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Chapter 1.                                         
Introduction 

1.1 Problem outline and motivation 

Seismic attenuation is a fundamental parameter on the comprehension of the 

viscoelastic real behavior of the medium. Characterization of the ability of materials to 

transmit and dissipate seismic waves is even important for petrophysical descriptions of 

reservoir rocks. 

From a physical point of view, seismic attenuation is due to three different 

phenomena: 

 

 intrinsic attenuation, that exists as a results of the energy loss due to internal 

friction and associated to the dissipative behaviour of the medium;  

 attenuation for scattering, that is the attenuation of the propagating waves in 

the inhomogeneous earth caused by diffraction, reflection and dissipation;  

 geometrical spreading, that is the energy density decrease over the wavefront 

of increasing size. 

  

Compared with seismic velocities and densities, absorption and scattering are often 

more sensitive to clay content, pore fluids, gas, or fracturing (Klimentos, 1995). 

The most common measuring parameter of seismic wave attenuation is the 

dimensionless quality factor 𝑄 and its inverse (damping or dissipation factor) 𝑄−1. The 

quality factor as a function of depth is of fundamental interest in groundwater, engineering, 

and environmental studies, as well as in hydrocarbon exploration and earthquake 

seismology (Morozov, 2015). The desire to understand the attenuation properties of the earth 

is based on the observation that the seismic wave amplitude reduces as the wave 

propagates. The classical approach to attenuation estimation is henceto measure the 

absolute spatial decay rate of wave amplitude in the time domain. The interpretation of the 

results is usually difficult and it lacks a standard procedure for attenuation measurements 

because many not well-understood problems such as source mechanism, wave scattering, 

and geometrical spreading of the wavefront, are involved in the phenomenon (Teng, 1968),. 

These problems have kept Q away from testing in professional practice, despite being a 

fundamental parameter to take into account for seismic characterization. 
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The reduction of the amplitude due to attenuation is generally frequency-dependent 

and, more importantly, attenuation can provide information about lithology, physical state, 

and degree of rock saturation (Toksoz and Johnston, 1981), so it can be used, besides or along 

the seismic velocity, to characterize the material of a geological structure using seismogram 

analysis. 

Conventionally, energy dissipation properties are described by 𝑄-factor of the 

materials. However,  𝑄 can assume different meaning in different contexts. We need indeed 

to distinguish three different uses of 𝑄-factor: (1) the 𝑄−1as a measure of “internal friction” 

used in petrophysical interpretation, (2) many measured (“apparent”) 𝑄𝑆 arising from 

observations, and (3) the “axiomatic,” mathematical Q used in viscoelastic theory and 

numerical modeling (Morozov, 2018). 

The measured or effective 𝑄 is a combination of intrinsic attenuation, scattering and 

geometrical spreading, and it is generally referred to as apparent attenuation (Barton, 2007). 

 In practical seismic data processing and inversion, the exact value of the 𝑄 values are 

sometimes unimportant. The attenuation modeling is generally used to correct the data for 

attenuation effects; to this end, an absolute 𝑄 is not strictly necessary. By contrast, in seismic 

modelling, it is important to ensure that the algorithms adequately represent the physical 

mechanisms of wave attenuation, adopting an accurate 𝑄 profile for the soil model, related 

to petrophysical properties and internal friction. 

To fully understand seismic wave propagation in the earth, the quality factors are 

parameters that must be known. For example, high frequency Rayleigh waves possesses 

information of the shear (S)-wave velocity (VS) and the quality factors of near-surface 

materials. 

Seismic modeling for seismic prospecting generally employs elastic wave simulations 

and most local site response studies take a standard damping factor of 0.05% for the entire 

soil column. An accurate knowledge of the quality factor (i.e. damping) profile can improve 

the quality of the results, like in local seismic response studies.  

Attenuation can be estimated both from surface or borehole data. Most of the borehole 

studies conducted for attenuation measures are calibrated for large depths, with large 

receiver spacing and array length. Some others are calibrated on earthquake measures. The 

idea of producing attenuation measures from downhole investigations started with the 

downhole measurements conducted for the 2016 Microzonation campaign. Downhole tests 

represent the most used borehole surveys to provide an accurate velocity profile and if the 

measurements are carried out with appropriate equipment and the required precautions, 

attenuation can be reliably estimated even in the near-surface range. 

In spite of the broad variety of methods available for 𝑄 estimation, only a few 

techniques, such as the rise-time method or the spectral ratio method, are widely accepted 

for borehole studies. 



11 

1.2 Objectives 

The knowledge of 𝑄 is very desirable for improving seismic resolution (Wang, 2008), 

facilitating AVO amplitude analysis, better understanding the lithology of subsurface and 

providing useful information about the porosity and fluid or gas saturation of reservoir. 

Anelastic attenuation can be regarded as a disturbance of seismic waves that must be 

eliminated by inverse 𝑄-filters. Utilizing quality factors only as a disturbance to remove may 

be an underestimation error. Knowledge of large dissipation in the near surface layers is 

important for shallow seismic surveys and local observations of earthquakes because near-

surface unconsolidated sedimentary layers or weathering materials may influence seismic 

records (Jongmans, 1990). The anelastic properties of earth materials have attracted the 

interest of many scientists in recent years, although great efforts have been made to 

determine it. 

The purpose of this work is to investigate the reliability of the rise-time and the spectral 

ratio methods for 𝑄 estimation in a seismic downhole campaign, to obtain accurate 𝑄 

profiles. The obtained parameters have been also compared through a study of surface 

waves dispersion and attenuation curves, adopting in-situ attenuation profiles for the 

forward modelling.  

1.3 Technical approach 

In this study, we applied two different methods to estimate attenuation. We used a 

standard spectral ratio technique to obtain the frequency independent𝑄 and then compared 

the results to 𝑄obtained in the time domain from rise-time measurements. These methods 

are unaffected by far-field geometric spreading. A review of the methods using borehole 

and surface waves studies is given in Chapter 3. 

Additionally, we estimate dispersion and attenuation curves using parameters model 

using results coming from borehole study. A comparison between experimental and 

theoretical curves can give us an idea about the reliability of the approach.  

P, SH-wave velocity and 𝑄 measurements were conducted in this study using an 8-

receivers (10 Hz) 3 Channels seismic string in two sites, one located in Rieti and the other in 

the headquarter of INGV in Rome. In the Rieti site, it has been operated a MASW surveys 

with 24 vertical geophones (4.5 Hz) in order to obtain surface wave dataset. 

1.4 Original aspects 

Most of the borehole attenuation studies presented in literature are carried out for 

hydrocarbon exploration. The main contribution of the present work is to apply the two 

most used attenuation estimation methods to near-surface data. They include two 
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techniques to determine the material damping ratio of the soil based on the downhole 

(DHT) test, and other two for attenuation and dispersion curves from MASW testing. 

For the downhole test have been adopted the spectral ratio and the rise-time methods, 

the last one has never been used in near-surface studies. Our purpose is to provide reliable 

measures of attenuation even from this method, comparing with the spectral ratio one. The 

processing used for the test can be adopted as a standard procedure for future studies in 

this sector, since there is not a standard procedure for this purposes yet.  

Another original aspect of this work is the implementation of a new modelling 

algorithm, based on the direct stiffness matrix method, improved by the insertion of a 

detailed attenuation profile. 

  

1.5 Organization of the thesis 

Chapter 1: introduces the problem outline and motivation, including the importance 

of the seismic attenuation. A synthetic list of existing methods is given and further needs 

and objectives are explained. The approach and original contributions from the thesis are 

described. 

Chapter 2: outlines the seismic waves propagation relations on viscoelastic media. The 

theoretical background of body and surface waves is presented. Attenuation theory is 

introduced for both body and surface waves. 

Chapter 3: the chapter focus on the body and surface waves methods used for seismic 

attenuation measurements in terms of experimental and theoretical measurements. The first 

two section are accompanied by reviews of the most used methods for both body and 

surface waves datasets. The second explain the improved direct stiffness matrix method that 

has used to obtain theoretical dispersion and attenuation curves in order to compare the 

two set of data.  

Chapter 4: study in deep the DHT test to determine the material damping ratio of near-

surface layered soil. The spectral ratio method as well as the rise-time method are elaborated 

based on the Rieti and INGV dataset examples. The methods are compared each another to 

check the material damping values obtained. Deals with the phase shift method and the 

spatial decay to determine the experimental dispersion and attenuation curves of shallow 

soil layers for the Rieti surface waves dataset. 

Chapter 5: summarizes the conclusions from the present research and gives 

recommendations for future work. 
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Chapter 2.                                   
Plane waves propagation in vertically 

inhomogeneous media 

This chapter describes the theory of seismic wave propagation in linear elastic and in 

linear viscoelastic solids, several types of waves propagate within the earth and along its 

surface due to a mechanical disturbance. The waves that are generated can be divided into 

two main categories; body waves and surface waves (Aki & Richards, 1980). We will first 

give the basic notions on the theory of wave propagation and then focus on the 

characteristics and parameters that describe body and surface waves propagation. 

2.1 Seismic waves 

Many studies have been carried out in order to understand the characteristics of 

seismic attenuation through the quality factor 𝑄. These studies are based on the use of P 

waves (𝑄𝛼), S waves (𝑄𝛽). 

To describe seismic attenuation, it is therefore necessary to go through a brief 

explanation on the propagation and composition of the seismic wave field.  

When an earthquake occurs, the energy released is partly dissipated in the form of 

heat, developed due to the friction deriving from the sliding of the rock masses along the 

fault surface. The remaining energy is partially spent as work, resulting in the displacement 

of the masses involved, and partly propagates in the ground in the form of seismic waves. 

These consist of elastic waves that propagate in the ground and on the free surface with 

velocity, frequency and amplitude dependent on the elastic properties of the medium and 

the source. The energy carried by the seismic waves translates into stresses and 

deformations of the ground and therefore in displacements (seismic shaking). In relation to 

the type of stress and deformation to which the soil is subjected as well as to the way in 

which the waves are propagated, body waves (P and S waves) and surface waves (Love and 

Rayleigh waves) are distinguished. 

2.1.1 Wave equations for an elastic medium 

In an infinite, homogeneous, isotropic, elastic medium, the equation of motion in the 

absence of body forces is given by Navier’s equation, which may be expressed in terms of 
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the displacements and the cubic dilation and rotation vector. These two equations may be 

easily transformed into wave equations. 

In the first place, we apply the divergence operation to the Navier’s equation (Aki and 

Richards, 1980): 

 
𝛼2𝛻𝜃 − 𝛽2𝛻 × 𝜔 = 𝑢̈ (2-1) 

 

where 𝛼 and 𝛽 are parameters related to cubic dilation 𝜃 and the rotation vector 𝜔, 

and, in consequence, related to changes in volume and in shape without changes in volume, 

respectively. 𝑢̈ represents the second partial derivative of the displacement 𝑢. 

The divergence of the gradient of 𝜃 is its Laplacian, that of the curl of 𝜔 is null and the 

divergence of the displacement 𝑢 is the cubic dilation 𝜃, given by the summation of 

longitudinal stresses (𝜃 =  𝜀11 + 𝜀22 + 𝜀33 ). Thus, we obtain: 

 

𝛻2𝜃 =
1

𝛼2
𝜕2𝜃

𝜕𝑡2
 

(2-2) 

 

To the same equation (2-1), we apply the curl operator. The curl of the gradient of the 

scalar function 𝜃 is null and that of the displacement 𝑢(𝑥, 𝑡) is the rotation vector 𝜔. The curl 

of the curl of 𝜔 is equal to the gradient of the divergence, which is null minus the Laplacian. 

The results is: 

 

𝛻2𝜔 =
1

𝛽2
𝜕2𝜔

𝜕𝑡2
 

(2-3) 

 

Equation (2-2) and (2-3) have the form of wave equations for the scalar function 𝜃 and 

vector function 𝜔. The solution of both equations represent waves that propagate in the 

elastic medium and the parameters 𝛼 and 𝛽 are their velocities. These velocities are 

functions of the elastic coefficients 𝜆 and 𝜇 and the density 𝜌. 

Because 𝜃 represent changes in volume without changes in shape, solutions of 

equation (2-2) correspond to compressionala and dilational motion, or longitudinal waves, 

also called P-waves. Solutions of equation (2-3) represent shear waves that propagate with 

velocity 𝛽. The medium changes in shape, but not in volume, since the divergence of 𝜔 is 

null. These waves are called S-waves. 

 

2.1.2 Potential functions 

Displacement 𝑢(𝑥, 𝑡) in an elastic medium form a vector field. We can, therefore, apply 

Helmholtz’s theorem that allows their rappresentation in terms of two potential functions, 

a scalar potential 𝜙 and a vector potential 𝜓: 

 
𝑢 =  𝛻𝜙 + 𝛻 × 𝜓 (2-4) 

 

The vector potential 𝜓 must satisfy the condition that its divergence is zero (∇ ∙ 𝜓 = 0). 
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By defining the rotation tensor as 𝜔 = ∇ × 𝑢 and the cubic dilation as 𝜃 =  ∇ ∙ 𝑢 it is 

easy to reduce the relations of the two potentials to the cubic dilation 𝜃 and the rotation 𝜔: 

 
𝜃 =  𝛻2𝜙 (2-5) 

 
𝜔 = −𝛻2𝜓 (2-6) 

 

These relations indicates that 𝜙 is related to changes in volume and 𝜓 to changes in 

form. We can even rewrite the differential equation of motion in term of the wave potentials, 

by a scalar and a vector equation in a much more simply form: 

 

𝛼2𝛻2𝜙 +
𝜙

𝜌
= 𝜙̈ 

(2-7) 

 

𝛽2𝛻2𝜓 +
𝜓

𝜌
= 𝜓̈ 

(2-8) 

 

2.1.3 Types of body waves 

Body waves are transmitted through the interior of the earth, the medium of the wave, 

and consist of compressional waves (P-waves) and shear waves (S-waves). Body waves 

propagate inside the earth with spherical or hemispherical wave fronts (depending on the 

position of the source) increasing wider radius. The two main types are: 

 

 P-waves: The particle motion of compressional waves is parallel to the motion of the 

wave itself, causing dilatation and compression of elementary volume particles (Aki 

& Richards, 1980). P-waves are the first to reach the surface and recorded by 

seismographs, propagating in depth at a speed between 1.5 and 8 km/s, depending 

on the material density; they can propagate either through the solid rock, or through 

a liquid material (magma or water). They are compression waves, which originate 

from the hypocenter and propagate within the volume of the rocks by successive 

compression and dilation of the rocks themselves, causing volume changes. They are 

also called longitudinal waves (or compression waves) because the oscillations of the 

infinite planes in which one can imagine dividing the rocky body occur in the same 

direction of wave propagation (as in figure 2.1); 
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Figure 2-1: Particle motion associated with compressional waves 

 

 S-waves: The particle motion associated with shear waves is perpendicular to the 

direction of wave propagation and has therefore both a vertical (SV) and a horizontal 

(SH) component. The transverse particle motion causes shear deformations 

(distortional) of volume elements within the medium (Aki & Richards, 1980; Kramer, 

1996). They are also called secondary because they are slower than the P waves that 

represent the first arrivals. The wave can be polarized in two different directions, in 

the vertical direction SV and in the horizontal direction SH. These two components 

are identical in the case of an isotropic medium while they are separate and travel at 

different speeds considering a non-isotropic medium (as in Figure 2.2). 

 

 
Figure 2-2: Particle motion associated with shear waves 

 

As regards to body waves, although both are usually generated, depending on the 

source mechanism, those of one type tend to prevail over the other. For example, in the case 

in which the source is represented by a deep explosion, compressive stresses will prevail 

and the waves generated are mainly P-waves, when, instead, the source is due to a deep 

flow, as happens for the earthquakes, then the stresses induced in the ground are mainly 

cut off and the S-waves prevail.  

The same result of equations (2-2) and (2-3) can be obtained for the potentials 𝜙 and 𝜓 

defined in (2-4). If in equations (2-7) and (2-8) we disregard the contribution of body forces 

𝜙 and 𝜓, we obtain: 
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𝛻2𝜙 =
1

𝛼2
𝜕2𝜙

𝜕𝑡2
 

(2-9) 

 

𝛻2𝜓 =
1

𝛽2
𝜕2𝜓

𝜕𝑡2
 

(2-10) 

 

In the absence of body forces, the potentials 𝜙 and 𝜓 are also solutions of the wave 

equation. Since 𝛼 and 𝛽 are the velocities of P and S waves, 𝜙 is the potential of P waves and 

𝜓 that of S waves. The total elastic displacement 𝑢 is the sum of the displacements of P and 

S waves and can be written as: 

 
𝑢 =  𝑢𝑃 + 𝑢𝑆 (2-11) 

 

By defining velocities 𝛼 and 𝛽 of P and S waves as: 

 

𝛼 = √
(𝜆 + 2𝜇)

𝜌
=  √

𝑀𝑉

𝜌
 

(2-12) 

 

where 𝑀𝑉 is the one-dimensional compression stiffness module, and 𝜌 is the mass 

density. 

 

𝛽 =  √
𝜇

𝜌
 

 

(2-13) 

with 𝜇  stiffness shear modulus of the medium. 

The wave equation for P-waves can be rewritten as: 

 

𝜌
𝑑2𝜙

𝑑𝑡2
= (𝜆 + 2𝜇)𝛻2𝜙 

(2-14) 

 

where 𝜌 is the density, 𝜙 is the potential of P waves, while 𝜆 and 𝜇 are the Lamè 

constants. 𝜇 is the stiffness modulus, while 𝜆 is defined as 𝜆 =  𝐾 −  2/3 𝜇, where 𝐾 is the 

compressibility module. 

The study of the dynamic equilibrium of the ideal elastic medium shows that the 

volume of seismic waves associated with states of compression or volumetric expansion, i.e. 

the P-waves, propagates in a direction parallel to the displacement of the volume element 

hit by the wave and with 𝛼 velocity  

Compressional waves are connected to distortional deformation phenomena, i.e. S-

waves, are instead characterized by a perpendicular direction to the displacement of the 

volume element hit by the wave. S-waves are characterized by a wave equation equal to: 

 

𝜌
𝑑2𝜓

𝑑𝑡2
= (𝜇)𝛻2𝜓 

(2-15) 
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where the term 𝛻 ×  𝑢 represents the quantity being propagated.  

Introducing  𝑢𝑃 = ∇𝜙 and  𝑢𝑆 = ∇ × 𝜓 we can write wave equations in terms of 

displacement 𝑢: 

 
𝜕2𝑢2

𝜕𝑥1
2 =

1

𝛼2
𝜕2𝑢2
𝜕𝑡2

 
(2-16) 

  

 
𝜕2𝑢1

𝜕𝑥1
2 =

1

𝛽2
𝜕2𝑢1
𝜕𝑡2

 
(2-17) 

 

with 𝑢1 and 𝑢2 solutions of wave equations. 

The ratio of 𝛼  and 𝛽  can be expressed solely as a function of the Poisson ratio 𝜈: 

 

(
𝛼

𝛽
)
2

=
𝜆 + 2𝜇

𝜇
=
2(1 − 𝜈)

(1 − 2𝜈)
> 1 

 

(2-18) 

which shows that it is always 𝑉𝑆 < 𝑉𝑃.  

For 𝜈 =  1/4 (a typical value for several materials), 𝑉𝑃  =  √3 · 𝑉𝑆 

 

Type of soil VP (m/s) VS (m/s) 

Saturated clay 1500 100 – 150 

Fine and medium sand 300 – 500 120 – 200 

Dense sand 400 – 600 200 – 400 

Gravel 500 – 750 300 – 600  

Sandstone 1500 – 4500 700 – 1500 

Marl 1500 – 4500 600 – 1500 

 

Table 2-1: Typical values of 𝑽𝑷 and 𝑽𝑺 

 

A typical solution of the wave equations (2-9) and (2-10) are a harmonic function as: 

 

𝑓(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) + 𝐵𝑒𝑖(𝑘𝑥−𝜔𝑡) 
 

(2-19) 

Where 𝜔 represents the angular frequency and 𝑘 the wave number. The velocity of 

wave propagation is 𝑐 = 𝜔/𝑘. Another form of the solution can be represented by using sine 

and cosine functions: 

 
𝑓(𝑥, 𝑡) = 𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) + 𝐵𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) 

 
(2-20) 

2.1.3.1 Fourier Transform 

Waves with an arbitrary dependence in time can be represented by the sum or integral 

of harmonic waves of different frequencies using Fourier’s trasform: 
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𝑓(𝑥𝑖, 𝑡) =
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑥𝑝 [𝑖 (

𝜔

𝑐(𝜔)
𝑆(𝑥𝑖) − 𝜔𝑡)]

∞

−∞

𝑑𝜔 

 

(2-21) 

where 𝐹(𝜔) is a complex function that is called the complex spectrum of 𝑓(𝑥𝑖, 𝑡) and 

can be representes as: 

 

𝐹(𝜔) = 𝑅(𝜔) + 𝑖𝐼(𝜔) = 𝐴(𝜔)𝑒𝑖𝛷(𝜔) 

 

(2-22) 

where 𝐴(𝜔) is the amplitude spectrum and 𝛷(𝜔) the phase spectrum. 

 

2.1.4 Phase and group velocities 

For wave trains containing more than one frequency, in a visco-elastic medium, the 

phase velocity is a function of the frequency 𝑐(𝜔) or wave number 𝑐(𝑘). This implies that 

the wave number is a function of frequency 𝑘(𝜔) and vice versa for 𝜔(𝑘). In this case, we 

have the phenomenon of wave dispersion and can define the group velocity as: 

 

𝑣 =
𝑑𝜔

𝑑𝑘
 

 

(2-23) 

This velocity is referred to a packets or groups of waves. If we substitute 𝜔 = 𝑐𝑘, we 

obtain the relation between phase and group velocities: 

 

𝑣 = 𝑐 + 𝑘
𝑑𝑐

𝑑𝑘
 

 

(2-24) 

2.1.5 Surface waves 

Surface waves are generated in the presence of a free boundary, such as the surface of 

the Earth, or along the interface between two different elastic media, and propagate parallel 

to this interface.  

Several types of surface waves exist and can be classified with respect to the 

polarization of the ground motion associated with the propagation: Rayleigh waves involve 

elliptical motion in the vertical plane containing the wave propagation direction (Figure 2-

3); Love waves involve transverse motion (Figure 2-4); Scholte waves propagate at the 

earth/water interface, and should thus be used for underwater surface wave analysis. 

Rayleigh waves result from the interaction of P-waves and SV-waves with the surface 

of the earth (Aki & Richards, 1980). The particle motion of Rayleigh waves has both a vertical 

and a horizontal component and is reminiscent of rolling ocean waves (Rayleigh, 1885; Aki 

& Richards, 1980; Kramer, 1996). The wave motion is retrograde (anticlockwise) closest to the 

surface, but becomes prograde (clockwise) at greater depths. 
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Figure 2-3: Particle motion associated with Rayleigh waves 

 

 

 
Figure 2-4: Particle motion associated with Love waves 

 

In a homogeneous half-space, the Rayleigh wave velocity is independent of frequency, 

i.e. Rayleigh waves are non dispersive in a homogeneous medium, whereas for a point load, 

the rate of spatial decay is proportional to the inverse of the square root of the distance from 

the source. Conversely, for a point source, the geometric attenuation factor of body waves 

propagating along the boundary of an elastic half-space is proportional to the inverse of the 

square of the distance (Ewing et al. 1957). Thus, at distances on the order of one to two 

wavelengths from the source, the contribution of body waves becomes negligible, and the 

wave field is dominated by Rayleigh waves (Figure 2-6).  

In the direction orthogonal to that of propagation, the displacement field generated by 

a surface wave decays exponentially because no energy is propagated in the interior of the 

half-space (Figure 2-5). It can be shown that most of the strain energy associated with 

surface wave motion is confined within a depth of about one wavelength λ from the free 

boundary (Achenbach 1984). Hence, Rayleigh waves with long wavelengths penetrate deep 

into the interior of a medium. Because wavelengths are proportional to the inverse of 

frequency in harmonic waves, this statement can be interpreted as follows: high-frequency 

waves are confined to shallow depths within the medium, whereas low-frequency 

components involve motion also at large depths. 
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Figure 2-5: Displacement amplitude of Rayleigh waves versus dimensionless depth (Richart et al., 

1970). 

 

In vertically heterogeneous media, surface wave propagation is governed by 

geometric dispersion: harmonic waves of different wavelengths 𝑘 propagate within 

different depth ranges and, hence, for each wavelength the phase velocity 𝑣 depends on the 

elastic properties and density of the subsurface within the propagation depth range. 

Distribution of phase velocities as a function of frequency or wavelength is called a 

dispersion curve. In vertically heterogeneous media with increasing velocity (both 𝑉𝑆 and 

𝑉𝑃) with depth, the velocity of propagation of surface waves decreases for increasing 

frequency (normally dispersive profiles). 

 

 
Figure 2-6: Distribution of compressional, shear and Rayleigh waves generated by a point load in a 

homogeneous, isotropic, elastic half-space (Woods, 1968). 
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Typically, multiple phase velocities exist for a given frequency, making the dispersion 

curve multimodal. The mode with the lowest phase velocity (at each frequency) is referred 

to as the fundamental mode. at each frequency, larger than a well-defined cut-off frequency, 

different modes of vibration exist (Aki & Richards, 1970). Each mode is characterized by its 

own propagation velocity, which always increases from the fundamental to the higher 

modes (overtones). 

The propagation velocity of Rayleigh waves is proportional to the value assumed by 

the S-waves and approximately given by the following relation (Viktorov, 1967): 

 

𝑉𝑅 ≅ 
0,87 + 1,12𝑣

1 + 𝑣
𝑉𝑆 

 

(2-25) 

2.2 Attenuation theory 

The main focus of this section, is a general overview of the attenuation theory and then 

the constitutive models adapted in literature.  

Mainly, seismic attenuation is caused by three physical phenomena: 

 

 Intrinsic attenuation: the energy dissipated in heat due to internal friction during 

the passage of the elastic wave; 

 Geometrical spreading: it is the decrease of the energy density that occurs in the 

expansion of the elastic wave front, due to the fact that the energy irradiation takes 

place on a greater volume at increasing distances from the source, Theory and 

numerical model studies (Haterly, 1986) show that in most cases geometrical 

spreading is a complicated phenomenon, especially near the source; methods like 

amplitude decay appeared to be very sensitive to geometrical spreading (Jongmans, 

1990); accurate studies on geometrical spreading effects can be found on Morozov 

(2008, 2010); 

 Scattering: scattering phenomena are produced by reflection, refraction, and 

conversion of elastic energy due to the irregularities and discontinuities present in 

the medium. 

2.2.1 The quality factor Q 

Wave propagation, implies a variation of motion in space and time. Thus, attenuation 

of wave motion can be observed in time or in space. For a given location wave motion is 

attenuated with time and for a given time, it is attenuated with distance. For wave motion, 

we can define the damping ratio 𝐷(𝜔) as a function of frequency in the form: 

 

𝐷(𝜔) = (
1

4𝜋
)
∆𝐸

𝐸
 

 

(2-26) 
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In this definition, 𝐷 represents the material damping ratio of the elastic energy ∆𝐸 

dissipated during one cycle of harmonic motion of frequency 𝜔 due to imperfections in the 

elasticity of the material and the maximum or the mean energy 𝐸 accumulated during the 

same cycle. 

Another parameter related to the material damping, which is largely used by 

geophysicists and seismologists is the quality factor 𝑄, that is related to the material 

damping 𝐷 as follows: 

 

𝑄(𝜔) =
1

2𝐷(𝜔)
= (2𝜋)

𝐸

∆𝐸
 

 

(2-27) 

The 𝑄 factor may also be defined as the tangent of the phase lag between stress and 

strain, which are linked by the modulus (Wang, 2006). 

The measured or effective 𝑄 is a combination of intrinsic 𝑄 of the rocks and apparent 

𝑄 by elastic scattering as follow (Lerche and Menke 1986; Spencer et al., 1986): 

 
1

𝑄𝑒𝑓𝑓
= 

1

𝑄𝑖𝑛𝑡
+ 

1

𝑄𝑠𝑐𝑎
 

 

(2-28) 

The scattering attenuation 𝑄𝑠𝑐𝑎
−1  (sometimes called extrinsic attenuation (e.g., in Virieux 

and Operto, 2009)) and intrinsic attenuation 𝑄𝑖𝑛𝑡
−1  are significant to interpret the geology and 

tectonics of an area (Blair, 1990; White, 1992; Barton, 2007). 

If we consider an harmonic wave of amplitude 𝐴 that is attenuated so that, after one 

period or one wave length, its amplitude is 𝐴𝑒𝑥𝑝(−𝜋/𝑄), then, since the energy is 

proportional to the square of the amplitude, the energy dissipated in one cycle is (Udías, 

2017): 

 

∆𝐸 = 𝐴2 [1 − exp (−
2𝜋

𝑄
)] 

(2-29) 

 

By using the ratio ∆𝐸/𝐸, we obtain the equation (2-27). By using the amplitude ratio 

∆𝐴/𝐴, we define for wave propagation: 

 
1

𝑄
=
1

𝜋

∆𝐴

𝐴
 

 

(2-30) 

Since wave phenomena can be considered as a variation in time or space, we can define 

temporal (𝑄𝑡) and spatial (𝑄𝑒) quality factors. 𝑄𝑡 represents the wave attenuation with time 

during one period for a fixed point in space and 𝑄𝑒 represents the attenuation at a given 

time along wavelength distance. 

Wave attenuation is usually indicated by assigning complex values to the frequency 

and wavenumber. For a harmonic elastic wave we have: 

 
𝑢(𝑥, 𝑡) = 𝐴𝑒𝑥𝑝[𝑖(𝑘′𝑥 − 𝜔′𝑡)] (2-31) 
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where the wavenumber and frequency are now complex quantities: 

 
𝑘′ = 𝑘 + 𝑖𝑘∗ 

 
(2-32) 

𝜔′ = 𝜔 + 𝑖𝜔∗ (2-33) 

 

According to definitions of 𝑄𝑡 and 𝑄𝑒 we can easily deduce that: 

 
1

𝑄𝑡
=
2𝜔∗

𝜔
 

 

(2-34) 

1

𝑄𝑒
=
2𝑘∗

𝑘
 

 

(2-35) 

2.2.1.1 Frequency dependence 

Many studies on body, surface and coda waves describe attenuation depending on 

frequency adopting the visco-elastic model, this bond is commonly represented in an 

exponential type of quality factor 𝑄: 

 

𝑄(𝑓) =  𝑄0 (
𝑓

𝑓0
)
ƞ

 
(2-36) 

 

where ƞ is a constant usually between −1 < ƞ < 1 (Li et al. 2016), 𝑓0 is a reference 

frequency of 1 Hz, while 𝑄0 is the corresponding value of the quality factor (Aki and Chouet, 

1975). The values of 𝑄 (considering a ƞ > 0, while very high values are not very common) 

tend to increase as the frequency increases. Another common hypothesis is that 𝑄 is 

independent of frequency at least in a limited frequency band (Johnston et al., 1979). 

At the time of Knopoff’s review (1964) it was customary to assume that 𝑄 was 

substantially independent of frequency. His assumptions of ‘a homogeneous sample’ and 

‘at low frequencies’ are clearly important in view of what is now understood about potential 

dissipation mechanisms in microcracked rock samples or in rock masses with sets of 

bedding planes and/or joints. Laboratory experiments on many homogeneous solids had 

shown that up to moderately high frequencies, the dimensionless quantity 𝑄 was virtually 

independent of frequency. This preliminary conclusion indicated that the mechanism by 

which energy has removed from elastic waves in solids was not the same as the mechanism 

for attenuation in liquids, where attenuation is frequency dependent (Barton, 2007). Some 

physical phenomena such as viscous relaxation, irregular saturation, squirt flow, scattering, 

etc., are related to 𝑄 dependence on frequency.  

Some typical values of 𝑄 for longitudinal excitation of various solids, selected from 

Knopoff, (1964) are reported below: 

 

Material Q 
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Steel 5000 

Copper 2140 

Silica 1250 

Glass 490 

Diorite 125 

Limestone 110 

Lead 36 

Sandstone 21 

Shale 10 

Celluloid 7 

 

Table 2-2: Some examples of 𝑸 for longitudinal or bending excitation of various solids 

(Knopoff,1964), sorted by magnitude. 

2.2.1.2 10 Hz Transition problem 

Measurements of 𝑄𝑆 carried out at seismogenethic depths and using coda waves show 

only a weak increase with the frequency between 10 and 100 Hz. Combining these results 

with those coming from near-surface studies at low frequency, a significant change in 𝑄𝑆 

frequency dependence around 10 Hz in the active tectonic regions, passing from low values 

of 𝑄0 and high values of ƞ (> 1) to large values of 𝑄0 and moderate values of ƞ (ƞ~0.2 ÷

0.3), exceeded this value of frequency. This change is called by the authors the "10 Hz 

transition problem" (Abercrombie, 1998). It could be due to changes in the nature of the earth's 

crust in the most superficial layers (few hundred meters), or simply to a wrong hypothesis 

in the model used for the estimation of 𝑄. In Morozov (2008) the problem of the 10 Hz 

transition and the absorption band is substantially attributed to some deviations from the 

geometric attenuation law.  

Alternatively, the variation observed in the 𝑄 frequency dependence is able to provide 

important information about the nature of the earth's crust itself according to different 

scales. 

In Abercrombie (1998) a weak increase in 𝑄𝑆 is observed with frequency (from about 500 to 

10Hz up to 1200 to 100Hz). Various studies (Abercrombie, 1997; Jongmans and Malin 1996), 

considering a near-surface analysis, show low values of 𝑄 (about 10 in the first 100 meters 

of land), which grow rapidly with depth, and independent or weakly dependent from the 

frequency, in the range 𝑓 ~ 2 ÷  100. The attenuation in this case is rather independent even 

from the rock type (Abercrombie, 1998). These combined observations suggest that the main 

cause of surface attenuation is the opening of the microfractures with a consequent decrease 

in the lithostatic pressure. 

2.2.1.3 Attenuation in rocks 

As the wave propagates thorugh the material, the normal stress between the crack-

faces increases, and thus the frictional shear stress also increases. As the wave passes, the 

direction of the frictional shear stress is reversed, and again work must be done against 

friction as the crack returns to its equilibrium position (Barton, 2007). Clearly, micro-scale 

deformations are implied here. Numerous mechanisms have been proposed to explain 
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attenuation of seismic waves in rock and in rock masses. Johnston et al., 1979 listed the 

following in their landmark paper: 

 

 Matrix anelasticity; 

 Frictional dissipation due to relative motions at grain boundaries and across 

crack surfaces (Walsh, 1966); 

  Fluid flow causing relaxation due to shear motions at pore-fluid boundaries; 

  Relative motion of the matrix frame with respect to the fluid inclusions in the 

case of fully saturated rock (Biot, 1956a); 

 Squirt phenomena (Mavko and Nur, 1975 and O’Connel and Budianski, 1977); 

 Gas pockets squeezing when only partial saturation; 

 Geometrical effects due to small pores, larger irregularities, thin beds (this 

category obviously extends to major discontinuities, faults, rock boundaries, 

dykes etc.). 

 

 
 

Figure 2.7: Schematic illustration of several proposed aitenuation mechanisms for saturated and 

partially saturated rocks (Johnston, 1979) 

2.2.2 Attenuation in body waves 

The attenuation in body waves can be expressed by taking complex values for 

velocities of P and S waves, namely 𝛼′ = 𝛼 + 𝑖𝛼∗ and 𝛽′ = 𝛽 + 𝑖𝛽∗. Since the attenuation of 

body waves is measured from amplitude at various distances, the imaginary part of 

velocities are related to the spatial quality factor 𝑄𝑒. For P and S waves we can define quality 

factors in a similar way: 

 
1

𝑄𝛼
=
2𝛼∗

𝛼
 

 

(2-37) 
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1

𝑄𝛽
=
2𝛽∗

𝛽
 

 

(2-38) 

The complex velocities can now be expressed in terms of the corresponding 𝑄 factors: 

 

𝛼′ = 𝛼 (1 +
𝑖

2𝑄𝛼
) 

 

(2-39) 

𝛽′ = 𝛽 (1 +
𝑖

2𝑄𝛽
) 

 

(2-40) 

In most seismologic problems, it is assumed that the relation between P and S quality 

factors in similar to (Udías, 2017): 

 

1

𝑄𝛼
=
4

3
(
𝛽

𝛼
)
2 1

𝑄𝛽
 

 

(2-41) 

If 𝑣 = 0.25 and 𝛼 = √3𝛽 the relations gives 𝑄𝛼 = 9/4𝑄𝛽. 

Following the ray theory, the attenuation of the amplitude of a monochromatic P wave 

in the Earth’s interior, become in a dispersive wave equation, given by: 

 

𝐴 =  𝐴0 exp (−
𝜔𝑠

2𝛼𝑄𝛼
) = 𝐴0𝑒

−𝜔𝑡∗ 

 

(2-42) 

Where 𝐴 and 𝐴0 are the amplitudes at the observation point and the focus, and s is the 

distance traveled along the ray. For an homogeneous medium 𝑡∗ = 𝑡/(2𝑄𝛼), where 𝑡 = 𝑠/𝛼 

is the traveling time of P waves. The path attenuation factor 𝑡∗ in the exponent of equation 

(2-42) is often used in body-wave analysis (Der and Lees, 1985). This equation can be 

expressed for S waves in a similar way, substituting 𝛽 and 𝑄𝛽. 

Existence of 𝑡∗or 𝑄 as attenuation properties is based on common observations that the 

negative exponent in the amplitude-decay expression increases with 𝑓 and accumulates 

with 𝑡 (Morozov, 2015). 

Following Johnston, (1979) the attenuation is determined from the amplitude ratios of 

waves observed at a different distance. For body waves, we need observations along similar 

ray paths, so that the attenuation of amplitude is referred to a certain distance ∆𝑠 along the 

ray inside the Earth. In an approximate form, the attenuation with epicentral distance 

between two stations may be found from: 

 

ln (
𝐴2(𝜔)

𝐴1(𝜔)
) = ln 𝐶 − 𝛾(𝜔)∆𝑥 

 

(2-43) 

Where 𝛾(𝜔) = 𝜔∆𝑥/(2𝛼𝑄) = 𝜋𝑓/𝑄 is the overall attenuation of amplitude with 

horizontal distance and 𝐶 depends on the geometrical spreading. This equation illustates 
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the difference between the influences of Q geometrical spreading and anlelastic attenuation 

on the decrease in amplitude with distance. 

The attenuation coefficient, 𝛾, is a quantity which measures energy absorption, and 

can be expressed in terms of wavelength 𝜆 as: 

 

𝛾 =  
𝜋

𝜆𝑄
(𝑛𝑒𝑝𝑒𝑟𝑠 𝑢𝑛𝑖𝑡⁄ 𝑙𝑒𝑛𝑔𝑡ℎ) =

20𝜋

(𝑙𝑛10)𝑄
(𝑑𝑏 𝜆⁄ ) 

(2-44) 

 

which leads to the approximation mentioned above; that is, 27.3𝑄 𝑑𝑏 per wavelength 

(Johnston and Toksöz, 1979). 

2.2.3 Attenuation in surface waves 

Following equations (2-39) and (2-40), the frequency-dependent complex wavenumber 

𝑘𝑛
∗  defines the propagation of dispersive surface wave modes in linear viscoelastic media. 

As introduce in the equation (2-32), the phase velocity and the attenuation constant for the 

nth mode are related to the complex wavenumber by: 

 

𝑘𝑛
∗ = 𝑅𝑒(𝑘𝑛

∗) + 𝐼𝑚(𝑘𝑛
∗ ) = 𝑘𝑛 − 𝑖𝛾𝑛 =

𝜔

𝑣𝑛
− 𝑖𝛾𝑛 (2-45) 

 

The real part of the wavenumber is the physical wavenumber 𝑘𝑛, a function of the real 

physical phase velocity 𝑣𝑛; the imaginary part of the complex wavenumber is the 

attenuation constant, associated with the 𝑛𝑡ℎ mode of propagation (Aki and Richards, 1980. 

The asterisk indicates complex numbers.  

. The frequency-dependent  attenuation constant 𝛾𝑛 is the coefficient of the exponential 

function describing the spatial decay of the spectral amplitude for a single mode in the far-

field (Strobbia, 2014). The real and imaginary parts of the complex wavenumber are linked 

by the Kramers-Kronig relation, and have to be Hilbert transform pairs tosatisfy the 

principle of causality (Bracewell, 1965; Tschoegl, 1989). This is used in the solution of the 

forward problem (Lai and Rix, 2002). 

 

𝐴𝑛(𝜔, 𝑟) = 𝐴𝑛,0(𝜔)
1

√𝑟
𝑒−𝛾𝑛(𝜔)𝑟 

(2-46) 

 

where r is the source to receiver distance. 

The spatial decay of the wave amplitude, due to the geometrical spreading, is 

represented by the square root of the distance, for each mode.  

In a medium with homogeneous velocity and intrinsic absorption, both wavenumber 

and attenuation coefficient are frequency dependent. A representation showing the 

relationship with the material properties can be obtained using two different parameters, 

derived from the real and imaginary part of the wavenumber. 

The first one is the modal phase velocity, definite as: 

 



30 

𝑣𝑛 =
𝜔

𝑅𝑒(𝑘𝑛)
 (2-47) 

 

It has a more intuitive and direct relationship with the layer velocities. The attenuation 

coefficient is a wave propagation parameter; it describes the spatial amplitude decay of the 

surface wave as it propagates in an anelastic medium. The intrinsic material energy 

dissipation can be measured using different parameters.  

The second parameter is the Rayleigh modal phase damping ratio (Misbah and Strobbia, 

2014), typically used in soil dynamics, which is defined using an analogy with the body 

wave damping ratio in a viscoelastic medium, as: 

 

𝐷(𝜔) =
𝐼𝑚(𝑘∗2)

2 ∙ 𝑅𝑒(𝑘∗2)
 

(2-48) 

 

The Rayleigh phase damping ratio is a modal property, related to the damping ratio 

of the subsurface layers, that is more directly related to the material absorption. 

As an alternative to the phase damping ratio, it is possible to define a phase quality 

factor 𝑄, related to the subsurface quality factor (Carcione et al., 1988), as: 

 

𝑄(𝜔) =
𝑅𝑒(𝑘∗2)

𝐼𝑚(𝑘∗2)
 

(2-49) 
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Chapter 3.                                  
Experimental and theoretical 

attenuation measurements of body and 

surface waves 

3.1 Body waves methods 

3.1.1 Review of methods 

Two different methods are presented to estimate seismic attenuation from borehole 

surveys, other existing method that have used borehole surveys are listed in the table below 

(Table 3-1). The first one is the rise-time method which operates in time domain and the 

second is the spectral ratio methods which is defined in the frequency domain. Many 

reviews of such methods exist in literature, consisting in a comparison between these two 

or even more methods (Tonn, 1991; Janssen et al., 1985; Cheng and Margrave, 2012). In this 

chapter I have first attached a synthetic review (table 3-1) of the various methods appearing 

in the literature on seismic attenuation estimation using body waves, that can be allied on 

borehole or surface seismic surveys, giving the complete theoretical basis of the two 

methods   which are used in the experiments presented later on in this thesis. In spite of the 

broad variety of methods available for 𝑄-computations, only a few techniques such as the 

rise-time method or the spectral ratio method are widely accepted for borehole studies. 

These methods are more robust and unaffected by far-field geometric spreading. My review 

does not cover the methods employing coda waves which are mainly based on 

seismological (earthquake) recordings (Aki and Chouet, 1975).  

 

Method Code Domain Reference 

Amplitude decay AD x-t - 

Analytical signal AS x-t Engelhard et al. (1986) 

Wavelet modelling WM x-t Jannsen et al. (1985) 

Phase modelling PM x-t -  

Frequency modelling FM x-t - 

Rise-time RT x-t Gladwin and Stacey (1974) 

Pulse amplitude 

method 

PA x-t Kjartansson (1979) 



33 

Beam Forming BF x-t White (1988) 

Matching technique MT x-ω Raikes and White (1984) 

Spectral modelling SM x-ω Jannsen et al. (1985) 

Spectral ratio method SR x-ω Bath (1974), Teng (1968) 

Centroid Frequency 

Shift 

CFS x-ω Quan and Harris (1997) 

Peak Frequency Shift PFS x-ω Zhang ed Ulrych (2002) 

Dominant and Central 

frequency shift 

DCFS x-ω Li et al. (2015) 

 
Table 3-1: Review methods to estimate seismic attenuation through borehole surveys 

3.1.2 Time domain methods 

3.1.2.1 Rise-time method 

The rise-time method is a time-domain method based on the broadening of the pulse 

resulting from the attenuation of the high-frequency components. An empirical 

mathematical model for pulse broadening in an inhomogeneous medium has been 

suggested by Gladwin and Stacey (1974) and Stacey et al. (1975) and supported theoretically 

by Kjartansson (1979). 

Gladwin and Stacey (1974) defined the rise-time (𝜏) as the “interval between the 

intersections of the steepest rise of a pulse onset with zero level and peak pulse amplitude”. 

Or, alternatively, the ratio of the maximum peak amplitude to the maximum slope of the 

first quarter-cycle of the pulse. 

Gladwin and Stacey (1974) proposed a rise-time principle indicated by the following 

equation: 

 

𝜏 =  𝜏0 +  𝐶 ∫
𝑑𝑠

𝑣𝑄
= 𝜏0 +  𝐶 ∫

𝑑𝑇

𝑄𝑟𝑎𝑦𝑟𝑎𝑦

 

 

(3-1) 

where 𝜏 is the rise-time of the first arrival waveform, 𝜏0 is the origin pulse rise-time at 

the source (Stacey et al. used zero for this term), 𝑣 is the velocity, 𝑑𝑆 is the segment along the 

ray path, 𝑑𝑇 is the travel time, 𝑄 is the quality factor and 𝐶 is a constant. The velocity and 

quality factor vary with the position 𝑟 of the receivers. 

The rise-time, defined on displacement records, is approximately the pulse width used 

by Zucca et al. (1994) on recorded seismograms. The pulse width, or rise-time,𝜏, is the time 

difference from the onset of initial arrival to initial peak for displacement seismograms, or, 

equivalently, from on set to first zero crossing for velocity records or to second zero crossing 

for acceleration seismograms. In practice, the onset of a signal can be difficult to determine 

precisely in the presence of noise. Even for noise-free seismograms, bandwidth limitations 

can make picking the on-set difficult. For short pulse widths, the error introduced by mis-

picking can be large and unacceptable (Wu and Lees, 1996). 

As the seismic wave travels through the medium, dispersion causes pulse spreading, 

this process is well established for optical fiber studies, as in Figure 3.1. 
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Figure 3.1: Broadening and attenuation of two adjacent pulses as they travel along a fiber.  

 

The same phenomena occur on a seismic wave travelling through the earth. 

Kjartansson (1979) indicated several ways to measure the pulse widths, as showed in 

Figure 3.2: 

 

 
 

  
 

Figure 3.2: Rise-time 𝝉 of a pulse is in lectirature: a) from Gladwin and Stacey, 1974; b) from Kurtuluş 

and Sertҫelik, 2010; c) Wu and Lees, 1996; d) Zucca et al., 1996. 
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In this study, we used a near-surface VSP (Vertical Seismic Profiling; Balch et al., 1982) 

data records; measurements based on the first quarter-cycle of the pulse should be used to 

avoid interference with the later cycles of the pulse. Suitable measures, therefore, are the 

pulse rise-time calculated as the maximum amplitude divided by maximum slope, as the 

separation between the first inflection point and the first peak. An example of one rise-time 

has showed in figure 3.3. The experimental procedure will be showed in detail in chapter 4. 

 

 
 

Figure 3.3: Example of a rise-time measurement of a single P-wave trace at 41 meter depths in Rieti 

site. 

 

Assuming a homogeneous 𝑄 = 𝑄0, equation (3-1) becomes a linear relation: 

 

𝜏 =  𝜏0 + 
𝐶𝑇

𝑄0
 

 

(3-2) 

The constant 𝐶 in (3-2) was first determined experimentally (Gladwin and Stacey, 1974) 

for ultrasonic acoustic pulses in the kilohertz frequency band to be 0.5, and a rigorous 

theoretical justification was supplied later (Kjartansson, 1979). According to Kjartansson's 

(1979) theory of impulsive displacement sources, the rise-time of recorded displacement, 

velocity, and acceleration seismograms obey the relation (3-2), although with different 

constants 𝐶. For > 30 ,𝐶 will take on values of 0.485, 0.298, and 0.217 for displacement, 

velocity, and acceleration records, respectively (Blair and Spathis,1982). Blair and Spathis 

(1982) further suggested that 𝐶 can take on different values for different sources. 

The main advantage of the pulse-broadening or rise-time method is that only a very 

short time-length of the seismogram is required for processing, by the time we use only the 

first quarter cycle, (Kurtuluş and Sertҫelik, 2010). Hatherly (1986) found that the measurement 

of the pulse width appears to be suitable even for use with shallow seismic refraction data. 
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3.1.3 Frequency domain methods 

3.1.3.1 Spectral ratio method 

The second method used in this study is the spectral ratio method. The method in the 

frequency domain has been used widely for estimating the seismic attenuation (Teng, 1968; 

Jongmans, 1982, Badri and Mooney, 1987; Sarma and Ravikumar, 2000; Abercrombie 2000; etc..). 

The method is based on the spectral amplitude ratio at two different distances. 

Considering the wave propagation expression: 

 

𝑈(𝑥, 𝜔) = 𝑈0(𝜔) exp[−𝛼(𝜔)𝑥] exp [𝑖𝜔 (𝑡 −
𝑥

𝑣(𝜔)
)] 

 

(3-3) 

And taking only amplitude attenuation we obtain: 

 
𝐴(𝜔) = 𝐴0(𝜔) exp[−𝛾(𝜔)𝑥] 

 

(3-4) 

where 𝐴(𝜔) is the amplitude spectrum of the trace at receiver depth , 𝑧 and 𝐴0(𝜔) at a 

shallower depth 𝑧0. The amplitude 𝐴(𝜔) is decayed exponentially from a reference 

amplitude 𝐴0(𝜔).  𝛾(𝜔) is the attenuation coefficient that can be expressed in different ways 

as: 

 

𝛾(𝜔) =
𝜋𝑓

𝑣𝑄
=
𝜋

𝑣𝜆
=

𝜔

2𝑣𝑄
=
𝜔(𝑡 − 𝑡0)

2𝑄
 

 

(3-5) 

where 𝑣 is the velocity, 𝜆 is the wavelenght, 𝑓 is the frequency in Hz, 𝜔 is the frequency 

in radiants and 𝜏 =  (𝑡 − 𝑡0) is the time delay between two first arrival at two different 

distance (depths) 𝑧 and 𝑧0. 

In general case 𝐴(𝜔) can be expressed as a product of the source function 𝐴0(𝜔) with 

a number of transfer functions, each for an appropriate portion of the transmitting medium. 

It includes: instrumental transfer function, crustal transfer function and geometrical transfer 

function. Considering only geometrical transfer function the equation (3-4) becomes: 

 
𝐴(𝜔) = 𝐴0(𝜔)𝐺0(𝑡) exp[−𝛾(𝜔)𝑥] 

 
(3-6) 

where  𝐺(𝑡) is the geometrical factor that includes spreading, reflections, etc.. 

Considering the ratio of the Fourier spectral amplitudes we obtain: 

 
𝐴(𝜔)

𝐴0(𝜔)

𝐺(𝜔)

𝐺0(𝜔)
exp[−(𝛾0(𝜔) − 𝛾(𝜔))𝑥] 

 

(3-7) 

and applying simple logarithmic properties we can obtain: 

 

ln [
𝐴(𝜔)

𝐴0(𝜔)
] = ln [

𝐺(𝜔)

𝐺0(𝜔)
] + (𝛾(𝜔) − 𝛾0(𝜔))𝑥 

(3-8) 
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where the term on the left side of the equation is called reduced spectral ratio, the ratio 

ln [𝐺(𝜔) 𝐺0(𝜔)]⁄  is frequency-independent. This simple result shows that the reduced 

spectral ratio is a linear function of frequency (Teng, 1968).  

For typical rocks where 𝑄 = 10 ÷ 100, the term ln [𝐺(𝜔) 𝐺0(𝜔)]⁄  is negligible (Sarma 

and Ravikumar 2000). Now, the decay of the amplitude at certain distance from source is 

measured using the simplified spectral ratio method: 

 

ln [
𝐴(𝜔)

𝐴0(𝜔)
] = −

𝜔(𝑡 − 𝑡0)

2𝑄
= −

𝜋𝑓(𝑡 − 𝑡0)

2𝑄
 

 

(3-9) 

Measuring the slope of the spectral ratio: 

 

𝑚 =
1

𝜔
ln [

𝐴(𝜔)

𝐴0(𝜔)
] =

2𝜋

𝑓
ln [

𝐴(𝜔)

𝐴0(𝜔)
] 

 

(3-10) 

The slope 𝑚, is called differential attenuation, and contains all the information 

concerning the difference of wave attenuation along two different rays; can be found from 

the slope of the line fitted to ln [𝐴(𝜔) 𝐴0(𝜔)]⁄   versus frequency 𝑓, as shown in the figure 3.4. 

 
 

Figure 3.4: Slope estimation on reduced spectral ratio. The frequency band considered is 20-65 Hz 

for S-waves (Rieti site). 

 

The 𝑄 value between 𝑧 and 𝑧0 is then estimated as: 

 

𝑄−1(𝑧 − 𝑧0) = −
2𝑚

𝜏
 

 

(3-11) 
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For in-situ measured seismograms, the method consists in calculating the Fourier 

transform of two signals and then the logarithmic ratio for each frequency. Since 𝑚 is 

independent of frequency, Q can be determined from the slope of the line fitted to 𝐴 vs. f 

The geometrical spreading factor, appearing only in the intercept b, must not be 

preliminarily known for Q determinations. The estimates of 𝑚 derived from this regression 

is a random quantity dependent on the sampling of the spectra and possess statistical errors 

(White, 1992). 

In chapter 4, we attempt to improve the 𝑄 estimation by means of a near-surface VSP 

data, with an accurate determination of the time delay, processing, and finally a robust 

estimation of 𝑄 values for P and S waves in two different sites. 

3.2 Surface waves methods 

The main objective in surface wave testing is to extract information about the 

geometrical dispersion of surface waves from observations of particle motion at two or 

more receiver locations, associated with the intrinsic energy dissipation caused by material 

damping. 

Attenuation and dispersion analysis of surface waves is generally performed like a 

standard MASW (Multichannel Analysis of Surface Waves) test, on multichannel measure-

ments acquired using a linear array of receivers and an active source. The procedure 

requires accurate measurements of the amplitude of the surface wave particle motion 

because it contains information about attenuation and geometrical spreading. It is essential 

that the effects of noise are considered and that the amplitude perturbations are minimized. 

Verticality and physical coupling of each receiver should be checked carefully. Moreover, a 

previous accurate calibration of the receivers used in the shotgather is needed to guarantee 

a uniform array response. 

The estimation of the intrinsic attenuation component can be used to assess the dissipa-

tive properties of the medium, typically assuming a viscoelastic constitutive model. 

Such information is usually presented in the form of dispersion curves showing the 

variation of the attenuation coefficient versus frequency. 

The purpose of our dispersion and attenuation analysis is to extract the information 

about geometric dispersion and spatial attenuation of the particle motion from acquired 

multichannel surface waves testing (an example is shown in figure 3.5). To this end, I 

implemented several analysis techniques in PYTHON to extract experimental dispersion 

and attenuation curves from recorded seismograms. 

This chapter briefly summarizes the methods used to estimate experimental 

attenuation curves and focuses attention on the method proposed by Kudo and Shima 

(1970) and more recently by Xia et al. (2002). This method produces only the fundamental 

mode attenuation curve.  
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Figure 3.5: 24-channel shot gather obtained in the test site of Velino River in June 2018. 

3.2.1 Experimental dispersion curves 

In addition to the methods to estimate attenuation curves, the methods used to extract 

experimental phase velocity dispersion curves may be classified according to the procedure 

adopted (Foti et al., 2014): 

 

 Direct assessments of the propagation parameters, e.g., wavelength in the steady-

state Rayleigh method or phase delay in the two-station spectral analysis of 

surface waves (SASW); 

 Regression methods, in which the propagation parameters are obtained by fitting 

the experimental data with the expected theoretical functions such as: multi-offset 

phase analysis (MOPA, Foti and Strobbia, 2006), spatial autocorrelation (SPAC, Aki 

(1957); Chávez-García et al. (2005)), transfer function; 

 Transform-based methods, in which the experimental data are transformed from 

the original space–time domain into a different domain in which the propagation 

parameters are identified as spectral maxima (e.g., frequency–wavenumber, 

frequency–slowness, frequency–velocity analysis). 

 

For active MASW experiments I implemented a PYTHON version of the Phase shift 

method, that compute dispersion data using a transformation described in Park et al. (1998). 

Other methods utilized to compute dispersion curves are f-k method, that compute 

dispersion data using a standard frequency-wavenumber transformation (i.e., convert the 

data from space-time to frequency-wavenumber domain using a two-dimensional Fast 

Fourier Transformation), fdbf (Frequency Domain Beamformer), that compute dispersion 

data using frequency domain beamformer (Foti et al. 2014), and tau-p, that compute 

dispersion data using a slant-stack (linear Radon) transform (McMechan and Yedlin, 1981). 
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3.2.2 Review of methods for estimation of attenuation curves  

In the case of surface waves testing, the Q structure cannot be estimated in a 

straightforward way, but we need to apply an inversion. This chapter is a quick review of 

the most utilized methods to estimate experimental attenuation curves (attenuation 

coefficients) from surface waves data. Kudo and Shima method (1970) has been adopted for 

our purposes, in order to extract experimental attenuation curves. For the experimental 

dispersion curves, as mentioned before, I implemented Phase shift method. It is proved that 

phase shift method is able to produce the best results in terms of accuracy and computation 

efficiency for the unconsolidated sediments considered in our work. Phase shift shows 

extremely stable results also when a reduced number of traces is considered and other 

methods fail due to spatial aliasing or severe noise content that prevents from unambiguous 

interpretation (Dal Moro, 1999). 

Most of the methods have been optimized for SASW or MASW data testing.  

 

Method Domain Reference 

Tranfer function technique ω -x Lai et al. (2002) 

Amplitude regression versus offset ω -k Rix et al. (2000) 

Half power bandwidth ω -k Badsar et al. (2010) 

Multichannel multimode complex 

wavenumber estimation 

ω -k Misbah and Strobbia (2014) 

Spatial decay of the Arias intensit r-x Badsar et al. (2011) 

Circle fit method ω-k Ewins (1984) 

Spatial decay of surface waves ω-x Kudo and Shima (1970), Park 

et al. (1998) 

 
Table 3-2: Review methods to estimate seismic attenuation through borehole surveys 

3.2.3 Phase shift method 

According to Park et al. (1998) work, the phase shift method consists in a wavefield 

transformation that provides images of phase-velocity dispersion curves directly from the 

recorded wavefields of a multichannel shot gather. With this method, different modes are 

separated with higher resolution even if the shot gather consists of a relatively small number 

of traces collected over a limited offset range. It is a three-step transformation method: 

 

 Fourier transform and amplitude normalization; 

 dispersion imaging; 

 extracting of dispersion curves. 

 

In the transformation theory we consider an offset-time (𝑥 − 𝑡) domain representation 

𝑢(𝑥, 𝑡) of a shot gather as in figure (Figure 3.4), so that the Fourier transformation can be 

applied to the time axis of 𝑢(𝑥, 𝑡) to obtain 𝑈(𝑥, 𝜔): 

 

𝑈(𝑥, 𝜔) =  ∫𝑢(𝑥, 𝑡)𝑒𝑖𝜔𝑡𝑑𝑡 
(3-12) 
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Where the transformed signal 𝑈(𝑥, 𝜔) can be expressed as the product of two terms: 

 
𝑈(𝑥, 𝜔) = 𝑃(𝑥, 𝜔)𝐴(𝑥, 𝜔) (3-13) 

 

𝑃(𝑥, 𝜔) and 𝐴(𝑥, 𝜔) are the phase and amplitude spectrum of the input signal. In 

𝑈(𝑥, 𝜔), each frequency component is completely separated from other frequencies and the 

arrival time information is preserved in the phase spectrum 𝑃(𝑥, 𝜔). The phase spectrum 

contains all information about dispersion properties, while the amplitude spectrum 

contains information about all other properties such as attenuation and spherical divergence 

(Park et al. 1998, Park, 2011). 

The Fourier transform of the signal 𝑈(𝑥, 𝜔) can be expressed in terms of amplitude and 

phase as follows: 

 

𝑈(𝑥, 𝜔) =  𝐴(𝑥, 𝜔)𝑒−𝑖Ф𝑥 (3-14)  

 

Where Ф = 𝜔/𝑐𝜔, 𝜔 = frequency in Hz, 𝑐𝜔 = phase velocity for circular frequency 𝜔. 

Therefore, the phase term is determined by the characteristic phase velocity of each 

frequency component and the offset. Appling the following integral transformation to 

𝑈(𝑥, 𝜔) we obtain 𝑉(𝜔, 𝜑): 

 

𝑉(𝜔, 𝜑) =  ∫𝑒−𝑖𝜑𝑥[𝑈(𝑥, 𝜔) |𝑈(𝑥, 𝜔)|⁄ ]𝑑𝑥 = ∫𝑒−𝑖(𝛷−𝜑)𝑥[𝐴(𝑥, 𝜔) |𝐴(𝑥, 𝜔)|⁄ ]𝑑𝑥  
(3-15)  

 

The integral transformation can be thought of as the summing over offset of wavefields 

for a single frequency, after applying offset-dependent phase shift determined for an 

assumed phase velocity 𝑐𝜔 = 𝜔/𝜑,  as per eq. (1-3). For a value of 𝜑 where a peak in 

𝜔𝑉(𝜔, 𝜑)occours, the phase velocity 𝑐𝜔can be determined. If higher modes get appreciable 

amount of energy, there will be more than one peak. 𝑈(𝑥, 𝜔) is normalized with respect to 

offset, thus compensating for the effects of attenuation and spherical divergence.  Therefore, 

for a given frequency 𝜔, 𝑉(𝜔, 𝜑) will have a maximum if  

 
𝜑 =  Ф = 𝜔/𝑐𝜔 (3-16)  

 

Because 𝐴(𝑥, 𝜔) is both real and positive. For a value of 𝜑where a peak of 𝑉(𝜔, 𝜑) 

occurs, the phase velocity 𝑐𝜔 can be determined. If higher modes get appreciable amount of 

energy, there will be more than one peaks. 

Dispersion curves result from the transformation of 𝑉(𝜔, 𝜑)to obtain 𝐼(𝜔, 𝑐𝜔) through 

changing the variables such that 𝑐𝜔 = 𝜔/𝜑. In the 𝐼(𝜔, 𝑐𝜔) wavefields, there will be peaks 

along the 𝑐𝜔-axis that satisfy (1-5) for a given𝜔. The focus along these peaks over different 

values of𝜔permits the images of dispersion curves to be constructed. 

 

So, the steps needed to obtain dispersion curves are summarized in the workflow 

below: 
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Fourier Transform and normalization 

 

A Fast Fourier Transformation (FFT) is applied to each trace 𝑢(𝑥, 𝑡) of the 

shotgather (N-channels) in order to obtain  frequency-domain representation 

𝑈(𝑥, 𝜔) (equation 1-1); 

 

 

The amplitude of the Fourier transformed record is normalized in both the 

offset and the frequency dimensions. As the phase spectrum of the signal 

𝑃(𝑥, 𝜔) contains all information about its dispersion properties, no significant 

information is lost. 

 

 

Iteration and summed amplitude 

 

A phase velocity range for testing 𝑣_𝑣𝑎𝑙𝑠 is established with a selected range 

of increments. 

 

 

For a given testing phase velocity (𝑣_𝑣𝑎𝑙𝑠) and a given frequency 𝜔, the amount 

of phase shifts required to counterbalance the time delay corresponding to 

specific offsets is determined. 

 

 

The phase shifts (determined in step 4 for a given testing phase velocity) are 

applied to distinct traces of the transformed surface wave record that are there 

after added to obtain the slant-stacked (summed) amplitude corresponding to 

each set of 𝜔 and 𝑣_𝑣𝑎𝑙𝑢𝑒𝑠. 

 

 

Steps 4 and 5 are repeated for all the different frequency components of the 

transformed record in a scanning manner, changing 𝑣_𝑣𝑎𝑙𝑢𝑒𝑠 by small 

increments within the previously specified range (step 3). 

 

 

Dispersion imaging and picking 

 

The phase velocity spectrum (dispersion image) is obtained by plotting the 

summed amplitude in the frequency–phase velocity domain, either in two or 

three dimensions. The peak values (high-amplitude bands) observed display 

the dispersion characteristics of the recorded surface waves. 
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3.2.3.1 Example of phase shift method processing in PYTHON code with real data 

The user must previously input a series of parameters like the length of recorded trace 

to use in calculations (sec), receivers spacing and position, sample rate, number of samples, 

frequency sampling, a range of frequency and velocity to consider in calculation, etc.  

Here an example of data parameters used in this test (where the shot gather is made 

up of 24 channels and the employed source is a 6.5 kg sledge hammer): 

 

1. dt = 3.125e-05                        # sample rate [s]   

2. n_channels = 24        # number of receivers used in testing   

3. n_samples = 2048          # number of samples per receiver   

4. position = range(0,48,2)            # vector of positions for all receivers   

5. offset = 4                # offset location   

6. timeHistories = TH  # matrix containing time histories for all receivers   

7. fnyq = 1.0/(2 * dt)         # Nyquist frequency   

8. df = 1.0 / (n_samples *  dt)          # Sampling in frequency domain   

9. kres = 2 * np.pi / min(np.diff(position)) # Maximum resolvable wavenumber   

 

1. f_values = np.linspace(5,200,1000)   

2. v_values = np.linspace(10,600,1000)   

 

Once we fixed these parameters, we can calculate the Fast Fourier Transform of each 

trace, (Equation 1 of Park et al. 1998, figure 3.7) and applying equation 4 of Park et al. (1998) 

on a double loop through frequencies and velocities range in order to obtain dispersion 

curves in velocity-frequency domain. In figure 3.7 we can observe the various vibration 

modes relates with dispersion curves in which the lower curve represents the fundamental 

mode of propagation. 

 

 
 

Figure 3.6: Fast fourier transform of 4 traces in the 24-channel record 
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Figure 3.7: Experimental dispersion curves obtained by using phase shift method (2-meters offset). 

 

The methods used to estimate attenuation curves are described below.  

3.2.4 Spatial decay measurement of surface waves 

This method is based ona spectral analysis of the traces described in Kudo and Shima 

work (1970) and revisited by Xia et al. (2002). The experimental attenuation curves have 

been calculated through a spectral analysis technique based on MASW testing data.We can 

express a Rayleigh wave amplitude as: 

 

𝐴(𝑥 + 𝑑𝑥) = 𝐴(𝑥)𝑒−𝛼𝑑𝑥 (3-17) 
 

where 𝐴 is Rayleigh wave amplitude, 𝛼is a Rayleigh wave attenuation coefficient, and 

𝑥 and 𝑑𝑥 are the nearest source-geophone offset and a geophone interval, respectively. The 

attenuation coefficient 𝛼𝑅(𝜔) is given as follow: 

 

𝛼𝑅(𝜔) =  −

ln [|
𝑊(𝑥 + 𝑑𝑥,𝜔)
𝑊(𝑥, 𝜔)

|√
𝑥 + 𝑑𝑥
𝑥 ]

𝑑𝑥
 

(3-18) 

 

where 𝛼𝑅(𝜔) is the Rayleigh wave attenuation coefficient as a function of frequency 𝑓, 

𝑊is the amplitude of a specific frequency, and the term under square root is a scaling factor 

in calculating the attenuation coefficient. This method assumes that a single Rayleigh wave 

mode is dominant, and may lead to incorrect results if multiple modes are presents 

significantly in the wave field. 

3.2.4.1 Example of Spatial decay of surface waves in PYTHON code with real data 

Considering the same data and parameter settings of Section 3.2.4.1, we show an 

extract of the code that we used to extract attenuation curves from real surface waves 
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dataset. The code implements equation (1-24) to calculate the value of attenuation 

coefficients for every frequency in the spectrum and every pair of receivers.  Considering a 

number of receivers N, the attenuation curves that we obtain are N-1. By taking the average 

of each N-1 attenuation curves we obtain the total attenuation curve as showed in Figure 

3.8 

 

10. gamma_values = pd.DataFrame(np.matrix(np.empty([len(stream)-

1,len(stream.iloc[0])])))   

11. for i in range (0,23):   

12.     for n in range (1,24):    

13.         gamma_values.iloc[i] = -(np.log(np.abs((stream.iloc[n]/   

14.                                 stream.iloc[i])*np.sqrt((steps[i]+2)/steps[i])))/2)   

 

 
 

Figure 3.8: Total attenuation curve (in red), the two curves in grey is referred to two different pairs 

geometry. 

3.3 Theoretical dispersion and attenuation curves by 

Direct Stiffness Matrix method 

The solution of the forward problem for 1D layered models can be obtained very efficiently 

using a variety of algorithms such as propagator matrix (Thomson 1950; Haskell 1953; Gilbert 

and Backus 1966) or stiffness matrix (Kausel and Roesset, 1981) algorithms. 

The direct stiffness or impedance matrix method is a tool for the analysis of wave 

propagation problems in elastic media, namely source problems, normal mode problems, 

and wave amplification problems. In principle, it is an analytical method in the sense that 

one obtains mathematical expressions for displacements that are free from approximations 

or discretization errors. However, the resulting expressions are generally intractable by 
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purely analytical means and must ultimately be evaluated numerically. The method can be 

applied to a large class of continua, such as beams and plates, but we restrict our 

presentation to the following three problems involving isotropic media formulated in 

Cartesian and cylindrical coordinates. 

For the layered model, in our work six parameters are needed to fully characterize 

each layer: density 𝜌, thickness ℎ, two elastic constants (e.g., shear modulus G and Poisson’s 

ratio 𝜈) and two damping ratios (i.e. shear-wave and body-wave damping ratio). Often, the 

elastic parameters are defined in terms of the P-wave and S-wave velocities and of 𝑄𝑃 and 

𝑄𝑆 (Quality factor) for each layer. Based on sensitivity analyses (Nazarian, 1984), two of these 

parameters are typically fixed a priori for each layer, that is, the density and Poisson’s ratio 

(or a given ratio between P-wave and S-wave velocities) of each layer.  

The method is based on the use of integral transforms, and consists of the following 

steps (Kausel and Roesset, 1981; Kausel, 2006): 

 Transform the source(s) (if any), which are modeled as external tractions, from the 

space–time domain into the frequency–wavenumber domain. This produces a 

source-vector 𝑝, usually in closed form. The loads 𝑝 are related to the 

displacements 𝑢 through the element stiffness matrix 𝐾: 

 For each frequency and wavenumber, determine the stiffness matrix of halfspace 

and each layer (element stiffness matrices) and, by appropriate superposition, the 

stiffness matrix 𝐾 of the complete layered system. This matrix is block-tridiagonal 

(i.e., narrowly banded) and symmetric, and in general its elements are complex. 

Damping is incorporated via complex moduli. 

 Solve the system of equations 𝑝 =  𝐾𝑢 by standard methods, and obtain the 

displacements in the frequency–wavenumber domain. 

 Carry out an inverse transform into the spatial–temporal domain, which yields the 

desired response. 

 

For the computation of halfspace and layer stiffness matrices, we will consider only 

the contribution of Rayleigh waves in the P-SV case. 

3.3.1 Halfspace stiffness matrix 

The 2x2-halfspace matrix for a lower (𝑧 <  0) half-space subjected to a P-SV wave’s 

polarization is derived from Table 1 of Kausel and Roësset (1981) and expressed as: 

 

𝑘ℎ𝑙𝑓𝑝𝑠𝑣 = 2𝑘𝐺 [
1 − 𝑠2

2(1 − 𝑟𝑠)
{
𝑟 1
1 𝑠

} − {
0 1
1 0

}] 
(3-19) 

 

For an upper half-space (opening upward), simple reverse the sign of off-diagonal 

terms. 

The stiffness matrix for a half-space subjected instead to a SH waves polarization is 

derived from Table 5 of Kausel and Roësset (1981) and expressed as: 

 
𝑘ℎ𝑙𝑓𝑠ℎ = 𝑘𝑠𝐺 (3-20) 
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3.3.1.1 Example of an halfspace matrix computed in PYTHON code 

The example shows the computation of the halfspace matrices for S-PV and SH 

polarization from a set of reference parameters. 

Here we fix model parameters  

 

 

1. vp = 2000  # P-wave velocity (m/s)   

2. vs = 500  # S-wave velocity (m/s)   

3. ds = 0.05  # S-wave Damping ratio   

4. dp = 0.05  # P-wave Damping ratio   

5. rho = 1800 # Density (kg/mc)   

6. h = float('inf')  # Layer thickness (meters)   

7. omega = 100  # Frequency (Hz)   

8. k = 0.5  # horizontal wavenumber (rad/m)   

9. G = rho*(vs**2)/1e08 # Shear modulus (Mpa)   

 

 

The functions k_hlfpsv and k_hlfsh return the relative halfspace matrices for both 

problems, in according to Table1 and Table5 of Kausel and Roësset (1981) article. Here we 

fit our simple matrix with parameters in according with example 4.1 in EDT-manual 

(Schevenels M., 2007): 

 

 

1. k_hlfpsv(vp,vs,omega,k,True) 

2. matrix([[ 4.06684092+0.0176422j ,  0.41266369-0.01566676j],   

3.         [ 0.41266369-0.01566676j,  3.74613873+0.05003505j]])   

 

 

3.3.2 Element stiffness matrix 

 

𝑘11,𝑗 = 
1 − 𝑠2

2𝐷
{
 

 
1

𝑠
(𝐶𝑝𝑆𝑠 − 𝑝𝑠𝐶𝑠𝑆𝑝) −(1 − 𝐶𝑝𝐶𝑠 + 𝑝𝑠𝑆𝑝𝑆𝑠)

−(1 − 𝐶𝑝𝐶𝑠 + 𝑝𝑠𝑆𝑝𝑆𝑠)
1

𝑝
(𝐶𝑠𝑆𝑝 − 𝑝𝑠𝐶𝑝𝑆𝑠)

}
 

 

− 
1 + 𝑠2

2
{
0 1
1 0

} 

(3-21) 

 

𝑘12,𝑗 = 
1 − 𝑠2

2𝐷
{
 

 
1

𝑠
(𝑝𝑠𝑆𝑝 − 𝑆𝑠) −(𝐶𝑝 − 𝐶𝑠)

(𝐶𝑝 − 𝐶𝑠)
1

𝑝
(𝑝𝑠𝑆𝑠 − 𝑆𝑝)

}
 

 
 

(3-22) 
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𝑘22,𝑗 = 𝑠𝑎𝑚𝑒 𝑎𝑠 𝑘11,𝑗, 𝑤𝑖𝑡ℎ 𝑜𝑓𝑓 − 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑠𝑖𝑔𝑛𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑑   

 

𝑘21,𝑗 = 𝑘12,𝑗
𝑇   

 

Where  𝑘11,𝑗, 𝑘12,𝑗, 𝑘22,𝑗and 𝑘21,𝑗 are the 2 x 2 submatrices of the element stiffness matrix 

for the jth layer. 

 

𝑘𝑒𝑙𝑚𝑝𝑠𝑣,𝑗 = [
𝑘11,𝑗 𝑘12,𝑗
𝑘21,𝑗 𝑘22,𝑗

]           𝑗 = 1,… , 𝑛 
(3-23) 

 

For the SH-waves polarization, the element stiffness matrix is assembled and 

expressed as: 

 

𝑘𝑒𝑙𝑚𝑠ℎ,𝑗 = 
𝑘𝑠𝐺

𝑠𝑖𝑛ℎ(𝑘𝑠ℎ)
[
𝑐𝑜𝑠ℎ(𝑘𝑠ℎ) −1

−1 𝑐𝑜𝑠ℎ(𝑘𝑠ℎ)
] 

(3-24) 

 

3.3.3 Assembly global stiffness matrix 

The global stiffness matrix (or system stiffness matrix) 𝐾 is assembled from the 

elements and halfspace stiffness matrices at the common layer interfaces and has a 

tridiagonal structure, and is symmetric. For each P-SV and SH wave polarization, the global 

or system stiffness matrix can be computed as: 

 
𝐾𝑔𝑙𝑜𝑏

= 

[
 
 
 
 
 
𝑘11,1
𝑘21,1
⋮

𝑘12,1
𝑘22,1 + 𝑘11,2

𝑘21,2

⋯
𝑘12,2

𝑘22,2 + 𝑘11,3
⋱

⋱
⋱
⋱
⋯

⋱
𝑘22,𝑛−1 + 𝑘11,𝑛

𝑘21,𝑛

⋮
𝑘12,2

𝑘22,𝑛 + 𝑘ℎ𝑙𝑓]
 
 
 
 
 

 

 (3-25) 

 

3.3.3.1 Example of a global matrix computed in PYTHON code 

1. vp = [360, 1000, 1400, 1400]  # P-wave velocity (m/s)   

2. vs = [180, 120, 180, 360]  # S-wave velocity (m/s)   

3. ds = 0.03  # S-wave Damping ratio, i.e. Q = 16,67 (adim)   

4. dp = 0.03 # P-wave Damping ratio, i.e. Q = 16,67 (adim)   

5. rho = 1800 # Density (kg/mc)   

6. h = [2, 4, 8, float('inf')]  # Layer thickness (meters)   

7. G = (rho*(np.power(vs,2)))/1e08 # Shear modulus (Mpa)   
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The function k_globpsv_matrix calculates the global matrix automatically according 

to the number of layers present above the half-space. In this example I’ve fixed frequency 

and wavenumber only at 100 and 0.5, respectively, to extract only one stiffness matrix. 

8. k_globpsv_matrix(h,vp,vs,rho,0.5,100,True)   

9.    

10. matrix([[ 0.42448779+0.00794457j, -0.11908087-0.03139854j,   

11.          -0.32789814+0.00767228j,  0.30651216+0.03147965j,   

12.           0.00000000+0.j        ,  0.00000000+0.j        ],   

13.         [-0.11908087-0.03139854j,  1.57088127+0.12659538j,   

14.          -0.30651216-0.03147965j, -1.62469457-0.12657122j,   

15.           0.00000000+0.j        ,  0.00000000+0.j        ],   

16.         [-0.32789814+0.00767228j, -0.30651216-0.03147965j,   

17.           0.83402185+0.02546558j, -0.20777924-0.06584859j,   

18.          -0.13348331+0.01669636j,  0.35062644+0.03466819j],   

19.         [ 0.30651216+0.03147965j, -1.62469457-0.12657122j,   

20.          -0.20777924-0.06584859j,  2.49515051+0.19643279j,   

21.          -0.35062644-0.03466819j, -0.98936788-0.06977971j],   

22.         [ 0.00000000+0.j        ,  0.00000000+0.j        ,   

23.          -0.13348331+0.01669636j, -0.35062644-0.03466819j,   

24.           0.63707946+0.15728793j,  0.13175790-0.20077895j],   

25.         [ 0.00000000+0.j        ,  0.00000000+0.j        ,   

26.           0.35062644+0.03466819j, -0.98936788-0.06977971j,   

27.           0.13175790-0.20077895j,  0.80268777+0.28004669j]])   

3.3.4 Trascendental eigenvalue problem 

Surface waves dispersion curves in a layered medium can be computed by means of 

the direct stiffness method or the thin layer method (Section 3.3.4.2) by the solution of an 

eigenvalue problem in terms of the frequency 𝜔 and the horizontal wavenumber 𝑘𝑥. This 

work focuses on the calculation of dispersive waves in a layered halfspace by means of the 

direct stiffness method. If the direct stiffness method is used, the eigenvalue problem is 

transcendental, has an infinite number of solutions, and must be solved with search 

techniques. If the thin layer method is used, a quadratic eigenvalue problem in terms of the 

horizontal wavenumber 𝑘𝑥 is obtained for each frequency 𝜔. This problem can be 

reformulated as a linear eigenvalue problem, which can be solved using standard 

techniques.  

In the direct stiffness method, the equilibrium of the medium in the frequency-

wavenumber domain can be expressed as: 

 
𝑝 = 𝐾𝑢 (3-26) 

 

Where 𝑝 is the system external load vector, and 𝑢 is the system displacement vector, 

respectively. Considering a horizontally layered halfspace, if the load vector 𝑝 vanished, in 
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a system with no external loading or tractions, the dynamic equilibrium equation can be 

written as: 

 
𝐾𝑢 = 0 (3-27) 

 

In this case, if the global stiffness matrix is singular, non-trivial solutions for the 

displacement 𝑢 can be obtained if the determinant of the global stiffness matrix vanish 

(equal to zero), and the displacements are equal to the in-plane free surface waves or natural 

modes of vibration in the layered halfspace. Hence, wave numbers that represent the modal 

solutions at different frequencies are obtained as the solutions of: 

 
𝐹𝑅(𝑘, 𝜔) =  𝑑𝑒𝑡(𝐾) = 0 (3-28) 

 

where 𝐹𝑅(𝑐, 𝑘)  represents the Rayleigh secular equation that can depends on various 

parameters: 

 
𝐹𝑅(𝑘, 𝜔, 𝑉𝑆, 𝑉𝑃, 𝑄𝑆, 𝑄𝑃, 𝜌, ℎ) = 0 (3-29) 

 

where 𝑘 is the wavenumber, 𝜔 is the angular frequency, 𝑉𝑆, 𝑉𝑃 are the S and P wave 

velocities, 𝑄𝑆, 𝑄𝑃 are the S and P quality factor, respectively,𝜌 is the mass density, and ℎ is 

the depth of the layer. Knowing the connections between 𝑘,𝜔, 𝜆 and 𝑐 we can describe the 

solutions in the desired domain ((𝑘, 𝜔), (𝑘, 𝑐),(𝜔, 𝜆), etc.). 

This equation can be expressed considering various layers and points on which 

calculate the solutions: 

 

𝐹𝑅,𝑞(𝑘𝑞 , 𝜔𝑞 , 𝑉̅𝑆, 𝑉̅𝑃, 𝑄̅𝑆, 𝑄̅𝑃, 𝜌̅, ℎ̅) = 0 (3-30) 

 

where 𝑞 = 1,… , 𝑄  is the number of points where the theoretical dispersion curve is 

computed, and the overlined terms is referring to vectors. 

Due to the uncoupling of the polarization of waves in plane (PSV) and out-of-plane 

(SH) problems (that govern Rayleigh and Love waves); the equation 1-34 can be 

reformulated as: 

 
𝑑𝑒𝑡(𝐾𝑃𝑆𝑉) = 0 
𝑑𝑒𝑡(𝐾𝑆𝐻) = 0 

 

(3-31) 

The matrices utilized for P-SV problem are described previously. The equations 

corresponds to an eigenvalue problem in terms of the angular frequency 𝜔 and the complex 

horizontal wavenumber 𝑘. The eigenvalue problem includes transcendental functions (i.e. 

is transcendental problem), infinite numbers of accepted solutions or modes are 

theoretically possible, and must be solved only numerically, by search algorithms that 

minimizes the determinant in terms of the complex wavenumber 𝑘, as an explicit solution 

of the problem is not available, except for a simple layered media, constituting by one or 

two layers. 
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For each frequency and wavenumber, the phase velocity 𝑐 of the Rayleigh wave is 

obtained theoretically as the ratio 𝜔/𝑅𝑒(𝑘), where (𝜔, 𝑘) is a solution that satisfy equation 

1-37 (roots). In Figure 5.1, we can observe the trend of global stiffness matrix determinant 

varying phase velocities at only four different frequencies, in the (𝑐, 𝜔) domain. 

 

 
 

Figure 3.8: trend of determinant varying phase velocity at four different frequencies (39,47,54,62 Hz), 

the dot line represent zero value of determinant. 

 

The attenuation coefficient 𝛾𝑅(𝜔) of the Rayleigh wave is computed as 1/𝐼𝑚(𝑘).  We 

can notice in Figure 3.8 that at a given frequency or wavenumber, multiple solutions may 

exist corresponding to a multiple modes of Rayleigh waves. For each frequency, the solution 

with the lowest value of phase velocity is referred to as the fundamental Rayleigh wave 

mode of vibration, the second value is the first mode, and so on. 

3.3.4.1 Example of dispersion curves computed in PYTHON code 

Here an example of the code used for the calculation of theoretical dispersion curves, 

the code was tested on three different soil layer structures, with more complex layering, 

used previously by Tokimatsu et al. (1992) and Tokimatsu (1997). The curves were 

computed on 0-30 Hz frequency range using a testing phase velocity increment of 0.5 m/s, 

that is well enough for this test, although authors recommend small increments (Olafsdottir, 

2018). In all three cases, the agreement between the fundamental and higher modes was 

good in the frequency range considered. In the right column has been reported the same 

operation on f-k domain. 

 

  Shear wave 

velocity 

(m/s) 

 Compressional 

wave  velocity 

(m/s) 

  

Layer 

number 

Case 1 Case 2 Case 3  Mass 

density 

(kg/m3) 

Layer 

thickness 

(m) 

1 80 180 80 360 1800 2.0 

2 120 120 180 1000 1800 4.0 

3 180 180 120 1000 1800 8.0 

4 

(halfspace) 

360 360 360 1400 1800 infinite 
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Table 3-3:   Test profiles, cases 1, 2, and 3 (Tokimatsu et al. 1992 and Tokimatsu 1997). 

 

  

  

  
 

Figure 3.9: Comparison of theoretical fundamental and first higher-modes dispersion curves 

obtained by python code and presented by Tokimatsu et al. (1992) and Tokimatsu (1997): in the left column 

a), the multi-mode dispersion curves in frequency and phase velocity domain, in the right column b), the 

dispersion curves in the frequency and wavenumber domain. For the test only the fundamental and first 

higher mode were computed. 

3.3.4.2 Exploring thin layer method 

In this work, I’ve investigated the potentiality of the Thin-Layer Method (TLM) (Kausel, 

1994), that is proposed as an effective tool for the analysis and simulation of wave motion 

in layered soils and other laminated media. In essence, the method consists in a partial 

discretization of the wave equation, namely one in the direction of layering. 

The thin layer method is an alternative to the direct stiffness method for wave 

propagation in layered media. It is based on the use of polynomial shape functions to 

represent the vertical variation of displacements and tractions. Compared to the direct 

stiffness method, the thin layer method leads to mathematically more tractable stiffness 
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matrices involving only polynomial functions instead of transcendental functions. Due to 

its approximate nature, the thin layer method requires a small thickness of the layer 

elements compared to the smallest relevant wavelength. Furthermore, the method is only 

applicable to media with a finite thickness, with either free-free boundary conditions or 

supported by a rigid stratum (Rix, 2005).  

While the direct stiffness method allows for the use of layer and halfspace elements, 

the thin layer method only provides a layer element. Due to the use of linear shape functions 

for the displacements, the element stiffness matrix 𝐾only involves polynomial functions of 

the horizontal wavenumber 𝑘𝑥andthe circular frequency 𝜔. Waas (1970) suggested treating 

the layered region as a continuum in the horizontal direction but to discretize in the vertical 

direction, resulting in the following equation. 

In the thin layer method, the element stiffness matrix 𝐾can bedecomposed as: 

 
𝐾 = 𝐴𝑘2 + 𝐵𝑘 + 𝐺 − 𝜔2𝑀 =  𝐴𝑘2 + 𝐵𝑘 + 𝐶 (3-32) 

 

where the matrices𝐴, 𝐵, 𝐺 and 𝑀are independent of the wavenumber 𝑘𝑥and the 

frequency 𝜔, but depends solely on the material properties of the layer. Numerical 

expressions for the matrices 𝐴, 𝐵, 𝐺 and 𝑀 of the layer element can be found in Kausel and 

Roesset (1981), Kausel (1994). 

This results in a quadratic eigenvalue problem , where 𝑘 are the wavenumbers for 

thelayered region. The solution to Equation 3-32 consists of 4𝑛 eigenvalues for Love and 

Rayleigh waves.Each eigenvalue results in two roots: a set of 2𝑛 values with negative 

imaginary parts (𝐾) and 2𝑛 values with positive imaginary parts (𝑘) where it can be shown 

𝑘 = −𝑘.  

Kausel and Roesset (1981) extended the thin layer method to allow elements of finite 

length, labeled hyper-elements, using the same semi-analytical formulation. 

The matrices 𝐴, 𝐵 and 𝐶 have been calculated using the implemented abc_solve 

PYTHON function. Figure 3.10 plot the three matrices in the sparsity pattern of a 2D array 

for a frequency of 100 Hz. In blue are visualized only the non-zero values of the array. 

 

 
 

 

Figure 3.109: examples of sparsity patterns of the matrices Am, Bm and Cm for a 100 Hz frequency 
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To account for material damping, even in the Thin layer method, the elastic moduli 

𝜆, 𝜇 should be replaced by their complex counterparts; 

 
𝜆 = 𝜆(1 + 2𝑖𝜉𝑠𝑖𝑔𝑛(𝜔)) 
𝜇 = 𝜇(1 + 2𝑖𝜉𝑠𝑖𝑔𝑛(𝜔)) 

 

(3-33) 

Where 𝜉 is the damping ratio of the layer. 

Overlapping the thin-layer matrices, we obtain the system matrices explained 

before𝐴, 𝐵, 𝐺,𝑀,which will beblock-tridiagonal matrices. In general, they will be stored by 

interface, each of which has two degrees of freedom.  

The quadratic eigenvalue problem introduced for generalized Rayleigh waves and 

satisfied the following properties (Kausel, 1994): 

 

 If k; is a solution, then so is also −𝑘;. These two solutions have adjoined 

eigenvectors whose polarization is apposite (i.e. the signs of the vertical 

components are reversed). They correspond to waves traveling and/or 

vanishing in opposite directions. Also, in the undamped case, the eigenvalues 

and eigenvectors occur in complex conjugate pairs. 

 If 𝑘is real, then the eigenvector is also real. 𝑘 > 𝑂 corresponds to waves with 

positivephase velocity.  

 If 𝑘is purely imaginary, the mode does not propagate, but vanishes to the right 

or left depending on the sign of 𝑘; 

  If 𝑘; is complex, the eigenvectors are complex, the motions are not in phase, 

and the wave is evanescent. The Rayleigh mode propagates to either the right 

or left (i.e. in±𝑥) depending on the sign of 𝑅𝑒(𝑘);. Also, it decays (or vanishes) 

to the right or left depending on the sign of 𝐼𝑚(𝑘);. Observe that the wave may 

propagate and decay indifferent directions! 
 

The most robust algorithm has proven to be inverse iteration with shift by Rayleigh 

quotient. As the wavenumber k entered the equations nonlinearly the Linear Companion 

Matrix Method was introduced to rearrange the problem into a generalized eigenvalue 

problem. The corresponding transformation for the equation 3-33 is to find an equivalent 

linear 𝜆 − 𝑚𝑎𝑡𝑟𝑖𝑥, 𝐴 − 𝜆𝐵. We say that a 2𝑛 × 2𝑛 linear 𝜆 − 𝑚𝑎𝑡𝑟𝑖𝑥, 𝐴 − 𝜆𝐵 is a linearization. 

Numerical computation of the solution of a quadratic eigenvalue problem can be found in 

Tisseur (2013). We tested this method reformulation the matrices 𝐴, 𝐵, 𝐶 obtaining a linear 

matrix. Since the problem is not anymore quadratic, can be solve with the standard python 

functions to solve a generalized eigenvalue problem like scipy.linalg.eig. The problem is the 

great numerical approximation using python standard function, that will be solved 

increasing the number of thin layer, but increasing number of layers increases the time 

computation. More layers mean bigger matrices and more solutions in the eigenvalue 

problem. In Figure 5.5 are plotted the real and imaginary part of the 𝑘 −solutions. Here an 

example of the code used to solve the quadratic problem: 

28. # solves quadratic eigenvalue problem by reducing   
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29. # the problem to a generalized eigenvalue problem A*x = lambdanew*B*x   

30. dim = np.shape(K)[0]   

31. Arow1 = np.hstack((-C,-K))   

32. Arow2 = np.hstack((np.eye(dim),np.zeros((dim,dim))))   

33. A = np.vstack((Arow1,Arow2))   

34. Brow1 = np.hstack((M,np.zeros((dim,dim))))   

35. Brow2 = np.hstack((np.zeros((dim,dim)),np.eye(dim)))   

36. B = np.vstack((Brow1,Brow2))   

37. eigvals, eigvecs = scipy.linalg.eig(A, B)   

38. eigvecsnew = normalizeVecAll(eigvecs[:dim,:],0) # convert gen. eig. solution back to qu

ad. eig. problem   

39. return eigvals, eigvecsnew   

 

  

 

Figure 3.11: Eigenvalues solution from the generalized eigenvalues problem. In a) the real part of the 

k solutions varying frequency corresponding to dispersion curves; in b) the imaginary part corresponding 

to attenuation coefficients. 
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Chapter 4.                                         
In situ measurements of seismic 

attenuation and surface waves 

comparison 

 

This chapter describes the equipment and procedures employed for seismic 

attenuation estimates using seismic downhole surveys and MASW testing. The aim of this 

study is to provide an optimized processing procedure for obtaining accurate seismic 

attenuation profiles using near-surface borehole surveys and then optimize a surface waves 

testing. 

The procedures for downhole measurements adopted take inspiration from the 

processing techniques adopted in VSP for hydrocarbon exploration, which is optimized for 

near-surface downhole testing. 

In addition, a surface waves test has been produced to extract dispersion and 

attenuation curves from experimental dataset. These curves are then compared with 

dispersion and attenuation curves predicted by theoretical computation, using velocity and 

damping parameters coming from DHT surveys to assess the accuracy of surface-wave 

estimation as far as Q and damping data are concerned. 

4.1 Site locations 

The data set for determining 𝑄 are measured at a test site located in Rieti (RI), Central 

Italy. From 2nd to 8th August 2017, as part of the investigation and study activities related 

to the level III Seismic Microzonation (MS) of the Municipality of Rieti (RI), in Campomoro 

(Borgo S. Antonio), a continuous core drilling was carried out, up to 44 meters, and 

equipped for the downhole geophysical test. The near-surface VSP is located on the left bank 

of the Velino River, in the Rieti Valley. The borehole drilling data are reported in tab. 4.1. 

 

Survey    

Geognostic survey 
Latitude 42°,402415 

Longitude 12°,866859 
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Material PVC pipe with a 3" diameter and 0.5 cm 

thickness; 

 

Cementation consisting of water, cement and bentonite 

 

Table 4-1: Parameters for field data site location and drilling description 

 

 

 
a) 

 

 
b) 



59 

 
c) 

 
Figure 4.1: Map of borehole site location; a) large scale location; b) location of test site 1, in Rieti 

(Campomoro); c) location of test site 2, in INGV headquarter 

 

The urban area of Rieti, including the historic center, falls at the south-eastern edge of 

the “Conca Reatina”, an alluvial plan of the Velino River. The city of Rieti is mainly founded 

on a lithoid travertine plate, partially covered by anthropic deposits, except for the southern 

part which is based on alluvial sediments. These deposits, which fill an E-W valley with 

very steep sides, and about 300 meters wide, refer to the Velino River and are very recent, 

attributable to the Holocene. The second test site, is located to the headquarters of INGV in 

Rome, at Via di Vigna Murata 605. Almost the entire territory of the Municipio Roma IX is 

made up of the main ignimbritic units erupted by the Colli Albani volcano (units of Trigoria, 

Pozzolane Rosse, Pozzolane Nere, formation of Villa Senni), which are interspersed with 

synthesized lavic expansions. 

Fig.4.2 and 4.3 shows the seismic velocity results, coming from downhole test, of the 

two sites of interest. 
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a) 

 
b) 

 
Figure 4.2: Test site 1; Path of the seismic rays (Ray-tracing). b) Velocity trend with depth. 
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a) 

 
b) 

 
Figure 4.3: Test site 2; a) Path of the seismic rays (Ray-tracing). b) Velocity trend with depth.  

 

The velocity trend is consistent with the stratigraphic variations. A good 

correspondence between lithotypes and velocity variations is observed along the two 

boreholes. For the Rieti site, the gravels at the base of the survey exhibits S-wave velocity 

close to 800 m/s, even if the downward continuity of these formations remains to be 

assessed, given that the borehole description indicates an increase in the silty-sandy matrix 

in the gravels finds below 45 m of depth. 

4.2 Instrumentation and geometry 

This section describes the instruments, the acquisition parameters and survey design 

utilized for seismic borehole attenuation measurements. The two methods utilized are 

heavily affected by the accuracy of the recorded waveform, especially at the near-surface 

scale. 

 



62 

4.2.1 Instruments utilized 

4.2.1.1 Seismic sources 

Vertically operated shakers or vertical impact sources are typically used for surface 

and borehole wave testing. Especially downhole recordings, whether from well velocity 

surveys, vertical seismic profiles or customized experiments, provide the data set most 

commonly used in measurements of attenuation (Raikes and White, 1988).  

Weight-drop systems, vertically accelerated masses and even vibroseis are able to 

generate high S/N ratios, provide control over the frequency content and allow longer 

wavelengths to be gathered resulting in larger investigation depths. Nevertheless, these 

sources are expensive and not easily manageable. 

The cheapest and most common seismic source that we have used consists of a 6 kg 

sledge-hammer striking manually on an Aluminum plate coupled to the ground (The 

weight of the sledgehammer should be at least 5 kg, Foti, 2018). 

Two seismic sources have been used for P- and S-wave measurements. For P-wave 

testing, the source consists in an Aluminum plate of 30 cm diameter which is striked through 

vertically. For the S-eave generation, an Aluminum source built by DICEA's Geophysics 

Area has been employed. The two different seismic source are showed in figure 4.4: 

 

 
a) 

 
b) 

 
c) 

 
d) 
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Figure 4.4: Pictures of the Test site 1: a) Generation of P waves by vertically vibration shot on metal 

plate. b) Impact source for SH wave generation. c) and d) positioning of both the sources. 

 

 
a) 

 
b)  

 
c) 

 
d)  

 

Figure 4.5: Pictures of the Test site 2: a) Generation of P waves by vertically vibration shot on metal 

plate. b) Impact source for SH wave generation. c) and d) positioning of both the sources. 

 

4.2.1.2 Receivers 

For the attenuation analysis, a geophone downhole string was used in both the test 

sites to perform a DHT testing. It consists of n°8 three-channel geophones with a 10 Hz 

natural frequency, spaced 1 meter apart and progressively lowered down 5 meters for each 

measure, resulting in an overlap of three traces between two subsequent acquisitions (in 

figure 4.6b is showed the insertion of the string in the borehole). For a classic VSP surveys, 

the depth spacing of the records is generally too large to allow a good resolution for near-

surface estimates (50-100 meter depths, 1-2-meter receiver spacing).  

The seismic string was provided by the Politecnico di Torino (DIATI) (Figure 4.6a). 

The connection with the PVC pipe is guaranteed by a system of pistons operated manually 

with a compressor via remote control (Figure 4.6c and 4.6d). 

The geophone string is suspended on a tripod in order to keep the equipment locked 

in a vertical position (Figure 4.8a and 4.8b) 
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a) 

 
b) 

 
c) 

 
d) 

 

Figure 4.6: a) Generation of P waves by vertically vibration shot on metal plate. b) Impact source for 

SH wave generation. c) and d) positioning of both the sources. 

4.2.1.3 Seismograph 

For the acquisition, the digitalization and the recording of the data, we have used the 

24-channel digital seismograph ES-3000 Geode © by Geometrics Inc., which 

allows a 24bit A/D conversion (Figure 4.7a). The seismograph interfaces with a laptop on 

which the data can be checked in real time acquired and at the same time monitor the level 

of environmental noise. To ensure high accuracy of the instant initial registration, a circuit 

closing trigger system was used, with mono-polar electric connection to the strike 

Aluminum plate and to the striking mass. 
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a)  

b) 

 

Figure 4.7: a) Geode ES-3000 utilized in this experiment. b) laptop real-time interface 

4.2.1.4 Acquisition parameters 

Below is a table with the acquisition parameters and receiver geometry used for the 

investigation: 

 

Parameter Value 

Number of channels 3 

Number of receivers 8 

Receivers distance 1 m 

Sampling rate 32000 Hz 

Number of samples 16384 

Recording length 312 ms 

Sampling interval 0.03125 ms 

 
Table 4-2: Acquisition and design parameters used in the site of Rieti. 

4.2.2 Survey layout 

Considering the objectives of the borehole seismic test, the correct experimental design 

and the careful execution of the experiment are of primary importance for obtaining optimal 

results. Many alternative approaches exist depending on the objective of the investigation 

and on the field of application. The spatial scale of borehole testing can vary from meters to 

kilometers, with receivers spacing in the order of tens. Most of the acquisition parameters 

depend on the target depth and the desired resolution, that in this case can be assumed of 

the order of magnitude of the receiver spacing (1m).  

The term “acquisition geometry” usually indicates the space sampling of the wave 

field. It is characterized by the geometry of the receiver spread; the number and the position 

of the receivers define the total size of the array and the receiver spacing (Strobbia, 2014). 

 



66 

 
a) 

 
b) 

 

Figure 4.8: In situ views of the experiment located in Rieti 

 

 
 

Figure 4.9: Survey layout of the DHT testing 

4.2.3 Select of pairs 

According to Li et al. (2016), the testing geometry should satisfy four conditions to 

obtain reliable near-surface Q estimates: 

 

 the direct waves used for the absorption estimation should avoid noise and 

interference effects;  
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 the source signature should be invariant, or else its effect should be removed in the 

Q estimation;  

 the receiver coupling response should be invariant, or else its effect should be 

removed in the Q estimation; and  

 project costs should be minimized, which is typically neglected in academic research 

but is an essential consideration in real seismic surveys and in professional practice. 

 

In a classical downhole (DHT) survey, the various tracks are acquired by lowering the 

geophone, or alternatively a geophonic string, at n-depth within the probing hole. These n-

traces can be combined into n-1 non-redundant pairs, according to various configurations. 

One of the main problems for this type of investigation, when operating in medium-small 

depth, is the different energization given by the operator at each shot, that affects the 

waveforms and the frequency content of the generated signal (point 2). Operating with a 

string consisting of 8 geophones in series, assures that the estimates will always be relative 

to the same shot, avoiding problems related to the different source signature. 

Changes in the source signature can give rise to apparent changes in frequency content 

with depth, thus causing errors in 𝑄estimates. 

4.3 Data processing 

The goal of processing seismic DHT data at any scale is to increase the S/N ratio. In 

our case the coherent signal is due to downgoing wave field and the primary objective is to 

isolate only this wave field. 

There are several factors which can affect the determination of 𝑄 (Teng, 1968; Janssen, 

1985):  

 

 Noise deforming the shape of the wavelet and its spectrum; 

 multiple reflections simulating non-existent layers and hiding-or interfering with-

existent reflections; 

 layers which are thin, compared to the dominant seismic wavelength, causing 

interferences of reflections; 

 micro-seismic instrumental or man-made noises; 

 poor separation of signals from neighboring events;  

 lack of knowledge of the crustal structure at the recording site; 

 under-damped recording instrument. 

 

A total of 44 records of P and SH waves were used in this analysis. 

Figure 4.10 shows an example of the raw data sets obtained, so-called shot gathers. 

The different kinds of waves that clearly can be seen are the direct and/or refracted wave, 

the airwave, tube waves, and several reflections. For the reflection seismic method, the 

downgoing reflections are the only data we want, the others are “noise”. This noise 

generated by the seismic source itself is coherent noise, in contrast to random noise. To 
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convert the data recorded in the field to the final seismic section, preferably a depth section, 

processing is necessary. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 
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Figure 4.10: a) and b) example of single shot gathers for P and SH waves. c) and d) full seismic gathers 

for P and SH waves of Test site 1; e) and f) full seismic gathers for P and SH waves of Test site 2. 

 

Increasing S/N ratio can be obtained directly in situ applying some obvious 

precautions like a good earth-receiver and earth-source coupling. As pre-processing, I have 

selected 5 principal steps that are listed below: 

 

 polynomial regression; 

 first break picking and travel times; 

 trace muting; 

 frequency analysis (frequency content); 

 trace windowing. 

4.3.1 Choice of traces and vertical stacking 

The particular survey geometry that has been chosen resulting in an overlap of three 

traces between two subsequent acquisitions. Trace selection depends on the direct 

observation of the seismic signal. Traces affected by disturbance of bad coupling problems 

have been replaced by a visual inspection, considering the overlap traces too (figure 4.11).  

 

 
 

Figure 4.11: Visual inspection of a single seismic gather (SH 8-channel) 

 

A stacked section is instead a processed seismic record that contains traces that have 

been added together from different records to reduce noise and improve overall data 

quality. The number of traces that have been added together during stacking is called the 

fold.  For each measurement station the number of repeated energizations (stacking) and 

https://www.glossary.oilfield.slb.com/Terms/s/seismic.aspx
https://www.glossary.oilfield.slb.com/Terms/r/record.aspx
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the number of recordings was chosen in the rate of 8 stack. Some measurements needed a 

real-time vertical stacking depending on the noise.  

4.3.2 First break picking and travel times 

Near the first arrival, seismic traces are not stationary, so the frequency content of an 

early window is sensitive to its position. For spectral ratios to measure the earth filtering, 

care should be taken to window the same phases on all traces. In the absence of significant 

dispersion, this can be done by adjusting the cutting window position so that the first arrival 

peaks at 5-ms before to the beginning of the window on every trace of the segment. This is 

an important detail in the preparation for absorption estimation. Inconsistent windowing 

causes erratic behavior of the spectral ratios (Mateeva, 2015). 

The time delay 𝜏 between the receivers in a given pair (𝜏 =  (𝑡 − 𝑡0)in equation (3-5)) 

can be measured from the first arrival peaks with a precision of the order of the sampling 

interval. The arrival of the signal is identified on the basis of the following observations: 

 

 For the SH waves, presence of specular pulses in the horizontal components of 

the recordings made with energizations of opposite directions; 

 frequency variation of the wave train. 

 

The picking of SH wave arrivals is done manually by comparing, for each station 

depth, the two opposite polarizations of shear wave SH (made in situ by relative rotation of 

the seismic source of 180 °). In the following figure (4.12) we can observe the comparison of 

the two opposite polarizations (SH1 and SH2) for first break picking. 
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Figure 4.5: Example of comparing SH waves polarization, by means of the specular pulses we can 

find the first break (red markers). 

4.3.3 Frequency content 

The frequency content analysis of the signals in the frequency domain can help in 

identifying the usable frequency band and it is useful in two step of our processing: a) 

selection of frequency range of the coherent signal (body waves) b) identification of the 

frequency band of the logarithmic ratio on absorption estimates.  

A particular procedure to assess the energy content consists in applying low pass 

filters with decreasing frequency thresholds to evaluate the lower frequency bound of 

usable data and high pass filters with increasing frequency thresholds to evaluate the 

frequency upper bound (Foti, 2018). This procedure has been applied on seismic traces in 

both of the experiments and sites (VSP and MASW). It provides indications on the usable 

frequency content and allows to design a correct band-pass filter to apply on each seismic 

signal of the database, in order to focus the dominant seismic signal, filtering out the noise 

and other interference. 

In general, frequency filtering is a technique to enhance the resolution in frequency 

domain by suppressing the noise, mostly associated with higher frequencies. 

Four variants of filtering are commonly applied: 

 

 Low-cut (only high frequencies are allowed to pass); 

 high-cut (only low frequencies are allowed to pass); 

 band-cut (a band of frequencies is restricted from passing); 

 band-pass (only a specific frequency band is allowed to pass). 

 

In the following figure we can see an example of the processing of seismic gather 

applying low pass and high pass filters to check the correct frequency content.  
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Figure 4.6: Example of check of the low frequency content (data from Rieti site, MASW surveys). a) 

Raw data, b) data with low pass filter 60 Hz (OK), c) data with low pass filter 20 Hz (partial OK), d) data 

with low pass filter 10 Hz (the signal in not dominant anymore and the wavefield is dominated by noise). 

 

On the VSP datasets, applying the same methodology, has then been applied a 10-150 

Hz butterworth band-pass filter to remove incoherent noise (electric noise, other wave 

types, etc.) 

In order to get reasonable attenuation estimates, it is extremely important to identify 

the frequency content or band over which the signal to noise ratio is sufficiently high.  

Once the signal is processed, in the SR method, the identification of the correct 

frequency band to apply the linear regression is even crucial, while in the RT method a filter 

can be applied only for a clear identification of the first cycle of the seismic signal, since we 
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cut the remaining part. In this work, the frequency band selected for SR processing is where 

the signal to noise ratio is quite high (see on figure 2.2), and where the amplitude spectrum 

shows the maximum values on the abscissae, considering the remaining part only due to 

noise. The spectral ratio shows reliable attenuation values in the frequency band where the 

spectrum is more energetic. Another instrument that can help to find a correct frequency 

band is the Spectrogram of each trace of the seismic stream (Figure 4.14).  

 

  
 

Figure 4.7: Example of Spectrogram (P and S waves) in the choice of frequency band. 

 

To avoid the instrumental response (geophones), it was decided to make a further cut 

of the lower frequency band (0-15 Hz), that can interfere with the survey frequencies. As 

can be seen in the figure (Figure 4.15) the spectrum shows the peak of energy most focused 

in the 15-60 Hz frequency band, decreasing rapidly for higher frequencies, but keeping the 

amplitude at low frequencies almost unchanged increasing in depth. 

 

 
 

Figure 4.8: Example of the choice of frequency band by means of FFT spectrum analysis (S-waves, 

Rieti site). 

 

Since scattering from thin layers will be explicitly taken into account in the absorption 

estimates, it does not represent “noise” (when not taken into account, this source-generated 

“noise” is a dominant cause of bias and uncertainty). The noise in our data is the ambient 

background that can be seen on the VSP traces before the first arrivals.  
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As is seen from figure 4.14 and 4.15, only frequencies between 15 and 60 Hz can be 

used for absorption estimation; the rest of the spectrum is dominated by noise. On most 

traces the signal-to-noise ratio in the usable frequency band is about 15-50 Hz.  

In the following table, there are all the frequency bands choices for the experiment. 

 

Test Site  Wave type  Bandpass 

filter (Hz) 

Chosen Frequency 

band (Hz) 

Rieti 
P 10-150 15-50 

SH 10-150 15-60 

 
Table 4-3: Frequency bands used for the absorption estimates. 

4.3.4 Muting 

Muting is aimed at optimal removal of wave intrusions and other low amplitude 

noises present in the raw wave field. It is performed by selecting two limiting scanning 

seismic velocities on the wave field, meant for top-muting and bottom-muting, based on 

which the events above and below the corresponding limits will be removed. The purpose 

in this case to eliminate the noises preceding the first arrivals, and after two or three cycle 

of vibration.  

Muting in this domain is not typically thought of as filtering, but the same care must 

be taken in identifying noise and signal, determining the best muting to apply to enhance 

the S/N ratio, and selecting the mute taper to avoid introducing unwanted artifacts. 

 

 
a) 
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b) 

 

 

Figure 4.9: Example of muting applied to the seismic dataset. a) test site 1; b) test site 2. 

 

The main components of spatially limited coherent noise that affects the wavefield in 

near-surface VSP data are generally multiple refraction, ground roll, air-wave, air-coupled 

waves, tube waves and other early-arriving noise. 

Filtering in the 𝑥 − 𝑡 domain, or muting, is a straightforward way to separate (remove) 

noise from signal. Muting of refracted and direct-wave energy is typical of both exploration-

scale and near-surface data and is necessary on most data sets to ensure the noise does not 

appear coherent on VSP stacked sections and result in geologic misinterpretation. 

Although care must be taken to identify refractions and reflections correctly, the 

muting process itself is straight forward. 

With smaller receiver spacing and target depths, like in our case, the airwave phase 

and other incoherent waves usually arrives to contaminate the signal, for larger spacing 

instead arrives too late. 

A method of noise attenuation for near-surface surveys data mentioned in the 

literature is to mute everything arriving later than the airwave when no signal is identified 

in that region. 

Muting helps to suppress the wavefield characteristics recorded beyond specific 

seismic velocities. Introduction of excessive muting may result in significant loss in the 

wavefield characteristics, and hence, muting operation should be controlled so that an 

optimum energy content of the signal is maintained while removing the adulterating noises. 

Muting is carried out by eliminating the wave signatures which are not in phase. The 

muting operation is carried out along the slope of the identified prominent phases of the 

wavefield.  

These observations suggest that muting alone cannot lead to the generation of a 

reliable absorption estimates. Hence, muting on the filtered wavefields is recommended. 

In this work we have applied a muting before and after a 50 ms cutting window 

functions for SH waves and 20 ms window functions for P waves (Figure 4.12). 
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4.3.5 Windowing 

We can minimize the effects of performing an FFT over a non-integer number of cycles 

by using a technique called windowing. Windowing reduces the amplitude of the 

discontinuities at the boundaries of each finite sequence acquired by the digitizer and 

consists of multiplying the time record by a finite-length window with an amplitude that 

varies smoothly and gradually toward zero at the edges. This technique is also referred to 

as applying a window and it is useful to improve the frequency spectrum of the FFT.  

 

 
 

Figure 4.10: Example of trace windowing with a Blackman-tapered time window function. 

4.4 Data results 

4.4.1 Spectral ratio results 

In this section, the SR method is applied using seismic near-surface VSP data, 

explained in detail in the previous section, with details on processing and acquisition 

parameters.  

The results of the processing were the extraction of the downgoing wavefield cleaned 

by other wave components and noise. The results of wave separation and processing using 

an improvement wave-by-wave separation approach is showed in Figure 4.13. The 

extracted downgoing wavefield was used for interval 𝑄 estimation. 

4.4.1.1 High level Fast Fourier Transform 

A high level FFT sub-routine is applied to the time signals, and these signals are 

displayed and stored domain amplitude using PYTHON code. The FFT algorithm converts 

the time domain signals to frequency domain and computes the discrete Fourier transform 

of the amplitudes of the time domain signals by taking 16384 points. 

The natural logarithms of the spectral ratios between the reference signal and the 

arrivals recorded at subsequent geophones were then computed and plotted as a function 

of frequency to derive the slope of the logarithm spectral ratio, alpha, which, according to 

Equation (2-1), is a function of 𝑄 and the travel time between the two arrivals. We can see 

on figure 4.17 the reduction in the spectral amplitude due to the attenuation of the signal 
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increasing along the depth of the investigation. This corresponds to a peak displacement 

towards lower frequencies, which is also clear in the temporal domain, with high-frequency 

components, which are predominant in the first layers, that are gradually disappearing as 

the depth of investigation increases. This dependence on the frequency and widening of the 

wave front are the basis of the choice on the application of the RT method, less affected by 

frequency issues. 

 

 
 

Figure 4.11: Amplitude spectra of the downgoing wavefield, we can notice the descrising in 

amplitude, increasing depth of investigation. 

 

We see that the most of energy spectrum is within 10-100 Hz, with the center frequency 

at 50-60 Hz. To select the frequency content for 𝑄 estimation, we consider a logarithm of the 

amplitude spectrum ratio for different frequency band for P and SH waves (Table 4.3).  

4.4.1.2 Logarithmic ratio and apparent attenuation 

The reduced spectral ratio ln [𝐴(𝜔) 𝐴(𝜔)]⁄ , were calculated in according with equation 

3-8. Figure 4.19 shows the logarithm of amplitude spectral ratio for the bandwidth 0-150 Hz 

for 9 intervals (43 total intervals). The so called reduced spectral ratio shows a very good 

linear trend between 15 and 50 Hz for SH waves, especially for deeper ratios. P waves shows 

a linear trend between 25 and 55 Hz. We can see that within the frequency band 15-50, these 

curves can be approximated with the linear function. 

 



78 

 
 

Figure 4.12: Spectral ratio between various recording pairs. 

 

Once we have fixed the frequency band to perform the linear regression, we can now 

calculate the apparent attenuation 𝛾(𝜔) (equation 3.5 – section 3.1.3.1), for each receiver 

pairs, that is related to the slopes values obtained. Some typical reduced spectral ratios 

values are presented in Figure 4.19, that also shown the least-squares fitted straight lines (in 

the blue-span). 

4.4.1.3 Estimation of Q factor 

As we expected, when plotting the differential attenuation values vs depth, we see an 

increasing with the distance from the source. Some deviating values, can be due mainly to 

scattering phenomena or a defective receiver coupling with the borehole. We can notice a 

net increase of apparent attenuation between 5-10 meter depths, especially for SH waves.  

 

  
 

Figure 4.20: Differential attenuation versus Depth of investigation for the Test site 1, calculated for 

P and SH wavefields 

 

Some out of range values of apparent attenuation, as we mentioned before, due to a 

bad coupling between receivers, and strong disturbances, are connected with a poor quality 
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of the selected traces. Being strongly influenced by local interference, these values of 𝑚 

(slope) are simply reject or mediated from the absorption estimation. We think that these 

negative values are strongly related even to the scattering phenomena.  

Such values are readily observable even if the spectral ratio slope is fit over a larger 

frequency band (Mateeva, 2015).  

For the two datasets the slope values are divided by a minimum of 0.032 up to a 

maximum equal to 0.143 recorded in the last meters for P-waves, and a range of 0.004 up to 

0.098 for SH waves measurements. 

In according with equation 3-11, once we have calculated reduced spectral ratio and 

apparent attenuation, we can now obtain intrinsic interval quality factor 𝑄𝑃 and 𝑄𝑆 estimates 

from the different receiver pairs and different depths. The Q values as obtained using 

spectral ratio method are showed in Figure 4.21 and tabulated in Table 4.4. 

 

 
a)  

 
b)  
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c)  d)  
 

Figure 4.13: Test site 1; a) Interval Q estimation and Damping factor versus depth for P waves. b) 

Interval Q estimation and Damping factor versus depth for SH waves; Test site 2; c) Interval Q estimation 

and Damping factor versus depth for P waves. d) Interval Q estimation and Damping factor versus depth 

for SH waves 

 

A good correlation with layers is noticed, with changes in absorption values, especially 

for greater depths of investigation, with some peaks in the passages between layers. 

The profiles show a very low 𝑄 values for P and S waves. We find that S waves 

attenuate more strongly than P waves (𝑄𝑆/𝑄𝑃 ≅ 0.5 − 0.6).  

According to theoretical considerations (Lay and Wallace 1995), 𝑄𝑆/𝑄𝑃 for the world 

should be 9/4 or 2.25. However, worldwide reported values deviate significantly from this 

theoretical value (Yoshimoto et al., 1993).  

Hough and Anderson (1988) opined that 𝑄𝑆/𝑄𝑃 ≥ 1 for most types of scattering, 

whereas Padhy (2009) states that high value of this parameter is expected when scattering 

from shallow heterogeneities in the crust is involved. The value of 𝑄𝑆/𝑄𝑃 is around 4/9 for 

a medium where attenuation is completely due to intrinsic attenuation and no scattering 

attenuation takes place (Lay and Wallace, 1995).  

The higher the value of 𝑄𝑆/𝑄𝑃, especially for the Rieti test site, the higher is the 

scattering, hence the more the heterogeneity. In the INGV test site the value is lower due to 

the greater stratigraphic homogeneity. 
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Figure 4.14: Qp/Qs and  Ds/Dp ratios for the 2 test sites 

4.4.2 Rise-time results 

The second method used in this study is the rise-time method, described in detail in 

section 3.1.2.1.  

The main purpose of this method is to extract good quality seismic data related to the 

first cycle of vibration in the time domain. The same pre-processing procedure used in SR 

method has been adopted for RT absorption estimation. The pulse-broadening method is 

advantageous because very short length of seismogram is required. So we have directly 

isolated each trace with a short 20-ms time windows with Blackmann-Harris window 

function. 
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Figure 4.15: 20 ms - isolated traces for rise-time estimation for the 2 test sites. 

 

The data in Figure 4.23 shows the 44 processed traces for P and SH waves. This method 

requests a good quality seismic data in order to avoid incorrect estimates of the rise-time, 

due to double peak, low S/N ratio, etc. 

It s been implemented an algorithm in PYTHON to process this data and extract the 

rise-time values for each depth of investigation.  

 

 
 

Figure 4.16: Example of rise-time estimates. In red the maximum slope of the first quarter-cycle of 

the seismic signal.  
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In Figure 4.24 we can observe the calculated rise-time for a set of 9 seismic traces. The 

rise-time show an increasing in depth of investigation, due to widening of the first cycle of 

the signals. Incorrect values have been directly rejected from the processing.  

 

  
 

Figure 4.17: Experimental rise-time as function of travel times. 

 

Figure 4.25 shows the experimental rise-times for P and SH waves plotted as a function 

of travel times that have been estimated in the first break picking in Section 4.3.2. and 

presents the comparison of the profiles obtained with the spectral ratio method one. Since 

our data come as velocity seismograms (we used 10 Hz velocity-geophones), we adopt 𝐶 =

0.485 ≈ 0.5 based on theoretical results (Kjartansson,1979). 

By operating a linear regression over an a priori layer division we can estimates 

intervals 𝑄 in according with Equation 3-2 in Section 3.1.2.1. 
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a) 
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b) 

 
Figure 4.18: Interval 𝑸𝑷 and 𝑸𝑺 for Rieti site using rise-time method and comparison between the 

two methods used. a) Test site 1; b) Test site 2. The dashed lines indicates the layer boundaries. 

 

The interval 𝑄 values obtained, comparing the values derived from the SR method, 

show an excellent correspondence and a minimum error. Values of 𝑄𝑃 from SR method are 

included from 0.3 to 32.6, and 𝑄𝑆 from 1.2 to 13.2, not considering negative and out of range 

values. In general, the calculated values with the rise-time method are higher, considering 

mean values, as we have observed in a precedent study for 𝑄𝑃 (Cercato, Desideri, 2018). Some 

authors attribute this discrepancy to mode conversions, scattering around the borehole 

(Morozov, 2008), and signal dispersion with depth. 

For obvious technical issues, the values obtained with the rise-time method can only 

be relative to the specific depth, as it is not possible to obtain step interval values.  

 

4.5 Experimental dispersion curves 

In this section, we apply the techniques reviewed in this paper for the determination 

of dispersion curves, applied on experimental dataset obtained in the same site of DHT 

survey (Section 4.1).  
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4.5.1 Instrumentation and survey layout 

The investigation depth depends on the maximum measured wavelength and the 

resolution decreases with depth. In particular, resolution at shallow depth depends on the 

high frequency content (small wavelengths) of the recorded data. 

In this active surface wave test was adopted using a receiver array and an active 

source. The scheme used involves in a linear array of 24 vertical geophones 2-meters spaced 

with in-line sources, for a final array length of 48 meters. The spatial sampling frequency 

affects the maximum wavenumber, which corresponds to the minimum wavelength. The 

source offset is the distance between the source and the closest receiver. In this test we have 

adopted a scheme called common receiver gather. A single array is deployed and left in 

place while the shot position (source offset) is moved along a line at evenly spaced locations. 

Six source offset are used in this test (Figure 4.27). 

The wave field was generated by a 6 kg sledge-hammer striking manually on an 

Aluminum plate (30 cm diameter) fixed on the ground; a set of 24 vertical geophones with 

a natural frequency of 4.5 Hz and the same seismograph described in Section 4.2.1.3. 
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Figure 4.27: Views of the surface waves testing site and instrumentation. Both vertical and horizontal 

geophone can be observed in figure, but only vertical geophones dataset has been used 

 

The acquisition parameters and survey design are described in table below: 

 

Parameter Value 

Number of channels 1-vertical 

Number of receivers 24 

Receivers distance 2 mt 

Sampling rate 8000 Hz 

Number of samples 16384 

Recording length 512 ms 

Sampling interval 0.03125 ms 

 
Table 4-4: Parameters acquisition and design parameters used in the site of Rieti. 

4.5.2 Data processing 

6 single shot gathers have been acquired separately to allow for statistical assessment 

of signal-to-noise ratio or for uncertainty evaluation. The raw-stacked shotgathers are 

plotted in Figure 4.28. 
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Figure 4.28: Reference dataset: stacked multichannel seismograms (shot gathers) displayed as wiggle 

traces. 

 

As for the borehole surveys, even for surface waves testing the aim of the processing 

procedure is to increase the S/N ratio and extract the coherent signal from the wave field. 

The procedure used in this work for the processing consists in three principal steps, that 

have been implemented in a PYTHON code: 

 

 Filtering: a 10-120 Hz butterworth band-pass frequency filter has been applied 

to the seismic dataset in order to remove high frequency and very low 

frequency noise. The lower and upper frequency bounds have been evaluated 

by the same procedure explained in Section 4.3.4; 

 Muting: as explained in Section 4.3.3 a muting procedure has been applied in 

order to remove body wave intrusions and other low amplitude noises present 

in the raw wavefield. It is performed by selecting two limiting scanning phase-

velocities on the wave field, meant for top-muting and bottom-muting, based 
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on which the events above and below the corresponding limits will be removed; 

the limits adopted corresponds to 90 and 170 m/s phase velocities; 

 Windowing: A Blackmann-Harris window function has been applied on each 

muted trace. 

 

In the figure below are represented the 6 records, corresponding to 6 different source 

offsets, positioned symmetrically with respect to the center of the line, after processing 

procedures.  
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Figure 4.29: Processed datasets: stacked and processed multichannel seismograms (shot gathers) 

displayed as wiggle traces. 

4.5.3 Extract dispersion and attenuation curves 

We have now adopted Phase shift method (see Section 3.2.3) in order to extract 

fundamental mode dispersion curves from the full wavefield on a shot gather, using a 

simple three-step transformation method. 

The first step is to apply the Fast Fourier transform to extract the normalized 

amplitudes of the transformed signals in according with equation 4-12 and removing 

frequencies above/below specified max/min frequency. 

In Figure 4.30, we can observe the normalized spectrum of traces 5,6,7,8 that have been 

transformed. 
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Figure 4.30: Normalized spectrum of trace 5,6,7,8. 

 

We can now start the transformation looping through frequencies and trial velocities 

in according with equation 4 in Park et al. (1998). 

Dispersion imaging is now obtained by plotting the summed amplitude in the 

frequency–phase velocity domain in two dimensions. This is possible by looping The 

dispersion analysis of the recorded data has carried out specifying a testing Rayleigh wave 

velocity range of 50-2000 m/s and a frequency range of 5-200 Hz. The peak values (high-

amplitude bands) observed display the dispersion characteristics of the recorded surface 

waves, in which we can identify and pick the fundamental mode dispersion curve by using 

a specific function based on the spectral maxima observed at each frequencies. Fundamental 

mode dispersion curves have been extracted from a selected range of frequency (15-80 Hz), 

because very high frequency has affected by higher modes (Figure 4.31). In this range of 

frequency can be observed a very clear dispersion curve for each source offset used for the 

test. 

4.5.3.1 Example of the Phase shift method in PYTHON code 

Here an extract of the PYTHON code used for the test, in this case we have reported 

the 6-dispersion imaging and extracted dispersion curves coming from the 6-source offsets 

in the frequency range mentioned before (Figure 4.31).  

40. for c in range(len(freq)):   

41.         # Loop through trial velocities at each frequency   

42.         for r in range(np.shape(v_vals)[0]):   

43.             V[r,c] = np.abs(np.sum(U[c,:]/np.abs(U[c,:])*np.exp(1j*2*np.pi*freq[c]*(spacing/v

_vals[r]))))   

44.    

45.         # Identify index associated with peak power at current frequency   

46.         max_id = np.nanargmax(V[:,c])   

47.         pnorm[:,c] = V[:,c] / V[max_id,c]   

48.         v_peak[c] = v_vals[max_id]   
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Figure 4.31: a) dispersion imaging of the 6 source offset dataset. b) extracted fundamental dispersion 

curve excluding out of frequency range values (grey-span). 

 

A very useful plotting is the logarithmic plot dispersion imaging that can focus the 

visualization on the frequency of interest (Figure 4.32) and has been utilized to checking the 

lower bound limit in the frequency range, taken at 15 Hz. In this log-plot is well visible the 

role of the space sampling due to receivers used in the test. 
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Figure 4.32: dispersion imaging in a logarithmic frequency scale. 

 

The last step is to calculate the mean value coming from the different 6-source offsets 

fundamental dispersion curves as we can observe in Figure 4.32. For a practical question, it 

has been taken only the fundamental mode dispersion curve, rejecting higher modes for 

further applications. Taking a frequency range of 15-80 Hz, the fundamental mode is not 

affected by superposition with higher modes and this is easily extracted from the dispersion 

images. The curves show a good correlation in the 15-80 Hz band with a standard error 0.5-

0.7, except for the lowest frequencies, where the error comes greater, as well-showed in 

Figure 4.32 and 4.33b. 

 

  
 

Figure 4.33: a) 6 source offset dispersion curves. b) dispersion curves mean value (in orange). 
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The experimental dispersion curve gives us a further information to optimize the 

model for theoretical consideration. As mentioned before, the investigation depth and 

maximum resolution at shallow depth depends on the maximum and minimum measured 

wavelength, corresponding to minimum and maximum frequency content of the considered 

dispersion curve, respectively.  

By applying the well-known relation of the wavelength 𝜆 = 𝑐/𝑓we can calculate the 

minimum and maximum investigation depth, that in this case corresponding in a 3-24 

meters depth range, considering a 𝜆/2 maximum investigation depth. 

4.6 Experimental attenuation curves 

In this section, we apply the spectral analysis of the traces described in Section 3.2.4 to 

obtain the fundamental mode attenuation curves. The dataset utilized and the processing 

applied on the raw dataset is the same explained previously.  

4.6.1 Spectral analysis of surface waves 

The code implements the Kudo and Shima (1970) method as explained in Section 3.2.4. 

This process involves in three simple steps. The first step is to evaluate the normalized 

spectrum 𝑊(𝑥,𝜔) at a specific frequency of each traces. Fourier amplitudes of seismic 

signals obtained at various depths were corrected by means of the geometrical factor. With 

a loop for every frequency between 15 and 80 Hz it has been calculated the normalized 

logarithmic ratio of each receiver pairs. So as to obtain a set of 23 attenuation curves for each 

shot-gather (𝑛 − 1 pairs with 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠). This process is repeated for each 

source-offset, in order to calculate the six fundamental mode attenuation curves of Rayleigh 

waves. 

The relation between the mean value of attenuation coefficients and frequency at 

various source offset are plotted in Figure 4.34. 

 

  



96 

  

  
 

Figure 4.34: The attenuation curves of each shot gathers. 

 

As for the experimental dispersion curves the mean value of this six curves are 

obtained and plotted in Figure 4.35. We can observe the resultant attenuation curve that 

exhibits a growing trend increasing frequency in a range of 𝛾(𝜔) included from 0.01 to 0.9 

for higher frequencies. The frequency range choosen for this test is the same described in 

Section 4.5.2 for dispersion curves purpose. 

 

  
 

Figure 4.35: a) Total attenuation curves from various source offsets; b) mean value attenuation curve 

(in green) in the 15-80 frequency range 
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4.7 Comparison of theoretical and experimental 

dispersion and attenuation curves 

This final section presents the comparison of numerically predicted (theoretical) and 

experimentally measured dispersion and attenuation curves for soils with damping. A test 

site is analyzed by means direct stiffness matrix modelling approach including an accurate 

damping profile. Experimental dispersion and attenuation curves for are retrieved by 

application of the methods, explained in Sections 4.6 and 4.6, to the measured dataset.  

An eigenvalue problem in frequency and propagation constant is obtained, the 

solution of which yields dispersion and attenuation curves. These dispersion curves give 

information about the wave propagation in the considered model structure. In the classic 

approach, damping is discarded and free wave propagation is considered. In order to more 

accurately account for the damping effects and better predict the performance of soils, in 

this work it has included damping in the modelling technique. Numerical (theoretical or 

predicted) and experimental dispersion and attenuation curves are compared using the 

fundamental mode of propagation for the test site of Rieti showed Figure 4.36.  

Both theoretical dispersion and attenuation curves are optimized with a model 

obtained from parameters coming from borehole seismic surveys (Section 4.4). The 

improvement in the direct stiffness method includes a detailed attenuation profile in the 

numerical computation, that enter in the model by introduces complex seismic velocity in 

the equations. The comparison it has made using only the fundamental mode of Rayleigh 

waves.  

 

  
 

Figure 4.36: a) comparison between experimental and theoretical fundamental mode dispersion 

curve. b) comparison between experimental and theoretical fundamental mode attenuation curve. 

 

The comparison is provided taking only the fundamental mode of both dispersion and 

attenuation curves in a frequency range of 15-80 Hz. In this work we decided to cut high 

frequencies because for large frequency values the numerical errors were too large and the 

mode superposition was too strong. A good agreement is found between the shapes of the 

dispersion and attenuation curves. In the low frequency region (15-20 Hz) and high 

frequency (70-80 Hz) for attenuation curves some more discrepancies are noticed, which can 
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be explained by the boundary conditions and numerical problems. With increasing 

frequency, together with the presence of damping, these boundary conditions and 

numerical problems become higher.  

The numerically predicted and experimentally measured dispersion and attenuation 

curves are in good agreement for the fundamental mode of propagation. The insertion of an 

accurate 𝑄𝑃 and 𝑄𝑆 profiles (i.e. damping profiles) can describe in this case the more complex 

dissipative behavior of the medium.  

We suggest that the contribution of Rayleigh wave attenuation coefficients from 𝑄𝑃 

and 𝑄𝑆 cannot be ignored since the 𝑄𝑆/𝑄𝑃 ratio reaches is about 0.6 (Section 4.4), which is 

not uncommon in the near-surface settings.  

Both in professional practice and in scientific research the damping factor is 

approximated to arbitrary values, or simply ignored. The purpose of this study is to 

demonstrate that an accurate damping profile coming from borehole studies can be an 

improvement to obtain reliable curves used in an inversion geophysical process. 
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Chapter 5.                                   
Conclusions 

5.1 Conclusions 

Borehole seismic surveys have been adopted to estimate the soil quality factors 

described in this thesis. The in situ experiment have provided reliable measurements for 

both 𝑄𝑃 and 𝑄𝑆 by using a three-channel string of 8-receivers. Two different methodologies 

are developed for the determination of the quality factor (i.e. material damping ratio), the 

methods used in this are the spectral ratio and rise-time method. Rise-time method have 

never been used for near-surface attenuation measurements (<100m). These two methods 

are applied to the downhole-VSP test in the site of Rieti. Both of the results are compared 

and explained in Chapter 4.  

It is demonstrated in this thesis that the existing methods to determine the quality 

factor can provide reliable attenuation estimates even in near-surface scale, adopting the 

processing procedure on the seismic dataset. The profiles how a very low 𝑄 values included 

in the range 2-10 for 𝑄𝑆  and 5-25 for 𝑄𝑃, and the relative damping profiles. We find that S 

waves attenuate more strongly than P waves (𝑄𝑆/𝑄𝑃 ≅ 0.6).  

Moreover, a surface wave test has been produced in order to explore the experimental 

attenuation and dispersion curves with the theoretical ones, calculated adopting an accurate 

model with parameters coming from downhole-VSP surveys. Forward model has been 

implemented using the direct stiffness matrix method described in Kausel (1981). Finally, 

an investigation on the thin layer method has been produced (Kausel, 1994), with an eye to 

possible further developments. 

Providing reliable measurements of seismic attenuation in near-surface scale can be 

affected by many errors and incorrect estimates. The spectral ratio method is more sensitive 

to the quality of the spectral resolution, and even on the choice of the frequency band used 

for the process. Rise-time can provide good absorption results only in presence of good 

quality seismic signals. Only an accurate processing procedure on the quality of the seismic 

data can be the solution of this problem. The procedure adopted for the in-situ experiment 

and processing are explained in detail in Chapter 4. A faster and standardized procedure 

can be the key for a practical use of this parameter, very underestimate in the past.  

Both the proposed techniques applied on the downhole-VSP method produced 

reliable results, a further approach of this technique is to investigate the results using a 

vibrating source (vibroseis) in order to check the attenuation changes with frequency.  
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In this study, it has been taken only the fundamental mode of Rayleigh waves. Many 

improvements will be possible in first case the computation of higher modes, that is a 

problem for the attenuation curves since the curves will overlap one another.  

Last, but not least, providing attenuation measurements from borehole surveys, can 

be considered as a key element and a fundamental parameter in the understanding, in a 

sensitive territory like the Italian one, of the real mechanism of the superficial terrains 

subject of a seismic event. 
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