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INTRODUCTION

Nerve growth factor (NGF), firstly isolated in 1956, is a
neuropeptide regulating the survival and proliferation of se-
lected neurons1 in central and peripheral nervous system.
Actually, NGF and its comparative molecules collectively
known as neurotrophins are well documented mediators of
multiple biological events in health and disease2-4, varying
their effects from that neurotrophic5,6 through im-
munotrophic7,8 to metabotrophic9,10. Thus, NGF is implicated
in the pathogenesis of a large spectrum of neuronal diseases
(Alzheimer’s and other neurodegenerative diseases) and
non-neuronal disorders (atherosclerosis, obesity, type 2 dia-

betes mellitus and other cardiometabolic disorders)8,10-14.
Particularly in the brain, NGF plays a key role in several dis-
eases leading to cell death and/or neurodegeneration during
development or aging15-21. NGF is synthesized as a 130 kD
precursor (proNGF) that is a complex of three proteins: 
a-NGF, b-NGF and b-NGF the latter acting as a serine pro-
tease that cuts the ��subunit releasing the 26 kD mature NGF;
this latter form is biologically active as a multifunctional sig-
naling molecule8,22,23. NGF binds two types of receptors: the
low-affinity NGF receptor p75 (LNGFR/p75NTR) and the
tropomyosin-related kinase A (TrkA)22,24. TrkA receptor
binding produces the homodimerization of the receptor and
the autophosphorylation of the tyrosine residue of the cyto-

SUMMARY. The nerve growth factor (NGF) belongs to a family of proteins named neurotrophins, consisting of NGF, brain-derived neu-
rotrophic factor (BDNF), neurotrophin-3 (NT-3), NT-4/5 and NT-6. NGF regulates a large number of physiological mechanisms that result
in neurotrophic, metabotrophic and/or immunotrophic effects. Neurodegenerative diseases, including Alzheimer disease, psychiatric disor-
ders (e.g. depression and schizophrenia) and brain parasitic infection have in common the effect of changing the brain levels of neurotrophins,
in particular NGF. The contribution of both NGF and its receptor TrkA in such events and the recent promising results of NGF based ther-
apies are here presented and discussed. 

KEY WORDS: NGF, Alzheimer disease, depression, brain, parasite, alcohol, neurodegeneration.

RIASSUNTO. Il fattore di crescita nervosa (NGF) appartiene a una famiglia di proteine chiamate neurotrofine, costituita dall’NGF, il fattore
neurotrofico di derivazione cerebrale (BDNF), la neurotrofina-3 (NT-3), NT-4/5 e NT-6. L’NGF regola un gran numero di meccanismi fisio-
logici che provocano effetti neurotrofici, metabotrofici e/o immunotrofici. Le malattie neurodegenerative, tra cui la malattia di Alzheimer, il
danno indotto dall’alcol, i disturbi psichiatrici (per es., depressione e schizofrenia) e l’infezione parassitaria cerebrale hanno in comune l’ef-
fetto di modificare i livelli cerebrali di neurotrofine, in particolare l’NGF. Vengono qui presentati e discussi il contributo dell’NGF e del suo
recettore TrkA in tali eventi e i recenti promettenti risultati delle terapie basate sull’NGF.

PAROLE CHIAVE: NGF, malattia di Alzheimer, depression, cervello, parassita, alcol, neurodegenerazione.

- Copyright - Il Pensiero Scientifico Editore downloaded by IP 79.56.20.87 Mon, 10 Feb 2020, 23:13:57



Nerve growth factor in the psychiatric brain

Riv Psichiatr 2020; 55(1): 4-15

5

plasmic tail. The site of the TrkA phosphorylation is a dock-
ing site for the Shc adaptor protein that is in turn phospho-
rylated beginning several intracellular pathways involved in
cell survival22,25. One of these involves the activation of the
serine/threonine kinase Akt that develops, by the recruit-
ment on TrkA receptor complex, the growth factor receptor
bound protein 2 (Grb2) and of another docking protein, the
Grb2-associated Binder1 (GAB1). This structure activates
phosphatidylinositol-3 kinase (Pl3K) that, in turn, activates
Akt. Inhibiting or blocking the activity of Pl3K or Akt may
elicit the death of sympathetic neurons in culture even after
NGF administration; instead. when both kinases are consti-
tutively expressed, neuronal cells can survive without
NGF26,27. NGF is involved primarily in the growth, prolifera-
tion, and survival of sympathetic and sensory neurons un-
dergoing apoptosis if NGF is missing28-30. 
Another pathway of NGF mediated neuronal survival in-

volves the mitogen-activated protein kinase (MAPK). This
pathway leads to the activation of the membrane-associated
G protein Ras that phosphorylates the serine/threonine ki-
nase Raf. This phosphorylation activates the MAPK cascade
regulating transcription25. Both pathways give rise to phos-
phorylation of the cyclic AMP response element binding
protein (CREB), a transcription factor that translocates into
the nucleus controlling the expression of anti-apoptotic
genes. NGF plays also a delicate role in the fine regulation of
learning and memory abilities during development, adult life
and aging by influencing synaptic plasticity, tissue growth
and attrition in crucial areas of the limbic system4,31-35. The
present review amplifies and updates findings for the contri-
bution of NGF in the pathogenesis and therapy of neuropsy-
chiatric disorders, in which cognitive and memory disorders
are prevalent36-38 (Figure 1).

BRAIN PLASTICITY, BEHAVIOR AND NGF

Growth factors regulating the pathways involved in nor-
mal brain development have a significant role in the patho-
physiology of mental disorders including those with a neu-
rodevelopmental origin. Significant changes in growth fac-
tors’ levels were observed in patients and in animal models
where altered levels of these proteins were found to induce
psychiatric behavior34,39-46. During the embryonic and post-
natal stages, psychophysical stressors altering the environ-
ment can modify the standard brain development opening
the way in the adulthood to psychopathologies such as de-
pression, alcohol abuse and drug dependence, schizophrenia,
anomalous social behavior47-52, conditions that will require in
adulthood, very important and expensive psychosocial be-
havioral to improve the life and abilities of patients with sev-
eral mental disorders53-55. Neurotrophins, together with hy-
pothalamic-pituitary-adrenal (HPA) axis, play a pivotal role
in controlling brain plasticity and behavior, particularly in
crucial periods during ontogenesis, when forming brain is ex-
tremely sensitive to external stimulations56. In rat models,
stress during pregnancy increases fetal and maternal plasma
corticosterone causing hypothalamic-pituitary-adrenal
(HPA) axis dysregulation and a prolonged elevation of plas-
ma glucocorticoids in response to stressing events49,50. Neu-
rotransmitter activity and synaptic development are altered
by increased activity of corticosterone and corticotrophin-re-
leasing hormone (CRH) in the developing brain eliciting be-
havioral disturbances in adulthood. Indeed, rats exposed to
gestational stress develop depressive-like behaviors and hy-
per-anxiety combined with the amygdala increase in CRH
activity49,50. Quite interestingly, changes in the HPA axis de-

Figure 1 (From left) NGF regulates social behavior in male mice; NGF stimulation upregulates DISC1-Fez1 complex  promoting neurite out-
growth; NGF stimulation elicits APP/TrkA binding favoring the non amyloidogenic pathway.
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scribed in prenatally stressed mammals were also described
in humans with endogenous major depression57-59. Signifi-
cantly, it has been proven that ectopic expression of Brain
Derived Neurotrophic Factor (BDNF) in vivo increases
CRH, whereas reduced expression of BDNF, or its receptor
TrkB, decreases CRH expression and normal HPA func-
tions60. Also during early postnatal life, nervous system de-
velopment is sensitive to stressing events, and this con-
tributes to inter-individual differences in vulnerability to psy-
chopathologies. During the postnatal development of CNS,
the neural network undergoes deep rearrangements61,62 and
is particularly susceptible to external stimuli. In this period,
NGF and BDNF regulates brain plasticity for a better adap-
tation to the environment8,63. For example, mice grown in a
nest with caregiving mother show better social behaviors and
skills if compared to mice raised in standard laboratory con-
ditions. These socially enriched mice show higher levels of
NGF and BDNF in the hippocampus and hypothalamus64,65.
In the mouse, NGF is secreted and produced also by the sub-
maxillary salivary glands66,67. Neurobehavioral studies have
demonstrated that aggressive behavior in adult male CD-1
mice induces a remarkable release of NGF from salivary
glands into the bloodstream. These findings demonstrated a
link between the NGF serum concentration and the achieved
status in the fighting were subordination almost double
serum levels of NGF compared to dominant mice68-70. Other
works have assessed the correlation between increased NGF
levels and subordinate behavior6,71. In male mice, NGF
chronic administration decreased aggressive behavior70.
NGF release was also activated by psychosocial stress that
depends on interspecific interactions while physical stressors
may produce less evident effects64,65. Intermale aggressive
behavior increases the synthesis of NGF in the hypothala-
mus72 likely because the NGF levels depends on psychologi-
cal stimuli associated with anxiety, fear, hormones and neu-
rotransmitters release to integrate the neuroendocrine re-
sponse and the behavior in order to confirm the physiologi-
cal homeostasis6,8,73.

ALCOHOL-INDUCED BRAIN CHANGES AND NGF

Numerous human studies have shown that binge or
chronic alcohol consumption as well as alcohol drinking dur-
ing gestation or lactation are a central inducing-cause of
brain alterations74 including mental retardation in adults,
adolescents and children75-84. As for the alcohol consumption
during pregnancy, the plethora of consequences in children
induced by alcohol are described as Fetal Alcohol Spectrum
Disorders85-88. It has been clearly shown that chronic or binge
alcohol consumption as well as alcohol exposure during fetal
development may significantly impair neurotrophic factors
production in the brain also affecting the expression of their
receptors89-96. NGF is probably the most important neu-
rotrophin involved in ethanol-induced toxicity. Many brain
studies have disclosed that NGF and its receptors are altered
during prenatal/acute/chronic alcohol abuse97-102. In particu-
lar, as previously revealed97 alcohol inhibits the expression of
endogenous extracellular signal-regulated kinase (ERK) and
the phosphatidylinositol-3-kinase (PI3K)103-105. Furthermore,
data evidenced several epigenetic roles of NGF and BDNF
in regulating the serum levels of interleukin-6 (IL-6), of tu-
mor necrosis factor-a (TNF-a) and the symptomatology of
alcohol dependence106-108. In particular, it has been shown an
elevation in NGF and IL-6 serum levels following alcohol
consumption as well as an association between BDNF, TNF-
a serum levels and the history of alcohol abuse, suggesting
that changes in the methylation of neurotrophins genes may
contribute to the development of alcohol dependence by af-
fecting relevant downstream signalling cascades97,108. 

SCHIZOPHRENIA AND NGF

Data from human and animal models suggest a function of
neurotrophins also in the vulnerability to stress-related neu-
ropsychosis109,110. Increasing literature evidences demon-
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Figure 2 Alcohol alters brain levels of NGF and its receptors and impair MAPK/ERK and PIK3 pathways that control the expression of an-
ti-apoptotic genes; EtOH alters methylation pathway of NGF and BDNF genes, that, in turn regulate serum levels of IL6 and TNF-alpha.
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strate that in psychopathological conditions the constitutive
levels of neurotrophins are disrupted in both brain and plas-
ma. In schizophrenics without neuroleptic therapy, NGF plas-
ma levels are lower if compared to healthy subjects40.
Haloperidol administration in human and mice drastically de-
pletes NGF plasma levels111 inducing sedation. By contrast,
the atypical antipsychotics olanzapine, clozapine, and risperi-
done induced higher levels of plasmatic NGF compared to
non-medicated first-episode psychotic patients112. The crucial
role played by NGF during cholinergic neurons development
for regulating learning and memory could explain the vulner-
ability of the schizophrenic brain and the cognitive alterations
observed in this disease; low levels of NGF may trigger con-
sequent neurodevelopmental deficits. In schizophrenics, brain
imaging studies evidenced modifications in selected brain ar-
eas such as prefrontal, temporal and anterior cingulum in-
volved in affective-cognitive processes113-116. Furthermore, the
post-mortem examination of schizophrenic brains disclosed a
reduction of cell proliferation in the entorhinal cortex, pre-
frontal region and anterior cingulate that could elucidate the
onset of the disease40,114. In animal models, behavioral deficits
associated with schizophrenic symptoms117 may be caused al-
so by maternal exposure to risk factors such as alcohol drug
abuse and obstetric complication118 that inhibit entorhinal
and cortical neurogenesis56.
Schizophrenia is a multifactorial mental disorder elicited

by social, genetic and developmental factors119,120. Disrupted-
in-schizophrenia 1 (DISC1)121,122 which is expressed by neu-
rons of the hippocampus, cerebral cortex, cerebellum and ol-
factory bulb in the rat brain is known to have a role in this
disease123,124. The coded protein binds other proteins includ-
ing fasciculation and elongation protein zeta-1(Fez1), which
is involved in axonal outgrowth. DISC1-Fez1 molecular com-
plex colocalizes in the growth cone of neurite proposing a
function in the extension process also confirmed by the fact
that these proteins are expressed in early ontogenic stages. In
PC12 cells, neurodifferentiation following NGF stimulation
was observed a drastic increase in Fez1 evidencing that NGF
regulates the neurite outgrowth and extension upregulating
DISC1-Fez1 complex125. When DISC1 translocation pre-
vents the complex being formed, neurite extension cannot
occur leading to an immature brain development and sup-
porting the hypothesis that schizophrenia is basically a neu-
rodevelopmental disease125.

NGF AND MAJOR DEPRESSION DISORDER

Major depression disorder (MDD) is one of most com-
mon brain disorders that implicates depression, fatigue, a de-
crease in concentration, scarce interest in normal daily activ-
ities and suicidal intentions126. Several neurotrophins includ-
ing NGF and BDNF are involved in MDD pathogenesis127-
129. MDD patients display reduced serum NGF; the same
diminution was observed in hippocampus mRNA and pro-
tein expression of NGF, BDNF and their receptors in post-
mortem brain examination130,131. A chemical mediator of the
NGF decrease is Interferon-gamma (IFN-g), as was demon-
strated in IFN-g knockout mice models that develop a de-
pressive-like behavior, increased immobility and parallel re-
duction of NGF levels132,133.

The administration of NGF in rats reduces the expression
of the cholinergic gene CHRNA5 and prokineticin receptor1
(PROKR1) mimicking the effects of fluoxetine and
amitriptyline therapy. The improvement of the depression-
like behavior is achieved by modulating the expression of
several genes in the amygdala and hippocampus134.

NGF AND ALZHEIMER DISEASE

Alzheimer disease (AD) is the most common type of de-
mentia in the old age. AD is characterized by early alter-
ations of synaptic proteins and synaptic functions with the
formation of abnormal tau and amyloid proteins. After the
discharge in the intracellular space of these abnormal pro-
teins starts the massive deposition of senile plaques (SP) of
the b-amyloid (Ab) peptide and the aggregations of neu-
rofibrillary tangles (NTF) originating from the hyperphos-
phorylated tau protein. According to the literature, during
the progression of the disease, a serious and progressive
memory deficit associated with a massive neuronal loss and
a total deterioration of the brain homeostasis were ob-
served135-137. The basal forebrain cholinergic neurons
(BFCN) innervating the hippocampus and the cerebral cor-
tex, brain areas controlling memory and attention are quite
susceptible to the AD and the first to be involved138,139.
In the pathophysiological mechanisms of AD, neu-

rotrophic factors play a fundamental and protective role.
Neurotrophins control plasticity, differentiation, pruning and
survival of the BFCN and the signaling of these peptides is
extremely altered in the course of the disorder140. NGF is
most studied neurotrophin for its role in AD develop-
ment140,141.
NGF signaling in BFCN involves three types of receptors:

the high-affinity tropomyosin-related kinase A (TrkA), the
low-affinity p75NTR neurotrophin receptor (p75NTR) and sor-
tilin. NGF binding to its receptor TrkA activates the pathway
signaling of cell survival, while in the presence of minor lev-
els of NGF and/or TrkA the precursor form of NGF (pro-
NGF) binds to the low-affinity p75 receptor and/or to sortil-
in determining an apoptotic signal leading to neurodegener-
ation142,143.
Indeed, NGF release by cortical and hippocampal neurons

is involved in the processing of amyloid precursor protein
(APP) to produce the soluble and neuroprotective APP
known also to be a strong inhibitor of the enzyme b-secretase
1 (BACE1) that regulates APP amyloidogenic cleavage144.
Recent studies in cellular and animal models have demon-
strated the protective role of NGF against AD induced neu-
rodegeneration. Moreover, there is strong evidence that the
changes in NGF signaling is one of the earliest events in AD
beginning145. In a cellular model such as the primary hip-
pocampal neurons, NGF removal generates an Alzheimer’s
like molecular condition with the development of Ab-amy-
loid plaques and aggregations of neurofibrillary tangles146. Al-
so, an antibody pointed to NGF induces similar phenotypic
effects and neuronal deficits in the AD11 mouse model of
AD147. The neuroprotective role of NGF observed in vivo and
in vitro is exerted by the regulation of APP processing144,148.
NGF stimulation of primary cholinergic septal neurons

elicits the binding of TrkA receptor to APP. This binding
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blocks the APP phosphorylation at the threonine 668 (T668)
residue in the cytosolic tail of the protein. T668 phosphoryla-
tion is an APP post-translational modification inducing APP
cleavage by the enzyme BACE1 that controls the amyloido-
genic pathway of maturation144.
During the development of AD, NGF deficit is associated

with an increased amyloid generation, initial synaptic alter-
ation as observed in mild cognitive impairments and early
AD. The newly generated amyloid inhibits the endocytosis of
the NGF/TrkA complex and this negative feedback loop
marks the AD beginning135. 
In rat models of aging, increased levels of pro-NGF and

p75NTR in the hippocampus and prefrontal cortex are asso-
ciated with a deficit in spatial learning and memory149. An el-
evation in pro-NGF levels was also discovered in mild cogni-
tive impairment and AD patients and during the examina-
tion of postmortem AD brain145. The alteration of the NGF
signaling is an early event during the progression of the AD
as disclosed by studies on animal and cellular models150. In
animal models, as aged rats, the blocking of NGF/TrkA sig-
naling induces a serious deficit in cholinergic function151,152.
In animal models of AD, the perturbation of NGF signaling
leads to a general loss of central cholinergic activities153. The
effect of the imbalance in NGF/TrkA signaling leads to a
pathological APP processing146. In transgenic mice lacking
APP/TrkA interaction, a severe degeneration of cholinergic
neurons and cognitive deficits were described154. These stud-
ies support the hypothesis of the neurotrophic model of AD
development. Indeed, the reduction of NGF level and the in-
crease in pro-NGF would activate the synaptic failure and
the abnormal amyloid and tau deposition creating a neu-
rodegenerative cascade27,155.
New pieces of evidence corroborate the relationship be-

tween NGF and APP processing based on a physical interac-
tion between APP and NGF receptors150. The APP iuxta-
membrane region containing the b and b-secretase cutting
sites and matches the first 16 aa of A� peptide is sufficient for
the interaction with TrkA and the binding to p75NTR156.
APP and TrkA proteins localize in the plasma membrane,
endoplasmic reticulum (ER), Golgi and endocytic vesicles
where the peptides form homodimers150.
In primary septal neurons, NGF treatment elevates

APP/TrkA complexes in ER and Golgi without increasing
proteins level probably because NGF disrupts this associa-
tion through the control of the APP phosphorylation148,150.
NGF withdrawal induces a decrease in APP/TrkA complex-
es and the same pattern is observed with cell death inducers
such as A� peptide and rapamycin. Furthermore, NGF, sup-
porting APP/TrkA complexes, inhibits the APP/APP homod-
imers that are more prone to amyloidogenic processing car-
ried out by b- and g-secretase148,150.
The APP post-translational alterations are crucial for the

physiological or amyloidogenic pathways157. The phosphory-
lation of the threonine residue 668 (T668) is related to amy-
loid production, synaptic deficits and apoptosis158,159. This
phosphorylation inhibits APP/TrkA binding and elevates Ab
production in cholinergic neurons in vivo and in vitro. A re-
cent finding has shown that NGF can reduce APP T668 lev-
el in cultured BFCN. It is also possible that the detachment
of APP from TrkA is due to changes in the conformation of
APP upon its phosphorylation148.
In the physiological anti-amyloidogenic pathway, binding

of NGF to TrkA elicits TrkA phosphorylation and TrkA
docking of the signaling adaptor SH2 containing sequence C
(ShcC). Activated ShcC blocks c-Jun N-terminal kinase
(JNK), a ser/thr APP kinase, preventing the APP phosphory-
lation at threonine residue 668 (T668). Since TrkA can bind
only APP molecules not phosphorylated at T668, the NGF
decrease of APP p668 levels arouses ATP-TrkA binding, and
the TrkA mediated trafficking of APP to the plasma mem-
brane and Golgi apparatus and the preferential cleavage of
APP by the neuronal b-secretases ADAM10-17. Contrari-
wise, the reduced availability of mature NGF and/or the re-
duced expression levels of TrkA result in pre-apoptotic sig-
nals that stimulate JNK, increase APP pT668 and disturb
APP-TrkA interaction favoring the b-secretase 1 amyloido-
genic pathway148.
Beneficial role of NGF on cholinergic neurons is carried

out downregulating T668 phosphorylation, stimulating
APP/TrkA binding and trafficking the complex to subcellu-
lar compartments, as Golgi complex, that is depleted of the
amyloidogenic enzyme like BACE1. Tau pathology is also
implicated in non-Alzheimer disorder pathophysiology (sus-
pected non-Alzheimer disease pathophysiology - SNAP). In
AD, many studies have demonstrated a synergism between
tangles and plaques, with abnormal tau that enhances Ab
toxicity and vice-versa160,161.
NGF can control the steady-state levels and the post-

translational maturation of tau that is cleavage, ubiquitina-
tion, and phosphorylation162,163. NGF withdrawal brings to
tau hyperphosphorylation and to abnormal cleavage of the N
terminal fragment of the protein lacking the microtubule-
binding domain. The same tau fragment was also observed in
animal AD models with impaired NGF signaling162,164.

NGF IN AUTISM SPECTRUM DISORDER

Autism Spectrum Disorder (ASD) includes deficits in so-
cial communication and repetitive behavioral patterns. Ge-
netic perturbations play a critical role in ASD with hundreds
of genes associated with it. However, such aberrations do not
converge in a common molecular pathway. Genetic investi-
gations and behavioral observations show the overlapping of
ASD with other psychiatric diseases, such as bipolar disor-
der, schizophrenia, and Attention Deficit and Hyperactivity
Disorder (ADHD)165,166. Investigating differential alterna-
tive splicing (DAS) in the blood of 2-4 years old boys with a
diagnosis of ASD, it was disclosed significant DAS changes in
several genes of NGF receptors and signaling if compared to
controls167. In another study, Lu et al. showed several NGF
single-nucleotide polymorphism associated with deficits in
nonverbal communication, one of the main autistic trait168.

NGF AND BRAIN PARASITOSIS

The role of NGF in parasitic disorders is not yet clearly
recognized but some information emerged from investiga-
tions on Trypanosoma cruzi and Schistosoma mansoni brain
neuroinflammation.
Chagas disease or American trypanosomiasis is a tropical

parasitic disorder caused by the protist Trypanosoma cruzi
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spread to humans and mammals by the insects “kissing bugs”
of the subfamily Triatominae169,170. During the early phase of
the disease, symptoms are not present or are mild with
headache, fever and swollen lymph nodes. Only the 40% of
people develop severe symptoms of the disorder after 30-40
years from the infection. Symptoms may include heart fail-
ure due to enlargement of heart ventricles, or enlarged
esophagus or colon (megaesophagus or megacolon). This dis-
ease affects about 6,6 million people mostly in Central Amer-
ica and Mexico171.

Trypanosoma cruzi releases the NGF mimetic neu-
rotrophin called PDNF (parasite-derived neurotrophic fac-
tor), a membrane-bound neuraminidase/trans-sialidase that
can bind TrkA but not p75NTR5,172. Trypanosoma infection in
the CNS is usually asymptomatic and neuronal examination
has revealed some sort of neuroprotection and neurons
preservation even near foci of inflammatory cells or parasite
nest173. Neuroprotection and neuroregeneration were also
discovered in animals with chronic or acute infection174-177.
Signs of sprouting of sympathetic and parasympathetic nerve
fibers were observed in the heart and colon with elevated
levels of several neurotransmitters178,179. These findings have
shown that Tripanosoma cruzi PDNF is a functional simula-
tor of NGF that can bind TrkA, can produce TrkA autophos-
phorylation and can trigger Pl3K/Akt and MAPK-Erk1/2
signaling eliciting cell survival and neurite outgrowth. Quite
interestingly, the inability of binding p75NTR inhibits the cell-
death signaling pathway180,181. From and evolutionary and
adaptive point of view, given the critical role of TrkA in neu-
ronal maintenance, the parasitic invader utilizes TrkA to re-
duce tissue damage, to stimulate protective mechanisms and
tissue repair maximizing host-parasite equilibrium in order
to prolong parasitism. This mechanism could reveal a gener-
al and unexpected model of host-parasite interaction180.
Neuroschistosomiasis refers to the Schistosoma mansoni

infection of the central nervous system and depends basical-
ly on the presence of parasite eggs in the nervous tissue and
on the host immune response. After eggs deposition, the ma-
ture embryo secretes and excretes antigenic and immuno-
genic mediators that start the granulomatous reaction182,183.
A large number of eggs and granulomas in CNS areas dis-
rupts adjacent tissues by the inflammatory reaction and the
mass effect182-186. In mice infected that manifest granulomas
in several CNS areas it was found an increase in NGF levels
in the cortex, hypothalamus, and brain stem with paw hyper-
algesia187,188. This murine model of chronic infection suggests
that the neuropathological and sensory deficits observed in
human infection are associated with abnormal NGF levels
and/or activity in peripheral and central nervous systems
caused by the local growth of granulomas67,189-195.

NGF-based therapy

The neuroprotective action of NGF in animal models of
neurodegenerative disease justified the beginning of clinical
trials of NGF therapy in humans for several brain diseases
including AD, schizophrenia196,197.
Encouraging results were disclosed in the basal forebrain

for individuals with implanted connective cells engineered to
synthesize and secrete NGF. In these studies, enhanced cell
size and new neural fibers were observed. Furthermore, cells

showing signs of pathology and protein clumps inside the cell
body maintained a healthy size, activated prosurvival signal-
ing and manifested stress resistance198. To potentiate the
NGF expression, modified viruses containing the NGF gene
were directly injected in the basal forebrain198,199. The pro-
tective role of NGF and its progressive decrease in AD is the
rationale of the NGF therapy in which the administration of
exogenous NGF could counteract the basal forebrain neu-
rodegeneration200. First promising results were obtained in
rodents where intracerebral NGF infusion was neuroprotec-
tive for cholinergic neuronal cells. Also in AD models like
APP/PSI transgenic mouse, the less invasive treatment as oc-
ular or nasal NGF administration decreased beta-amyloid
deposition201. In AD patients, NGF phase I gene therapy has
shown axonal sprouting without side effects201.
Abnormalities in NGF levels or signaling and the resulting

impairments in neuroplasticity and cognitive abilities were al-
so observed in psychiatric disorders such as bipolar disorders,
schizophrenia, alcohol use disorders, major depression and
autism. In schizophrenic patients treated with atypical an-
tipsychotic drugs, NGF levels increased leading to a reduction
of negative symptoms152,202. In bipolar disorders, NGF de-
creases during the parossistic state but may be rescued by
lithium administration by potentiating NGF concentration in
the frontal cortex, hippocampus, and amygdala203,204. In chil-
dren with Rett syndrome, a disorder causing a delay in devel-
opment and cognitive abilities resembling autism, therapies
with NGF-like activity drugs may improve motor and cortical
functions by also potentiating social interactions205.

NGF AS CLINICAL BIOMARKER OF PROGNOSIS AND
DIAGNOSIS OF PSYCHIATRIC DISORDERS

Variations in the serum NGF concentrations have been
associated with the pathogenesis and clinical symptoms of
several psychiatric disruptions, such as: anxiety disease, mood
disorders, schizophrenia, Alzheimer and others. Indeed, fluc-
tuations in the serum levels of NGF and other growth factors
are usually connected to the clinical severity and progression
of mental illnesses46. Several experimental evidences clearly
demonstrate that the serum analysis as biomarkers of neu-
rotrophins, including NGF, could be quite useful to early dis-
close the onset of several psychiatric disorders46. The work-
ing hypothesis was based on the fact that the combined in-
vestigation of different neurotrophins could be utilized to es-
tablish whether or not such neuropeptides as biomarkers of
psychiatric disorders or biomarkers of some cognitive, emo-
tional and social deficits46. Available data in the litera-
ture19,206,207 clearly stress the point that neurotrophins and
other growth factors are i) involved in the pathophysiology
of psychiatric pathologies with neurodevelopmental origin;
ii) in animal models selected changes in the serum presence
of neurotrophins and other growth factors may elicit psychi-
atric-like behaviors; iii) people affected by neuropsychiatric
disorders may display significant modifications in certain
neurotrophins and/or other growth factors; iv) disruptions in
the blood levels of neurotrophins and/or other growth fac-
tors may be associated with the severity of the brain disease,
changes in the behavior, poor social abilities, and cognitive
performance decline. In particular, peripheral changes in
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neurotrophins as NGF and/or BDNF resulted connected
with functional impairments in cognitive and emotional pro-
cessing whereas peripheral modifications in other growth
factors as EGF, VEGF and FGF demonstrated subtle roles of
these biomarkers in motor processing46. However, as sug-
gested by different researchers, at the present time do not ex-
ist specific and reliable biomarkers for each psychiatric dis-
order, but a combined screening of biomarkers appears the
only alternative to improve the early diagnosis and clinical
follow-up of psychiatric individuals46. 

CONCLUSIONS

Many years of research have recognized the important
trophic and homeostatic role of NGF that exerts its modula-
tory functions on endocrine, nervous, adipose and immune
system activities. Future studies, through an extended knowl-
edge of the molecular mechanisms of action of this small and
versatile peptide, will help to develop effective brain thera-
peutic strategies for many clinical sectors including those in-
volving neurodegeneration, neuroinflammation and neu-
roadipocrinology2,20,23,180,181.
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