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Abstract: Optical frequency combs are one of the most remarkable inventions in recent decades.
Originally conceived as the spectral counterpart of the train of short pulses emitted by mode-locked
lasers, frequency combs have also been subsequently generated in continuously pumped
microresonators, through third-order parametric processes. Quite recently, direct generation of
optical frequency combs has been demonstrated in continuous-wave laser-pumped optical resonators
with a second-order nonlinear medium inside. Here, we present a concise introduction to such
quadratic combs and the physical mechanism that underlies their formation. We mainly review
our recent experimental and theoretical work on formation and dynamics of quadratic frequency
combs. We experimentally demonstrated comb generation in two configurations: a cavity for second
harmonic generation, where combs are generated both around the pump frequency and its second
harmonic and a degenerate optical parametric oscillator, where combs are generated around the pump
frequency and its subharmonic. The experiments have been supported by a thorough theoretical
analysis, aimed at modelling the dynamics of quadratic combs, both in frequency and time domains,
providing useful insights into the physics of this new class of optical frequency comb synthesizers.
Quadratic combs establish a new class of efficient frequency comb synthesizers, with unique features,
which could enable straightforward access to new spectral regions and stimulate novel applications.

Keywords: optical frequency combs; quadratic nonlinearity; second harmonic generation; optical
parametric oscillator; modulation instability
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1. Introduction

Twenty years ago, optical frequency combs (OFCs) were established as powerful tools for
accurate measurements of optical frequencies and timekeeping [1,2], a result of a long-standing
effort, which was recognized with the Nobel Prize in Physics in 2005 [3,4]. The discrete ensemble
of equally spaced laser frequencies that distinguish OFCs from other light sources is the spectral
counterpart of the regular train of short pulses emitted by mode-locked lasers, which were initially
used for comb generation. OFCs have become a critical component in many scientific and
technological applications [5], from highly accurate optical frequency measurements for fundamental
tests of physics [6–9] to exoplanet exploration [10–12] from air pollution detection [13–18] to
telecommunication systems [19–21], while a growing interest has arisen in the quantum properties of
OFCs [22–26].

Thereafter, comb emission was also demonstrated in continuous-wave (cw) laser-pumped
resonators through cascaded third-order χ(3) parametric processes [27]. In such Kerr resonators,
a first pair of sidebands is generated around the pump frequency by cavity modulation instability
or degenerate four-wave mixing (FWM); subsequently, cascaded four-wave mixing processes lead
to the formation, around the pump frequency, of a uniform frequency comb, where self- and
cross-phase modulation act to compensate for the unequal cavity mode spacing induced by the group
velocity dispersion (GVD) [28,29]. Because of the relatively low strength of third-order nonlinearity,
generation of Kerr combs requires small interaction volumes and high-Q resonators. For these reasons,
small size resonators are particularly suited to reach broadband comb generation with quite moderate
pump power [30]. Moreover, when the mode size is comparable with the light wavelength, a careful
design of the resonator geometry can effectively modify the GVD of the resonator, leading to a broader
spectral emission.

While χ(2) three-wave mixing processes have been widely used for spectral conversion of
femtosecond laser combs since their inception [31–36], only in recent years it was demonstrated
that quadratic χ(2) processes can lead to direct generation of optical frequency combs in cw-pumped
quadratic nonlinear resonators. Actually, in 1999 Diddams at al. generated an OFC in a second-order
nonlinear system, by actively inducing intracavity phase modulation inside a cw-pumped nearly
degenerate optical parametric oscillator (OPO) [37], following a long development of phase modulation
in lithium niobate for comb generation [38]. According to this scheme, besides the nonlinear crystal
for parametric amplification, a phase modulator was placed inside the OPO cavity and driven at a
modulation frequency equal to the cavity free spectral range. The modulator thus generated a family
of phase-coupled sidebands, around the nearly degenerate signal and idler waves, which coincided
with the resonator mode frequencies. Unlike other works presented in the following, where combs
arise through purely χ(2) optical processes, in that work combs were initially seeded by the sidebands
generated in the intracavity modulator. Optical parametric amplification further increased the number
of resonant sidebands, eventually leading to an 18-nm wide comb of equally spaced, mode-locked
lines around the degenerate OPO frequency, only limited by the dispersive shift of the cavity modes,
where mode-locking is imposed by phase modulation.

More recently, an optical frequency comb was produced by adding a second nonlinear crystal
in a nondegenerate OPO [39]. The authors observed comb formation around the signal wavelength
when the second crystal was phase mismatched for second harmonic generation (SHG) of the signal
wave. Subsequent investigations of the same system reported experimental evidence of a comb around
the second harmonic of the signal wave, whereas the comb around the signal was simultaneously
transferred to the idler spectral range by parametric amplification [40]. In this case, the phase
mismatched crystal behaves like a Kerr medium, producing a phase shift of the fundamental wave,
which is proportional to the field intensity [41–43]. This phase shift can be explained as the consequence
of cascaded quadratic processes which occur in the crystal when SHG is not phase matched. Indeed,
when the fundamental pump wave, at frequency ω/2π enters a nonlinear crystal, a second harmonic
field is generated, ω + ω → 2ω. If the process is not phase matched, the second harmonic (SH) field
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travels at a different phase velocity and, after half a coherence length, down-converts back to the
fundamental frequency, 2ω−ω → ω, with a different phase from that of the unconverted pump field.

As we will see later, a different cascaded three-wave-mixing process is decisive for the onset of
frequency combs in phase-matched intracavity SHG—namely, internally pumped optical parametric
oscillation [44,45]. In fact, degenerate optical parametric oscillation and SHG are mutually inverse
processes, which satisfy the same phase matching condition, ∆k = 2k1 − k2 = 0, between wave
vectors k1 = k(ω) of the fundamental field and k2 = k(2ω) of the second harmonic field, respectively.
Therefore, a properly phase-matched crystal placed inside an optical resonator can work either for
SHG or parametric oscillation, depending on whether it is pumped at the fundamental or second
harmonic frequency, respectively. However, the harmonic field generated in the first case can act as
a pump for a nondegenerate cascaded OPO, and a pair of parametric fields start to oscillate with
frequencies symmetrically placed around the fundamental pump. Although internally pumped OPO
was observed and investigated for a long time, before the importance of OFCs was established [44–47],
the observation of frequency combs in quadratic nonlinear media was postponed to recent years.

Here, we present a concise introduction to the physical mechanism that underlies quadratic comb
formation, as well as an extended theoretical framework that has been developed so far. We particularly
focus on our recent activity in this field, discussing our experimental and theoretical work on direct
generation of quadratic combs. As a whole, it represents a systematic and coherent, although not
exhaustive, approach to this new field. After the work of Ref. [39], Ricciardi et al. experimentally
demonstrated direct frequency comb generation in an optical resonator with a single nonlinear
crystal inside, originally conceived for cavity-enhanced SHG. OFCs were observed in the case of both
phase-matched and phase-mismatched SHG. Moreover, the authors presented a simple theoretical
model, which explained comb generation as the result of cascaded χ(2):χ(2) processes [48,49]. A more
general theoretical description of comb generation in SHG cavity was successively developed by Leo
et al., who modeled the dynamics of the cavity field in the time domain [50–52], and described comb
formation in the framework of a modulation instability (MI), i.e., the growth of sidebands around a
carrier frequency by amplification of small modulations on the carrier wave [53]. A similar theoretical
description was adopted to describe the dynamics of quadratic combs observed in a degenerate
OPO [54]. Finally, the most general approach, based on a single-envelope equation, has been also
developed in order to study multi-octave, quadratic comb formation [55].

Quadratically nonlinear resonators thus emerge as the basis of an entirely new class of highly
efficient synthesizers of OFCs, with unique features, such as the simultaneous generation of frequency
combs in spectral regions far from the pump frequency and the role of phase matching in mitigating the
effect of dispersion. Compared to Kerr combs, quadratic combs exploit the intrinsically higher efficiency
of second-order nonlinearity, reducing the requirement in terms of pump power. Quadratic combs are
still at an early stage but they are attracting the interest of an increasing number of research groups.
More recent works are briefly reviewed in Section 6, where we conclude by giving an overview of
promising developments of quadratic combs in terms of material platforms for chip-scale devices,
steady low-noise dynamical regimes, and their potential interest for quantum optics.

2. Intracavity Second Harmonic Generation

The first system that we investigated for the generation of quadratic OFCs was a cw-pumped,
cavity enhanced SHG system. The system, shown in Figure 1a, was based on a 15-mm-long
periodically poled LiNbO3 crystal, placed inside a traveling-wave optical resonator (free spectral
range FSR = 493 MHz, quality factor Q = 108), resonating at the fundamental laser frequency ω0.
Mirror reflectivities were chosen in order to facilitate the onset of an internally pumped OPO [48].
The crystal was pumped by a narrow-line, 1064-nm-wavelength Nd:YAG laser, amplified by a
Yb-doped fiber amplifier. Frequency locking of a cavity resonance to the laser was achieved by
the Pound–Drever–Hall technique [56].
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Figure 1. Singly resonant cavity second harmonic generation (SHG). (a) Experimental setup:
periodically poled lithium niobate crystal (PPLN), piezoelectric actuator (PZT), photodiode (PD),
dichroic mirror (DM). The output beams are detected and processed by radio-frequency (RF) analyzers,
while optical spectral analysis is performed by an optical spectrum analyzer in the infrared range
and a confocal Fabry-Pèrot interferometer (CFP) in the visible range. (b) Schematic representation
of the first steps leading to the formation of a dual optical frequency comb in cavity-enhanced
second-harmonic generation: (left) second-harmonic generation with cascaded nondegenerate optical
parametric oscillator (OPO) gives rise to two subharmonic sidebands, which in turn (right) lead to
successive, multiple second-harmonic and sum-frequency generations. Adapted with permission
from [48]. Copyrighted by the American Physical Society.

The phase-matching condition for SHG was achieved by properly adjusting the crystal
temperature. Under this condition, we observed a first regime of pure harmonic generation, where the
harmonic power increased with the input pump power. As shown in Figure 2a, when the input
power exceeded the threshold for internally pumped OPO, the second harmonic power ceased to
grow, and two parametric waves started to oscillate at frequencies ω0 ± ∆ω, symmetrically placed
around the fundamental frequency (FF). As the power was further increased, additional sidebands
appeared, displaced by multiples of ∆ω, leading to a multiple-FSR-spaced frequency comb, as sketched
in Figure 2b. Finally, when the input power exceeded 5 W, secondary combs appeared around each
of the primary comb lines, shown in Figure 2c. These secondary combs were spaced by 1 cavity FSR,
as confirmed by the intermodal beat notes detected by fast photodetectors, both in the IR and in the
visible spectral regions and processed by a radio frequency (RF) spectrum analyzer.
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Figure 2. Optical spectral power around the fundamental mode for (a) 170 mW, (b) 2 W, and (c) 9 W of
input powers. Adapted with permission from [48]. Copyrighted by the American Physical Society.

Subsequently, wave vector mismatch ∆k was changed to finite values by varying the crystal
temperature. Figure 3 shows infrared spectra observed for different values of the mismatch vector.
For a positive mismatch, ∆k > 0, the spectra (a)–(d) show widely separated sidebands, similar to the
spectra observed at ∆k = 0 (see Figure 2b). The spacing between sidebands, as well as the pump
power threshold for cascaded optical parametric oscillation, rapidly increases with the mismatch.
For ∆k < 0, the spectra (e)–(h) consist of closely spaced (1 FSR) comb lines, and the spectral bandwidth
increases with the magnitude of the mismatch. Larger negative phase mismatches are precluded by
the limited accessible temperature range. Figure 3i,j show the beat notes corresponding to the comb
in Figure 2c and the comb in Figure 3g, respectively. The broad feature of the beat note (i) reveals a
strong intermodal phase noise and, as a consequence, a low degree of coherence between the comb
teeth. This feature is consistent with a scenario where comb modes are weakly coupled with each
other, as they originate independently from each other. On the contrary, the beat note (j) is extremely
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narrow, being limited by the detection resolution bandwidth and indicates a low intermodal phase
noise and thus a strong phase coupling between all the comb teeth.

It is worth noting that the nonlinear resonator exhibits a noticeable thermal effect, mainly due to
light absorption in the nonlinear crystal, which generates heat and leads to an increase of the cavity
optical path, via thermal expansion and thermo-optic effect [57]. The photothermal effect introduces
an additional nonlinear dynamical mechanism, with a temporal scale determined by the thermal
diffusion time over the typical optical beam size [58]. In our case, the photothermal effect was helpful
in thermally locking a cavity resonance to the laser frequency [59] when, especially at higher power,
the PDH locking scheme was less effective. However, a better comprehension of the effect of thermal
dynamics on comb formation requires further investigations.
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Figure 3. Optical spectra for phase-mismatched singly resonant cavity SHG. (a–d) Positive phase
mismatch; (e–h) negative phase mismatch. Intermodal beat notes corresponding to (i) comb spectrum
of Figure 2c, (j) comb spectrum in panel (g).

As anticipated in the introduction, the onset of internally pumped OPO marks the beginning of a
cascade of second-order nonlinear processes, which eventually produces a comb of equally spaced
frequencies. As depicted in Figure 1b, once generated, each parametric mode can generate new field
modes through second harmonic, (ω + ∆ω) + (ω + ∆ω)→ 2ω + 2∆ω and sum frequency with the
fundamental wave ω + (ω + ∆ω)→ 2ω + ∆ω, processes, respectively. All these processes have been
considered for the derivation of a simple system of coupled mode equations for the three intracavity
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subharmonic electric field amplitudes, the fundamental A0, at ω0, and the parametric intracavity fields
Aµ and Aµ̄, at ωµ = ω0 + ∆ω and ωµ̄ = ω0 − ∆ω, respectively, which read [48]

Ȧ0 =− (γ0 + i∆0) A0 − 2g η00µµ̄ A∗0 Aµ Aµ̄ − g(η0000|A0|2 + 2η0µ0µ|Aµ|2 + 2η0µ̄0µ̄|Aµ̄|2) A0 + Fin (1)

Ȧµ =− (γµ + i∆µ) Aµ − g ηµµ̄00 A2
0 A∗µ̄ − g(2ηµ00µ|A0|2 + ηµµµµ|Aµ|2 + 2ηµµ̄µµ̄|Aµ̄|2) Aµ (2)

Ȧµ̄ =− (γµ̄ + i∆µ̄) Aµ̄ − g ηµ̄µ00 A2
0 A∗µ − g(2ηµ̄00µ̄|A0|2 + 2ηµ̄µµ̄µ|Aµ|2 + ηµ̄µ̄µ̄µ̄|Aµ̄|2) Aµ̄ . (3)

Here, Fin =
√

2γ0/tR Ain is the cavity coupled amplitude of the constant input driving field Ain,
at frequency ω0; the γ’s are the cavity decay constants; the ∆’s are the cavity detunings of the respective
modes; g = (κL)2/2tR is a gain factor depending on the crystal length L (hereafter we consider the

cavity length equal to the crystal length); tR is the cavity round trip time; κ =
√

8ω0χ
(2)
eff /

√
c3n2

1n2ε0

is the second-order coupling strength. The latter is normalized so that the square modulus of the
field amplitudes is measured in watts, with χ

(2)
eff the effective second-order susceptibility, c the speed

of light, n1,2 the refractive indices, and ε0 the vacuum permittivity. The integer mode number µ

denotes the µth cavity mode, starting from the central mode at ω0, and overline stands for negative
(lower frequencies). The η’s are complex nonlinear coupling constants, depending on the wave-vector
mismatches associated with a pair of cascaded second-order processes,

ηµσρν =
2
L2

∫ L

0

∫ z

0
exp [−i(ξµσz− ξρνz′)] dz′ dz (4)

where ξ jk = kωj + kωk − kωj+ωk .
A linear stability analysis of Equations (1)–(3) predicts the conditions for which a µ-pair of

parametric fields starts to oscillate. By calculating the eigenvalues corresponding to Equations (1)–(3)
linearized around the cw steady state solution, one obtains [49]

λ± = −γ− g(ηµ00µ + η∗µ̄00µ̄)|A0|2 ±
√

g2|ηµµ̄00|2 |A0|4 −
[
∆0 −D2µ2 −ig(ηµ00µ − η∗µ̄00µ̄)|A0|2

]2
, (5)

where D2 ' −2π2c3β′′/L2 n3
0 = −(c/2n0)D2

1 β′′ accounts for the group velocity dispersion at ω0,

with β′′ = d2k
dω2

∣∣∣
ω0

, and n0 = n(ω0) the refractive index at ω0. Side modes start to oscillate, i.e.,

the zero solution for the parametric fields becomes unstable when the real part of an eigenvalue goes
from negative to positive values. The coupling constants which appear in Equation (5) are: ηµµ̄00,
which is the parametric gain related to cascaded SHG and OPO, whereby two photons at frequency ω0

annihilate and two parametric photons at ωµ and ωµ̄ are created, mediated by a SH photon; and ηµ00µ

(ηµ̄00µ̄), which is related to the sum frequency process between a parametric photon at ωµ (ωµ̄) and
the pump. The latter process is the most relevant nonlinear loss at the threshold (second term of
r.h.s of Equation (5)), and provides a nonlinear phase shift (last term in the square brackets of r.h.s of
Equation (5)). The lowest threshold occurs for a pair of parametric fields which starts to grow close to
the minima of the sum frequency generation (SFG) efficiency.

A general expression for the dynamic equations for any number of interacting fields can be
derived heuristically [49], yielding for each field Aµ, nearly resonant with the µ-th cavity mode,

Ȧµ = −(γµ + i∆µ) Aµ − g ∑
ρ,σ

ν=ρ+σ−µ

ηµνρσ A∗ν Aρ Aσ + Fin , (6)

where the summation over the indices ρ and σ goes over all the cavity resonant modes. The complex
coupling constants are given by Equation (4), while the constraint over ν accounts for energy
conservation. The coupled mode Equation (6) is formally analogous to the modal expansion for Kerr
combs [60,61] and describes the whole comb dynamics. It is worth noting that the information provided
by the linear stability analysis only holds for the very beginning of comb formation. Very quickly,
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a large number of cavity modes under the gain curve grow from noise. At the same time, they interact
with each other through multiple nonlinear processes. These processes are not considered in the linear
stability analysis, which intrinsically considers only three interacting modes. The long-term spectral
configuration is thus the result of a complex interaction between many modes, over thousands of
cavity round trips [52].

3. Time-Domain Model for Quadratic Combs

An alternative description of quadratic comb dynamics can be given in terms of time evolution of
the slowly varying intracavity field envelopes. Let us define the envelopes A(z, τ) for the fundamental
and B(z, τ) for the second harmonic electric fields in a resonator. Field dynamics can be described by
an infinite dimensional map (Ikeda map) for the field amplitudes [50,51], which describes the evolution
of cavity fields over the mth round trip, along with the boundary condition for the fields at the end of
each round trip. The propagation equations for the fields Am(z, τ) and Bm(z, τ) read as

∂Am

∂z
=

[
−αc1

2
− i

k′′1
2

∂2

∂τ2

]
Am + iκBm A∗me−i∆kz, (7)

∂Bm

∂z
=

[
−αc2

2
− ∆k′

∂

∂τ
− i

k′′2
2

∂2

∂τ2

]
Bm + iκA2

mei∆kz , (8)

where z ∈ [0, L] is the position along the cavity round trip path; αc1,2 are propagation losses (hereafter,
subscripts 1 and 2 denote fields at ω0 and 2ω0, respectively); k′′1,2 = d2k/dω2|ω0,2ω0 are the group
velocity dispersion coefficients; ∆k′ = dk/dω|2ω0 − dk/dω|ω0 is the corresponding group-velocity
mismatch or temporal walk-off. The “fast-time” variable τ describes the temporal profiles of the fields
in a reference frame moving with the group velocity of light at ω0.

For the case of intracavity SHG, the fields at the beginning of the (m + 1)th round trip are
related to the fields at the end of the previous mth round trip according to the following cavity
boundary conditions,

Am+1(0, τ) =
√

1− θ1 Am(L, τ) e−iδ1 +
√

θ1 Ain (9)

Bm+1(0, τ) =
√

1− θ2 Bm(L, τ) e−iδ2 , (10)

where θ1,2 are power transmission coefficients at the coupling mirror, δ1 ' (ω0 − ωc1)tR and δ2 '
(2ω0−ωc2)tR are the round trip phase detunings for the fields at ω0 and 2ω0, respectively, with ωc1 and
ωc2 the frequencies of the respective nearest cavity resonance, and Ain is the external, constant driving
field amplitude. It is worth noting that the Ikeda map of Equations (7)–(10) can describe different
nonlinear systems (SHG or OPO, either singly or doubly resonant), by suitably choosing the boundary
conditions. For a singly resonant cavity SHG, θ2 = 1, and the SH field resets at the beginning of each
round trip, i.e., Bm+1(0, τ) = 0.

For a relatively high-finesse resonator, the fundamental field evolves slowly during each round
trip, and the infinite dimensional map may be averaged over one round trip length L. This averaging
procedure yields a single mean field equation for the fundamental field amplitude [50],

tR
∂A(t, τ)

∂t
=

[
− α1 − iδ1 − iL

k′′1
2

∂2

∂τ2

]
A− ρA∗

[
A2(t, τ)⊗ I(τ)

]
+
√

θ1 Ain , (11)

where t is a “slow time” variable, linked to the round trip index as A(t = mtR, τ) = Am(z =

0, τ) [62–65], α1 = (αc1L + θ1)/2, ρ = (κL)2, ⊗ denotes convolution and the nonlinear response
function I(τ) = F−1[ Î(Ω)], with Î(Ω) =

[
(1− e−ix − ix)/x2], x(Ω) =

[
∆k + ik̂(Ω)

]
L, and k̂(Ω) =

−αc,2/2 + i
[
∆k′Ω + (k′′2 /2)Ω2]. Here, we define the direct and inverse Fourier transform operator as

F [·] =
∫ ∞
−∞ · e

iΩτ dτ and F−1 [·] = (2π)−1
∫ ∞
−∞ · e

−iΩτ dΩ, respectively.
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Similarly to the coupled mode equations in frequency domain, also the mean field Equation (11)
exhibits an effective cubic nonlinearity, with a noninstantaneous response analogous to the delayed
Raman response of cubic nonlinear media and other generalized nonlinear Schrödinger models.

Linear stability analysis of the cw solution of Equation (11) leads to the following expression for
the eigenvalues [50],

λ± =−
(
α1 + ρP0[ Î(Ω) + Î∗(−Ω)]

)
±

√
| Î(0)|2ρ2P2

0 −
(

δ1 −
k′′1 L

2
Ω2 − iρP0[ Î(Ω)− Î∗(−Ω)]

)2

, (12)

which, baring the notation, is substantially equivalent to Equation (5). Figure 4a shows the MI
gain, <[λ+] profile as a function of the walk-off parameter ∆k′. Clearly, there is no MI for zero
walk-off, and MI appears for sufficiently large values of walk-off, revealing the fundamental role of
group-velocity mismatch for the formation of quadratic optical frequency combs and related dissipative
temporal patterns.

Figure 4. Modulation instability gain profiles as a function of temporal walk-off. (a) Singly resonant
cavity SHG. (b) Doubly resonant cavity SHG (parameters are normalized according to Ref. [51]).
Adapted with permission from [50,51]. Copyrighted by the American Physical Society.

Hansson et al. [52] demonstrated that the general system of coupled mode Equation (6) can be
derived from the map of Equations (7)–(10). However, frequency domain coupled mode equations are
not exactly equivalent to the time domain mean field Equation (11): the two approaches differ in the
way the dispersion is averaged, although they provide almost equal results for the system of Ref. [48].

Theoretical models, in addition to providing useful insight into the physics of quadratic combs,
can be a practical tool for simulating the comb dynamics, giving access to information not always
available from the experiment. Both the frequency and time domain formalisms here described lend
themselves to the numerical simulation of comb dynamics. Coupled mode Equation (6) is in general
more time consuming than time domain approaches, unless it can be cast in a way where fast Fourier
transform (FFT) algorithms can effectively reduce the computation time [66]. Numerical integration of
the Ikeda map or the derived mean-field equation usually relies on split-step Fourier methods [67,68].
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According to this method, propagation along each integration step is carried out in two steps. In a first
step, the nonlinear and driving terms are propagated by means of a 4th-order Runge–Kutta method.
The dispersive and absorption terms are propagated in a second step, where their propagation operator
is evaluated in the Fourier domain, using an FFT algorithm. The simulation initiates by assuming a
constant amplitude, input driving field Ain that describes the resonant pump laser. More importantly,
in the first step a numerical white-noise background of one photon per mode must be added in order
to seed the nonlinear processes which lead to the comb. Whereas the numerical integration of Ikeda
map requires a spatial step size smaller than the cavity round trip length, the mean-field equation can
be numerically integrated with temporal step sizes of the order of the round trip time, for the benefit
of the computation time.

Figure 5 shows two spectra, (a) and (b), and the respective temporal patterns, (c) and (d),
obtained by numerically integrating Equation (11). The simulations have been performed using
the parameters from Ref. [48], in the case of quasi-phase matched SHG, for a constant input power of 2
and 7 W, respectively, and a small positive detuning. The simulated spectra are in good agreement
with the experimental spectra shown in Figure 2b,c. For the moment, we cannot determine the
temporal profile corresponding to a comb spectra. Hence, numerical simulations provide insights
on the temporal feature of comb dynamics. We notice that the temporal pattern (c) associated to
spectrum (a) has a stable periodic structure (also called Turing or roll pattern), which entails a strong
phase coupling between the spectral modes, i.e., a mode-locked regime. Instead, the spectrum of
Figure 5b, with secondary combs around the primary sidebands, corresponds to an irregular temporal
pattern with no evidence of intermodal phase coupling. Moreover, it does not appear to reach a
stationary regime. In both cases, the emission is not purely pulsed, as typically occurs for combs
generated in femtosecond, mode-locked lasers, but the temporal patterns coexist with a flat background.
The coexistence of a temporal pattern with a flat background is frequent for Kerr combs [69], as well
as for combs generated in quantum cascade lasers [70,71]. In fact, in femtosecond laser combs the
emission of short pulses is due to a particular phase relation between laser mode—i.e., all the modes
have equal phases. However, in a wider sense, mode-locking only requires that a stable phase relation
holds between all the mode fields. Finally, numerical simulations also reveal a slow drift of the
temporal patterns (both at the fundamental and the SH fields) in the reference frame moving with the
group velocity of the FF.
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Figure 5. Numerical simulation of Equation (11), using the parameters of the system in Ref. [48].
(a) Input power 2 W, δ1 = 0.001. (b) Input power 7 W, δ1 = 0.01. (c,d) Details of the respective
temporal patterns.
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When θ2 < 1, the infinite dimensional map of Equations (7)–(10) describes the case of a doubly
resonant optical cavity, where also second harmonic fields may resonate. Leo et al. theoretically
analyzed this system [51] and derived a couple of two mean-field equations, which accurately model
comb dynamics. These equations read, assuming phase-matched SHG,

tR
∂A
∂t

=

[
−α1 − iδ1 − i

k′′1 L
2

∂2

∂τ2

]
A + iκLBA∗ +

√
θ1 Ain, (13)

tR
∂B
∂t

=

[
−α2 − iδ2 − ∆k′L

∂

∂τ
− i

k′′2 L
2

∂2

∂τ2

]
B + iκLA2 , (14)

where α2 is the cavity loss of the SH field.
Under realistic conditions, the two mean-field Equations (13) and (14) can be reduced to a single

mean-field equation, analogously to Equation (11) for singly resonant cavity SHG. One obtains

tR
∂A
∂t

=

[
−α1 − iδ1 − i

k′′1 L
2

∂2

∂τ2

]
A− ρA∗

[
A2 ⊗ J

]
+
√

θ1 Ain, (15)

where the Fourier transform of the kernel function J is

Ĵ(Ω) =
1

α2 + iδ2 − i∆k′LΩ− i k′′2 L
2 Ω2

. (16)

A linear stability analysis of the cw solution (for both the Ikeda map and the mean-field
approximations) reveals the significant role of temporal walk-off in enabling comb formation. However,
in this case, MI gain may also occur for zero or relatively small values of the walk-off (Figure 4b).

4. Combs in Optical Parametric Oscillators

Degenerate optical parametric oscillation is the inverse process of cavity SHG, when the pump
field Ain at the FF ω0 is replaced by a pump field Bin at the SH frequency 2ω0. Its dynamics can
be described by an infinite dimensional map as well, where, in addition to Equations (7) and (8),
the following boundary conditions hold for the fields at the beginning of each round trip,

Am+1(0, τ) =
√

1− θ1 Am(L, τ) e−iδ1 (17)

Bm+1(0, τ) = Bin . (18)

Here, we consider an OPO cavity where only the parametric field resonates. It is straightforward
to extend the analysis to the case when the harmonic pump field also resonates.

Following the approach of Ref. [50], the infinite dimensional map can be combined into a single
mean-field equation for the parametric field A, which reads, assuming ∆k = 0 [54],

tR
∂A(t, τ)

∂t
=

[
−α1 − iδ1 − i

Lk′′1
2

∂2

∂τ2

]
A(t, τ)− µ2 A∗(t, τ)

[
A2(t, τ)⊗ I(τ)

]
+ iµBin A∗(t, τ) , (19)

where all the physical parameters and the kernel function I are the same as in Equation (11). We note
that Equation (19) is similar to the corresponding mean-field equation for comb dynamics in cavity
SHG, except for the parametric driving force (last term on the r.h.s.). Equation (19) has a trivial zero
solution, A0 = 0, and a nontrivial time independent solution, A0 = |A0|eiφ. From a linear stability
analysis of the constant solution, we derived the following expression for the eigenvalues [54],

λ± = −
[
α1 + µ2|A0|2I+(Ω)

]
±
√
(α2

1 + δ2
1)−[δ1−D2Ω2 − iµ2|A0|2 I−(Ω)]

2 , (20)
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where |A0|2 = [−α1 ±
√

µ2B2
in − δ2

1 ]/µ2 Î(0) is the squared modulus of the nontrivial solution and

I±(Ω) = Î(Ω)± Î∗(−Ω). Similarly, for the zero solution the eigenvalues of the linearized system are

λ± =− α1 ±
√

µ2B2
in − (δ1 − D2Ω2)

2 . (21)

Both solutions exhibit MI gain for Re[λ+] > 0, which is shown in Figure 6a,b as a function of the
cavity detuning. From Equation (20) it clearly appears that MI gain for the nontrivial solution depends
both on walk-off ∆k′, through I±(Ω), and GVD. As for singly resonant cavity SHG, MI only manifests
itself for relatively high walk-off values, while it is absent for zero walk-off, as shown in Figure 6c.
The instability of the zero solution, which is not expected in the usual dispersionless analysis of the
OPO, does not depend on the walk-off, but it is rather induced by GVD. Actually, GVD is responsible
for the unequal spacing between cavity resonances, so that they are asymmetrically displaced with
respect to the degeneracy frequency ω0, when the latter is perfectly resonant. Thus, GVD effectively
favors parametric oscillations close to the degeneracy frequency. For normal dispersion, a positive
detuning between the degeneracy frequency and the nearest cavity resonance can make symmetric
an initially asymmetric pair of distant resonances, which now can more favourably oscillate than the
degeneracy frequency ω0. The larger the detuning, the more distant the symmetric resonances are.
For small negative detunings no resonance pair can be symmetrically displaced around ω0, and MI
gain is maximum at the degeneracy frequency, decreasing as a function of the detuning amplitude.
The same occurs in the case of anomalous dispersion, provided that the detuning sign is reversed.

Figure 6. Optical frequency combs (OFC) in a degenerate OPO. (a,b) show the MI gain as a function of
the normalized cavity detuning ∆ = δ1/α1, for the constant solution and the zero solution, respectively.
(c) MI gain profiles as a function of the temporal walk-off. Adapted with permission from [54].
Copyrighted by the American Physical Society.

Frequency comb generation in an OPO has been demonstrated by using a nearly degenerate OPO
pumped by a frequency doubled cw Nd:YAG laser (Figure 7). The OPO was based on a 15-mm-long
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periodically-poled 5%-MgO-doped lithium niobate crystal, with a grating period of Λ = 6.92 µm,
enclosed in a bow-tie cavity resonating for the parametric wavelengths around 1064 nm, similar to
that used for cavity SHG. The nonlinear crystal was located between two high-reflectivity spherical
mirrors (with radius of curvature = 100 mm), while a flat high-reflectivity mirror was mounted on
a piezoelectric actuator for cavity length control. A fourth, partially reflective flat mirror (R = 98%)
allowed us to couple out the generated parametric radiation. The SH beam entered the OPO cavity from
a first spherical mirror, passed through the nonlinear crystal, and left the cavity at the second spherical
mirror. The FSR of the cavity was 505 MHz. We observed combs for pump powers higher than 85 mW
(about three times the OPO threshold of 30 mW) and studied the effect of small cavity detunings on
the comb spectra. Figure 8a–c show the experimental comb spectra recorded for ∆ = −0.30, 0.00, 0.30,
respectively, with 300 mW of pump power. We found a good agreement with the corresponding
spectra, shown in Figure 8d–f, calculated by numerically integrating the mean-field Equation (19).
Experimental spectra for negative and zero detunings are very similar, displaying 1 FSR line spacing,
whereas for the positive detuning the experimental spectrum consists of two pairs of widely spaced
symmetric lines.

Figure 7. OFC in a degenerate OPO. Scheme of the experimental setup: beam splitter (BS), electro-optic
phase modulator (EOM), periodically poled lithium niobate crystal (PPLN), piezoelectric actuator (PZT),
photodiode (PD). Adapted with permission from [54]. Copyrighted by the American Physical Society.
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Figure 8. (a–c) Experimental OPO optical spectra for detunings ∆ = −0.30, 0.00, 0.30, respectively.
(d–f) Corresponding numerically calculated spectra. From [54]. Copyrighted by the American
Physical Society.

5. Single Envelope Equation

Models based on the two field envelopes, i.e., Equations (7)–(10) and their approximations hold
as long as there is a single dominant nonlinear process and the combs are confined around two carrier
frequencies. When the combs start to overlap, or multiple nonlinear processes play a prominent
role, frequency comb generation may be studied by means of a more general model, based on a
single-envelope equation combined with the boundary conditions that relate the fields between
successive round trips and the input pump field [55],

F [Am+1(τ, 0)] =
√

θ̂(Ω)F [Ain] +
√

1− θ̂(Ω) eiφ0F [Am(τ, L)] (22)[
∂z − D

(
i

∂

∂τ

)
+

αd
2

]
Am(τ, z) = iρ0

(
1 + iτsh

∂

∂τ

)
pNL(τ, z, Am) . (23)

The boundary condition, Equation (22), is written in the Fourier domain, in order to account
for the frequency dependence of the transmission coefficient θ at the input port of the resonator.
It determines the intra-cavity field Am+1(τ, z = 0) at the beginning of (m + 1)th round trip in terms of
the field at the end of the previous round trip Am(τ, z = L) and the pump field Ain. Equation (23) is
written in a reference frame moving at the group velocity at ω0: pNL is the broadband envelope of the
nonlinear polarization PNL = P(2)

NL + P(3)
NL + ... = ε(χ(2)E2 + χ(3)E3 + ...); ρ0 = ω0/2n0cε0; τsh = 1/ω0

is the shock coefficient that describes the frequency dependence of the nonlinearity, and αd is the
distributed linear loss coefficient. Dispersion to all orders is included by the operator D,

D
(

i
∂

∂τ

)
= ∑

l≥2
i
βl
l!

(
i

∂

∂τ

)l
, (24)

where βl = (dl β/dωl)ω=ω0 are expansion coefficients of the propagation constant β(ω).
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Figure 9 shows a spectrum obtained from the numerical simulation of Equations (22) and
(23), when SHG and nondegenerate optical parametric oscillation are simultaneously quasi-phase
matched in a radially poled, lithium niobate microresonator, pumped at 1850 nm (162 THz). In this
case, the quasi-phase matching period for SHG (25.56 µm) simultaneously quasi-phase matches
a nondegenerate OPO with idler (signal) at 56 THz (106 THz). The broadband power spectral
density shows a generation of a multi-comb array, extending from the mid-infrared into the
ultraviolet with a spacing of a single FSR (around 92 GHz). In addition to combs at the FF, SH,
and third-harmonic (TH), two additional combs are generated around signal and idler frequencies.
Moreover, several secondary combs appear between the FF and the SH and between the SH and the
TH, respectively. These combs are generated by sum-frequency generation and difference frequency
generation processes. For instance, the comb SC1 centered at 218 THz results from SFG between the
idler and the FF, while SC3 (around 380 THz) results from SFG between the idler and the SH. On the
other hand, DFG between the SH (TH) and the idler leads to a secondary comb SC2 (SC4) centered at
268 THz (430 THz).
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Figure 9. Numerical simulation of the single-envelope map when SHG and OPO processes are
simultaneously phase matched in a lithium niobate microresonator pumped by 100 mW of cw power
at 1850 nm. Reprinted with permission from [55] c© The Optical Society.

6. Perspectives

Because of the intrinsically higher strength of the quadratic nonlinearity with respect to the
third-order one, quadratic comb generation can be less demanding in terms of power density and
cavity quality factor. Although quadratic combs have been generated in bulk cavities with moderate
pump powers, their performance could increase if implemented in miniaturized devices, thus further
extending and stimulating new applications [72,73]. Scaling the resonator to micrometric size may be
beneficial for quadratic combs, allowing for a dramatic reduction of threshold power and a flexible
management of the dispersion through a geometric design, allowing for a broader comb emission.
As a matter of fact, direct generation of quadratic frequency combs has been very recently observed
in chip-scale lithium niobate devices, such as periodically poled linear waveguide resonators [74,75],
or exploiting naturally phase-matched SHG in whispering-gallery-mode resonators [76,77].

Several materials with second-order nonlinearity are suitable to be shaped into low-loss
small-footprint resonators. Most of them have been used to generate Kerr combs [78–82], and,
in some cases, secondary quadratic effects have been reported [78,79] or explicitly considered [83].
In contrast to Kerr combs, quadratic combs usually require more stringent conditions on phase
matching and group velocity mismatch between different spectral components. Natural [84,85],
cyclic [86], and quasi-[87,88] phase matching have been used in crystalline whispering-gallery-mode
resonators. More recently, significant progress has been made in the fabrication of integrated, high-Q,
lithium niobate microresonators for χ(2) processes [89–92]. III-V materials provide an interesting
photonic platform for second-order nonlinear optics, and different techniques have been devised to
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achieve phase matching [93], in particular for resonant structures [94–96]. It is worth noting that the
well developed silicon platform can also be exploited for second-order nonlinear interaction. In fact,
Timurdogan et al. demonstrated that a large “dressed” χ(2) nonlinearity can be induced by breaking
the crystalline center-symmetry of silicon when a direct-current field is applied across p-i-n junctions
in ridge waveguides [97], enabling the implementation of quasi-phase matching schemes.

Unlike optical frequency combs in mode-locked lasers, parametrically generated combs do not
usually correspond to a stable pulsed emission in the time domain. Different temporal regimes are
possible, from chaotic to perfectly coherent states. The formation of temporal cavity solitons in a
cw-pumped nonlinear resonator has attracted a particular interest in connection with parametrically
generated combs [98]. Combs associated to a cavity soliton are broadband and highly coherent,
which makes them ideal for low noise and metrological applications. In fact, cavity solitons are robust
states which circulate indefinitely in a cavity, thanks to the double compensation between nonlinearity
and chromatic dispersion and between cavity losses and cw driving. Recent theoretical works aim
at identifying the dynamical regimes that exhibit soliton states or localized solutions in cavity SHG
systems [99–102] or OPOs [103,104].

Finally, optical frequency combs are attracting a growing interest as sources of complex quantum
states of light for high-dimensional quantum computation [26,105,106]. Second-order nonlinear optical
systems are efficiently used for generation of quantum states of light: the classical correlations that
establish in three-wave-mixing processes hold at the quantum level as well, leading, for instance,
to generation of squeezed light or bipartite entanglement in an OPO. Tripartite, or quadripartite
multicolor entanglement has been predicted in second-order nonlinear devices [107], in particular
when multiple cascaded second-order nonlinear interactions occur, in traveling-wave or intracavity
processes [108–110]. Interestingly, a recent study based on the three-wave model of Equations (1)–(3)
predicts five-partite entanglement between one-octave-distant modes [111]. This result suggests
that quadratic combs could exhibit multipartite entanglement between frequency modes, which are
essential for scalable measurement-based quantum computing [112]. To fully explore these features,
a general and complete analysis of the quantum dynamics of quadratic combs is needed [113].
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Abbreviations

The following abbreviations are used in this manuscript:

cw Continuous wave
DFG Difference frequency generation
FF Fundamental frequency
FFT Fast Fourier transform
FSR Free spectral range
FWM Four-wave mixing
GVD Group velocity dispersion
MI Modulation instability
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OFC Optical frequency comb
OPO Optical parametric oscillator
SH Second harmonic
SHG Second harmonic generation
TH Third harmonic
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