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Using the Born-Oppenheimer approximation, we show that exotic resonances, X and Z, may emerge as
QCD molecular objects made of colored two-quark lumps, states with heavy-light diquarks spatially
separated from antidiquarks. With the same method we confirm that doubly heavy tetraquarks are stable
against strong decays. Tetraquarks described here provide a new picture of exotic hadrons, as formed by the
QCD analog of the hydrogen bond of molecular physics.
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I. INTRODUCTION

In this paper we present a description of tetraquarks
[1–3] in terms of color molecules: two lumps of two-quark
(colored atoms) held together by color forces. The variety
of tetraquarks described here identifies a new way of
looking at multiquark hadrons, as formed by the QCD
analog of the hydrogen bond of molecular physics.
We restrict to heavy-light systems, QQ̄qq̄ or QQq̄q̄, and

apply the Born-Oppenheimer (BO) approximation, see e.g.,
[4], the method used for the hydrogen molecule, see [5].
The method consists in solving the eigenvalue problem for
the light particles with fixed coordinates of the heavy ones,
xA, xB, and then solve the Schrödinger equation of the
heavy particles in the BO potential

VBOðxA; xBÞ ¼ VðxA; xBÞ þ EðxA; xBÞ: ð1Þ

VðxA; xBÞ is the interaction between the heavy particles,
e.g., the electrostatic repulsion, and EðxA; xBÞ is the
lowest energy eigenvalue of the light particles at fixed
heavy particles coordinates. The approximation improves
with m q=MQ → 0.
The application of the Born-Oppenheimer method to

doubly heavy tetraquarks in lattice QCD has been sug-
gested recently in [6,7], both for hidden flavor tetraquarks,
½cq&½c̄q̄&, i.e., the exotic resonances X, Z [3,8–10], and for

double beauty open flavor tetraquarks, bbq̄q̄, introduced in
[11,12] and, more recently, studied in [13–16].
We fix theQQ̄ pair to be in color 8 and we consider both

possibilities, 3̄ and 6, for QQ. Had we taken QQ̄ in color
singlet, the interaction with the light quark pair would be
mediated by color singlet exchanges, as in the hadroquar-
konium model proposed in [17].
For hidden flavor tetraquarks, we obtain color repulsion

within the heavy QQ̄ and the light qq̄ quark pairs, and
mutual attraction between heavy and light quarks or
antiquarks. Thus, in the ½Qq& − ½Q̄q̄& color singlet molecule,
repulsions and attractions among constituents are distrib-
uted in the same way as for protons and electrons in the
hydrogen molecule. Assuming one-gluon exchange forces,
Fig. 1(a) describes a configuration of a tight QQ̄ similar to
the “quarkonium adjoint meson” discussed in [18], see also
[19]. Increasing the repulsion between light quarks beyond
the naive one-gluon exchange force, we obtain a configu-
ration of the potential which separates the diquarks from
each other, Fig. 1(b), as envisaged in [20], with the
phenomenological implications discussed in [10] and
[21]. The most compelling one is that decays of X, Z
particles into quarkoniaþmesons are suppressed with
respect to decays into open charm mesons: the tunneling
of heavy quark pairs through the barrier gets a larger
suppression factor. At difference from what was done
originally in [3,8,10], the two lumps of two-quark states
Qqþ Q̄q̄ are found in a superposition of diquark-
antidiquark in the 3̄ ⊗ 3 and 6 ⊗ 6̄ color configurations.
The two light particles are not equal and there are two

different heavy-light orbitals: in addition to Qqþ Q̄q̄, we
examine the Qq̄þ Q̄q case. In the latter, Qq̄ and Q̄q
orbitals have a color octet component. As we shall see,
however, at large separations between heavy quarks the
lowest state will correspond to a pair of color singlet
charmed mesons. A minimum of the BO potential is not

*luciano.maiani@roma1.infn.it
†antonio.polosa@roma1.infn.it
‡veronica.riquer@cern.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 014002 (2019)

2470-0010=2019=100(1)=014002(6) 014002-1 Published by the American Physical Society



guaranteed. If there is such a minimum, as in Fig. 2(a), it
would correspond to a configuration similar to the quar-
konium adjoint meson of the previous case. If repulsion in
the qq̄ pair prevails, there is no minimum at all, Fig. 2(b).
The BO potential for ðQQÞ3̄ is presented in Fig. 3. The

unperturbed orbitals correspond to Qq̄ and Q̄q. Forces
among constituents are all attractive and the potential
vanishes at large QQ separation. This allows a new,
independent estimate of the extra binding of QQ. We
confirm the result obtained in [13,14,16] with different
variants of the naive constituent quark model, that the
lowest bb tetraquark and possibly bc are stable under
strong decays, while cc is borderline, see Table I.
ðQQÞ6 repel each other. However, with the constraint of

an overall color singlet, we find both attractive and
repulsive forces and the BO potential may admit a second
QQ tetraquark. With the perturbative one-gluon-exchange
couplings, a shallow bound state is indeed found.
In conclusion, the BO approximation, even with the

limitations of our perturbative treatment, gives a new insight
on the tetraquark structure and provides new opportunities in
the intricate field of exotic resonances properties. We hope
that our approach may be the basis of further investigations
on the internal structure of multiquark hadrons and the
phenomenology of their decays. Nonperturbative investiga-
tions along these lines should be provided by lattice QCD
(see for example [6]), following the growing interest shown
for doubly heavy tetraquarks [22].

The picture of diquark-antidiquark states segregated in
space by a potential barrier is compatible with the existence
of charged partners of the X0ð3872Þ to be found in X' →
ρ' J=ψ final states, with branching fractions considerably
smaller than in the neutral channel. This requires to push
way further on the available experimental bounds. It also
gives an independent thrust to the idea of stable bbq̄q̄
tetraquarks, still awaiting an experimental confirmation.

II. HIDDEN CHARM

We indicate with xA and xB the coordinates of c and c̄,
and x1;2 the coordinates of q and q̄. Both cc̄ and qq̄ are
taken in the 8 color representation.
Suppressing coordinates T ¼ ðc̄λacÞðq̄λaqÞwith the sum

over a ¼ 1;…; 8 understood.
If we restrict to one-gluon exchange we find the

interactions between the different pairs in terms of the
quadratic Casimir operators

λq1q2ðRÞ ¼ αS
1

2
ðC2ðRÞ − C2ðq1Þ − C2ðq2ÞÞ ð2Þ

q1;2 are the 3 or 3̄ irreducible representations of the color
group depending on whether q1;2 are quarks or antiquarks,
and R is the color representation of the q1q2 pair.1

If we find the pair q1q2 in the tetraquark TðqiqjqkqlÞ in a
superposition of two SUð3Þc representations with ampli-
tudes a and b

T ¼ ajðq1q2ÞR1
( ( (i1 þ bjðq1q2ÞR2

( ( (i1 ð3Þ

then we use

λq1q2 ¼ a2λq1q2ðR1Þ þ b2λq1q2ðR2Þ: ð4Þ

Since both cc̄ and qq̄ are in color octet we have
λcc̄ ¼ λqq̄ ¼ þ1=6αS. The couplings of the other pairs
are found using the Fierz rearrangement formulas for
SUð3Þc to bring the desired pair in the same quark bilinear.
We get

λcq ¼ λc̄q̄ ¼ −
1

3
αS λcq̄ ¼ λc̄q ¼ −

7

6
αS: ð5Þ

The pattern of repulsions and attractions in (5) is the
same as in the hydrogen molecule, substituting electrons
with light and protons with heavy quarks. We take a
perturbative approach similar to the one in the H 2 case [5].
For fixed coordinates of the heavy particles, xA and xB, we
describe the unperturbed state as the product of two
orbitals, i.e., the wave functions of the bound states of
one heavy and one light particle around xA and xB, and

(a) (b)

FIG. 2. Born-Oppenheimer potential VðrÞ vs RAB for cq̄
orbitals. Unit length: GeV−1 ∼ 0.2 fm. (a) using the perturbative
parameters; (b) with repulsion enhanced.

(a) (b)

FIG. 1. (a) dominant cq̄ and c̄q attractionþ confinement;
(b) dominant qq̄ repulsionþ confinement. Eigenfunction χðrÞ ¼
rRðrÞ and eigenvalue E of the tetraquark in the fundamental
state are shown. Diquarks are separated by a potential barrier and
there are two different lengths: Rqc ∼ 0.7–1 fm and the total
radius R ∼ 2.5 fm [10]. Here and in the following, on the y-axes
energies are in GeV and χ in arbitrary units.

1We recall the results:C2ð1Þ¼0, C2ðRÞ¼C2ðR̄Þ, C2ð3Þ¼4=3,
C2ð6Þ ¼ 10=3, C2ð8Þ ¼ 3.
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treat the interactions not included in the orbitals as
perturbations.
Two subcases are allowed: (i) cq (and c̄q̄) or (ii) cq̄

(and c̄q).

A. The cq orbital

In the H 2 molecule, the orbital is just the hydrogen atom
wave function in the ground state. In our case, we take the
Coulombic interaction given by λcq in (5) with the addition
of a confining linear potential

Vcq ¼ −
1

3

αS
r
þ krþ V0 ð6Þ

We assume a radial wave-function RðrÞ of the form

RðrÞ ¼ A3=2
ffiffiffiffiffiffi
4π

p e−Ar ð7Þ

and determine A by minimizing the Schroedinger func-
tional

hHðAÞi ¼
ðRðrÞ; ð− 1

2Mq
Δþ Vcq − V0ÞRðrÞÞ

ðRðrÞ; RðrÞÞ
ð8Þ

We use a constituent light quark mass2 Mq ¼ 0.31 GeV
estimated from the meson spectrum [1,3], αS ¼ 0.30 at the
charm mass scale and k ¼ 0.15 GeV2 from [23]. Another
option is that k follows the coefficient of the Coulombic
force [24], which leads to k¼1=4×0.15GeV2. We com-
ment later on this alternative.
We find A ¼ 0.43 GeV, hHimin ¼ 0.73 GeV.
We write the wave function of the qq̄ state

Ψð1; 2Þ ¼ ψð1Þϕð2Þ ¼ Rðjx1 − xAjÞRðjx2 − xBjÞ: ð9Þ

The unperturbed energy of Ψð1; 2Þ is given by the quark
constituent masses plus the energy of each orbital
E0 ¼ 2ðMc þMq þ hHimin þ V0Þ.
The perturbation Hamiltonian using the values for

λcc̄ ¼ λqq̄ and λcq̄ ¼ λc̄q found above, is

H pert ¼ −
7

6
αS

"
1

jx1 − xBj
þ 1

jx2 − xAj

#

þ 1

6
αS

1

jx1 − x2j
ð10Þ

To first order in H pert and with rAB ¼ jxA − xBj, the BO
potential is

VBOðrABÞ ¼ þ 1

6
αS

1

rAB
þ δE ð11Þ

where δE ¼ ðΨð1; 2Þ; H pertΨð1; 2ÞÞ evaluates to

δE ¼ − 7

6
αS2I1ðrABÞ þ

1

6
αSI4ðrABÞ: ð12Þ

The functions I1;4 are given in [5] for hydrogen wave
functions, and may be computed numerically for any given
orbital (7)

I1ðrABÞ ¼
Z

d3ξjψðξÞj2 1

jξ − xBj
ð13Þ

where the vector ξ originates from A and jxBj ¼ rAB.
Similarly

I4ðrABÞ ¼
Z

d3ξd3ηjψðξÞj2jϕðηÞj2 1

jξ − ηj
: ð14Þ

In addition, we take into account the confinement of
the colored diquarks by adding a linearly rising potential
determined by a string tension kT and the onset point, R0

VconfðrÞ ¼ kT × ðr − R0Þ × θðr − R0Þ
VðrÞ ¼ VBOðrÞ þ VconfðrÞ: ð15Þ

For orientation, we choose R0 ¼ 10 GeV−1, greater than
2A−1 ∼ 5 GeV−1, where the two orbitals start to separate.3

As for kT, we note that the tetraquark T ¼ jðc̄cÞ8ðq̄qÞ8i1
can be written as

T ¼
ffiffiffi
2

3

r
jðcqÞ3̄ðc̄q̄Þ3i1 −

ffiffiffi
1

3

r
jðcqÞ6ðc̄q̄Þ6̄i1: ð16Þ

At large distances the diquark-antidiquark system is a
superposition of 3̄ ⊗ 3 → 1 and 6 ⊗ 6̄ → 1. The hypoth-
esis of Casimir scaling of kT [24] and (16) would give

kT ¼
"
2

3
þ 1

3

C2ð6Þ
C2ð3Þ

#
k ¼ 1.5k: ð17Þ

However, as discussed in [24], gluon screening gives the 6
diquark a component over the 3̄, which appears in the
product 6 ⊗ 8, bringing kT closer to k. For simplicity, we
adopt kT ¼ k.
The potential VðrÞ computed on the basis of Eqs. (15) is

given in Fig. 1(a). Also reported are the wave function and

2For heavy quarks we take Mc ¼ 1.67 GeV, Mb ¼ 5.0 GeV
[1,3].

3R0 should be considered a free parameter, to be fixed on the
phenomenology of the tetraquark, as we discuss below.
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the eigenvalue obtained by solving numerically the radial
Schrödinger equation [25].
As it is customary for confined system like charmonia,

we fix V0 to reproduce the mass of the tetraquark, so the
eigenvalue is not interesting. However, the eigenfunction
gives us information on the internal configuration of the
tetraquark. In Fig. 1(a), with one-gluon exchange cou-
plings, a configuration with c close to c̄ and the light quarks
around is obtained, much like the quarkonium adjoint
meson described in [18].
Figure 1(b) is obtained by increasing the repulsion in

the qq̄ interaction: þ1=6αS ∼ 0.05 → 2.4. The correspond-
ing cc̄ wave function clearly displays the separation of the
diquark from the antidiquark. Had we used k ¼ 1=4 ×
0.15 GeV2 in Eq. (6), the required enhancement would
be þ1=6αS → 3.3.
The barrier that c has to overcome to reach c̄, apparent in

Fig. 1(b), was suggested in [10], and further considered in
[21], to explain the suppression of the J=ψ þ ρ=ω decay
modes of Xð3872Þ, otherwise favored by phase space with
respect to the DD) modes. Indeed, with the parameters in
Fig. 1(b), we find jRð0Þj2 ¼ 10−3 with respect to jRð0Þj2 ¼
10−1 with the perturbative parameters of Fig. 1(a).
The tetraquark picture of Xð3872Þ and the related

Zð3900Þ and Zð4020Þ have been originally formulated in
terms of pure 3̄ ⊗ 3 diquark-antidiquark states [3,8,10].
The 6 ⊗ 6̄ component in (16) results in the opposite sign of
the qq̄ hyperfine interactions vs the dominant cq and c̄q̄
one, and it could be the reason why Xð3872Þ is lighter
than Zð3900Þ.

B. The cq̄ orbital

One obtains the new orbital by replacing −1=3αS →
−7=6αS in Eq. (6). Correspondingly A ¼ 0.50 GeV,
hHimin ¼ 0.47 GeV. The perturbation Hamiltonian appro-
priate to this case is

H pert ¼ −
1

3
αS

"
1

jx1 − xBj
þ 1

jx2 − xAj

#

þ 1

6
αS

1

jx1 − x2j
ð18Þ

and

VBO ¼ þ 1

6
αS

1

rAB
þ δE: ð19Þ

The tetraquark state is

T ¼
ffiffiffi
8

9

r
jðc̄qÞ1ðq̄cÞ1i1 −

1ffiffiffi
9

p jðc̄qÞ8ðq̄cÞ8i1: ð20Þ

At large jxA − xBj the lowest energy state (two color singlet
mesons) has to prevail, as concluded also in [24] on the
basis of the screening of octet charges due to gluons.

There is no confining potential and VBO → hH imin þ V0

for rAB → ∞. Including constituent quark masses, the
energy of the state at rAB ¼ ∞ is E∞ ¼ 2ðMc þMq þ
hHimin þ V0Þ and it must coincide with the mass of a pair
of non-interacting charmed mesons, with spin-spin inter-
action subtracted. Therefore we impose

hHimin þ V0 ¼ 0: ð21Þ

A minimum of the BO potential is not guaranteed. If there
is such a minimum, as in Fig. 2(a), it would correspond to a
configuration similar to the quarkonium adjoint meson in
Fig. 1(a). If repulsion is increased above the perturbative
value, e.g., changing þ1=6αS ∼ 0.11 to a coupling ≥1 in
analogy with Fig. 1(b), the BO potential has no minimum at
all, Fig. 2(a).

III. DOUBLE BEAUTY TETRAQUARKS: bb IN 3̄

The lowest energy state corresponds to bb in spin one
and light antiquarks in spin and isospin zero. The tetraquark
state T ¼ jðbbÞ3̄; ðq̄q̄Þ3i1 can be Fierz transformed into

T ¼
ffiffiffi
1

3

r
jðq̄bÞ1; ðq̄bÞ1i1 −

ffiffiffi
2

3

r
jðq̄bÞ8; ðq̄bÞ8i1 ð22Þ

with all attractive couplings

λbb ¼ λq̄q̄ ¼ − 2

3
αS λbq̄ ¼ − 1

3
αS: ð23Þ

As in Eq. (20), the 8 charges are screened by gluons, so
at large separations the state in Eq. (22) behaves like the
product of two color singlets. There is only one possible
orbital, namely bq̄, but the unperturbed state now is the
superposition of two states with q̄ bound to one or to the
other b

Ψð1; 2Þ ¼ ψð1Þϕð2Þ þ ϕð1Þψð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ S2Þ

p : ð24Þ

The denominator is needed to normalize Ψð1; 2Þ and it
arises because ψð1Þ and ϕð1Þ are not orthogonal, with the
overlap S defined as

S ¼
Z

d3ξψðξÞϕðξÞ: ð25Þ

The perturbation Hamiltonian is

H pert ¼ −
1

3
αS

"
1

jx1 − xBj
þ 1

jx2 − xAj

#
þ

−
2

3
αS

1

jx1 − x2j
ð26Þ

and
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VBOðrABÞ ¼ 2ðhHimin þ V0Þ −
2

3
αS

1

rAB
þ δE ð27Þ

where δE ¼ ðΨð1; 2Þ; H pertΨð1; 2ÞÞ evaluates to

δE ¼ 1

1þ S2

$
−
2

3
αSðI1 þ SI2Þ −

2

3
αSðI4 þ I6Þ

%
: ð28Þ

I1;4 were defined previously whereas [5]

I2ðrABÞ ¼
Z

d3ξψðξÞϕðξÞ 1

jξ − xBj
ð29Þ

I6ðrABÞ ¼
Z

d3ξd3ηψðξÞϕðξÞψðηÞϕðηÞ 1

jξ − ηj
: ð30Þ

For the orbital bq̄ we find A ¼ 0.44 GeV, hHimin ¼
0.75 GeV. The BO potential, wave function and eigenvalue
for the bb pair in color 3̄ and the one-gluon exchange
couplings are reported in Fig. 3. There is a bound tetraquark
with a tight bb diquark, of the kind expected in the
constituent quark model [13,14,16].
The BO potential in the origin is Coulomb-like and it

tends to zero, for large rAB, due to (21). The (negative)
eigenvalue E of the Schrödinger equation is the binding
energy associated with the BO potential. The mass of the
lowest tetraquark with ðbbÞS¼1, ðq̄q̄ÞS¼0 and of the B
mesons are

MðTÞ ¼ 2ðMb þMqÞ þ Eþ 1

2
κbb −

3

2
κqq; ð31Þ

MðBÞ ¼ Mb þMq −
3

2
κbq̄; ð32Þ

where κbb¼15MeV, κqq¼98MeV and κbq̄ ¼ 23 MeV [3]
are the hyperfine interactions and E ¼ −84 MeV is the
eigenvalue shown in Fig 3(a) with αsðm bÞ ¼ 0.20.
The Q-value for the decay T → 2Bþ γ is then

Qbb ¼ Eþ 1

2
κbb −

3

2
κqq þ 3κbq̄ ¼ −154ð−137Þ MeV:

ð33Þ

Results for Qcc;bc are reported in Tab. I using
αsððm b þ m cÞ=2Þ ¼ 0.23. Eq. (33) underscores the result
obtained by Eichten and Quigg [14] that the Q-value
goes to a negative constant limit for MQ → ∞: Q ¼
−150 MeVþOð1=MQÞ.

IV. DOUBLE BEAUTY TETRAQUARKS: bb IN 6

We start from T ¼ jðbbÞ6; ðq̄q̄Þ6̄i, also considered in
[16], to find

T ¼
ffiffiffi
2

3

r
jðq̄bÞ1; ðq̄bÞ1i1 þ

ffiffiffi
1

3

r
jðq̄bÞ8; ðq̄bÞ8i1 ð34Þ

therefore

λbb ¼ λq̄q̄ ¼ þ 1

3
αS λbq̄ ¼ −

5

6
αS: ð35Þ

The situation is entirely analogous to the H 2 molecule, with
two identical, repelling light particles. For the orbital bq̄,
we find A ¼ 0.43 GeV and hHimin ¼ 0.72 GeV. The BO
potential with the one-gluon exchange parameters admits a
very shallow bound state with E ¼ −32 MeV, quantum
numbers: ðbbÞ6;S¼0 and ðq̄q̄Þ6̄;S¼0;I¼1, JPC ¼ 0þþ, and
charges −2;−1, 0. The Q-value for the decay T → 2B is
then

Qbb ¼ E −
3

2
κbb −

3

2
κqq þ 3κbq̄ ¼ −133ð−131Þ MeV

ð36Þ

with the same notation of Table I.
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FIG. 3. Left panel: BO potential, eigenfunction and eigenvalue
ðbbÞ3̄q̄q̄ tetraquark. Right panel: same for ðccÞ3̄q̄q̄.

TABLE I. Q values inMeV for decays intomesonþmesonþ γ.
The models in [13,14,16] are different elaborations of the constitu-
ent quark model we use throughout this paper. More details can
be found in the original references. We also refer the reader to the
lattice QCD literature providing alternate conclusions on these
states [22]. Results in parentheses are obtained with a string tension
k ¼ 1=4 × 0.15 GeV2 in Eq. (6).

QQ0ūd̄ This work K&R [13] E&Q [14] Luo et al. [16]

ccūd̄ −10ðþ7Þ þ140 þ102 þ39
cbūd̄ −73ð−58Þ ∼0 þ83 −108
bbūd̄ −154ð−137Þ −170 −121 −75
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