
Available online at www.sciencedirect.com
ScienceDirect

Physics of Life Reviews 28 (2019) 43–45

www.elsevier.com/locate/plrev

Comment

Neural correlates of action monitoring and mutual adaptation during 

interpersonal motor coordination
Comment on “The body talks: Sensorimotor communication and its 

brain and kinematic signatures” by G. Pezzulo et al.

Vanessa Era a,b,∗, Sarah Boukarras a,b, Matteo Candidi a,b,∗

a SCNLab, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185, Rome, Italy
b IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00100, Rome, Italy

Received 24 January 2019; accepted 29 January 2019
Available online 31 January 2019

Communicated by J. Fontanari

Keywords: Joint action; Motor interactions; Action monitoring; Mutual adaptation

In their review article, Pezzulo et al. [16] make the effort to provide an integrative view on the role of sensori-
motor communication (SMC) during interpersonal motor interactions. We comment on the possibility to study brain 
processes associated to two fundamental mechanisms supporting motor interactions, i.e. mutual adaptation and er-
ror monitoring, that lead to the emergence of SMC, by using ecological experimental set-ups. Most of the available 
experimental studies on motor interactions have used simplified forms of interpersonal interactions such as finger 
tapping, finger movements, imitation of finger/hand movements [10,21,14,12,13,4], with the advantage of using well 
controlled experimental set-ups that preserve critical features of realistic interactions such as interdependence, need 
to predict, need to monitor, need to adapt.

However, the most sophisticated form of SMC identified by Pezzulo and colleagues, i.e. the attempt to disambiguate 
one’s own actions among different alternatives (intentional signalling), is often unexplored in these simplified set-ups. 
Crucially, this ability is strictly dependent on the ability to on-line modulate subtle motion cues such as the curvature 
of one’s own movements [19,1] according to the behavior of a partner which emerges during realistic interactions 
requiring mutual adaptation and error monitoring.

The process of mutual adaptation is supported by the moment-to-moment integration of predictions regarding the 
effects of one’s own and the other’s actions. Most of the studies investigating the neural bases of motor interactions 
dealt with the possibility to highlight the neural pattern associated to synchronizing with, or imitating and comple-
menting, the action of a partner in different contexts. Endorsing the Authors’ view that “. . . information asymmetry 
and the presence of joint goals seem the most important prerequisites for sophisticated forms of SMC (see also Fig. 3), 
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hence tasks that include them can be effectively used to chart more accurately the territory of SMC.”, we believe that 
understanding the neural mechanisms of SMC is dependent on finding specific neural systems supporting the ability 
to integrate the action of a partner with ones’ own, and monitor the joint outcome of the interaction, which may be 
fundamental to open new avenues for treating motor and social disorders.

Recent studies have shown that within the posterior parietal cortex, the anterior intraparietal sulcus ((aIPS), which 
has been shown to code for the goal of both observed [9] and executed [3,22] actions) supports humans’ ability to 
perform complementary motor interactions, where integration of predictions of one’s own and other’s movements is 
needed in order to coordinate efficiently [18,20]. Interestingly, inhibitory transcranial magnetic stimulation (TMS) has 
been used to inhibit the activity of left aIPS in one member of human–human dyads performing motor interactions 
implying mutual adaptation [5]. This study showed that aIPS functioning supports effective motor synchronization 
during human–human complementary interactions. Moreover, the less the pairs were able to mutually adapt, the more 
left aIPS inhibition effect was visible. Thus, the impairment induced by TMS in one participant was compensated 
by the pair’s ability to mutually adapt, suggesting that mutual adaptation is a crucial marker of human–human motor 
interactions [5]. Similarly, another study showed that brain damaged patients with motor difficulties (apraxic patients) 
improve their motor behavior when interacting with another person [2], indicating that the real-time coupling of one’s 
own action with the ones of another individual may be spared in patients that show motor disorders as measured 
through individual motor tests.

The ability to adapt to a partner’s movements clearly depends on ones’ ability to detect differences between what 
one expects the other to do and what he/she actually does. It has been shown that the same error-related EEG markers 
(ERN, Pe, Theta ERS) [7,8,23,15] recorded over fronto-central electrodes when human participants perform or ob-
serve motor errors, also increase when human participants are required to predict the behavior of a virtual partner that 
suddenly changes its motor trajectory during a real interaction [11]. This suggests that the error monitoring system is 
involved during motor interactions, particularly when the partner’s movements are less predictable and when the task 
requires a continuous integration of one’s own and partner’s movements. Interestingly, in the previously mentioned 
study, aside from the classical error-related midfrontal theta activity, another source of the theta ERS generated by 
the observation and prediction of a violation in the expected movement was localized over occipito-temporal regions 
suggesting a role in visuo-motor integration during motor interactions [11].

These studies indicate that SMC, promoted in set-ups implying real-time sensorimotor coupling of observed and 
executed actions might be exploited to facilitate motor behavior in patients suffering from several motor and social dif-
ficulties. In this sense, the development of virtual reality scenarios (that have the advantage of allowing better control 
over the behavior of the virtual partner in comparison to human–human interactions) to implement motor interactions 
for rehabilitation purposes might take into account the notion that mutual adaptation appears as a crucial aspect of 
realistic motor interactions [5,17] and implement virtual partners that are able to adapt to the motor behavior of the 
human interactor [6]. Moreover, virtual reality scenarios offer the opportunity to boost SMC by making the kinematics 
of the virtual partner more informative and predictable in order to facilitate motor coordination in populations with 
motor and social disorders.
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