
 Procedia Computer Science 97 (2016) 118 – 121

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the international conference on cloud forward:
From Distributed to Complete Computing
doi: 10.1016/j.procs.2016.08.287

ScienceDirect
Available online at www.sciencedirect.com

Cloud Futures: From Distributed to Complete Computing, CF2016, 18-20 October 2016, Madrid,
Spain

Heterogeneous Secure Multi-level Remote Acceleration Service for
Low-Power Integrated Systems and Devices

Lara Lópeza,*, Francisco Javier Nietoa, Terpsichori-Helen Velivassakib, Sokol Kostac,
Cheol-Ho Hongd, Raffaele Montellae, Iakovos Mavroidisf, Carles Fernándezg

aAtos Spain SA, Albarracin 25, Madrid, 28037, Spain
b SingularLogic, Al. Panagouli & Siniosoglou, Athens,Greece

cAalborg University Copenhagen, Denmark & Sapienza University of Rome, Italy
dQueen’s University Belfast, University Rd, Belfast, United Kingdom

eUniversity of Napoli Parthenope, CDN Isola C4, Napoli, 80143, Italy
fFoundation for Research and Technology – Hellas, Heraklion, Greece

gHerta Security, Pau Claris 165 4B, Barcelona, 08037, Spain

Abstract

This position paper presents a novel heterogeneous CPU-GPU multi-level cloud acceleration focusing on applications running on
embedded systems found on low-power devices. A runtime system performs energy and performance estimations in order to
automatically select local CPU-based and GPU-based tasks that should be seamlessly executed on more powerful remote devices
or cloud infrastructures. Moreover, it proposes, for the first time, a secure unified model where almost any device or
infrastructure can operate as an accelerated entity and/or as an accelerator serving other less powerful devices in a secure way.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of the international conference on Cloud Futures: From Distributed
to Complete Computing.

Keywords: HPC; accelerators; devices; offloading; QoS; Cloud computing

* Corresponding author. Tel.: +34 94 242 1007.
E-mail address: lara.lopez@atos.net

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the international conference on cloud forward:
From Distributed to Complete Computing

CLOUD FORWARD: From Distributed to Complete Computing, CF2016, 18-20 October 2016, Madrid,
Spain

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.287&domain=pdf

119 Lara López et al. / Procedia Computer Science 97 (2016) 118 – 121

1. Introduction

Many low-power devices, such as smartphones or tables, as well as several other embedded systems cannot
always cope with the increased demand for processing power, memory and storage required by modern applications.
As a result, most of these applications are only executed on high-end servers. According to Ericsson Mobility
Report1, there have been 7.3 billion mobile subscriptions in 2015, with an estimation of 5% increase for the next 5
years. Furthermore, the smartphone data traffic is expected to increase by 8.9% in the following 5 years. Users keep
demanding more features and services from mobile applications developers. To be able to satisfy users’ demands,
developers offload the heavy operations of an application to more resourceful machines, such as private or public
cloud, giving birth to a new research area known as Mobile Cloud Computing2, 3, 4. The objective of this paper is to
show the approach followed by RAPID5 project on tackling the above mentioned challenge.

RAPID proposes and designs the full architecture of a heterogeneous offloading framework identifying several
components needed for making the system highly automatic and transparent to the developers and final users.
Finally, its solution can be applied to many different scenarios, however only three of them will be implemented
within the project life: antivirus, hand-tracking and biosurveillance.

Nomenclature

AC Acceleration Client
API Application Programming Interface
AS Acceleration Server
DFE Dispatch and Fetch Engine
DS Directory Server
DSE Design Space Explorer
RM Registration Manager
SLA Service Level Agreement
SLAM Service Level Agreement Manager
VM Virtual Machine
VMM Virtual Machine Manager

2. Architecture

The RAPID system architecture (see Fig. 1) consists of five main components: Acceleration Client (AC),
Acceleration Server (AS), Directory Server (DS), Service Level Agreement Manager (SLAM), and Virtual Machine
Manager (VMM).

Fig. 1 (a) High-level RAPID logical architecture (b) Interaction between the entities in the RAPID system

(a) (b)

120 Lara López et al. / Procedia Computer Science 97 (2016) 118 – 121

On the left side of Fig. 1 a) we can see the accelerated devices making use of the RAPID AC to register with the
system and to interact with the RAPID AS for task offloading. The AS is a multi-threaded program that is installed
in a VM, serving multiple applications of the associated device with remote task execution. To make the discovery,
association, and interaction between the AC and the AS transparent to the application developers and to the final
users, these steps are handled by the DS, which is responsible for keeping track of all the active actors in the system,
and the VMM, which is responsible for controlling the VMs whenever clients come or leave the system. Finally, the
SLAM is the component that monitors the quality of service offered to the clients.
Specifically, the role of each component is as follows:

Acceleration Client is the component that handles the task of offloading process on the client side. The AC is
composed of a Registration Manager (RM) that registers the device with the DS, so that the DS can then allocate
a VM for the device. The Dispatch and Fetch Engine (DFE) is the only component that the developer is aware of
and should use. The DFE handles the execution of the off loadable tasks, running them locally on the device or
remotely on the VM, based on the network conditions and each task’s execution and memory complexity. The
component that decides the execution location of the tasks is the Design Space Explorer (DSE), which
implements different profilers to monitor the performance of the tasks, the device and the network.
Acceleration Server is the component that runs inside a VM that handles the execution of the offloaded tasks. It
also implements a RM, which is used to register the AS with the DS and with the VMM. The AS also
implements a DFE, which is the component that interacts with the DFE of the AC whenever a task is offloaded,
and effectively runs the task on the VM. Finally, the GPU-Bridger is the component that handles the GPU code
offloading, using GPU virtualization techniques through GVirtuS6. GVirtuS is a split-driver model-based generic
virtualization framework for GPU virtualization, which offers virtualization support for generic libraries such as
accelerator libraries, with independence from all involved technologies.
Virtual Machine Manager is the component responsible for managing and monitoring the resources of a
physical machine. In RAPID, each physical machine has its own VMM, which provides the information about
the resources to the DS, the SLAM and the different AS installed on the VMs running on the physical machine.
The component supports not only personal machines but also the usage of well-known Cloud platforms, such as
OpenStack7 and OpenNebula8.
SLA Manager is a framework developed to be a transversal asset, powerful and flexible enough to be used in
several environments and domains. It is based on the WS-Agreement specification and it is meant to cover the
following features: Define a language and a protocol for advertising the capabilities of service providers; Create
agreements based on the templates; Monitor agreements compliance and violations at runtime; and Take into
account a plug-in based implementation, which may provide increased flexibility.
Directory Server centralizes the knowledge of computational resources and active entities in the cloud
infrastructure. By this centralization, the DS can inform mobile clients or other components quickly of a list of
available physical machines in the Cloud whenever they wish to acquire computational resources in the Cloud. If
this physical machine list is given, they can offload, forward or parallelize their tasks to or in available VMs
implementing the AS. Fig. 1 b) shows the biggest actors of the system communicating with each other when
performing registration, resource lookup, and task offloading.

3. Challenges and Expectations

The main challenge addressed by RAPID is enabling the mobile cloud computing paradigm by improving the task
offloading proposed in previous research works2. The project aims not only at providing a quality-based offloading
of tasks to remote hosts (by using VMs), but also at increasing the computation capabilities by enabling the
possibility to use remote GPUs as a way to accelerate advanced operations required by GPU-capable applications.

Considering that RAPID aims at offering its services to real users, we add new functionalities related to the
negotiation and management of SLAs, going beyond the traditional QoS parameters, since the usage of remote
accelerators requires taking into account additional aspects. Furthermore, it is necessary to adequately manage the
offloading tasks by improving the allocation mechanisms and the management of available resources.

121 Lara López et al. / Procedia Computer Science 97 (2016) 118 – 121

To this end, RAPID expects to provide the first mechanism for accessing remote GPUs, which will manage
resources taking into account applications’ requirements and agreed QoS parameters as a way to improve users’
experience while, at the same time, it is possible to enable the usage of new applications with high computational
requirements in mobile environments.

Moreover, RAPID envisions the implementation of a novel offloading technique between nearby devices, where
more powerful and resourceful devices can help the less capable ones in Peer-to-Peer fashion. As it has been shown
recently, this collaborative offloading strategy, named Device-to-Device offloading, can be useful in many
situations, such as emergency applications, collaborative multimedia streaming, etc.3, 4.

Security is another challenge to be addressed in RAPID. When data are exchanged between mobile devices and
the RAPID infrastructure for offloading, the data can be corrupted or stolen by malicious users. We will overcome
this issue by implementing lightweight encryption techniques.

4. Conclusions

This paper presented RAPID, a novel architecture that addresses the challenge of supporting more features and
services from mobile applications. RAPID targets offloading of computationally heavy and I/O-intensive tasks from
low-power mobile devices to powerful heterogeneous systems in the cloud with multiple CPUs and GPUs. For this
purpose, RAPID proposed a new heterogeneous architecture where each component respectively enables task
offloading on the client side, handles offloaded tasks in the cloud side with remote CPUs and GPUs, monitors the
activity of physical resources, centralizes the information of the resources, and supports the QoS aspects of each
user. These implementations will not only realize QoS-based offloading but also create new and more advanced
services in mobile applications thanks to powerful remote accelerators. In addition, this novel architecture will
provide innovative opportunities to Cloud providers by introducing the concept of Acceleration as a Service (AAS),
which opens the door for heterogeneous architecture-based computation in the Cloud.

Acknowledgements

The authors acknowledge the contribution of the whole RAPID consortium. We also acknowledge the support of
the European Commission under the Horizon 2020 Program through the RAPID (H2020-ICT-644312) project.

References

1. Ericsson. “Ericsson Mobility Report”, June 2016. [Online]. Available at: http://www.ericsson.com/res/docs/2016/ericsson-mobility-report-
2016.pdf.

2. Kosta S., Aucinas A., Hui P., Mortier R. and Zhang X., “ThinkAir: Dynamic resource allocation and parallel execution in cloud for mobile
code offloading”, in IEEE Infocom, 2012.

3. Shi C., Lakafosis V., Ammar M.H. and Zegura E.W., “Serendipity: enabling remote computing among intermittently connected mobile
devices”, in Proceedings of the thirteenth ACM international symposium on Mobile Ad Hoc Networking and Computing, Hilton Head, South
Carolina, USA, 2012.

4. Chatzopoulos D., Ahmadi M., Kosta S. and Hui P., “OPENRP: A Reputation Middleware for Opportunistic Mobile Crowd Computing”, IEEE
Communications Magazine, Special Issue on Social and Mobile Solutions in Ad Hoc and Sensor Networking, 2016.

5. Heterogeneous Secure Multi-level Remote Acceleration Service for Low Power Integrated Systems and Devices, RAPID project,
http://www.rapid-project.eu

6. Montella R., Giunta G., Laccetti G., Lapegna M., Palmieri C., Ferraro C. and Pelliccia V., “Virtualizing CUDA enabled GPGPU son ARM
clusters”, in Parallel Processing and Applied Mathematics, Springer Verlag, Berlin Heidelberg, 2016.

7. OpenStack website, https://www.openstack.org/
8. OpenNebula website, http://opennebula.org/

