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Abstract: The study of the rolling tyre is a problem framed in the general context of nonlinear
elasticity. The dynamics of the related phenomena is still an open topic, even though few examples
and models of tyres can be found in the technical literature. The interest in the dissipation effects
associated with the rolling motion is justified by their importance in fuel-saving and in the context
of an eco-friendly design. However, a general lack of knowledge characterizes the phenomenon,
since not even direct experience on the rolling tyre can reveal the insights of the correlated different
dissipation effects, as the friction between the rubber and the road, the contact kinematics and
dynamics, the tyre hysteretic behaviour and the grip. A new technology, based on fibre Bragg grating
strain sensors and conceived within the OPTYRE project, is illustrated for the specific investigation
of the tyre dissipation related phenomena. The remarkable power of this wireless optical system
stands in the chance of directly accessing the behaviour of the inner tyre in terms of stresses when a
real-condition-rolling is experimentally observed. The ad hoc developed tyre model has allowed the
identification of the instant grip conditions, of the area of the contact patch and allows the estimation
of the instant dissipated power, which is the focus of this paper.
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1. Introduction

The automotive industry is one of the major actors in the stage of greenhouse emission and
electricity production [1] and the enhancement of road vehicle efficiency becomes the answer to the
environment-wise concern. In this regard, the rolling resistance plays a key role among many sources of
dissipation, since it can cause up to 30% of the fuel consumption, according to the driving regimes [2].

Analogous to a drag force, the resistance occurring during rolling is the expended energy in a unit
of travelled distance. Tyres are made of a viscoelastic material, i.e., by reinforced rubber, and undergo
phenomena of hysteresis. During loading and unloading phases, the stiffness curves of the tyre do not
exactly match, producing energy loss: the more a tyre deforms, the higher the amount of generated
heat. In addition, hysteretic effects depend on the mechanical characteristics of the tyre; for instance,
as a counterintuitive phenomenon, the dissipated energy decreases as the temperature increases.
This aspect explains the reason why the design of an intelligent tyre [3–6] finds its origin and its
foundations also in the comprehension of the energy loss mechanisms and suggests the importance of
experimental campaigns aimed at measuring the rolling resistance. The optimal design of a tyre must
balance several, often discordant, requirements [7], such as adequate handling abilities, with a good
level of grip for manoeuvring vehicles during cornering, braking and acceleration, while still keeping
low the level of dissipated energy.
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The development of an embedded system of sensors [8,9] for monitoring key variables, such as
pressure, strain, temperature, acceleration, wheel loading, friction and tread wear, requires advanced
technologies in the field of sensors and data transmission systems. In addition, these last need
a dedicated power supply system, itself a challenging task [10]. This demands the development
and the introduction of advanced technologies for any stage of the setup chain. In the last decade,
conceiving a tyre as a sensor has been the ultimate goal of part of the automotive technologies,
mainly targeted to friction identification. Indirect methods are devoted to extracting, for instance,
the wheel angular velocity or the vehicle speed [11,12] from the acquired parameters. The nonlinear
relationships [13–15] relating tyre parameters demand the employment of either Kalman filter [16] or
fuzzy logic controllers [17]. Indirect methods, even though their hardware apparatus can be easily
installed, lack high accuracy, and a calibration procedure is needed at any tyre change and at any
pressure adjustment [16].

There are several other methods, other than the indirect techniques, that take advantage of direct
observations with higher accuracy. Among them, Micro electro-mechanical systems (MEMS) are the
most commonly used as pressure sensors [18] and for tread deformation acquisition [19], standing
the fact that sensitivity is strictly related to the particle size. Empirical models [20] are tools used to
characterize the relationship between rolling resistance and vehicle speed, even though its online
measurement has not been directly investigated yet.

Spatial and time accuracy are not the most remarkable features of the data acquired through
the above-mentioned methods and rapidly varying dynamic parameters are hard to be sensed and
transmitted [21]. Further improvements in digital electronics and signal analysis processing are required
to achieve more reliable resolution. The absence of commercial sensors for the direct acquisition of
the tyre–road grip conditions confirms these difficulties. There are only few examples potentially
resulting in industrial products, based on advanced sensors and electronic systems for real-time
estimation [8,9,22], as for instance the Cyber Tyre [9,23]. However, the actual application of this sensing
system is limited to the tyre internal pressure and contact patch monitoring, for which much simpler
systems can be installed (based for example on the deviation of the rolling speed of one considered
wheel with respect to the average of the others, as, for example, using the flat tyre monitoring (FTM)
system).

It becomes clear how sensing systems, provided with simple architecture, and accurate
identification methods [24–26] represent an urgent goal. In this context and in the general frame of
a wider project [7,8,21,22], the ambition of this work was to develop a system enabling the tyre grip
evaluation and the real-time identification of the stress of a tyre during the rolling regime. The strain
inside the tyre was monitored by an ad hoc optical system, integrated into the tyre itself; based on
these data, the analytical model manipulated the strain and returned, in real-time, the estimated
rolling resistance.

The OPTYRE grip sensor is part of the Sapienza University of Rome’s autonomous vehicle project,
"Auto Sapiens", developed by the Vehicle Dynamics and Mechatronics Lab team. The OPTYRE provides
in real-time the state of the grip of the tyre to control the vehicle during braking, acceleration and
during cornering manoeuvres and allows excellent safe driving performance using suitable controllers
to be achieved [27–31].

The paper is organized into four main sections. Section 2 describes the experimental setup.
Section 3 introduces a tyre analytical model on which the algorithm designed to evaluate the rolling
resistance is based. This model permits results of the experimental campaign, discussed in Section 4,
to be obtained and the real-time rolling resistance identification procedure. Eventually, Section 5
portrays the conclusions and outlines future developments.

2. The Layout of the OPTYRE System

This section describes the measurement scheme and the experimental setup, starting from the
fibre Bragg grating (FBG) sensors embedded inside the tyre.
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The FBG based sensors, composed of a single-mode optical filter, present a spatially recurring
glass refraction index. Because of this grating, the fibre becomes an optical filter: when infrared
light is sent into the fibre, only a specific narrow band is reflected back towards a spectrum analyser.
The remaining light is transmitted undisturbed along the optical waveguide.

This makes the FBG a distributed Bragg reflector [32], shown in Figure 1a. Indeed, the periodical
variations of the refraction index in the optical fibre are arranged in a way that only specific wavelengths
of light are reflected, transmitting all the others, which follow freely their path. This discloses a strict
connection between the reflected Bragg wavelength λB, the refractive index n of the fibre and the
period of the refractive index modulation Λ: λB = 2nΛ. The FBG turns into a strain sensor able to
detect local axial deformation of an optical fibre. The previous expression clearly states how the
reflected wavelength λB is sensitive to any modification of the grating sensors properties. Among
them, the temperature variations change n as a consequence of the thermo-optic effects; Λ as well
varies with the thermal modification if the fibre is unconstrained; in the same way, deformation and
strain of the fibre cause alteration of Λ and n. This behaviour is completely described by Equation (1)
in which the two terms on the right-hand side are related to the effects on λB due to variations of the
strain and the temperature, respectively.

Accurate monitoring of the variations of the wavelength of the FBG sensors allows the estimation
of these perturbations. The simultaneous presence of strain and temperature excursion demands two
FBG sensors for the acquisition: one must be in-built to the structure to acquire the strain, the other,
dedicated to temperature recording, positioned close the first one, must be kept detached from the
structure, to avoid the influence of the strain.
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FBG sensors present several advantages, reasons for the increasing interest they enjoy and the
number of applications that see them involved, especially on structural health monitoring [33,34].
Data acquisition in large areas is enabled simply by embedding a large number of sensors on a single
multiplexed fibre. Finally, FBG sensors do not suffer electromagnetic interference, have compact
dimensions, do not need a dedicated power supply system: the light beam is the signal carrier and the
power line at the same time.

In this particular circumstance, the idea was to place a number of optical fibres, equipped with
several FBG sensors, along the inner circumference of the tyre. The case here investigated saw a single
FBG sensor, Figure 1a, embedded on the inner surface of the tyre [8], Figure 1b, through the connection
valve installed on the rim as depicted in Figure 1c.

Figure 2 depicts the measurement scheme described ahead:

• An optical led source produced the light beam, whose wavelength belonged to the far-infrared
range; the path of the light beam was the optical fibre that, equipped with several FBG sensors,
was attached to the circumference of the tyre.

• A spectrum analyser acquired the variations of the reflected light frequency bandwidth, caused
by deformations of the tyre.

• The computer received and processed the signal sent by the spectrum analyser, which has the
function to suitably sample the incoming analogue data.Sensors 2019, 19, x FOR PEER REVIEW 5 of 23 
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Once the instant wavelength of each FBG sensor is detected by the spectrum analyser, the local
strain ε is evaluated through:

ε j(t) = Kε
λ j(t) − λ0 j

λ0 j
− α∆T (1)

which relates the instantaneous wavelength λ j of the j-th FBG sensor to the strain. In Equation (1),
λ0 j is the reference wavelength, Kε = 1.27 is a gain factor, ∆T is the temperature variation, which is
roughly zero in our tests, and α is the thermal expansion coefficient of the optical wire.

Since the FBG interrogator was integral to the car chassis, a fibre optic rotary coupler, inserted
between the interrogator and the tyre as in Figure 3a,b, was necessary to acquire data during dynamic
operations. The major complication stands in the data transmission, which must be ensured even
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during rotations. This required a device, the rotary joints in this particular case, able to communicate
the optical signal across rotating surfaces. These rotary joints performed the same function of electric
slip rings, guaranteeing the transmission of electric signals. The special application demanded an
ad-hoc design of the coupler, presented in Figure 3a, which considers a static flange linked to the
car chassis, and a rotating flange, coaxial with the tyre axes and connected with the rim. Eventually,
a coupler case had the double function of connection to the wheel and protection for rotary joints
from debris.
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Figure 3. (a) The final assembly CAD of the wheel sensor device; (b) the side view CAD of the wheel
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This setup went beyond the current limits of the available technology, in terms of power supply
and transmission data systems. The FBG sensors were supplied by a generator mounted externally to
the tyre and integral to the car body. The generator produced the light source: the beam was sent to
the optical fibre, embedded in the tyre carcass, through the rotary optical coupler. The optical signal
sent on-board the tyre was modulated passing through the FBG sensor and was reflected back outside
the tyre, thanks to the rotary optical coupler, which replaced any data transmission device. One of
the main advantages of the solution was that the same physical light beam carried both the power
to sensors and the information to the interrogator. Further advantages of the present setup arose
from the material of these sensors, which had low rigidity and were capable of long-term acquisitions,
even under the severe working conditions experienced by the tyres, and were very compatible with the
rubber of the tyre. The size of the tyre adopted for the present was 215/45 R17, the tyre was installed
on a prototype vehicle shown in Figure 4.Sensors 2019, 19, x FOR PEER REVIEW 7 of 23 
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3. Rolling Resistance Model of a Rolling Tyre

3.1. Analytical Model for the Strain Distribution over the Tyre Surface

The design of a tyre, which results from the compromise between comfort and driving
performances [7,20], demands theoretical models and experiments and it has to optimally combine
rolling drag, tyre weight, directional stability, wet handling, ride comfort, steering feel and service life.

The theoretical investigation was the essential background to the following experimental campaign,
it recalled the classical elasticity theory, focusing on the strain along the circumferences of the tyre,
and pursued closed-form solutions. Accordingly, a model to characterize the strain was introduced as
a model to estimate the rolling resistance of the tyre.

The model here discussed found its inspiration in Reference [8], which, more than providing
analytical solutions to the problem, also locates the tyre–road contact patch, evaluates its length and
recognizes where the progression between slipping and non-slipping takes place. Based on a similar
approach, the present study further introduced and analysed the effect of the viscous damping on the
deformation caused on the rolling tyre. The notations used in this paper are listed in the Table 1.
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Table 1. Metamathematical notations.

Notations Definition Notations Definition

x Longitudinal space coordinate of the
beam (m) a, b Constants of the bending beam

solution

y Transversal distance of the beam from
the neutral axis (m) ε = αβ

ab

Perturbation coefficient associated
with the nondimensional vertical

displacement ψ of the damped
beam

z Vertical distance of the beam (m) ε Strain deformation

t Time coordinate (s) P
External power i.e., the work done

on the deformed solid for unit
time (Nm/s)

u(x, t) Longitudinal displacement of the
beam (m) K Kinetic power (Nm/s)

w(x, t) Vertical displacement of the beam (m) S Stress power (Nm/s)

θ(x, t) Rotation of the cross-section of the
beam around y axis (rad) V Volume of the deformed solid (m3)

w0 Static beam deflection (m) A Area of the deformed solid (m2)

E Elastic modulus (Pa) ρ
Density of the deformed solid

(kg/m3)

G Shear modulus (Pa) b
Body force per unit mass

distributed over the volume V
(N/kg)

J Second moment of area of the beam’s
cross-section (m4) v Velocity vector of the particle (m/s)

µ
Mass per unitary length of the beam

(kg/m) T Contact force per unit area or
stress vector (N/m2)

ωd Damping coefficient of the beam (1/s) σ Cauchy stress tensor (Pa)
k Winkler elastic foundation (N/m2) ε Strain tensor
P Vertical load (N/m) n Normal versor

c Speed of load movement P or tyre
speed (m/s) η

Viscoelastic damping coefficient
(Pa s)

ccr Critical speed of c (m/s) ϕ Angular tyre position (rad)
δ() Dirac’s function ω Angular tyre speed (rad/s)

w̃()
Nondimensional vertical
displacement of the beam R Tyre radius (m)

w̃ud
Nondimensional vertical

displacement of the undamped beam h Tyre thickness (m)

ψ
Nondimensional vertical

displacement of the damped beam εm
Longitudinal strain evaluated on

the tyre contact surface
s Nondimensional space coordinate pd Dissipation factor (1/m)

α Nondimensional stiffness of the beam Pd
Power dissipated or specific

power (m3/s2)

β
Nondimensional damping coefficient

of the beam

The characterization of the analytical model requires the introduction of some hypothesis: i) the
shape of the tyre, usually assumed to be a toroid (Figure 5a), is straighten out, ii) the tread is modelled
as an infinite beam constrained to the elastic sidewall and iii) the sidewall itself is considered as
a Winkler-type elastic base: the simplified model is shown in Figure 5b. The resulting differential
equation of motion of the beam, expressed in terms of the transverse displacement w is:

EJ
∂4w(x, t)
∂x4

+ µ
∂2w(x, t)
∂t2 + 2µωd

∂w(x, t)
∂t

+ kw(x, t) = Pδ(x− ct) (2)

with x the axial coordinate along the beam, as shown in the Figure 5b, and t is time variable, respectively,
EJ represents the flexural stiffness, µ is the mass per unitary length, µωd represents dissipation effects,
k is the Winkler foundation coefficient, P is the constant punctual vertical force, moving at constant
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speed c with respect to the points of the rolling tyre, and, eventually, δ(x) is the Dirac’s function. It is
worth mentioning that E and µ in Equation (2) are considered constant while their values are also
affected by the tyre temperature. However the characteristic time for significant temperature variations
generally requires several minutes, Ttemp ∼ 600s, while the transverse displacement is characterised by
a dominant period related to the tyre speed, which is much smaller than the former, i.e., Trev ∼ 0.1s
for a regular car tyre at 50 km/h. It is therefore allowed to neglect the temperature dependency of
Equation (2), bearing in mind that the actual values of E and µ can be regularly updated once the tyre
temperature is monitored: this is one of the main reasons why the multisensing setup adopted in the
OPTYRE [35] also uses a dynamic temperature sensor. However, for the sake of simplicity in this first
experimental campaign related to rolling resistance estimation and described in Section 4, the values of
E and µ were not updated and their values listed in Table 1 refer to the start of the experiment with a
measured tyre temperature of 20 ◦C.
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Figure 5. (a) Reference systems of the rolling tyre; (b) reference systems of the elastic beam.

It is also worth mentioning that the model here considered was linear elastic, i.e., constant
Young’s modulus in Equation (2), in spite of the fact that tyre rubber is hyperelastic. This simplifying
assumption was made to have a reasonable trade-off between two antithetic needs, such as the accuracy
of predictions and the analytical/numerical efforts involved with the solution of the equations that
govern the phenomenon. In fact, the stress–strain relationship remains linear also for the tyre rubber
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in the case of small and moderate deformations [36,37], diverging from the linear trend for larger
strains. As a consequence, predictions made with the proposed model would be reliable in the case
of moderate deformations of the tyre, i.e., in the case of constant speed or mild accelerating/braking
torque, while the errors would grow for large deformations, which however are, generally, less frequent
in daily driving conditions.

The wave solution to the Equation (2) is obtained by the change of variable s = λ(x− ct),

where λ = 4
√

k
4EJ . The quasi-stationary solution of Equation (2) becomes the product between the

static deflection w0 = P
8λ3EJ =

Pλ
2k and the nondimensional deflection w̃(s). As a function of the single

variable s, Equation (2) turns into a fourth-order ordinary differential equation:

d4w̃(s)
ds4

+ 4α2 d2w̃(s)
ds2 − 8αβ

dw̃(s)
ds

+ 4w̃(s) = 8δ(s) (3)

where:

α =
c

ccr
=

c
2λ

√
EJ
µ

, β =

√
µ

k
ωd (4)

and ccr is the beam critical speed:

ccr = 2λ

√
EJ
µ

. (5)

The solution to Equation (3) is achieved by introducing the integral Fourier transformations

w̃(s) = 2
a1(D2

1+D2
2)

e−bs(D1cos a1s + D2sin a1s), withs ≥ 0

w̃(s) = 2
a2(D2

3+D2
4)

ebs(D3cos a2s−D4sin a2s), withs < 0
(6)

and applying the boundary conditions:

s→ ±∞ : w̃(s) = w̃′(s) = w̃′′ (s) = w̃′′′ (s) = 0 (7)

that leads to:
D1,3 = a1,2b

D2,4 = b2
∓

1
4

(
a2

1 − a2
2

) . (8)

At last, the constants a and b are found under the hypothesis of light damping β� 1 as

b =
√

1− α2, a1,2 =

√
1 + α2 ±

2αβ
b

. (9)

It is apparent that, in case of a conservative tyre, for β = 0, a1 ≡ a2 = a =
√

1 + α2. The undamped
expression of w̃(s) according to Equations (7) is:

w̃ud(s) =
e−b|s|

ab
(a cos as + b sin a|s|) (10)

which is an even function depending on the unique variable s.
The evaluation of the damped response is not straightforward to obtain and needs the expression

as in Equation (6) to be expanded as a Taylor series around β up to the second order:

w̃(s) ≈ w̃ud(s) − sign(s)
αβ

ab

[
1
a

w̃ud(s) +
1
b

e−b|s|

ab
(1 + b|s|)(b cos as− a sin a|s|)

]
. (11)
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Since the terms on the right-hand side in the square brackets are all even functions multiplied by
the odd function sign(s), their product is itself an odd function:

ψ(s) = −sign(s)
[

1
a

w̃ud(s) +
1 + b|s|

b
e−b|s|

ab
(b cos as− a sin a|s|)

]
. (12)

This implies that the damped deformation w̃(s) is the result of the combination of two terms: the
undamped response w̃ud(s) and a damped contribution, in which the effect of the damping appears
only in the multiplying coefficient ε = αβ

ab , linearly dependent on β. If it is reasonable to assume ε� 1,
then the damped deformation emerges as a perturbation, in the shape of an odd function, that slightly
alters the undamped response:

w̃(s) ≈ w̃ud(s) + εψ(s). (13)

The stress–strain constitutive relationship provides the deformation of the beam:

εx = −
M
EJ

y = −w′′ y (14)

where εx is the strain along the x direction and y the distance from the neutral axis. According to
Equation (13), also the circumferential strain is expressed in terms of an even function, related to the
undamped response, and a small perturbation, that assumes the form of an odd function:

ε(s) ≈ εud(s) + εϕ(s). (15)

Figure 6 reports w̃(s), w̃ud(s), calculated through Equations (6) and (10), respectively, and their
difference ∆w̃(s) = w̃(s) − w̃ud(s). The plot, based on the parameters presented in Table 2, confirms
the accuracy of the model, given the resulting small amplitude odd function ∆w̃(s), consistent to
Equation (13).
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Table 2. List of the constant values (see the Reference [8] for more details).

Constant Values

E = 5·107 N Tyre Young modulus
J = 1.66·10−8 m4 Beam area moment of inertia
µ = 1100 kg/m Tyre mass per unit length

k = 7.790·106 N/m2 Elastic constant of the Winkler foundation
R = 0.3126 m The unloaded radius of the tyre
ht = 0.018 m Tyre section height
L = 0.05 m Semi footprint length

M = 400·9.81 N Total load over the footprint
Cx = 1.883·106 N/m Longitudinal slip coefficient

fs = 0.8 Static tyre-road friction coefficient
fd = 0.6 Kinematic tyre-road friction coefficient

c = 11.11 m/s Speed of the moving load

3.2. Analytical Model for the Rolling Resistance

It has already been mentioned how the contact patch undergoes a vertical load that is not perfectly
centred, and it suffers an offset since the normal pressure is not uniformly distributed over the
surface of the footprint; indeed, the trailing half is more unloaded with respect to the leading half.
This phenomenon produces a torque, which operates in opposition to the forward motion, and it is
mainly due to the hysteresis of the tyre, intrinsically associated with the deformation of the rubber
during the rolling motion. This eventually generates the rolling resistance, and actually almost 90% of it
is produced by the energy dissipated because of the deformation [2]. This implies that the main factors
playing a role are the materials the tyres are composed of, the inflation pressure, the temperature,
partially the speed of the car and in general the operating conditions.

With these premises, the present section was aimed at defining a measure of the energy loss because
of the rolling resistance, based on few parameters that must be controllable and easily measurable,
as the geometric features of the tyre and the strain along the circumferences of the tyre.

For this purpose, the work–energy relation between the amount of external work, the internal
work and the kinetic energy of a deformable solid are presented. The amount of external work P(V,t)
done on the deformed solid of volume V, confined by the surface A at the time t is:

P(V, t) =
∫

V
ρb·vdV +

∫
A

T·vdA (16)

where ρ is the mass density in the considered configuration, b the body force per unit mass distributed
over the volume V, T is the contact force per unit area or traction, v is the particle velocity at the point
x. All the parameters in Equation (16) are functions of the time t and the configuration x, but the
dependency has been concealed for the sake of notation.

As long as it is reasonable to consider motions as infinitesimal, the traction T can be assumed
to be the projection of the Cauchy stress tensor σ on the outgoing normal versor n to the surface A,
namely, in Einstein notation, Ti j = σi jn j. Applying the divergence theorem and expanding Equation
(16), it becomes:

P(V, t) =
∫

V

(
ρbivi +

∂σi jvi

∂x j

)
dV. (17)

The linear momentum equilibrium equation, a function of the Cauchy stress, is:

ρ
∂vi
∂t

=
∂σi j

∂x j
+
∂σi j

∂x j
+ ρbi. (18)
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Introducing Equation (18) into Equation (17) and employing the symmetry properties of the stress
tensor, one obtains:

P(V, t) =
∫

V

[
1
2
ρ
∂(vivi)

∂t
+

1
2
σi j

(
∂vi
∂x j

+
∂v j

∂xi

)]
dV. (19)

Eventually, the work-energy relation is achieved considering
.
εi j =

∂εi j
∂t = 1

2

(
∂vi
∂x j

+
∂v j
∂xi

)
the strain

rate tensor and combing Equation (19) and Equation (16):∫
V
ρbividV +

∫
A

TividA =

∫
V

(
1
2
ρ
∂(vivi)

∂t
+ σi j

.
εi j

)
dV (20)

where A is the cross-section of the beam. Equation (20) states that the rate of external work on any part
of the body equals the rate of increase of kinetic energy, e.g., the first right-hand side term, and the rate
of internal work within that part, e.g., the second right-hand side term and which is often called the
stress power. Generally, the stress power accounts for both stored and dissipated energy.

Since the dissipated power wants to be expressed as a function of the circumferential strain,
the explicit definition of the strain tensor is required. As discussed in Section 2, the tread was modelled,
based on the Newtonian fluid dissipation model, as an isotropic viscoelastic beam. It was further
assumed that the tread was subjected to both longitudinal and flexural vibrations, according to
Figure 5b, which implied vibrations along the x- and z-directions. Consequently, the strain tensor can
be defined as:

ε11 =
∂u(x,t)
∂x + z∂θ(x,t)

∂x
ε13 = ε31 =

∂w(x,t)
∂x + θ(x, t)

. (21)

In this set of equations, the indexes 1 and 3 correspond to x and z axis, respectively, and w
represent the displacements along the longitudinal and vertical directions and θ is the rotation of the
cross-section of the beam around the y axis, conform to the convention proposed in Figure 5a,b. It is
apparent, the first of Equation (21) provides the total deformation of the beam along the x axis, due to
the longitudinal stress (first term on the right-hand side) and due to the flexural contribution (second
term still on the right-hand side). Finally, the second equation represents the shear deformation purely
caused by the flexural displacement. When E and G are the Young’s and shear moduli and η the
viscoelastic damping coefficient, the viscoelastic constitutive relationships appear to be:

σ11 = Eε11 + h
.
ε11

σ13 = σ31 = Gε13 + h
.
ε13

. (22)

While the system embedded in the tyre, as presented in Section 2, was able to measure the
longitudinal deformation, the experimental acquisition of the vertical displacement and of the
cross-section rotation was not straightforward and its identification turned out to be rather demanding.
For this reason, it was set aside in this work. This might induce an incomplete formulation; however,
a reliable and meaningful one can still be provided under the following few assumptions:

i. The beam is modelled according to the Euler–Bernoulli theory, for which θ(x, t) = −∂w
∂x ,

the shear deformation and strain terms in Equations (21,22) are null and ε11 = ∂u
∂x − z∂

2w
∂2x .

ii. Transforming the coordinate system, i.e., the variable x is replaced with the curvilinear abscissa
Rϕ, and for a stationary motion, the new independent variable s becomes s = R(ϕ+ωt).
The origin of the coordinate system has a motion integral with the tyre with angular speed ω.
According to the convention in Figure 5a, the contribution of the angular speed has a positive
sign, implying that when the rotation is positive, the velocity vector of the centre of the tyre has
a direction opposite to the x-axis.
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Thanks to these assumptions, it is now possible to write the longitudinal deformation in Equation
(21) as a function of the inner tyre strain surface at z = h

2 , i.e., εm = ε11
(
s, h

2

)
. As the partial derivatives

are transformed as ∂
∂x = d

ds and ∂
∂t = Rω d

ds , and ()′ = d
ds () for the sake of simplicity, it follows:

u′ = εm + h
2 w′′ ; u′′ = ε′m + h

2 w′′′

ε11 = εm +
(

h
2 − z

)
w′′ ; ∂ε11

∂t = Rω
(
ε′m +

(
h
2 − z

)
w′′′

) (23)

where the indication of the dependence on s is omitted.
The aim is to express the internal energy of the tyre as a function of the acquired strain and of the

derivatives of the vertical displacement. This is obtained by substitution of Equation (23) into Equation
(20), namely:

K(εm, ε′m, w′, w′′, w′′′) =
∫

V
1
2ρ

∂(vivi)
∂t dV = A(Rω)3ρ

∫ πR
−πR(u′u

′′ + w′w′′)ds =

= A(Rω)3ρ
∫ πR
−πR(εmε′m + h

2 (εmw′′′ + ε′mw′′) + h2

4 w′′w′′′ + w′w′′)ds
(24)

With the same approach, the term related to the stress power in Equation (20) becomes:

S(εm, ε′m, w′′, w′′′) =
∫

V σi j
.
εi jdV = RωE

∫
V ε11ε′11dV + (Rω)2h

∫
V ε
′

11
2dV =

RωEA
∫ πR
−πR(εmε′m + h

2 (εmw′′′ + ε′mw′′) + h2

3 w′′w′′′)ds

+(Rω)2hA
∫ πR
−πR(ε

′
m

2 + hε′mw′′′ + h2

3 w
′′′2)ds

(25)

Applying the assumptions of the models of the previous section, i.e., in the case of moderate
dissipation, both the vertical displacement w and the deformation of the circumference can be expressed
as even functions affected by weak perturbations, in the shape of odd functions. To obtain the final
expression of the dissipated power, one should evaluate each term Equation (24) and Equation (25)
are composed of. Hence, starting from the first term on the right-hand side in Equation (24) it can be
developed as follows:∫ πR

−πR
εmε

′
mds ≈

∫ πR

−πR

(
εudε

′

ud + εεudϕ
′ + εε′udϕ + ε2ϕϕ′

)
ds. (26)

Since the integration domain is symmetric, the odd integrands result in a null contribution;
instead, the even terms, being multiplied by the small parameter ε, generate modest contributions.
Extending this scheme to all the other terms shows how the only remaining term on the right-hand
side of Equation (20) is:

K + S ≈ (Rω)2hA
∫ πR

−πR
ε′m

2ds. (27)

The result is the internal dissipated power becomes a function of the second power of the linear
velocity of the tyre only. This implies that, given the circumferential strain, acquired through the
embedded FBG sensors, the dissipated power can be easily evaluated through numerical integration,
as discussed in the following section.

As a final comment, in the previous sections the importance of real-time identification methods
has been underlined. According to this philosophy, the presented model becomes the answer to balance
the need for a rapid algorithm, for real-time applications, and accurate mathematical characterization
of the dissipated energy in a rolling tyre.

Even though the achievement of these tasks is already challenging, there are a few more aspects
that are worth further investigation. In particular we can mention the following points that deserve
additional investigation: i) the contact mechanism between rough surfaces, based on the theory
developed in Reference [14], ii) the presence of an interstitial fluid between the road and the tyre
during the contact (tyre–water–road contact), which can be included thanks to the models presented
in Reference [5], iii) the dynamics proper of the leading edge, according to the theory discussed in
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References [24,38], and iv) the sophisticated composite structure of the tyre, considered introducing
high-order constitutive relationship, similarly to References [4,13].

4. Field Experiments and Discussion

The experimental campaign is the focus of the present section. The experiments were carried
out operating the car on urban and extra-urban roads. The acquisitions were made through two
synchronized acquisition systems. The first was the optical interrogator connected to the FBG sensor
while the second system captured data such as, the vertical acceleration of the wheel, the wheel encoder
(see Figure 7a,b) and the data provided by the global position system (GPS). By combining the speed
information detected by GPS and the encoder, it was possible to classify the data according to different
speed regimes. During acquisitions, the vehicle retraced the same tracks several times, trying to keep
the speed as constant as possible. Three passengers were sat in the car. The tyre was equipped with
FBG sensors and the static weight on this tyre was measured and equal to 350 kg, and the tyre pressure
was set at 2.2 atm.
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Figure 7. (a) The OPTYRE system mounted on the production car during the experimental campaign
in operational condition; (b) a zoom of the measurement OPTYRE system in operational condition.

The following figures (Figure 8a,b) report the achievements of the experiments performed under
dynamic conditions. In particular, the time evolution of the inner surface circumferential strain is
shown in Figure 8a. The signal was recorded during the phases of standing start, acceleration, uniform
speed drive and braking. It is worth mentioning that the precision of the strain signal acquired allows
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also an accurate estimation of the tyre velocity: Figure 8b shows indeed an overlook of the trend of the
tyre velocity. The speed was numerically evaluated applying 2nd order centred differencing formula
through a suitable MatlabTM algorithm, namely the find peaks function, which uses the strain signal as
input. The estimation is based on the fact that the maximum points of the strain are located about the
centre of the footprint and that the relative distance between consecutive peaks is 2πR. This average,
per revolution, tyre velocity turned out to be very well estimated, since the relative error with the
average tyre velocity estimated by the encoder, described above, remained always below 1%. To this
extent, it is important to recall that the encoder was primarily adopted for the real time identification
of the tyre position [35], which helped the estimation of the tyre footprint and the residual grip as
discussed in Reference [8], instead the tyre velocity can be easily estimated and with good accuracy by
the FBG sensors only.
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Figure 8. (a) The dynamic strain versus time; (b) the estimated tyre velocity plotted versus time.

Figure 9a,b display the circumferential strain during the uniform speed phase, the measured
circumferential strain shown in Figure 9a appears to be in good agreement with the results of the
analytical model shown in Figure 6, as explained also in more detail in Reference [8]; in addition,
since the sensor was mounted on the inner surface of the tyre, the area of the contact patch was stretched.

In Figure 8a, it is possible to notice a weak drift of the strain average. This was due to the fact that
at the beginning of the acquisition the tyre was cold, but the hysteresis loss, produced by the cyclical
deformation of the tyre, generated a temperature increment. This aspect was further justified by the
linear relationship between temperature and tyre inflation pressure: at the beginning of the cycle,
FBG sensors appeared at the unloaded position, diametrically opposite to the centre of the contact
patch; instead, at late times, the position changed because of the circumferential strain of approximately
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600 µstrain. In first approximation, this temperature gradient could be set as about 10 ◦C for a thermal
expansion coefficient of a generic rubber.

The model used in Equation (1), even though intrinsically related to the effects of the temperature,
did not consider the mentioned temperature variation. Indeed, the model was applied to a time
acquisition range in which the temperature reaches a stationary condition, identified through the
stationary mean deformation trend ε. To enhance the used model, introducing a more accurate
estimation of the tyre deformation due to thermal expansion at the inner line, it was advisable to equip
the tyre with a further FBG sensor, detached from the inner line but close to the FBG sensor devoted to
inner line deformation measuring.
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The specific power Pd = (K + S)/h, based on Equation (27) can be defined as:

Pd = (Rω)2A
∫ πR

−πR
ε′m

2ds (28)

and it is displayed in Figure 10a, in which, given an almost uniform tyre speed over the selected time
interval, see Figure 10b, the fluctuations are mainly due to irregularities of the road.

The time evolution of Pd over the entire acquisition interval is shown in Figure 11a. Data were
cleaned by introducing the moving average, which was calculated in each interval where the tyre
velocity could be assumed constant. To be considered constant, it was sufficient the requirement
c(ti) − c(ti−1) < 0.08 m/s was fulfilled. Note that the moving average filter was a simple low pass
finite impulse response filter, which is commonly used for smoothing an array of sampled data/signal.
It takes N samples of input at a time and takes the average of those N-samples and produces a
single output point. It is a very simple low pass filter that comes in handy to filter unwanted noisy
components from the original acquired data, while retaining a sharp step response. As the filter length
N increases the smoothness of the output also increases, whereas the sharp transitions in the data
are made increasingly less sharp. This filter has indeed excellent time domain response but a poor
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frequency response: this property makes it one of the best suited filters for time domain encoded
signals, as the one here analysed in Figure 11a,b. However, the performances of the moving average are
very poor for frequency domain encoded signals, with little ability to separate one band of frequencies
from another.

The Figure 11b shows the trend of the dissipation factor pd:

pd =
Pd

(Rω)2A
=

∫ πR

−πR
ε′m

2ds (29)

introduced so to delineate the relationship between the tyre speed (see Figure 11c) and the
dissipated power.

Eventually, the data, cleaned and smoothed, are shown in Figure 12a,b, arranged in ascending order
with respect to the tyre velocity, i.e., the Figure 12a represents the specific power, while the Figure 12b
the dissipation factor. As the dissipation factor linearly decreased with tyre speed, the specific power
showed an opposite trend, regularly increasing along with a linear fit. Both linear fittings had a strong
Pearson correlation coefficient, greater than 0.7. As a last consideration, the cloud of points around the
regression line was due to road irregularities and inertia forces, related to transient actions, like hard
braking and acceleration.Sensors 2019, 19, x FOR PEER REVIEW 19 of 23 
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Figure 12. (a) The moving averages of the specific dissipated power Pd evaluated in Figure 11a, sorted
in ascending order in respect of the tyre velocity, along the x-axis; (b) the moving averages of the
dissipation factor pd evaluated in Figure 11b, sorted in ascending order in respect of the tyre velocity,
along the x-axis.

Finally, it is worth mentioning how the presented results can be related to the standard approach
in the technical literature [39], which mainly deals with the rolling friction coefficient and losses in
traction torque. Generally, the rolling resistance force can be defined using a rolling friction coefficient
µr, as follows:

Fr = µrFz (30)

where Fz is the vertical load on the tyre, whose static load is known, and the dynamic load can be
measured in real time by using a linear potentiometers sensor installed parallel on the suspension.
The rolling resistance dissipated power is defined as follows:

Pd = cFr (31)

where c is the tyre velocity. Once Pd is estimated, as previously explained, and c is measured, the rolling
friction coefficient can be easily evaluated:

µr =
Pd
cFr

(32)

The Equation (32) is the link between the usual approach to friction losses in tyre dynamics to the
one proposed in this article.
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5. Conclusions Remarks

Framed in the context of the tyre rolling phenomenon, this work presented an innovative
technology for power dissipated identification through an ad hoc algorithm and experimental setup,
conceived within the OPTYRE project.

The experimental apparatus was proven to be reliable and robust, being able to obtain long-lasting
acquisitions, even in unfavourable conditions. The optical setup ensured high resolution and high
accuracy strain signal measurements, without requiring a complicated power supply and data
transmission systems.

A semi-analytical method was here proposed for real-time sensing as it guaranteed the high
speed required for real-time data investigation and the identification process: the proposed model
struck indeed a good balance between a high computational velocity and an accurate analysis of the
strain–grip relationship. The proposed model well characterized the interaction between tyre and road,
starting from the definition of the dissipated power as a function of the tyre circumferential strain.
It was also found how the dissipated power depended on the second power of the speed of the tyre.
These results made the dissipated power easily evaluable, in each tyre revolution, given the measured
circumferential strain acquired by the embedded FBG sensors.

Both experimental and theoretical results confirmed that the OPTYRE technology allowed the
real time identification of the tyre rolling resistance and, more generally, of the tyre–road grip
conditions. Currently, a new multi-sensing setup [35], made of FBG sensors, a phonic wheel, a uniaxial
accelerometer, and a dynamic temperature sensor, is employed and a wide experimental campaign is
being conducted to get further insights in the intelligent tyre framework.
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