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Introduction

Multi-body systems (MSs) are assemblies composed of multiple bodies (either
rigid or structurally flexible) connected among each other by means of mechanical
joints. In many engineering fields (such as aerospace, aeronautics, robotics, machin-
ery, military weapons and bio-mechanics) a large number of systems (e.g. space
robots, aircraft, terrestrial vehicles, industrial machinery, launching systems) can
be included in this category. The dynamic characteristics and performance of such
complex systems need to be accurately and rapidly analyzed and predicted. Taking
this engineering background into consideration, a new branch of study, named as
Multi-body Systems Dynamics (MSD), emerged in the 1960s and has become an
important research and development area in modern mechanics; it mainly addresses
the theoretical modeling, numerical analysis, design optimization and control for
complex MSs. The research on dynamics modeling and numerical solving techniques
for rigid multi-body systems has relatively matured and perfected through the de-
velopments over the past half century. However, for many engineering problems, the
rigid multi-body system model cannot meet the requirements in terms of precision.
It is then necessary to consider the coupling between the large rigid motions of the
MS components and their elastic displacements; thus the study of the dynamics
of flexible MSs has gained increasing relevance [1]-[14]. The flexible MSD involves
many theories and methods, such as continuum mechanics, computational mechanics
and nonlinear dynamics, thus implying a higher requirement on the theoretical
basis. Robotic on-orbit operations for servicing, repairing or de-orbiting existing
satellites are among space mission concepts expected to have a relevant role in a close
future [15]. In particular, many studies have been focused on removing significant de-
bris objects from their orbit [16, 17]. While mission designs involving tethers [18, 19],
nets, harpoons or glues are among options studied and analyzed by the scientific and
industrial community, the debris removal by means of robotic manipulators seems to
be the solution with the longest space experience. In fact, robotic manipulators are
now a well-established technology in space applications as they are routinely used for
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handling and assembling large space modules and for reducing human extravehicular
activities on the International Space Station [20, 21, 22]. The operations are gener-
ally performed in a tele-operated approach, where the slow motion of the robotic
manipulator is controlled by specialized operators on board of the space station or
at the ground control center. Grasped objects are usually cooperative, meaning they
are capable to re-orient themselves or have appropriate mechanisms for engagement
with the end-effectors of the manipulator (i.e. its terminal parts). On the other hand,
debris removal missions would target objects which are often non-controlled and
lacking specific hooking points. Moreover, there would be a distinctive advantage
in terms of cost and reliability to conduct this type of mission profile in a fully
autonomous manner, as issues like obstacle avoidance could be more easily managed
locally than from a far away control center. Space Manipulator Systems (SMSs) are
satellites made of a base platform equipped with one or more robotic arms. A SMS
is a floating system because its base is not fixed to the ground like in terrestrial
manipulators; therefore, the motion of the robotic arms affects the attitude and
position of the base platform and vice versa. This reciprocal influence is denoted
as “dynamic coupling” and makes the dynamics modeling and motion planning of
a space robot much more complicated than those of fixed-base manipulators [23].
Indeed, SMSs are complex systems whose dynamics modeling requires appropriate
theoretical and mathematical tools. The growing importance SMSs are acquiring
is due to their operational ductility as they are able to perform complicated tasks
such as repairing, refueling, re-orbiting spacecraft, assembling articulated space
structures and cleaning up the increasing amount of space debris [15, 16]. SMSs
have also been employed in several rendezvous and docking missions. They have
also been the object of many studies which verified the possibility to extend the
operational life of commercial and scientific satellites by using an automated servicing
spacecraft dedicated to repair, refuel and/or manage their failures (e.g. DARPA’s
Orbital Express and JAXA’s ETS VII). Furthermore, Active Debris Removal (ADR)
via robotic systems is one of the main concerns governments and space agencies
have been facing in the last years. As a result, the grasping and post-grasping
operations on non-cooperative objects are still open research areas facing many
technical challenges [15]: the target object identification by means of passive [24] or
active [25] optical techniques, the estimation of its kinematic state [26], the design
of dexterous robotic manipulators [27, 28] and end-effectors [29, 30], the multi-body
dynamics analysis [31], the selection of approaching and grasping maneuvers [32] and
the post-grasping mission planning [33, 34] are the main open research challenges in
this field.
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The missions involving the use of SMSs are usually characterized by the following
typical phases:

1. Orbital approach;

2. Rendez-vous;

3. Robotic arm(s) deployment;

4. Pre-grasping;

5. Grasping and post-grasping operations.

This thesis project will focus on the last three. The manuscript is structured as
follows: Chapter 1 presents the derivation of a multi-body system dynamics equations
further developing them to reach their Kane’s formulation; Chapter 2 investigates two
different approaches (Particle Swarm Optimization and Machine Learning) dealing
with a space manipulator deployment maneuver; Chapter 3 addresses the design of
a combined Impedance+PD controller capable of accomplishing the pre-grasping
phase goals and Chapter 4 is dedicated to the dynamic modeling of the closed-loop
kinematic chain formed by the manipulator and the grasped target object and to
the synthesis of a Jacobian Transpose+PD controller for a post-grasping docking
maneuver. Finally, the concluding remarks summarize the overall thesis contribution.
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Chapter 1

Space Manipulator Systems
modeling

The dynamics equations of a SMS and a target object can be obtained by means
of a multibody formulation [8]. It is well known that the choice of the parameters
that describe the kinematics of a multibody system leads to different sets of dynamics
equations. In fact, by using the so called Eulerian approach, the motion of each
individual member is described through kinematic parameters: (a) position of its
center of mass with respect to an inertial reference frame, (b) attitude variables with
respect to an inertial reference frame. It should be noted, however, that the above-
described motion parameters are redundant. For this reason, the following must be
introduced: (a) reactions between members, (b) equations of compatibility of the
same number of reactions. In summary, (i) the set of unknowns is: motion parameters,
reactions, control actions, (ii) the equations are those of equilibrium, compatibility
and control. Control is introduced by prescribing the motion of some members
and enforced by control forces and/or torques (of course, since the target object is
non-cooperative, control regards only the SMS). In the Lagrangian approach the
selected motion parameters are already consistent with the compatibility conditions.
In this case, the expressions of kinetic, potential and elastic energy and the work of
non-conservative forces are written and the application of Lagrangian techniques
directly provides the solving system. No reactions and compatibility equations
appear here; however, for control purposes, prescribed motion laws must again be
introduced [35]. In this work the procedure to obtain the governing equations of the
SMS and the target object is based on Kane’s formulation [36]. Next, the necessary
steps to derive the dynamics equations in Kane’s form will be shown.
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1.1 Dynamics equations as a constrained optimization
problem

By indicating with X the vector of state variables and with V the vector
containing the time derivatives of the state variables, under the hypothesis of
conservative forces, the Lagrangian function

L(X,V ) = T (X,V )− U(X) (1.1)

is defined, where T is the kinetic energy and U is the potential energy from which
the forces are derived. Hamilton’s Principle, equivalent to that of the Virtual Works,
states that in a dynamic system the action functional

A =
∫ tf

t0
L(X,V ) dt (1.2)

is minimized. Before addressing this problem, some basic concepts of variational
calculus are reviewed in the following.

1.1.1 Minimization of a function

Consider a function of n variables L(X) = L(x1, . . . , xn); its minimum is found
by imposing

∂L

∂X
= 0 (1.3)

Eq. (1.3) represents a necessary condition.

1.1.2 Minimization of a function subject to a constraint

Consider a function of n + m variables L(X,u) = L(x1, . . . , xn, u1, . . . , um)
(where xi are the state variables and ui are those relative to the control) which has to
be minimized under the vectorial constraint f(X,u) = f(x1, . . . , xn, u1, . . . , um) = 0,
that is

minL(x1, . . . , xn, u1, . . . , um)

under the constraint:

f1(x1, . . . , xn, u1, . . . , um) = 0
...

fq(x1, . . . , xn, u1, . . . , um) = 0
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To do so, a new function is defined by extending the function which has to be
minimized by means of the constraint; this is achieved introducing the vector of
the Lagrange multipliers λ. In other words, the search is for the minimum of the
function H = L+ λTf (indeed, if H is minimum, L is minimum as well). In order
to find the minimum of H, the following condition needs to be imposed:

dH = HXdX +Hudu = 0 (1.4)

which leads to the following requirements:

HX = ∂H

∂X
= LX + λTfX = 0 (1.5)

Hu = ∂H

∂u
= Lu + λTfu = 0 (1.6)

that is:

λT = −LXf+
X (1.7)

Lu + λTfu = 0 (1.8)

Eqs. (1.7) and (1.8) are those for the constrained minimization of a function.

1.1.3 Minimization of a functional subject to a constraint

Hamilton’s principle though requires the constrained minimization not of a
function, but of a functional instead in that the Lagrangian function is a function
of functions. In this case the constraint can be represented either by the actual
presence of joints or by the fact that kinematic relations hold. In fact, if Lagrangian
variables (which by definition are already compatible with the physical constraints)
are chosen as the mechanical system state variables, the relation which states that
the velocity is the time derivative of the position needs to be satisfied.

On account of this, for a system that is not physically constrained or constrained
but described by means of the Lagrangian variables, since the Lagrangian func-
tion depends upon position X and velocity V (L = L(x1, . . . , xn, v1, . . . , vn)), the
constraint relation Ẋ = V has to hold.

In general, the proposed problem can be declined as a constrained optimization
problem where the functional to be minimized (the action functional) can be expressed
as

A =
∫ tf

t0
L(X(t),V (t), t) dt (1.9)
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under the dynamic constraint

Ẋ(t) = f(X(t),V (t), t) (1.10)

To include the constraint in the minimization problem, a functional augmented
by the constraint is introduced; this is done by means of a vector of Lagrangian
multipliers λ(t):

Ā =
∫ tf

t0
{L(X(t),V (t), t) + λT(t)[f(X(t),V (t), t)− Ẋ(t)]} dt (1.11)

Defining the Hamiltonian functional as

H(X(t),V (t),λ(t), t) = L(X(t),V (t), t) + λT(t)f(X(t),V (t), t) (1.12)

the action functional can be written as

Ā =
∫ tf

t0
[H(X(t),V (t),λ(t), t)− λT(t)Ẋ(t)] dt (1.13)

Integrating by parts results in the following:

Ā = −λT(tf)Xf + λT(t0)X0 +
∫ tf

t0
[H(X(t),V (t),λ(t), t) + λ̇T(t)X(t)] dt (1.14)

In order to solve the optimization problem, the differential of Ā has to be null; the
latter is given by the sum of two contributions:

δĀ =
∫ tf

t0

[
∂(H(X(t),V (t),λ(t), t) + λ̇T(t)X(t))

∂X
dX

+ ∂(H(X(t),V (t),λ(t), t) + λ̇T(t)X(t))
∂V

dV

]
dt (1.15)

For the first term:

∂[H(X(t),V (t),λ(t), t) + λ̇T(t)X(t)]
∂X

=


∂H
∂x1

+ λ̇1
...

∂H
∂xn

+ λ̇n


T

=

=


∂L
∂x1

+ λ1
∂f1
∂x1

+ λ2
∂f2
∂x1

+ · · ·+ λn
∂fn

∂x1
+ λ̇1

...
∂L
∂xn

+ λ1
∂f1
∂xn

+ λ2
∂f2
∂xn

+ · · ·+ λn
∂fn

∂xn
+ λ̇n


T

=
[( ∂L
∂X

)T
+
( ∂f
∂X

)T
λ+ λ̇

]T

(1.16)
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For the second term:

∂[H(X(t),V (t),λ(t), t) + λ̇T(t)X(t)]
∂V

=


∂H
∂v1
...
∂H
∂vn


T

=

=


∂L
∂v1

+ λ1
∂f1
∂v1

+ λ2
∂f2
∂v1

+ · · ·+ λn
∂fn

∂v1
...

∂L
∂vn

+ λ1
∂f1
∂vn

+ λ2
∂f2
∂vn

+ · · ·+ λn
∂fn

∂vn


T

=
[( ∂L
∂V

)T
+
( ∂f
∂V

)T
λ

]T

(1.17)

The two conditions to be imposed in order to null the differential are then

λ̇ = −
( ∂L
∂X

)T
−
( ∂f
∂X

)T
λ (1.18)( ∂L

∂V

)T
+
( ∂f
∂V

)T
λ = 0 (1.19)

In the case of a dynamic system defined by means of Lagrangian variables, the
constraint is given by f = V . Since ∂f/∂V = I (where I is an n × n identity
matrix), using Eq. (1.19) the following is obtained:

λ = −
( ∂L
∂V

)T
(1.20)

Consequently, deriving with respect to time leads to

λ̇ = − d

dt

( ∂L
∂V

)T
= −

[
d

dt

( ∂L
∂V

)]T

(1.21)

Substituting Eq. (1.21) into Eq. (1.18), one obtains

λ̇ = −
( ∂L
∂X

)T
−
( ∂f
∂X

)T
λ = −

[
d

dt

( ∂L
∂V

)]T

(1.22)

But since ∂f
∂X = ∂V

∂X = 0, Eq. (1.22) becomes

[
d

dt

( ∂L
∂V

)]T

−
( ∂L
∂X

)T
= 0 → d

dt

( ∂L
∂V

)
− ∂L

∂X
= 0 (1.23)

which are the Euler-Lagrange equations (notice that, in the case of presence of
non-conservative forces, there would be a non-null term on the right hand side of
Eq. (1.23) which would be the projection of these forces on the dynamics equations).
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Performing the derivatives, one arrives at a form of the dynamics equations which is

MẌ = C(X, Ẋ) + F (1.24)

where M is the generalized mass matrix, C is the non-linear terms vector and F is
the vector of external forces and moments projected on the dynamics equations.

1.1.4 Minimization of the action functional under physical con-
straints

The case where X is not a set of Lagrangian variables is now considered. It will
be necessary to add, besides the kinematic constraint, also the physical constraints
that are present. Constraints are classified in the following way:

• Holonomic: they can be reduced in a finite form, i.e. the constraint equation
can be written in terms of positions and/or rotations)

1. Rheonomic: there is an explicit dependency on time of the constraint
algebraic equations, i.e.

Ψ(X, t) = 0 (1.25)

2. Scleronomic: there is not an explicit dependency on time of the constraint
algebraic equations, i.e.

Ψ(X) = 0 (1.26)

• Non-Holonomic: they cannot be reduced in a finite form, but only in differential
form, i.e.

Ψ(X, Ẋ, t) = 0 (1.27)

In the case of scleronomic constraints, the problem can be formulated as follows:

minA =
∫ tf

t0
Ldt (1.28)

under the constraints

Ẋ = V (1.29)

Ψ(X) = 0 (1.30)
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One has then to define a functional augmented by the differential constraint and the
algebraic constraint:

H = L+ λT
1 V + λ2

TΨ (1.31)

The conditions to be imposed are

∂H

∂V
= 0 →

( ∂L
∂V

)T
+
(∂V
∂V

)
λ1 +

(∂Ψ
∂V

)T
λ2 =

( ∂L
∂V

)T
+ λ1 = 0 (1.32)

λ̇1 = −
( ∂L
∂X

)T
−
(∂V
∂X

)T
λ1 −

( ∂Ψ
∂X

)T
λ2 = − ∂L

∂X
−ΨX

Tλ2 (1.33)

Deriving Eq. (1.32) one gets

λ̇1 = −
[
d

dt

∂L

∂V

]T

(1.34)

which substituted into Eq. (1.33) leads to

[
d

dt

∂L

∂V

]T

−
( ∂L
∂X

)T
−ΨT

Xλ2 = 0 (1.35)

Eq. (1.35) represents Euler-Lagrange equations in the case where the used variables
are not Lagrangian variables which makes the explicit introduction of the physical
constraints necessary (analogous considerations to the ones made for Eq. (1.23) hold
in the case of presence of non-conservative forces here as well). Performing the
derivatives one obtains

MẌ + ΨT
Xλ = C(X, Ẋ) + F (1.36)

The term ΨT
Xλ represents the constraints reactions projected on the dynamics

equations.

1.2 Kane’s approach for obtaining the dynamics equa-
tions

Now the equations of motion will be obtained using a Kane-like formulation that
permits to model spacecraft systems with a minimum set of equations reducing the
computational costs with respect to a classic Eulerian approach. Starting from the
Eulerian formulation (which allows a simple definition of bodies equations of motion),
the model is reduced to a system of a minimum set of variables and equations (similar
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to one obtained via a Lagrangian approach) through the Jacobian operator which
takes the compatibility conditions between the bodies into account. This approach
has the following advantages:

• The system is constituted by Ordinary Differential Equations (ODEs) instead
of Differential Algebraic Equations (DAEs) (the latter are obtained using the
Eulerian approach);

• The kinematics are compatible with the physical constraints; this implies that
there is no problem with the choice of consistent initial conditions which instead
is an aspect to be taken into account when using the Eulerian approach;

• It is good for the implementation of the manipulator controller since it provides
straightforward information on the control actions actually required from the
SMS actuators (in order to obtain the same kind of data using the Eulerian
approach, additional calculations need to be done).

The convenience of using this approach appears evident as the system becomes more
and more articulated (i.e. with an increasing number of arms and links forming the
arms and the presence of more complex joints).

The procedure to obtain the dynamics equations in Kane’s form is illustrated
in the following. In first place, one defines the state vector X which contains the
variables that describe the kinematic state of each body (just like in the Eulerian
approach). All the variables are defined with respect to an inertial reference frame.
In second place, one then defines the vector of minimal (Lagrangian) variables Q.
The two vectors (or, more precisely, their time derivatives) are related through the
Jacobian matrix J:

Ẋ = JQ̇ (1.37)

The dynamics equations are written for the system of bodies taking into account
the constraints reactions:

MẌ + ΨT
Xλ = C(X, Ẋ) + F (1.38)

to which the constraints equations have to be added:

Ψ = 0 (1.39)
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Eq. (1.39) is derived with respect to time:

ΨXẊ = 0 (1.40)

Using Eq. (1.37), one has:
ΨXJQ̇ = 0 (1.41)

Since the trivial case where Q̇ = 0 (which means that the system remains stationary
at its initial conditions) is not considered, Eq. (1.41) leads to

ΨXJ = 0 (1.42)

Eq. (1.42) implies that J is the null space of ΨX . Pre-multiplying by JT and taking
into account Eq. (1.37), the dynamics equations can be written as

JTMJQ̈+ JTMJ̇Q̇+ JTΨT
Xλ = JTC + JTF (1.43)

But since ΨXJ = 0, JTΨT
X = 0 also holds and the dynamics equations in terms of

minimal variables are obtained:

JTMJQ̈+ JTMJ̇Q̇ = JTC + JTF (1.44)
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Chapter 2

Deployment maneuver of a
robotic Space Manipulator
System

The extremely high number of objects orbiting the Earth calls for solutions
to keep free operational space for telecommunication systems in geo-synchronized
orbit as well as to prevent the endangering of space systems in Low-Earth orbit [16].
Future on-orbit servicing missions will entail many challenges such as the capture of
nonfunctional satellites, spent spacecraft or last stages of rockets [15, 37]. Some of
them are related to accurate position and attitude control in autonomous tracking
and rendezvous operations between the chaser and target satellites. Within this
framework, a crucial phase for mission success is the deployment of the robotic
equipment mounted on the chaser base platform. As a matter of fact, this equipment
is placed in its stowed configuration during launch and needs to be deployed once
in orbit in order to reach the target of interest. Nevertheless, the achievement of
this goal poses a few issues to be addressed: differently from on-ground operations
where both the target and the base of the manipulator are constrained, the on-orbit
environment requires an ad-hoc approach due to the fact in this case they are floating
instead.
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2.1 Particle Swarm Optimization applied to arm de-
ployment maneuver

As stated, the deployment phase consists in the task of bringing the robotic
arm(s) from its initial (stowed) configuration to the appropriate final conditions
which are compatible with successive grasping operations of a target object to be
captured. In the context of deployment maneuvers, the issue of choosing an optimal
strategy is certainly relevant given the limited amount of resources available on
board of space systems and the strict operational requirements and constraints
often characterizing space activities. Consequently, the choice of such optimality
criteria should take into consideration aspects such as propellant consumption,
maneuver time duration, disturbances induced on the base platform, mechanical
limits concerning the manipulator components and mission requirements on the
end-effector kinematic state. Indeed, the problem can be stated as being a Multi-
Objective (MO) Constrained Optimization problem [38, 39].

Different algorithms have been developed to tackle optimization problems on
a general basis [40]. Population-based optimization techniques such as Genetic
Algorithms (GAs) [41], Particle Swarm Optimization (PSO) [42], Differential Evo-
lution (DE) [43]-[45] and Ant Colony Optimization (ACO) [46] have been popular
choices for solving MO problems. Research shows that the PSO algorithm offers
some advantages over GAs being simpler and less expensive from the computa-
tional cost standpoint [47, 48]. Given the positive results obtained by using PSO
in single-objective optimization applications, this technique has been extended to
MO problems as well. A review of strategies which adopt the PSO algorithm within
the MO context can be found in [49]. Nevertheless, the majority of the reported
approaches are constraint-free. Since the nature of the problem being here analyzed
is indeed characterized by the presence of significant constraint conditions, the
methodology developed by L. D Li et Al. in [50] is embraced and properly adapted
to the case under examination.

The deployment maneuver is studied by means of an in-house developed Matlab
code which allows for an easy parameterization with respect to the sensitive variables
in the system dynamics and optimization procedure. Three-dimensional dynamics
will be considered.
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Figure 2.1. Schematic of the multi-body space manipulator.

2.1.1 Single-arm multi-body space manipulator

In Fig.2.1 the schematic of the one-arm space manipulator is reported. The first
link of the robotic arm is connected to the base platform by means of a revolute
joint and the links are connected with each other by revolute joints as well with
axes oriented at 90◦ with respect to the previous one. The end-effector (which can
be identified with the last link) is connected to the rest of the arm by means of a
translational joint. The arm has a total of nl = 7 links. The position of the attaching
point of the arm on the SMS base (referred to as the shoulder) has been fixed at
the geometrical center of its right-side face. The bus of the SMS has a cubic shape

Table 2.1. Properties of the links of the space manipulator.

Link Mass kg Length m Width m Depth m

1 20 1 0.1 0.05
2 5 0.2 0.1 0.05
3 20 1 0.1 0.05
4 5 0.2 0.1 0.05
5 20 1 0.1 0.05
6 5 0.3 0.1 0.05
7 5 0.3 0.1 0.05

of length 1.5 m, its mass is mB = 500 kg. The main properties of the arm links are
reported in Tab. 2.1. For what concerns the control capabilities of the SMS, the
base platform is equipped with a set of three thrusters and three control moment
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Table 2.2. Maximum control actions that can be supplied by the SMS actuators.

Actuator Maximum value of supplied control action

Base thrusters 50 N
Base ACS 50 N m
Revolute joints motors 30 N m
Linear actuator 50 N

gyros placed along the base principal body axes; furthermore, each revolute joint
and the translational joint can be actuated by means of an electric motor and a
linear actuator respectively. The maximum control actions which can be supplied
by the latter are listed in Tab. 2.2.

2.1.2 Algorithm description

Most real-world search and optimization problems involve multiple objectives
(MO) that need to be achieved simultaneously. The presence of constraints adds
difficulties to the already challenging task of finding optimal solutions to the problem
under consideration. All solutions to a multi-objective optimization problem are
called Pareto-optimal solutions and the curve obtained by joining these solutions is
known as a Pareto-optimal front. In solving MO problems, three goals need to be
achieved [51]:

1. Find a set of solutions as close as possible to the true Pareto-optimal front;

2. Find a set of solutions as diverse as possible;

3. Find a set of solutions as many as possible.

The objective is to find optimal solutions for the problem concerning the deployment
of the SMS robotic arm in order to reach a moving target point. The adopted
methodology for tackling this issue is that of Particle Swarm Optimization (PSO)
properly modified to take into account both the multi-objective nature of the problem
and the presence and the presence of operational constraints as well [50].

To begin with, a general multi-objective constrained optimization problem in-
volves a vector of variables to be optimized (the “decision vector”) x = [x1, x2, . . . , xn],
an objective function vector f(x) = [f1(x), f2(x), . . . , fk(x)] and a constraint func-
tion vector g(x) = [g1(x), g2(x), . . . , gm(x)]. The problem can be stated as finding
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x∗ which

minimize fj(x), j = 1, 2, . . . , k, subject to gi(x) ≤ 0, i = 1, 2, . . . ,m

where k is the total number of objective functions and m is the total number of
constraints. In searching for the optimal solutions of the problem, the particles (i.e.
the members of the swarm) define trajectories in the parameter space (i.e. iteratively
update their positions) based on the following relations:

v
(t+1)
i = wv

(t)
i + c1r

(t)
1 (pBest(t)i − x

(t)
i ) + c2r

(t)
2 (lBest(t) − x(t)

i ) (2.1)

x
(t+1)
i = x

(t)
i + v(t+1)

i (2.2)

where xi is the i-th decision vector (i.e. the i-th particle in the swarm population)
in a D-dimensional search space; pBesti is the best previous position of the i-th
particle in the flight history; lBest is the best particle of the swarm (a global PSO
is here implemented); vi denotes the i-th particle velocity; c1 and c2 are cognitive
and social parameters respectively; w is the inertia weight; r1 and r2 are two random
numbers uniformly distributed in the range [0, 1]; t denotes the iteration. The
velocity vectors govern the way particles move across the search space and are
made of the contribution of three terms (see right side of Eq. (2.1)); the first one,
defined as the inertia or momentum, prevents the particle from drastically changing
direction by keeping track of the previous flow direction; the second term, called
cognitive component, accounts for the tendency of particles to return to their own
previously found best positions; the last one, named the social component, identifies
the propensity of a particle to move towards the best position of the whole swarm.
The selection criteria for pBest(t)i and lBest(t) can be found in [50]. Nevertheless, it
is important to highlight these criteria are responsible for involving the minimization
and constraint evaluation features typical of such algorithm.

Before defining the f and g vectors for the problem under examination, it is
necessary to point out the adopted control strategy; for what concerns the joint
torques and the prismatic joint force, they consist of step-constant control [32]: the
ncl

intervals into which the mission duration is divided correspond to ncl
levels of

each required control action. Given the number of actuation degrees described above,
there will be nlncl

step values. The sequence of steps is applied in open-loop to
the system. Regarding the base platform control, a closed-loop strategy is adopted
instead. More in detail, the base is controlled so that its center of mass moves along



2.1 Particle Swarm Optimization applied to arm deployment maneuver 15

a desired orbit and its attitude tracks a set behavior (these will be more precisely
defined in the following). The selected regulator for the implementation of such
a strategy is a Proportional-Derivative (PD) Control in which the translational
and rotational control are characterized by different gains (namely, two for the
translational part and two for the rotational one; further details will be given in the
following).

Defining
ui =

[
ūi,1, . . . , ūi,ncl

]T
, i = 1, . . . , nl

as the vector of the i-th joint control sequence and KpTB
, KdTB

, KpRB
, KdRB

as the
base PD Control gains, the vector of variables to be optimized is the following:

x =
[
uT1 , . . . ,u

T
nl
,KpTB

,KdTB
,KpRB

,KdRB
, tf
]T (2.3)

where tf is the deployment maneuver time duration.
The next step is to define the objective functions vector. The chosen criteria

concern the maneuver time duration, the effort demanded from the control system
in terms of supplied actions from the actuators and deviation of the base behavior
from the desired one. These considerations lead to the following form of the f(x)
vector:

f(x) =


tf

1
tf

∫ tf
0
(∑nl

i=1|ui|+ |BuTB
|+ |BuRB

|
)
dt

max
(
|IOI
rOB
− I
OI
rdes
OB
|
)

max
(
|IaB − Iades

B |
)

 (2.4)

The second row of Eq. (2.4) contains the mean value of the control actions sup-
plied by the SMS actuators; the third and fourth rows respectively represent the
maximum deviation of the base center of mass position, defined by vector IOI

rOB
,

and base attitude, defined by IaB, from their desired values, namely I
OI
rdes
OB

and
Iades

B respectively. It should be noted the base attitude is expressed in terms of 321
body-fixed Euler angles. All these quantities need to be minimized.

Nevertheless, the optimization procedure which leads to the minimization of the
elements in f has to satisfy a certain number of constraint conditions which can
result from operational requirements, limitations on the actuators suppliable control
actions and user-defined constraints. On account of these, the g(x) vector is chosen
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as:

g(x) =



|ui| − uJmax , i = 1, . . . , nl − 1
|unl
| − uPmax

|BuTBi
| − uTBmax , i = 1, 2, 3

|BuRBi
| − uRBmax , i = 1, 2, 3

|IOI
rEE(tf )− I

OI
rdes
EE(tf )| − εtol

|IOI
ṙEE(tf )− I

OI
ṙdes
EE(tf )| − ε̇tol

|qP | − qPmax

tf − tlim



(2.5)

The first four rows respectively contain conditions on the maximum actions which
can be supplied by the joint motors, the linear actuator, the base thrusters and
ACS; the fifth and sixth rows respectively provide tolerance relations regarding
the end-effector final position and velocity (εtol and ε̇tol are indeed user-definable
tolerances); the seventh row represents a condition on the maximum allowable
linear joint displacement and the last row indicates a limitation on the deployment
maneuver time duration.

A detailed description of the examined case study will be given in the next
section.

2.1.3 Numerical results

Case study description

As initial conditions, the SMS base platform has its center of mass moving on
an equatorial circular orbit of radius Ro = 7× 103 km, with its body axes aligned
with the inertial axes and with zero angular velocity with respect to the inertial
reference frame. The arm is in its stowed configuration and the joint rates are null.
Furthermore, the translational degree of freedom characterizing the telescopic end-
effector is mostly exploited during the last phase of the deployment maneuver when
the close proximity approach takes place. Nevertheless, the present study main focus
is on the deployment phase preceding the latter; indeed, in the results reported in the
following, the linear degree of freedom is blocked and the relevant contributions in
the previously defined objective and constraint functions are consequently removed.

SMS base platform PD Control and end-effector desired trajectory

As anticipated above, the SMS base platform is controlled by means of a PD
Control for what concerns both translational and rotational motion. The control
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law is given by:

uBT
= −KPBT

(I
OI
rOB
− I
OI
rdes
OB

)
−KDBT

(I
OI
ṙOB
− I
OI
ṙdes
OB

)
uBR

= −KPBR

(IaB − Iades
B

)
−KDBR

(I
IωB − I

Iω
des
B

)
uB =

uBT

uBR

 (2.6)

For what concerns the desired values appearing in Eq. (2.6), the goal is to maintain
the base c.m. on its initial orbit and to make the base rotate synchronously to the
orbital motion. This translates into the following:

I
OI
xdes
OB

= Ro cos (Ωot)
I
OI
ydes
OB

= 0
I
OI
zdes
OB

= −Ro sin (Ωot)
I
OI
ẋdes
OB

= −ΩoRo sin (Ωot)
I
OI
ẏdes
OB

= 0
I
OI
żdes
OB

= −ΩoRo cos (Ωot)
Iψdes

B = 0
Iθdes
B = Ωot

Iϕdes
B = 0

I
Iω

des
xB

= 0
I
Iω

des
yB

= Ωo

I
Iω

des
zB

= 0

where Ωo =
√
µE/R3

o is the orbital angular velocity being µE the Earth gravitational
parameter.

The SMS dynamics equation takes the following form:

JTMJQ̈ = JTC + JTF − JTMJ̇Q̇+ u (2.7)

Vector uB occupies the first six rows of vector u while the joint torques fill in the
remaining positions.

Shifting to the end-effector desired final conditions, the target point is orbiting
on a circular concentric co-planar orbit characterized by a difference in radius equal
to do. Consequently, the expressions for the quantities appearing in Eq. (2.5) are
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formally the same as those reported for the base c.m. with the difference that Ro+do
replaces Ro, Ωotar =

√
µE/(Ro + do)3 replaces Ωo and t = tf . This target point

could well represent the grasping point on a target satellite to be captured by the
SMS.

Based on all the developed considerations, it can be affirmed the optimization
procedure seeks to find values for the base PD Control gains, the joint motors torques
and the maneuver time duration which minimize the deployment time interval itself,
the mean control effort required to the SMS actuators and the deviation of the
base behavior from the desired one while not saturating the actuators, bringing
the end-effector to final conditions which are compatible with sucesive grasping
operations of an orbiting target satellite to be captured and keeping the maneuver
duration below a user-defined maximum time limit.

Simulation parameters description

Table 2.3. Values for simulation parameters.

Parameter Value

Base control gains (s.s. min) 1
Base control gains (s.s. max) 1000
εtol 0.1 m
ε̇tol 5 · 10−3 m/s
do 3 m
tlim 60 s
ncl 60

The values for the simulation parameters have been chosen as reported in
Tab. 2.3 (s.s. stands for “search space”). The last row of the table implies the
open-loop control values are updated every tf/tlim seconds throughout the maneuver
duration. The swarm is formed by 15 particles and the algorithm iterations number
has been taken equal to 100 (those parameters were furthermore chosen to take
computational resources limits into account as well). For what concerns the PSO
algorithm parameters, it has been set c1 = c2 = 2 and the inertia weight being
defined according to the linearly decreasing rule [52] with wmin = 0.4 and wmax = 0.9.

Optimization procedure results

In Tables from 2.4 to 2.8 the values for the quantities relevant to the evaluation
of the objective and constraint functions are reported for each particle at the end
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Table 2.4. Maximum deviation of SMS base c.m. position.

Particle N. eBcmmax (cm)

1 29.60
2 44.40
3 9.74
4 37.47
5 38.68
6 47.54
7 35.18
8 49.33
9 28.86
10 20.07
11 37.40
12 29.31
13 42.53
14 8.23
15 43.79

Table 2.5. Maximum deviation of SMS base attitude.

Particle N. eBattmax (deg)

1 3.53
2 4.01
3 0.15
4 4.32
5 4.51
6 3.97
7 4.29
8 4.49
9 3.30
10 0.44
11 4.47
12 3.69
13 4.08
14 0.48
15 4.15
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Table 2.6. Final end-effector position and velocity errors.

Particle N. eEEf (cm) eEEf (mm/s)

1 4.52 26.65
2 5.00 6.71
3 3.18 11.12
4 3.26 20.77
5 5.26 6.25
6 2.58 11.44
7 2.27 34.02
8 2.96 82.98
9 3.77 12.17
10 2.12 12.32
11 1.94 18.56
12 2.47 115.41
13 2.96 145.11
14 2.31 13.55
15 2.13 15.66

Table 2.7. Maneuver time duration.

Particle N. tman (s)

1 19.0
2 65.7
3 14.1
4 21.6
5 46.0
6 30.7
7 40.8
8 55.5
9 14.1
10 13.1
11 83.2
12 17.4
13 18.6
14 12.1
15 55.5
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Table 2.8. Mean control effort required to the on-board actuators system.

Particle N. umean

1 96.4
2 106.0
3 83.3
4 84.9
5 103.0
6 82.3
7 83.9
8 113.2
9 108.5
10 221.1
11 81.6
12 82.2
13 70.6
14 150.1
15 97.0

of the optimization procedure (i.e. after the last iteration of the PSO algorithm).
The solution vector associated to each particle is not listed here for the sake of
conciseness given the large size of the latter. The tables show how the solutions
which were found induce a contained disturbance on the SMS base center of mass
(of the order of decimeters), and the magnitude of the deviation of its attitude from
the desired behavior is always kept below 5 deg. Looking at Tab. 2.6, it can be
noticed how the end-effector final position error falls within the prescribed tolerance
for the entire swarm of particles; on the contrary, the final velocity errors are still
too high compared to the adopted threshold value stated above (particles 2 and
5 are the ones characterized by the lowest errors). Speaking about the maneuver
duration, Tab. 2.7 reports a quite diversified range of values and the same feature
can be found, though in a less pronounced fashion, for what concerns the overall
mean control effort required to the on-board actuators system (see Tab. 2.8). It
can be seen how in two occasions (particles 2 and 11) the computed maneuver time
exceeds the boundaries of the desired search space.

Despite some of the drawbacks, the algorithm has shown a quite fast convergence
rate (i.e. each particle converging to its own final value) within a relatively small
number of iterations. Improvement margins are surely present as the optimization
procedure has several parameters which can be tuned (see Section 2.1) to increase the
quality of the results and make them resemble more the desired ones. Nevertheless, as



2.2 Neural Networks applied to a space manipulator deployment maneuver 22

literature reports, it is hard to give general guidelines and tests need to be conducted
for the specific application under examination. Increasing the swarm population
and the number of algorithm iterations would surely help in the search for better
solutions under the imposed objectives and constraints, although one must also take
into account that doing so will lead to a noticeable computational cost increment.
Furthermore, one can reasonably intervene on the user-defined constraints if some
operational flexibility is yet admissible.

2.1.4 Conclusions

The present chapter has dealt with a preliminary application of a Multi-Objective
Constrained Particle Swarm Optimization approach to the deployment maneuver of
a robotic arm mounted on a space free-flying base platform. Both advantages and
drawbacks regarding this application have been detected and suggestions on how to
potentially overcome the latter have been given.

2.2 Neural Networks applied to a space manipulator
deployment maneuver

Another approach which can be adopted to address the challenges characterizing
the deployment phase involves the use of Neural Networks (NNs). The latter have
widely proved to have powerful capability in solving data-driven nonlinear modeling
problems and hence they can represent a viable solution for space activities. Nonethe-
less, Deep Neural Network (DNN) architectures and the related Deep Learning (DL)
techniques can be adopted in order to embed a complex and automatic feature
extraction process in the training process and to make performances independent of
the physical nature of data to be processed. In the present section, DL strategies
applied to the deployment maneuver of a SMS are investigated. The purpose is to
design a DNN controller, basically dealing with data regression and model inversion,
which could provide proper control inputs when the desired trajectory is given, in a
way that the controller can autonomously adapt if the task is changed. In particular,
Long Short-Term Memory (LSTM) networks for SMS data prediction are adopted.
The latter are a type of Recurrent Neural Network (RNN) able to learn long-term
dependencies among data [53]. Structural flexibility and joint friction features are
included in the dynamic model. Details regarding implementation, training and
validation of the testbed are presented and discussed as well.
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2.2.1 Space Manipulator System description

Figure 2.2. Space Manipulator System: stowed (left) and deployed (right) configuration.

The SMS here being considered is depicted in Fig. 2.2. It is formed by a prismatic
base (having dimensions 2.5× 1.5× 1.5 m and mass equal to 500 kg) equipped with
two 4-degree of freedom robotic arms. The joints (weighing 20 kg each, including
the motor weight) are all of revolute typology with axes allowing the arms motion in
three-dimensional space. The links are aluminum hollow cylinders having diameter
and thickness respectively equal to 15 cm and 3 mm. Furthermore, the first one is
1.3 m long and the second one 1.0 m. While the base platform is rigid, the arms
links are structurally flexible (modeled by using 1D beam elements). As far as the
actuators are concerned, the former is equipped with thrusters and control moment
gyros aligned to its body-axes (which are parallel to the base edges) for respectively
controlling its position and orientation; on the other hand, a rotational motor is
placed at each revolute joint. The maximum actions which can be provided by the

Table 2.9. Maximum control actions that can be supplied by the SMS actuators.

Actuator Maximum value of supplied control action

Base thrusters 50 N
Base ACS 50 N m
Revolute joints motors 30 N m

control hardware are listed in Tab. 2.9. Joint friction is considered as well and has
been modeled as a function of relative angular velocity between the interconnected
bodies; in particular, it has been assumed to be the sum of Stribeck, Coulomb
and viscous components [54]. The numerical testbed has been developed within
the Matlab Simscape environment together with Simulink for the definition of the
control system architecture (see Fig. 2.3). This simulation methodology allows for
complex mechanical features to be included into the model and to simultaneously
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Figure 2.3. Space Manipulator System and control architecture model developed within
the Simscape and Simulink environment.
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develop the control plant within the same simulation environment thus reducing
the overall computational cost (which is a rather relevant aspect when analyzing
articulated dynamic systems as space manipulators are).

2.2.2 Long Short-Term Memory Networks

Figure 2.4. Architecture of the adopted LSTM network.

In the following, LSTM networks will be adopted as the reference forecasting
model. LSTM models have been introduced in [55] and they have been proved to be
effective in several fields, in particular time series forecasting. They are specifically
designed to take advantage of long-term dependencies, being able to efficiently tackle
a class of problems SMSs dynamics and control can be framed within. By introducing
the ability of suitably handling past information in a single cell, DNN architectures
can benefit from connecting several LSTM layers. The architecture here used is
illustrated in Fig. 2.4 with the following details:

1. Sequence layer sets the data structures for backward training and feed-forward
test at each time step;

2. LSTM layer (embedding) is a LSTM layer, as described in the following, with a
number of hidden units that aim at reconstructing the internal state evolution
of the unknown observed system;

3. LSTM layer (prediction) is the LSTM layer in which, starting from the embed-
ded internal state, prediction is performed considering the long-term depen-
dencies learned by the recurrent dynamical model;

4. Fully-Connected layer is a standard feed-forward layer connecting all the hidden
units in the LSTM layer to the output, acting independently at each time step;

5. Regression layer computes the half-mean-squared-error loss at the output for
the regression problem to be solved during training.

Let S[n], n > 0 be a vector time series to be predicted, assuming the current sample
at time step n and all the previous ones as known. For every time step, the first
LSTM layer will be fed by a Ni-dimensional column vector xn ∈ RNi , whose entries
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are those of the current sample S[n] and, possibly, of other previous samples that are
chosen by using a suited criterion [56]. The LSTM layer is made of Nh hidden units;
each unit computes at time n the scalar output or “hidden state” h(m)

n and the scalar
“cell state” c(m)

n , m = 1, . . . , Nh. The column vectors hn ∈ RNh and cn ∈ RNh , whose
entries are the related scalar values, will represent the whole hidden state and the
whole cell state of the LSTM layer at time n. Each unit computes both its hidden
and cell states in recursive fashion, taking xn and the previous states hn−1, cn−1 as
inputs (the latter coming from itself and all other units). At each time step, the
layer adds information to or removes it from the cell state. This control is carried
on via the ”gates" in each hidden unit; at time n, the gate outputs are computed in
the m-th hidden unit, m = 1, . . . , Nh, as follows:

• Input gate (i) regulates how much of the current input to let through for the
newly computed state:

i(m)
n = σg

(
w

(m)
i xn + r(m)

i hn−1 + b
(m)
i

)
(2.8)

• Forget gate (f) regulates how much of the previous state to let through:

f (m)
n = σg

(
w

(m)
f xn + r(m)

f hn−1 + b
(m)
f

)
(2.9)

• Cell candidate (g) regulates the selective memory of the past:

g(m)
n = σc

(
w(m)
g xn + r(m)

g hn−1 + b(m)
g

)
(2.10)

• Output gate (o) regulates how much of the internal state to expose to the
external network (higher layers and successive time step):

o(m)
n = σg

(
w(m)
o xn + r(m)

o hn−1 + b(m)
o

)
(2.11)

Row vectors w(m)
γ ∈ RNi represents the LSTM input weights of the gates; row

vectors r(m)
γ ∈ RNh represent the LSTM recurrent weights; b(m)

γ ∈ R are scalar
values representing the LSTM biases; σg(α) =

(
1 + e−α

)−1 is the sigmoid activation
function; σc(α) = tanhα is the hyperbolic tangent activation function; γ ∈ {i, f, g, o}
denotes the specific gate type. The cell state of the unit is given by:

c(m)
n = f (m)

n c
(m)
n−1 + i(m)

n g(m)
n (2.12)
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and the hidden state is defined as:

h(m)
n = o(m)

n σc
(
c(m)
n

)
(2.13)

In Fig.2.5 a compact representation of the LSTM layer is shown.

Figure 2.5. Unrolled architecture of the LSTM layer: the hidden state hn at time n
basically depends on the input xn at same time and on the previous state hn−1; this
is equivalent to programmatically consider n cascaded blocks where hidden states are
propagated properly instead to feed back a same (unique) LSTM block.

The second LSTM layer works similarly, but, in this case, instead of xn, the
input to the layer will be the vector hn of hidden states determined by the previous
LSTM layer. The final output yn ∈ RNo of the LSTM network at time n is computed
by the Fully Connected layer, by using the hidden states h′

n computed by the second
LSTM layer:

yn = Wdh
′
n + bd (2.14)

where Wd ∈ RNo×Nh and bd ∈ RNo are weights and biases of the layer, respectively.
The parameters to be trained in this model are the 12 matrices for each LSTM

layer, for a total of 24 matrices for both the LSTM layers, plus the output matrices
Wd and bd. In order to deal with a compact representation of the parameter
space, a column vector θ will store all the elements of these matrices, which are
the parameters to be trained. An important remark must be done on the output
yn and its association with future samples of the predicted time series. In fact, the
relation S̃[n+ q] = yn is commonly used, where No = 1 and S̃[n+ q] is the estimated
sample at a prediction distance q > 0, although other options can be adopted to
this end [57].

Generally, the initialization of the network parameters θ is random and hence
the performances are not always the same as the final parameters depend upon
the specific initialization. The parameters estimation needs the Nr input-output
pairs {xτ ,yτ} (i.e. the training set), where index τ spans within the time indices of
the pairs known before learning. The training algorithm used in this study is the
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adaptive moment estimation (ADAM) introduced in [58].

2.2.3 Application of LSTM networks to the SMS robotic arms de-
ployment maneuver

A strategy based on LSTM networks will be applied to the deployment maneuver
of the SMS robotic arms. As stated in the previous section, such type of approach
requires the definition of a training set. The generic input consists of the base
position and attitude variables and each joint angle and relevant joint angle rate, for
a total of Ni = 28 variables; on the other hand, the generic output is formed by the
control actions provided by the SMS actuators, for a total of No = 14 variables (for
the sake of completeness, the first six components, concerning the base platform,
are expressed with respect to the inertial frame and they are suitably derived from
the actions supplied by the base actuators themselves). It has to be noticed each
actuator supplies a control action responding to a set-point Proportional-Derivative
(PD) control law acting on the relevant variables (i.e. the base control forces will
implement a control based on the platform position and linear velocity errors, the
base control torques on the platform attitude and angular velocity errors and the
joint motors will refer to the errors on the joint angle and joint angle rate). In

Table 2.10. Reference values used for neural network training.

Variable Reference value

KpB 500
KdB

2000
KpJ 100
KdJ

500
θJ11 = −θJ21 90◦
θJ12 = θJ22 80◦
θJ13 = θJ23 90◦
θJ14 = −θJ24 0◦

order to gather the necessary data for network training, 500 deployment maneuvers
have been carried out. The maneuvers have a duration of 70 s (the latter is a
user-defined value and could as well be changed). KpB and KdB

are respectively the
base proportional and derivative gains, KpJ and KdJ

are the same quantities but
referred to the joints instead. The variable θJij is the desired relative angle for the
j-th joint of the i-th arm (the corresponding desired rates are held constant to a null
value and are not reported in table for the sake of conciseness). The adopted logic
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was to randomly choose parameters for the PD Control gains and the desired values
for joint angles and corresponding desired rates (i.e. the set-point control parameters
to be used in each simulation) within certain ranges. The latter have been obtained
by setting a reference value for each parameter (shown in Tab. 2.10) and having the
interval range ±5% about the reference value itself. This allows for a diversification
of the training set and a consequent wider range of operational capability for the
proposed LSTM-based control strategy. It has to be underlined each of the cases
within the training set has to be considered as a nominal one. The desired position
and orientation of the base platform (and the relevant time derivatives) are kept
fixed to null values.

The methodology used for the NN training and testing is the so-called key-folding;
in particular, a 20-fold structure has been chosen. This means that 480 input-output
pairs of time series are used for training the network (i.e. identifying the above cited
matrices) and 20 are instead tested in order to evaluate the forecasting performance
of the developed NN. The selection of the 20 pairs to be used takes place in a
random fashion and the procedure is repeated for a total of 25 times (20× 25 = 500);
nevertheless, the algorithm is formulated in such a way, each time, the 20 sets used
for network testing do not include any which have been already chosen for the
same purpose in a previous iteration. In this way, all pairs will have been used
for both training and testing at the end of the procedure, thus guaranteeing a full
exploitation of the available data. Furthermore, in order to overcome the above
stated issue regarding the variability of network performance depending upon the
specific initialization of network parameters, the entire procedure has been replicated
for 20 times using different initial sets of the LSTM matrices. Finally, the number
of LSTM cells and hidden states hn in the first LSTM layer is set to 40, whilst the
same number h′

n in the second LSTM layer is set to 10. Tab. 2.11 reports the
Root Mean Square Error and Standard Deviation of the output variables. The latter
are computed over 20× 25× 20 = 10000 tests. Furthermore, Figures from 2.6 to 2.11
show indicative plots where the real (i.e. derived from the test sequences descending
from the Simscape model simulation and taken as reference ones) and predicted
values of the outputs are compared. It can be seen how the LSTM network is able
to predict the behavior of the relevant control actions with quite good accuracy.
There are some deviations between the real and predicted trends; nevertheless, this
shortcoming may as well be solved by further increasing the dimensions of the
adopted dataset for the NN training and also by trying a different tuning of the
training algorithm hyperparameters.
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Table 2.11. Details of the simulation: Root Mean Squared Error (RMSE) and Standard
Deviation of the outputs.

Variable RMSE St. Dev.

FBx (N) 0.165 0.054
FBy (N) 0.101 0.034
FBz (N) 0.144 0.044
TBx (N m) 0.108 0.039
TBy (N m) 0.343 0.103
TBz (N m) 0.242 0.083
TJ1UP

(N m) 0.352 0.181
TJ2UP

(N m) 0.273 0.068
TJ3UP

(N m) 0.061 0.026
TJ4UP

(N m) 0.056 0.025
TJ1DOW N

(N m) 0.356 0.178
TJ2DOW N

(N m) 0.171 0.041
TJ3DOW N

(N m) 0.055 0.025
TJ4DOW N

(N m) 0.056 0.026

Figs. 2.8b and 2.10b show the predicted control torque slightly exceeds the limit
on the available joint torque. This problem can be easily avoided by introducing a
saturation on the control actions provided by the actuators when the LSTM-based
strategy is used to compute them. One last comment has to be made with respect
to the lack of data in the reported figures from t = 0 to t = 1 s. This is due to the
so-called “dropout” of the network; it is an intrinsic time interval the NN needs to
properly start “tracking” the system. The value of t = 1 s is a quite conservative
choice for such parameter. It could well be reduced to diminish this initial time
gap. The reported figures are relative to different tests instead of a single one. This
has purposely been done in order to show how the prediction performed by the NN
exhibits a good quality on a different variety of experiments. The torques computed
by means of the LSTM-based strategy will be applied in an open-loop fashion to the
SMS to accomplish the desired task.

It has to be underlined a NN-based control is intrinsically not robust in the
sense it is not able to deal with desired conditions falling out from the ranges within
which the network has been trained. Consequently, it is definitely desirable to have
a training set as wider as possible. Furthermore, a feedback compensation is always
to be introduced to properly manage uncertainties and disturbances not accounted
for in the network training, thus making the overall control system robust within
the training set ranges (this issue raises as the model used for network training may
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Figure 2.6. Base control force inertial components: (a) X axis, (b) Y axis, (c) Z axis.

present some differences with respect to the actual conditions the manipulator will
exhibit when operating in orbit).

It is important to once again highlight how the NN is capable of changing its
output to adapt to a different input (within the workspace used for training the
network itself), thus allowing for a greater operational flexibility as the diversification
of the training set is enhanced.

2.2.4 Conclusions

Neural networks can represent an innovative approach to the control of au-
tonomous space robotic manipulator systems. A LSTM-based strategy has been
implemented to predict the behavior of a two-arm space manipulator and to prop-
erly tune the necessary control actions finalized to its deployment maneuver. The
proposed approach has proved to be suitable for such kind of application showing
good performance and effectiveness.



2.2 Neural Networks applied to a space manipulator deployment maneuver 32

Figure 2.7. Base control torque inertial components: (a) X axis, (b) Y axis, (c) Z axis.

Figure 2.8. Upper arm joint torques: (a) First joint, (b) Second joint.
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Figure 2.9. Upper arm joint torques: (a) Third joint, (b) Fourth joint.

Figure 2.10. Lower arm joint torques: (a) First joint, (b) Second joint.

Figure 2.11. Lower arm joint torques: (a) Third joint, (b) Fourth joint.
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Chapter 3

Impedance Control applied to
Space Manipulator Systems

The pre-grasping phase has the objective of maintaining a stable contact between
the manipulator terminal parts (i.e. the end-effectors) and a target object without
a solid grasp which can be later obtained by means of an ad-hoc mechanism. At
the same time, it is convenient to reduce the target initial relative translational and
angular velocities as close to zero as possible before proceeding with the successive
grasping phase. The Impedance Control approach is a suitable strategy to solve
this problem. In the latter, the end-effector is controlled in order to make it behave
like a mass-spring-damper system regardless of the reaction motion of the base
so to absorb the impact energy [59]. Previous studies [60],[61],[62] considered a
point-mass target and one-dimensional contact dynamics; however, the contact
between the manipulator and target could generate a perturbation on the attitude
of the target producing an unwanted rotational motion of the latter. Indeed, a
two-dimensional contact dynamics between a target and a robotic arm needs further
investigations when the control law must be defined. For what concerns impact
control, in [63],[64] the goal of the developed control strategy is to minimize the
impact on the attitude of the servicing satellite. This is done by finding an optimal
time and the corresponding motion state of the tumbling satellite such that the
physical interception from capturing operation will have zero or minimal attitude
impact on the servicing satellite. Since the control acts before a physical contact
happens, it will not affect but actually augment any existing force or impedance
control capability of the manipulator. In [65] a full 3D model of a free-flying space
robot is proposed, but only a one-arm manipulator with a very simple contact model
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and a reduced 2D simulation scenario is presented. In [66] an impedance control
algorithm based on velocity is developed for a low impact docking mechanism.

The present chapter investigates the application of the Impedance Control
approach to a two-arm space manipulator used to capture a non-cooperative target.
The combination of Impedance Control together with Proportional-Derivative (PD)
Control (referred to as Impedance+PD Control) is also presented and implemented.
The performance of the proposed control architecture will be evaluated by means of a
co-simulation involving the MSC Adams multi-body tool (for describing the dynamics
of the space robot and target and the contact phase) together with Matlab/Simulink
(for the determination of the control actions which is based on a multi-body model
of the dynamic system). The co-simulation is a particularly useful tool to implement
robust control applied to detailed dynamic systems.

3.1 Impedance control concept and state of the art

Most of the robotic missions, as the ones performed by the ISS Canadarm or
the ones proposed for future automatic missions, include both free motion and
contact tasks, such as tracking a desired trajectory and interacting with the external
environment at specific points, respectively. Hybrid Position/Force Control [67] has
been the basic strategy of many of the proposed implementations. The control of
a robot during “free motion” tasks (i.e. operations in which the system does not
interact with external objects) and the control during contact tasks are considered
as two different operational modes: in the case of free motion, an algorithm for
position control can be used, whereas, in the case of contact, the interaction of the
robot with the external environment has to be managed by means, for example, of
force/impedance algorithms. The Impedance Control strategy is a suitable solution
to control the interaction forces and the response of the system during contact with
external objects.

Impedance Control provides compliant behavior of a manipulator in dynamic
interaction with its environment. An impedance controller enforces a relationship
between the forces and moments acting on the manipulator end-effector and the
acceleration, velocity and position errors of the manipulator end-effector itself [59],[61]
(see Fig. 3.1 for the scheme of the Impedance Control approach). The concept of
impedance matching has been proposed in the past to find the control parameters
in order to optimize Impedance Control both from the transient and stationary
response point of view [68]. Furthermore, it was shown that if the magnitude of the
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Figure 3.1. Impedance Control concept for a space manipulator [59].

impedance is equal to or lower than that of impedance matching, stable contact can
be achieved; in contrast, if the impedance is larger than that of impedance matching,
there is no stable contact [69]. Experimental and numerical investigations on the
performance of Impedance Control implemented on elastic joints have shown the
benefits of adopting this control strategy in compensating undesirable effects caused
by system flexibility[70].

In the past, the Object Impedance Control (OIC) technique has been developed
in the context of multiple fixed-base mounted robotic arms manipulating a common
object [71]. OIC enforces a designated mechanical impedance not for the end-effector
of a single arm, but for the manipulated object itself. This control strategy is
adopted to make the manipulated object behave as if it were a reference mechanical
impedance. However, it has been recognized that applying OIC to the manipulation
of a flexible object can lead to instability. This instability problem could be solved
either by increasing the desired mass parameters or by filtering the frequency content
of the estimated contact force.

More recently, the Multiple Impedance Control (MIC) algorithm has been
developed for several cooperating robotic systems manipulating a common object.
In [72] MIC is studied in the context of space robotic systems. MIC formulation
is employed to impose a reference mechanical impedance to all the elements of a
space manipulator (including its base and endpoints) and the manipulated object; in
this way an accordant motion of the various subsystems during object manipulation
tasks is guaranteed.

In the present chapter, the formulation of Impedance Control proposed in [59] is
extended to a two-arm free-floating manipulator system with a particular emphasis
on the impact and post-impact phases with an external target satellite. As a matter
of fact, there are scenarios in which the use of two or more robotic arms may be
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preferable (if not mandatory). These give rise to new issues:

1. The dynamics model has to take into account the interaction between three
components of the multi-body system, i.e. the base platform and the two arms,
instead of two as in [59] and this is a source of complication in the development
of the model itself which is here addressed;

2. The control architecture becomes more sophisticated than that presented
in [59].

Furthermore, a dedicated control for the bus based on specific requirements will be
introduced. One has to consider that, generally speaking, the control actions have
to be determined taking the dynamic coupling among them into consideration. In
particular, a control strategy including a PD Control for the base and two Impedance
Controls for the arms (which is able to decouple each part of the overall control
strategy from the others) is developed and the relevant mathematical formulation is
detailed [73]. Within this chapter, all the mathematics is derived in a 2D inertial
reference frame, i.e. the motion of the manipulator and target is planar. The origin
of the frame is located at the position of the SMS base center of mass at t = 0.
Rigorously speaking, this should be an orbital reference frame (relative, for example,
to the orbit on which the base center of mass is moving before the beginning of
the considered maneuver) which is not inertial; nevertheless, in the case study that
will later be presented, the considered time interval is relatively short and this
justifies neglecting the orbital curvature and to assume the orbital motion as uniform
rectilinear thus allowing one to consider the reference frame as inertial. Furthermore,
the reduced time scale here involved also allows for the gravitational actions effects
to be neglected as well. Furthermore, Q is here defined as the vector containing the
base position and attitude variables, the arms joint angles and the distances of the
centers of mass of the end-effectors contact plates (see Fig. 3.3) from the endpoint
of the corresponding arm last link.

As far as the impact and post-impact dynamics among the end-effectors and the
target is concerned, this is modeled through the MSC Adams multi-body software
which is also employed in the verification process that enables the detailed simulation
of these complex dynamic interactions.
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Figure 3.2. Schematic of the multi-body space manipulator and target satellite.

3.2 Two-arm multi-body space manipulator and target
satellite description

In Fig. 3.2 the schematic of the two-arm space manipulator (on the left) and
target satellite (on the right) is reported.

The manipulator usually suffers from flexible effects caused by joints clearance,
gears friction and links elastic behavior. Some interesting researches propose to
increase this elasticity in order to exploit its potential advantages over the conven-
tional “rigid” robotic manipulators [74]. on the other hand, the most common choice,
which is also adopted here, is to design the manipulator so that the elastic dynamics
is reduced as far as possible, and therefore, in a first approximation, all the parts of
the multi-body system will be considered as actually rigid.

The first link of each robotic arm is connected to the base platform by means of
a revolute joint and the links are connected with each other by revolute joints as
well.

The two end-effectors are formed by a contact plate which is connected to the
last link of the corresponding arm by means of a prismatic joint, i.e. it can only
translate relatively to the last link along the direction of the latter (see Fig. 3.3),
and a spring-damper mechanism. This special configuration of the end-effector will
be shortly discussed.

The length of the links, as reported in Tab. 3.1, ensures safe operations by
keeping a safety distance between the chaser base and the target. The position of
the arms shoulders on the bus has been opportunely chosen in order to take also
advantage of the size of the bus to reach two points fixed on one face of the target
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Figure 3.3. Schematic of the end-effector: Spring stiffness coefficient 300 N/m, Damper
damping coefficient 20 N s/m.

Table 3.1. Properties of the links of the space manipulator.

Link Mass kg Length m JJ kg m2

1 20.00 1.10 6.93
2 20.00 1.10 6.93
3 19.27 1.05 6.56
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which are functional to the successive grasping phase. The target is considered as a
rigid central body with two appendages rigidly attached to the main bus.

The base of the manipulator has a cubic shape of length 1 m, its mass is mB =
500 kg and its moment of inertia about the z axis of the center of mass body-fixed
reference frame is JB = 83.33kg m2. The contact plate reported in Fig. 3.3 is 0.10 m
high, with a mass of 0.35 kg and a moment of inertia of 2.95 · 10−4 kg m2. The spring
length at rest is 0.2 m. Tab. 3.1 also reports the moments of inertia of the links
referred to their left-end revolute joint. The mass of the target is 2721 kg and its
moment of inertia about the z axis of the center of mass body-fixed reference frame
is 7895 kg m2.

3.3 Impedance Control for a space manipulator

In the Impedance Control approach the end-effector is controlled in order to make
it behave like a mass-spring-damper system regardless of the reaction motion of the
base so to absorb the impact energy. The Impedance Control concept is illustrated in
Fig. 3.1 in a simple one-dimensional context; one should actually imagine a complete
set of orthogonal translational and rotational mass-spring-damper systems, i.e. a
translational one along the x inertial axis, a translational one along the y inertial
axis and a rotational one about the z inertial axis.

The Impedance Control law is defined as:

MikẌeek
+ Dik(Ẋeek

− Ẋeedesk
) + Kik(Xeek

−Xeedesk
) = Ack

, k = 1, 2 (3.1)

where Ẍeek
∈ R3×1, Ẋeek

∈ R3×1, Xeek
∈ R3×1 are respectively the k-th end-effector

endpoint acceleration, velocity and position (translational and angular ones (actually,
the angular ones are those of the end-effector itself)), Ẋeedesk

∈ R3×1, Xeedesk
∈ R3×1

are their desired values, Mik ∈ R3×3, Dik ∈ R3×3, Kik ∈ R3×3 are the Impedance
Control matrices (denoting by I the identity matrix, they will be chosen as diagonal
matrices of the form mikI3×3, dikI3×3, kikI3×3) and Ack

∈ R3×1 are the contact
actions exerted on the k-th end-effector by the target satellite.

A problem rises: it often happens that Impedance Control cannot be sufficiently
effective during contact because of the presence of actuation time delay in real
systems. Therefore, the contact interface must be compliant enough for Impedance
Control to be more effective to increase contact duration [75]. A way to achieve this
is to place a translational spring-damper group between the arm last link and the
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contact plate (see Fig. 3.3).1 From a design point of view, it is convenient to consider
the last link endpoint rather than the end-effector endpoint as the controlled point
since, in this way, there are no passive elements (represented, in this case, by the
spring-damper group) in between the actuators and the controlled point. This allows
to consider the spring-damper force acting on the last link rather than the contact
force acting on the contact plate. In fact, the spring-damper force is the external
force acting on the tip of the last link just as the contact force is the external force
acting on the tip of the end-effector.

On account of the above considerations, Eq. (3.1) is modified to become:

MikẌllk + Dik(Ẋllk − Ẋlldesk
) + Kik(Xllk −Xlldesk

) = −Aelk , k = 1, 2 (3.2)

where Ẍllk ∈ R3×1, Ẋllk ∈ R3×1, Xllk ∈ R3×1 are respectively the k-th arm last
link endpoint acceleration, velocity and position (translational and angular ones
(actually the angular ones are those of the last link itself)) and −Aelk ∈ R3×1 are
the spring-damper actions acting on the last link of the k-th arm. To complete the
governing equations, one has to express the variables characterizing the last link
endpoint position and orientation as a function of the set of Kane’s variables. This
is done by means of a Jacobian matrix Jllk ∈ R3×(8+nl1 +nl2 ) (where nl1 and nl2 are
the number of links forming the first and second arm respectively) which relates the
time derivative of the former to those of the latter:

Ẋllk = JllkQ̇, k = 1, 2 (3.3)

Deriving Eq.(3.3) with respect to time, one gets:

Ẍllk = JllkQ̈+ J̇llkQ̇, k = 1, 2 (3.4)

Substituting Eq.(3.4) into Eq.(3.2), the following expression for Q̈ is obtained:

Q̈k = −(MikJllk)+[Mik J̇llkQ̇+ Dik
(
JllkQ̇− Ẋlldesk

)
+

+ Kik(Xllk −Xlldesk
) +Aelk

]
, k = 1, 2 (3.5)

where the + superscript indicates the pseudo-inversion operation. Eq. (3.2) is the
synthetic control: it is the motion that must be imposed on the last link endpoint

1Note that the end-effector spring-damper group exists for real; it does not correspond to the
imaginary spring and damper of the Impedance Control reported in Fig. 3.1.
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variables to make it behave as if it was a mass-spring-damper system regardless of
the reaction motion of the base (see Fig. 3.1). The subsequent step is to determine
the control actions required to impose this motion coherently, of course, with the
control actions that are actually available on board of the manipulator system.

The control actions here considered are two forces acting on the base along the
base x and y body axes, a torque acting o the base about the base z body axis
(which is parallel to the z inertial axis) and a number of torques equal to the number
of joint motors whose axes lie along the joints z axes which are parallel to the z
inertial axis (and, consequently, the torques they produce are about the z inertial
axis).

3.3.1 Impedance+PD control strategy definition

Impedance Control does not impose any explicit requirement on the base behavior.
This could be not acceptable in cases where stringent constraints on the base
motion (both translational and angular) need to be satisfied. In order to overcome
this problem, a suitable solution is to elaborate a control architecture where the
Impedance Control involves the joint motors, while a separate control strategy
is applied to the base involving the base actuators. One common approach for
controlling the base of the manipulator is by means of LQR algorithms (as for
example in [76]), a technique that requires the linearization of the system dynamics.
Another possible choice for the base control is the use of a Proportional-Derivative
(PD) algorithm. Defining XB = [xB, yB, θB]T (i.e. the vector containing the base
center of mass position and the relevant attitude angle), the PD synthetic control
law is given by

ẌB = −Kp
(
XB −XBdes

)
−Kd

(
ẊB − ẊBdes

)
(3.6)

where Kp ∈ R3×3 and Kd ∈ R3×3 are respectively the control proportional and
derivative gain matrices (in the following results they are chosen as diagonal matrices).
The vector ẊB is expressed in terms of the vector Q̇ by means of a Jacobian matrix
JB ∈ R3×(8+nl1 +nl2 ) such that:

ẊB = JBQ̇ (3.7)

Deriving Eq.(3.7) with respect to time and substituting into Eq. (3.6) leads to:

Q̈ = −J+
B

[
Kp
(
XB −XBdes

)
+ Kd

(
ẊB − ẊBdes

)]
(3.8)
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The equations describing the controlled dynamics of the SMS can be written in the
following form:

JTMJQ̈ = −JTMJ̇Q̇+ JTC + JTF + B1u1 + B2u2 + B3u3 (3.9)

Referring to the right-hand side of Eq. (3.9), vectors u1 ∈ Rnl1×1 and u2 ∈ Rnl2×1

contain the joint torques supplied by the joint motors which participate to the
Impedance Control of the last link of the first and second arm respectively, while
vector u3 ∈ R3×1 represents the base control actions which participate to the PD
Control of the base. The terms B1 ∈ R(8+nl1 +nl2 )×nl1 , B2 ∈ R(8+nl1 +nl2 )×nl2 and
B3 ∈ R(8+nl1 +nl2 )×3 are the matrices that map the control actions vectors onto the
dynamics equations. Separately substituting the desired accelerations appearing in
Eqs. (3.5) and (3.8) into Eq. (3.9), one obtains the vectors of generalized control
forces:

u1 =B+
1 {JTMJ(Mi1Jll1)+[−Mi1 J̇ll1Q̇−Di1(Ẋll1 − Ẋll1des

)−Ki1(Xll1 −Xll1des
)+

−Ael1 ] + JTMJ̇Q̇− JTC − JTF
′ −B2u2 −B3u3}

(3.10)

u2 =B+
2 {JTMJ(Mi2Jll2)+[−Mi2 J̇ll2Q̇−Di2(Ẋll2 − Ẋll2des

)−Ki2(Xll2 −Xll2des
)+

−Ael2 ] + JTMJ̇Q̇− JTC − JTF
′ −B1u1 −B3u3}

(3.11)

u3 =B+
3 {JTMJJ+

B [−Kp(XB −XBdes)−Kd(ẊB − ẊBdes)] + JTMJ̇Q̇− JTC+

− JTF
′ −B1u1 −B2u2}

(3.12)
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where the modified vector of external generalized forces appearing in Eqs. (3.10)-
(3.12) is defined as follows:

F
′ =



02×1

0
02×1

0
...

−Fel1

0
02×1

02×1

0
...

−Fel2

0
02×1

02×1

0



(3.13)

whereas the vector of generalized forces F is defined as the column vector

F =



02×1

0
02×1

0
...

−Fel1

0
Fel1 + Fc1

02×1

0
...

−Fel2

0
Fel2 + Fc2

−(Fc1 + Fc2)
mct



(3.14)
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where −Felk , k = 1, 2 (corresponding to the first two rows of vector −Aelk in
Eq. (3.2)) is the spring-damper force acting on the last link of the k-th arm, Fck

, k =
1, 2 (corresponding to the first two rows of vector Ack

in Eq. (3.1)) is the contact
force acting on the k-th end-effector and the last three rows of F are the contact
force and moment acting on the target. In order to simplify the design of the
end-effector, it could be desirable to avoid placing a force sensor on the contact
plate. This implies not to have the contact force measurement available. On
account of this, the approximation Fck

' −Felk is made meaning the contact force
is assumed to be roughly equal to the one measured by the sensor placed at the end
tip of the last link (see Fig. 3.3). Furthermore, the last components of vector F ,
i.e. [−(Fc1 + Fc2)T,mct]T, can be assumed to be null in vector F ′ since it can be
demonstrated that the product B+

k JTF , k = 1, 2, 3 associated to these components
is always null. The previous considerations justify vector F ′ taking the place of
vector F in Eqs. (3.10)-(3.12). It has to be noticed that in vector F no external
actions other than contact ones are assumed to be present.

From Eqs. (3.10)-(3.12) it can be noticed that the control vectors are, in general,
dynamically coupled among each other. However, in this control architecture, this is
not true given the form of the Bk, k = 1, 2, 3 matrices appearing in Eq. (3.9). In
fact, it occurs that BkB+

p , k, p = 1, 2, 3; p 6= k. This is due to the fact each part
of the control architecture (i.e. the two Impedance Controls and the PD Control)
involves separate control actions, i.e. each control action is not involved in different
controls at the same time.

This leads to the final control actions vectors:

u1 = B+
1 {JTMJ(Mi1Jll1)+[−Mi1 J̇ll1Q̇−Di1(Ẋll1 − Ẋll1des

)−Ki1(Xll1 −Xll1des
)+

−Ael1 ] + JTMJ̇Q̇− JTC − JTF
′} (3.15)

u2 = B+
2 {JTMJ(Mi2Jll2)+[−Mi2 J̇ll2Q̇−Di2(Ẋll2 − Ẋll2des

)−Ki2(Xll2 −Xll2des
)+

−Ael2 ] + JTMJ̇Q̇− JTC − JTF
′} (3.16)

u3 = B+
3 {JTMJJ+

B [−Kp(XB −XBdes)−Kd(ẊB − ẊBdes)] + JTMJ̇Q̇+

− JTC − JTF
′} (3.17)

In the following, the overall control strategy will be referred to as Impedance+PD
Control.
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3.3.2 Direct PD Control for a space manipulator

Besides Impedance+PD Control, a conventional control like, for example, a
simple PD Control applied directly on the arm joint torques and on the base position
and attitude control actions, is considered (in the following it will be referred to as
Direct PD Control). The control vectors will in this case be given by:

u1 = −Kp1

(
θJ1 − θJ1des

)
−Kd1

(
θ̇J1 − θ̇J1des

)
(3.18)

u2 = −Kp2

(
θJ2 − θJ2des

)
−Kd2

(
θ̇J2 − θ̇J2des

)
(3.19)

u3 = −Kp3

(
XB −XBdes

)
−Kd3

(
ẊB − ẊBdes

)
(3.20)

where θJk
∈ Rnlk

×1, k = 1, 2 is the joint angles vector of the k-th arm, θJkdes
∈

Rnlk
×1, k = 1, 2 is its desired value, XB ∈ R3×1 is the vector containing the

base position and attitude variables, XBdes ∈ R3×1 is its desired value and Kpj
∈

R3×3, j = 1, 2, 3, Kdj ∈ R3×3, j = 1, 2, 3 are respectively the control proportional
and derivative gain matrices.

The Direct PD Control gains are selected as Kpk
= kikInlk

×nlk , k = 1, 2, Kdk
=

dikInlk
×nlk , k = 1, 2, Kp3 = Kp and Kd3 = Kd. This choice is made in order to

make a comparison between the two control architectures (i.e. the Direct PD and
the Impedance+PD Controls) by taking the same control gains into account.

3.3.3 Numerical approach for the selected case study

In the previous section, the Impedance-based Control for a 2D space manipulator
to capture a non-cooperative target satellite has been developed and detailed. Of
course, the control algorithms must be tested and their robustness verified numerically
and/or experimentally.

It is worth noting that, by means of numerical simulations, it is possible to
perform, in general, a complete analysis considering the effects of the mass and
inertia properties and of the forcing terms and perturbations, if any, all along the
studied maneuver. The ideal case study is the one in which the dynamics and the
control are based on the same model. In this case, the whole simulation can be
conducted in a single environment as, for example, Matlab. On the other hand, if
one wants to take more realistic models for the system dynamics into consideration,
one can resort to different simulation approaches. The accurate simulation, for
example, of the contact dynamics already available in commercial software suggests
leaving aside the development of in-house dedicated numerical codes.
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On the other hand, commercial codes oriented to multi-body dynamics should
allow the inclusion of in-house routines for simulating phenomena which are not
included in their standard libraries (i.e. orbital dynamics, space environment actions,
control schemes, thrusters, attitude control actuators, sensors, etc.). As a result,
the choice adopted in this study is to use a state of the art-commercial multi-
body code (i.e. MSC Adams) in co-simulation with an Impedance+PD Control
scheme developed in the Simulink environment. This allows to simulate in detail the
kinematics and dynamics of the space robot and target satellite and, of course, the
contact dynamic phase. Fig.3.4 shows a block diagram of the co-simulation logic used

Figure 3.4. Co-simulation logic block diagram.

for the simulations. The s-function block connecting the Simulink environment with
the Adams software is on the top. Within this approach, the inputs to the dynamic
plant (i.e. the joint control torques, the position and attitude control actions applied
to the spacecraft and, eventually, environmental actions) are evaluated by means of
Matlab functions and passed, at each integration time-step, to the Adams solver.
The outputs of the dynamics (i.e. the system state vector and other quantities like,
for example, the spring-damper forces) are used to evaluate the control actions thus
closing the loop. Details on the adopted co-simulation approach can be found in [77].

It is important to underline the Kane-like model is the core for the synthesis of
the Impedance+PD Control used in the co-simulation approach.
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3.4 Numerical results

As mentioned above, the goal of this chapter is to study the dynamic interaction
of a space manipulator and a non-cooperative target orbiting nearby. In particular,
the attention is focused on the contact and post-contact (pre-grasping) phases.

As initial conditions, the arm of the SMS are already deployed and the end-
effectors are very close to the target satellite. The SMS is at rest, with its center
of mass aligned along the x inertial axis with the target center of mass. For what
concerns the target, the translational velocity components with respect to the inertial
reference frame are assumed as Vx0 = −5 cm/s and Vy0 = 0 (the positive directions of
the inertial axes are shown in Fig. 3.3); it also has an angular velocity about its center
of mass of ωz0 = 1 deg/s. As far as the desired values of the state variables appearing
in Eqs. (3.15)-(3.20) - i.e. translational and angular positions and velocities of the
base and the arms - are concerned, they are assumed to be equal to those of the
initial conditions.

In all the following simulations, a duration time of the maneuver equal to 60 s
has been considered. After this time interval, a new phase of the mission is supposed
to take place where the grasping of the target with the use of mechanical grippers
or robotic hands is involved.

3.4.1 Control strategies effectiveness evaluation

The effectiveness of a control strategy in a pre-grasping operation can be positively
evaluated when some requirements on the kinematic and dynamic state of the SMS
and target are satisfied (the adopted threshold values are reported in parentheses):

1. The magnitude of the contact forces is sufficiently small (≤ 1 N);

2. During the maneuver, the distances between the end-effectors and the target
are null or within a prescribed tolerance (of the order of centimeters);

3. During the maneuver, the SMS base shows relatively small translational
displacements magnitude and angular displacements (respectively ≤ 5 cm and
≤ 2 deg);

4. The target translational velocity magnitude and angular velocity are smaller
than prescribed design ones (respectively ≤ 0.5 cm/s and ≤ 0.05 deg/s);

5. Conditions 1 and 4 are maintained for a prescribed time interval (of the order
of 10 s).
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3.4.2 Control gains selection procedure

In all the following numerical simulations, the values of the Impedance Control
gains are chosen as follows:

mik = 5, k = 1, 2

dik = 100, k = 1, 2 (3.21)

kik = 0, k = 1, 2

The choice of setting kik equal to zero is made in order to avoid a potential “spring-
effect” behavior on both the end-effectors which could produce an unwanted early
detachment of the target.

SMS base PD Control gains parametric analysis

For what concerns the SMS base PD Control, the gains which will be considered
as parameters are the proportional and derivative gains for the translational motion
(KpT and KdT respectively) and the proportional and derivative gains for the
rotational one (KpR and KdR respectively). This implies that the gain matrices in
Eq. (3.6) are given by

Kp =


KpT 0 0

0 KpT 0
0 0 KpR

 , Kp =


KdT 0 0

0 KdT 0
0 0 KdR


Furthermore, an additional constraint between the gains in the two sets has been
introduced, namely that of critical damping conditions. From the mathematical
standpoint, this is given by

ζT = KdT

2
√
KpTmB

= 1, ζR = KdR

2
√
KpRJB

= 1 (3.22)

This allows one to reduce the number of independent parameters from four to two;
in particular, here the proportional gains are obtained once the derivative ones are
set:

KpT =
K2

dT

4mB
, KpR =

K2
dR

4JB
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In order to take the different variables of interest into account when evaluating the
“best” control gains set, a Cost Function is defined as the following:

J = P1eT + P2eR + P3uT + P4uR + P5eJ (3.23)

where Pi, i = 1, . . . , 5 are properly chosen weighting parameters such that Pi = Pi1Pi2

where Pi1 are non-dimensionalization parameters and Pi2 are the effective weights
which are used to establish the relevance that wants to be assigned to the term they
multiply. Namely, the latter are assumed as P12 = P22 = 1, P32 = P42 = P52 = 10
(this choice was made in order for the different terms present on the right-hand side
of Eq. (3.23) to be of the same order of magnitude). The other quantities appearing
in the above relation are given by:

eT = max
√
e2

Tx
+ e2

Ty

eR = max |eRz |

uT = mean |uTx |+ mean |uTy |

uR = mean |uRz |

uJ =
nl1 +nl2∑
k=1

mean |uJzk
|

where eTx is the x inertial component of the SMS base center of mass position
deviation from the desired one, eTy is the y inertial component of the same entity,
eRz is the deviation of the SMS base attitude angle with respect to the x inertial axis
from the desired one, uTx is the control force (along the base x body axis) acting on
the SMS base, uTy is the y body component of the same quantity, uRz is the control
torque (about the base z body axis) acting on the SMS base and uJzk

is the control
torque (about the joint z axis) acting at the k-th joint.

All the tested combinations between the translational and rotational derivative
gains values (together with the corresponding proportional gains) satisfy the mission
requirements.

The “best” set of gains is chosen as the one that minimizes the above defined
cost function. Fig. 3.5 shows a plot of the values assumed by the latter where the
presence of a central plateau region can be detected. In particular, the minimum
is found for KdT = 10 (with a corresponding KpT = 0.05) and KdR = 40 (with a
corresponding KpR = 4.8) which are used in the subsequent results.
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Figure 3.5. Cost function value vs. KdT and KdR variations.

3.4.3 Analysis of the Direct PD Control performance

In this section the performance of the Direct PD Control during the impact and
post-impact phases is analyzed. In Fig.3.6 the sketch of the configurations assumed
by the system during the maneuver is reported. It is evident that the base of the
chaser is not maintained fixed both in translation and rotation after the first contact
and the controller fails in accomplishing the mission within 60 s. In Fig.3.7 the
magnitude of the contact forces between the end-effectors and the target satellite
are shown. It is interesting to observe that, as far as arm 1 is concerned, the first
impact takes place after a few seconds (as clearly visible from the sharp variation on
the value of the contact force) and afterwards a rebound between the end-effector
and the target occurs, but towards the end of the maneuver the two bodies are still
in contact as can be deduced from the non-null contact force values. Looking at
the dynamics of arm 2, it loses contact with the target soon after the first impact
(zero value of contact force). For a better understanding of the dynamics of the
target, its translational velocity magnitude and angular velocity are reported in
Figs. 3.8 and 3.9 respectively. It is worth noting that at the prescribed final time
the translational and angular velocities of the target are not damped out. We can
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Figure 3.6. Sketch of the system dynamic evolution when Direct PD Control is applied.

Figure 3.7. Magnitude of the contact forces acting between the SMS end-effectors and the
target.
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Figure 3.8. Target center of mass inertial velocity magnitude.

Figure 3.9. Target inertial angular velocity.



3.4 Numerical results 54

conclude that a simple Direct PD Control applied to a robotic manipulator is not
suitable for a pre-grasping maneuver.

3.4.4 Analysis of the Impedance+PD Control performance and
preliminary robustness analysis

In the present section, a detailed discussion on the Impedance+PD Control
effectiveness is presented. Four different cases are analyzed:

1. case 0: the nominal case (nominal means the fact the control block uses the
same bodies inertial parameters of the Adams dynamics block);

2. case 1: the controller overestimates the bodies inertial parameters by 10%;

3. case 2: the controller underestimates the bodies inertial parameters by 10%;

4. case 3: the controller underestimates the bodies inertial parameters by 10%
and joint friction is added to the dynamics model (but not considered in the
control synthesis).

Concerning case 3, a simple friction model has been adopted [78]:

τf = −τcsign
(
θ̇J
)
− dθ̇J (3.24)

where τf is the friction torque, τc and d are coefficients of constant and velocity-
dependent friction torque respectively (assumed equal to 5 N m and 15 N m s/rad
respectively) and θ̇J represents the angular rate of the joint. In Fig.3.10 the configu-
rations assumed by the SMS and target when the Impedance+PD Control algorithm
is applied are shown. From Fig.3.10a (which refers to case 0) it is possible to observe
that, at the end of the maneuver, both the end-effectors of the SMS remain very close
to the target. From Fig.3.10b (which instead refers to case 3) it can be noticed that
the arms configuration evolution is significantly different from that of the nominal
case 0. However, at the end of the maneuver both the end-effectors are very close
(even if slightly less than the nominal case 0) to the target despite the fact the
control determination is based upon a model which presents some inaccuracies and
neglects certain actions. The sketches for cases 1 and 2 are not reported for the sake
of brevity since they are substantially the same as that of Fig.3.10a. In Figs.3.11
and 3.12 the time histories of the contact forces acting on the end-effectors of the
two arms are reported for all the test cases, where it is possible to see that the first
requirement is satisfied. It is interesting to observe that the first three cases show
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Figure 3.10. Sketch of the system dynamic evolution when Impedance+PD Control is
applied.
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Figure 3.11. Magnitude of the contact force acting between the SMS arm 1 contact plate
and the target.

Figure 3.12. Magnitude of the contact force acting between the SMS arm 2 contact plate
and the target.
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values which are very close among each other, while the last one (case 3) presents
a behavior which is remarkably different from the previous ones, especially in the
initial transient phase.

As far as the second requirement (i.e. the distances between the end-effectors
and the target are null or within a prescribed tolerance) is concerned, no graphs are
reported. For the first arm, it is sufficient to say the small values of the contact force
observed in the last phase of the simulation for the first three test cases are indicative
of the continuity of contact. In case 3 the contact force magnitude reaches a constant
zero value from roughly t = 36 s on. This means the end-effector has actually lost
contact, but looking at the values of the distance separating the end-effector contact
plate from the target, it has been verified they were absolutely acceptable (of the
order of centimeters). For the second arm, the simulation shows that for cases 0, 1
and 2 the contact force goes to zero at t = 49 s roughly; this once again means the
end-effector has actually lost contact, but the distance values are acceptable here
too. In case 3 the contact force magnitude reaches a null value at t = 21 s roughly;
in this case though the distance separating the contact plate from the target bus has
reached a limit value. Concerning the third requirement (i.e. the SMS base shows

Figure 3.13. SMS base center of mass displacement magnitude.

relatively small linear and angular displacements), the displacement magnitude of
the SMS base center of mass is shown in Fig. 3.13 for all cases. It is possible to
appreciate the displacement is of the order of millimeters. The first three curves are
qualitatively similar and it can be seen how the values are lower for case 1 and higher



3.4 Numerical results 58

Figure 3.14. SMS base attitude angle with respect to the x inertial axis.

for case 2 with respect to the nominal case 0. For what concerns case 3, the curve is
significantly different showing higher values for most of the mission duration. As far
as the attitude of the SMS base is concerned, the relevant time histories are reported
in Fig. 3.14. Indeed, we observe a very similar behaviour for the first three cases. On
the contrary, for case 3 the base attitude angle presents lower values (in magnitude)
for most of the mission duration. Anyway, the attitude variation magnitude is lower
than 0.1 deg in all cases. The effect of the proportional contribution to the base
control is clearly visible from the fact the attitude angle is going back to zero (which
is the desired value) within a relatively short time. The above results allow to say
the third requirement is also satisfied. To verify the fourth requirement (i.e. the
target translational velocity magnitude and the angular velocity are respectively
lower or equal to 0.5 cm/s and 0.05 deg/s), in Fig. 3.15 the magnitude of the target
center of mass velocity is reported. Impedance+PD Control succeeds in slowing
down the translational motion within the prescribed time interval. Furthermore, it
is also able to perform a de-tumbling maneuver of the target as shown in Fig. 3.16
where the target angular velocity is reduced to a nearly-zero value in about 50 s. So
it can be said the fourth requirement is satisfied as well. In these two figures it can
be seen how the curves for cases from 0 to 2 are again practically coincident, while
the curve for case 3 shows a noticeable deviation from the others.

As regards the fifth requirement, it can be said it is functional to the successive
grasping phase in the sense the time interval could be, for example, the time necessary
to the grippers to perform the grasping maneuver. From Figs. 3.11, 3.12, 3.15 and
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Figure 3.15. Target center of mass velocity magnitude.

Figure 3.16. Target angular velocity.
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3.16 it can be seen that requirements 1 and 4 are satisfied starting from t = 50 s.
Consequently, t = 50 s could be taken as the grasping maneuver beginning time
instant. The performance and preliminary robustness analysis results discussed above

Table 3.2. Impedance+PD Control performance and preliminary robustness analysis
results.

Requirement CASE

0 1 2 3

Requirement 1
√ √ √ √

Requirement 2
√ √ √

×
Requirement 3

√ √ √ √

Requirement 4
√ √ √ √

Requirement 5
√ √ √ √

are summarized in Tab. 3.2 where the check and cross symbols indicate whether the
requirement is satisfied or not respectively. It can be concluded that the proposed
Impedance+PD Control is quite robust to uncertainties on the inertial parameters,
while it is more sensitive to non-modeled dynamic phenomena as joint friction.

Figure 3.17. SMS arm 1 last link endpoint inertial coordinates (Case 0).

A comment on the choice of the gains used in the two Impedance Controls is due.
In particular, it has been said the proportional gains were set to zero. It could be
argued if, with this choice, the controlled variables remain close to their initial values
(which are the desired ones). Indeed, this requirement is satisfied even when only the
derivative contributions to the control are active, as shown, for example, in Figs. 3.17
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Figure 3.18. SMS arm 2 last link endpoint inertial coordinates (Case 0).

and 3.18 for the nominal case. In particular, it can be observed the variations on
the last link endpoints positions are of the order of decimeters throughout the entire
maneuver.

3.5 Impedance Control gains tuning procedure

After having selected the gains for the SMS base platform control (section 3.4.2),
a tuning procedure for the robotic arms Impedance Control gains is now presented.
First of all, the structure of the gain matrices is generalized by assuming different
coefficients for the translational and rotational portions of the control and the
constraint of null virtual stiffness control coefficient is removed. This mathematically
translates into having the following form for the Impedance Control matrices:

Mik =


miTk

0 0
0 miTk

0
0 0 miRk

 , Dik =


ciTk

0 0
0 ciTk

0
0 0 ciRk

 , Kik =


kiTk

0 0
0 kiTk

0
0 0 kiRk


(3.25)

This allows for a higher operational flexibility in dealing with the target satellite
initial kinematic conditions. Nevertheless, although this choice on one hand can
lead to better performances of the control strategy, on the other poses the issue
of carefully choosing adequate combinations of the mass, damping and stiffness
parameters in order to avoid the “spring-effect” earlier described. In all the following
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results, the values for the base PD Control are those obtained in Section 3.4.2. All

Table 3.3. Analyzed control gain parameters

miT ciT kiT miR ciR kiR mi : ci : ki Result

2.5 125 0.125 25 1250 1.25 1:50:0.05
√

2.5 125 0.625 25 1250 6.25 1:50:0.25
√

2.5 125 1.25 25 1250 12.5 1:50:0.5
√

2.5 125 1.875 25 1250 18.75 1:50:0.75
√

2.5 125 2.5 25 1250 25 1:50:1 ×
2.5 125 3.125 25 1250 31.25 1:50:1.25 ×
2.5 125 3.75 25 1250 37.5 1:50:1.5 ×
10 500 0.5 100 5000 5 1:50:0.05

√

10 500 2.5 100 5000 25 1:50:0.25
√

10 500 5 100 5000 50 1:50:0.5
√

10 500 7.5 100 5000 75 1:50:0.75
√

10 500 10 100 5000 100 1:50:1
√

10 500 12.5 100 5000 125 1:50:1.25
√

10 500 15 100 5000 150 1:50:1.5
√

100 5000 5 1000 50000 50 1:50:0.05
√

100 5000 25 1000 50000 250 1:50:0.25
√

100 5000 50 1000 50000 500 1:50:0.5
√

100 5000 75 1000 50000 750 1:50:0.75
√

100 5000 100 1000 50000 1000 1:50:1
√

100 5000 125 1000 50000 1250 1:50:1.25 ×
100 5000 150 1000 50000 1500 1:50:1.5 ×
100 10000 5 1000 100000 50 1:100:0.05 ×
100 10000 25 1000 100000 250 1:100:0.25 ×
100 10000 50 1000 100000 500 1:100:0.5 ×
100 10000 75 1000 100000 750 1:100:0.75 ×
100 10000 100 1000 100000 1000 1:100:1 ×
100 10000 125 1000 100000 1250 1:100:1.25 ×
100 10000 150 1000 100000 1500 1:100:1.5 ×
200 10000 10 2000 100000 100 1:50:0.05 ×
200 10000 50 2000 100000 500 1:50:0.25 ×
200 10000 100 2000 100000 1000 1:50:0.5 ×
200 10000 150 2000 100000 1500 1:50:0.75 ×
200 10000 200 2000 100000 2000 1:50:1 ×
200 10000 250 2000 100000 2500 1:50:1.25 ×
200 10000 300 2000 100000 3000 1:50:1.5 ×

the tested gains combinations are reported in Tab. 3.3, where the check and cross
symbols in the last column respectively indicate whether the mission requirements
stated in Section 3.4.1 are satisfied or not. As it can be seen, there are many gains
sets which satisfy the mission requirements. The cost function here used is defined



3.5 Impedance Control gains tuning procedure 63

as:
J = P1eT + P2eR + P3uT + P4uR + P5eJ + P6eTt + P7eRt (3.26)

where the previously defined cost function (3.23) has been augmented to take the
target kinematic state into account. The additional terms are given by

eTt = mean
√
v2

tx
+ v2

ty

eRt = mean |ωtz |

where vtx and vty are respectively the x and y inertial components of the target center
of mass velocity and ωtz is the target angular velocity (about the z inertial axis).
Furthermore, it has been set P12 = P32 = P42 = P62 = P72 = 1, P22 = P52 = 10
(once again to have terms of the same order of magnitude on the right-hand side of
Eq. (3.26)). The “best” set of gains is chosen as the one which minimizes the above
defined the above defined cost function; in particular, the minimum is found for the
gains set highlighted in red in Tab. 3.3. In the following simulations the latter is
used for the Impedance Control of both the last links.

3.5.1 Analysis of the Impedance+PD Control performance and ap-
plicability range evaluation

Impedance+PD Control performance analysis

Taking the Impedance Control gains evaluated in Section 3.5 into consideration,
the performance of the control strategy is analyzed in the nominal scenario. In
Fig.3.19 a sketch of the evolution of the system is reported. It is possible to observe
how the developed strategy makes the chaser able to absorb the impact and that, at
the end of the maneuver, both the end-effectors of the SMS remain very close to
the target satellite. In Fig.3.20 the time history of the contact forces acting on the
contact plates of the two end-effectors is also reported. The sharp variations in the
two curves are indicative of the beginning of the contact phase between the bodies. It
can be seen that for arm 1 the magnitude reaches a constant zero value from t = 29.7 s
on; an analogous thing happens for arm 2 starting from t = 19.2 s. This means both
the end-effectors have actually lost contact with the target; nevertheless, it has been
verified the distances dividing the contact plates from the target bus display values
which are below the threshold given for requirement 2. These considerations allow to
say the first two requirements are satisfied. In Figs.3.21 and 3.22 the magnitude of
the SMS base center of mass displacement and the base attitude angle with respect
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Figure 3.19. Sketch of the system dynamic evolution when Impedance+PD Control is
applied (nominal case).

Figure 3.20. Magnitude of the contact forces acting between the SMS contact plates and
the target (nominal case).
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Figure 3.21. SMS base center of mass displacement magnitude (nominal case).

Figure 3.22. SMS base attitude angle with respect to the x inertial axis (nominal case).
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to the x inertial axis are respectively reported. It can be noticed these two variables
are well below the maximum allowed ones which implies the third requirement is
satisfied as well. It is interesting to observe both the curves show a periodic-like
behavior. The kinematic behavior of the target is shown in Figs. 3.23 and 3.24.

Figure 3.23. Target center of mass velocity magnitude (nominal case).

Figure 3.24. Target angular velocity (nominal case).

The target center of mass velocity magnitude is reduced to much less than a tenth of
its initial value and the target angular velocity practically to zero. So requirement 4
is verified.

As far as the fifth requirement is concerned, from Figs. 3.20, 3.23 and 3.24 it can
be seen requirements 1 and 4 are verified starting from t = 20 s on. Consequently,
the grasping operation could begin at any time instant following t = 20 s.
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Impedance+PD Control applicability range evaluation

It could well happen in actual on-orbit missions that the initial kinematic
conditions of the target satellite do not coincide with those considered in the nominal
design. On account of this, it is interesting to evaluate the applicability range of the
proposed Impedance+PD Control strategy given the optimal set of gains determined
in the nominal conditions and varying the target satellite initial kinematic state.
Tab.3.4 shows the results of this analysis where in the first column and first row the

Table 3.4. Impedance+PD Control applicability range evaluation.

0.5 1 1.5 2 2.5 3

2.5
√ √

× × × ×
5

√ √ √ √
× ×

7.5
√ √ √ √ √

×
10 ×

√ √
× × ×

12.5 × × × × × ×

magnitude of the target center of mass initial velocity and the target initial angular
velocity are respectively reported. The check and cross symbols respectively indicate
the mission is either accomplished or not. Looking at the table, it is possible to notice
how the selected gains set is actually able to face a good number of out-of-design
conditions, ranging from 2.5 to 10 cm/s and from 0.5 to 2.5 deg/s. A relevant aspect
that has been detected in this analysis - besides the values of the two variables taken
separately - is their combination. In fact, it can be seen that high or low values for
the target initial conditions could be sustainable or not according to the way they
are reciprocally coupled.

In order to have a more quantitative idea of how the controller behaves in
out-of-design conditions, in the following the results relative to the worst analyzed
case (i.e. 12.5 cm/s - 3 deg/s) are shown. Figures from 3.25 to 3.30 show that
requirement 1 is satisfied, but, on the other hand, requirements 2, 3, 4 and 5 are
not. Nevertheless, the reported values of the SMS base attitude angle and the target
angular velocity violate just slightly the imposed constraints and those of the SMS
base center of mass displacement magnitude and the target center of mass velocity
magnitude remain of the same order of magnitude of the maximum allowed ones.
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Figure 3.25. Sketch of the system dynamic evolution when Impedance+PD Control is
applied (worst case).

Figure 3.26. Magnitude of the contact forces acting between the SMS contact plates and
the target (worst case).



3.5 Impedance Control gains tuning procedure 69

Figure 3.27. SMS base center of mass displacement magnitude (worst case).

Figure 3.28. SMS base attitude angle with respect to the x inertial axis (worst case).
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Figure 3.29. Target center of mass velocity magnitude (worst case).

Figure 3.30. Target angular velocity (worst case).
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3.6 Conclusions

In this chapter a Kane-like formulation for the kinematics and dynamics of a
two-arm space manipulator system and a non-cooperative target satellite coming
in contact has been presented. An Impedance+PD Control algorithm has been
developed to allow contact keeping between the manipulator end-effectors and
the target without performing a real grasp. The performance of the proposed
control architecture has been evaluated by means of a co-simulation methodology
involving the commercial multi-body code MSC Adams and Simulink. Furthermore,
a preliminary robustness analysis was conducted considering uncertainties on the
bodies inertial parameters and neglecting joint friction in the control synthesis. The
obtained results allow to say the developed control strategy is suitable for application
in a pre-grasping maneuver satisfying the user-defined requirements and also showing
a preliminary good level of robustness. The performance of Impedance+PD Control
was also compared to that of a Direct PD Control showing the former is able to
accomplish the mission requirements while the latter fails. As far as the choice of the
gains for the PD Control of the base platform is concerned, a parametric analysis
has been conducted. In particular, the proportional and derivative parts haven’t
been independently chosen, but imposing they satisfy a critical damping condition
both in translation and rotation control instead. An additional parametric study has
been performed as well to choose a suitable set of gains for the Impedance Control
of the two arms. An applicability range evaluation analysis has been conducted
considering out-of-design values for the target initial kinematic conditions which
showed a good effectiveness of the controller from this point of view as well.
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Chapter 4

Closed-loop system dynamics
and operations

The goal of the present chapter is to design a post-grasping docking mission
of a target object to be retrieved towards the space manipulator base platform.
The attention will be focused on developing a multi-body dynamic model of the
closed-loop system formed by a fully flexible Space Manipulator System (SMS) and
the non-cooperative target object to be manipulated and on synthesizing a suitable
control strategy for the mission to be accomplished. The controlled dynamics of the
system will be simulated by means of an in-house developed Matlab code combined
with MSC Nastran for what concerns the extraction of the structural dynamics
properties of the flexible components.

To begin with, the dynamics equations of a fully flexible three-dimensional space
manipulator are recalled in the following section.

4.1 Space Manipulator System dynamics equations

Assume the space multi-body system can be represented by N bodies intercon-
nected by N − 1 joints, leading to a serial kinematic chain as depicted in Figure 4.1.
Now associate a reference frame to each body bi of the kinematic chain (more
specifically, for the base platform, the axes of such frame will be parallel to the base
sides directions; for the arms links, the x body axis will be directed along the link
longitudinal axis, while the other two will be positioned so as to form a right-hand
orthonormal frame). Position of the origin (Oi) of this reference frame with respect
to the origin of the inertial reference frame (OI) can be indicated by vector IOI

rOi ,
where the bottom right index represents the endpoint of vector r and the bottom
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Figure 4.1. Reference frames associated to the multi-body system.

and upper left indexes represent its origin (OI) and the reference frame (I) in which
the same vector is expressed in, respectively. In a similar way, the attitude of the
body bi is described by a transformation matrix ITbi

, which maps the coordinates
from the reference frame detected by the bottom right index (bi) to the reference
frame identified by the upper left index (I). The inertial reference frame considered
in the following is an Earth-Centered Inertial (ECI) frame.

The variables which will be used have the following meaning:

mb = mass of body b
b
Ob

I0b
= rigid inertia tensor of body b with respect to the b body frame

b
Ob

Ĩb = second-order elastic inertia tensor of body b with respect to the b body frame
b
IΩb = skw

(b
Iωb

)
bΛk = k-th translational modal participation factor for body b expressed in the b

body frame
bΓ̃k = k-th elastic rotational modal participation factor for body b expressed in

the b body frame
bp̃b = elastic static moment of body b expressed in the b body frame
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B
OB
dCR = vector joining the base c.m. with the right panel clamping point

B
OB

DC
R = skw

(B
OB
dCR
)

B
OB
dCL = vector joining the base c.m. with the left panel clamping point

B
OB

DC
L = skw

(B
OB
dCL
)

See [79] for the definition of the listed and additional variables appearing in the
following equations. The skw(·) operator outputs the skew-symmetric matrix built
on the vector being its argument. Furthermore, ωb and bAk respectively indicate an
angular velocity and the k-th modal amplitude associated to body b.

The first issue to be addressed is how to describe the dynamics of the manipulator
base+solar panels assembly. This can be accomplished by the following steps:

1. Write the translational, rotational and elastic equations for each of the two
flexible solar panels;

2. Write the translational and rotational equations for the manipulator rigid base
platform;

3. Combine the latter by means of the reaction forces and torques (present in the
equations of the three bodies) in order to form an overall flexible monolithic
body.

This procedure leads to the equations presented hereafter. The base body frame
origin is located at its center of mass. For the translation:

(
mB+2mP

)I
OI
r̈OB
−
(
mP

I
OB

Dc
R+ITB

BTPR

PR p̃PR
+mP

I
OB

Dc
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PL p̃PL

)ITB
B
I ω̇B+

+
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(4.1)
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For the rotation:
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PLȦk
BTT

PL

B
I ωB +

PNM∑
k=1

PNM∑
t=1

PLΞktPLȦt
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The k-th modal equation for the right solar panel is the following:
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(4.3)

The modal equations for the left solar panel are structurally analogous to equations
(4.3) besides changing the index R into L and are not rewritten for the sake of
brevity. In the above written equations, µE is the Earth gravitational parameter,
I
OI
rOPR

= I
OI
rOB

+ I
OB
dcR is the position of the origin of the right panel body frame

(and analogously for the left panel) and PNM is the number of modes considered
for each panel. The translational equation is expressed in the inertial frame, the
rotational one in the base body frame and the elastic ones are projected along the
respective modes directions.

Shifting to the robotic arms, the translational dynamics equation for the i-th
link of the j-th arm (having its body frame centered at its left endpoint) is given by:
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The link rotational dynamics equation is the following:
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The k-th modal equation for the link is furthermore given by:
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for k = 1, . . . , LNM (4.6)

where LNM is the number of modes considered for each link. Here too, the transla-
tional equation is expressed in the inertial reference frame, the rotational one in the
link body frame and the flexibility ones are projected along the link modes directions.
For both the solar panels and the links, the projections of the gravity actions onto
the elastic modes have not been considered since their contributions are negligible
with respect to the other forcing terms. In Eq. (4.6), Fk will identify the projection
of the control actions onto the k-th mode of the link being examined (once control
will have been introduced). It is equal to

Fk =
nconc∑
s=1
−T Tconcs

Θk(ξ̄s) (4.7)

where nconc concentrated torques Tconcs (which will coincide with the joint control
torques) are supposed to be acting on the link at points ξ̄s (in body coordinates);
furthermore, Θk(ξ̄s) represents the vector of the k-th modal angular displacements
at point ξ̄s.

Equations from (4.1) to (4.6) form the overall SMS dynamics equations according
to Newton’s approach. Adopting Kane’s method, they can be written in compact
form as:

JTMJQ̈m = −JTMJ̇Q̇m + JTC + JTF (4.8)

where J is the Jacobian matrix, M is the generalized mass matrix, C is the non-linear
velocity terms vector and F is the generalized forces vector. The control actions can
also be introduced as follows:

JTMJQ̈m = −JTMJ̇Q̇m + JTC + JTF +
NC∑
i=1

Biui (4.9)

where NC is the number of control vectors, ui is the i-th control vector and Bi is the
matrix that maps the i-th control vector onto the dynamics equations. The vector
Biui is not pre-multiplied by the transpose Jacobian matrix JT since the control
actions are the ones already referred to the minimal variables.
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Nevertheless, it is convenient (for numerical integration motivations), to write
equation (4.9) in the form of a first-order system:
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ṙOB
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PLȦ
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+

+

0(7+2PNM +2(1+LNM )nl)×1

(JTMJ)−1JTC

+

0(7+2PNM +2(1+LNM )nl)×1

(JTMJ)−1JTF

+

0(7+2PNM +2(1+LNM )nl)×1

(JTMJ)−1∑NC
i=1 Biui


(4.10)

where A11 is entirely formed by zero elements besides the block occupying rows
and columns ranging from 4 to 7 made of the BWB matrix (its meaning will be
explained shortly hereafter), and

A12 =
[
A121 A122 A123 A124 A125 A126 A127 A128 A129 A1210

]
(4.11)
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where

A121 =



I3×3

04×3

0(nl−1)×3

01×3

0(nl−1)×3

01×3

0PNM×3

0PNM×3

0LNMnl×3

0LNMnl×3



, A122 =



03×3

04×3

0(nl−1)×3

01×3

0(nl−1)×3

01×3

0PNM×3

0PNM×3

0LNMnl×3

0LNMnl×3



, A123 =



03×(nl−1)

04×(nl−1)

I(nl−1)×(nl−1)

01×(nl−1)

0(nl−1)×(nl−1)

01×(nl−1)

0PNM×(nl−1)

0PNM×(nl−1)

0LNMnl×(nl−1)

0LNMnl×(nl−1)



,

A124 =



03×1

04×1

0(nl−1)×1

1
0(nl−1)×1

0
0PNM×1

0PNM×1

0LNMnl×1

0LNMnl×1



, A125 =



03×(nl−1)

04×(nl−1)

0(nl−1)×(nl−1)

01×(nl−1)

I(nl−1)×(nl−1)

01×(nl−1)

0PNM×(nl−1)

0PNM×(nl−1)

0LNMnl×(nl−1)

0LNMnl×(nl−1)



, A126 =



03×1

04×1

0(nl−1)×1

0
0(nl−1)×1

1
0PNM×1

0PNM×1

0LNMnl×1

0LNMnl×1



,

A127 =



03×PNM

04×PNM

0(nl−1)×PNM

01×PNM

0(nl−1)×PNM

01×PNM

IPNM×PNM

0PNM×PNM

0LNMnl×PNM

0LNMnl×PNM



, A128 =



03×PNM

04×PNM

0(nl−1)×PNM

01×PNM

0(nl−1)×PNM

01×PNM

0PNM×PNM

IPNM×PNM

0LNMnl×PNM

0LNMnl×PNM



, A129 =



03×LNMnl

04×LNMnl

0(nl−1)×LNMnl

01×LNMnl

0(nl−1)×LNMnl

01×LNMnl

0PNM×LNMnl

0PNM×LNMnl

ILNMnl×LNMnl

0LNMnl×LNMnl



,
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A1210 =



03×LNMnl

04×LNMnl

0(nl−1)×LNMnl

01×LNMnl

0(nl−1)×LNMnl

01×LNMnl

0PNM×LNMnl

0PNM×LNMnl

0LNMnl×LNMnl

ILNMnl×LNMnl



A21 = 0(6+2PNM +2(1+LNM )nl)×(7+2PNM +2(1+LNM )nl)

A22 =− (JTMJ)−1JTMJ̇

IqB is the quaternions vector describing the base attitude with respect to the inertial
reference frame (the first component is the scalar part and the last three form the
vector portion of it) and BWB is the base angular velocity matrix used to integrate
the quaternions kinematic equation, namely I q̇B = BWB

IqB, where

BWB = 1
2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0


in which the angular velocity components are expressed in the base body reference
frame. Furthermore, θJi and qi are respectively the joint angles vector and relative
displacement of the last link translational joint for the i-th arm.

4.2 Closed-loop system modeling

The grasp condition between the manipulator end-effectors and the target is
modeled imposing mechanical constraints on the chaser and target in correspon-
dence of the relative grasping points. This is obtained by adding the appropriate
compatibility equations and constraints reactions to the dynamics equations.

First of all, the equations of motion of the target object need to be added to
those of the SMS. They can be formulated as follows (the target body frame origin
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is located at its center of mass):

MtQ̈t = Ct + Ft + WtR (4.12)

where Q̈t ∈ R6×1 is the target acceleration vector (containing the target center of
mass translational acceleration (with respect to the inertial reference frame and
expressed in the same one) and the target angular acceleration about its center of
mass (with respect to the inertial frame and expressed in the target body frame)),
Mt ∈ R6×6, Ct ∈ R6×1, Ft ∈ R6×1 are respectively the target mass matrix, non-
linear velocity terms vector and external applied forces; R ∈ R6×1 are the grasp
reaction forces, expressed with respect to the inertial frame, acting on the target (one
force for each of the two grasp constraints; this is equivalent to model the constraint
as a spherical joint positioned where the grasp actually takes place) and Wt ∈ R6×6

is the matrix which maps the reactions onto the target dynamics equations. The
described variables have the following form:

Mt =

mtI3×3 03×3

03×3 t
Ot

Jt


Ct =

 03×1

−tIΩt
t
Ot

JttIωt


Gravity actions have to be included in the Ft vector leading to:

Ft =


−mtµE

I
OI
rOt

|IOI
rOt |3

3 µE

|tOI
rOt |3

(
t
OI
rOt

|tOI
rOt |
× t
Ot

Ĩt
t
OI
rOt

|tOI
rOt |

)
 (4.13)

Furthermore, the Wt matrix is given by

Wt =

 I3×3 I3×3

t
Ot

Rcmtgp1
ITT

t
t
Ot

Rcmtgp2
ITT

t

 (4.14)

where t
Ot

Rcmtgpi , i = 1, 2 is the skew-matrix based on t
Ot

rcmtgpi which is the vector
joining the target center of mass with the i-th grasping point (expressed in the target
body frame).

After having introduced the target dynamics, the SMS equations of motion are
now suitably modified to take the grasp constraints into account. Indeed, they



4.2 Closed-loop system modeling 82

become:

JTMJQ̈m = −JTMJ̇Q̇m + JTC + JTF − JTWEER+ Bc1ua1 + Bc2ua2 + BcBuB

(4.15)
where WEE ∈ RdimẊ×6 is the matrix mapping the constraints reactions onto the
SMS dynamics equations. Since the reactions are acting on the last links of the two
arms, the only non-null blocks of the latter are given by:

WEE(1 + 6nl : 6 + 6nl, 1 : 6) =

 I3×3 03×3

b1nl
O1nl

RU1nl
ITT

b1nl
03×3


WEE(1 + 12nl : 6 + 12nl, 1 : 6) =

03×3 I3×3

03×3 b2nl
O2nl

RU2nl
ITT

b2nl


The system formed by equations (4.15) and (4.12) can be written asJTMJ 0

0 Mt

Q̈m

Q̈t

 =

−JTMJ̇ 0
0 0

Q̇m

Q̇t

+

JTC
Ct

+

JTF
Ft

+

+

−JTWEE

Wt

R+

u
0

→
→M∗

1Q̈ = M∗
2Q̇+C∗ + F ∗ + W∗R+ u∗ (4.16)

where u = Bc1ua1 + Bc2ua2 + BcBuB. Eq. (4.16) will need to be reduced to a first
order system for numerical integration purposes just as it was done for the SMS
equations alone.

Kinematic compatibility conditions need to be imposed to properly represent
the grasp constraints. Given the chosen equivalent spherical joint model, the
compatibility equations need to impose a null relative translational motion between
the SMS end-effectors and the relevant grasping points on the target body. The
latter may be expressed in the following compact form:

Φ = 0 (4.17)
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being

Φ = I
OI
rEEi −

I
OI
rgpi

, i = 1, 2

I
OI
rEEi = I

OI
rOB + ITB

B
OB
rUBi

+
nl∑
i=1

ITbij

[
bij

Oij
rUij +

LNM∑
k=1

ijAk
bijϕk(lij)

]
I
OI
rgpi

= I
OI
rOt + ITt

t
Ot
rcmtgpi

where B
OB
rUBi

is the vector joining the origin of the base body frame with the
attachment point of the i-th arm to the base itself, bij

Oij
rUij is the vector joining the

link endpoints in the non-deformed configuration and bijϕk(lij) identifies the k-th
modal displacement at the link right endpoint. Φ in Eq. (4.17) is thus a function of
the state vector Q.

The use of Eq. (4.17) finalized to the determination of the reaction forces could
be problematic due to the high order of magnitude of some terms present in it
(i.e. IOI

rOB and I
OI
rOt) with respect to the others. This issue can be overcome by

expressing I
OI
rOt in terms of IOI

rOB as

I
OI
rOt = I

OI
rOB + I

OB
rOt (4.18)

where I
OB
rOt represents the vector joining the origins of the base body and target

body frames. This will entail the elimination of the high order term I
OI
rOB in

Eq. (4.17) leaving terms which display the same order of magnitude. Eq. (4.18)
needs to be also used in the target dynamics equation (4.12) implying I

OB
rOt will

take the place of IOI
rOt in the Qt vector. This procedure leads to the modification

of the M∗
1 matrix in Eq. (4.16) which now becomes

M∗
1 =

JTMJ 0
Mtm Mt

 (4.19)

where Mtm ∈ R6×dimQ̈m and its only non-null block is given by Mtm(1 : 3, 1 : 3) =
mtI3×3.

The system formed by equations (4.16) and (4.17) constitutes a Differential-
Algebraic Equations (DAE) system; from the solution standpoint, it would be more
convenient to deal with a fully differential system. In order to achieve so, equation
(4.17) is derived twice with respect to time to obtain Φ̈ = 0. This is equivalent to
imposing compatibility conditions on accelerations instead of positions; it is thus
extremely important to have initial conditions (positions and velocities) which are
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kinematically compatible, otherwise the grasp constraint will be violated regardless
of the fact the accelerations compatibility relations are satisfied. This would result
in a separation of the target object from the manipulator end-effectors. Nevertheless,
even if the initial kinematic conditions are properly assigned, the resolution of the
equations of motion is still highly prone to constraints violation. It is then desirable
to implement a methodology capable of eliminating the constraints violations both at
the position and velocity levels. The basic idea of this approach is to add corrective
terms to the position and velocity vectors with the intent to satisfy the corresponding
kinematic constraint equations. The adopted strategy is the Baumgarte Stabilization
Method (BSM) [80]; the latter allows the constraints to be slightly violated before
corrective actions take place. BSM introduces two feedback terms in the (differential)
constraint equation leading to:

Φ̈ + 2αΦ̇ + β2Φ = 0 (4.20)

where α and β are chosen as positive constants (their values are small and need to
be properly tuned for the specific case under examination). Given the dependency
of Φ on Q, Eq. (4.20) can be rewritten as

AcrQ̈ = Bcr (4.21)

where Acr ∈ R6×dimQ̈ and Bcr ∈ R6×1.
As a matter of fact, the constraints reactions represent an additional unknown

of the problem. Equations (4.16) and (4.21) can be used to determine the R vector.
From (4.16), one gets:

Q̈ = M∗
1
−1[M∗

2Q̇+C∗ + F ∗ + W∗R+ u∗] (4.22)

Substituting equation (4.22) into (4.21), it is possible to calculate the constraints
reactions:

R = [AcrM∗
1
−1W∗]−1[Bcr −AcrM∗

1
−1(M∗

2Q̇+C∗ + F ∗ + u∗)] (4.23)

Equation (4.23) is substituted back into Equation (4.16) which can now be integrated
to compute the dynamics of the closed-loop system formed by the SMS and grasped
target object.
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4.2.1 Space Manipulator System and target object description

Figure 4.2. Schematic of the multi-body space manipulator and target object.

The schematic of the two-arm space manipulator (on the left) and the target
object (on the right) is reported in Fig. 4.2. The former is constituted of a prismatic-
shaped base platform having dimensions 5× 1.5× 2.2 m, a mass of mB = 2550 kg
and principal moments of inertia (with respect to its center of mass) equal to
B
OB
IBxx = 632 kg m2, BOB

IByy = 4890 kg m2 and B
OB
IBzz = 4695 kg m2. Furthermore,

the base is equipped with two 7-dof robotic arms. More specifically, each of them
consists of seven links: the first six are connected by means of revolute joints (with
each rotation axis oriented at 90◦ with respect to the previous one) and the last two
use a prismatic joint (nevertheless, this joint will be blocked in the manipulation
task being examined in the following). A rotational motor is present at each revolute
joint. All the links are characterized by distributed structural flexibility features.
Two elastic solar panels are also clamped to the base platform. Tables from 4.1 to
4.4 report the geometric, inertial and structural dynamics frequencies of the SMS
links and solar panels. The first four vibration modes have been considered for both
the links and solar panels and a modal damping factor of 0.01 has been set for all
modes. The modes being considered are those of a cantilever plate for the solar
panels and the ones of a free-free beam for the arms links. Shifting to the target
object, this has a cylindrical shape of diameter 4 m and height 11 m. Furthermore,
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Table 4.1. Manipulator links geometric and inertial properties.

Link n. Length (m) Mass (kg)

1 1.5 20
2 0.2 6
3 1.5 20
4 0.2 6
5 1.5 20
6 0.2 6
7 0.2 6

Table 4.2. Manipulator links natural frequencies.

Frequency n. Value (Hz)

Long links Short links

1 2.39 867.50
2 2.39 867.50
3 5.73 867.50
4 5.73 867.50

Table 4.3. Solar panels geometric and inertial properties.

Length 4 m
Height 0.4 m

Thickness 5× 10−3 m
Mass 18.64 kg

Table 4.4. Solar panels natural frequencies.

Frequency n. Value (Hz)

1 0.35
2 2.21
3 6.18
4 6.52
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its mass is equal to mt = 2154 kg and principal moments of inertia (with respect
to its center of mass) equal to t

Ot
Itxx = 3× 103 kg m2, tOt

Ityy = 2.8× 104 kg m2 and
t
Ot
Itzz = 2.8× 104 kg m2.

4.3 Adopted control strategy description

Two separate control strategies have been adopted to operate the manipulator
robotic arms and the base platform. For what concerns the former, a Jacobian
Transpose Control (JTC) has been chosen. Given a reference desired trajectory for
the k-th arm end-effector defined with respect to the connection point between the
base and the k-th arm itself, the consequent joint torques are given by

uak
= −UpEE JTEEk

eEEk
−UdEE

θ̇Jk
, k = 1, 2 (4.24)

where UpEE and UdEE
are respectively a (diagonal) proportional and derivative

gain matrix, JEEk
is the end-effector Jacobian matrix (which allows to express the

end-effector linear velocity in terms of the arm joint rates), eEEk
is the deviation of

the end-effector position from the desired one and θ̇Jk
are the arm joint rates. With

respect to the reference trajectory, it has been chosen as a fourth order polynomial
in time and its coefficients determined by imposing the desired initial position and
velocity and final position, velocity and acceleration conditions for the end-effector
(the desired initial conditions coincide with the actual initial ones while the final ones
are set as the desired final location with null velocity and acceleration). Shifting
to the base, a Proportional-Derivative Control (PDC) has been implemented for
keeping the base linear and angular coordinates (and their time rates) at some
desired values. The base PDC is given by

uB = −KpBeB −KdB
ėB (4.25)

Some further insight should be given to the attitude portion of the base control.
The proportional part is formulated using quaternions in the following way: first, a
quaternion Iqdes

B corresponding to the desired attitude is defined; then, the following
matrix built on it is created:

IQdes
B =


Iqdes
B (1) Iqdes

B (2) Iqdes
B (3) Iqdes

B (4)
−Iqdes

B (2) Iqdes
B (1) Iqdes

B (4) −Iqdes
B (3)

−Iqdes
B (3) −Iqdes

B (4) Iqdes
B (1) Iqdes

B (2)
−Iqdes

B (4) Iqdes
B (3) −Iqdes

B (2) Iqdes
B (1)

 (4.26)
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Then, the vector I q̃B = IQdes
B

IqB is defined and, finally, eB(4 : 6) = sign(IqB(1))I q̃B(2 :
4). For what concerns the derivative portion, ėB(4 : 6) = B

I ωB − B
I ω

des
B where BI ωdes

B

is the desired base angular velocity.
Eqs.(4.24) and (4.25) need to be substituted into Eq. (4.16) together with the

appropriate mapping matrices Bi.

4.4 Case study and numerical results

4.4.1 Case study description

The case study being here analyzed concerns the docking maneuver of the target
object described above onto the SMS base platform. As initial condition, the robotic
arms are deployed and the grasp of the target on its external surface has been
performed. Both manipulator and target are initially at rest with respect to the
inertial frame. Different dynamics models for the SMS and controls will be tested
and compared, namely:

• Rigid model with JTC and full PDC;

• Flexible model with JTC and full PDC;

• Flexible model with JTC and PDC only on the base attitude;

• Flexible model with JTC and no PDC.

It has to be underlined the JTC will be synthesized considering a rigid model for the
SMS in all the cited cases. A maneuver duration of 20 minutes has been considered.

4.4.2 Numerical results

It has been earlier stated an ECI inertial reference frame has been assumed
within the general dynamics model development. Nevertheless, an inertial system
which has its origin at the position of the SMS base center of mass at t = 0 has
been considered in the following simulations. Rigorously speaking, this should be
an orbital reference frame (relative, for example, to the orbit on which the base
center of mass is moving before the beginning of the considered maneuver) which
is not inertial; nevertheless, in the case study here presented, the orbital angular
velocity is assumed to be negligible with respect to the maneuver time scale and
this justifies neglecting the orbital curvature and to consider the orbital motion



4.4 Case study and numerical results 89

as uniform rectilinear thus allowing one to classify the reference frame as inertial.
Furthermore, the gravitational actions are coherently excluded as well.

In the following, the desired position for the two end-effectors is located 0.5 m
above the corresponding arm connection point with the base platform (also referred
to as the arm shoulder). Furthermore, the base is controlled in order to maintain
its initial position and attitude with respect to the inertial reference frame (i.e. its
center of mass has to remain in the origin of the inertial frame and its body-axes
parallel to the inertial ones). Going into more detail, for what concerns the JTC, a
trajectory tracking duration of 10 minutes has been chosen; after that, a set-point
JTC intervenes (by that meaning the tracking final desired conditions are kept fixed
as desired ones for the rest of the maneuver). Shifting to the PDC, a set-point control
embedding the above-cited desired conditions has been adopted. Furthermore, the
initial joint angles configuration and desired final end-effectors locations are such
that the docking maneuver is ideally planar.

Figures from 4.3 to 4.9 show significant quantities being compared for the rigid

Figure 4.3. Arm 1 end-effector error (rigid vs. flexible model).

and flexible models when JTC and full PDC are implemented. It can be noticed
how there’s a practically complete overlapping between all the curves relating to
the rigid case and the corresponding flexible ones. Comparing the two end-effector
errors (Figs. 4.3,4.4), some differences in the y coordinate curves can be observed.
Nevertheless, both end-effectors converge to their respective desired positions. It
should also be remarked the initial error is zero since the initial desired condition for
the end-effectors has been imposed to be equal to the actual one in the polynomial
trajectory coefficients calculation. Fig. 4.5 shows the base platform center of mass
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Figure 4.4. Arm 2 end-effector error (rigid vs. flexible model).

Figure 4.5. Base center of mass position (rigid vs. flexible model).

displacement components are of the order of millimeters with a dominant component
along the y inertial axis (as it was to be expected given the SMS configuration and
the maneuver being performed). Fig. 4.6 displays the base Euler yaw angle being
extremely limited in variation (less than a 0.5◦ peak-to-peak variation). The pitch
and roll angles haven’t been reported as their values were negligible. Figs. 4.7,4.8
show the arms joint torques and how they converge to zero as the end-effectors
gradually reach the desired locations. The torque values required to the motors are
totally compatible with the available hardware for space use. Fig. 4.9 displays the z
body component of the base control torque (the other two are once again omitted
as their values were not significant). Here too the required actions are compatible
with available attitude control systems hardware (e.g. reaction wheels and control
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Figure 4.6. Base attitude with respect to the inertial frame (rigid vs. flexible model).

Figure 4.7. Arm 1 control torques (rigid vs. flexible model).

moment gyros). We now proceed to compare results only considering the flexible
model and analyzing the performance obtained by using the different PDC variants
described above. Figs. 4.11 and 4.12 (respectively referring to only attitude PDC
and no PDC) substantially exhibit the same qualitative and quantitative behavior;
on the other hand, Fig. 4.10 (which is the one related to the full PDC) shows a
slightly different trend for the x component of the error and the peak value for the
y component is considerably smaller with respect to the other two cases. With this
said, all three plots show convergence of the error to a zero value. The corresponding
graphs for the second arm display the same results typology and are not reported for
the sake of brevity. For what concerns the base attitude variation, all three PDC
variants lead to angles which are below 2 deg (see Figs. 4.13-4.15). Focusing the
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Figure 4.8. Arm 2 control torques (rigid vs. flexible model).

Figure 4.9. Base control torques (rigid vs. flexible model).

attention on the yaw angle (which is the only one characterized by non-negligible
values), its behavior is quite different in the three analyzed cases; it can be observed
how, in the first part of the maneuver, the full and attitude-only PDC display the
same qualitative behavior (although the second one leads to values which are one
order of magnitude smaller than those of the first one), while, in the second part,
the former is not able to totally damp out the oscillations, but the second one
is. In the case of no PDC, the base yaw angle has a monotone trend stabilizing
itself on a value of about 1.5 deg, which is the highest among the three cases (as
it was to be expected). Figures from 4.16 to 4.18 report the base center of mass
position coordinates. The full PDC is capable of maintaining the displacement
components at the order of millimeters, while in the other two cases they are of the
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Figure 4.10. Arm 1 end-effector error (flexible model and full base control).

Figure 4.11. Arm 1 end-effector error (flexible model and base attitude control).

order of the meter. This situation is once again to be expected as the full PDC is
the only variant out of the three in which the base position is controlled. The case
of attitude-only and no PDC display almost the same y displacement component,
but there’s a noticeable difference on the x component being practically zero for the
former and roughly 8 cm for the latter. It has to be underlined that, in the first case,
the manipulator arms control is required to exert the entire effort in order to bring
the target towards the base since the latter is controlled to remain fixed at its initial
position; on the contrary, in the second and third cases, given the base translation
motion is not impeded, there can be a reciprocal approach between the base and
target. Figures from 4.19 to 4.21 show the left solar panel modal amplitudes. The
order of magnitude is the same in all three cases; nevertheless, the trends are quite
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Figure 4.12. Arm 1 end-effector error (flexible model and no base control).

Figure 4.13. Base attitude with respect to the inertial frame (flexible model and full base
control).

different, namely the peak value tends to increase and the oscillations are damped
more slowly as the base is less controlled. Furthermore, it can be noticed how the
mode being mainly excited is the first one for all cases. The graphs concerning the
right solar panel give the same typology of information and are not reported for
the sake of brevity. In order to give a visual representation to the evolution of
the system when the different control strategies are implemented, Figs. 4.22 and
4.23 respectively show what happens when JTC+Full PDC and the only JTC are
applied to the SMS confirming what has been described throughout the present
section. The figures also display how the relative attitude between the SMS base
platform and target is maintained fixed throughout the maneuver; this is a relevant
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Figure 4.14. Base attitude with respect to the inertial frame (flexible model and base
attitude control).

Figure 4.15. Base attitude with respect to the inertial frame (flexible model and no base
control).

aspect as well given the stringent mechanical tolerances which may characterize the
docking interfaces present on both SMS and target.

Now a second scenario is taken into consideration where the initial state and
final desired conditions for the closed-loop system are the same as the previous case
except for the fact the arms initial configuration does not allow for the docking
maneuver to be planar. As a consequence, the relative attitude between the SMS
base and target is not kept fixed at the initial state (which is the one desired for
the docking maneuver to take place) on a general basis. In order to overcome this
issue, a modified version of the above adopted control strategy has been formulated
and will now be described. The major difference concerns the base control; indeed,
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Figure 4.16. Base center of mass position (flexible model and full base control).

Figure 4.17. Base center of mass position (flexible model and base attitude control).

in the effort of trying to maintain the relative attitude between the SMS base and
target, the former is controlled in order for it to be synchronous to the latter as far
as the rotational motion is concerned. From the mathematical standpoint, a matrix
IQt0 is first defined:

IQt0 =


Iqt0(1) Iqt0(2) Iqt0(3) Iqt0(4)
−Iqt0(2) Iqt0(1) Iqt0(4) −Iqt0(3)
−Iqt0(3) −Iqt0(4) Iqt0(1) Iqt0(2)
−Iqt0(4) Iqt0(3) −Iqt0(2) Iqt0(1)

 (4.27)

where Iqt0 is the initial target quaternions vector. Then, the vector I q̃tB0 = IQt0qB0
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Figure 4.18. Base center of mass position (flexible model and no base control).

Figure 4.19. Left solar panel modal amplitudes (flexible model and full base control).

(where IqB0 is the initial SMS base quaternions vector) is introduced representing the
initial relative attitude (in terms of quaternions) between target and base platform
which will be the desired one. Furthermore, I q̃tB is the same quantity varying with
time. Also, the desired angular velocity for the base is set to be equal to that of the
target (expressed in the base body frame). The base translational control is set to
be null, while the attitude part is equal to

uBatt = −kpBr

(I q̃tB(2 : 4)− I q̃tB0(2 : 4)
)
− kdBr

(B
I ωB − B

I ω
des
B

)
(4.28)

where B
I ω

des
B = ITT

B
ITt

t
Iωt. The arms Jacobian Transpose Control is the same as

the previous case.
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Figure 4.20. Left solar panel modal amplitudes (flexible model and base attitude control).

Figure 4.21. Left solar panel modal amplitudes (flexible model and no base control).

Nevertheless, adopting this type of control strategy entails that, on a general
basis, the system formed by the SMS and target object will be spinning throughout
the docking maneuver while, on the contrary, it could be helpful to have a null
angular velocity of the closed-loop chain with respect to the inertial frame while
keeping the desired relative attitude before mechanically joining the target to the
SMS. To achieve this goal, an overall maneuver duration of 40 minutes has been
considered. The de-spinning maneuver, performed by applying a purely derivative
de-spinning control torque to the SMS base, will begin for t > 10min (which is the
JTC trajectory tracking time duration as earlier defined) whenever the norm of the
error in position for both end-effectors goes below a user-defined small value (in the
following, this tolerance has been set equal to 10 cm) for the first time. The torque
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Figure 4.22. Evolution of the system when JTC and full PDC are applied.

has the following form:
uBatt = −kdBr

B
I ωB (4.29)

The JTC will keep being active for the entire maneuver duration. Figs. 4.24 and
4.25 show how the base platform is synchronized to the target rotational motion
from t = 0 until t = 1721 s when the de-spinning maneuver begins and how the
reduction of the angular velocities of both bodies to practically zero is quite fast
given the chosen control gains. Figs. 4.26 and 4.27 show the end-effectors position
error; both of them are converging towards a zero error condition which would have
been completely reached by further increasing the maneuver time duration. Fig. 4.28
reports the control torques required to the SMS base attitude control system clearly
showing (by means of the sharp variation) the time instant in which the de-spinning
maneuver begins. The required values fall within acceptable ranges. Figs. 4.29
and 4.30 show the arms joint torques: both plots indicate how the required control
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Figure 4.23. Evolution of the system when JTC and no PDC are applied.

Figure 4.24. Base angular velocity with respect to the inertial frame and expressed in the
same one (flexible model and de-spinning maneuver).
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Figure 4.25. Target angular velocity with respect to the inertial frame and expressed in
the same one (flexible model and de-spinning maneuver).

Figure 4.26. Arm 1 end-effector error (flexible model and de-spinning maneuver).

converges to zero values as the end-effectors position errors converge to zero. Once
again, the spikes in the curves are an index of the change in the base control typology.
Figs. 4.31 and 4.32 imply elastic displacements (obtained considering both modal
amplitudes calculated through the elastic equations integration and modes derived
from MSC Nastran) for the solar panels which are four orders of magnitude higher
with respect to those seen in the previous case, but still of the order of millimeters
(thus being acceptable for the structure). The mode being mainly excited is again
the first one as before. Figures from 4.33 to 4.38 show the arms long links
modal amplitudes. The corresponding elastic displacements are of the sub-millimeter
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Figure 4.27. Arm 2 end-effector error (flexible model and de-spinning maneuver).

Figure 4.28. Base control torques expressed in the base body frame (flexible model and
de-spinning maneuver).

order. The short links elastic displacements have been checked to be of the same
order as well. Figs. 4.39 and 4.40 graphically visualize the evolution of the system
confirming how the de-spinning maneuver is effective while maintaining the desired
relative attitude between the SMS base and target object.

4.5 Conclusions

In the present chapter the dynamics model of a closed-loop multi-body system
formed by a space manipulator and a target object has been presented and developed.
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Figure 4.29. Arm 1 control torques (flexible model and de-spinning maneuver).

Figure 4.30. Arm 2 control torques (flexible model and de-spinning maneuver).

Both rigid and fully flexible models have been considered and implemented. The
attention has been focused on the accomplishment of an autonomous docking
maneuver to be performed by the space manipulator on the target object. A suitable
control strategy combining Jacobian Transpose and Proportional-Derivative Controls
(including different possible variants) for mission accomplishment has been studied
and synthesized and its effectiveness positively evaluated comparing the results
obtained for different dynamic models and initial system configurations.
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Figure 4.31. Left solar panel modal amplitudes (flexible model and de-spinning maneuver).

Figure 4.32. Right solar panel modal amplitudes (flexible model and de-spinning maneu-
ver).
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Figure 4.33. Link 11 modal amplitudes (flexible model and de-spinning maneuver).

Figure 4.34. Link 31 modal amplitudes (flexible model and de-spinning maneuver).
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Figure 4.35. Link 51 modal amplitudes (flexible model and de-spinning maneuver).

Figure 4.36. Link 12 modal amplitudes (flexible model and de-spinning maneuver).
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Figure 4.37. Link 32 modal amplitudes (flexible model and de-spinning maneuver).

Figure 4.38. Link 52 modal amplitudes (flexible model and de-spinning maneuver).
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Figure 4.39. Evolution of the system when performing the de-spinning maneuver.
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Figure 4.40. Evolution of the system when performing the de-spinning maneuver (continu-
ation from Fig. 4.39).
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Conclusions

This thesis project has been developed in the framework of multi-body systems
dynamics and it has been dedicated to the development of comprehensive simulation
platforms for modeling and efficient control of space manipulator systems. The work
dealt with the non-linear dynamic analysis of complex robotic systems by exploiting
advanced modeling and control tools such as Kane’s equations, Neural Networks,
optimal and classical control. In order to meet the challenges and complexities asso-
ciated to the highly non-linear nature of the dynamic phenomena being considered,
multi-constraint optimization restrictions and spacecraft operational constraints,
advanced software packages and simulation environments as Matlab, Simulink, MSC
Adams, MSC Patran-Nastran have been utilized. The attention has been focused on
the deployment, pre-grasping and post-grasping operations to be performed by a
Space Manipulator on a non-cooperative target object in the framework of future
autonomous on-orbit missions which are presently being studied by the scientific
and industrial community worldwide in order to improve space assets operational
capabilities and propose a solution to the issue of orbital debris removal which will
gain increasing relevance as more subjects are (and will continue) manifesting their
interest in accessing the space environment. Future work will entail the addition of
further complex mechanical features to the developed models of manipulator systems
and target objects, the synthesis of different control strategies for the mission tasks
to be accomplished and the consideration of diversified operational scenarios as well.
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