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Abstract: Renewable energy is a wide topic in environmental engineering and management science.
Photovoltaic (PV) power has had great interest and growth in recent years. The energy produced by
the PV system is intermittent and it depends on the weather conditions, presenting lower levels of
production than other renewable resources (RESs). The economic feasibility of PV systems is linked
typically to the share of self-consumption in a developed market and consequently, energy storage
system (ESS) can be a solution to increase this share. This paper proposes an economic feasibility
of residential lead-acid ESS combined with PV panels and the assumptions at which these systems
become economically viable. The profitability analysis is conducted on the base of the Discounted
Cash Flow (DCF) method and the index used is Net Present Value (NPV). The analysis evaluates
several scenarios concerning a 3-kW plant located in a residential building in a PV developed market
(Italy). It is determined by combinations of the following critical variables: levels of insolation,
electricity purchase prices, electricity sales prices, investment costs of PV systems, specific tax
deduction of PV systems, size of batteries, investment costs of ESS, lifetime of a battery, increases
of self-consumption following the adoption of an ESS, and subsidies of ESS. Results show that the
increase of the share of self-consumption is the main critical variable and consequently, the break-even
point (BEP) analysis defines the case-studies in which the profitability is verified.
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1. Introduction

Energy scarcity and climate change are urgent issues worldwide and the development of
renewable resources (RESs) aims to achieve a sustainable energy system [1,2]. Solar photovoltaic
(PV) energy generates renewable electricity by converting energy from the sun. The PV sector has
demonstrated significant progress in recent years, reaching more than 402 gigawatts (GW) of installed
capacity in 2017. China (131.1 GW), United States (51 GW), Japan (49 GW), Germany (42.4 GW),
Italy (19.7 GW) and India (18.3 GW) cover about 77% of the global power installed [3].

A life cycle assessment, conducted on solar PV systems, quantified the greenhouse gas (GHG)
emissions equal to 10.5–50 g CO2 eq/kWh [4]. This environmental effect is balanced by reduction of
GHG emissions determined by the use of PV plants as alternative to fossil fuels [5]. GHG emissions
released by oil, petrol and natural gas vary from 443 g CO2 eq/kWh to 1050 g CO2 eq/kWh [6].

The reduction of cost of PV modules has driven the economic competitiveness of PV systems [7].
In fact, the price of residential PV system is decreased of about 80% from 2008 to 2016 in most
competitive markets [8]. Several countries have reduced the remuneration for feeding electricity into
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the grid through Feed-in-Tariffs (FITs) and consequently, self-consumption has assumed a key-role
in economic evaluation [9]. Self-consumption is referred to the direct use of PV electricity. It is the
synchronization between demanded and produced energy [10]. In this way, the prosumer has new
economic opportunities because he/she is able to reduce their electricity bills through self-consumption
in comparison to the conventional way of purchasing electricity from the grid [11].

The PV production has a stochastic nature caused by intermittencies and ramping events due
to cloud coverage [12]. A detailed analysis of ESSs available for power generation is described by
the authors of [13]. Their development is expected to increase in buildings and the use of lead
acid technology coupled with PV panels increases electricity self-sufficiency in households [14].
Also lithium-ion technology is defined as less costly in long-term economic analysis [15]. In this
work, a lead-acid energy storage system (ESS) is chosen because it is defined as the most cost-efficient
technology in terms of an increase of self-consumption [16]. The sustainability of decentralized energy
systems is a topic that has attracted the attention of several researchers [17,18].

The economic driver represents the main aspect behind the evaluation of residential end-users
to use PV self-consumption [19]. It is essential to conduct a comprehensive economic analysis to
encourage residential consumers towards the implementation of self-sufficient energy choices [20,21].
The profitability is well-defined in the literature, however the analysis of these systems is
extremely difficult. Several parameters play a critical role and their value is characterized by great
uncertainty [22,23].

In this direction, this work proposes an economic analysis concerning solar PV panels combined
with ESS in a residential building. Discounted Cash Flow (DCF) is used as the methodology and
Net Present Value (NPV) and break-even point (BEP) are calculated in a dynamic context. In fact,
several variables are considered (levels of insolation, electricity purchase prices, electricity sales prices,
investment costs of PV systems, size of batteries, specific tax deduction, investment costs of ESS, useful
time of a battery, increases of self-consumption following the adoption of an ESS, and subsidies) in
the economic analysis. The current work integrates several strengths of previous studies and a new
detailed economic scheme is proposed. This approach provides results concerning the Italian market,
but it is possible to extend results also to other markets, due to the use of multiple values regarding
critical variables.

The paper is organized as follows. Section 2 presents the methodology used in this paper and
an economic model is defined to evaluate the profitability of an integrated PV-battery system in
households. Starting by input data, it is possible to calculate NPV and BEP (Section 3). Furthermore,
several alternative scenarios based on the critical variables are considered in order to give solidity to
results obtained (Section 4). Section 5 presents some concluding remarks.

2. Literature Review

Energy is a condition for realizing a country’s economic development [24]. Literature analysis
defines that ESS is a technical solution able to encourage the energy independence in residential
sector [25]. Energy production obtained during supply peaks can be saved and deployed during
demand peaks. This consideration is relevant for residential users, because their consumption has
fluctuations during the day [26]. This permits to design and schedule the integrated plant also in
island-mode (i.e., disconnected from the grid) [27].

The development of smart-grid presents a limit characterized by uncertainty regarding wind
speed, solar radiation and load fluctuation [28]. A theoretical framework for the joint optimization
of a micro-grid is proposed by the authors [29]. The first step is represented by the definition of
the capacities of solar power generation, wind power generation and ESS. The second step aims
to minimize the operating cost coordinating the power supply and demand in the micro-grid.
Another model underlines as micro-grids with excessive RE generations can trade with other
micro-grids in deficit of power supplies. Using the Nash bargaining theory, there is a reduction
of total costs through energy trading [30].
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However, the potential of ESS combined with PV panels contributes to renewable targets not
only in electricity sectors. In fact, their combination with electric vehicles represents a step towards
sustainable mobility [31] and the same is verified with a combined heat and power system [32].

The main revenue of ESS is given by the increase of self-consumption energy [33]. A literature
review has identified this value equal to 10–24% points with ESSs of 0.5–1 kWh per installed
kW of PV power [34]. Other authors have, instead, proposed a range more wide: batteries can
increase self-consumption also of 20–50% [35]. The impact of batteries on the grid is of the utmost
importance [36]. A survey conducted on consumers has defined self-sufficiency and grid independence
as the main drivers that encourage the choice of installing ESSs [37].

The environmental aspects are investigated in this development of the ESS sector. The cycle of
production of battery emits about 110 kgCO2 eq per kWh of storage capacity. Life cycle, internal
efficiency and energy density are defined to be equally strategic for the environmental life cycle of the
batteries [38].

The economics of ESS in residential buildings has been addressed in several previous publications
and two indicators are typically used: NPV and Levelized cost of electricity (LCOE)—Table 1.

A review on LCOE for both PV and PV hybrid system is provided by [39]. Vanadium redox flow
battery has a lower LCOE than one of Lithium-ion. Input parameters for batteries are characterized by
a great uncertainty. LCOE changes in function of application (utility energy time-shift, T&D investment
deferral, Energy management—community scale, increase of self-consumption, area and frequency
regulation, support of voltage regulation) and technology (lead-acid, lithium-ion, sodium-sulfur,
vanadium redox flow). Considering all applications, there is no a technology dominant position [16].

The Discounted Cash Flow (DCF) method is used by the authors of [40]. NPV quantifies the profits
and BEP defines the values of increase of self-consumption necessary to achieve the economic feasibility.

The value of the distributed solar PV is increased by the utilization of ESS and load control.
Their combination is also called “Solar Plus” [41]. A case study located in Hawaii, shows that an 8 kW
PV plant coupled with a 7.8 kWh battery presents a NPV equal to 16,851 $ [42].

Other authors have investigated how NPV varies in function of both PV cost and battery cost.
The integrated system is profitable varying from 762 € to 2931 € with a PV cost between 1500 €/kW
and 1000 €/kW and a battery cost between 250 €/kWh and 1000 €/kWh. While it is unprofitable when
PV cost is equal to 2500 €/kW or to 2000 €/kW when a battery cost greater than 500 kWh, it ranges
from −1573 € to −331 € [22].

The role of sizing is, instead, investigated by the authors of [43]. Results show that NPV varies
from 290 $ to 910 $ in residential applications. LCOE has been calculated for residential PV systems
with lithium ion battery storage in United States. It varies from 0.05 $/kWh to 0.48 $/kWh in function
of both nominal capacity of PV plant and battery size [44]. The impact of size is investigated also
by [45]. PV panels without ESS provide the greatest economic return, while the profitability with ESS
is not always verified. NPV varies from −7334 $ to 6429 $. The storage degradation during the life
cycle of the system is assumed as a critical variable in the analysis proposed by the authors of [46].
Results underline that there is no economic benefit from integrating ESS with solar PV, also when the
cost of battery degradation is not considered.

Another work considers PV system rated power and BES system capacity as critical variables.
LCOE is calculated for the Italian territory. It varies from 0.15 €/kWh to 0.23 €/kWh [47]. While another
work defines NPV for this territory and the unprofitability is verified in all scenarios. It ranges from
−20,549 € to −2227 € [48].

Italy and Germany are two countries typically analyzed in the literature. This can be explained
by the consideration that the first significant development of PV sector occurred in these territories.
The economic evaluation of systems located in Germany is considered by [23,49]. The first work
analyses parameters taken from Tesla’s Powerwall. Three key-factors are identified: the price gap
between electricity price and remuneration rate, the battery system’s investment cost and the usable
battery capacity. The return on investment (ROI) varies from −50% to 50% and these values push the
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authors to underline that each installation requires a realistic economic estimation. The second work
considers two possible storage scenarios (household energy storage and community energy storage)
suitable to residential electricity prosumers.

A comparison among European countries is investigated by the authors of [50]. The profitability
of integrated systems is verified only in Germany and Spain. Discounted Payback Time varies from
15 to 26 years. Other works show that integrated PV-ESS can be profitable. This is verified in territories
characterized by higher electricity prices and lower FIT values than European conditions [51,52].

From one side, the economic analysis is proposed by several authors. From the other side,
the uncertainty is a typical element of this analysis. The wide variety of scenarios is proposed
by [33]. Authors propose four groups of scenarios for economic analysis: (i) selling of energy,
(ii) self-consumption without storage, (iii) self-consumption with storage, and (iv) Net Metering
Scheme. The best economic performance is reached when it is considered self-consumption without
storage. Basically, batteries are unprofitable due to the short lifetime and high costs.

Similar results are obtained also in other works. The results show that profitability of PV
systems is greater than PV with battery storage. Critical variables are the demand of the households,
self-consumption rates, investment costs and electricity prices [53]. The key-role of the savings in
electricity bills and consequently the impact of self-consumption rates is investigated by the authors
of [54].

Several countries proceed with the adoption of subsidies for integrated PV battery systems.
This choice is strategic to increase the share of self-consumption and the FIT scheme is the most
effective [55]. The value of subsidies is calculated equal to the difference between the installments paid
for the integrated system and the savings obtained from the electricity bill [56]. Two tools are provided
to develop the integrated systems. The first is represented by a regional subsidy that provides fund
non-repayable of up to 50% of the initial investment cost. The second is a subsidized tax deduction
equal to 50% (instead of 36%) and it is cumulative with the previous. The profitability is verified in
several scenarios. NPV varies from −317 € to 5136 € [57].

Table 1. Literature review.

Index Min Value Max Value Reference

LCOE 0.33 €/kWh 0.79 €/kWh [16]
0.154 $/kWh 0.242 $/kWh [39]
0.15 €/kWh 0.23 €/kWh [47]
0.05 $/kWh 0.36 $/kWh [32]
0.149 €/kWh 0.338 €/kWh [49]
0.05 $/kWh 0.48 $/kWh [44]
0.08 €/kWh 0.46 €/kWh [33]

NPV −5640 € 1780 € [40]
−1573 € 2931 € [22]

290 $ 910 $ [43]
−7334 € −6429 € [45]

150 €/kWh 500 €/kWh [53]
−30,000 $ 5000 $ [54]

447 $ 1650 $ [52]
−20,549 € −2227 € [48]
−12,151 € 2982 € [33]
−317 € 5136 € [57]

3. Methodology

DCF is a wide economic assessment method that is used to estimate the attractiveness of an
investment opportunity [58]. The determination of the investor’s cash flows is based on the incremental
approach and an appropriate cost opportunity of capital is used to aggregate cash flows. This method
considers only cash inflows and outflows.
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NPV is defined as the sum of the present values of the individual cash flows and it is the financial
indicator used in this work [59]. It is equal to difference between discounted cash inflow (DCI)
and discounted cash outflow (DCO). Initially, the decision-maker considers the profitability of a PV
system. When the condition of financial feasibility is verified, the following step is represented by the
application of an ESS.

The following step is to evaluate if the profitability of an integrated PV-ESS is greater or lower than
the PV plant. NPV(PV+ESS) is given by the sum of NPV(PV) and NPV(ESS)—see Equation (1)—and
consequently, when NPV(ESS) > 0, follows that NPV(PV+ESS) > NPV(PV)—Figure 1.
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The economic evaluations of PV systems are widely discussed in the literature [60,61]. The main
revenues are subsidies or the percentage of self-consumption in function of developing or developed
markets, while operative costs are basically lower than investment ones.

The adoption of storage is characterized by two items of revenue in a market without direct
subsidies: (i) fiscal detraction and (ii) saving energy through internal consumption. The Italian Council
of Ministers has approved a 50% tax deduction (compared to the usual 36%) for ESS. It is divided into
ten equal yearly amounts. The application of an ESS increases the share of self-consumption saving
money on the electricity bills [62]. The price of installations of ESS depends by several parameters.
It ranges from 1741 € to 2508 € considering a 3-kW plant with a battery capacity of 1.5 kWh and 6 kWh,
respectively. The mathematical model used to evaluate the profitability of PV plant combined with
energy storage is reported as follows:

NPV(PV + ESS) = NPV(PV) + NPV(ESS) (1)

NPV(PV) = DCI(PV)−DCO(PV) (2)

DCI(PV) = ∑N
t=1(ωself,c × EOut,t × pc

t +ωsold × EOut,t × ps
t )/(1 + r)t + ∑NTaxD

t=1
((Cinv/NTaxD)× TaxDu−sr)/(1 + r)t (3)

DCO(PV) = ∑Ndebt−1
t=0 (Cinv/Ndebt + (Cinv −Clcs,t)× rd)/(1 + r)t + Cae + ∑N

t=1
(PCm ×Cinv × (1 + inf) + PCass ×Cinv × (1 + inf) + SPel,t × PCtax)/(1 + r)t+

(PCi ×Cinv)/(1 + r)10
(4)

Cinv = Cinv,unit × (1 + Vat)× Pf × ηf (5)

EOut,t = tr ×Kf × ηm × ηbos ×Acell × Pf × ηf (6)

NPV(ESS) = DCI(ESS)−DCO(ESS) (7)

DCI(ESS) = ∑N
t=1(∆ωself,c × pc

t × EOut,t)/(1 + r)t + ∑NTaxD
t=1 ((Cinv,ESS/NTaxD)× TaxDu−sr)/

(1 + r)t + ∑NB+NTaxD
t=NB

((Crb,t/NTaxD)× TaxDu−br)/(1 + r)t (8)
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DCO(ESS) = ∑Ndebt−1
t=0 (Cinv,ESS/Ndebt + (Cinv,ESS −Clcs−ESS,t)× rd)/(1 + r)t + ∑N

t=1
(Cm,u × S× (1 + inf))/(1 + r)t + (Ci,u × S)/(1 + r)10+(

Cb−e,u × B + Cb−p,u × S + Cb,u × S
)

/(1 + r)NB

(9)

Cinv,ESS = Cb−e,u × B + Cb−p,u × S + Cb,u × S + Ceng + Ci,u × S (10)

Starting with this model and considering cash inflows and outflows, it is possible also to define
the BEP. This is the point at which a project becomes profitable, when forecasted revenues exactly
equal the estimated total costs [40]. This value is calculated in terms of self-consumption (wself,c) in
PV systems and in terms of the increase of self-consumption (∆wself,c) in an integrated PV-ESS project.
The rate of self-consumption represents the amount of self-generated electricity that is consumed
locally [63].

A PV small size equal to 3 kW (S), typically used in the residential sector, is considered in this
paper. The baseline scenario estimates a wself,c equal to 30% [60]. The definition of battery size (B)
and the increase of self-consumption (∆wself,c) following the adoption of ESS are chosen according
to approach proposed by [34]. For example, a battery size of 1 kWh implies that the ratio between
the kWh battery capacity and the installed kW PV (B/S) is equal to 1 and the ∆wself,c is equal to 20%.
The four alternative scenarios determined by variation of battery size are proposed as follows:

• B/S = 0.5 (→∆wself,c = 15%).
• B/S = 1.0 (→∆wself,c = 20%).
• B/S = 1.5 (→∆wself,c = 30%).
• B/S = 2.0 (→∆wself,c = 40%).

The economic and technical input data used in this analysis are defined in Table 2. The PV
system’s lifetime is estimated at 20 years, the ESS’s useful life is estimated at 6 or 8 years and the
opportunity cost of capital is 5%. The selling of energy not self-consumed is calculated according to
the approach used by the authors of [60]. The value proposed is greater than the market one because it
is considered the contribution related to the net metering scheme which hypothesizes an increase of
the energy price produced and sold to the grid.

Investment costs are defined by the literature review, and similar values are proposed in a real
market. The entire investment cost is covered by third party funds. It is composed of two components:
loan capital share (Clcs) and loan interest share (Clis). The amount of energy produced is calculated
with the approach used by [60].

All input factors of Eout are hypothesized fixed and values chosen according to scientific works.
In particular, new estimates define significant increases of some variables as crystalline PV module
efficiency equal to 20% proposed by Norwegian company REC. At the laboratory level, 21.9% and
21.3% are obtained by Fraunhofer Institute and Trina Solar, respectively [64]. The energy produced by a
plant, located in a territory with a level of insolation of 1300 kWh/(m2·year), is equal to 4195 kWh/year
during the first year and 3602 kWh/year during the twentieth year because an efficiency reduction
factor, is considered. The values of levels insolation are reported in the function of year and for this
motive, and the numbers of working days are included in this parameter.

The PV power output curves play a key role in decision making; in fact, the ability of ESS is to
match the PV power and load of the building [28,65]. This step is fundamental for defining the share
of self-consumption. However, in the context of this work, the approach proposed by the authors
of [34] is adopted. A specific value of the ratio B/S, the value of ∆ωself,c is chosen according to results
proposed by the analysis of different case studies. This limit is exceeded by a dynamic approach in
which both different levels of insolation and several increases of self-consumption are considered [40].
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Table 2. Input data [47,57,66].

Variable Value Variable Value

Acell 7 m2/kWp ηf function of S
B 1.5–3–4.5–6 kWh ηm 16%

Cae 250 € pc
t 19 cent €/kWh

Cb-e,u 155 €/kWh ps
t 9.8–10.9 cent €/kWh

Cb-p,u 155 €/kW PCass 0.4%
Cb,u 70 €/kW PCi 15%
Ceng 165 € PCm 1%
Ci,u 170 €/kW PCtax 43.5%

Cinv,unit 2000 €/kW Pf function of S
Cm,u 22 €/kW r 5%
dEf 0.7% rd 3%
inf 2% rd-ESS 4%

infel 1.5% S 3 kW

kf 1.13 tr
1300–1450–1600
kWh/(m2·year)

N 20 years TaxDu-sr 50%
NB 6–8 years TaxDu-br 36%

Ndebt 15 years Vat 10%
Ndebt-ESS 5 years ωself,c 0–100% (30% baseline)

NTaxD 10 years ωsold 0–100% (70% baseline)
ηbos 85% ∆ωself,c 15–40% (baseline)

4. Results

The aim of this work is to propose an economic analysis of solar PV panels combined with energy
storage in a residential building. Giving the model assumptions and input data defined in the previous
section, NPV and BEP for 3-kW plants are proposed in Figure 2.
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Figure 2. Net Present Value (NPV) (Photovoltaic (PV)) and break-even point (BEP) for 3-kW plant in
baseline scenario. NPV in € and BEP proposed in %.

Italy present different average annual insolation (tr) due to conformation, and for this reason,
three different values are considered in this work [40]:

• Low insolation—1300 kWh/(m2·year).
• Medium insolation—1450 kWh/(m2·year).
• High insolation—1600 kWh/(m2·year).

The financial feasibility of PV plants is verified in the baseline scenario, and the values range from
263 € per kW installed to 750 € per kW installed for the 3-kW plant. BEP analysis proposes the values
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in which the profitability is verified and these values highlight that the idea of implementing a PV
system without self-consumption is not feasible (in fact, in this case NPV is negative). The BEP (in
terms of wself,c) that gives a NPV(PV) equal to 0 € varies from 8% with tr = 1600 kWh/(m2·year) to
18% with tr = 1300 kWh/(m2·year).

After the evaluation of PV investments, the following step is represented by the definition of
economics resulting by the application of an ESS applied to the PV plant (Figure 3).
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Consequently, the decision-maker defines if the revenues derived from the increases of
self-consumption justify or lessen the costs of the ESS that incurred during the lifetime of the PV
system. As defined in Section 3, another item of revenue is the financial advantage linked to the tax
deductions. Its specific value is assumed by policy-makers equal to 50% for investments made in the
year zero and 36% for investments needed to replace batteries.

Typically, a baseline scenario is characterized by individual input data, but this work opts to,
already in this phase, propose alternative case studies. They are equal to seventy-two determined by
combinations of the following variables:

• three levels of insolation.
• two lifetimes of the battery.
• four battery storage capacities.
• three increases of the self-consumption.

This choice is linked to previously published papers. In fact, the literature proposes more
values concerning the lifetime of the battery [40,47,66] and 6 and 8 years are two probable values, as
highlighted in section 3.

In a case study regarding a specific consumer, it is possible to define exactly the sizing of systems
that permits it to maximize technical and economic aspects [67], but this is not true in a generic context.
So, we followed the approach used by the authors of [34], who proposed a value of battery capacity
that ranges from half to double the PV power installed.

Finally, the literature proposes several values also for the increase of the self-consumption [34,35].
The baseline values are increased and decreased by 5%.

The analysis of Figure 3 shows that all case-studies have revenues derived by the application of
an ESS lower than relative costs and consequently, the profitability is never verified. As a result, there
are no economic advantages according to the literature (see Table 1) in this baseline scenario when
it is used with only a 50% subsidized tax deduction. However, other works underline the positive
contribution of these systems:

• For environmental issues, if a grid is not able to absorb all energy produced [68].
• For technological aspects, useful to the development of distributed generation and smart

grids [69].
• For political questions, useful to energy independence [70].

In this step of the work, NPV(PV + ESS) is calculated (Table 3), starting by NPV(PV)—see
Figure 2—and NPV(ESS)—see Figure 3. For example, considering a 3-kW plant with
tr = 1450 kWh/(m2·year) and a 3 kWh battery storage capacity with NB = 6 years, characterized
by an increase of self-consumption equal to 20%, the following financial result is obtained:

NPV(PV+ESS) = NPV(PV) + NPV(ESS) = 1519 € − 2734 € = −1215 € (11)

Table 3. NPV(PV+ESS) in baseline scenario. NPV is in €.

tr = 1300 kWh/(m2·year) tr = 1450 kWh/(m2·year) tr = 1600 kWh/(m2·year)

NB 6 Years 8 Years 6 Years 8 Years 6 Years 8 Years

∆wself,c ESS capacity = 1.5 kWh

10% −1934 −1688 −1128 −882 −322 −76
15% baseline −1784 −1538 −960 −714 −137 109

20% −1633 −1387 −792 −546 48 294
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Table 3. Cont.

tr = 1300 kWh/(m2·year) tr = 1450 kWh/(m2·year) tr = 1600 kWh/(m2·year)

NB 6 Years 8 Years 6 Years 8 Years 6 Years 8 Years

∆wself,c ESS capacity = 3 kWh

15% −2207 −1897 −1383 −1073 −560 −250
20% baseline −2056 −1746 −1215 −905 −375 −65

25% −1552 −1242 −652 −342 247 557

∆wself,c ESS capacity = 4.5 kWh

25% −1975 −1602 −1075 −702 −177 197
30% baseline −1470 −1097 −512 −139 445 818

35% −1143 −770 −147 226 848 1221

∆wself,c ESS capacity = 6 kWh

35% −1566 −1130 −570 −134 425 861
40% baseline −1238 −802 −205 231 828 1264

45% −911 −475 161 597 1231 1667

NPV(PV) 788 1519 2249

NPV(PV+ESS) >0 is denoted in italic. NPV(PV+ESS) > NPV(PV) is underlined and denoted in italic.

The profitability of PV-integrated battery systems is verified in nineteen case-studies (26%).
However, the comparison between two investments alternative (PV or PV-ESS) shows that an investor
opts to install only a PV plant. In fact, NPV(PV+ESS) is always lower than NPV(PV).

This result is determined by negative economic values of ESS. In fact, also the maximum value of
NPV(PV+ESS) equal to 1667 € is lower than NPV(PV) equal to 2249 €. This scenario is verified when
the critical variables assumed the maximum value: the ratio between the kWh battery capacity and the
installed kW is 2, the lifetime of battery is 8 years, the insolation level is 1600 kWh/(m2·year) and the
increase of self-consumption is 45%.

The BEP (in terms of ∆wself,c), that gives a NPV(ESS) equal to 0 €, assumes the following min–max
values—Figure 4:

• 39–52% with the ratio B/S = 0.5 (the baseline value is equal to 15%).
• 43–58% with the ratio B/S = 1.0 (the baseline value is equal to 20%).
• 48–>70% with the ratio B/S = 1.5 (the baseline value is equal to 30).
• 52–>70% with the ratio B/S = 2.0 (the baseline value is equal to 40%).

Sustainability 2018, 10, x FOR PEER REVIEW  10 of 28 

25% −1975 −1602 −1075 −702 −177 197 
30% baseline −1470 −1097 −512 −139 445 818 

35% −1143 −770 −147 226 848 1221 
∆wself,c ESS capacity = 6 kWh 
35% −1566 −1130 −570 −134 425 861 

40% baseline −1238 −802 −205 231 828 1264 
45% −911 −475 161 597 1231 1667 

NPV(PV) 788 1519 2249 
NPV(PV+ESS) >0 is denoted in italic. NPV(PV+ESS) > NPV(PV) is underlined and denoted in italic. 

The profitability of PV-integrated battery systems is verified in nineteen case-studies (26%). 
However, the comparison between two investments alternative (PV or PV-ESS) shows that an 
investor opts to install only a PV plant. In fact, NPV(PV+ESS) is always lower than NPV(PV).  

This result is determined by negative economic values of ESS. In fact, also the maximum value 
of NPV(PV+ESS) equal to 1667 € is lower than NPV(PV) equal to 2249 €. This scenario is verified when 
the critical variables assumed the maximum value: the ratio between the kWh battery capacity and 
the installed kW is 2, the lifetime of battery is 8 years, the insolation level is 1600 kWh/(m2·year) and 
the increase of self-consumption is 45%. 

The BEP (in terms of ∆wself,c), that gives a NPV(ESS) equal to 0 €, assumes the following min–
max values—Figure 4:  

• 39–52% with the ratio B/S = 0.5 (the baseline value is equal to 15%). 
• 43–58% with the ratio B/S = 1.0 (the baseline value is equal to 20%). 
• 48–>70% with the ratio B/S = 1.5 (the baseline value is equal to 30). 
• 52–>70% with the ratio B/S = 2.0 (the baseline value is equal to 40%). 

 

Figure 4. BEP for integrated PV-ESS in baseline scenario. BEP is in %. 

From one side, the profitability is not verified in three case-studies also when all energy 
produced is stored (>70%). In fact, the maximum increase is equal to 70% considering that the initial 
self-consumption is equal to 30%.  

From the other side, the difference between baseline value and percentages reported in Figure 3 
is almost equal to 12% (given by the difference between 52% and 40%), when a capacity battery of 6 
kWh is considered. This value become 18%, 23% and 24% when a capacity battery of 4.5 kWh, 3 kWh 
and 1.5 kWh, respectively, is evaluated. Values obtained are always greater than the baseline ones 
and the profitability is verified only with significant increases of self-consumption. 

The consumer uses directly the electricity generated by a PV plant, when its demand is required 
during the solar production. If the electricity generation exceeds the household consumptions, it is 
either stored for later consumption or sold to the grid if the storage is loaded. Consequently, the 
increases of self-consumption are verified, when the energy demand is not concentrated in periods 
with low peaks of the energy supply.  

52 48 46 43 42 39

58 53 52 48 47 43

>70
59 58 53 52 48

>70 >70 70
58 58

52

ESS capacity = 1.5 kWh   
∆wself,c = 15% (baseline)

ESS capacity = 4.5 kWh 
∆wself,c = 30% (baseline)

ESS capacity = 6 kWh  
∆wself,c = 40% (baseline)

ESS capacity = 3 kWh
∆wself,c = 20% (baseline)

Medium insolation
NB 6 y   8 y    6 y   8 y   6 y   8 y   6 y   8 y   6 y   8 y    6 y   8 y   6 y   8 y   6 y   8 y   6 y   8 y   6 y   8 y   6 y   8 y   6 y   8 y    

Low insolation tr = High insolation

Figure 4. BEP for integrated PV-ESS in baseline scenario. BEP is in %.



Sustainability 2018, 10, 3117 11 of 29

From one side, the profitability is not verified in three case-studies also when all energy
produced is stored (>70%). In fact, the maximum increase is equal to 70% considering that the
initial self-consumption is equal to 30%.

From the other side, the difference between baseline value and percentages reported in Figure 3 is
almost equal to 12% (given by the difference between 52% and 40%), when a capacity battery of 6 kWh
is considered. This value become 18%, 23% and 24% when a capacity battery of 4.5 kWh, 3 kWh and
1.5 kWh, respectively, is evaluated. Values obtained are always greater than the baseline ones and the
profitability is verified only with significant increases of self-consumption.

The consumer uses directly the electricity generated by a PV plant, when its demand is required
during the solar production. If the electricity generation exceeds the household consumptions, it is
either stored for later consumption or sold to the grid if the storage is loaded. Consequently, the
increases of self-consumption are verified, when the energy demand is not concentrated in periods
with low peaks of the energy supply.

Finally, if the consumer uses electricity in the periods of greatest solar productivity, the profitability
of investments is characterized by more consistent returns. However, in this situation there is no
need to store energy produced and consequently there is also a reduction of the advantage linked to
the installation of an ESS. The same is verified also when the consumer uses intelligent machinery.
This section proposes several case studies and the following step aims to extend the number of
scenarios evaluated.

5. Sensitivity Analysis

NPV results are based on the assumptions of a set of input variables. Hence, a variance of the
expected NPV could occur. This limitation can be overcome by implementing a sensitivity analysis on
the critical variables [71]. This section is subdivided as follows:

1. The variations of costs regarding ESS.
2. The application of subsidies to ESS.
3. The variation of revenues and costs regarding PV system.

5.1. Energy Storage System—Costs

Starting with the proposition that two critical variables regarding ESS are been already evaluated
in the baseline scenario (the lifetime of the battery and battery storage capacities), in this sub-section
the role of investment costs of the storage is evaluated [47,66]. Two alternative and optimistic scenarios
are proposed as follows:

• A reduction of 10% (scenario Clow−opt
inv,ESS ).

• A reduction of 20% (scenario Chigh−opt
inv,ESS ).

This step of the work considers forty-eight case-studies determined by combinations of the
following variables:

• Three levels of insolation.
• Two lifetimes of the battery.
• Four battery storage capacities.
• Two estimations of the battery cost.

The increase of the self-consumption is hypothesized fixed and it is equal to the baseline value.
This limit is exceeded by the BEP analysis that will be proposed in the following step of this manuscript.
According to previous approach, the economics of ESS (Figure 5) and the financial feasibility of
integrated PV-ESS (Table 4) are proposed separately.
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Table 4. Sensitivity analysis of ESS (costs). NPV(PV+ESS) is in €.

tr = 1300 kWh/(m2·year) tr = 1450 kWh/(m2·year) tr = 1600 kWh/(m2·year)

NB 6 Years 8 Years 6 Years NB 6 Years 8 Years

ESS capacity = 1.5 kWh (∆wself,c = 15%)

Clow−opt
inv,ESS −1574 −1353 −750 −529 73 294

Chigh−opt
inv,ESS −1365 −1168 −541 −344 282 479

ESS capacity = 3 kWh (∆wself,c = 20%)

Clow−opt
inv,ESS −1804 −1525 −963 −684 −123 156

Chigh−opt
inv,ESS −1552 −1304 −711 −463 129 377

ESS capacity = 4.5 kWh (∆wself,c = 30%)

Clow−opt
inv,ESS −1176 −840 −218 118 739 1075

Chigh−opt
inv,ESS −882 −583 76 375 1033 1332

ESS capacity = 6 kWh (∆wself,c = 40%)

Clow−opt
inv,ESS −901 −509 132 524 1165 1557

Chigh−opt
inv,ESS −565 −216 468 817 1501 1850

NPV(PV) 788 1519 2249

NPV(PV+ESS) > 0 is denoted in italic. NPV(PV+ESS) > NPV(PV) is underlined and denoted in italic.

A reduction of 10% investment costs (scenario Clow−opt
inv,ESS ) gives an increase of NPV in a range that

varies from 185 € with an ESS storage capacity of 1.5 kWh to 337 € with an ESS storage capacity of
6 kWh. When, instead, it shows a reduction of 20% (scenario Chigh−opt

inv,ESS ), and the increase of NPV varies
from 419 € to 673 €.

The negative results obtained in Figure 5 indicate that the increase of self-consumption leads
to an increase of revenues smaller than the relative costs. In particular, NPV(ESS) has its maximum
value equal to −399 € when is considered the Chigh−opt

inv,ESS scenario with S = 3 kW, B = 6 kWh,
tr = 1600 kWh/(m2·year), NB = 8 years and ∆wself,c = 40% (see Figure 5). This value was, instead, equal
to −985 € in the baseline scenario (see Figure 3).

A 3-kW plant combined with energy storage is profitable in twenty-two case-studies (46%) and it
is never verified with low levels of insolation (tr = 1300 kWh/(m2·year)). As in the baseline scenario,
the consumer never opts to install integrated PV-ESS. In fact, the maximum value of NPV(PV+ESS)
equal to 1850 € is lower than NPV(PV) equal to 2249 €.

The BEP (in terms of ∆wself,c) concerning scenarios Clow−opt
inv,ESS (Figure 6) and Chigh−opt

inv,ESS (Figure 7)
assumes the following min–max values:

• 34–48% with the ratio B/S = 0.5 (the baseline value is equal to 15%).
• 38–54% with the ratio B/S = 1.0 (the baseline value is equal to 20%).
• 41–61% with the ratio B/S = 1.5 (the baseline value is equal to 30%).
• 45–>70% with the ratio B/S = 2.0 (the baseline value is equal to 40%).
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inv,ESS ). BEP for integrated PV-ESS—BEP is in %.

Lower battery costs than the baseline scenario ones have the effect of reducing the BEP values.
The difference between baseline value and percentage obtained in previous figures is almost equal to
5% (calculated as difference between 45% and 40%), 11%, 18% and 19%, when ESSs with a capacity
battery of 6 kWh, 4.5 kWh, 3 kWh and 1.5 kWh, respectively, are evaluated. Consequently, for the first
two sizes, there is a reduction of seven point percentages compared to the baseline scenario, while it is
equal to five point percentages for the other two sizes. Only one scenario has an ∆wself,c > 70%.

5.2. Energy Storage System—Subsidies

As highlighted in Section 2, the role of subsidies is able to support the economic feasibility of ESS
in residential applications.

The subsidy chosen is the one used by the Lombardy (the first region in Italy that has implemented
this incentivizing scheme). It provides funds non-repayable of up to 50% of the investments costs
incurred for the installation of ESS during the initial phase of the project (year zero). Alternately,
the same economic value is distributed in five constant rates during the first year of the project [57].
Consequently, two alternative scenarios are proposed in this sub-section:

• scenario Rcon
ESS, in which subsidies are concentrated. In this scenario, another revenue equal to

(50% ·Cinv,ESS) must be added in Equation (8).
• scenario Rdis

ESS, in which subsidies are distributed. In this scenario, another revenue equal
(∑4

t=0((50% ·Cinv,ESS)/5)/(1 + r)t) must be added in Equation (8).

Also, this analysis considers forty-eight case-studies determined by combinations of the
following variables:
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• three levels of insolation.
• two lifetimes of the battery.
• four battery storage capacities.
• two estimations of subsidies.

The role of the increase of the self-consumption will be analyzed in BEP analysis. Also, in this
step of the work, economics of ESS (Figure 8) and the financial feasibility of integrated PV-ESS (Table 5)
are proposed separately.
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Figure 8. Sensitivity analysis of ESS (subsidies). NPV(ESS) is in €. S(α) = scenario Rcon
ESS.

S(β) = scenario Rdis
ESS.

Table 5. Sensitivity analysis of ESS (subsidies). NPV(PV+ESS) is in €.

tr = 1300 kWh/(m2·year) tr = 1450 kWh/(m2·year) tr = 1600 kWh/(m2·year)

NB 6 Years 8 Years 6 Years NB 6 Years 8 Years

ESS capacity = 1.5 kWh (∆wself,c = 15%)

Scon
ESS −914 −667 −90 157 733 980

Ssub
ESS −993 −746 −169 78 654 901

ESS capacity = 3 kWh (∆wself,c = 20%)

Scon
ESS −1058 −748 −217 93 623 933

Ssub
ESS −1148 −839 −307 2 533 842

ESS capacity = 4.5 kWh (∆wself,c = 30%)

Scon
ESS −344 29 614 987 1571 1944

Ssub
ESS −446 −73 512 885 1469 1842

ESS capacity = 6 kWh (∆wself,c = 40%)

Scon
ESS 16 452 1049 1485 2082 2518

Ssub
ESS −98 338 935 1371 1968 2404

NPV(PV) 788 1519 2249

NPV(PV+ESS) > 0 is denoted in italic. NPV(PV+ESS) > NPV(PV) is underlined and denoted in italic.

The adoption of subsidies permits to reach a significant increase of NPV than the baseline scenario.
It ranges from 871 € to 1254 € for ESS storage capacity of 1.5 kWh and 6 kWh considering the subsidies
provided in one rate, respectively. However, it varies from 792 € to 1140 € when the subsidies are
distributed in five constant rates. The economic feasibility of ESS-PV project is verified in thirty-two
case-studies (67%).

This analysis provides two case-studies in which the profitability of integrated PV-ESS project is
greater than one of the PV projects. A total of 2518 € (scenario Scon

ESS) and 2404 € (scenario Ssub
ESS) with an

ESS storage capacity of 6 kWh and the lifetime of 8 years in territories with high level of insolation
(tr = 1600 kWh/(m2·year)) are greater than 2249 € (see Figure 2). This result depends by the positive
value linked to the adoption of ESS (see Figure 8).

In fact, for the first time in this work, NPV(ESS) is positive in two case-studies previously defined.
Furthermore, the losses linked to this choice are low (from−34 € to−281 €) in the situations concerning
scenarios Scon

ESS and Ssub
ESS with an ESS storage capacity of 6 kWh and: (i) 6 years useful lifetime of ESS

in territories with tr = 1600 kWh/(m2·year), or (ii) 8 years useful lifetime of ESS in territories with
tr = 1450 kWh/(m2·year).
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The BEP analysis can be useful to define exactly the values of increase of self-consumption
(∆wself,c) that permits to reach the profitability. This analysis is conducted for scenarios Scon

ESS (Figure 9)
and Ssub

ESS (Figure 10). It assumes the following min-max values:

• 28–39% with the ratio B/S = 0.5 (the baseline value is equal to 15%).
• 31–44% with the ratio B/S = 1.0 (the baseline value is equal to 20%).
• 34–56% with the ratio B/S = 1.5 (the baseline value is equal to 30%).
• 37–61% with the ratio B/S = 2.0 (the baseline value is equal to 40%).
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BEP analysis confirms the key-role of subsidies; in fact, the application of an incentive scheme
permits a significant reduction of BEP values. Excluding two case-studies previously defined, in which
BEP varies from 37% to 38% (lower than 40%) and consequently with an NPV(PV+ESS) > NPV(PV),
the difference between the baseline value and the percentage obtained in the previous figure is almost
equal to 2% (obtained with the difference between 42% and 40%), 4%, 11% and 13%, when ESSs with a
capacity battery of 6 kWh, 4.5 kWh, 3 kWh and 1.5 kWh, respectively, are evaluated.

5.3. Photovoltaic System

In this sub-section variations of the critical variables concerning the PV system are proposed [40].
The following scenarios are analyzed—Figure 11:

• pc,pes
t and pc,opt

t , where the electricity purchase price is equal to 17 cent €/kWh and
21 cent €/kWh, respectively.

• ps,opt
t and ps,pes

t , where the electricity sales price is equal to 12–13 cent €/kWh and
8–9 cent €/kWh, respectively.



Sustainability 2018, 10, 3117 18 of 29

• Clow−opt
inv,unit and Chigh−opt

inv,unit , where the specific investment cost is equal to 1800 €/kW and
1600 €/kW, respectively.

• TaxDu-br, where the specific tax deduction is equal to 36%.
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Figure 11. Sensitivity analysis of PV system. NPV(PV) is in €. S(I) = scenario pc,pes
t . S(II) = scenario

pc,opt
t . S(III) = scenario ps,opt

t . S(IV) = scenario ps,opt
t . S(V) = scenario Clow−opt

inv,unit . S(VI) = scenario

Chigh−opt
inv,unit . S(VII) = scenario TaxDu−br.

The profitability of PV plants is always verified, as highlighted in Figure 2.
From one side, the greatest positive changes of NPV are generated by a reduction of 20% of

investment costs and it is equal to 353 € per kW installed. From the other side, the greatest negative
variation of NPV is verified if the legislator opts to set the specific tax deduction equal to 36% (in fact,
the baseline scenario provides a value equal to 50%, that is a policy support to the PV market). It is
equal to 238 € per kW installed. Consequently, also the increases of self-consumption present different
values in financial terms and therefore the economics of ESS are modified.

This analysis considers one hundred and sixty-eight case-studies determined by combinations of
the following variables:

• Three levels of insolation.
• Two lifetimes of the battery.
• Four battery storage capacities.
• Seven PV business case studies.

Figure 12 proposes the economics of ESS, and the profitability of integrated PV-battery systems is
defined in Table 6.
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t ; S(II) = scenario

pc,opt
t ; S(III) = scenario ps,opt

t ; S(IV) = scenario ps,opt
t ; S(V) = scenario Clow−opt

inv,unit ; S(VI) = scenario Chigh−opt
inv,unit ;

S(VII) = scenario TaxDu−br.
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Table 6. Sensitivity analysis of PV system. NPV(PV+ESS) is in €.

tr = 1300 kWh/(m2·year) tr = 1450 kWh/(m2·year) tr = 1600 kWh/(m2·year)

NB 6 Years 8 Years 6 Years NB 6 Years 8 Years

ESS capacity = 1.5 kWh

pc,pes
t −2315 −2069 −1553 −1307 −791 −545

pc,opt
t −1252 −1006 −368 −122 518 764

ps,opt
t −1170 −924 −276 −30 619 865

ps,pes
t −2001 −1755 −1203 −957 −405 −159

Clow−opt
inv,unit −1254 −1008 −431 −185 393 639

Chigh−opt
inv,unit −725 −479 99 345 923 1169

TaxDu−br −2497 −2251 −1674 −1428 −850 −604

ESS capacity = 3 kWh

pc,pes
t −2646 −2336 −1874 −1564 −1101 −791

pc,opt
t −1466 −1156 −557 −247 352 662

ps,opt
t −1310 −1000 −383 −73 544 854

ps,pes
t −2056 −1746 −1215 −905 −375 −65

Clow−opt
inv,unit −1527 −1217 −686 −376 155 465

Chigh−opt
inv,unit −998 −688 −157 153 685 995

TaxDu−br −2769 −2459 −1929 −1619 −1088 −778

ESS capacity = 4.5 kWh

pc,pes
t −2178 −1805 −1302 −929 −427 −54

pc,opt
t −761 −388 278 651 1316 1689

ps,opt
t −1168 −795 −176 197 816 1189

ps,pes
t −1743 −1370 −817 −444 109 482

Clow−opt
inv,unit −940 −567 17 390 974 1347

Chigh−opt
inv,unit −411 −38 546 919 1504 1877

TaxDu−br −2183 −1810 −1226 −853 −269 104

ESS capacity = 6 kWh

pc,pes
t −2064 −1628 −1127 −691 −189 247

pc,opt
t −411 25 717 1153 1845 2281

ps,opt
t −1026 −590 32 468 1089 1525

ps,pes
t −1429 −993 −419 17 592 1028

Clow−opt
inv,unit −708 −272 324 760 1357 1793

Chigh−opt
inv,unit −179 257 853 1289 1887 2323

TaxDu−br −1951 −1515 −918 −482 114 550

NPV(PV+ESS) > 0 is denoted in italic. NPV(PV+ESS) > NPV(P V) is underlined and denoted in italic.

The profitability of integrated PV-ESS is verified only in sixty-one case-studies (36%). However,
in these results also, the consumer will prefer to install only a PV plant. The maximum NPV(PV+ESS)
is equal to 2323 € in Chigh−opt

inv,unit scenario, which is lower than NPV(PV) equal to 3308 € reported in

Figure 11. Furthermore, it can be seen that three scenarios (Clow−opt
inv,unit , Chigh−opt

inv,unit and TaxDu−br) have the
same variation due to mathematical model proposed in Table 2, in which there is a linear relationship
among the variables examined.

The analysis of PV business case studies shows that the greatest variation is verified with ps,pes
t

scenario, if ESS capacity is equal to 1.5 kWh or 3 kWh, while for other two sizes (4.5 kWh and 6 kWh)
it is linked to pc,opt

t scenario. A defined ESS’ size able to use stored energy reaches better financial
performances, when is evaluated against an increase of the energy bill cost. In fact, the application of
integrated PV-battery systems allows for avoiding these costs.
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The advantages of self-consumption can be obtained also through the reduction of the selling
price of energy (that is lower than the electricity purchase price in the baseline scenario, see Table 2).
For example, a 3-kW plant with tr = 1450 kWh/(m2·year) has an increase of NPV equal to 1329 € and
1643 € when is hypothesized a ∆wself,c = 20% in pc,opt

t and ps,pes
t scenario, respectively. Instead, if

∆wself,c = 40% there is an opposite situation: an increase of NPV equal to 4311 € in pc,opt
t scenario, that

is higher than 4106 € in ps,pes
t scenario.

The BEP (in terms of ∆wself,c), concerning scenarios pc,pes
t (Figure 13), pc,opt

t (Figure 14), ps,opt
t

(Figure 15), ps,pes
t (Figure 16), Clow−opt

inv,unit , Chigh−opt
inv,unit and TaxDu−br (Figure 17), assumes the following

min–max values:

• 33–48% with the ratio B/S = 0.5 (the baseline value is equal to 15%).
• 37–54% with the ratio B/S = 1.0 (the baseline value is equal to 20%).
• 41–61% with the ratio B/S = 1.5 (the baseline value is equal to 30%).
• 45–>70% with the ratio B/S = 2.0 (the baseline value is equal to 40%).
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Figure 17. Sensitivity analysis (scenarios Clow−opt
inv,unit , Chigh−opt

inv,unit and TaxDu−br). BEP for integrated PV-ESS.
BEP is in %.

The difference between the baseline value and the percentage obtained in previous figures is
almost equal to 4% (calculated as difference between 44% and 40%), 10%, 17% and 18%, when ESSs with
a capacity battery of 6 kWh, 4.5 kWh, 3 kWh and 1.5 kWh, respectively, are evaluated. These values are
present in pc,opt

t scenario. In fact, the increases of avoided costs in energy bills favors investments in
the PV sector. Thirty-two case-studies have a value greater than 70% and consequently the profitability
is never reached.
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6. Discussion

Some citizens, researchers and policy-makers have criticized the subsidies given to PV sources.
The development of this sector (which, among renewable resources, presents the first growth rate in
recent years) and its diffusion in all countries (also if the current installed PV power is concentrated
only in some territories) confirm the advantages linked to the use of solar energy.

Environmental improvements are defined by the significant reduction of GHG emissions than
the use of fossil fuels and in addition, the Paris Agreement requires new actions to be implemented.
The PV source plays a key-role in the transition towards a low-carbon society in the residential sector.
All citizens can contribute to reach this goal, and at the same time, new business models are proposed
(e.g., prosumer).

The reduction of costs has made photovoltaic power into a competitive resource. The International
Energy Agency Report 2015 has defined the costs of generating electricity for several energy resources.
Considering OECD countries, LCOE for solar PV residential varies from 0.09 €/kWh to 0.34 €/kWh.
Instead, the range of values for natural gas and coal is equal to 0.06–0.13 €/kWh and 0.06–0.11 €/kWh,
respectively. The authors have observed as the cheapest technology changes in function of several
conditions. At the same time, PV source is competitive with other resources and the technological
development is able to reduce its LCOE.

This study has proposed a quantitative analysis regarding the application of ESS applied to PV
plants. Literature analysis proposes several works on this topic and this can be read from two points
of view. The first, that ESS is a topic extremely useful to the energy sector towards the development
of decentralized energy systems and smart grids. The second, that new economic analysis are useful
because the development of ESS is currently not high and several works try to show which conditions
are required for profitability.

The intermittent nature of the PV source is a limit, and technological solutions able to synchronize
supply and demand of energy are useful. The application of ESS moves towards this direction.
However, also the use of intelligent machinery and/or a greater attention of consumer to use them
during high peaks of the solar production permit to reach this goal.

Some countries have adopted subsidies for ESS. This work does not examine the adequacy of
this choice that can be supported by a Cost-Benefit Analysis. This work proposes a DCF analysis in
order to consider only cash flows and not the economic value of externalities. The production of ESSs
determine certainly the release of GHG emissions and its environmental benefit is verified when the
grid is not able to absorb all the energy produced.

Results obtained in this work confirm ones reported in literature review (see Section 2). In fact,
the profitability of integrated PV-ESS is verified in several case studies but their NPV is lower than
one obtained by the same PV plant. In this way, consumers opt to install only PV plant because is a
profitable project and at the same time can support the contrast to climate change.

Their profitability is increased when the share of self-consumption reaches higher values and
the economic advantages of ESS depends by several conditions. In fact, using only the subsidized
fiscal rate equal to 50% (instead of 36), the integrated system is not interesting from an economic
point of view. A BEP analysis defines the exact value of increase of the share of self-consumption
following the adoption of ESS to make the integrated PV-ESS system more convenient than PV one.
Also, the application of new subsidies, e.g., funds non-repayable given to consumers in function of
investment costs incurred, that can be proposed in one initial rate or in five constant rates can support
the development of the sector, but this political choice should be justified also from a social perspective.
At the same time, a reduction of investment costs and an adequate value of ESS size can increase the
profitability of integrated PV-battery systems.

7. Conclusions

PV power source is a strategic player in the global electricity market. The current electricity
transition is driven by increases in installed capacity of solar PV (+99 GW in 2017 with an increase of



Sustainability 2018, 10, 3117 24 of 29

32.7% from 2016). This work confirms that the profitability of PV plants or PV-battery systems depends
strictly by the share of self-consumption.

A well-known methodology (DCF) is applied and the profitability of PV plants is verified in
several scenarios. In fact, BEP analysis defines that for a 3-kW plant NPV is equal to 0 when the share
of self-consumption varies from 8% to 18% in function of levels of insolation. Currently, several works
in the literature use a baseline scenario in which this value is assumed equal to 30%. NPV varies from
263 to 750 € per kW installed and alternative scenarios give solidity to results obtained (NPV can be
also equal to 1103 € per kW installed). These results show that the PV systems are profitable also in a
market without direct subsidies, as FIT but using a subsidized fiscal deduction equal to 50% (instead
of 36%).

The following step of the work is to evaluate the economic result following the application of
lead-acid batteries. An integrated PV battery system is profitable in some scenarios, but its profitability
is almost always lower than one of PV plant. In fact, NPV(PV+ESS) is greater than NPV(PV) only in
two scenarios (in which subsidies are provided). Regarding the variables of ESS there is an increase of
NPV, when the plant is installed in a territory with high levels of insolation, with a greater lifetime of
batteries and with an adequate capacity of ESS.

The unprofitable result that confirms the literature review not depends only by high costs of
investment, but also by uncertainty regarding the increase of energy self-consumption. For this motive,
a BEP analysis tries to support this limit. This value must be at least equal to 39%, 43%, 48% and 52%
with an ESS of 0.5, 1.0, 1.5 and 2.0 kWh per installed kW of PV power, respectively. In the last case,
considering a baseline value in which wself,c is equal to 40% a difference of 12% is detected. Alternative
scenarios confirm this trend and the results more convenient are obtained when the subsidies are
applied. The minimum values (∆wself,c) obtained are equal to 28%, 31%, 34% and 37%, with an ESS of
0.5, 1.0, 1.5 and 2.0 kWh per installed kW of PV power, respectively.

PV plants is always profitable in scenarios analyzed in this work, while when is applied an ESS,
only 40% of scenarios have a positive NPV. The comparison between two typologies of investment
shows that only in 2 of 336 case studies examined (0.006%), integrated PV-ESS project is more profitable
than PV system.
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Abbreviations

% percentage
Acell active surface
B battery storage capacity
BEP break-even point
bos balance of system
Cae administrative and electrical connection cost
Cb,u specific battery cost (bos)
Cb-e,u specific battery cost (energy)
Cb-p,u specific battery cost (power)
Ceng engineering cost
Ci,u specific inverter cost
Cinv total investment cost
Cinv,ESS total investment cost of ESS
Cinv,unit specific investment cost
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Chigh−opt
inv,ESS total investment cost of ESS (high optimistic scenario)

Clow−opt
inv,ESS total investment cost of ESS (low optimistic scenario)

Chigh−opt
inv,unit specific investment cost (high optimistic scenario)

Clow−opt
inv,unit specific investment cost (low optimistic scenario)

Clcs loan capital share cost
Clis loan interest share cost
Cm,u specific maintenance cost
Crb replacement battery cost
DCF discounted cash flow
DCI discounted cash inflow
DCO discounted cash outflow
dEf decreased efficiency of a system
EOut energy output of the system
ESS energy storage system
FIT Feed-in Tariff
GHG greenhouse gas
GW gigawatt
inf rate of inflation
infel rate of energy inflation
kf optimum angle of tilt
LCOE levelized cost of electricity
N lifetime of a PV system
NB lifetime of an ESS
Ndebt period of loan
NTaxD period of tax deduction
NPV net present value
NPV(PV) NPV of PV system
NPV(ESS) NPV of storage system
NPV(PV+ESS) NPV of integrated PV battery system
opt optimistic
ηbos balance of system efficiency
ηf number of PV modules to be installed
ηm module efficiency
pc electricity purchase price (baseline)
pc,opt

t electricity purchase price (optimistic scenario)
pc,pes

t electricity purchase price (pessimistic scenario)
ps electricity sales price (baseline)
ps,opt

t electricity sales price (optimistic scenario)
ps,pes

t electricity sales price (pessimistic scenario)
PCass percentage of assurance cost
PCi percentage of inverter cost
PCm percentage of maintenance cost
PCtax percentage of taxes cost
Pf nominal power of a PV module
pes pessimistic
PV photovoltaic
r opportunity cost of capital
rd interest rate on a loan (PV)
rd-ESS interest rate on a loan (ESS)
Rcon

ESS scenario with subsidies concentrated in one rate
Rdis

ESS scenario with subsidies distributed in five rates
RES renewable energy source
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S size of a PV system
SPel sale of energy
t single period
TaxDu-br specific tax deduction (baseline rate)
TaxDu-sr specific tax deduction (subsidized rate)
tr average annual insolation
wself,c percentage of energy self-consumption
wsold percentage of the produced energy sold to the grid
∆wself,c increase of self-consumption
Vat value added tax
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