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Abstract—In Automotive and Aerospace industries, Topology 
Optimization (TO) is being used for the last few decades to 
produce lightweight structures. On the other hand, TO produces 
very complex geometrical features (i.e. irregular shape and 
hidden cavities along the thickness) that is sometimes difficult to 
be manufactured even with Additive Manufacturing (AM) and 
Casting techniques. In this paper suitable design and 
manufacturing constraint (MC) are applied during TO process 
that act as an Optimization Tool (OT) and improves geometrical 
features of the mechanical structures for easy manufacturing. 
Three mechanical structures with different geometries and 
boundary conditions have been considered for analysis purpose. 
Topology Optimization based on linear static analysis has been 
performed using OptiStruct (HyperWorks) solver. Finally, 
results of analysis conclude that the proposed OT produces 
lightweight structures with very simple geometries that can easily 
be manufactured with the help of AM or Casting techniques. 
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I. INTRODUCTION  

Automotive and Aerospace sectors are continuously striving to 
improve the comfort level and maximize the space. 
Resultantly, the structural weight is being increased which 
causes high fuel consumption, high emissions, dynamic 
instability and material cost. Therefore, a deliberate effort is 
being put to produce light weight structures in order to 
minimize the above mentioned problems [1] [2] [3]. 
Generally, there are numerous methods such as numerical 
structural optimization and many commercial solvers to design 
lightweight structures [4] [5] [6] [7] [8] [9] [10] [11] [12]. For 
the last few decades, Topology Optimization is being used as 
an effective and widely acceptable optimization tool to 
produce lightweight structures [13] [14] [15] [16]. TO is a 
mathematical iterative optimization algorithm [17] which 
provides an optimal element density layout within a given set 
of design space and boundary constraints. Two basic TO 
theoretical approaches have been developed, the Solid 
Isotropic Material Penalization (SIMP) and the Multilevel Set 
Method. SIMP has been implemented in many commercial 
FEA software, as for example OptiStruct that is included in 

the HyperWorks suite [18]. SIMP approach is a well known 
and widely accepted as an efficient technique for TO which 
discretize the design space in term of element density 
distribution with value from 0 to 1. Inside the discretized 
domain, 1 represent a solid element, 0 represent a void and the 
intermediate values represent intermediate densities which are 
penalized by SIMP approach to produce a best shape for 
manufacturing.    

Though, TO propose a lightweight design but on the other 
hand as a final result it may give a very complex geometry 
(Irregular shape and hidden cavities along the thickness) 
which is sometimes even difficult to be manufactured with the 
help of AM or casting technologies [19]. Applying 
geometrical constraints able to force manufacturability of the 
TO result is an interesting option that may support the 
component fabrication but also a convenient way to force 
surface regularization after the TO process. 

Therefore in this research work, an endeavor has been made to 
apply density based topology optimization [20] with 
combination of suitable design and manufacturing constraints 
[21] [22] [23] [24] using OptiStruct. The aim is to expand the 
applications of TO as a concept design tool including specific 
constraints able to avoid unfeasible local or global topologies 
or features. OptiStruct offers number of Manufacturing 
Constraints (MC) such as draw, extrusion, symmetry, wall 
thickness etc to take into account manufacturing features 
during TO.  

Following, three mechanical structures with different 
geometries and boundary conditions have been analyzed in an 
order of easier to complex case for the desired research work.  

a. General Purpose Bracket (GPB) 

b. Engine Bracket (EB) 

c. Hinge Bracket (HB) 
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II. METHODOLOGY 

The following sequence (Fig-1) has been followed for the 

entire analysis and simulations. Each blue block in the 

sequence defines a specific step and gives distinct outputs, as 

shown in green.   
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Figure-1. Methodology    

 

III. FEA MODELING  

A. CAD Modeling  

CAD models of each structure are shown below (Fig-2). 
Further details are as under:- 

GPB: It is a general purpose structure. It is fixed to some 
support entirely from its back while holes located at front are 
subjected to a total tensile force of 400N.  

EB: It is mounted to the chassis structure through two holes 
located at the base while hole at top is supporting the engine 

weight (500N) and also subjected to a braking force of 
833.33N (Braking is taken as an impulse event within 1 sec 
with vehicle speed of 60km/h). 

HB: Four holes located at base are supporting weight of the 
Airplane door (300N) while hole at end of the arc length is 
pivoted to the wall structure to act as a hinge.  

 

Structure CAD Models 

GPB 

 

EB 

 

HB 

 

Figure-2. CAD Modeling      

 

B. Material and Properties  

For FEA modeling, material AISI 4130 Steel has been 

assigned to all structures with following properties (Table-1) 

including different mass for each structure. Furthermore, 

OptiStruct’s MAT1 card is used to define isotropic linear 

material for analysis and unit card is used to facilitate analysis 

with SI units.  

 

 



 
Table 1. Properties of Material 

Mass (M) 

GPB 0.725 (Kg) 

EB 0.398 (Kg) 

HB 2.26 (Kg) 

Yield Strength (Ys) 4.6 x 108 (N/m2) 

Young Modulus (E) 2 x 1011 (N/m2) 

Poisson Ratio (ѵ) 0.285 

Density (ρ) 7860 (Kg/m3) 

 

C. Design and Non Design Space 

Design and non-design space play a vital role in topology 

optimization and therefore have to be defined very carefully 

because during topology optimization the material is removed 

only from the design space subjected to low stress 

concentration while the non-design space is remained the 

same. Normally the non design space is allocated to the 

section or area where no changes are required or subjected to 

boundary conditions.  

In our case, section of each structure subjected to boundary 

conditions is defined as non design space. Furthermore, design 

and non design spaces for each structure are illustrated in Fig-

3, where yellow color represents the design space and blue 

color represents the non-design space. 

 

Structure Models with Design and Non Design Space  

GPB 

 

EB 

 

HB 

 

Figure 3. Models with Design and Non Design Space 

D. Meshing  and  Boundary Conditiuons  

Meshing is carried out in order to reduce degree of freedom 

from infinite to finite. Loads and constraints are also applied 

to each structure and then load case for each boundary 

condition is defined with linear static type in order to carry out 

linear static analysis. Furthermore, rigid body element (RBE) 

is defined at all holes in order to distribute the boundary 

conditions equally on all nodes irrespective of the load 

position [25] [26]. Details of Meshing and boundary 

conditions for each structure are shown in Table-2 and Fig-3. 

 
Table 2. Meshing and Boundary Conditions 

Nomenclature GPB EB HB 

Element Size (mm) 2 2 4 

Type of Element 
2D Trias Trias Trias 

3D Tetras Tetras Tetras 

Constraints 

Free = 1 

Fixed = 0 

Lx 0 0 0 

Ly 0 0 0 
Lz 0 0 0 
Rx 0 0 0 
Ry 0 0 0 
Rz 1 0 1 

Force (N) 

Fx 400 0 0 

Fy 0 500 0 

Fz 0 833.33 300 
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Figure 4. Meshing and Boundary Conditions - GPB 
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Figure 5. Meshing and Boundary Conditions – EB 
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Figure 6. Meshing and Boundary Conditions - HB 

IV. TOPOLOGY OPTIMIZATION MODELING  

Following sequence is followed for the entire process of TO.  

A. Defining Design Variable 

Due to SIMP approach, element density is defined as design 
variable to produce optimal element density distribution inside 
the design space. Furthermore, OptiStruct’s psolid card is 
selected for analysis due to 3D geometry.    

B.  Defining Desired Responses  

Volume Fraction (Vf) is defined as the first global response 

due to that it considers only design space for analysis. In 

addition, weighted compliance (Wc) is taken as the second 

design response to accumulate the effect of boundary 

conditions by introducing OptiStruct’s loadsteps card. 

C. Defining Design  Constraints  

Considering the aim of lightweight design, Vf with upper 

bound is limited to a value of 0.5 which means the analysis 

will reduce 50% of the original M. In addition providing a 

minimum (min) Factor of Safety (FoS) of 2.5, OptiSturct’s 

Stress Constraint [22] is defined and set to a value of Ys/2.5 in 

order to restrict the max Stress (ẟmax).  

D. Defining Manufacturing Constraint (MC) 

Keeping in view the geometrical waviness and cavities along 

the thickness obtained during simple TO, Thickness Constraint 

(TC) and / or Extrusion Constraints (EC) are used to cater for 

the above mentioned anomalies respectively. TC actually 

increases the wall thickness by defining a min dimension of 

the wall using Optistruct’s mindim card and resultantly 

reduces the surface waviness. Whereas EC is employed based 

on extrusion path along the section where a constant cross 

section is required and therefore eliminate the hidden cavities. 

Therefore, mindim should be set to a value at which fine 

surface smoothness is obtained and similarly extrusion path be 

applied wherever there are hidden cavities. Though 

employment of MC reduce the percentage of weight reduction 

but it is in fact a tradeoff between lightweight design and 

smooth / hidden cavity free geometry.  

E. Defining Objective Function   

High stiffness is required to obtain a performance structure. 

Therefore exploiting the concept of compliance theory, 



minimization of weighted compliance is set to objective 

function to maximize its stiffness against the given loadsteps.  

F.  Overall Mathematical Model 

Following mathematical model is applied to all structures for 

desired analysis of TO. 

 

Min Wc (Weighted Compliance) 

 

Wc  ϵ Ɗ,  Ɗ is the design space 

 

      Subject to,  

0.5 ≤ Vf  ≤ 0.8 

 

ẟmax ≤ Yield Strength / 2.5 

 

Wc = ∑ 𝑢𝑛
𝑇𝑘𝑛𝑢𝑛

𝑁

𝑛=0
 

 

Where, K is the stiffness matrix 

U is the global displacement vector 

un is the local displacement at element n 

kn is the stiffness of element n obtained through SIMP 

i.e. 𝑘𝑛 = 𝑥𝑛
𝑃𝑘0   

Where, k0 id the element density  

P is the penalization factor from 0 ͂ 3. P at 3 gives the              

discrete value i.e. either 0 or 1 for the density element.    

 

V. RESULTS ANS DISCUSSIONS    

In this section, TO without and with Manufacturing 

Constraints is performed under the given set of boundary 

conditions and design space for each structure. Subsequent 

results are discussed with comparison, as given below.  

 

GPB: TO without MC is performed which though gives good 

results i.e. there is no cavities along the thickness but still 

surface waviness can be observed at central and outer surfaces 

(Fig.7). Therefore, there is no need of EC but TC is required to 

be applied to reduce the surface waviness. Hence TC gives 

nice results at mindim of 50mm with max Von Mises Stress 

21.4 N/m2 (Fig.8). It can also be seen that TC reduce the 

waviness and therefore increase the overall mas.  
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Figure 7. TO without MC - GPB 

GPB TO Results with MC 
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Figure 8. TO with MC - GPB 

 

 

 

 

 



Figure 10. Extrusion Path – EB  

EB: TO without MC shows very poor results i.e. porous and 

extreme wavy surface at center and side walls. Furthermore, 

hidden cavities can also be seen along thickness from base to 

top (Fig.9). Therefore, both TC and EC are required to be 

applied to fix the aforementioned issues. Mindin of value 

25mm removes the pours and extreme waviness at surfaces 

while EC along the given path (Fig.10) limits the cavities and 

produce a constant cross section. Finally good finishing is 

achieved along all surfaces with max Von Mises Stress         

97 N/m2 (Fig.11). It can also be observed that due to 

employment of TC and EC, slight increment occurred in 

overall mass of the structure.   

 

EB TO Results without MC 
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Figure 9. TO without MC – EB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EB TO Results with MC 
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Figure 11. TO with MC - EB 

HB: Results obtained from simple TO show irregular shape at 

surfaces of the bottom and side walls while hidden cavities can 

also be seen along the arc length (Fig.12). Therefore, TC and 

EC need to be applied to obtain the desired results. 

Employment of TC with mindim 32mm and extrusion path 

along the arc length (Fig.13) remove the undesired anomalies. 

Finally very nice results are obtained with max Von Mises 

Stress 21.6 N/m2 (Fig.14). In addition, it is also noticed that 

removing cavities along the arc length, the overall weight is 

increased at large.  

 

 

 

 

 

 

 

 

 



Figure 13. Extrusion Path - HB 

 

HB TO Simulations without MC 
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Figure 12. TO without MC – CADHB 

 

 

 

 

 

 

 

 

 

 

 

HB TO Results with MC 
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Figure 14. TO with MC – CADHB 

Finally, results obtained from both simple TO and TO with 
MC are summarized as Table.3 and CAD models of the final 
optimized structures are obtained using OSSmooth tool of 
OptiStruct (Fig.15).   

Table 3. Summary of the Results 
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Structure CAD Model of Final Optimized Structures 

GPB 
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HB  

Figure 15. CAD Models of Final Optimized Structures 

 

VI. CONSLUSIONS   

From the given analysis, it is concluded that employment of 
MC offers a great tradeoff between lightweight design and 
smooth / cavity free geometry but on the other hand it 
produces very simple geometries that can be manufactured 
very easily with AM or Casting techniques.  

Furthermore, the geometrical features are so smooth that no 
further CAD optimization is required for smoothing the 
surfaces and only OSSmooth tool is enough to produce CAD 
models of the final optimized structures for manufacturing 
purpose.   
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