretations:

1. the edges whose deletion causes the largest perturbation are inter-cluster edges;

2. the perturbation is larger for quantities associated with eigenvalues very similar
to each other (recall that formulas (3.6) and (3.7) hold true only for distinct
eigenvalues).

To check the validity of the theoretical approximation of the perturbed eigenvalues,
as given in (3.6), we generated a random geometric graph (RGG) with N = 150
nodes and considered different choices of the coverage radius r0, in order to enforce
different average degrees. Then, for each realization of the RGG, we perturbed its
edges by generating a binary random variable (rv) equal to one, with probability P,
if the edge is perturbed, or zero otherwise. The perturbations over different edges are
generated as statistically independent events. For each resulting graph, we compared
the true perturbation ∆λi of the i-th eigenvalue with its theoretical approximation
δλi =

∑
m∈E δλi,m, with δλi,m given by (3.6). We checked three eigenvalues, namely

(λ2, λ3 and λ5), and used as metric the Normalized Perturbation Mismatch (NPM),
defined as NPMi := |∆λi − δλi|/λi. In Fig. 3.1, we report the normalized error
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NPMi vs. the mean degree, for two different choices of the probability P that each
single edge is perturbed. We can see how, in both cases, the relative accuracy with
which the perturbations of the eigenvalues are approximated by our closed form
expressions is quite good. We also tested our approximations over scale-free graphs
of 250 nodes, generated using the preferential attachment method, using as starting
seed an RGG with 6 nodes, considering different choices of the number of new link
Mnew that are added for each new node during the graph building process. In
Fig. 3.2, we report the normalized error NPMi vs. Mnew. In our simulation, we
perturbed only the links incident to the hubs nodes, chosen as the 50 nodes with
the largest degree. Finally, we tested our approach over Erdös-Rényi graphs of 150
nodes, considering different edge probabilities pe. In Fig. 3.3, we show the NPMi vs.
pe, assuming the same failure probability over all the links. Each curve is averaged
over 50 statistically independent graph realizations and, for each graph, 10, 000
realizations of edge random deletion. From Figures 3.2 and 3.3, we can see that,
also for the scale-free and the Erdös-Rényi graph cases, the closed form expressions
provide a good approximation of the true perturbation. Furthermore, we tested the
approximated expressions of the Laplacian eigenvalues of a (connected) modular
graph built as a number C of RGGs weakly interconnected through a few links
placed at random. Figures 3.4 reports the normalized error NPMi vs. the number
of clusters, for two different choices of the probability P that each single edge is
perturbed. From Figs. 3.4, we can see that the relative accuracy of our perturbation
analysis is quite good, also for modular graphs.

To check the validity of the approximation of the perturbed eigenvectors, as given
by (3.7), we considered two important applications of the Laplacian eigenvectors:
the analysis of band-limited graph signals and clustering. In both cases, we assume
a connected graph to be composed of C clusters interconnected among each other
by a relatively small number of edges. In the first case, the signal is assumed to
be smooth within each cluster, but it can vary arbitrarily from cluster to cluster.
Such signals can be well approximated as a linear combinations of the eigenvectors
associated with the C smallest eigenvalues of the graph Laplacian. In the clustering
case, a popular graph-based method to detect clusters consists, again, in looking at
the eigenvectors associated with the C smallest eigenvalues and applying k-means
to those vectors [18] (cf. Sec. 2.3). In both cases, the structure of the eigenvectors
associated with the C smallest eigenvalues of L plays a key role. Hence, to test
the accuracy of the closed form expressions in (3.7) in view of the above potential
applications, we generated random connected graphs composed of C clusters, and
each cluster is generated as a RGG, and then we placed few edges at random to
connect the clusters. Then, for each synthetic graph, we perturbed the topology by
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Figure 3.1. Perturbation mismatch vs. mean degree for a RGG, with N=150.

deleting randomly some of its edges, with a probability P equal for each edge. We
chose, as performance metric, the distance (angle in radians) between the subspace
spanned by the first C eigenvectors computing the exact eigen-decomposition of the
perturbed Laplacian matrix L̃ and the subspace spanned by the first C eigenvectors
of L̃ computed using (3.7). In Fig. 3.5, we show the subspace distance for different
C and N , as a function of failure probability P, constant over all the links. The
results in Fig. 3.5 are averaged over 50 independent graph realizations and, for each
graph, over 10, 000 realizations of the deletion events. The simulation results show
that the approximation improves as the number N of nodes increases. Moreover,
the approximation error increases as the number of clusters increases, also because
the dimension of the subspace increases and then there are more degrees of freedom.

Remark. Investigating about the spectrum perturbation of the Laplacian matrix
arises also the problem of eventual graph symmetries perturbations. The fact that
the presence of symmetries in a graph is manifested by the presence of sparse
Laplacian eigenvectors is well known [102–104]. More specifically, if two (or more)
nodes share the same set of neighbors, they are identified by a sparse eigenvector
that has a corresponding integer eigenvalue of the Laplacian matrix. For example,
for a 2-sparse eigenvector, it is known the following result [102]:
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Figure 3.2. Perturbation mismatch vs. Mnew for a scale free graph, with N=250.
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Figure 3.3. Perturbation mismatch vs. edge probability, for an Erdös-Rényi graph,
with N=150.
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Figure 3.4. NPMi vs number of clusters C when each cluster is an RGG.

Proposition 1. LetW be the adjacency matrix of a connected and undirected graph,
with entries wij, and be di the degree of the i-th node. Then, there exist two nodes i
and j such that

wik = wjk, ∀k ∈ {1, . . . , N}\{i, j} (3.12)

if and only if the graph Laplacian L has a 2-sparse eigenvector uk with the associated
eigenvalue different from zero λk = di + wij.

The 2-sparse unit length eigenvector uk will have all entries equal to zero but
the i-th entry equal ±1/

√
2 and the j-th entry equal to ∓1/

√
2. Thus, from (3.6),

it is clear that the largest perturbation of λk occurs when the edge wij is perturbed,
i.e. δλk = 2. For the binary weights graph, the eigenvalue perturbation computed
by (3.6) suggests the same result of Prop. 1. In fact, denoting with d̃i the degree
of i after the removal of the edge connecting the nodes i and j, the k-th perturbed
eigenvalue is exactly λ̃k = d̃i = λk − 2.

3.2.3 Statistical analysis

In this section, we provide a statistical analysis of eigenvalue/eigenvector pertur-
bations. Consider the removal/addition of an edgem as a random event characterized
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by a certain probability Pm. In particular, we describe the perturbation of edge m
as a binary r.v. Zm equal to 1, with probability Pm, if edge m is perturbed, and
0 otherwise. Furthermore, we denote by Ep ⊆ E , the subset of edges present in
the nominal graph E , which could be missing in the actual graph, and by Ēp ⊆ Ē
the subset of missing edges in the nominal graph Ē , which could be present in the
actual graph. Within the limits of validity of first order perturbation analysis, the
overall perturbation of eigenvalue λi and the corresponding eigenvector ui can be
approximated as

δλi :=
∑

m∈Ep∪Ēp

Zmδλi,m (3.13)

δui :=
∑

m∈Ep∪Ēp

Zmδui,m (3.14)

with δλi,m and δui,m given in (3.6) and (3.7), respectively. In a small perturbation
framework, the validity of (3.13) holds as far as the number of perturbed edges
does not lead to a violation of assumptions (A0) and (A1). As a rule of thumb, we
assume that, if the probabilities assume a constant value, Pm = P, ∀m ∈ Ep ∪ Ēp, the
product (|Ep|+ |Ēp|)P has to be sufficiently smaller than one.

Assuming statistical independence of the events associated with edge removal/addition,
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Figure 3.6. Mean value of λ3 and λ5 computed numerically (solid line) and with
(3.15)

it is easy to derive eigenvectors/eigenvalues statistical properties. In particular,
mean value and variance of δλi are

mδλi := E{δλi} =
∑
m∈Ep

Pm δλi,m −
∑
m∈Ēp

Pm δλi,m, (3.15)

var{δλ(i)} =
∑

m∈Ep∪Ēp

(1− Pm)Pm δλ2
i,m. (3.16)

To check the validity of these expressions, we generated a graph of N = 240 nodes
and C = 5 clusters, with 48 nodes per cluster and few links placed at random to
connect the clusters. In Fig. 3.6, we compare the mean value of two eigenvalues
computed using expression (3.15) or numerically, by averaging over 1, 000 independent
realizations of the failure events. We can see from Fig. 3.6 that the approximation
is fairly good. For later purposes, it is useful to evaluate the probability that the
random variable δλi or δui(`) does not deviate from their expected values more
than a given value t. This probability is not easy to compute, hence we used the
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Hoeffding’s bound [105]:

P{δui(`)−mδui(`) ≥ t} ≤ exp{−2t2/
∑

m∈Ep∪Ēp

δu2
i,m(`)},

P{δλi −mδλi ≥ t} ≤ exp{−2t2/
∑

m∈Ep∪Ēp

δλ2
i,m}.

In particular, the probability that the deviation of the `-th entry of the i-th eigen-
vector be larger than a certain percentage α ∈ [0, 1] of the unperturbed value ui(`),
is upper bounded by

P{δui(`) ≥ αui(`)}

≤ exp{−2(αui(`)−mδui(`))
2/

∑
m∈Ep∪Ēp

δu2
i,m(`)}, (3.17)

and the probability that the eigenvalue perturbation be smaller than a certain
percentage α ∈ [0, 1] of the true eigenvalue is:

P{δλi≥αλi}≤exp{−2(αλi −mδλi)2/
∑

m∈Ep∪Ēp

δλ2
i,m}. (3.18)

Note that, the assumption on the statistical independence of the perturbation
events is simplistic, but it helps us to derive a perturbation analysis of the eigenval-
ues/eigenvectors in closed form. This enables us to formulate and solve perturbation-
aware graph-based learning problems.

3.3 Impact of graph uncertainties on graph signal spec-
trum

In this section, we want to assess how the uncertainty on a subset of edges affects
the spectrum of a graph signal. In fact, if the graph is only imperfectly known, the
uncertainty on the graph topology translates into an uncertainty of the spectrum
of the observed signal. Moreover, the results of this section will be used later, to
formulate a robust graph signal processing in the presence of uncertainties.

Given an undirected graph G with Laplacian matrix L, let x be a signal defined
over the graph. Its Graph Fourier Transform has been defined as [106], [107]:

x̂ = U>x, (3.19)
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where U is the matrix whose columns are the eigenvectors of L. In our setting, U
contains the eigenvectors of the nominal graph and Ũ := U + ∆U the eigenvectors
associated with the real graph. Clearly, a mismatch between true and nominal eigen-
vectors induces an error in the spectral analysis. In particular, we consider smooth
signals. These signals can be expressed (approximately) as a linear combination
of the first eigenvectors of the graph Laplacian. Their spectrum is then typically
concentrated around the lowest frequency components. More specifically, if the
bandwidth is K, lowpass band-limited signals admit a compact representation (on
the true graph):

x = Ũs0 = ŨKs := (UK + ∆UK)s, (3.20)

where ŨK ∈ RN×K contains the first K eigenevectors of Ũ , while s>0 := [s>,0>]>,
where s is a column vector of size K, which enables a compact representation
of the observed signal over the true eigenvector basis ŨK . The presence of a
mismatch ∆UK between real and nominal eigenvectors gives rise to erroneous signal
components. Using (3.7) and (3.14), and considering, for the sake of simplicity, only
failure events, this mismatch can be expressed in closed form as

∆UK '
∑
m∈Ep

Zm[δu1,m, . . . , δuK,m] =
∑
m∈Ep

ZmUBm, (3.21)

where Bm ∈ RN×K , [Bm]ij = b
(m)
i,j defined in (3.7) for j 6= 1, i 6= 1 and i 6= j, while

we set 1) b(m)
i,1 = 0, ∀i = 1, . . . , N , 2) b(m)

1,j = 0,∀j = 1, . . . ,K, and 3) b(m)
i,i = 0, ∀i =

1, . . . ,K. These zero entries simply encode the property that 1) the first eigenvector
is not perturbed, 2) it does not contribute to perturb any other vector and, trivially,
3) no eigenvector perturbs itself.

Computing the GFT of the observed vector x using the nominal eigenvectors U
gives then rise to:

x̂ = U>x = s0 + ∆x̂ (3.22)

where, using (3.21), the error can be expressed as

∆x̂ = U>∆UKs '
∑
m∈Ep

ZmBms. (3.23)

This shows that the spectrum perturbation contains both an out-band and
an in-band component, except for the first entry, which is null because the first
eigenvector is not perturbed (unless the graph becomes disconnected, in which case
the nullspace of L increases up to an order equal to the number of disconnected
components). Clearly, the spectrum error depends on the true signal coefficients
as well as on the edge perturbation events. Since ∆x̂ is a set of random variables,
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Figure 3.7. Overall mean squared errors vs. edge failure probability.

denoting with qm := Bms, the expected value and variance of each entry are

E{∆x̂(k)} =
∑
m∈Ep

Pmqm(k) (3.24)

var{∆x̂(k)} =
∑
m∈Ep

Pm(1− Pm)q2
m(k) (3.25)

with k = 2, . . . , N .
To gain insight into the spectrum perturbation, we considered the following

example. We considered a graph composed of 240 nodes forming five clusters (C = 5)
interconnected by a few bridges placed at random. Each edge has a probability to
fail Pm, assumed to be all equal for all m, Ep = E , and Pm = 0, ∀m ∈ Ēp. On top
of this graph, we generated two band-limited signals, having bandwidths K = 3
and K = 5. Fig. 3.7 depicts the sum of mean squared errors on all the spectrum
coefficients, computed as

∑N
k=1 var{∆x̂(k)} + E{∆x̂(k)}2, obtained over the two

different signals vs. the edge failure probability, obtained by simulation (dashed line)
or by using (3.25) (solid line). This figure shows that there is a good agreement
between the simulation results and the theoretical findings. The theoretical values
tend to slightly underestimate the simulated values, because of the use of first order
approximations. As expected, the error increases as the failure probability or the
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bandwidth increase.

3.4 Robust signal recovery

In this section, we propose a robust spectrum recovery algorithm, motivated
by the analysis of Sec. 3.3. Such algorithm incorporates any available knowledge
about the topology perturbations statistics. Consider an observed signal model
that includes both the effect of the topology perturbation, modeled as in (3.20) and
(3.21), plus noise

x = UKs+
∑
m∈Ep

ZmUBms+ v (3.26)

where s is modeled as a vector of statistically independent random variables with
zero mean and covariance matrix Rss := σ2

sI, and v is additive noise, statistically
independent of s, with zero mean and covariance matrix Rvv := σ2

nI.
We consider a linear estimator, so that the estimated vector ŝ is obtained as

ŝ = G>x. The goal of this section is to find the matrix G that yields the minimum
mean square error (MMSE) estimate. In the ideal case of unperturbed topology, G is
simply proportional to UK . In the presence of unknown perturbations, we minimize
the MSE exploiting the structure of the observation model in (3.26) and prior
information about the statistics of the graph perturbations, i.e. the probabilities
that some of the edges may fail. The overall MSE can be written as

MSE(G) = E{(ŝ− s)(ŝ− s)>}

= E{(G>x− s)(G>x− s)>}. (3.27)

Let Rzz be the covariance matrices of z := [Z1, . . . , Z|Ep|], whose entries are

[Rzz]m,l =

Pm, if m = l

PmPl if m 6= l.
(3.28)

In the presence of random perturbations, the MSE is written as follows

MSE = Tr{σ2
sI +G>[σ2

sUKU
>
K +

∑
m∈Ep

Pmσ2
sUKB

>
mU

> +
∑
m∈Ep

Pmσ2
sUBmU

>
K+

∑
m∈Ep

∑
l∈Ep

[Rzz]m,lσ2
sUBmB

>
l U

> + σ2
nI]G−G>[σ2

sUK +
∑
m∈Ep

σ2
sPmUBm]

− [σ2
sU
>
K +

∑
m∈Ep

σ2
sPmB>mU>]G}. (3.29)

Since the MSE is a convex function of G, the optimal vector is obtained by equating
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the gradient of (3.27) respect to G to zero. The resulting optimal matrix turns out
to be

G = [UKU
>
K +

∑
m∈Ep

∑
l∈Ep

[Rzz]m,lUBmB
>
l U

>+

+ σ2
n

σ2
s

I +
∑
m∈Ep

Pm(UKB
>
mU

> +UBmU
>
K)]−1

· (UK +
∑
m∈Ep

PmUBm). (3.30)

If there are no perturbations, i.e. Pm = 0, then G = 1
1+σ2

n
σ2
s

UK , so that ŝ = G>x =

1
1+σ2

n
σ2
s

U>Kx.

As a numerical example, we consider a stochastic block graph model composed
of 120 nodes, arranged in C clusters with inter-cluster probability equal to 10−4 and
intra-cluster probability equal to 0.5. Each edge has a probability Pm to fail, assumed
to be the same for all the edges. Over these graphs, we generated band-limited
signals with bandwidth K = C. In Fig. 3.8 we compare the NMSE in the estimation
of s, computed as ‖ŝ− s‖22/‖ŝ‖22, as a function of the failure probability using two
possible filters: a) the conventional approach, with G simply proportional to UK ;
b) the vector G as given by (3.30). The results are averages over 20 realizations of
the graphs, and for each graph over 10, 000 realizations of the perturbation events.
Form Fig. 3.8, we can see that the incorporation of the perturbation statistics yields
a lower MMSE with respect to the conventional approach. As expected, the error is
larger as the bandwidth increases, also because we need to estimate a vector with
more unknowns. In the next section, we will show how to improve these results.

Finally, in Fig. 3.9, it is shown the MMSE vs Pm when K = C = 3 and the
parameter Pm is underestimated. The assumed inexact parameter is denoted as P∗m,
and we can see slightly larger MMSE values when Pm is incorrect with respect the
optimized case with the true value of Pm.

3.5 Failures detection

In this section, we address the challenging task of edge failure detection, by the
observation of a graph signal. Assuming some prior information about the statistics
of the signal vector s and of the perturbations, we build a Bayesian approach to
decide whether some uncertain edges are present or not. More specifically, the goal
is to recover the binary vector z, whose dimension is equal to the number of possibly
perturbed edges and whose m-th entry is one, if the m-th edge fail, or zero otherwise.
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For the sake of simplicity, we start considering the simple case where only one link
fails, say the m-th link.
Let us consider the model (3.26), where s ∈ RK is now a Gaussian random vector
whose joint probability density function is:

p(s) = 1
(2πσ2

s)K/2
exp(− 1

2σ2
s

‖s‖2). (3.31)

Moreover, we assume the noise vector v in (3.26) to be Gaussian, with zero mean
and covariance matrix Rvv = σ2

nI. Assuming to have a priori information about the
failure probability Pm of the m-th edge, we decide whether the edge m is present
(i.e. Zm = 0) or not (i.e. Zm = 1). The probability of Zm = 1, conditioned to the
observed vector x, can be written as:

P(Zm = 1|x) = p(x|Zm = 1)Pm
p(x) . (3.32)

To evaluate (3.32), we compute the marginal distribution p(x|Zm = 1) =
´ +∞
−∞ p(x, s|Zm =

1) ds. Since s is statistically independent of Zm, using p(x, s|Zm = 1) = p(x|s, Zm =
1)p(s), we get

p(x|Zm = 1) = 1
(2πσ2

n)N/2
1

(2πσ2
s)K/2

(3.33)
ˆ +∞

−∞
exp{−1

2
(‖x−UKs−∆UK,ms‖2

σ2
n

+ ‖s‖
2

σ2
s

)
}ds

with ∆UK,m := [∆u1,m, . . . ,∆uK,m], where ∆ui,m denotes the true perturbation
of ui when edge m fails. Defining ŪK = UK + ∆UK,m, c0 = σ2

n + σ2
s , and re-

writing the argument of the exponential as 1
σ2
n
‖x−UKs−∆UK,ms‖2 + 1

σ2
s
‖s‖2 =

c0
σ2
nσ

2
s

∥∥∥s− σ2
s
c0
Ū
>
Kx
∥∥∥2

+ 1
σ2
n

(x>x− σ2
s
c0
x>ŪKŪ

>
Kx) we are able to solve the integral

in closed form, so that we have

p(x|Zm = 1) =
exp{− 1

2σ2
n

(x>x− σ2
s
c0
x>ŪKŪ

>
Kx)}

(2π)
N
2 (σ2

n)
N−K

2 c
K
2

0

. (3.34)

Similarly, we can find the marginal distribution p(x|Zm = 0) as

p(x|Zm = 0) =
exp{− 1

2σ2
n

(x>x− σ2
s
c0
x>UKU

>
Kx)}

(2π)
N
2 (σ2

n)
N−K

2 c
K
2

0

. (3.35)

Then, using the maximum a posteriori criterion we decide weather the edge m is
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present or not. Hence, from (3.32), the decision rule is the following

P(Zm = 1|x)
P(Zm = 0|x) = p(x|Zm = 1)Pm

p(x|Zm = 0)(1− Pm)
absent
≷

present
1. (3.36)

If the ratio is greater than one, we decide that the m-th edge failed, otherwise the
topology remains unaltered. After some straightforward algebraic manipulations,
the above decision rule becomes

x>
(
ŪKŪ

>
K −UKU

>
K

)
x

absent
≷

present

1
α

ln
(1− Pm

Pm

)
(3.37)

with α := σ2
s/[2σ2

n(σ2
s + σ2

n)].
The above approach can be generalized to the case of multiple uncertain edges;

i.e. multiple edges in the nominal graph that may fail. We denote by Ep ⊆ E the set
of potentially failing edges. Generalizing the previous approach, we need to compute
the posterior pdf p(Z = z`|x), where z` is a binary vector of size |Ep|, whose entries
are 1 or 0, if the corresponding edge failed or not. In this case, we want to identify
the configuration of z` that maximizes the posterior probability

p(Z = z`|x)=
p(x|z`)

∏
m∈Ep P

z`(m)
m (1− Pm)1−z`(m)

p(x) . (3.38)

The recovery method we proposed is tested over the graph of Fig. 3.10, for the case
of 2 or 4 failing edges, with Pm = 0.5,∀m ∈ Ep. For any configuration of failing edges,
in this experiment, we computed the exact perturbation of the Laplacian eigenvectors
numerically. The results, expressed in terms of Failures Identification Error Rate
(FIER), measuring the percentage of incorrect identification of failing links, are
reported in Fig. 3.11, as a function of the signal to noise ratio 10 log10(σ2

s/σ
2
n). We

considered separately the cases where the failure involves only intra-cluster edges
(solid line) or inter-cluster edges (dashed line). From Fig. 3.11, we can see that,
if the signal to noise ratio is sufficiently large, so that the perturbations due to
edge failure can be distinguished from the additive noise, the method is able to
provide a fairly low error rate. Moreover, the method is more reliable if the signal
bandwidth increases. An intuitive explanation is that, as the number of signal
coefficients increases, i.e. K, the sensitivity to the perturbation increases as well,
thus facilitating the detection of some edge failure. Finally, note that, if we perturb
only the inter-cluster edges, the error rate (dashed line) is smaller. In fact, as we
know from our perturbation analysis, the perturbation over the inter-cluster edges
has a larger impact on the Laplacian eigenevectors so that the mismatch between
the observation and the model is easier to detect.



3.5 Failures detection 53

Figure 3.10. Clustered graph.

We also tested our recovery method over the graph of Fig. 3.10, for the case of 4
failing inter-cluster edges, with Pm = 0.4,∀m ∈ Ep. We considered in the decision
test (3.37) both the exact eigenvector perturbations and the approximate expressions,
given by (3.7). The results are reported in Fig. 3.12 and Fig. 3.13 , as a function of
the signal to noise ratio 10 log10(σ2

s/σ
2
n). We considered the case where the failure

involves only inter-cluster edges, which are indeed the ones having more impact
on performance. From Fig. 3.12, we can see that, if the signal to noise ratio is
sufficiently large, the Bayesian approach is able to recover a good number of edges.
The performance is better for the decision method using the exact eigenvectors,
as expected, but that method suffers from a complexity issue, because it needs to
pre-compute all possible eigenvector perturbations resulting from each set of altered
edges, and thus it has a combinatorial complexity. Conversely, the method based on
our approximate expressions (3.7) does not suffer from such a combinatorial issue,
but it pays this advantage with a floor on the error rate, as evidenced in Fig. 3.12.

Building on the decision rule (3.37), we devised an algorithm that improves
the accuracy of the GFT, in the presence of uncertainties. The algorithm takes a
decision about the uncertain edges, using (3.37). Then, it builds the corresponding
Laplacian matrix, computes the corresponding eigenvectors and uses them to compute
the GFT of the observed signal. The resulting MSE, in the presence of noise, is
reported in Fig. 3.13, where we show the MSE obtained using the GFT built
using: a) the eigenvectors of the nominal graph; b) the eigenvectors of the Laplacian
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Figure 3.11. FIER (%) vs SNR.

refined through the Bayesian approach using the approximated eigenvectors; c) the
eigenvectors built using (3.7), exploiting the edge refinement obtained with the
Bayesian approach using the exact eigenvectors. We can check from Fig. 3.13 the
advantage of the Bayesian approach in improving the accuracy of the GFT, at high
SNR. The results have been obtained by averaging over 104 independent realizations
of perturbations events, noise and signal s.

3.6 Robust information transmission over wireless ad
hoc networks

In this section, we apply our statistical model to optimize the resource (power)
allocation over an ad hoc wireless network, vulnerable to random link failures.
This analysis is motivated by the fact that one of the main issue in wireless ad hoc
networks is to guarantee their connectivity in the presence of link failures. The aim is
to allocate resources, i.e. transmit power, in order to design a network robust against
random link failures, where robustness is assessed in terms of network connectivity.
We consider a wireless ad hoc network where links are subject to random failures due
to fading. Denoting with hm the channel coefficient, the capacity over the m-th link
assumes the form Cm = log2(1 + |hm|2ρm) (bits/sec/Hz), where ρm = PT,m

σ2
nr

2
m

is the
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Figure 3.12. FIER (%) vs SNR: exact perturbations (solid) and approximate
expressions (dashed).

signal-to-noise ratio (SNR), PT,m is the transmitted power over the m-th link, σ2
n is

the noise variance, and rm is the distance covered by link m. We suppose the failure
events over different links to be statistically independent. We start considering a
single antenna at both transmit and receive sides. In the absence of a Line-of-Sight
(LoS) path, this scenario gives rise to a single-input-single-output (SISO) Rayleigh
flat fading channel. In such a case, the channel coefficient hm is a complex circularly
symmetric Gaussian r.v. with zero mean. Hence, the random variable α = |hm|2 has
an exponential cumulative distribution function (CDF), which we denote as F1(α; γ),
where, more generally, Fn(x, γ) denotes the CDF of a gamma r.v. x of order n and
parameter γ.

Denoting the the data rate used over the m-th link as Rm, the link is in outage
if Rm > Cm. The outage probability Pm over link m can then be computed as

Pm = Pr{Cm < Rm} (3.39)

= Pr{log2(1+|hm|2ρm)<Rm}=Pr

{
|hm|2<

2Rm − 1
ρm

}

=
ˆ 2Rm−1

ρm

0
γe−γαdα =F1

(
2Rm−1
ρm

;γ
)

=1−e−
γ
ρm

(2Rm−1)
.
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This expression can be inverted to derive the transmit power PT,m as a function of
the outage probability over the m-th link

PT,m = −γ σ
2
n r

2
m(2Rm − 1)

ln(1− Pm) = σ2
n r

2
m(2Rm − 1)

F−1
1 (Pm; γ)

. (3.40)

We assess the network robustness as the ability of the network connectivity to be only
slightly affected by the failure of a small number of edges. We measure connectivity
of the network by using the value of the second smallest eigenvalue of the Laplacian
matrix associated with the network. In fact, this parameter, called also algebraic
connectivity, provides a lower bound for the graph conductance [2]. The algebraic
connectivity becomes a random variable, in a network vulnerable to random link
failures. We want to determine here the transmit powers PT,m, or equivalently the
outage probabilities Pm, through (3.40), that minimize the average perturbation
of the algebraic connectivity, subject to a cost associated with the total transmit
power PTmax necessary to establish all the communication links. To formulate the
problem, we rely on the small perturbation analysis derived in the previous sections.
Hence, the outage probabilities Pm can be found as the solution of the following
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optimization problem

min
{Pm}Em=1

∑
m∈E

E{|δλ2,m|}

s.to
∑
m∈E

PT,m ≤ PTmax

Pm ∈ [0, 1],∀m ∈ E

(3.41)

where δλ2,m denotes the approximated expression of the perturbation of the second
smallest eigenvalue due to the failure of edge m. Using equations (3.15), (3.6) and
(3.40), we can rewrite the optimization problem in terms of the outage probabilities
Pm as

min
{Pm}Em=1

∑
m∈E

Pm[u2(v1,m)− u2(v2,m)]2

s.to
∑
m∈E

r2
m(2Rm−1)
F−1

1 (Pm;γ) ≤ Γmax

Pm ∈ [0, 1], ∀m ∈ E

(3.42)

where u2 is the unit length eigenvector associated with the second smallest eigenvalue
of the nominal network Laplacian matrix and we set Γmax := PTmax/σ

2
n.

Problem (3.42) is non-convex because of the constraint set, which is not convex. If we
perform the change of variable tm := 1/F−1

1 (Pm; γ) = −γ/ ln(1−Pm),m = 1, . . . , E,
the first constraint set gives rise to a hyperplane, and then it is convex, but the
objective function F1( 1

tm
; γ)|δλ2,m| =

∑
m∈E

(1 − e−
γ
tm )|δλ2,m| becomes non-convex.

However, if we further constrain the unknown variables tm to satisfy tm ≥ γ/2,∀m,
then the objective function becomes convex. Such a constraint on tm is not a real
limitation, because it is equivalent to require that Pm < 0.8647, but this is perfectly
reasonable because in real applications we want the outage probabilities to be well
below such a value.

The original problem can be recast as

min
t

∑
m∈E

(1− e−
γ
tm )[u2(v1,m)− u2(v2,m)]2

s.to
∑
m∈E

r2
m

(
2Rm − 1

)
tm ≤ Γmax

tm ≥ γ
2 , ∀m ∈ E ,

(3.43)

where t := [t1, . . . , tE ]>.
In the following, we generalize to a Multi-Input Multi-Output (MIMO) system.

In such a case, there are nT antennas at the transmit side and nR antennas at
the receive side in each link. Denoting by hmij the coefficients between the i-th
transmit and the j-th receive antenna of the m-th link, and assuming statistically
independent Rayleigh fading channels, a full diversity receive scheme gives rise to



3.6 Robust information transmission over wireless ad hoc networks 58

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
·104

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

PTmax

E{
|∆
λ

2|
}/
λ

2

SISO Optimal SISO
MIMO Optimal MIMO

Figure 3.14. Comparisons between SISO (red curves) and MIMO (n = 4) systems (
curves), with and without optimization.

an equivalent channel coefficient whose square modulus is α :=
∑nT
i=1

∑nR
j=1 |hmij |2.

This random variable is characterized by a Gamma CDF of order n = nT × nR, i.e.
Fn(α; γ) [108]. Thanks to a MIMO, instead of SISO, system it is possible to get a
diversity gain that makes the communication links more reliable. We wish now to
see how this diversity gain can affect the robustness of the ad hoc network, in terms
of connectivity. Generalizing the approach followed above in the SISO case, we can
formulate the following optimization problem as

min
t

∑
m∈E

Fn

( 1
tm

; γ
)
|δλ2,m| (3.44a)

s.to
∑
m∈E

r2
m(2Rm − 1)tm ≤ Γmax (3.44b)

tm ≥ γ/(n+ 1), ∀m ∈ E . (3.44c)

The condition in (3.44c) is used, again, to make the problem convex. Problem (3.43)
is indeed a special case of problem (3.44), with n = 1. Note that, the bounding
region in (3.44c) increases with the number of independent channels.

As a numerical example, we consider the sensor network deployed in the Intel
Berkeley Research lab [109], composed of 54 nodes. The network contains two
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clusters, associated with two separated spaces in the laboratory. Given two nodes,
we assume there is a link between them if their Eucledian distance is less than τ = 10
meters. Then, we assumed the presence of two inter-cluster edges, to ensure network
connectivity. For this simulation, we set σ2

n = 10−4, Rm = 7, n = 4 and γ = 1.
Fig. 3.14 shows the expected value of the perturbation of the algebraic connec-

tivity computed numerically, normalized with respect to the nominal value λ2, as a
function of PTmax . We compare the perturbation using the optimal power allocation,
as a solution of (3.44), with the solution where the same power is allocated over
all the links, under the same overall power consumption PTmax . The comparison
is performed for both SISO and MIMO cases. The simulations are averaged over
106 independent realizations of the perturbation events. From Fig. 3.14, we can
observe the gain in terms of the total power necessary to achieve the same expected
perturbation of the network algebraic connectivity. We can also see the advantage of
using MIMO communications, at least in the case of statistically independent links.

3.7 Impact of uncertainties on semi-supervised and su-
pervised learning

In this section, we asses topology uncertainty effects on graph-based learning tasks
such as semi-supervised learning and clustering method to be used in unsupervised
learning.

3.7.1 Semi-supervised learning over uncertain graphs

A well-known approach in graph-based semi-supervised learning methods is to
propagate the known labels throughout a graph representing similarities among data
points of a point cloud [55]. However, if the graph presents uncertainties on some
edges, these uncertainties reflect into the final label assignment to the unlabeled
nodes. This motivates the analysis of the present section, where we show how the
uncertainty on some edges affects the graph-based semi-supervised learning process
and then the final labels. We assume that only a small percentage of edges is
perturbed. For the sake of simplicity, we consider the case where the perturbation
consists only in possible failing links, but our framework can of course be extended
including also the appearance of a small percentage of edges. Given a graph, we
suppose that Nl nodes have been labeled, whereas Nu are unlabeled. We denote by
y ∈ RNl the vector collecting the given labels. The goal of semi-supervised learning
is to label the unlabeled nodes exploiting the knowledge on the graph structure and
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the labeled nodes. One possible way consists is solving the following problem

min
f

f>Lf (3.45a)

s.to f(xi) = yi, ∀i = 1, . . . , Nl, (3.45b)

where f = [f(x1), . . . , f(xNu+Nl)]> is the vector of labels associated with all the
vertices. Assuming, without loss of generality, that the vertices are ordered in such
a way that the first Nu vertices correspond to the unlabeled nodes, we can partition
the Laplacian matrix as follows

L =
[
Luu Lul
L>ul Lll

]
(3.46)

where Luu (Lll) is the matrix composed of Nu (Nl) rows and Nu (Nl) columns of
L related to unlabeled nodes (labeled nodes), and Lul is the matrix composed of
Nu rows of L related to unlabeled nodes, and Nl columns of L related to labeled
nodes. Vector f correspondingly is ordered as f = [fu,f l]>, where fu contains the
unlabeled nodes and f l the labeled ones. Problem (3.45) has a known closed-form
solution, also known as the harmonic solution, [55,110]:

fu = −L−1
uuLul yl. (3.47)

Consider now that the given graph topology is affected by uncertainties on some
edges, i.e. some existing links may not be present. Since a topological perturbation
yields a perturbed Laplacian matrix L + ∆L, with ∆L =

∑
m∈Ep Zm∆L(m), it is

clear from (3.47) that a perturbation has effects also on the final labels. If the
submatrices Luu and Lul are perturbed by terms ∆Luu and ∆Lul, respectively, the
vector fu gets perturbed as follows

f̂u = −(Luu + ∆Luu)−1(Lul + ∆Lul)yl (3.48)

≈ −(L−1
uu − L−1

uu∆LuuL−1
uu )(Lul + ∆Lul)yl

where we retained only the first order approximation terms. Therefore, vector fu
gets perturbed by a quantity that is approximately equal to

δfu ≈ L−1
uu

 ∑
m∈Ep

Zm∆L(m)
uu L−1

uuLul −
∑
m∈Ep

Zm∆L(m)
ul

 yl. (3.49)

Since the perturbation variables Zm are random, the error is random as well. Thus,
within the limits of validity of first order approximations, the mean value of the
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error is

E{δfu}=L−1
uu

∑
m∈Ep

Pm∆L(m)
uu L−1

uuLul−
∑
m∈Ep

Pm∆L(m)
ul

yl. (3.50)

To write compactly the error covariance matrix, it is useful to introduce some matrices.
Let G = [g1, . . . , g|Ep|], where gm := L−1

uu∆L(m)
uu L−1

uuLulyl and H = [h1, . . . ,h|Ep|],
where hm := L−1

uu∆L(m)
ul yl. The covariance matrix of δfu can then be written as

Cov{δfu} = (G−H)Czz(G−H)>, (3.51)

where Czz = diag(P1(1− P1), . . . ,P|Ep|(1− P|Ep|)).
As a numerical example to assess the impact of edge failures on the label

propagation, we generated a graph of N = 50 nodes, composed of two RGGs of 25
nodes each, having the same mean degree, inter-connected with four inter-cluster
edges randomly placed. We assume two classes associated with two different RGGs,
labeled either 1 or −1, as representative of the two classes. We assigned a label
1 to some points at random within one cluster and the other label −1 to some
other points at random within the other cluster. Then, we perturbed the graph by
assigning a binary r.v. to each edge is a subset Ep ∈ E , each r.v. is equal to one,
with probability Pm, or zero otherwise. For simplicity, we assumed Pm = P,∀m ∈ Ep.
We applied (3.47) over several independent realizations of the graph topology and
then computed the sum of the error variances obtained by simulation or by using
the formula in (3.51). We considered only the error variances, since by numerical
simulations we observed that the bias is typically negligible with respect to the
standard deviation. Fig. 3.15 depicts the comparison of the sum of the variances
on the final labels obtained by numerical simulations (dashed lines) and by our
theoretical derivations (solid line), as a function of the mean degree of each cluster.
The simulations are implemented assuming fixed number |Ep| = 200 of uncertain
edges, for every value of mean degree. The results in Fig. 3.15 have been obtained
by averaging over 10, 000 independent realizations of the perturbation events. Fig.
3.15 shows, as expected, that the theoretical results become closer and closer to the
simulation results as the mean degree increases and as the number of initial labels
increases.

Building on our perturbation model, we address now the following question: If
we have some degrees of freedom in the selection of the vertices to which we assign
the initial labels, is there a way to optimize the location of these labels? Previous
analysis is instrumental to address this question. We propose the following approach:
We start with an initial setM of 2 labeled nodes, one per class. Then, we follow
a greedy iterative strategy that adds, at each iteration, a new node as the node
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that yields the minimum error variance, according to (3.51). Then, we repeat this
procedure iteratively until the cardinality of M is equal to M . The aim of this
greedy algorithm is to select the optimal labels positions that are robust to graph
uncertainties. As numerical example to test the effectiveness of our greedy strategy,
we generated a graph of N = 50 nodes and composed by two RGGs connected with
four inter-cluster edges placed at random. Each RGG is associated with a different
label (e.g., 1 or −1). We perturbed the graph assigning to each edge a binary r.v.,
equal to one, with probability Pm (failure probability), and zero otherwise. For sake
of simplicity, we set Pm := P,∀m. Then, we find the labels over the unlabeled nodes
with (3.47). The first two label are assigned, in each cluster, to the node with the
highest degree. Then, the successive label positions are chosen according to two
different strategies: a) our perturbation-aware greedy strategy proposed before; b) a
random strategy. In Fig. 3.16, we show the sum of the error variances computed
numerically as a function of the number of labeled nodes M for the two strategies.
The results have been obtained by averaging over 10, 000 independent realizations.
Note from Fig. 3.16 that our proposed strategy yields a significant reduction of the
overall variance with respect to the random approach, thus leading to a more robust
allocation of the labels. This analysis suggests that, whenever possible, it makes
perfect sense to optimize the location of the labels within each cluster.

3.7.2 Analysis of clustering over uncertain graph

In this section, we assess the effect of random topological perturbations on
clustering, exploiting our small perturbation framework. As recalled in Sec. 2.3,
spectral clustering methods exploit the structure of the Laplacian eigenvectors to
detect clusters [18]. In particular, when the graph presents C clusters, clustering is
based on the eigenvectors associated with C smallest eigenvalues of the Laplacian
matrix [18]. However, if L is uncertain, this uncertainty reflects into its eigenvectors’
structure and then on clustering. Modeling the presence of an edge as a binary r.v.,
we can compute the probability whether a node belongs to a cluster or not [18].
For the sake of simplicity and with the aim of finding, albeit approximate, closed
form expressions, we consider the case of C = 2, i.e. connected graph composed
of two clusters. In such a case, we only need to consider the perturbation δu2 of
the eigenvector associated with the second smallest eigenvalue of L. Then, we want
to exploit our perturbation analysis to derive, although in approximate form, the
probability of erroneous clustering due to random perturbation of a few edges. When
the graph is composed of only two clusters, a possible way to cluster the graph
entails looking at the sign of the eigenvector u2 associated with the second smallest
eigenvalue of L (cf. Sec. 2.3). The sign of the i-th entry of u2 is used to decide
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Figure 3.15. Trace of the covariance matrix as a function of cluster mean degree, for
P = 0.01, and for different number of labeled nodes.
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the assignment of the i-th node to either cluster 1 or 2. In particular, let vi be a
given node, vi is assigned to cluster 1 if u2(vi) ≤ 0, or to cluster 2, if u2(vi) ≥ 0. A
vertex vi is erroneously labeled when the perturbation ∆u2,m(vi) induced by the
random drop (or appearance) of edge m causes a perturbation on u2(vi) that makes
its sign to flip. This is possible when ∆u2,m(vi) and u2(vi) have opposite sign and
|∆u2,m(vi)| > |u2(vi)|. In formulas, a mislabeling occurs if

∆u2,m(vi)
u2(vi)

≤ −1. (3.52)

If the perturbation may occur over multiple links (either dropping or appearing),
within the first order of approximation, the overall perturbation is approximately
equal to the sum of the perturbations caused by each single link. From the approx-
imations developed in Sec. 3.2, we can say that the overall perturbation on the
eigenvectors is approximately equal to the sum of the eigevectors perturbation for
each m. This allows us to write the following probability for the occurrence of a
labelling error

Pr

{ ∑
m∈Ep

Zmδu2,m(vi)
u2(vi)

+
∑
m∈Ēp

Zmδu2,m(vi)
u2(vi)

≤ −1
}
. (3.53)

where we used the approximated expression δu2,m, instead of ∆u2,m. However, it
is not simple to derive this probability. Hence, we can use the Hoeffding’s bound
derived in Sec. 3.2.3, see e.g., (3.17), to derive an upper bound of the above
probability. As a numerical result, we consider the graph of the IEEE 118 Bus Test
Case, which represents a portion of the Electric Power System in the Midwestern
United States [111]. The nodes of the graph are 118 and represent the buses, while
the links are the transmission lines connecting the buses. We assume that the graph
topology is subject to failures of the 5% of the links, i.e. |Ep| = 9 over 179 links
and |Ēp| = 0, and that such perturbation can occur in random locations. The color
of each node in Fig. 3.17 encodes a value associated with the error probability:
the darker is the node, the higher is the probability that the node is incorrectly
associated with the wrong cluster. In particular, the top side figure represents
the Hoeffding’s bound and, as a benchmark, the bottom side figure represents the
error probability as measured by numerical simulations. Note that, for the given
perturbation probabilities, most of the nodes in two clusters are correctly identified
(see, e.g. the white nodes). There are however a few nodes, the few darker ones,
that are much more sensitive to edge perturbations. Despite all the approximations
and bounding, the comparison of the two figures shows that our theoretical analysis
is able to predict quite well which are the nodes with the highest clustering error
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Figure 3.17. Clustering error sensibility, for C=2, computed with the bound (top)
and numerically (bottom).

probability.

3.8 Conclusion

In summary, in this chapter, we have examined the impact of uncertainties on the
graph topology. Most specifically, building on approximate closed form expressions
of the graph Laplacian eigen-decomposition perturbation, we have proposed new
graph signal recovery strategies incorporating our imperfect knowledge of the graph.
We have also suggested methods to detect possible graph topology alterations with
respect to a nominal graph, based on the observation of a graph signal assumed to be
a random signal with assigned pdf. Moreover, we have assessed the impact that an
imperfect knowledge of the graph may have on semi-supervised or on unsupervised
learning. Despite the approximation of derived closed form expression for the
eigenvalue/eigenvector perturbation due to alteration (suppression/appearance) of
some edges, such expressions have been useful to devise new learning robust to the
perturbation. In fact, these strategies have been shown to outperform conventional
approaches that are unaware of possible topology mismatching between the assumed
nominal graph and the real graph.

Several extensions are possible. First of all, we have considered binary graphs,
however, our setting could be extended for weighted graphs, where small pertur-
bations could be a small variation of edge weights. In our analysis, we focused,
for simplicity, on the case where the Laplacian eigenvalues are all distinct, but it
would be useful to extend the analysis to graphs whose eigenvalues have multiplicity
greater than one, because these multiplicities sometimes reveal interesting symmetry
properties. Furthermore, in our analysis of the impact of perturbations on cluster
analysis, we considered, for simplicity, only the two-cluster case, but it would be
useful to extend that approach to the multi-cluster case. Furthermore, the graph
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perturbation model can also be useful to analyze the case where we observe a
dynamic signal over a time-varying graph, as we starting exploring in [112].

3.9 Appendix

In this Section, we prove first Theorem 1, then we provide a small perturbation
analysis to derive closed form expressions for the eigenvalues/eigenvector pairs of
the perturbed Laplacian.
Proof. We now prove Theorem 1. From (3.4), the eigenvalues of L̃ must be the
solution of the following equation

|ΛN−1 − λ̃I + σmzmz
>
m| = 0. (3.54)

If ui(vm1) = ui(vm2), then zm(i) = 0. As a consequence, if we set λ̃ = λi in (3.54),
the matrix in the argument of the above determinant has the i-th column and row
equal to zero. Hence, the determinant is null, which proves that λi is an eigenvalue
of ΛN−1 + σmzmz

>
m and then of L̃. This proves that, if ui(vm1) = ui(vm2), the i-th

eigenvalue is not perturbed. Let us now prove that the corresponding eigenvector
is not perturbed as well. Using the fact that λ̃i = λi, the perturbed eigenvector ũi
must be a solution of

UN−1
(
ΛN−1 + σm zmz

>
m

)
U>N−1ũi = λiũi. (3.55)

If we set ũi = ui in (3.55), we get

UN−1ΛN−1ei + σmUN−1zmz
>
mei = λiui, (3.56)

with i = 2, . . . , N , where ei is defined as a vector of size N − 1, with all zeros,
except the (i− 1)-th entry, which is equal to 1. Now, if ui(vm1) = ui(vm2), zm(i) is
zero, which implies z>mei = 0. Furthermore, UN−1ΛN−1 ei = λiui. Hence, equation
(3.55) is satisfied with ũi = ui. This concludes the proof.
Theorem 1 handles all the cases where some entries of vector zm are equal to zero.
Let us denote by S := {i : zm(i) 6= 0} the set of indices for which zm(i) 6= 0 and by
S̄ the complement set. From Theorem 1, we know that λ̃i = λi, for i ∈ S̄. Let us
now derive the remaining N − 1− |S| eigenvalues, which must be the zeros of the
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following characteristic polynomial, for λ̃ 6= λi (see also [100], [101])

|ΛN−1 − λ̃I + σmzmz
>
m|

= |ΛN−1 − λ̃I| · |I + σm(ΛN−1 − λ̃I)−1 zmz
>
m|

= |ΛN−1 − λ̃I|
(
1 + σmz

>
m(ΛN−1 − λ̃I)−1 zm

)
=

N∏
i=2

(λi − λ̃) ·

1 + σm
∑
`∈S

z2
m(`)
λ` − λ̃



=
∏
i∈S̄

(λi − λ̃) ·

∏
i∈S

(λi − λ̃) + σm
∑
`∈S

z2
m(`)

∏
j∈S
j 6=`

(λj − λ̃)

 . (3.57)

Note that the matrix inversion used above is possible, because we are considering
the case λ̃ 6= λi. In particular, since λ̃ 6= λi, i ∈ S, the left-hand determinant in the
last line of (3.57) is different from zero and then the eigenvalues λ̃i, with i ∈ S, must
be the roots of the following equation

∏
i∈S

(λi − λ̃) + σm
∑
`∈S

z2
m(`)

∏
j∈S
j 6=`

(λj − λ̃) = 0. (3.58)

Finding the roots of this polynomial entails the use of a numerical algorithm.
However, under the assumption that the perturbation is very small, we can derive
approximate expressions for the perturbed eigenvalues. We know from (3.5) that
the eigenvalue perturbations are bounded by the eigenvalue gaps. Now, we further
assume that the perturbations are much smaller than the gaps, i.e. ∆λi,m � g+

i , in
case of edge addition, or |∆λi,m| � g−i , in case of edge deletion. We will verify later
on that this assumption is verified when z2

m(i) = [ui(vm1)− ui(vm2)]2 � g+
i , in case

of edge addition and z2
m(i) = [ui(vm1) − ui(vm2)]2 � g−i , in case of edge deletion.

Under this assumption, to be verified later on, we can analyze the polynomial in
(3.58) in the neighborhood of a generic eigenvalue λ` of the nominal graph, for ` ∈ S,
setting λ̃ := λ`+ε` in (3.58). Taking the first order approximation of the polynomial
in (3.58), with respect to the variables ε` and zm(`), ` ∈ S, we get

− ε`
∏
i∈S
i 6=`

(λi − λ̃) + σmz
2
m(`)

∏
i∈S
i 6=`

(λi − λ̃) = 0, (3.59)

which yields the simple solution

ε` = σmz
2
m(`) = σm[u`(vm1)− u`(vm2)]2. (3.60)
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Indeed, we can verify that z2
m(`) is of the same order of magnitude as the modulus

of ε`, so that, if z2
m(`) is much smaller than the eigenvalue gap, also the eigenvalue

perturbation is much smaller than the gap.

Let us consider now the perturbation of the eigenvectors. Starting again from
(3.4), we wish to find ũi as a solution of

(UN−1ΛN−1U
>
N−1 + σmama

>
m) ũi = λ̃iũi (3.61)

Since the eigenvector ũi must be orthogonal to the vector 1 of all ones associated
with the null eigenvalue of L, ũi must be in the span of the columns of UN−1, i.e.
there must exist a nontrivial vector b, such that ũi = UN−1b. At the same time,
if we define the vector vi = U>N−1ũi, we get vi = b. Now, multiplying both sides
of (3.61) by U>N−1 from the left side, and using the vector vi := U>N−1ũi, we can
rewrite (3.61) as

(ΛN−1 − λ̃iI + σmzmz
>
m)vi = 0. (3.62)

Let us consider first the case in which there are some elements zm(i) = 0, for i ∈ S̄,
in which case we know from Theorem 1 that the corresponding eigenvector ui is not
perturbed. We can then focus on the cases where zm(i) 6= 0, where λ̃i 6= λi. The
solution of equation (3.62), valid when λ̃i 6= λi, is known from [101] to be:

vi = −(ΛN−1 − λ̃iI)−1 zm. (3.63)

Under the conditions specified before, the invertibility of the matrix is guaranteed.
Given vi, the perturbed eigenevector can then be found as ũi = wi/‖wi‖, i =
2, . . . , N, where

wi = UN−1vi = −UN−1(ΛN−1 − λ̃iI)−1 zm, (3.64)

or, more explicitly,

wi = −
N∑
j=2

1
λj − λ̃i

[uj(vm1)− uj(vm2)]uj . (3.65)

Let us consider now again a small perturbation analysis, valid when the eigen-
value perturbation is much smaller than the eigenvalue gap, i.e. ε` = σmz

2
m(`) =

σm[u`(vm1)− u`(vm2)]2 � g+
` , in case of edge addition (or g−` , in case of deletion).
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In such a case, the first order approximation becomes

wi = [ui(vm1)− ui(vm2)]
εi

ui +
N∑
j=2
j 6=i

[uj(vm1)− uj(vm2)]
λi − λj

uj . (3.66)

Denoting by α the normalization coefficient needed to enforce the unit norm, and
using (3.60), we can write

ũi=
1
α

ui+ σm

N∑
j=2
j 6=i

[uj(vm1)−uj(vm2)][ui(vm1)−ui(vm2)]
λi − λj

uj

 . (3.67)
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Chapter 4

Perturbation Centrality
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Abstract

Graph-based learning tools are efficient methods to extract information from large
amount of data. In fact, studying how agents of a network interact between one
another is instrumental to understand, control and compare complex systems. In
particular, if we consider physical or social networks where the links are directly
observable, we can identify the role of the nodes and the links and rank them
according to the impact of their possible failure. In this chapter, we will address the
problem of ranking the edges of a network, identifying the inter cluster links whose
removal would disconnect or alter critically the connectivity and/or the clustering
property of the network.

4.1 Introduction

Network science has the role of understanding and explaining phenomena hap-
pening in complex systems. Such systems, are made of arbitrary entities, e.g. in a
social system they can be persons or organizations, and these entities are linked by
one or more types of relations. Essential network analysis tools are centrality indices
defined over vertices [15] or edges [52] of the graph. Some of the well-known indices
for computing centrality are closeness [12], stress [113] and betweenness [15]. They
are designed to rank vertices or edges of the network according to their position in
the network. Many centrality indices are based on shortest paths linking pairs of
vertices, measuring, e.g., the average distance from other vertices, or the number of
shortest paths traversing the edges.

Betweenness and edge betweenness centrality assume an important role among
the centrality measures when the goal of the analysis is to identify which vertices
and/or edges are more traversed by information flows between any pair of vertices
of the network. Applications of betweenness include lethality in biological networks
[114,115], identifying key actors in terrorist networks [116,117], and supply chain
management processes [118]. Betweenness is also used as the primary routine in
popular algorithms for clustering and community identification [119] in real-world
networks. For instance, the Girvan-Newman [57] algorithm iteratively partitions
a network by identifying edges with high betweenness scores, removing them and
recomputing centrality scores. Betweenness centrality measure is based on the
enumeration of shortest paths. Thus, such a measure is linked with the network
conductance, and by extension with the graph connectivity. Network conductance
measures how well knit the graph is, and a well known result is that the conductance
parameter is bounded by the algebraic connectivity (cf. Ch.2). In this chapter, we
will propose an alternative centrality measure that, like the betweenness, it may be
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used to identify links connecting the communities. This new centrality measure is
based on the connectivity and clustering properties of the network. In particular,
such a new centrality measure, denominated perturbation centrality, is computed
evaluating the impact of each edge removal on the connectivity and clustering
characteristic of the graph. Small perturbation theory plays a role in computing the
impact of the edge removal, making this computation fast and simple.

The rest of the chapter is organized as follows:

• Section 4.2. In this section, we introduce the perturbation centrality measure.

• Section 4.3. In this section, we present a comparison between perturbation
centrality and edge betweenness.

• Section 4.4. In this section, we apply the perturbation centrality measure at
some real world networks.

• Section 4.5. Finally, in this section, we outline concluding remarks.

4.2 Topology perturbation centrality

Small perturbation analysis of network topology, developed in Ch. 3, can be
an effective way to assess the impact of an edge perturbation on the connectivity
properties of the overall graph. In this section, we introduce an edge centrality
parameter that measures, for each edge, how much its removal affects the connec-
tivity of the whole graph. The connectivity of a graph can be measured by the
conductance parameter Φ [120]. However, computing Φ is known to be an NP-hard
problem. Nevertheless, a well-known result of algebraic graph theory states that the
conductance is lower bounded by the second smallest eigenvalue of its Laplacian
matrix λ2, also known as algebraic connectivity, see [2] and Section 2.1. In fact, it is
also known that if we add a new edge in a graph, λ2 can only increase or remain
constant [18]. Hence, if we want to assess the change of connectivity (of connected
graphs) resulting from the deletion of an edge, we can use the perturbation of the
algebraic connectivity. When the m-th edge fails, the approximated expression of
second smallest eigenvalue perturbation allows us to write (cf. Sec. ??):

|δλ2,m| = [u2(v1,m)− u2(v2,m)]2 (4.1)

where u2 is the eigenvector of unit length associated with the second smallest
eigenvalue, and v1,m, v2,m are the nodes incident to the m-th edge. This expression
is particularly relevant if the connected graph is composed of two clusters, suggesting
that the perturbation is higher for edges connecting vertices belonging to different
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clusters. Generalizing these arguments to graphs composed of C > 2 clusters,
we should account for the first C eigenvalues: When the graphs are modular (i.e.
composed of clusters), it is well known from spectral clustering theory [18] that the
smallest eigenvalues of the Laplacian carry information about the number of clusters
in a graph. Denoting with δλi,m the approximated expression of the i-th eigenvalue
perturbation due to the deletion of edge m, we define the topology perturbation
centrality (TPC) of edge m as follows

p(m) :=
C∑
i=2
|δλi,m|. (4.2)

The summation starts from i = 2 simply because, from (3.6), the perturbation
induced by the deletion of every edge on the smallest eigenvalue is null, since the
corresponding eigenvector is constant. Parameter p(m) assigns to each edge a number
that quantifies how much the deletion of that particular edge affects the set of the
C smallest eigenvalues of the Laplacian matrix. An example of application of this
parameter is reported in Fig. 4.1a, where we encode on each edge the value assumed
by the TPC (the darker the edge, the largest is the TPC value). We can see that, as
expected, the darkest colors correspond to the edges whose removal would cause the
split of the network.

Note that, as the betweenness centrality, our new centrality measure can be also
used as the primary routine in clustering and community identification algorithms
in clustered real-world networks, similarly to the Girvan-Newman algorithm [57].

4.3 Comparison with edge betweenness

In many cases, the TPC value turns out to behave similarly to the edge betweeness
centrality (EBC).

To test this similarity, in Fig. 4.1, we report an example of modular graph,
obtained by connecting four clusters, generated as random geometric graphs, through
a few edges placed at random. The perturbation centrality and edge betweenness
are encoded by the color intensity of each edge: the darkest colors correspond to the
edges with the largest centrality values.
This comparison is performed in order to investigate when the two measures, even
if different in their definitions, give a common interpretation of some edges. The
above considerations and Fig. 4.1 suggest that, for modular graphs, our perturbation
centrality is closely related to the edge betweenness of the network [2]. Denoting
with B(m) the edge betweenness, we recall that it measures the extent of a given
edge to be part of the shortest path between any pair of vertices of the network [2].
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(a)

(b)

Figure 4.1. Example of (a) Perturbation centrality and (b) edge betweenness of a
modular graph with 4 clusters.
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This parameter captures then the centrality of edges, which are central in the sense
that most of the paths connecting other vertices pass through them. Conversely,
our perturbation centrality measures how much the deletion of an edge tends to
make the network disconnected, or close to become disconnected. To investigate
the similarity between the two measures, we estimate the correlation coefficient ρ
between them, defined as:

ρ =
∑Mr
m=1 B(m)p(m)√∑Mr

m=1 B2(m)
∑Mr
m=1 p2(m)

(4.3)

where Mr ≤M is the number of relevant links. The choice of Mr depends on the
topology and it affects the computational complexity of finding ρ. It is related to
the number of critical links (bridge edges) and it can be estimated as pbN1N2, where
N1 and N2 are the number of nodes of cluster 1 and 2, respectively, and the bridge
probability pb, which measures the probability that vertices belonging to different
clusters (RGG) are linked to each other.
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Figure 4.2. Average correlation coefficient ρ as a function of bridge probabilities and
coverage radius r0.

We estimated the correlation coefficient over a class of random graphs having
different modularities. More specifically, we generated a graph composed of two
separated random geometric graphs (RGG), linked to each other through a random
number of edges. Two parameters control the modularity of this family of random
graphs: r0 is the coverage radius of each RGG and it controls the intra-cluster
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connectivity; and the bridge probability pb, that measures the inter-cluster connec-
tivity. In Fig. 4.2, we report the correlation coefficient between B(m) and p(m), for
different pairs (r0, pb). We can observe that for small values of pb and high values
of r0, that is when the graph is highly modular, ρ(r0, pb) is indeed very close to
one, meaning that for highly modular graphs the two measures of centrality capture
similar properties. Otherwise, the two measures tend to represent different aspects.

4.4 Real data tests

In this section, we will analyze some real world clustered networks. We will show
how also in real networks the proposed centrality plays a key role in identifying the
edges between clusters.

4.4.1 Dolphins network

Consider the undirected social network of frequent associations between 62
bottlenose dolphins in a community living off Doubtful Sound, New Zealand [121].
The network edges are 159, and they represent associations between dolphin pairs
observed to co-occur more often than expected occasionally.

For this network we apply our measure of perturbation centrality. The color of
the nodes indicates two different clusters observed on the network in [122] and [123].
Fig. 4.3 shows the dolphin social network for K = 2, where the color of each edge
encodes the value of the perturbation centrality normalized with the maximum value
of centrality of all nodes. We can see that the perturbation centrality ranks the
edges identifying the inter-clusters links.

4.4.2 Books on US politics network

We consider now a network representing a set of books about US politics [124].
The 105 graph’s nodes are books sold by Amazon.com, categorized by Mark Newman
as liberal, neutral, or conservative. The edges represent frequent co-purchasing of
books by the same buyers, that is, if two books are bought by the same customer
then an edge exists. Thus, we perform our measure for K = 2 and K = 3 as shown in
Fig. 4.4. From this figures, we can see how two clusters are evident, i.e. conservatives
and liberals. In fact, the perturbation centrality ranks the edges identifying the links
between this two clusters. Since the third cluster is not evident the case of K = 3 is
less informative.
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Figure 4.3. Perturbation centrality for dolphin social network for K=2.

4.4.3 American football network

This American football network has been obtain from the schedule of games
played between between Division IA colleges during regular season Fall 2000 [57].
The graph’s nodes are the 115 teams belonging to the 12 conferences, while an
edge exists if the two teams (nodes) played a game between each other. Fig. 4.5
represents the value of normalized perturbation centrality for each link, encoded
by the edges color, for different K. In the graphs of Fig. 4.5 each node has a color
depending on the conference to which it belongs. The colors define the clusters, even
if some clusters are overlapped. From the figures, we can see how the case of K = 12
is the one that identifies the edges inter-clusters signed with dark gray colors while
the intra-cluster edges are white colored meaning that they have a perturbation
centrality value around zero. For the other value of K, the perturbation centrality
values are incomplete since we are considering less clusters than the actual number
and we are not able to identify all the inter-clusters links.

4.5 Conclusions

In this chapter, we introduced a new centrality measure, named Topology
Perturbation Centrality (TPC), able to identify those edges whose removal is going to
affect the graph connectivity. The computation of TPC is based on the perturbation
of the Laplacian eigenvalues, whose approximation is easily found using the small
perturbation theory. For modular graphs, such a measure is able to identify the
edges whose failure cause the largest eiganvalues perturbations, and thus, the ones
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(a) K=2 (b) K=3

Figure 4.4. Perturbation centrality for books political orientation network, for
different values of K. In green the neutral, in red the conservative, and in blue
the liberal.

that alter more the clustering properties of the graph when they fail [18]. Numerical
results proved the ability of this measure to find inter-clusters edges, and they showed
that, for a certain class of modular graphs, the perturbation centrality provides
similar results to the edge betweenness centrality. Further investigations include its
application in primary routine of community identification algorithms or in network
science.
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(a) K=2. (b) K=5.

(c) K=8. (d) K=12.

Figure 4.5. Perturbation centrality for the American football network.
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Chapter 5

Graph-based learning under
perturbations via TLS
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Abstract

In this chapter, we solve two major graph-based learning tasks, such as graph
topology identification and inference of graph signals over graphs. Among the
possible models to explain data interdependences, we rely on structural equation
models (SEMs) that are know to accommodate several applications involving topology
identification. However, obtaining conventional SEMs requires measurements across
nodes. On the other hand, typical signal inference methods blindly trust a given
topology. In practice however, signal or topology perturbations may occur in both
tasks, due to model mismatch, outliers, outages or adversarial behavior. To cope
with perturbations, we introduce a regularized total least-squares (TLS) approach
and iterative algorithms with convergence guarantees. Generalizations are also
considered relying on structured and/or weighted TLS when prior information on
the perturbation is available. Finally, simulated and real data tests corroborate the
effectiveness of the novel TLS-based approaches.

5.1 Introduction

Graphs are pervasive in many applications to analyze complex systems. In
financial, biological or social sciences, data-driven graphs are used to model undi-
rected as well as directed data dependencies. In physical networks, graphs are
adopted to represent physical or engineered links between vertices of, for instance,
vehicular, power or communication networks; in particular, they are useful in tasks
such as devising resource allocation strategies or recovering missing data. However,
perturbations may afflict links or vertices in both data-driven and physical networks,
compromising the performance of graph-based learning tasks. In brain networks,
for instance, the topology that is inferred may be imperfect because of e.g., noise in
the data or model mismatch; while in a communication network, graph topology
perturbations may arise due to link or node outages.

5.1.1 Related works

The vulnerability of networked systems to failures, anomalies, or model mismatch
has been investigated in [43, 47, 78, 90, 112, 125, 126]. In the context of statistical
analysis of network data, error propagation in network characteristics (e.g. count of
subgraphs) has been studied in [90] and [125]. In order to account for topological
perturbation, probabilistic or uncertain graphs have been considered for clustering
[78], graph filtering [43], and consensus [127]. In other works, we developed tools
based on small perturbation analysis of the Laplacian matrix [94], as described in
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Ch. 3. In particular, such analysis is used to handle graph perturbations for robust
resource allocation [47], graph signal inference [126], and tracking of time-varying
graph signals [112].

In this chapter, we analyze signal and graph perturbations for the tasks of
topology identification (ID) and graph signal recovery based on total least-squares.
TLS is the generalization of least-squares (LS) tailored to account for error mismatch
(a.k.a. noise) present in both the input and the output matrices [17]. TLS is
used in a plethora of applications including system identification [128], information
retrieval [129], forecasting of financial data and reconstruction of medical images [130].
Building upon TLS, weighted TLS [131], structured TLS [132], and sparse TLS [133]
have also been used to incorporate different prior information.

In this chapter, we rely on SEM [68] as model to explain the relationships
between data. Such a model has been widely adopted because differently from other
approaches, it captures causal relationships among nodes, as recalled in Ch. 2, where
we summarized some of the most important topology ID methods.

In particular, SEMs have been employed in diverse fields for network topology
identification [25,70,134–137], most of which require availability of measurements
across nodes. Topology identification with partially observed nodal processes has
also been studied recently [42,138]. Leveraging piecewise stationarity, SEMs-based
topology inference was pursued in [138] when only (partial) statistics of nodal
measurements are given, while a joint inference algorithm was developed in [42]
to identify the topology as well as interpolating graph signals based on partial
observations of the nodal signals. However, neither of them accounts for signal
perturbations.

There are also approaches for topology identification that rely on Graphical
LASSO with its generalizations [27,139], and graphical model selection for stationary
[140] and non-stationary [141,142] processes; see also [25, 143]. Different from these
approaches, the methods here do not rely on any probabilistic assumptions for
the network model, further account for perturbations in the topology or the nodal
observations.

Most existing works on graph signals reconstruction assume the graph topology
known and they rely on the concept of signal smoothness on the graph, that is,
neighboring nodes have similar signal values. In particular, parametric [37, 144,145]
and non-parametric [36,146,147], approaches have been devised to deal with this
task. However, differently from our work, they assumed that the network topology
is perfectly known or that the nodal signal lies in a graph-related subspace.



5.2 Preliminaries 83

5.1.2 Contributions

In the present chapter, we present solutions for the two following graph learning
tasks:
T1. Topology identification based on perturbed nodal signal observations; and,
T2. graph signal inference given partial nodal observations and perturbed topologies.

An example of T1 is the inference of a gene regulatory network, that might be
influenced by eventual errors on the available data, e.g., during the data collection
process. Moreover, task T2 is for example the case of signal recovery over a wireless
network with faiding links.

The specific contributions of this work are as follows. Task T1 is solved by
developing two algorithms with complementary strengths: the first one yields
an ε-optimal solution, while the second achieves a sub-optimal yet more efficient
solution. In particular, the problem is regarded in its fractional form, and solved
with a bisection-based algorithm that achieves near-optimum solution. The second
solver reaches more efficiently a local minimum by employing an alternating descent
approach. The topology ID task is also investigated when having prior information
on the structure of error matrix. Then, the signal recovery task is solved by an
alternating descent method. Task T2 studies also the case of prior information on
topology perturbations and noise variance. Finally, the identifiability of the proposed
model is analyzed.

The rest of the chapter is organized as follows:

• Section 5.2. In this section, we introduce the context and the TLS formulation
with its weighted and structured variants.

• Section 5.3. In this section, we investigate the topology ID problem T1.

• Section 5.4. In this section, we address the graph signal inference task T2.

• Section 5.5. In this section, synthetic and real data tests are carried out to
illustrate the merits of the proposed TLS-based approaches.

• Section 5.6. Finally, in this section, concluding remarks and future directions
are outlined.

5.2 Preliminaries

In the present section, we review linear SEMs and TLS, along with structured
and weighted TLS variants.
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5.2.1 Structural Equation Models

Consider a directed network of N nodes, whose topology is captured by the
generally asymmetric adjacency matrix A ∈ RN×N with entries aij := [A]ij , and
aij 6= 0 if a directed edge from node j to node i is present. Assume that the network
represents a complex system, where yit is the measurement at node i at instant t. The
output measurement yit in SEMs depends on its single-hop neighbor measurements,
and an exogenous input signal xit, that is

yit =
∑
j 6=i

aijyjt + biixit, t = 1, . . . , T (5.1)

where bii > 0 weighs the exogenous input. Concatenating nodal measurements
in vectors yt:=[y1t, . . . , yNt]>, and xt:=[x1t, . . . , xNt]> per slot t, the matrix-vector
version of (5.1) can be compactly written as yt = Ayt + Bxt, t = 1, . . . , T , where
aii = 0 and B := diag(b11, . . . , bNN ).

Collecting inputs and outputs1 across T slots, N × T matrices X := [x1, . . . ,xT ]
and Y := [y1, . . . ,yT ] can be formed, to obtain the linear matrix model

Y = AY + BX . (5.2)

Prior works on SEMs treat perturbations as additive observation noise, Y = AY +
BX + V, where V ∈ RN×T is the error matrix. Generally, these works aim to
estimate A (and possibly B), when measurements Y and X are given, using LS
or regularized LS [69, 134]. On the other hand, if matrices A, BX (e.g. obtained
by historical data) and a subset of entries of Y are given, it is also possible to
recover the unobserved nodal signals using LS-based methods [42]. However, existing
approaches do not consider possible errors in A or Y, and we are motivated to adopt
TLS methods to cope with graph signal and topology perturbations that can be
possibly present in SEMs. In particular, if Y is corrupted by noise, such that the
model is Z−E = A(Z−E)+BX, with Z = Y+E, we infer A by using a TLS-based
approach that takes into account errors both in the output and the input. On the
other hand, given a perturbed A and partial noisy nodal observations, we recover
the graph signal by using a TLS-based approach, minimizing both errors in A and
in the observations. Before introducing the formulation of the two aforementioned
tasks, we review the classical TLS and its weighed and structured variants, in the
following subsection.

1Causes-effect per node do not have to happen instantaneously, since causes {yjt, xit} can occur
at the beginning and effect yit at the end of slot t.
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5.2.2 Weighted and structured TLS

Total least-squares assumes the perturbed linear system of equations F =
(H + P )Θ − Σ, where F ∈ RM×T represents the output matrix with M < T ,
H ∈ RM×N the input (or regression) matrix, Θ ∈ RN×T an unknown matrix of
parameters, while Σ ∈ RM×T and P ∈ RM×N denote the error matrices. See Fig.
5.1 for graphical representation of the perturbed linear system. Different from

+       Θ +H

P Σ

F

Figure 5.1. Graphical representation of total least-squares model.

classical LS where P = 0, TLS treats symmetrically the input and the output in
the sense that both H and F may have errors due to model mismatch, noise, or
outliers. Thus, TLS solves the following problem

min
Θ,P ,Σ

‖[P ,Σ]‖2F (5.3a)

s. to F = (H + P )Θ−Σ. (5.3b)

In the structured version of TLS, one can exploit the structure of input and output
matrices, as well as noise statistics, to achieve improved estimation performance.
The structure of a matrix in the TLS context is defined as follows [130,133].
Definition 1. Given a parameter vector ω ∈ Rnω , the M × (N + T ) data matrix
[H,F ](ω) has a structure SSS (ω) characterized by ω, if and only if there is a mapping
such that ω ∈ Rnω → [H,F ](ω) := SSS (ω) ∈ RM×(N+T ).

Note that Definition 1 reduces trivially to the unstructured case when ω :=
vec([H,F ]) with dimension M(N + T ). However, when ω provides a parsimonious
representation of the data matrix with nω � M(N + T ), we can take advantage
of the matrices’ structure. Such a structure can be present in many applications.
For example, system identification, deconvolution, and linear prediction may involve
Toeplitz and Hankel matrices, other examples are Vandermonde and circulant
matrices that show up in e.g., spatio-temporal harmonic retrieval problems [130]. By
introducing the parameter vector ω and the noise parameter vector ν ∈ Rnω , such
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that SSS (ω + ν) := [H + P,F + Σ](ω + ν), the Frobenius norm ‖[P ,Σ]‖2F becomes
‖ν‖22. The weighted TLS is obtained if prior knowledge about the ν is incorporated
by weighting the norm ‖ν‖22 through the nω×nω positive definite matrix W. Hence,
the structured and weighted TLS (SWTLS) cost is expressed as ν>Wν. Note that,
when W = I, the SWTLS boils down to a structured-only form. In our work, the
classical SWTLS approach has been revised to accomplish the signal recovery task.
In particular, Def. 1 is used to capture the nonzero patterns of A, when we know
a priori that the perturbations occur only on the existing links, and the weight
matrices are employed to incorporate possible a priori information on link failure
probabilities and observation error variances (see Sec. 5.4.1).

5.3 Topology ID with signal perturbations

Defects and outliers in the measuring process lead to perturbed nodal signals.
This perturbation may compromise the performance of the topology ID task. Let us
rewrite matrix Y in (5.2) as Z−E, where E is a perturbation matrix. Considering
this perturbation, given Z and BX, the aim of this section is to find A from the
“measurement-perturbed” SEM

Z−E = A(Z−E) + BX. (5.4)

The presence of the perturbation that appears in both sides motivates a formu-
lation inspired by TLS method recalled in (5.3), noting that the peculiarity of our
model is that the perturbation of the input and output matrix is exactly the same,
i.e. E ∈ RN×T . In most real-world networks, such as social, transportation, and
biological networks, the nodes exhibit a few interconnections and the corresponding
adjacency matrix is sparse. Thus, accounting for the latter through a sparsity-
promoting regularization term, we formulate a regularized TLS-based approach for
“measurement-perturbed” SEM (5.4) (TLS-SEM) given by

{Â, Ê} = arg min
A,E

‖E‖2F + λ ‖A‖1 (5.5a)

s.to Z = A(Z−E) + BX + E (5.5b)

aii = 0, i = 1, . . . , N (5.5c)

where λ is a non-negative regularization parameter, and constraint (5.5c) enforces
the absence of self-loops in A. However, the optimization problem in (5.5) is
nonconvex, and will be solved in the following subsections developing two solvers
with complementary merits.
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5.3.1 Bisection-based algorithm

In this subsection, we first recast problem (5.5) into a fractional form that can
be solved using a bisection-based (BB) iteration, which is convergent to an ε-optimal
solution in a finite number of iterations, even though (5.5) is nonconvex [148]. The
following lemma shows how to reformulate (5.5) in a fractional form.

Lemma 3. With Φ := Z−BX, and ϕ>i denoting its i-th row, the TLS problem in
(5.5) is equivalent to the fractional problem

Â = arg min
{a−i}Ni=1

N∑
i=1

[∥∥∥ϕi − (Z−i)>a−i
∥∥∥2

2
1 +N ‖a−i‖22

+ λ ‖a−i‖1
]

(5.6)

where a>−i is the i-th row of A without the i-th entry, and Z−i the (N − 1) × T
submatrix of Z after removing its i-th row.

Proof. Clearly, (5.5) can be rewritten as

arg min
{ai,εi}Ni=1

N∑
i=1

( 1
N

∥∥∥[E>,√Nεi]∥∥∥2

F
+ λ ‖ai‖1

)
(5.7a)

s. to zi = (Z> −E>)ai + biixi + εi , ∀i (5.7b)

aii = 0, ∀i (5.7c)

where a>i , z>i , x>i , ε>i are the i-th rows of A, Z, X, E, respectively, and bii is the
i-th diagonal entry of B. Thus, the constraint (5.7b) becomes

ϕi = (Z> −E>)ai + εi . (5.8)

Next, with vi := vec([E>,
√
Nεi]), we have

∥∥∥[E>,√Nεi]∥∥∥2

F
= ‖vi‖22; and upon

defining G(ai) := ([−a>i , 1√
N

]⊗ IT ), constraint (5.7b) is re-expressed as

ϕi − Z>ai = G(ai)vi,∀i. (5.9)

Note that, with A fixed, (5.7) becomes minvi ‖vi‖
2
2 subject to (5.9), which admits a

closed-form solution

vi = G>(ai)[G(ai)G>(ai)]−1(ϕi − Z>ai)

= (‖ai‖22 + 1
N

)−1G>(ai)(ϕi − Z>ai) (5.10)

where the second equality holds because G(ai)G>(ai) = ([−a>i , 1√
N

]⊗IT )([−a>i , 1√
N

]>⊗
IT ) = (‖ai‖22 + 1

N )IT . Substituting (5.10) into (5.7a), and incorporating the con-
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straint (5.7c), yields (5.6).
The fractional problem (5.6) is separable across rows of A as

â−i = arg min
a−i

∥∥∥ϕi − (Z−i)>a−i
∥∥∥2

2
1 +N ‖a−i‖22

+ λ ‖a−i‖1 (5.11)

which can be viewed as a Lagrangian function. Considering the solution â−i for a
given multiplier λ > 0 and letting µ := ‖â−i‖1, (5.11) is equivalent to

â−i = arg min
a−i∈χ(µ)

f(a−i)

f(a−i) :=

∥∥∥ϕi − (Z−i)>a−i
∥∥∥2

2
1 +N ‖a−i‖22

(5.12)

where χ(µ) := {a−i ∈ R(N−1) : ‖a−i‖1 ≤ µ}, and the relationship between µ and λ
is data dependent.

The fractional problem in (5.6) remains nonconvex, and will be solved using an
iterative solver. The solver consists of an outer loop based on bisection [149], and
an inner loop using a variant of a branch-and-bound method [150]. The outer loop
squeezes per i the minimum cost in (5.12) between a lower and an upper bounds.
These bounds are obtained through the inner iteration, where a surrogate quadratic
function is minimized. The surrogate quadratic function has non-fractional form,
whose optimization is more convenient than directly optimizing f(a−i). Specifically,
with q denoting a given upper bound of the cost in (5.12), we have

0 ≤ q∗ := min
a−i∈χ(µ)

f(a−i) ≤ q. (5.13)

Then, we define

g∗(q) := min
a−i∈χ(µ)

g(a−i, q) (5.14)

with g(a−i, q) := ‖ϕi − (Z−i)>a−i‖22 − q
(
1 +N ‖a−i‖22

)
. Due to (5.13) and (5.14),

it holds that

g∗(q) ≤ 0. (5.15)

Let q∗ belong to a known interval Ii := [li, ui] after the i-th outer iteration. Such an
interval decreases at every step of the outer loop, and li, ui are chosen depending on
the sign of g(a−i, q) (cf. Alg. 1). In particular, suppose that g∗(q) is obtained at the
middle point of Ii, namely qm = (ui + li)/2. The sign of g(qm) indicates whether
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(5.13) holds or not. If g(qm) > 0, then we deduce from (5.13) that q∗ > qm > li, and
q∗ ∈ Ii+1 := [qm, ui]. On the other hand, g(qm) < 0 implies q∗ ∈ Ii+1 := [li, qm]. In
both cases, the interval at iteration i+ 1 shrinks through bisection.

algorithm 1 Bisection-based (BB) scheme
Input :Φ, Z, ε, and δ
Output :A∗ε,i (ε-optimal solution)
for i = 1, . . . , N do

Set l0 = 0, u0 = ‖ϕi‖
2
2, iteration index j = 0, achievable cost fm = u0, and

(a∗ε,i)> = 0 be the i-th row of A∗ε,i
while uj − lj > ε do

Let q = uj+lj
2

Call Algorithm 2 and obtain a∗δ,i
fg = f(a∗δ,i) and j = j + 1
fm = fg and a∗ε,i = a∗δ,i if fg < fm

Upper and lower bounds updates:
uj = q, lj = lj−1 if g(a∗δ,i, q) ≤ 0
lj = q, uj = uj−1 if g(a∗δ,i, q)ł ≥ δ
lj = q − δ, uj = uj−1 if 0 < g(a∗δ,i, q) < δ

Set uj = min(uj , fg)
end

end

Note that, the Hessian of g(a−i, q) is H := 2(Z_i(Z_i)> − qNI), and since qN
is positive, H is not guaranteed to be positive or negative definite. Thus, g(a−i, q)
is an indefinite quadratic.

Hence, in the inner loop, a branch-and-bound algorithm is used to find a feasible
and δ-optimal solution a∗δ,i of (5.14), such that g∗(q) ≤ g(a∗δ,i, q) ≤ g∗(q) + δ, where
δ denotes a specified margin. The branch-and-bound scheme, summarized in Alg. 2,
searches for the upper and lower bounds of the function

gbox(a−i) = min
a−i∈χ(µ),aL≤a−i≤aU

g(a−i, q) (5.16)

where the constraint aL ≤ a−i ≤ aU represents a box that shrinks as iterations
progress. The upper bound U of gbox(a−i) can be obtained by a sub-optimal yet
efficient solver for (5.16), see e.g., [151, 152]. While the lower bound L can be
found by minimizing a function that under-approximates gbox(a−i), over the interval
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aL ≤ a ≤ aU . This convex approximate function is the following

gL(a−i, q) = g(a−i, q) + (a−i − aL)>D(a−i − aU ) (5.17)

where D is a diagonal positive semi-definite matrix chosen to ensure the convexity
of gL(a−i, q), as the solution of the following semi-definite program

min
D

(aU − aL)>D(aU − aL) (5.18a)

s. to H + 2D � 0 (5.18b)

where (5.18b) is used to assure (5.17) to remain convex. At each iteration of the
inner loop, the initial box constraint of (5.16) is split depending on how U − L
compares with the preselected δ. This splitting process leads to a smaller U and a
tighter L. The detailed inner loop is listed in Alg. 2.

In summary, Alg. 2 is called by Alg. 1 to find the δ-optimal solution and evaluate
the sign of g∗(q). However, since a∗δ,i is δ-optimal, meaning g∗(q) ≥ g(a∗δ,i, q) − δ,
if g(a∗δ,i, q) > δ, we set the lower bound li+1 to qm; otherwise, if 0 < g(a∗δ,i, q) < δ

we set li+1 = qm − δ. As far as convergence is concerned, the following can be
established.
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algorithm 2 Branch-and-Bound scheme
Input :ψi, Zi, q, and δ.
Output :a∗δ,i (δ-optimal solution)
Initialize U , L, aL, aU , and set K = {aL,aU , L}
while K 6= ∅ do

Solve (5.16) to obtain â∗−i
if g(â∗−i, q) < U then
U = g(â∗−i, q) and a∗δ,i = â∗−i

end
Find D via (5.18), and find ǎ∗−i and L = gL(ǎ∗−i) minimizing (5.17).
if U − L > δ {split} then

Find k = maxn([aU ]n − [aL]n)
Set aL,1 = aL(aU,1 = aU ) and aL,2 = aL(aU,2 = aU ) except the k-th entry:
[aL,1]k = [aL]k and [aU,1]k = [aU ]k+[aL]k

2
[aU,2]k = [aU ]k and [aL,2]k = [aU ]k+[aL]k

2 .
Compute D1, D2 and L1, L2 for each new boxes and
K = (aL,1,aU,1, L1) ∪ (aL,2,aU,2, L2)
Compare L1 and L2 with U :
K = K \ (aL,1,aU,1, L1), if L1 > U

K = K \ (aL,2,aU,2, L2) , if L2 > U

K = K \ (aL,m,aU,m, Lm), m = arg min(Lm), otherwise.
else
K = K \ (aL,aU , L)

end
end

Proposition 2. After at most
⌈
ln(‖ϕi‖

2
2

ε−2δ )/ ln(2)
⌉
iterations, with ε > 2δ, an ε-

optimal solution a∗ε,i to (5.13) is reached, satisfying

a∗ε,i ∈ χ(µ), and q∗ ≤ f(a∗ε,i) ≤ q∗ + ε, i = 1, . . . , N . (5.19)

Proof. See [133].

5.3.2 Alternating descent algorithm

We now propose an efficient alternative at the solver proposed in the previous
analysis, with guaranteed convergence at least to a stationary point. In fact,
the bisection-based solver developed in the previous subsection can approach the
global optimum of the fractional TLS, but it is computationally demanding. We
reformulate (5.5), substituting (5.5b) into (5.5a), and we add ‖E‖2F to the cost
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function to constraint the error norm to be small, obtaining

{Â, Ê} = arg min
A,E
‖E‖2F + ‖Z−A(Z−E)−BX‖2F

+ λ ‖A‖1 (5.20a)

s. to aii = 0, i = 1, . . . , N. (5.20b)

Note that the minimization of (5.20) does not guarantee that (5.5b) is still satisfied.
Problem (5.20) is convex with respect to (wrt) each block (matrix) variable A and
E. This motivates an alternating descent iteration to find a sub-optimal yet efficient
solution. At iteration k + 1, given Â[k], the error matrix can be estimated as

Ê[k + 1] = arg min
E
‖Z− Â[k](Z−E)−BX‖2F + ‖E‖2F

which admits the closed-form solution

Ê[k + 1] = (Â>[k]Â[k] + IN )−1Â>[k](Â[k]Z + BX− Z). (5.21)

Likewise, given Ê[k + 1], the adjacency matrix is updated as

Â[k + 1] = arg min
A
‖Z−A(Z− Ê[k + 1])−BX‖2F + λ ‖A‖1 (5.22)

which is strongly convex and can be solved via proximal gradient iterations reaching
the global optimum. The derivation of the algorithm is omitted here, see [70] for
details.

Note that, the operation in (5.21) will cost O(N2T ), for T ≥ N , in terms of
time complexity, while the minimum of (5.22) will be reached in (worst-case) O(1/ε)
iterations (or O(1/

√
ε) using fast iterative shrinkage-thresholding algorithms) if ε

is the precision of the solution, and each row of A can be computed in parallel,
see [70]. In particular, for each row of A, the proximal gradient algorithm will entail
matrix-vector multiplication and soft thresholding operations, that when the number
of iterations needed for the proximal gradient algorithm to converge is relatively
smaller than N , they are negligible wrt O(N2T ) of (5.21).2

Note that, if B is also a variable to be estimated, problem (5.20) is still per-block
convex, and B can be readily found as in [70]. Under regularity conditions the
alternating minimization method is guaranteed to converge at least to a stationary
point, as asserted in the following proposition.

Proposition 3. The iterates in (5.21) and (5.22) converge monotonically at least
2In the numerical test we observe that the soft thresholding algorithms typically needs only a

few iterations for convergence.
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to a stationary point of problem (5.20).

Proof. See [153].

5.3.3 Topology ID with sparse signal perturbations

In the previous sections, we have analyzed the cases where perturbations affect all
nodal measurements. However, in several settings, only a small subset of nodes can
be influenced. For example, in a heterogeneous network, some devices, e.g. sensors,
may be less reliable than others. In this case, sparsity of the signal perturbations is
well motivated. Introducing a sparse regularizer yields the sparse TLS (sparseTLS)
SEM

{Â, Ê} = arg min
A,E
‖Z−A(Z−E)−BX‖2F

+ λE ‖E‖1 + λA ‖A‖1 (5.23a)

s. to aii = 0, i = 1, . . . , N (5.23b)

where λA > 0 and λE > 0 are sparsity promoting scalars.
In some applications such as sensor networks, we may even know which nodes are

the more sensitive or vulnerable, which prompts us to leverage additional structure,
namely the nonzero pattern of the error matrix. Hence, we write E as

E = SSS (υ) =
NE∑
e=1

υe(ne · t>e ) (5.24)

where υ := [υ1, . . . , υNE ]> is the collection of the nonzero values of vec(E>); the
N × 1 vector ne has all zero entries except one that equals unity in the node affected
by the e-th error value; and, te is the T × 1 vector of all zeros except one that
equals unity in the observation instant of the e-th error value. The structured error
(S)TLS-SEM is then formulated as

{Â, υ̂} = arg min
A,υ

‖Z−A(Z−
NE∑
e=1

υe(ne · t>e ))−BX‖2F

+ λE ‖υ‖22 + λA ‖A‖1
s. to aii = 0,∀i (5.25)

where λE > 0 and λA > 0. The STLS-SEM problem is still only per-block convex,
but can be solved by alternating minimization, as in the previous subsection.
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5.4 Signal inference with topology perturbations

In this section, we study another problem that oftentimes arises in graph-related
applications, that is, graph signal inference. In fact, in many cases, signals over
all the nodes may not be available, due to, e.g., energy-saving or privacy reasons.
This prompts to reconstruct signals over the unobserved nodes, when the graph
topologies is given. However, such given graph topology may be perturbed, due to,
e.g., link outages, in communication or power networks. This motivates the goal of
this section to recover Y, given a possibly perturbed adjacency matrix and the signal
observed over a subset of nodes, indexed by St at each instant t. The observation
model can then be written as

ψt = DSt(yt + εt) , t = 1, . . . , T (5.26)

where DSt := diag(d(t)
11 , . . . , d

(t)
NN ), and d(t)

ii = 1 if i ∈ St, and zero otherwise; εt ∈ RN

denotes the observation error; and, ψt ∈ RN represents the observation at time t,
with |St| := M < N nonzero entries. For simplicity in exposition, M is considered
fixed over time, but it can be generalized as time-varying.

Denoting with A0 the given nominal adjacency matrix, and ∆ ∈ RN×N the
topology perturbation matrix, the linear SEM in (5.2) becomes

Y = (A0 −∆)Y + BX (5.27)

where A0 −∆ is the perturbed adjacency matrix. As in the previous section, we
consider BX given, e.g. acquired from historical data or BX = 0 when X is not
present, since the focus of the present section is to identify ∆ and {yt}Tt=1. Exploiting
the TLS method to account for topology perturbations, the topology perturbation
aware TLS-SEM can be written as (cf. (5.26) and (5.27))

{∆̂, Ŷ} = arg min
∆,Y

λ1‖∆‖1 + λ2

T∑
t=1
‖ψt −DStyt‖22

+ ‖Y− (A0 −∆)Y−BX‖2F (5.28a)

s.to [∆]ii = 0, i = 1, . . . , N (5.28b)

where the `1-norm promotes sparsity of the perturbed links. In addition to sparsity,
it has been shown that the elastic net regularizer [154] leads to improved recovery
when the network weights are highly correlated [72]. Motivated by this, the elastic
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norm regularized TLS (elTLS) approach to signal recovery yields

{∆̂, Ŷ} = arg min
∆,Y

T∑
t=1
‖ψt −DStyt‖

2
2 + λ1∆ ‖∆‖1 + λ2∆ ‖∆‖2F

+ λY ‖Y− (A0 −∆)Y−BX‖2F
s. to [∆]ii = 0, i = 1, . . . , N (5.29)

where λ1∆ > 0, λ2∆ > 0, and λY > 0.
The costs in (5.28) and (5.29) are both per-block convex, and can be solved

iteratively via alternating minimization with guaranteed convergence to at least a
stationary point, as argued in Prop. 3.

5.4.1 Structured and weighted TLS under topology perturbations

In this subsection, we solve the signal recovery problem having additional informa-
tion on the structure of the nominal adjacency matrix along with prior information
on the perturbations. In this case, our aim is to formulate a structured and weighted
TLS problem (cf. Sec. 5.2.2) for the signal inference task under topology pertur-
bations. Denoting with L the number of (directed) links of the nominal graph
and ω := [ω1, . . . , ωL]> the vector collecting the nonzero edge weights, the nominal
adjacency matrix can be represented as (cf. Definition 1)

A0 = SSS (ω) :=
L∑
l=1

ωl(suls
>
vl

) (5.30)

where (ul, vl) are the incident nodes of link l, and si the N × 1 i-th canonical vector.
The structure SSS (ω) accounts for the L nonzero entries of A0. Assuming that
perturbations occur only on the existing links, it will also allow us to reduce the
number of unknown perturbations from N2 to L.

According to Sec. 5.2.2 and Eqn. (5.30), we will parameterize A0 using ω, and
correspondingly ∆ via ν := [ν1, . . . , νL]>, whose nonzero entries represent a failure
or error in the edge weight. Thus, the perturbed adjacency matrix is given by

A0 −∆ = SSS (ω − ν) :=
L∑
l=1

(ωl − νl)(suls
>
vl

). (5.31)

In certain cases, extra information such as the link failure probabilities {πl}Ll=1 and
the observation noise variance {σ2

i }Ni=1 can be available across nodes. Such prior
information can be collected after observing the network over time and recording
the occurrence of failures, as well as the statistics of the measurement errors.
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Let WA := diag(r(π1) . . . r(πL)) denote the topology reliability weight matrix,
where r(πl) is a known function of πl, e.g. r(πl) = π−1

l , and likewise WΨ :=
[diag(σ2

1 . . . σ
2
N )]−1 for the measurement errors. In order to use an SWTLS cost (cf.

Sec. 5.2.2), we replace the first two terms in (5.28a) with the weighted `1-norm of
the topology error vector ‖WAν‖1, and the sum of the weighted `2-norm of the
observation errors

∑T
t=1 ‖ψt −DStyt‖

2
WΨ

. Combining with (5.31), the regularized
SWTLS-based SEMs can be written as

{ν̂, Ŷ} = arg min
ν,Y

λ1 ‖WAν‖1 + λ2

T∑
t=1
‖ψt −DStyt‖

2
WΨ

+ ‖Y−
L∑
l=1

(ωl − νl)(suls
>
vl

)Y−BX‖2F (5.32)

which can be solved via alternating minimization. Given ν̂[k] from iteration k,
and exploiting the separability across columns of Y, the graph signal at k + 1 is
reconstructed per slot t as

ŷt[k + 1] = arg min
yt

λ2 ‖ψt −DStyt‖
2
WΨ

(5.33)

+ ‖yt −
L∑
l=1

(ωl − ν̂l[k])yvl,tsul −Bxt‖22

where s>vlyt = yvl,t because svl is defined as canonical vector.
The minimization in (5.33) leads to the closed-form update

ŷt[k + 1] =(C>[k]C[k] + λ2D>StWΨDSt)−1(C>[k]Bxt
+ λ2D>StWΨψt) , t = 1, . . . , T (5.34)

with C[k] := (IN −
∑L
l=1(ωl − ν̂l[k])suls>vl).

Given Ŷ[k+1] = [ŷ1[k+1], . . . , ŷt[k+1]], we can exploit in (5.32) the separability
across rows of Y. Let Ln denote the number of neighbors of node n, and ωn :=
[ω(n)

1 , . . . , ω
(n)
Ln

]> and νn := [ν(n)
1 , . . . , ν

(n)
Ln

]> the vectors collecting edge and error
weights in the neighborhood of n. Similarly, let the diagonal matrix Wn

A be the n-th
block of the block diagonal matrix WA. With γ>n and x>n representing the n-th row
of Y and X, respectively, ν̂n[k + 1] can be updated as

ν̂n[k + 1] = arg min
νn

λ1 ‖Wn
Aνn‖1 (5.35)

+ ‖γ̂n[k + 1]− (Ŷn[k + 1])>(ωn − νn)− bnnxn‖22

where Yn is a submatrix of Y formed by the rows corresponding to the neighboring
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nodes of n in the nominal topology. Sub-problem (5.35) is again convex, but not
differentiable, which suggests an iterative proximal gradient solver.

The time complexity of (5.34) is O(N3) and each yt, t = 1, . . . , T can be estimated
in parallel. The minimum of (5.35) can be reach in (worst-case) O(1/ε) iterations (or
O(1/

√
ε) using fast iterative shrinkage-thresholding algorithms) if ε is the precision of

the solution [70] and each νn can be computed in parallel. In particular, the proximal
gradient solver employed to solve (5.35) will entail matrix-vector multiplication and
soft thresholding operations. When {Ln}n are smaller than N , the complexity of
(5.35) is negligible wrt O(N3).

5.4.2 Identifiability of topology perturbations

The goal of this subsection is to investigate the conditions that ensure uniqueness
in identifying the perturbation vector ν in the noise-free3 structured topology
perturbation model in Sec. 5.4.1 (cf. (5.27) and (5.31)). To this end, consider the
n-th row of the N × T matrix Y in (5.27), which can be expressed as

y>n = (a>n − δ>n )Y + bnnx
>
n (5.36)

with a>n and δ>n likewise denoting the nth rows of A0 and ∆, respectively. With Ln
being the number of neighbors of node n, we define the 1× Ln vector ω>n formed
after removing the zero entries of a>n per node n; and similarly the 1× Ln vector
ν>n after removing the corresponding entries of δ>n . Using these definitions, (5.36)
can be simplified to

y>n = (ω>n − ν>n )Yn + bnnx
>
n (5.37)

where Yn is an Ln×T submatrix obtained after removing the rows of Y corresponding
to the zero entries of a>n .

To take into account the number of samples Tn per node n, we further introduce
the Tn×T matrix Dn obtained after removing the all-zero rows of the T ×T diagonal
matrix diag{d(1)

nn . . . d
(T )
nn }, where d(t)

nn = 1 if node is sampled at slot t, and d(t)
nn = 0

otherwise. Multiplying Dn from the right with a matrix, selects Tn (out of T ) rows
corresponding to the time-slot indices that node n is sampled. We rely on Dn to
form the Tn × 1 vector φn := Dnyn, which after employing the transposed version
of (5.37) can be expressed as

φn = Dn[Y>n (ωn − νn) + bnnxn] . (5.38)

Motivated by the fact that e.g., adversaries can compromise only a few links
3Absence of noise (εt ≡ 0 ∀t) is typically assumed in identifiability studies, in order to isolate

(non) uniqueness issues from estimation errors.
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per node n, it is reasonable to explore identifiability conditions when the sought
perturbation vector νn is sparse with pn (< Ln) nonzero entries.

Arguing by contradiction to establish that νn can be uniquely identified from
(5.38), we will suppose that there exists another Ln × 1 vector ξn 6= νn with pn

nonzero entries satisfying φn = Dn[Y>n (ωn − ξn) + bnnxn]. Subtracting the latter
from (5.38), yields

0 = DnY>n (νn − ξn) . (5.39)

Clearly, the difference νn − ξn of the two pn-sparse vectors νn and ξn, has at most
2pn nonzero entries; and with pmax := maxn=1,...,N pn, we have that the differences
{νn − ξn} across all nodes can have at most 2pmax nonzero entries.

To proceed with specifying identifiability conditions of our sparse vector differ-
ences, we will need the following definition of the Kruskal rank of a matrix.
Definition 2 [155]. The Kruskal rank of a matrix M, denoted as kr(M), is defined
as the maximum number ρ such that any combination of ρ columns of M constitutes
a full-rank submatrix.

Since the 2pmax nonzero entries of νn− ξn can occur in any subset of this vector
difference, we deduce that having kr(DnY>n ) ≥ 2pmax, guarantees that any 2pmax

columns of DnY>n submatrix will be full rank. Under this condition, we find from
(5.39) that νn = ξn, which leads to contradiction. Summarizing, we have established
the following result.

Proposition 4. If kr(DnY>n ) ≥ 2maxnpn, the pn-sparse perturbation vector νn is
identifiable from (5.38), for n = 1, . . . , N .

Intuitively, Proposition 4 asserts that sparsity in the perturbation renders the
bound on the Kruskal rank easier to satisfy, and thus ensure identifiability. As a
word of caution, it is worth mentioning that finding the Kruskal rank of a matrix is
combinatorially complex in its dimensions [155]. In addition, this condition may be
hard to check since matrix (DnY>n ) is not always observed in practice.

5.5 Numerical tests

In this section, we test with a number of synthetic and real data the proposed
TLS-based algorithms, both for topology ID under signal perturbations, and graph
signal inference under topology perturbations. The regularization parameters are
selected by grid search cross-validation for all the algorithms.
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5.5.1 Synthetic tests for topology ID under signal perturbations

Bisection-based versus alternating descent iterations

In this test, the adjacency matrix A(0) is simulated as a 6×6 matrix of binary 0-1
entries with 2 nonzero entries per row, and Z = Y + E, with [E]ij ∼ N (0, 1× 10−2),
while the observation Y = (IN −A(0))−1BX, with B = IN and [X]ij ∼ U(0, 1.5).
Alg. 1 is tested with µ = 5, aL = 0, and aU = 1.

Fig. 5.2 illustrates the performance reached by the alternating descent (AD)
iterations in (5.21) and (5.22), the conventional least-squares (LS) SEM [70, 134],
where perturbations E on the observations are not considered, and the BB scheme of
Sec. 5.3.1, all in terms of MSEA =

∑
ij(âij − aij)2/N2, for different values of ε. The

ε-optimal BB solver performs better as ε decreases, while the solutions of the AD
and LS-SEM schemes do not depend on ε, and hence are constant ∀ε. For ε < 10−2,
both perturbation-aware methods outperform the LS-SEM method, and note that
the BB method slightly outperforms the AD one. However, the BB algorithm is
computationally demanding.

Fig. 5.3 depicts the runtime of the three competing algorithms in seconds,4 when
ε = 10−3, and demonstrates that the AD method is computationally more efficient
than the BB scheme. For this reason, the following tests will include only the AD
iteration, which will be henceforth abbreviated as TLS-SEM. The numerical results
of this subsection were obtained by averaging over 100 Monte Carlo realizations of
X and E.

Topology ID under signal perturbations

In this subsection, we test the performance of the AD solver (5.20) for simulated
data, and compare it with LS-SEM. We generated a Kronecker graph with N = 64
as in [156], and B = IN was assumed given. We generated random matrices with
uniformly distributed entries [X]it ∼ U [0, 1.5], and Gaussian distributed entries
[E]it ∼ N (0, σ2

E). Matrices Y and Z were then constructed according to (5.2)
and (5.4), with T = 120, while λ was selected via cross-validation. Fig. 5.4
shows the MSEA performance of LS-SEM and TLS-SEM for different SNR(dB):=
10 log10(‖ȳ‖22 /(Nσ2

E)) and ȳ = 1
T

∑T
t=1 yt. It can be observed that TLS-SEM

outperforms LS-SEM. Fig. 5.5 shows the performance versus different number of
observations T , with fixed σE = 0.2. Evidently, TLS-SEM outperforms LS-SEM even
when the number of observations is small. These numerical results were obtained by
averaging over 100 Monte Carlo realizations of X and E.

4This experiment was run on a machine with i5-6200U @2.30 GHz CPU, and 8GB of RAM.
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Figure 5.4. MSEA versus SNR.

Sparse signal perturbation

In this experiment, we tested the performance of sparse TLS in (5.23) and
(5.25). An adjacency matrix is generated as a Kronecker graph with N = 64 with
binary entries. Entries of X were generated as uniform i.i.d. random variables,
that is [X]ij ∼ U [0, 1.5], and B = IN . Furthermore, we set Z = Y + E, where
Y = (IN −A)−1BX, and the sparse E was generated such that E has zero entries
on N0 = N − 8 selected rows, while the nonzero entries on the selected 8 rows were
drawn from a uniform distribution over [0, 0.3]. Results were averaged over 100
realizations of X and E.

Fig. 5.6 shows the performance of LS-SEM, TLS-SEM in (5.20), sparseTLS in
(5.23) and STLS-SEM in (5.25), in terms of MSEA for different T . The TLS-SEM
outperforms LS-SEM, and the performance gain increases as more data observations
are collected. The result is obtained by averaging over 100 different realizations of
X and E.

5.5.2 Real data tests for topology ID with signal perturbations

Further, we present experiments on gene expression data to identify the underlying
gene regulatory network. The real data were collected from 69 unrelated Nigerian
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Figure 5.5. MSEA versus T .

individuals, under the International HapMap project [157]. From the 929 identified
genes, expression levels and the genotypes of the expression quantitative trait
loci (eQTLs) of 39 immune-related genes were selected and normalized; see [134]
and [158] for further details. Genotypes of eQTLs were adopted as known exogenous
inputs X, and gene expression levels were treated as the endogenous variables
Y. The underlying network as well as the matrix B, were inferred by adopting
TLS-SEM, sparseTLS, and LS-SEM methods. Fig. 5.7 illustrates the fitting loss
divided by the norm of the data Z, as ‖Z−AZ−BX‖2F /‖Z‖2F for LS-SEM, and
‖Z−A(Z−E)−BX‖2F /‖Z‖2F for TLS-SEM, as a function of parameter λA. For
all values of λA, i.e. the regularization parameter promoting the adjacency matrix
sparsity, TLS-SEM and sparseTLS-SEM outperform the LS-SEM, which implies
that the inferred matrix A fits the model better when the signal perturbations are
taken into account. When λA reaches very large values, all approaches perform
similarly since the regularization term λA ‖A‖1 prevails on all the other terms of the
cost functions and A becomes an all zero matrix. Furthermore, Fig. 5.8 illustrates
the performance in terms of fitting error ‖Y−AY−BX‖2F , with Y = Z− E for
TLS-SEM and sparseTLS, and Y = Z for LS-SEM across values of λA. Again,
TLS-SEM and sparseTLS-SEM outperform LS-SEM.
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5.5.3 Signal inference under topology perturbations

In this subsection, we test the performance of the TLS algorithms in Sec. 5.4,
and compare them with the conventional LS-SEM. In this setting, the topology
is perturbed and the goal is to identify Y from a subset of observations. For this
numerical test, a Kronecker graph with N = 27 is generated as before. With
T = 50 and B = IN , the entries of X and {εt}Tt=1 are again randomly drawn
as [X]ij ∼ U [0, 3] and εti ∼ N (0, σ2

i ), ∀t. Moreover, for the perturbation matrix
∆, we model its entries [∆]ij as Bernoulli(πl) × [A]ij , with l := (vi, vj), which
means that perturbations occur when one or more weighted links fail. In particular,
π1 = π2 = 0.9, and πl ∈ [0.001, 0.02], l = 3, . . . , L, and we choose r(πl) = 1

πl
.

Matrices Y and Ψ := [ψ1, . . . ,ψT ] are then constructed according to (5.27) and
(5.26), while λ1 and λ2 are selected via cross validation. Fig. 5.9 illustrates the
performance of LS-SEM, TLS-SEM, structured TLS under topology perturbations
(topSTLS-SEM), and SWTLS-SEM in terms of normalized mean-square error

NMSE = ‖Ŷ−Y‖2F
‖Y‖2F

. (5.40)

The results are obtained by averaging over 500 Monte Carlo realizations of X, εt,∆,
and DS . Fig. 5.9 shows the performance as a function of the number of sampled
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Figure 5.9. NMSE versus M

nodes M . Clearly, estimation performance improves as extra prior information is
accounted for.

5.5.4 Real tests for signal inference with topology perturbations

Finally, we test here the proposed elTLS-based approach in (5.29) to recover the
signal from a subset of noisy observations and a perturbed graph topology.

The real dataset consists of path delay measurements on the Internet2 backbone
[159]. The network has 9 nodes and 26 directed links. The delays are available for
N = 70 paths per minute. Set {ynt} contains a subset of delays in milliseconds per
path n and minute slot t. The topologies are obtained based on the following three
possible models.
M1. The paths connect origin-destination nodes by a series of links described
by the path-link routing matrix Π ∈ {0, 1}N×26, whose (n, l) entry is Πn,l = 1 if
path n traverses link l, and 0 otherwise. A graph is constructed with each vertex
corresponding to one of these paths, and with the time-invariant adjacency matrix
A ∈ RN×N given by

An,n′ =
∑26
l=1 Πn,lΠn′,l∑26

l=1 Πn,l +
∑26
l=1 Πn′,l −

∑26
l=1 Πn,lΠn′,l

(5.41)
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for n, n′ = 1, . . . , N and n 6= n′. The edge weight model in (5.41) assigns greater
weights to edges connecting vertices whose associated paths share more links. This is
reasonable because paths with common links usually experience similar delays [160].
M2. For this model, a training phase is introduced based on a subset of the signal
observations, collected in the matrix Ytrain, to estimate the adjacency as the solution
of

min
A
‖Ytrain −AYtrain‖2F (5.42)

s. to aii = 0, i = 1, . . . , N

where Ytrain ∈ RN×Ttrain , with Ttrain = 20.
M3. The third topology is found as in (5.42), but the training signals used for
training are corrupted by noise, that is, Ȳtrain := Ytrain + Ξ, with [Ξ]ij ∼ N (0, σ2

ξ );
while σ2

ξ is chosen such that 10 log10(‖ȳtrain‖
2
2 /(Nσ2

ξ )) = −8 dB, where ȳtrain ∈ RN

is the average of the columns of Ytrain. Solving problem (5.42) with Ȳtrain instead
of Ytrain gives rise to an alternative topology with an inherent model mismatch.
The observation error in (5.26) is generated using εt ∼ N (0, σ2

εI),∀t, and we define
the SNR:= 10 log10(‖ȳ‖22 /(Nσ2

ε)), with ȳ ∈ RN is the average of the columns of Y.
Fig. 5.10 shows the NMSE versus the number of sampled nodes M when the

topology is obtained from M1. It illustrates that the novel perturbation-aware elTLS-
SEM outperforms the LS-SEM by accounting for the possible model mismatch.

Figs. 5.11 and 5.12 depict the NMSE as a function of observations T with
adjacency matrices obtained via M2 and M3, respectively. Once again, perturbation-
aware elTLS-SEM outperforms LS-SEM. The performance gain of elTLS-SEM in Fig.
5.11 is less evident than that in Figures 5.10 and 5.12 because the adjacency matrix
is obtained exactly following the SEM. Results are averaged over 100 realizations.
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Figure 5.10. NMSE versus M , with A obtained via M1 and T = 100.

5.6 Conclusions

In summary, in this chapter, we have examined two challenging tasks over graphs,
namely topology ID under signal perturbations, and signal inference under topology
perturbations. To address the associated challenges, a spectrum of approaches
based on total least-squares and structural equation models were developed. More-
over, structured and weighted variants of TLS-SEM were introduced to flexibly
account for extra prior information. Numerical tests on both synthetic and real data
demonstrated the efficacy of the proposed algorithms.

Future research directions include distributed implementation of TLS-SEM to
accommodate large-scale graphs, and generalizations of perturbed SEMs to account
for nonlinear or dynamic inter-dependencies.
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Chapter 6

Conclusion

Graph-based learning techniques have become fundamental tools to facilitate a
comprehensive understanding of complex data systems and prediction of network
behavior. There is a vast literature on graph-based techniques to extract relevant
information from data. However, in most of the literature, the graph is either
assumed to be known a priori or it is inferred from data. In both cases, there
might be a mismatch between the graph topology we assume to be true and the real
topology. The major goal of the thesis has been to analyze the impact of imperfect
knowledge about the graph or on the signal defined over the graph, on various
algorithms aimed to extract information from data.

Topology perturbations are present in several situations due to model mismatch
or link failure, while signal perturbations may occur because of outliers, adversaries
or observation inaccuracy. This prompted us to propose tools that consider possible
perturbations making use of small perturbation theory and total least-squares
approaches, considering also, in some cases, prior information of the perturbation
events. We also observed the effect of the perturbation of a graph topology to assess
the role of the edges in the network and to rank them starting from the most critical
ones.

First of all, in Ch. 1, we have illustrated the reasons why graphs represent a
powerful tool to analyze structured complex networks. Chapter 2 has recalled the
theoretical results associated with graphs, GSP, and SEMs, which are relevant to
the subjects investigated in this thesis.

In Chapter 3, a small perturbation analysis of Laplacian matrices has been
instrumental to extend classical GSP tools to cope with cases in which the topology
of the graph is not perfectly known. Our main assumption was that the consid-
ered perturbation is small, i.e., the percentage of perturbed edges is small. This
assumption allowed us to use the small perturbation theory of matrices to obtain
approximated closed form expressions, instrumental to propose signal processing
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algorithms that are resilient to imperfect knowledge of the graph topology.
Small perturbation theory has been used to evaluate the effect of edge removal

in a network and to identify the edges that have the most critical effects when they
fail. Such an analysis allowed us to propose, in Chapter 4, a new centrality measure,
named topology perturbation centrality.

In Chapter 5, we analyzed two graph-based learning tasks, such as topology ID
and signal recovery in presence of perturbations. Relying on structural equation
models, we have introduced regularized total least-squares methods that can deal
with possible errors in the given graph signal or/and in the given graph topology.

Finally, we have shown the benefits of perturbation-aware network-based learning
methods by several numerical results.

In summary, the goal of this thesis has been to cover a gap present in the
available literature on graph signal processing and graph-based learning, which
typically assumes a perfect knowledge of the graph. To be able to find closed
form expressions, very useful to understand the impact of each edge failure on
the connectivity of the networks, we have used a small perturbation analysis and
we have considered the case where the Laplacian eigenvalues have multiplicity
one. A direct extension of this work should incorporate the case of eigenvalues of
multiplicity greater than one. An important area worth of further investigation is
that of unsupervised learning and semi-supervised learning. In the first case, we
considered only the case of two clusters, but it would be important to generalize the
approach to multiple clusters. Also in the semi-supervised learning framework, we
studied the impact of erroneous assumption about the topology on label propagation,
considering a two-class example. This choice was made also to derive close form
expressions that have been useful to understand the impact of errors, but it would
be advisable to extend the approach to multiple classes. Finally, the employment of
total least-squares methods allowed as to illustrate the benefit of considering, signal
and/or topological errors. However, when considering total least-squares method,
other signal models can be assumed to incorporate possible dynamic or non-linear
models. A further effort could be made accommodating the analysis of graph and
signal perturbations over large-scale graphs.
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