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ABSTRACT
Background: Variants within the leucine-rich repeat
kinase 2 gene are recognized as the most frequent
genetic cause of Parkinson’s disease. Leucine-rich
repeat kinase 2 variation related to disease susceptibil-
ity displays many features that reflect the nature of
complex, late-onset sporadic disorders like Parkinson’s
disease.
Methods: The Genetic Epidemiology of Parkinson’s Dis-
ease Consortium recently performed the largest genetic
association study for variants in the leucine-rich repeat
kinase 2 gene across 23 different sites in 15 countries.
Results: Herein, we detail the allele frequencies for the
novel risk factors (p.A419V and p.M1646T) and the
protective haplotype (p.N551K-R1398H-K1423K) nomi-
nated in the original publication. Simple population
allele frequencies not only can provide insight into the
clinical relevance of specific variants but also can help
genetically define patient groups.
Conclusions: Establishing individual patient-based
genomic susceptibility profiles that incorporate both
risk factors and protective factors will determine future
diagnostic and treatment strategies. VC 2013 Interna-
tional Parkinson and Movement Disorder Society

Key Words: Parkinson’s disease, LRRK2, genetics,
association study

As we enter an era of personalized medicine defined
by the individual genomic profile, it will be critical
that we understand the independent and joint influen-
ces of disease-associated genetic variation.1,2

Determining appropriate genetic testing and under-
standing the ramifications of results will decide the
utility of such approaches from a diagnostic and prog-
nostic viewpoint. The interpretation of clinical genetic
testing may be most difficult with regard to late-onset
sporadic disorders, such as Parkinson’s disease (PD),
in which a number of genetic loci have been nomi-
nated to alter disease risk, including highly penetrant
mutations co-segregating with disease in families and
common, less penetrant risk factors.3

Recently, the Genetic Epidemiology of Parkinson’s

Disease (GEO-PD) Consortium performed a large

case–control study evaluating the associations of 121

different rare and common coding variants in the

leucine-rich repeat kinase 2 (LRRK2) gene with sus-

ceptibility to PD.4 Our study was comprised of a total

of 8611 PD cases and 6929 controls, representing

three ethnicities (Caucasian, Asian, and Arab-Berber).

The results of the study nominated new risk factors—

p.M1646T in the Caucasian series and p.A419V in

the Asian series—as well as a protective haplotype
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(p.N551K-R1398H-K1423K) across all 3 series.4,5

In our analyses, we provided odds ratio estimates
of association using a number of different statistical
models involving combined data from 23 GEO-PD
sites. Herein, we provide population-specific fre-
quencies, which were not previously presented for
p.M1646T, p.A419V, or the protective haplotype.
These simple allele and haplotype frequencies can
be equally helpful in the interpretation of results
and in determining the clinical relevance of each
variant.

As displayed in Figure 1a, the minor allele (C) for
p.M1646T had a maximum frequency of 2.85% in
patients with PD and 2.55% in controls for any indi-
vidual country, and it was more common among
patients than among controls for 11 of the 13 coun-
tries in which it was observed (Fig. 1a). The p.A419V
substitution was more common in patients with PD
compared with controls for each Asian country, with

minor allele frequencies ranging from 0.17% to
2.94% (Fig. 1b). The frequency of the protective
p.N551K-R1398H-K1423K haplotype varied between
countries within patients (from 3.01% to 10.64%)
and controls (from 4.26% to 14.39%) (Fig. 1c). The
lower haplotype frequency in patients was observed
for the majority of countries, with the most discrepant
results occurring for the two smallest populations.
Individual population frequencies and their 95% con-
fidence intervals are provided in Supporting Tables 1
through 3 along with the originally presented
population-specific odds ratios1 and previously unre-
ported, population-specific P values for association.

Of the PD genes that have been identified thus far,
LRRK2 is particularly important owing to the rela-
tively high frequency of its mutations, its involvement
in both familial and sporadic disease, and its potential
as a therapeutic target. As we have presented here, the
newly identified, risk-modifying susceptibility variants

FIG. 1. Population-specific allele frequencies. a: Minor allele (C) frequency of p.M1646T is illustrated in patients with Parkinson’s disease (PD) and
controls according to country. Larger boxes indicate larger sample sizes. Countries are ordered according to minor allele frequency (lowest to high-
est) in controls. Minor allele frequencies are connected by dashed lines within patients with PD and controls to enhance visual display. b: Minor
allele (T) frequency of p.A419V is illustrated in patients with PD and controls according to country in the Asian series. Larger boxes indicate larger
sample sizes. Countries are ordered according to minor allele frequency (lowest to highest) in controls. Minor allele frequencies are connected by
dashed lines within patients with PD and controls to enhance visual display. c: Frequency of the protective p.N551K-R1398H-K1423K (G-A-A) haplo-
type is illustrated in patients with PD and controls according to country. Larger boxes indicate larger sample sizes. Countries are ordered according
to haplotype frequency (lowest to highest) in controls. Haplotype frequencies are connected by dashed lines within patients with PD and controls to
enhance visual display.
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p.A419V and p.M1646T and the p.N551K-R1398H-
K1423K haplotype are apparent across a range of
population-specific frequencies. Key next steps will
involve determining the frequency of these variants in
other populations and ethnicities as well as evaluating
interactions with other PD susceptibility variants.

As further loci and functional variation influencing
disease susceptibility are identified, it will be impor-
tant to assess the combined effects and determine indi-
vidual genetic risk scores based on informed genetic
evaluations and population ethnicity. For example, to
date, it appears that the genetic risk associated with
the MAPT locus is not present in Asian populations;
LRRK2 harbors both Asian and Caucasian ethnic-
specific risk factors, whereas the LRRK2 protective
haplotype and variants at SNCA appear to be relevant
across a number of diverse populations.4,6,7 In addi-
tion, given the late-onset sporadic nature of PD, it will
also be crucial to determine the joint effects of the
different genetic loci identified to influence PD risk.
Another recent study by the GEO-PD Consortium
evaluated the independent and joint effects of disease-
associated genetic variation at the SNCA and MAPT
loci in Caucasian populations.1 The results of that
study showed that individuals who harbored the risk
allele at both genes had an increased risk of PD under
an additive model, with no gene-gene interaction
observed.

Identifying those individuals at risk of PD will
require a paradigm shift in the diagnostic setting, com-
bining clinical genetic testing and premotor symptom
evaluation. Akin to the story of statins within the set-
ting of cholesterol and vascular disease, intervention
strategies for PD may need to be implemented well in
advance of symptomatic presentation. Recent studies
in Alzheimer’s disease have highlighted that the dis-
ease pathology may start anywhere up to 25 years
before the manifestation of cognitive issues.8 Unfortu-
nately, however, no effective biomarker for disease
progression has been identified for PD to date, and
this makes the identification of early disease presenta-
tion or the effectiveness of intervention therapies diffi-
cult to interpret.

Genetic discrimination of patients not only will be
crucial for preclinical diagnostics but also will play a
critical role in the development of therapeutics and
disease intervention strategies. The design of clinical
drug trials has largely been based on the clinical mani-
festation of the motor symptoms and is characterized
by the use of patients with PD who are in the
advanced disease state. If the pathology associated
with PD has initiated decades preceding the clinical
manifestation of the movement disorder, then these
patients may not represent the group most suited to
drug intervention. A two-pronged approach of symp-
tomatic relief and neuroprotective strategies may need

to be implemented well in advance of the clinical pre-
sentation, and those compounds tested to date may
have been administered too late in the disease course.
In addition, we also may find that the genetic discrimi-
nation of patients also may identify those at highest
risk of developing therapeutic-related complications,
eg dyskinesia and impulse control disorders, looking
to pharmacogenomics to pave the way in drug
administration.

Furthermore, to date, clinical drug trials have not
been fully informed; ie, they have not used genetically
homogenous populations for specific targeted thera-
pies. For example, it is likely that not every patient
with PD will benefit from LRRK2 inhibition. As high-
lighted in our study, the protective p.N551K-R1398H-
K1423K haplotype is present in some PD patients. If,
as presumed, the toxic mechanism underlying LRRK2
disease is an increase in kinase activity, then it would
support evidence that the protective haplotype lowers
kinase activity.5 Under these circumstances, use of an
LRRK2 inhibitor may be prove ineffectual and per-
haps even damaging given recent insights from
LRRK2 knockout model studies.9,10 Therefore, the
design of LRRK2 inhibitor clinical trials should use
the fundamental understanding we have of individual
genomics and develop inclusion/exclusion criteria
based on genetic understanding of disease risk. This
scenario also holds true for the development of poten-
tial a-synuclein knockdown studies based on the toxic
over-expression hypothesis.11–13 Indeed, combinatorial
drug approaches that combine targeted therapies may
present the most effective action.

The use of next-generation sequencing technolo-
gies has exploded over the last few years. In 2011,
we witnessed the first PD gene identified using these
methods.14,15 As the approaches of whole-exome
and whole-genome sequencing become both more
affordable and commercially available, many more
individuals will present at the clinic with these data.
This will produce an increase in the number of
potential PD genes nominated and a vast quantity of
rare variants in both novel and known PD loci that
will need to be interpreted. Large multi-ethnic stud-
ies like those performed by the GEO-PD Consortium
on variants in LRRK2, SNCA, and MAPT will be
required to fully understand the role of each of these
genes in PD and the clinical impact each will have.
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ABSTRACT
Background: The Montreal Cognitive Assessment
(MoCA) is a brief screening instrument for dementia
that is sensitive to executive dysfunction. This study
examined its usefulness for assessing cognitive per-
formance in mild, moderate, and severe Huntington’s
disease (HD), compared with the use of the Mini–
Mental State Examination (MMSE).
Methods: We compared MoCA and MMSE total
scores and the number of correct answers in 5
cognitive-specific domains in 104 manifest HD patients
and 100 matched controls.
Results: For the total HD sample, and for the moder-
ate and severe patients, significant differences
between both MoCA and MMSE total scores and
almost all cognitive-specific domains emerged. Even
mild HD subjects showed significant differences with
regard to total score and several cognitive domains on
both instruments.
Conclusions: We conclude that the MoCA, although
not necessarily superior to the MMSE, is a useful
instrument for assessing cognitive performance over a
broad level of functioning in HD. VC 2013 International
Parkinson and Movement Disorder Society

Key Words: Huntington’s disease, Montreal Cognitive
Assessment (MoCA), Mini–Mental State Examination
(MMSE), cognitive decline

Cognitive assessments are used clinically to diagnose
and track individuals affected by disorders that impair
cognition. However, comprehensive neuropsychologi-
cal testing is unsuitable for most medical visits, when
clinicians require rapid assessment of global cognitive
functioning. Therefore, brief screening measures are
useful tools to summarize information regarding the
overall level of cognitive performance.

Although the Mini–Mental State Examination
(MMSE) is the most frequently used brief cognitive
instrument,1–3 the extent of its usefulness has been
questioned with regard to milder forms of cognitive
impairment1–3 and in dementing disorders characterized
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