
Artificial Intelligence 279 (2020) 103215
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Train-O-Matic: Supervised Word Sense Disambiguation with

no (manual) effort

Tommaso Pasini ∗, Roberto Navigli

Department of Computer Science, Sapienza University of Rome, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 November 2018
Received in revised form 11 November 2019
Accepted 15 November 2019
Available online 26 November 2019

Keywords:
Word Sense Disambiguation
Corpus Generation
Word Sense Distribution learning
Multilinguality

Word Sense Disambiguation (WSD) is the task of associating the correct meaning
with a word in a given context. WSD provides explicit semantic information that is
beneficial to several downstream applications, such as question answering, semantic
parsing and hypernym extraction. Unfortunately, WSD suffers from the well-known
knowledge acquisition bottleneck problem: it is very expensive, in terms of both time and
money, to acquire semantic annotations for a large number of sentences. To address this
blocking issue we present Train-O-Matic, a knowledge-based and language-independent
approach that is able to provide millions of training instances annotated automatically with
word meanings. The approach is fully automatic, i.e., no human intervention is required,
and the only type of human knowledge used is a task-independent WordNet-like resource.
Moreover, as the sense distribution in the training set is pivotal to boosting the
performance of WSD systems, we also present two unsupervised and language-independent
methods that automatically induce a sense distribution when given a simple corpus of
sentences. We show that, when the learned distributions are taken into account for
generating the training sets, the performance of supervised methods is further enhanced.
Experiments have proven that Train-O-Matic on its own, and also coupled with word
sense distribution learning methods, lead a supervised system to achieve state-of-the-art
performance consistently across gold standard datasets and languages. Importantly, we
show how our sense distribution learning techniques aid Train-O-Matic to scale well over
domains, without any extra human effort. To encourage future research, we release all
the training sets in 5 different languages and the sense distributions for each domain of
SemEval-13 and SemEval-15 at http://trainomatic .org.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Word Sense Disambiguation is the task of associating a meaning, selected from a fixed set of concepts, with a word
in a given context [1]. It is a key task in both computational lexical semantics and in artificial intelligence more broadly
[2], inasmuch as it addresses the lexical ambiguity of text by making the meaning of words occurring in a given context
explicit. Indeed, removing the ambiguity of words in a text can be beneficial to a variety of different NLP applications, such
as: machine translation, where the meaning information for the target word can be helpful to choose the correct translation;
hypernym extraction, which requires a disambiguation step in order to pick the right hypernym of a word which otherwise

* Corresponding author.
E-mail addresses: pasini@di.uniroma1.it (T. Pasini), navigli@di.uniroma1.it (R. Navigli).
https://doi.org/10.1016/j.artint.2019.103215
0004-3702/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.artint.2019.103215
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://trainomatic.org
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pasini@di.uniroma1.it
mailto:navigli@di.uniroma1.it
https://doi.org/10.1016/j.artint.2019.103215
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2019.103215&domain=pdf

2 T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215
might have different hypernyms depending on the context; semantic search, which, in contrast to lexical search, takes
advantage of synonymy and polysemy to provide more accurate results.

The NLP community conducts two main lines of research in WSD: knowledge-based and supervised WSD. Knowledge-
based approaches exploit the structural information contained in a general-purpose lexical semantic knowledge resource like
WordNet [3] to identify the correct sense of a target word in a context, i.e., a sentence or a text. Knowledge resources are
usually structured as a graph, where the nodes represent the concepts and the edges the relations among those concepts.
Taking advantage of the graph structure, different graph algorithms have been developed to disambiguate a target word in a
sentence or document. For example, a PageRank-based algorithm can be used to determine the probability of reaching any
sense in the graph starting from the senses of other words in the context. Recent approaches of this kind have been shown
to obtain competitive results [4,5], which can be further improved when a large set of syntagmatic relations is added to the
reference knowledge base [6].

Tripodi and Pelillo [7], instead, formulated the problem as a game where words are the players and they have to choose
their best sense in terms of similarity with the senses selected by the other words in the context. This formulation still
exploits a knowledge resource in order to identify the set of concepts for each word and to compute the similarity between
senses. The most recent effort in terms of knowledge-based WSD is [8] which exploits topic modeling techniques, i.e., Latent
Dirichlet Allocation, and the whole document in order to identify the sense for a target word. The main inherent limits of
knowledge-based approaches arise from the fact that they tend to adopt a bag-of-word approach hence discarding the word
ordering information and giving the same importance to all the tokens regardless of their distance from the target word;
moreover, they do not include function words.

In contrast, supervised WSD frames the problem as a classical machine learning task [9–11], in which, first, a model for
each word is trained from sentences annotated with word senses, and, second, these models are then used to disambiguate
each target word in previously-unseen sentences separately. Raganato et al. [12], instead, used a single sequence-to-sequence
model for all the words, which, given a sequence of words, outputs a sequence of words and senses.

Supervised WSD has an additional difficulty with respect to other classification problems as the classes to choose from
(i.e., the senses of the target words) vary for each word, therefore requiring either a separate training process to be per-
formed on a word by word basis, or, alternatively, the handling of a very large output vocabulary. As a result, hundreds
of training instances are needed for each ambiguous word in a language’s lexicon. This would necessitate a million-item
training set to be manually created for each language of interest, an endeavour that is currently beyond reach even for
resource-rich languages like English. Another issue that arises when a supervised approach is chosen is the balancing of
the training data. It is common, in fact, for machine learning algorithms to overfit towards the most frequent class in the
training set (i.e. the Most Frequent Sense (MFS) of a word in our case). This is even more exacerbated in WSD, as word
senses follow a Zipfian distribution, i.e., the least frequent senses appear exponentially fewer times than the most frequent
ones. Pilehvar and Navigli [13] and Postma et al. [14], indeed, proved that knowing the sense distribution on the test set
would increase the performance of supervised systems by more than 10 points.

In this paper we investigate, firstly, how to put knowledge bases at the service of supervised systems in order to reduce
the knowledge acquisition bottleneck, and, secondly, how to perform on-the-fly domain adaptation by learning the word
sense distribution of the text to disambiguate. In this context we present Train-O-Matic [15,16], a language-independent
method for generating huge high-quality training sets for all the words in a language’s vocabulary. We provide an in-depth
extrinsic evaluation of the method, testing a WSD system trained on our automatically generated data in multiple languages.
We also extend our approach by proposing a semi-supervised neural variant for estimating the probability of a sense ap-
pearing in a sentence. Furthermore, given the high impact on performance of the number of examples assigned to each
sense [14], we also present two knowledge-based methods for learning the distribution of word senses given a raw corpus
of sentences [17]. Our experiments show that Train-O-Matic is able to generate high-quality data for all the languages we
tested, and, when coupled with word sense distribution learning, can adapt the generated training set to the target domain
autonomously. This paper extends [15] and [17] by providing the following novel contributions:

• A semi-supervised neural approach to compute the probability of a synset appearing in a given sentence.
• A method for the automatic domain adaptation of the training sets generated by Train-O-Matic.
• Extensive experiments on the influence of word sense distribution in the training set on supervised systems, where,

thanks to the automatic balancing of training sets and ad hoc baselines for computing the most frequent sense of a
word, we obtain state-of-the-art results on domain-specific experiments.

• In-depth extrinsic evaluation of all the proposed approaches on multiple languages that proves, for the first time, how
effective the learned MFS baselines are and how they can be used to improve state-of-the-art performance on both
multiple-language and domain-specific evaluation.

2. Train-O-Matic: building a training set from scratch

In this Section we present Train-O-Matic [15,16], a language-independent approach to the automatic construction of a
sense-tagged training set. Train-O-Matic takes as input a corpus C (e.g., Wikipedia) and a semantic network G = (V , E)

where V is the set of concepts (i.e., synsets) and E the set of edges which represent the semantic relations between nodes.

T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215 3
Fig. 1. Personalised PageRank vector for the lighter sense of match.

We also define the function Senses(w) that, given a word w , returns the set of vertices in V that contain w among their
senses, e.g., given the word match, Senses(match) returns all the synsets in G that contain match among their senses.

Train-O-Matic consists of three steps:

• Lexical profiling: for each vertex (i.e., synset) in the semantic network, we compute its Personalised PageRank vector,
which provides its lexical-semantic profile (Section 2.1), i.e., a vector where all vertices in the network appear with a
score expressing their probability of being reached if we start surfing the graph from the starting node.

• Sentence scoring: given a target word and the list of sentences it appears in, we compute a distribution over its senses.
• Sentence ranking and selection: Train-O-Matic ranks each sentence σ for a sense s of a word w ∈1 σ according to the

difference between the first and the second sense in the distribution we computed at the previous step (Section 2.3).

2.1. Lexical profiling

The first step aims at computing, for each node in the semantic network, a probability distribution over all the nodes in
the graph conditioned to a single given synset. Such distribution can be interpreted as a relatedness measure between the
starting synset s and all the nodes s′ in the graph (including s itself). Thus, for each vertex v , we define its lexical profile
over the graph G = (V , E) as the output of the Personalised PageRank (PPR) algorithm. The personalised variant of PageRank
[18] collapses the restart probability on one vertex only, which is equivalent to performing random walks restarting always
on the same node thereby concentrating more probability mass in the surroundings of the starting vertex neighbours.

Formally, (P)PR is computed as follows:

v(t+1) = (1 − α)v(0) + αM v(t) (1)

where M is the row-normalized adjacency matrix of the semantic network, the restart probability distribution is encoded by
the column vector v(0) , v(t) is the column vector with the probabilities of each node at time step t , and α is the well-known
damping factor usually set to 0.85 [18]. If we set v(0) to a unit probability vector (0, . . . , 0, 1, 0, . . . , 0), i.e., restart is always
on a given vertex, PPR outputs the probability of reaching every vertex starting from the restart vertex after a random
number of steps. This approach has been used in the literature to create semantic signatures (i.e., profiles) of individual
concepts, i.e., vertices of the semantic network [19], and then to determine the semantic similarity of concepts. Instead we
use the PPR vector as an estimate of the conditional probability of a word w ′ given the target sense2 s ∈ V of word w as
was also done by Pilehvar and Collier [20]:

P (w ′|s, w) = maxs′∈Senses(w ′) vs(s′)
Z

(2)

where Z = ∑
w ′′ P (w ′′|s, w) is a normalization constant, vs is the resulting PPR vector with restart probability on node

s, and vs(s′) is the vector component corresponding to sense s′ . We prefer the max operator instead of sum as we are
more interested in capturing the maximum possible relatedness between s and any of the senses of w ′ , rather than the
relatedness between s and the word w intended as the sum of its meanings. This will be further clarified in Section 2.2.2,
where we explain how we compute the probability of a sense appearing in a sentence.

To explain this step with an example, given the vector v of the lighter sense of match s in Fig. 1,3 we compute the
probability of the word cigarette given the sense s and the target word match by picking the highest score of a synset in
v with cigarette among its senses (i.e., cigarette1

n). Thus P (cigarette | match1
n, match) = 0.03. To fix the number of iterations

needed to have a sufficiently accurate vector, we follow Lofgren et al. [21] and set the number of iterations to 100, 000. As a
result of this lexical profiling step we have a probability distribution over the knowledge base concepts for each given word
sense of interest.

1 Here and across the paper we make use of the ∈ symbol to express the appearance of a word in a sentence even if σ is not a set but a list of words.
2 Note that we use senses and concepts (synsets) interchangeably, because – given a word – a word sense unambiguously determines a concept (i.e., the

synset it is contained in) and vice versa.
3 We use the notation introduced by Navigli [1] where wk

p indicates the k-th sense of the word w with POS p.

4 T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215
2.2. Sentence scoring

The objective of the second step is to score the importance of word senses for each of the corpus sentences which
contain the word of interest. In other words, we want to assign, to each word of interest and for all the sentences in the
corpus where it appears, a distribution over its senses.

We present two different ways for computing the probability of a sense s to appear in a given sentence σ containing the
target word w . The first one is graph-based and relies on the lexical profile we described in the previous Section, the second
one, instead, is semi-supervised and exploits word embeddings to represent synsets and sentences in the same vector space,
and a sense-annotated corpus such as SemCor to compute the sense embeddings.

2.2.1. Knowledge-based scoring
The first method is graph-based and exploits a knowledge base in order to compute the probability of a synset s to

appear in a sentence σ . Given a sentence σ = w1, w2, . . . , wn , and a target word w in the sentence (w ∈ σ), for each of its
senses s ∈ Senses(w), we compute the probability P (s|σ , w). Thanks to Bayes’ theorem we can determine the probability of
sense s of w given the sentence as follows:

P (s|σ , w) = P (σ |s, w)P (s|w)

P (σ |w)
(3)

= P (w1, . . . , wn|s, w)P (s|w)

P (w1, . . . , wn|w)

∝ P (w1, . . . , wn|s, w)P (s|w) (4)

≈ P (w1|s, w) . . . P (wn|s, w)P (s|w) (5)

where Formula (4) is proportional to the original probability (due to removing the constant in the denominator) and is
approximated by Formula (5) due to the assumption of independence of the words in the sentence. P (wi |s, w) is calculated
as in Formula (2) and P (s|w) is set to 1/|Senses(w)| (recall that s is a sense of w). Note that, since we used the max
operator in Formula (2), we estimate the probability of a sense s according to the senses in the sentence that are most
related to it, rather than to the words – which would have been the case if we had used the sum operator in Equation (2).

To give an example of how this procedure works, let the sentence σ = “A match is a tool for starting a fire”, the target
word w = match and its set of senses Smatch = {s1

match, s2
match} be the input where s1

match is the lighter sense and s2
match is the

game sense of match. We want to calculate the probability of each si
match ∈ Smatch being the correct sense of match in the

sentence σ . Therefore, following Formula (5) we have:

P (s1
match|σ ,match) ≈ P (match|s1

match,match)P (tool|s1
match,match) · P (start|s1

match,match)

· P (fire|s1
match,match) · P (s1

match|match)

= (1.0) · (2.1 · 10−4) · (2 · 10−3) · (10−2) · (5 · 10−1)

= 2.1 · 10−9

P (s2
match|σ ,match) ≈ P (match|s2

match,match) · P (tool|s2
match,match) · P (start|s2

match,match)

· P (fire|s2
match,match) · P (s2

match|match)

= (1.0) · (10−5) · (2.9 · 10−4) · (10−6) · (5 · 10−1)

= 1.45 · 10−15

As can be seen, the first sense of match has a much higher probability, due to its stronger relatedness to the other words in
the context (i.e., start, fire and tool). Note also that all the probabilities for the second sense are at least one magnitude less
than the probabilities of the first one.

2.2.2. Sentence scoring with word embeddings
The second approach is semi-supervised and exploits the lexical context of synsets in an annotated corpus (i.e. SemCor)

to compute a latent representation for each synset. This vector is computed as the average of the word vectors across all
sentences in the corpus where the synset appears. Thus, for each sentence σ containing a given synset s, we first compute
a single contextual vector of s by averaging the embeddings of the words surrounding it in σ . Then, we compute a single
latent representation for the target synset s by averaging all its contextualised representations.

More formally, given a synset s and a set of sentences ξ where s appears as the sense of the word w , we compute the
vector for s as follows:

T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215 5
v(s, w) = 1

|ξ |
∑
σ∈ξ

vec(σ , w, W) (6)

vec(σ , w, W) = 1

2W + 1

w.index+W∑
i=w.index−W ;

i �=w.index

word2vec(σ [i]) (7)

where the function vec(σ , w, W) is the average of the word vectors surrounding the word with sense s in a given window
W , and word2vec(w) returns the vector representation of the word w . Note that we can now compare word senses and
sentences as they all lie in the same vector space defined by the word vectors. Thanks to this, given a new sentence and
a target word we can compute the sentence vector in the same way as we did for synsets (i.e., by averaging the word
vectors in the surroundings of the target word). Then, we compute the probability distribution over the senses of a target
word in a sentence by assigning a score defined by the cosine similarity between the sentence and the senses’ vectors and
renormalising them to form a distribution. More formally we compute the probability of a sense s of a word w to appear
in the sentence σ as follows:

P (s|σ , w) = esim(vec(σ ,w,W),v(s,w))∑
s′∈senses(w)

esim(vec(σ ,w,W),v(s′,w))

i.e., the softmax over the possible senses s′ of the word w where vec(σ , w, W) and v(s, w) are the two functions we
introduced in Formula (6) and (7), and sim(x, y) is the cosine similarity between the vectors x and y. We choose the
softmax since it is the most obvious way for normalising and building a valid probability distribution from values that range
in [−1, 1].

2.3. Sentence ranking and selection

Finally, for a given word w and a given sense s1 ∈ Senses(w), we score each sentence σ in which w appears and s1 is
its most likely sense according to a formula that takes into account the difference between the first (i.e., s1) and the second
most likely sense of w in σ :

�s1(σ) = P (s1|σ , w) − P (s2|σ , w) (8)

where s1 = arg maxs∈Senses(w) P (s|σ , w), and s2 = arg maxs∈Senses(w)\{s1} P (s|σ , w). We then sort all sentences based on
�s1 (·) and return a ranked list of sentences where word w is most likely to be sense-annotated with s1.

3. Creating a denser and multilingual semantic network

The approach we have presented so far depends highly on the underlying semantic network to compute the probability
of a sense given a sentence and a target word (see Formula (5)). Therefore, while in Section 2 we employed WordNet
as the knowledge graph, we note that it lacks syntagmatic relations that connect verbs to their arguments (e.g. runv and
programn) and pairs of nominal synsets that form multi-word expressions (e.g. busn and drivern). Indeed, WordNet nodes
are mainly connected via paradigmatic relations such as hypernymy (is-a) and meronymy (part-of). Thus, due to the lack
of those relations between synsets, if WordNet is used, Train-O-Matic would not be able to find a good estimation of the
probability of a synset given a word and a sentence, as it depends directly on the PPR – and thus on the relations within
the graph – of the synset itself (see Formula (2) and Formula (5)). Moreover, our approach is not tied to any specific
language, whereas WordNet, instead, covers only English. In order to overcome these limitations, we exploit BabelNet4 [22],
the largest multilingual resource that includes many lexical resources such as WordNet, Wikipedia, Wiktionary, etc. Thanks
to its mapping between different resources, we are able to extract a subgraph of BabelNet induced by WordNet vertices that
also includes all the syntagmatic relations comprised in BabelNet.

However, as most relations come from Wikipedia (e.g., the English Wikipedia Bus article5 is linked to Passenger, Tourism,
Bus lane, Timetable, and many more), but not all Wikipedia pages are connected with the same degree of relatedness (e.g.
countries are often linked to many pages, but they are not necessarily closely related to them), we weight each edge
(s, s′) ∈ E in our WordNet-induced subgraph of BabelNet G = (V , E) as follows:

w(s, s′) =
{

1 (s, s′) ∈ E(WordNet)

W O (s, s′) otherwise
(9)

4 http://babelnet .org.
5 Retrieved on June 14th, 2019.

http://babelnet.org

6 T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215
Table 1
Top-ranking synsets of the PPR vectors computed on WordNet (first and third
columns) and WordNetBN (second and fourth columns) for mouse as animal
(left) and as device (right).

mouse (animal) mouse (device)

WordNet WordNetBN WordNet WordNetBN

mouse1
n mouse1

n mouse4
n mouse4

n
tail1n little1

a wheel1n computer1
n

hairless1
a rodent1

n electronic_device1
n pad4

n
rodent1

n cheese1
n ball3n cursor1

n
trunk3

n cat1
n hand_operated1

n operating_system1
n

elongate2
a rat1

n mouse_button1
n trackball1

n
house_mouse1

n elephant1
n cursor1

n wheel1n
minuteness1

n pet1
n operate3

v joystick1
n

nude_mouse1
n experiment1

n object1
n Windows1

n

where E(WordNet) is the edge set of the original WordNet graph and W O (s, s′) is the weighted overlap measure which
calculates the similarity between two synsets:

W O (s, s′) =
∑|S|

i=1(ri + r′
i)

−1∑|S|
i=1(2i)−1

where ri and r′
i are the ranks of the i-th synsets in the set S of the components in common between the vectors associated

with s and s′ , respectively. At this stage we have still not computed the lexical profiles for each synset, thus, in order to
apply the edge weighting strategy introduced above, we exploit the pre-computed NASARI vectors [23,24] to compute the
Weighted Overlap. This latter is chosen as distance measure between two sparse vector representations, since we are more
interested in comparing the synsets’ ranks rather than their values therein. Therefore, the Weighted Overlap better suits
our purpose than the cosine similarity, moreover, it has proved to achieve higher performance when vectors have explicit
dimensions [19]. At this point, to apply Formula (1) and compute PPR according to the weights we have just computed, we
replace the unweighted adjacency matrix M of G with the row-normalised one containing the weights computed in Formula
(9). To qualitatively corroborate our hunch that syntagmatic relations are essential to compute more meaningful and useful
probabilities (see Formula (2)) we report in Table 1 the highest-probability synsets in the lexical profiles calculated for two
different senses of mouse (its animal and device senses) when WordNet (left) and our WordNet-induced subgraph of Babel-
Net (WordNetBN , right) are used as the semantic network during the PPR computation. Note that, when the plain WordNet
is used, the top-ranked synsets are connected to the starting synset via paradigmatic relations, while the WordNetBN PPR
version is richer and also contains related synsets such as computer1

n for mouse (device) or cheese1
n for mouse (animal).

4. Balancing the training set

How to balance the training set in order to avoid overfit on the most frequent class is a well-known problem in
Machine Learning. Different techniques have been developed in order balance the examples in the training set (up- or
down-sampling), or to force the trained model not to overfit (regularization, early stopping, dropout etc.). This problem
becomes even more critical in WSD where word senses (and language in general) follow Zipf’s distribution, hence, it is
very common to have many examples for the most frequent sense of a word, but exponentially fewer examples for the
other senses. The scenario is even worse when we consider disambiguating texts that lie in a specific domain where the
predominant sense is no longer the one we might expect for that word given a more general domain setting. For example,
consider the word plane, which can usually be assumed to denote the sense of airplane; if we consider a math textbook, we
are much more likely to find the word plane in its geometrical sense. Thus, following Pilehvar and Navigli [13] and Postma
et al. [14] we note that the balance of the training data plays a role of fundamental importance in leading a supervised
model to generalize more effectively not only on the most frequent classes, but also on the least frequent ones. In fact,
Postma et al. [14] estimate that providing a number of examples for a sense that is proportional to its frequency in the test
set would dramatically increase the performance by more than 10 points.

Thus, while a lot of effort in the past years has been devoted to developing deep neural networks for improving the
state of the art on the SemEval benchmarks, few works only have focused on injecting different types of knowledge, i.e.,
the word sense distribution, into the training data in order to reflect the sense distribution of the target text. Even if
it is not always possible to know the sense distribution of the target word, it can still be estimated in various ways:
Bennett et al. [25] propose a method based on topic modeling to predict the distribution of senses in a given corpus, while
Pasini and Navigli [17] propose two language-independent methods to estimate such distributions. Given our interest in
scaling over multiple languages, we are now going to present two methods that we previously introduced in [17]. EnDi
(Entropy based Distribution Learning) and DaD (Domain aware Distribution learning) are two methods that learn the word
sense distribution given an input corpus of raw sentences. In order to assign to each word of interest w a sentence-level

T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215 7
Table 2
A sense distribution computation example for the word plane.

Sentence plane1
n (aircraft) plane2

n (geometry) plane5
n (carpentry)

Two people on the plane died. 0.92 0.01 0.07
The flight was delayed due to trouble with the plane. 0.82 0.07 0.11
Only one plane landed successfully. 0.73 0.10 0.17
The cabinetmaker used a plane for the finish work. 0.20 0.18 0.62
A catalog of special plane curves. 0.10 0.85 0.05

Dplane 0.55 0.24 0.21

sense distribution γ σ
w , both methods apply the Sentence Scoring phase of Train-O-Matic (which in what follows we call

Train-O-Matic-1) to all the sentences in the input raw corpus.
Note that at this stage we have a different sense distribution for each target word and for each sentence it appears in

that is computed as explained in Section 2.2.2; now, instead, our aim is to build a single sense distribution for each different
lexeme (i.e. lemma and part of speech). To build such distributions EnDi applies an entropy-based filter on the sentence-level
sense distributions in order to filter out all those that have a uniform shape, and it then averages the remaining ones. DaD,
on the other hand, exploits a graph-based algorithm and a mapping between knowledge graph nodes and domain labels. It
first estimates the distribution of the domains in the input corpus and later propagates their probabilities over the graph
synsets.

4.1. Entropy-Based Distribution Learning (EnDi)

The first method takes as input a lexicon L containing all the words for which we need to compute the sense distribu-
tions, the output of Train-O-Matic-1, i.e., the sets of sense distributions at sentence level �w = {γ σ

w : w ∈ σ } for each word
w ∈ L, and a threshold θ that is used to filter out the γ σ

w that are too entropic. The objective of this method is to assign
only one sense distribution to each word in the lexicon by averaging the most skewed sentence-level sense distributions
that have been computed by Train-O-Matic-1. In order to assess how skewed a distribution is we apply the entropy measure
and compare it with the threshold θ . We consider skewed all those distributions that have an entropy smaller than θ as
follows:

�̂w = {γ σ
w ∈ �w : H(γ σ

w) ≤ θ} (10)

where γ σ
w is the distribution over w ’s senses in the sentence σ and H(γ) is the entropy of the input distribution γ defined

as:

H(γ) = −
∑
s∈γ

γ (s) log2 γ (s)

As a result �̂w is a filtered version of �w where the least skewed distributions were pruned out, i.e., it contains only
distributions that show a clear predominance of a sense. Note that, to make the entropies of all the distributions comparable
with each other, so to allow us to define a single threshold θ that is valid for all the distributions, we add n new components
with a value of 0 to all those distributions that have only j meanings, where n = m − j and m is the maximum number of
possible meanings that a word w ∈ L has. At this point all the distributions comprise the same number of elements and
we smooth them by adding to each component a small smoothing factor λ = 10−3 and by normalising them by the sum of
their values.

Finally, the unified probability mass function Dw for a word w is computed so as to have, for each sense s of w , the
following value:

Dw(s) = 1

|�̂w |
∑

γ σ
w ∈�̂w

γ σ
w (s) (11)

For example, let us consider the word plane and 5 sentences that contain it (see Table 2, leftmost column): we compute
its sense distribution by summing the probability of each sense across the sentences and then renormalising the results by
their sum (last row of the Table).

4.2. Domain-Aware Distribution Learning (DaD)

The second method for sense distribution learning also takes as input the lexicon L, the set of sentence-level sense
distributions from Train-O-Matic-1 �w = {γ σ

w : w ∈ σ } for each word w ∈L and a semantic network G = (V , E). In addition,
for this approach we assume a mapping between synsets in the semantic network and domain labels from a fixed set

8 T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215
S6(we exploit the work by [26] that maps each synset in BabelNet to zero, one or more domains). For example, the synset
airplane1

n is mapped to the Transport & Travel domain only, while the synset parameter3
n (parameter of a function) is

mapped to two different domains: Maths and Computing.
The approach conflates the sparse information of the sentence-level sense distributions (i.e., �w) in the input corpus into

a more informative distribution over the domains. This is to say that, knowing that γ σ
w ∈ �w are not 100% accurate, we

leverage the huge amount of data Train-O-Matic-1 produces and the synset-domain mapping from the knowledge base to
merge the many different sense distributions at sentence level into a single distribution over the domains of the knowledge
base.

To summarise, we learn the sense distributions by applying the following steps:

1. Domain distribution: we compute the distribution of the domains in the sentence-level sense distributions (i.e., �w).
2. Graph augmentation: we augment the semantic network with domain nodes and connect them to the synsets in the

semantic network they are associated with.
3. Domain propagation: we run Personalised PageRank on the augmented semantic graph and obtain a sense distribution

over all the synsets in the graph.

Domain distribution. Given the set �w of the sentence-level sense distributions extracted by Train-O-Matic-1, we estimate the
probability P (X = d) of a domain d as follows:

P (X = d) = eC[d]∑
d′∈S eC[d] (12)

C[d] =
∑
γ ∈�

∑
s∈γ |

d∈domains(s)

γ (s) (13)

where domains(s) is the set of domains in BabelNet s is associated with, � is the set of all sentence-level distributions
γ extracted by Train-O-Matic-1 and S is the set of domains in BabelNet. In other words, the probability of domain d is
the normalised score of the sum of all the values of all the synsets that belong to the domain d and that appear in a
sentence-level distribution γ . The idea behind this approach is that, if a document belongs to a domain, then more synsets
in that domain will appear, thus increasing its probability mass. Moreover, using a coarser sense inventory (i.e. domains) we
conflate multiple senses to one domain that will benefit from the statistical information coming from all of the conflated
senses.

Graph augmentation. Once we have a domain distribution for the input corpus, for each domain we add a new node to the
semantic network and draw an edge between the domain node and all the synsets it is mapped to (note that a synset might
be connected to 0, 1 or more domains).

Domain propagation. Once we have built the augmented semantic network, we are ready to apply PageRank to the graph by
modifying the restart probability in order to reflect the probability distribution over the domains that we have previously
computed with Formula (12).

Using again the analogy with the random walker, every time the walker decides to restart its walk, it will choose a
domain according to its probability. The result of this step is a distribution over all the nodes in the semantic graph that is
conditioned on the domain distributions, namely, senses connected to domains with a high restart probability will receive
a high probability as well. In order to build the sense distribution given a lexeme, we retrieve all its senses in the semantic
network together with their associated probabilities and normalise these to form a distribution.

We take advantage of these methods (EnDi and DaD) for two main purposes: 1) to obtain an estimation for the most
common sense baseline that also reflects the potential domain bias of the target text, and 2) to build the training set by
leveraging the sense order in the distribution, i.e., assigning to each word sense a number of examples proportional to its
position in the estimated word sense distribution.

4.3. Automatic domain adaptation

So far, we have introduced Train-O-Matic for the building of semantic annotated training data, and EnDi and DaD for the
learning of word sense distribution given a corpus of sentences. We now explain how to couple these methods in order to
automatically adapt the training data to the domain of application. Given an input text to disambiguate, we first run EnDi
or DaD in order to build a distribution of senses of all the words we are interested in disambiguating, and then we follow
the ordering given by their distributions and Zipf’s law to select the number of training samples for each word sense si as
follows:

6 The list of 42 domains can be found at:http://babelnet .org /javadoc /it /uniroma1 /lcl /babelnet /data /BabelDomain .html.

http://babelnet.org/javadoc/it/uniroma1/lcl/babelnet/data/BabelDomain.html

T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215 9
sample(si) = 1

iz
∗ K (14)

where K is the number of examples that are assigned to the first sense of a word (i.e., s1), z is an exponential factor that
we determine experimentally, as specified in Section 5 and i is the rank of the input sense si . In this way, if the input text is
biased towards a certain domain (e.g., Sport, Medicine, etc.), we transfer this bias, thanks either to EnDi or to DaD, directly
into the training set that is built following the same distribution as the target text. In this manner we are able to generate a
training set based on information (i.e., sense distribution) gathered directly from the documents we want to disambiguate.

5. Experimental setup

Corpora for sense annotation. Train-O-Matic is independent of the corpora from which the sentences are drawn, thus we
experimented on two different corpora: Wikipedia and the United Nations Parallel Corpus [27]. The former is the largest
and most up-to-date encyclopedic resource, containing definitional information on general domains, the latter, instead, is
a public collection of parliamentary documents of the United Nations, thus it is biased towards Politics domains. The
application of Train-O-Matic to the two corpora produced two sense-annotated datasets, which we named T-O-MW iki and
T-O-MU N , respectively.

Semantic Network. We created sense-annotated corpora with Train-O-Matic, both when using PPR vectors computed from
vanilla WordNet, and when using WordNetBN , our denser network obtained from the WordNet-induced subgraph of Babel-
Net (see Section 3).

Gold standard datasets. We performed our evaluations using the framework made available by Raganato et al. [28] on five
different all-words datasets, namely: the Senseval-2 [29], Senseval-3 [30], SemEval-07 [31], SemEval-13 [32] and SemEval-15
[33] WSD datasets. In addition, we also report the results on ALL, i.e., the concatenation of all the above datasets. We note
that the performance measured on ALL is not the arithmetic average of the performances on the various datasets (macro
average), but rather the mean weighted by the number of tokens of each dataset (micro average). We focused on nouns
only, given the fact that Wikipedia provides connections between nominal synsets only, and therefore contributes mainly to
syntagmatic relations between nouns. Moreover, as SemEval-13 and SemEval-15 contain documents coming from different
semantic domains (e.g., Finance, Sport, etc.), we manually classified each document with a BabelNet domain and used each
document or set of documents belonging to the same domain as separate evaluation benchmarks.

Comparison sense-annotated corpora. To show the impact of our T-O-M corpora in WSD, we compared their performance on
the above gold standard datasets, against training with:

• SemCor7 [34], a corpus containing about 226,000 words annotated manually with WordNet senses.
• One Million Sense-Tagged Instances8 [35, OMSTI], a sense-annotated dataset obtained via a semi-automatic approach

based on the disambiguation of a parallel corpus, i.e., the United Nations Parallel Corpus, performed by exploiting
manually translated word senses. Because OMSTI integrates SemCor to increase coverage, to keep a level playing field
we excluded the latter from the corpus.

• SenseDefs9 [36], a multilingual corpus built by jointly disambiguating the glosses of the same BabelNet synset in
multiple languages. We used the refined version which contains almost 250 million sense annotations in 256 different
languages.

• EuroSense10 [37], similarly to SenseDefs, it exploits the parallel data of EuroParl [38] in order to augment the context
and increase disambiguation precision. We used the high-precision version which contains roughly 122 million sense
annotations in 21 languages.

We note that T-O-M, similarly to SenseDefs, is fully automatic and does not require any WSD-specific human intervention,
or any aligned corpus, as in the case for OMSTI, or multilingual corpus, as in the case for EuroSense.

Training set size & shape. We varied the number of examples for each synset according to different types of distribution, as
follows:

1. Uniform: assigns to every word sense the same amount of training samples. If the system is not able to find enough
examples for that word sense we assign it all the samples that Train-O-Matic is able to find.

7 http://lcl .uniroma1.it /wsdeval/.
8 https://www.comp .nus .edu .sg /~nlp /sw/.
9 http://lcl .uniroma1.it /sensedefs/.

10 http://lcl .uniroma1.it /eurosense/.

http://lcl.uniroma1.it/wsdeval/
https://www.comp.nus.edu.sg/~nlp/sw/
http://lcl.uniroma1.it/sensedefs/
http://lcl.uniroma1.it/eurosense/

10 T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215
Fig. 2. Variation of Train-O-Matic step 2 performance on each test set when increasing the threshold on the disambiguation confidence.

2. WordNet: ranks the senses of each word according to WordNet ordering and then apply Zipf’s law (see Formula (14))
to compute the number of sampled sentences for each synset according to its ranking, where i is the rank of the sense
s in WordNet ordering and K is the number of sentences the first sense will receive.

3. Automatic: ranks the word senses of each word according to DaD or EnDi (see Section 4) and then apply Formula (14)
as described above.

4. Random: assigns a random number of examples between 1 and K to each synset of a word where K is a parameter of
the experiment. When the random number is higher than the available examples, it assigns the maximum number of
examples available.

5. Oracle: ranks the word senses according to the sense frequency in the test set. Later, it assigns a number of examples
to each sense following a Zipfian distribution as in Formula (14).

6. Oracle 1-2: acts as Oracle but swaps the first and the second sense in the synset ranking.
7. Oracle 2-3: acts in the same way as Oracle 1-2, but exchanges the second and the third sense in the synset ranking.
8. Oracleprop : ranks the word senses according to their frequency in the test set. We then assign a number of examples to

each meaning that is proportional to its frequency. Differently from Oracle, we use exactly the sense distribution that
we find in the test data instead of approximating it by means of the in vitro Zipfian distribution (Formula (14)).

The Oracle variants are designed to prove the importance of identifying the predominant sense of a word, and, espe-
cially, to demonstrate how much mistaking the first sense for the second sense would affect the performance. For all the
experiments, unless differently stated, we set the parameters K and z of Formula (14) by tuning the system (IMS) on a
separate small in-house development dataset11 as follows: K = 500 and z = 2.

Baseline. As a traditional baseline in WSD, we used the Most Frequent Sense (MFS) baseline given by the first sense in
WordNet. The MFS is a very competitive baseline, due to the sense skewness phenomenon in language [1].

Reference system. In all our experiments, we used It Makes Sense [9, IMS], a WSD system based on linear Support Vector
Machines, as our reference system for comparing its performance when trained on T-O-M to its performance when trained
on other sense-annotated corpora (i.e., SemCor, OMSTI, etc.). Following the WSD literature, unless stated otherwise, we
report performance in terms of F1, i.e., the harmonic mean of precision and recall.

Word Vectors. To test the semi-supervised variant of Train-O-Matic, we used Google word embedding vectors [39] extracted
from Google News corpus.12

6. Results

6.1. Train-O-Matic disambiguation

As a first result, we report the performance of the shallow disambiguation that we carry out in the Sentence Scoring
step of Train-O-Matic (Section 2.2.1). We note that Train-O-Matic does not rely on the second step alone to provide high-
quality disambiguated sentences: in fact, the sentence ranking and selection step plays a fundamental role in ranking higher

11 50 word-sense pairs annotated manually.
12 Available at https://drive .google .com /file /d /0B7XkCwpI5KDYNlNUTTlSS21pQmM /edit.

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit

T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215 11
Table 3
F1 of IMS trained on T-O-M when PPR is obtained from the WordNet graph (WN) and from the
WordNet-induced subgraph of BabelNet (BN).

System Senseval-2 Senseval-3 SemEval-07 SemEval-13 SemEval-15 ALL

T-O-MW iki WN 70.0 63.1 57.9 63.7 69.5 65.7
T-O-MW iki BN 70.5 67.4 59.8 65.5 68.6 67.3

Table 4
F1 of IMS trained on Train-O-Matic, OMSTI and SemCor, and MFS for the Senseval-2, Senseval-3,
SemEval-07, SemEval-13 and SemEval-15 WSD datasets.

System Senseval-2 Senseval-3 SemEval-07 SemEval-13 SemEval-15 ALL

T-O-MW iki 70.5 67.4 59.8 65.5 68.6 67.3
T-O-MU N 69.0 68.3 57.9 62.5 63.5 65.3
OMSTI 74.1 67.2 62.3 62.8 63.1 66.4

SemCor 76.8 73.8 67.3 65.5 66.1 70.4
MFS 72.1 72.0 65.4 63.0 66.3 67.6

those sentences that are most likely to be correctly annotated. Hence, to prove that the two steps are essential and com-
plementary, and therefore that they enable Train-O-Matic to produce high-quality sense-annotated data, we directly applied
Train-O-Matic on each Senseval and SemEval dataset and evaluated its disambiguation when increasing the threshold on
the answers’ scores. As can be seen from Fig. 2, when the threshold is 0 – meaning that all the disambiguated words are
taken into account – the performance is modest and would not be good enough to provide sense-annotated data. However,
when the threshold is increased up to 10, we can see that the precision increases remarkably on each dataset and reaches
86.3 points on the ALL dataset and a recall of 27.4. This confirms our hunch that a filtering step is necessary for retrieving
high-quality data. On the other hand, the low recall that Train-O-Matic attains is not an issue as long as we have a large
corpus of raw sentences at our disposal.

6.2. Impact of syntagmatic relations

With this experiment we aim at verifying our hunch, discussed in Section 3, that the edges coming from our WordNet-
induced subgraph of BabelNet (WordNetBN) add useful semantic relations that are exploited effectively by Train-O-Matic
when generating the training set. Indeed, as can be seen from Table 3, when IMS is trained on Train-O-Matic using
WordNetBN , it performs from 0.5 to roughly 4 F1 points better than when using vanilla WordNet. This is then reflected
in an overall increase in performance of 1.6 F1 points. These results confirm our intuition that excluding syntagmatic rela-
tions (such as those contained in Wikipedia and thus in BabelNet) limits the performance of Train-O-Matic. In Table 4 we
show the results of IMS trained on Train-O-Matic when using Wikipedia as underlying corpus instead of the United Nations
corpus. In this case, T-O-MU N performs consistently worse than T-O-MW iki (except for Senseval-3) with an overall loss of
2 F1 points. Interestingly enough, OMSTI manages to beat Train-O-Matic when using the United Nations parallel corpus as
sentence source, i.e., the same source as the one used by OMSTI itself. This result is also in part due to OMSTI benefiting
from its semi-automatic approach that relies on human-tagged words in Chinese.

However, as one can see from the Table, Train-O-Matic, when left free to exploit a larger and more general-domain
corpus such as Wikipedia, led IMS to generalise and perform better on most of the benchmarks than both T-O-MU N and
OMSTI. Indeed, it is not coincidental that Train-O-MaticU N performed better than Train-O-MaticW iki only on Senseval-3.
This latter, in fact, contains sentences drawn from the Penn TreeBank corpus [40] which is based on The Wall Street Journal
articles, and, thus, like the United Nations corpus, it is biased towards Politics and Finance. In Table 5 we show, indeed,
that the first sense of plane, i.e., the airplane meaning, always appears with contexts related to war when the UN corpus
is used. In contrast, when Wikipedia is used, Train-O-Matic is able to retrieve different contexts from different domains
(e.g., video games, war, civil transportation, etc.) providing different scenarios in which the sense can be used. Due to the
difference in the domain bias of the two corpora, comparing Train-O-MaticW iki and OMSTI might seem unfairly in favour
of Train-O-Matic, however, this is not the case. In fact, being able to choose the underlying corpus is one of the distinctive
features that makes Train-O-Matic easily adaptable to different scenarios. OMSTI, on the other hand, was designed to be
applied on the United Nations corpus, with some additional manual annotation in order to disambiguate the Chinese words.
Therefore, our comparison places both Train-O-MaticW iki and OMSTI in the same ballpark and helps investigate different
features of both approaches.

6.3. Comparison against sense-annotated corpora

We now move to comparing the performance of Train-O-Matic, which is fully automatic, against corpora which are an-
notated manually (SemCor) and semi-automatically (OMSTI). In Table 4 we show the F1-score of IMS on each gold standard

12 T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215
Table 5
Excerpt of training data for the airplane sense of plane when the UN and Wikipedia corpora are used.

UN [. . .] including transport and attack helicopters, cargo planes used as bombers [. . .]
[. . .] using helicopter gun ships, Antonov planes and MIG fighters.
[. . .] backed by attack helicopters, fighter planes and unmanned surveillance drones[. . .]
[. . .] responded by destroying the planes used by FANCI during the air raids [. . .]
[. . .] providing air support to [. . .], operating more than 100 planes and helicopters .

WIKI [. . .] the main runway can be used by planes with up to around 180 passengers [. . .]
cargo transportation services, it is suitable for planes like Boeing up to 757 [. . .]
[. . .] a successful attack of air-to-air rockets on another plane took place on August 20 [. . .]
Or even Rocket Boosts, which increases the planes speed dramatically [. . .]
Sometimes a player [. . .] could fire a homing missile at a random opponent in front of the plane.

Table 6
Comparison between vanilla Train-O-Matic and its neural variants with
word embeddings (WE).

Dataset T-O-MVanilla T-O-MW E OMSTI SemCor MFS

Senseval-2 70.5 72.2 74.1 76.8 72.1
Senseval-3 67.4 72.2 67.2 73.8 72.0
SemEval-07 59.8 64.8 62.3 67.3 65.4
SemEval-13 65.5 63.9 62.8 65.5 63.0
SemEval-15 68.6 65.5 63.1 66.1 66.3

ALL 67.3 67.9 66.4 70.4 67.6

Table 7
Number of unique and total tokens comprised in each dataset for which at least one training example is provided by
OMSTI, EuroSense, SenseDefs and Train-O-Matic for each English dataset.

Dataset OMSTI EuroSense SenseDefs Train-O-Matic ALL

Unique Tot Unique Tot Unique Tot Unique Tot Unique Tot

Senseval-2 197 467 388 961 399 1024 400 1005 436 1066
Senseval-3 197 500 420 827 422 845 435 860 469 900
SemEval-07 68 89 126 156 123 153 127 159 127 159
SemEval-13 249 757 628 1503 625 1489 629 1429 751 1644
SemEval-15 102 246 218 493 224 493 226 495 253 531

ALL 456 2059 1311 3940 1334 4004 1350 3948 1557 4300

dataset in the evaluation framework and on all datasets merged together (last column), when it is trained with the various
corpora described above.

As can be seen, Train-O-MaticW iki obtains higher performance than OMSTI (up to 5.5 points above) on 3 out of 5
datasets, scoring 1 point above OMSTI overall. The MFS is in the same ballpark as T-O-MW iki , performing better on some
datasets and worse on others. We note that IMS trained on T-O-MW iki succeeds in surpassing or obtaining the same results
as IMS trained on SemCor on SemEval-15 and SemEval-13. We view this as a significant achievement given that no manual
annotations were involved in the creation of our corpus.

Because overall T-O-MW iki outperforms T-O-MU N , in what follows we report all the results with T-O-MW iki , except for
the domain-oriented evaluation (see Section 6.7).

6.4. Comparison against neural methods

We now compare the vanilla Train-O-Matic against its neural variant in which pretrained embeddings (W E) are used
instead of PPR to perform the sentence scoring step (see Section 2.2.2).

As shown in Table 6 T-O-MW E outperforms T-O-MV anilla on 3 out of 5 datasets. This result was expected as, in fact,
T-O-MW E is semi-supervised and exploits sense annotations in order to build a vector for each synset. Thus, it is interesting
to see that the vanilla version is still able to outperform its alternative on SemEval-13 and SemEval-15 by 1.6 and 3 points,
while scoring only 0.6 points lower on the concatenation of all datasets (ALL). We also note that T-O-MW E beats OMSTI –
which is also semi-supervised – on all the datasets but Senseval-2, and gets very close to SemCor, especially on Senseval-3
and SemEval-07 where the vanilla version of T-O-M, instead, performs worse.

6.5. Performance without backoff strategy

IMS uses the MFS as a backoff strategy when no sense can be output for a target word in context [9]. Consequently, the
performance of the MFS is mixed with that of the SVM classifier. As shown in Table 7, OMSTI is able to provide annotated

T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215 13
Table 8
Precision, Recall and F1 of IMS trained on OMSTI, Train-O-Matic, EuroSense, and SenseDefs corpora without MFS
backoff strategy for Senseval-2, Senseval-3, SemEval-07, SemEval-13 and SemEval-15.

Dataset OMSTI Train-O-Matic EuroSense SenseDefs

P R F1 P R F1 P R F1 P R F1

Senseval-2 64.8 28.5 39.6 69.5 65.5 67.4 63.1 55.2 58.9 67.4 67.4 67.4
Senseval-3 55.7 31.0 39.8 66.1 63.1 64.6 49.4 45.1 47.2 61.1 56.3 58.6
SemEval-07 64.1 35.9 46.0 59.8 59.8 59.8 40.4 39.6 40.0 51.7 48.3 49.9
SemEval-13 50.7 23.4 32.0 61.3 53.3 57.0 56.7 48.2 52.1 41.1 39.0 40.0
SemEval-15 57.0 26.7 36.4 67.0 62.3 64.6 56.7 51.2 53.8 50.4 42.2 46.0

ALL 56.5 27.0 36.5 65.1 59.7 62.3 56.0 49.3 52.5 55.7 49.5 52.4

Table 9
Evaluation on the ALL dataset of the same WSD system trained on training sets balanced in different ways.

Measure WN EnDi DaD Uniform Random Oracle Oracle 1-2 Oracle 2-3 Oracleprop

Precision 65.1 48.0 60.3 47.1 45.3 81.3 47.6 79.8 88.9
Recall 59.7 43.5 54.3 42.7 41.0 73.5 43.1 72.2 83.9
F1 62.3 45.6 57.3 44.6 43.0 77.2 45.3 75.8 86.3

sentences for roughly half of the tokens in the datasets. This means that in around 50% of cases OMSTI gives an answer
based on the IMS backoff strategy. Train-O-Matic together with EuroSense and SenseDefs, instead, is able to cover almost all
words in each dataset with at least one training sentence.

To determine the real impact of the different training data, we therefore decided to perform an additional analysis of
the IMS performance when the MFS backoff strategy is disabled. Since we suspected the system would not always return
a sense for each target word, in this experiment we measured precision, recall and their harmonic mean, i.e., F1. The
results in Table 8 confirm our hunch, showing that OMSTI’s recall drops heavily, thereby affecting F1 considerably. T-O-M
performances, instead, remain high in terms of precision, recall and F1. This confirms that OMSTI relies heavily on the
predominant sense information obtained from the MFS and from SemCor. EuroSense and SenseDefs, instead, managed to
lead IMS to better results than OMSTI, but fail to beat Train-O-Matic on all datasets. This is because neither of the two
approaches take advantage of any mechanism of sentence ranking, thus their datasets contain more noise than the one built
with T-O-M.

6.6. Comparison of different methods for training balancing

Now that we have shown the ability of Train-O-Matic to generate training data, we investigate in more detail how
changing the strategy for assigning the number of examples to a synset affects the performance of the trained model. In
Table 9 we show the performance of IMS when trained on data balanced with the different methods described in Section 5.
Note that the results are computed without the backoff strategy, thus there are actually words for which the classifier does
not output an answer, and this is why precision and recall are different. The Random method, which assigns a random
number of examples to each synset, is the one that performed worst, with 43 points in F1. Interestingly, we note that the
Uniform strategy (which assigns the same number of examples to each sense) leads IMS to achieve only 1.6 points more
than the Random approach. This means that the classifier needs to learn the bias given by the natural distribution of senses
in order to achieve acceptable results. Another interesting result is the one achieved with the Oracle strategies. We can see
from Table 9 that the Oracle and Oracleprop strategies lead IMS to 77.2 and 86.3 F1 points, respectively, on the ALL dataset.
These results are from 10 to almost 20 points higher than the best performing system reported by [41] on the same dataset.
As expected, Oracleprop is the best system across the board, as it is the one that most exploits the information available
in the test set. In fact, it leverages the exact number of occurrences of the meanings – and not only their rankings – to
determine the number of sentences to assign to each sense.

What is more interesting, on the other hand, is how poorly Oracle 1-2 performs. With 45.3 F1 points, it is able to
beat only the Uniform strategy by 1 point. In contrast, Oracle 2-3 performs just 2 points lower than Oracle. This shows
how sensitive the model is to the sense distribution in the training data and, more interestingly, how identifying the most
common sense of a word is actually more important than correctly estimating the rest of the distribution. In fact, swapping
the senses in the distribution from the second position and on, does not degrade the performance as happens when the
first sense is swapped with the second one. Together with all these baselines, we also report the performance achieved by
IMS when we use the WordNet sense distribution and the two predicted by EnDi and DaD.

As expected the WordNet ordering outperforms the two automatic baselines as it takes benefits from the manual annota-
tions of SemCor. While we note that EnDi performs poorly, only slightly better than Oracle 1-2, we stress the fact that DaD,
despite being fully unsupervised, enables IMS to achieve 57.3 F1 points, 5 less than when WordNet is used. These outcomes
show the importance of finding better and more clever methods to induce the most suitable word sense distribution. Finally,
as the word sense distribution has proven to play an important role for the classifier performance, we investigated whether,

14 T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215
Table 10
Evaluation of IMS with Oracle distribution when
random senses are assigned to each word occur-
rences.

Method Precision Recall F1

noisy-T-O-M 100 51.7 48.8 50.2
noisy-T-O-M 200 51.1 48.4 49.7
noisy-T-O-M 500 49.0 46.4 47.6

Table 11
Performance comparison over SemEval-13 domain-specific datasets.

Domain Backoff T-O-MW iki T-O-MU N OMSTI SemCor MFS Size

P R F1 P R F1 P R F1 F1 F1

Biology MFS 63.0 63.0 63.0 65.9 65.9 65.9 65.9 65.9 65.9
66.3 64.4 135

- 59.0 53.3 56.0 62.3 56.3 59.2 48.1 18.5 26.7

Climate MFS 68.1 68.1 68.1 63.4 63.4 63.4 68.0 68.0 68.0
70.1 67.5 194

- 63.4 50.0 55.9 57.5 45.4 50.7 58.0 24.2 34.2

Finance MFS 68.0 68.0 68.0 56.6 56.6 56.6 64.4 64.4 64.4
63.7 56.2 219

- 62.1 51.6 56.4 48.4 40.2 43.9 57.4 28.3 37.9

Health Care MFS 65.2 65.2 65.2 60.1 60.1 60.1 52.9 52.9 52.9
62.7 56.5 138

- 61.3 55.1 58.0 55.6 50.0 52.6 34.6 18.4 24.0

Politics MFS 65.2 65.2 65.2 66.3 66.3 66.3 63.4 63.4 63.4
69.5 67.7 279

- 62.5 54.8 58.4 63.9 55.9 59.6 54.1 21.5 30.8

Social Issue MFS 68.5 68.5 68.5 63.6 63.6 63.6 65.6 65.6 65.6
66.8 67.6 349

- 63.1 53.0 57.6 57.2 47.9 52.1 54.7 25.2 34.5

Sport MFS 60.3 60.3 60.3 60.9 60.9 60.9 58.8 58.8 58.8
60.4 57.6 330

- 58.3 54.6 56.4 58.1 53.3 55.5 45.0 23.0 30.4

Table 12
Performance comparison over the Biomedicine and Maths & Computer domains in SemEval-15.

Domain Backoff T-O-MW iki T-O-MU N OMSTI SemCor MFS Size

P R F1 P R F1 P R F1 F1 F1

Biomedicine MFS 76.3 76.3 76.3 66.0 66.0 66.0 64.9 64.9 64.9
70.3 71.1 100

- 76.1 72.2 74.1 64.4 59.8 62.0 60.5 26.8 37.2

Maths & Computer MFS 50.0 50.0 50.0 48.0 48.0 48.0 36.0 36.0 36.0
40.6 40.9 97

- 50.0 47.0 48.5 47.8 44.0 45.8 21.2 11.0 14.5

solely by knowing the sense distribution, it is possible for a classifier to achieve good performance. We therefore studied
the performance of IMS when trained on noisy data (noisy-T-O-M), i.e., where random senses are assigned to occurrences of
the target word, while following the Oracle distribution of senses (see Section 5). Table 10 shows that contexts do, indeed,
matter and that merely mimicking the test set distribution of senses is not enough to build a well-performing classifier.
This is further confirmed by the fact that, increasing the number of examples each synset can receive (from 100 to 500),
leads to a performance drop. Intuitively this happens because more noise is added to the dataset and thus the classifier gets
increasingly confused.

6.7. Domain-oriented WSD

To further inspect the ability of Train-O-Matic to enable disambiguation in different domains, we evaluated it on specific
documents from the various gold standard datasets that could be clearly associated with a domain label. Specifically, we
tested on 13 documents belonging to different domains13 from SemEval-13 and two documents belonging to two different
domains14 from SemEval-15 and carried out two separate tests and evaluations of Train-O-Matic on each domain: one using
the MFS backoff strategy from WordNet, and one not using it.

In Tables 11 and 12 we report the results separately for each domain of IMS trained on both T-O-MW iki and T-O-MU N

so to measure the impact of each corpus, i.e., Wikipedia and the United Nations corpus, on each specific domain. As can

13 Namely, Biology, Climate, Finance, Health Care, Politics, Social Issue and Sport.
14

Maths & Computer and Biomedicine.

T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215 15
Table 13
Performance comparison over SemEval-13 domain-specific datasets when EnDi and Dad are used to compute
MFS (+MFS) and sense distribution (+SD).

Domain Backoff T-O-MDaD T-O-MEnDi SemCor WN MFS Size

P R F1 P R F1 F1 F1

Biology +MFS 63.7 63.7 63.7 63.7 63.7 63.7
66.3 64.4 135+SD 69.8 65.2 67.4 54.8 51.1 52.9

+MFS+SD 71.1 71.1 71.1 57.0 57.0 57.0

Climate +MFS 66.0 66.0 66.0 65.5 65.5 65.5
70.1 67.5 194+SD 64.5 56.2 60.1 52.7 45.9 49.0

+MFS+SD 66.5 66.5 66.5 55.7 55.7 55.7

Finance +MFS 58.9 58.9 58.9 58.9 58.9 58.9
63.7 56.2 219+SD 62.0 58.0 59.9 52.2 48.9 50.5

+MFS+SD 63.9 63.9 63.9 54.8 54.8 54.8

Health Care +MFS 58.0 58.0 58.0 58.7 58.7 58.7
62.7 56.5 138+SD 66.4 60.1 63.1 50.4 45.7 47.9

+MFS+SD 68.1 68.1 68.1 54.3 54.3 54.3

Politics +MFS 72.4 72.4 72.4 71.3 71.3 71.3
69.5 67.7 279+SD 70.2 65.9 68.0 59.9 55.9 57.7

+MFS+SD 72.0 72.0 72.0 60.9 60.9 60.9

Social Issue +MFS 67.6 67.6 67.6 67.9 67.9 67.9
66.8 67.6 349+SD 72.2 63.9 67.8 59.5 52.7 55.9

+MFS+SD 73.9 73.9 73.9 63.0 63.0 63.0

Sport +MFS 55.5 55.5 55.5 55.5 55.5 55.5
60.4 57.6 330+SD 53.4 50.6 51.9 46.3 43.9 45.1

+MFS+SD 53.6 53.6 53.6 47.0 47.0 47.0

Table 14
Performance comparison over the Biomedicine and Maths & Computer domains in SemEval-15 when DaD and
EnDi are used to predict the sense distribution of the test set.

Domain Mode T-O-MDaD T-O-MEnDi SemCor MFS Size

P R F1 P R F1 F1 F1

Biomedicine +MFS 68.0 68.0 68.0 68.0 68.0 68.0
70.3 71.1 100+SD 75.0 71.1 73.0 48.9 45.4 47.1

+MFS+SD 75.3 75.3 75.3 51.5 51.5 51.5

Maths & Computer +MFS 51.0 51.0 51.0 50.3 50.3 50.3
40.6 40.9 97+SD 62.1 59.0 60.5 40.9 38.0 39.4

+MFS+SD 62.0 62.0 62.0 41.4 41.4 41.4

be seen from Table 11, T-O-MW iki systematically attains higher scores than OMSTI (except for the biology domain), and, in
most cases, attains higher scores than MFS when the backoff is used, with a systematic increase over OMSTI on both recall
and F1 when the backoff strategy is disabled. This demonstrates the usefulness of the corpora annotated by Train-O-Matic
not only on open text, but also on specific domains. We note that T-O-MU N obtains the best results in the Politics domain,
which is the closest domain to the UN corpus from which its training sentences are obtained. In Table 12 we can observe a
similar behaviour with Train-O-Matic attaining the highest performance across the board.

We now compare the results attained by IMS trained on Train-O-MaticW iki when standard WordNet MFS and sense
distribution were used (see Tables 11 and 12), against those in Tables 13 and 14 where IMS is trained on the following
three different datasets:

1. +MFS: We used Vanilla T-O-M to build the training corpus and set the MFS learnt by DaD or EnDi as backoff strategy.
2. +SD: We used the learnt sense distribution to order the word senses and decide the amount of training examples to

assign to each one (see Section 4.3).
3. +MFS+SD: We used both: the learnt MFS as backoff strategy and the learnt sense distribution to shape the training set.

Results in Tables 13 and 14, not only demonstrate that just recomputing the MFS according to the text we want to
disambiguate is an effective strategy, but also that it is possible to automatically adapt the training data to the target
document we are about to disambiguate. In fact, just by shaping the training data with the learned distribution (+SD)
of DaD, IMS gains from 3.5 to 10.2 points in F1 (Table 13) when compared to IMS trained on T-O-M, without MFS (see
Table 11, second row of each domain). This is the case for all the domains except Sport, which is the only domain where
Train-O-Matic fails to improve the IMS performance, registering a loss of almost 5 points. Similarly, on the SemEval-15

16 T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215
Table 15
Kullback-Leibler divergence between the distribution in-
duced by EnDi and DaD and the Oracle distribution com-
puted on each domain.

Dataset Domain EnDi DaD

SemEval-13 Biology 0.173 0.136
Climate 0.153 0.128
Finance 0.166 0.157
Health Care 0.116 0.141
Politics 0.155 0.114
Social Issue 0.170 0.124
Sport 0.213 0.177

SemEval-15 Biomedicine 0.155 0.119
Maths & Computer 0.169 0.142

(Table 14), IMS trained on Train-O-Matic +SD attains 10.5 higher results on the Maths & Computer domain at the small
cost of 1.0 F1 points less on the Biomedicine domain (Table 12, first row). Even better results are achieved when we
couple the learned sense distribution and the learned most frequent sense (+MFS+SD). In this configuration IMS trained on
Train-O-Matic +MFS+SD achieves better scores (2.9-8.1 points more in Table 13) on Biology, Health Care, Politics, Social
Issue and Biomedicine domains, than when WordNet MFS and sense distribution are used (see Tables 11 and 12 first row of
each domain), while performing between 1 and 6.7 F1 points worse on the 3 remaining domains. We also note that Sport

is the only domain where following the sense distribution learned by DaD leads to a significant decrease in performance
(6.7 points). We further investigated this case and we noticed that the most misclassified word is game. This happened
for two reasons: 1) The domain distribution built by DaD in its first phase is skewed towards Sport, which received the
highest probability (0.19), and Philosophy and Psychology with a probability of 0.18. Thus there is no clear domain for
the document and as a consequence synsets close to both domains will receive similar probabilities; 2) the sport sense of
game in BabelNet is not associated with the Sport domain, and therefore it did not benefit from the direct connection with
the domain during the domain propagation step of DaD (see Section 4.2). As a consequence, it does not result as one of
the most frequent senses of game in the document, even if it is! We also note that, when compared against IMS trained
on SemCor, Train-O-Matic coupled with both the learnt MFS and distribution is able to beat it by 0.2 to 7.1 points on all
domains except two (Climate and Sport).

A similar behaviour is observed in Table 14 where Train-O-Matic +MFS +SD always beats IMS trained on SemCor and
outperforms IMS when WordNet MFS is used on both domains.

EnDi and DaD Intrinsic Evaluation. To further investigate the impact of EnDi and DaD on the domain-specific performance of
IMS, we now measure the Kullback-Leibler divergence (KLD) between their induced distributions and the Oracle distribution
which we extract from each test set separately, as explained in Section 5. KLD computes the logarithmic difference between
two probability distributions P and Q as follows:

D K L = −
∑
x∈X

P (x)log

(
Q (x)

P (x)

)
(15)

D K L = 0 indicates perfect match between the two distributions. Since the KL divergence considers the probabilities of each
distribution component, we have to make sure that the Oracle distribution takes into account all the possible meanings
of a word and not only those appearing in the test set. Hence, to this end, whenever it happens that some meanings are
missing from the Oracle distribution, we add their components with an associated probability of 0. We then compute the
final Oracle distribution for a given word by adding a small smoothing factor to each score and normalising the values by
their sum. For example, if the word bankn only appears in its financial institution meaning (i.e., bank2

n) within the test set
under analysis, we assign it a probability of 1 while assigning 0 to all the other meanings. Then, by applying the smoothing
with a small value λ = 10−3 we end up with a distribution where most of the mass is concentrated on bank2

n and the rest is
spread across the other components. EnDi and DaD, instead, are designed to take into account all the possible word synsets
contained by the sense inventory.

In Table 15 we report the divergence values of DaD and EnDi in comparison to the Oracle distribution. DaD always
attains a lower KLD than EnDi compared to the Oracle distribution across all the domains except Health and Medicine,
hence confirming the empirical results reported in the previous sections. In Fig. 3 (top) we show the distributions computed
by Oracle, DaD and EnDi on the noun worldn in the Climate domain. As one can see, DaD produces a distribution that is
more similar to the gold one than the distribution induced by EnDi, and correctly identifies the planet meaning of world
as the most likely one. In fact, DaD benefits from the association between world4

n and the domain Physics and Astronomy

in BabelNet, which is highly correlated with the domain Climate. EnDi, instead, fails to predict the two most frequent
senses for worldn , attributing highest scores to world2

n (People in general) and world5
n (People in general considered as a

whole). A similar case is shown in Fig. 3 (bottom), where the distribution of treasuryn senses is correctly induced by DaD

T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215 17
Fig. 3. Distribution induced by DaD (left) and EnDi (right) compared with the one extracted from the test set for the word worldn (top), and treasuryn

(bottom). Each item on the X axis is the i-th meaning of the word under analysis.

Table 16
Performance comparison between T-O-M and SemEval-15’s best run of SU-
DOKU on general domain (ALL) and domain specific (Maths & Computer

and Biomedicine), when no word sense distribution learning took place and
when EnDi and DaD were used.

Language Dataset Best System T-O-MVanilla

F1 P R F1

Italian ALL 56.6 65.1 55.6 59.9
Maths & Computer 46.6 52.7 43.3 47.6
Biomedicine 65.9 76.6 67.6 71.8

Spanish ALL 56.3 61.3 54.8 57.9
Maths & Computer 42.4 53.3 44.4 48.5
Biomedicine 65.5 71.8 65.5 68.5

thanks to the direct link between the domain of Finance and treasury5
n (the federal department that collects revenue and

administers federal finances) and the higher number of connections between treasury5
n and the other nodes of the graph.

EnDi, in contrast, skews the distribution towards the wrong meaning, i.e., treasury3
n (Negotiable debt obligations [...]) which,

while being related to the Finance domain, is not the correct one.
In summary, the extrinsic domain-specific evaluation confirmed the intuition that WSD is more effective when domain

information is provided. Specifically, DaD proved to be particularly effective, leading IMS to results that are better than
those attained when manually-annotated data are used to induce the distributions. Moreover, it showed itself to be capable
of inducing sense probabilities that are similar, to some extent, to those extracted by Oracle. While we note that there
might be many different ways to provide distributional and domain information, we prove that, balancing the training set
according to the learned distribution of word senses, which in DaD depends directly on the domain distribution of the
document, is an effective way of providing domain information to the classifier and increasing performance by several F1
points without any human intervention.

7. Scaling up to multiple languages

Experimental Setup. In this Section we investigate the ability of Train-O-Matic to scale to other languages supported by
BabelNet, such as Italian, Spanish, German and French, for which training data for WSD is not available.

Thanks to BabelNet, in fact, Train-O-Matic, as well as DaD and EnDi, can be used to generate sense-annotated data and
sense distributions for any language supported by the knowledge base. So, in order to build new training datasets for the 4
languages, we ran Train-O-Matic on their corresponding versions of Wikipedia, then we tuned the two parameters K and z

18 T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215
Table 17
Performance comparison between T-O-M and SemEval-13’s best SUDOKU Run.

Dataset Language Method Best System T-O-M

F1 P R F1

SemEval-13 Italian Vanilla 65.8 69.6 65.7 67.6
+MFSDaD 65.8 71.0 71.0 71.0
+MFSEnDi 65.8 70.9 70.9 70.9

Spanish Vanilla 71.0 68.0 65.6 66.8
+MFSDaD 71.0 69.0 69.0 69.0
+MFSEnDi 71.0 68.6 68.6 68.6

French Vanilla 60.5 61.1 59.9 60.5
+MFSDaD 60.5 61.4 61.4 61.4
+MFSEnDi 60.5 61.1 61.1 61.1

German Vanilla 62.1 65.9 60.8 63.2
+MFSDaD 62.1 67.5 67.5 67.5
+MFSEnDi 62.1 67.2 67.2 67.2

SemEval-15 Italian Vanilla 56.6 65.1 55.6 59.9
+MFSDaD 56.6 65.9 65.9 65.9
+MFSEnDi 56.6 64.7 64.7 64.7

Spanish Vanilla 56.6 61.3 54.8 57.9
+MFSDaD 56.3 62.6 62.6 62.6
+MFSEnDi 56.3 61.0 61.0 61.0

on an in-house development dataset.15 In contrast to the English setting, in order to calculate Formula (14) we sorted the
senses of each word according to BabelNet ordering, or by using one of the distributions learnt by EnDi or DaD. Finally, we
used the output data to train IMS.

Results. To perform our evaluation we chose both the multilingual SemEval tasks from past years (SemEval-2013 task 12
and SemEval-2015 task 13), which include gold data for Italian, Spanish, French and German. As can be seen from Table 16,
Train-O-Matic enabled IMS to perform better than the best participating system [42, SUDOKU] in all three settings (All
domains, Maths & Computer and Biomedicine). Its performance was, in fact, 1 to 3 points higher, with a 6-point peak
on Maths & Computer in Spanish and on Biomedicine in Italian. This demonstrates the ability of Train-O-Matic to en-
able supervised WSD systems to surpass state-of-the-art knowledge-based WSD approaches in different languages where
manually-annotated data are not available and without relying on manually curated data for training. In Table 17 we show
results in all the languages of SemEval-13 and SemEval-15 achieved by IMS trained on vanilla Train-O-Matic and when our
MFS is used as backoff strategy. As can be seen our MFS is also beneficial in multilingual settings where no manual MFS is
available. While it always improves results over the vanilla Train-O-Matic, we note that the learnt MFS also enabled IMS to
surpass the state of the art on those datasets where vanilla T-O-M tended to perform worse than the comparing system;
namely the Spanish part of SemEval-15 and the French part of SemEval-13.

8. Related work

8.1. Word Sense Disambiguation

There are two mainstream approaches to Word Sense Disambiguation: supervised and knowledge-based approaches. Both
suffer in different ways from the so-called knowledge acquisition bottleneck, that is, the difficulty in obtaining an adequate
amount of lexical-semantic data: for training in the case of supervised systems, and for enriching semantic networks in the
case of knowledge-based ones [13,1].

State-of-the-art supervised systems include Support Vector Machines, such as IMS [9] and, more recently, LSTM neural
networks with attention and multitask learning [12], as well as LSTMs paired with nearest neighbours classification [43,11].
Yuan et al. [11] also integrates a label propagation algorithm in order to enrich the sense annotated dataset. The main
difference from our approach lies in its need for a manually annotated dataset to start the label propagation algorithm. Such
datasets are usually unavailable for languages other than English, whereas Train-O-Matic is fully automatic. An evaluation
against Yuan et al. [11] system would have been interesting, but neither the proprietary training data nor the code are
available at the time of writing. Other interesting approaches which also aim at augmenting the information available in
the network are the one introduced by Luo et al. [44] and Kumar et al. [45]. Differently from the work of Yuan et al. [11],
they leverage the synsets’ glosses contained in a knowledge base to provide additional information to the network for

15 We set K = 100 and z = 2.3 for Spanish and K = 100 and z = 2.5 for Italian, k = 100 and z = 2.0 for German and k = 100 and z = 2.3 for French.

T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215 19
disambiguating the input sentence. In order to generalize effectively, these supervised systems require large numbers of
training instances annotated with senses for each target word occurrence. Overall, this amounts to millions of training
examples for each language of interest, a number that is not within reach for any language. In fact, no supervised system
has been submitted in major multilingual WSD competitions for languages other than English [32,33]. To get rid of these
limitations and to aid knowledge-based models to perform in the same ballpark of supervised approaches, Maru et al. [6]
introduced SyntagNet,16 a resource of semantic collocations which, when integrated in a knowledge base, proved to be
effective in increasing the performance of a knowledge-based model such as UKB [4] by several points. Other approaches,
instead, focused on automatically creating sense-tagged corpora, hence enabling supervised models to perform multilingual
WSD. Raganato et al. [41] developed 7 heuristics to grow the number of hyperlinks in Wikipedia pages. Otegi et al. [46]
applied a different disambiguation pipeline for each language to parallel text in Europarl [47] and QTLeap [48], in order
to enrich them with semantic annotations. Taghipour and Ng [35], the work closest to ours, exploits the alignment from
English to Chinese sentences of the United Nations Parallel Corpus [27], in order to reduce the ambiguity of English words.
Another approach that is similar to ours is the one proposed by Scarlini et al. [49, OneSeC]. This latter exploits the Wikipedia
Categories and the Wikipedia pages in order to generate annotated instances for the nominal tokens of a language lexicon
in potentially all the languages supported by both BabelNet and Wikipedia.

Train-O-Matic stands out from the aforementioned approaches inasmuch, in contrast to OMSTI, it is fully automatic and
can be applied to any kind of corpus (and language) depending on the specific need, whereas, in contrast to OneSeC, it is
more flexible as it does not rely on any kind of structure of the input corpus.

Earlier attempts at the automatic extraction of training samples were made by Agirre and de Lacalle [50] and Fernández
et al. [51]. Both exploited the monosemous relatives method [52] in order to retrieve sentences from the Web which
contained a given monosemous noun or a relative monosemous word (e.g., a synonym, a hypernym, etc.). As can be seen in
[51] this approach can lead to the retrieval of very accurate examples, but its main drawback lies in the number of senses
covered. In fact, for all those synsets that do not have any monosemous relative, the system is unable to retrieve examples,
thus heavily affecting the performance in terms of recall and F1.

Knowledge-based WSD, instead, bypasses the heavy requirement of sense-annotated corpora by applying algorithms that
exploit a general-purpose semantic network, such as WordNet, which encodes the relational information that intercon-
nects synsets via different kinds of relation. Approaches include variants of Personalised PageRank [4] and densest subgraph
approximation algorithms [5] which, thanks to the availability of multilingual resources such as BabelNet, can easily be
extended to perform WSD in arbitrary languages. Other approaches to knowledge-based WSD exploit the definitional knowl-
edge contained in a dictionary. The Lesk algorithm [53] and its variants [54–56] aim at determining the correct sense of a
word by comparing each word-sense definition with the context in which the target word appears. The limit of knowledge-
based WSD, however, lies in the absence of mechanisms that can take into account the very local context of a target word
occurrence, including non-content words such as prepositions and articles.

8.2. Word Sense Distribution Learning

While Word Sense Disambiguation has been a very active field in recent years, Word Sense Distribution Learning has not
received the same degree of attention, even if it can provide a very useful piece of information [25] that WSD can exploit
to perform better. Indeed, [57] proved that word senses follow a very skewed distribution and Agirre and Martinez [58]
and Postma et al. [14] showed how much better WSD systems perform when they exploit this type of information. The
first works in this direction aimed at finding the predominant sense of a word by leveraging a thesaurus [59] and WordNet
similarity measures [60]. Chan and Ng [61] and Chan and Ng [62] followed by introducing two algorithms to rank WordNet
synsets. They exploited an Expectation Maximization algorithm to estimate the prior of each class (i.e. word senses) and
the marginalization of the confusion matrix of the word senses. More recently, Bennett et al. [25] presented an optimised
version of HDP-WSI [63] – a topic modelling based approach for word sense distribution learning – to induce the distribution
of word senses, while in [17] we introduced two unsupervised approaches for learning word sense distributions. Our work
differs from those above as it is, to the best of our knowledge, the first attempt to exploit sense distribution learning
methods applied to the set of documents we are interested in disambiguating in order to shape the training set. The
methods we proposed proved to work well across all datasets and languages hence paving the way to future research on
domain-driven, supervised and multilingual Word Sense Disambiguation.

9. Conclusion

In this paper we first introduced a novel semi-supervised technique to automatically create a sense annotated corpus,
and then presented a method to shape the automatically generated training set to reflect the sense distribution in a given
document, or collection of documents, that we want to disambiguate.

Moreover, we subsequently showed that this same approach can be applied to any language supported by BabelNet
(currently 284 languages). To the best of our knowledge, ours is the first attempt to 1) enable supervised WSD systems on

16 http://syntagnet .org.

http://syntagnet.org

20 T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215
multiple languages, 2) adapt the training set to better reflect the sense distribution of a target document, and 3) make the
pipeline to train a supervised WSD system completely human-free.

Our experiments proved that it is possible to boost multilingual WSD performance by exploiting just the learned sense
distribution and, moreover, that it is possible to automatically adapt the training set to any domain-specific document with-
out any human intervention. Results, indeed, showed that our approach is able to effectively scale over different domains
and different languages. This is accomplished by looking only at the text that we wish to disambiguate, and adapting the
training set of the WSD system using the learned word senses distribution.

As future work we aim at using new resources such as SyntagNet [6] and VerbAtlas [64] to integrate the additional
knowledge coming from words collocations and verb frames into Train-O-Matic hence refining the quality of the generated
training set, adding new sentences for words and senses that are still not covered, i.e., those with other POS tags such as
verbs adjectives and adverbs.

All the training corpora and the sense distributions for English, Italian, Spanish, German and French are made available
to the community at http://trainomatic .org.

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no
significant financial support for this work that could have influenced its outcome.

Acknowledgements

The authors gratefully acknowledge the support of the ERC Consolidator Grant MOUSSE No. 726487
under the European Union’s Horizon 2020 research and innovation programme.

References

[1] R. Navigli, Word sense disambiguation: a survey, ACM Comput. Surv. 41 (2) (2009) 1–69.
[2] R. Navigli, Natural language understanding: instructions for (present and future) use, in: Proceedings of IJCAI, 2018, pp. 5697–5702.
[3] C. Fellbaum (Ed.), WordNet: An Electronic Database, MIT Press, Cambridge, MA, 1998.
[4] E. Agirre, O.L. de Lacalle, A. Soroa, Random walks for knowledge-based word sense disambiguation, Comput. Linguist. 40 (1) (2014) 57–84.
[5] A. Moro, A. Raganato, R. Navigli, Entity linking meets word sense disambiguation: a unified approach, Transactions of the Association for Computational

Linguistics (TACL) 2 (2014) 231–244.
[6] M. Maru, F. Scozzafava, F. Martelli, R. Navigli, SyntagNet: challenging supervised word sense disambiguation with lexical-semantic combinations, in:

Proceedings of EMNLP-IJCNLP, 2019.
[7] R. Tripodi, M. Pelillo, WSD-games: a game-theoretic algorithm for unsupervised word sense disambiguation, in: Proceedings of the 9th International

Workshop on Semantic Evaluation (SemEval 2015), 2015, pp. 329–334.
[8] D.S. Chaplot, R. Salakhutdinov, Knowledge-based word sense disambiguation using topic models, in: Proceedings of the Thirty-Second AAAI Conference

on Artificial Intelligence, (AAAI-18), 2018, pp. 5062–5069.
[9] Z. Zhong, H.T. Ng, It makes sense: a wide-coverage word sense disambiguation system for free text, in: Proceedings of the ACL 2010 System Demon-

strations, Association for Computational Linguistics, Uppsala, Sweden, 2010, pp. 78–83.
[10] M. Kågebäck, H. Salomonsson, Word sense disambiguation using a bidirectional LSTM, in: Proceedings of the 5th Workshop on Cognitive Aspects of

the Lexicon, CogALex@COLING 2016, Osaka, Japan, December 12, 2016, 2016, pp. 51–56.
[11] D. Yuan, J. Richardson, R. Doherty, C. Evans, E. Altendorf, Semi-supervised word sense disambiguation with neural models, in: Proceedings of COLING,

2016, pp. 1374–1385.
[12] A. Raganato, C. Delli Bovi, R. Navigli, Neural sequence learning models for word sense disambiguation, in: Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, 2017, pp. 1156–1167.
[13] M.T. Pilehvar, R. Navigli, A large-scale pseudoword-based evaluation framework for state-of-the-art word sense disambiguation, Comput. Linguist. 40 (4)

(2014) 837–881.
[14] M. Postma, R.I. Bevia, P. Vossen, More is not always better: balancing sense distributions for all-words word sense disambiguation, in: Proceedings of

COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 2016, pp. 3496–3506.
[15] T. Pasini, R. Navigli, Train-O-Matic: large-scale supervised word sense disambiguation in multiple languages without manual training data, in: Proceed-

ings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2017, pp. 78–88.
[16] T. Pasini, F. Elia, R. Navigli, Huge automatically extracted training-sets for multilingual word sense disambiguation, in: Proceedings of the Eleventh

International Conference on Language Resources and Evaluation, LREC 2018, Miyazaki, Japan, May 7-12, 2018, 2018, pp. 1694–1698.
[17] T. Pasini, R. Navigli, Two knowledge-based methods for high-performance sense distribution learning, in: Proceedings of the Thirty-Second AAAI Con-

ference on Artificial Intelligence, (AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, 2018, pp. 5374–5381.
[18] S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine, Comput. Netw. ISDN Syst. 30 (1–7) (1998) 107–117.
[19] M.T. Pilehvar, D. Jurgens, R. Navigli, Align, disambiguate and walk: a unified approach for measuring semantic similarity, in: Proceedings of ACL, 2013,

pp. 1341–1351.
[20] M.T. Pilehvar, N. Collier, De-conflated semantic representations, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing,

Austin, TX, 2016, pp. 1680–1690.
[21] P.A. Lofgren, S. Banerjee, A. Goel, C. Seshadhri, Fast-ppr: scaling personalized pagerank estimation for large graphs, in: Proceedings of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2014, pp. 1436–1445.
[22] R. Navigli, S.P. Ponzetto BabelNet, The automatic construction, evaluation and application of a wide-coverage multilingual semantic network, Artif.

Intell. 193 (2012) 217–250.

http://trainomatic.org
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6E617669676C693A3039s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6E617669676C693A3138s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib46656C6C6261756D3A3938s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6167697272656574616C3A3134s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6D6F726F6574616C3A3134s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6D6F726F6574616C3A3134s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6D6172756574616C3A3139s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6D6172756574616C3A3139s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib747269706F646970656C696C6C6F3A3135s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib747269706F646970656C696C6C6F3A3135s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib636861706C6F7473616C616B68757464696E6F763A3138s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib636861706C6F7473616C616B68757464696E6F763A3138s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib7A686F6E676E673A3130s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib7A686F6E676E673A3130s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6B616167656261636B73616C6F6D6F6E73736F6E3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6B616167656261636B73616C6F6D6F6E73736F6E3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib7975616E3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib7975616E3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib726167616E61746F6574616C3A313762s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib726167616E61746F6574616C3A313762s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib70696C65687661726E617669676C693A3134s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib70696C65687661726E617669676C693A3134s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib706F73746D616574616C3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib706F73746D616574616C3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib706173696E696E617669676C693A3137s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib706173696E696E617669676C693A3137s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib706173696E696574616C3A3138s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib706173696E696574616C3A3138s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib706173696E696E617669676C693A3138s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib706173696E696E617669676C693A3138s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4272696E506167653A3938s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib70696C65687661726574616C3A3133s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib70696C65687661726574616C3A3133s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib50696C6568766172436F6C6C6965723A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib50696C6568766172436F6C6C6965723A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4C6F666772656E6574616C3A3134s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4C6F666772656E6574616C3A3134s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4E617669676C69506F6E7A6574746F3A3132s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4E617669676C69506F6E7A6574746F3A3132s1

T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215 21
[23] J. Camacho-Collados, M.T. Pilehvar, R. Navigli, NASARI: a novel approach to a semantically-aware representation of items, in: Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computa-
tional Linguistics, , DenverColorado, 2015, pp. 567–577.

[24] J. Camacho-Collados, M.T. Pilehvar, R. Navigli, Nasari: integrating explicit knowledge and corpus statistics for a multilingual representation of concepts
and entities, Artif. Intell. 240 (2016) 36–64.

[25] A. Bennett, T. Baldwin, J.H. Lau, D. McCarthy, F. Bond, LexSemTm: a semantic dataset based on all-words unsupervised sense distribution learning, in:
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 2016, pp. 1513–1524.

[26] J. Camacho-Collados, R. Navigli, BabelDomains: large-scale domain labeling of lexical resources, in: Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, vol. 2, 2017, pp. 223–228.

[27] M. Ziemski, M. Junczys-Dowmunt, B. Pouliquen, The United Nations parallel corpus v1.0, in: N.C.C. Chair, K. Choukri, T. Declerck, S. Goggi, M. Grobelnik,
B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis (Eds.), Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC 2016), European Language Resources Association (ELRA), Portoroz, Slovenia, ISBN 978-2-9517408-9-1, 2016, pp. 3530–3534.

[28] A. Raganato, J. Camacho-Collados, R. Navigli, Word sense disambiguation: a unified evaluation framework and empirical comparison, in: Proceedings
of EACL, Valencia, Spain, 2017, pp. 99–110.

[29] P. Edmonds, S. Cotton, SENSEVAL-2: overview, in: The Proceedings of the Second International Workshop on Evaluating Word Sense Disambiguation
Systems, Association for Computational Linguistics, 2001, pp. 1–5.

[30] B. Snyder, M. Palmer, The English all-words task, in: Senseval-3: Third International Workshop on the Evaluation of Systems for the Semantic Analysis
of Text, Barcelona, Spain, 2004, pp. 41–43.

[31] S.S. Pradhan, E. Loper, D. Dligach, M. Palmer, SemEval-2007 task 17: English lexical sample, SRL and all words, in: Proceedings of the 4th International
Workshop on Semantic Evaluations, 2007, pp. 87–92.

[32] R. Navigli, D. Jurgens, D. Vannella, SemEval-2013 task 12: multilingual word sense disambiguation, in: Proceedings of the 7Th International Workshop
on Semantic Evaluation (SemEval 2013), in Conjunction with the Second Joint Conference on Lexical and Computational Semantics (*SEM 2013),
Atlanta, USA, 2013, pp. 222–231.

[33] A. Moro, R. Navigli, SemEval-2015 task 13: multilingual all-words sense disambiguation and entity linking, in: Proceedings of the 9th International
Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2015, Denver, Colorado, USA, June 4-5, 2015, 2015, pp. 288–297.

[34] G.A. Miller, C. Leacock, R. Tengi, R. Bunker, A semantic concordance, in: Proceedings of the 3rd DARPA Workshop on Human Language Technology,
Plainsboro, N.J., 1993, pp. 303–308.

[35] K. Taghipour, H.T. Ng, One million sense-tagged instances for word sense disambiguation and induction, in: Proceedings of the 19th Conference on
Computational Natural Language Learning, CoNLL 2015, Beijing, China, July 30-31, 2015, 2015, pp. 338–344.

[36] J. Camacho-Collados, C. Delli Bovi, A. Raganato, R. Navigli, A large-scale multilingual disambiguation of glosses, in: Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evaluation LREC 2016, Portorož Slovenia, May 23-28, 2016, 2016, pp. 1701–1708.

[37] C. Delli Bovi, J. Camacho-Collados, A. Raganato, R. Navigli, EuroSense: automatic harvesting of multilingual sense annotations from parallel text, in:
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, 2017, pp. 594–600.

[38] P. Koehn, Europarl: a parallel corpus for statistical machine translation, in: MT Summit, vol. 5, 2005, pp. 79–86.
[39] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, arXiv preprint, arXiv:1301.3781.
[40] M.P. Marcus, B. Santorini, M.A. Marcinkiewicz, Building a large annotated corpus of English: the penn treebank, Comput. Linguist. 19 (2) (1993)

313–330.
[41] A. Raganato, C. Delli Bovi, R. Navigli, Automatic construction and evaluation of a large semantically enriched Wikipedia, in: Proceedings of IJCAI, New

York City, NY, USA, 2016, pp. 2894–2900.
[42] S.L. Manion, R. Sainudiin, An iterative “sudoku style” approach to subgraph-based word sense disambiguation, in: Proceedings of the Third Joint

Conference on Lexical and Computational Se- Mantics (*SEM 2014), Dublin, Ireland, 2014, pp. 40–50.
[43] O. Melamud, J. Goldberger, I. Dagan, Context2vec: learning generic context embedding with bidirectional LSTM, in: Proceedings of the 20th SIGNLL

Conference on Computational Natural Language Learning, CoNLL 2016, Berlin, Germany, August 11-12, 2016, 2016, pp. 51–61.
[44] F. Luo, T. Liu, Q. Xia, B. Chang, Z. Sui, Incorporating glosses into neural word sense disambiguation, in: Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, 2018, pp. 2473–2482.
[45] S. Kumar, S. Jat, K. Saxena, P. Talukdar, Zero-shot word sense disambiguation using sense definition embeddings, in: Proceedings of ACL, 2019,

pp. 5670–5681.
[46] A. Otegi, N. Aranberri, A. Branco, J. Hajic, S. Neale, P. Osenova, R. Pereira, M. Popel, J. Silva, K. Simov, et al., QTLeap WSD/NED corpora: semantic

annotation of parallel corpora in six languages, in: Proceedings of the 10th Language Resources and Evaluation Conference, LREC, 2016, pp. 3023–3030.
[47] P. Koehn, Europarl: a parallel corpus for statistical machine translation, in: MT Summit, vol. 5, 2005, pp. 79–86.
[48] E. Agirre, A. Branco, M. Popel, K. Simov, Europarl QTLeap WSD/NED Corpus, LINDAT/CLARIN Digital Library at the Institute of Formal and Applied

Linguistics, Charles University in Prague, 2015.
[49] B. Scarlini, T. Pasini, R. Navigli, Just “OneSeC” for producing multilingual sense-annotated data, in: Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, 2019, pp. 699–709.
[50] E. Agirre, O.L. de Lacalle, Publicly available topic signatures for all WordNet nominal senses, in: Proceedings of the Fourth International Conference on

Language Resources and Evaluation, LREC 2004, Lisbon, Portugal, May 26-28, 2004, 2004, pp. 1123–1126.
[51] J. Fernández, M. Castillo Valdés, G. Rigau Claramunt, J. Atserias Batalla, J. Tormo, Automatic acquisition of sense examples using exretriever, in: IB-

ERAMIA Workshop on Lexical Resources and the Web for Word Sense Disambiguation, 2004, pp. 97–104.
[52] C. Leacock, G.A. Miller, M. Chodorow, Using corpus statistics and WordNet relations for sense identification, Comput. Linguist. 24 (1) (1998) 147–165.
[53] M. Lesk, Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone, in: Proceedings of the

5th Annual Conference on Systems Documentation, Toronto, Ontario, Canada, 1986, pp. 24–26.
[54] S. Banerjee, T. Pedersen, An adapted Lesk algorithm for word sense disambiguation using WordNet, in: International Conference on Intelligent Text

Processing and Computational Linguistics, Springer, 2002, pp. 136–145.
[55] A. Kilgarriff, J. Rosenzweig, Framework and results for English SENSEVAL, Comput. Humanit. 34 (1–2) (2000) 15–48.
[56] F. Vasilescu, P. Langlais, G. Lapalme, Evaluating variants of the lesk approach for disambiguating words, in: Proceedings of the Fourth International

Conference on Language Resources and Evaluation, LREC 2004, Lisbon, Portugal, May 26-28, 2004, 2004, pp. 633–636.
[57] A. Kilgarriff, How dominant is the commonest sense of a word? in: Text, Speech and Dialogue, 7th International Conference, TSD 2004, Brno, Czech

Republic, September 8-11, 2004, Proceedings, 2004, pp. 103–112.
[58] E. Agirre, D. Martinez, Unsupervised WSD based on automatically retrieved examples: the importance of bias, in: Proceedings of the 2004 Conference

on Empirical Methods in Natural Language Processing, 2004, pp. 25–32.
[59] S. Mohammad, G. Hirst, Determining word sense dominance using a thesaurus, in: Proceedings of the 11th Conference of the European Chapter of the

Association for Computational Linguistics, Trento, Italy, 3–7 April 2006, 2006, pp. 121–128.
[60] D. McCarthy, R. Koeling, J. Weeds, J. Carroll, Finding predominant senses in untagged text, in: Proceedings of the 42nd Annual Meeting of the Associa-

tion for Computational Linguistics, Barcelona, Spain, 21–26 July 2004, 2004, pp. 280–287.

http://refhub.elsevier.com/S0004-3702(18)30702-1/bib63616D6163686F636F6C6C61646F736574616C3A3135s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib63616D6163686F636F6C6C61646F736574616C3A3135s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib63616D6163686F636F6C6C61646F736574616C3A3135s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib63616D6163686F65636F6C6C61646F7374616C3A313661696As1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib63616D6163686F65636F6C6C61646F7374616C3A313661696As1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib62656E6E6574746574616C3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib62656E6E6574746574616C3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib63616D6163686F636F6C6C61646F733A3137s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib63616D6163686F636F6C6C61646F733A3137s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib7A69656D736B696574616C3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib7A69656D736B696574616C3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib7A69656D736B696574616C3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib726167616E61746F6574616C3A3137s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib726167616E61746F6574616C3A3137s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib45646D6F6E6473436F74746F6E3A3031s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib45646D6F6E6473436F74746F6E3A3031s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib536E7964657250616C6D65723A3034s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib536E7964657250616C6D65723A3034s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib5072616468616E6574616C3A3037s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib5072616468616E6574616C3A3037s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4E617669676C696574616C3A3133s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4E617669676C696574616C3A3133s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4E617669676C696574616C3A3133s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4D6F726F4E617669676C693A3135s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4D6F726F4E617669676C693A3135s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6D696C6C65723933s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6D696C6C65723933s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib7461676869706F75726E673A3135s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib7461676869706F75726E673A3135s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib63616D6163686F636F6C6C61646F736574616C3A313662s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib63616D6163686F636F6C6C61646F736574616C3A313662s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib64656C6C69626F76696574616C3A3137s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib64656C6C69626F76696574616C3A3137s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6B6F65686E3A3035s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6D696B6F6C6F766574616C3A3133s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6D61726375736574616C3A3933s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6D61726375736574616C3A3933s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib726167616E61746F6574616C3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib726167616E61746F6574616C3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6D616E696F6E7361696E756469696E3A3134s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6D616E696F6E7361696E756469696E3A3134s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6D656C616D75646574616C3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6D656C616D75646574616C3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6C756F6574616C3A3138s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6C756F6574616C3A3138s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6B756D61726574616C3A3139s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6B756D61726574616C3A3139s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6F746567696574616C3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6F746567696574616C3A3136s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6B6F65686E6574616C3A3035s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6167697272656574616C3A3135s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6167697272656574616C3A3135s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib736361726C696E696574616C3A3139s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib736361726C696E696574616C3A3139s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6167697272653A3034s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6167697272653A3034s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6665726E616E64657A3A3034s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6665726E616E64657A3A3034s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6C6561636F636B3A3938s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4C65736B3A3836s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4C65736B3A3836s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib62616E65726A65653A3032s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib62616E65726A65653A3032s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6B696C6761726966663030s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib766173696C657363753A3034s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib766173696C657363753A3034s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6B696C676172726966663A3034s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6B696C676172726966663A3034s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6167697272653A303462s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6167697272653A303462s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4D6F68616D6D61643A48697273743A3036s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4D6F68616D6D61643A48697273743A3036s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4D634361727468796574616C3A3034s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib4D634361727468796574616C3A3034s1

22 T. Pasini, R. Navigli / Artificial Intelligence 279 (2020) 103215
[61] Y.S. Chan, H.T. Ng, Word sense disambiguation with distribution estimation, in: IJCAI-05, Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005, pp. 1010–1015.

[62] Y.S. Chan, H.T. Ng, Estimating class priors in domain adaptation for word sense disambiguation, in: ACL 2006, 21st International Conference on Compu-
tational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, Sydney, Australia, 17–21
July 2006, 2006, pp. 89–96.

[63] J.H. Lau, P. Cook, D. McCarthy, S. Gella, T. Baldwin, Learning word sense distributions, detecting unattested senses and identifying novel senses using
topic models, in: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, 2014,
pp. 259–270.

[64] A. Di Fabio, S. Conia, R. Navigli, VerbAtlas: a novel large-scale verbal semantic resource and its application to semantic role labeling, in: Proceedings of
EMNLP-IJCNLP, 2019.

http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6368616E6E673A3035s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6368616E6E673A3035s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6368616E6E673A3036s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6368616E6E673A3036s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6368616E6E673A3036s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6C61756574616C3A3134s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6C61756574616C3A3134s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6C61756574616C3A3134s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6469666162696F6574616C3A3139s1
http://refhub.elsevier.com/S0004-3702(18)30702-1/bib6469666162696F6574616C3A3139s1

	Train-O-Matic: Supervised Word Sense Disambiguation with no (manual) effort
	1 Introduction
	2 Train-O-Matic: building a training set from scratch
	2.1 Lexical proﬁling
	2.2 Sentence scoring
	2.2.1 Knowledge-based scoring
	2.2.2 Sentence scoring with word embeddings

	2.3 Sentence ranking and selection

	3 Creating a denser and multilingual semantic network
	4 Balancing the training set
	4.1 Entropy-Based Distribution Learning (EnDi)
	4.2 Domain-Aware Distribution Learning (DaD)
	4.3 Automatic domain adaptation

	5 Experimental setup
	6 Results
	6.1 Train-O-Matic disambiguation
	6.2 Impact of syntagmatic relations
	6.3 Comparison against sense-annotated corpora
	6.4 Comparison against neural methods
	6.5 Performance without backoff strategy
	6.6 Comparison of different methods for training balancing
	6.7 Domain-oriented WSD

	7 Scaling up to multiple languages
	8 Related work
	8.1 Word Sense Disambiguation
	8.2 Word Sense Distribution Learning

	9 Conclusion
	Acknowledgements
	References

