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UNIQUENESS AND INTRINSIC PROPERTIES OF

NON-COMMUTATIVE KOSZUL BRACKETS

MARCO MANETTI

Abstract. There exists a unique natural extension of higher Koszul brackets to every
unitary associative algebra in a way that every square zero operator of degree 1 gives a
curved L∞ structure.

Introduction

The name (higher, commutative) Koszul brackets is usually referred to the sequence of
graded symmetric maps Ψn

f : A
⊙n → A, n ≥ 0, defined in [14] for every graded commutative

unitary algebra A and every linear endomorphism f : A → A by the formula:

Ψ0
f = f(1),

Ψ1
f(a) = f(a)− f(1)a,

Ψ2
f (a, b) = f(ab)− f(a)b− (−1)|a||b|f(b)a+ f(1)ab

...

Ψn
f (a1, . . . , an) =

n∑

k=0

(−1)n−k

k!(n− k)!

∑

π∈Σn

ǫ(π) f(1 · aπ(1) · · ·aπ(k))aπ(k+1) · · ·aπ(n) ,

(0.1)

where ǫ(π) is the Koszul sign of the permutation π with respect to the sequence of homo-
geneous elements a1, . . . , an. As proved in [6, 15, 22] they have the remarkable property
of satisfying the generalized Jacobi identities of Lada and Stasheff [16], and therefore they
are applied in the study of L∞-algebras, of (commutative) Batalin-Vilkovisky algebras and
their deformations.

The question of extending their definition to every unitary graded associative algebra,
preserving generalized Jacobi identities, is a nontrivial task and has been first answered by
Bering [7] about ten years ago. Very recently, other solutions, quite different in their origin
and presentation, are proposed by Bandiera [3, 4] and by Manetti and Ricciardi [17].

Apart from the natural question whether the above mentioned non-commutative exten-
sion formulas coincide or not, the main goal of this paper is to determine a minimal set of
conditions which implies existence and unicity of non-commutative Koszul brackets.

A similar goal has been recently achieved by Markl in the paper [18], where it is proved
that both hierarchies of Börjeson brackets and commutative Koszul brackets are the unique
natural hierarchies of brackets satisfying the technical conditions called hereditarity, recur-
sivity and with fixed initial terms. Strictly speaking, this viewpoint does not apply to our
goal since it is easy to see that a non-commutative hereditary extension of Koszul brackets
cannot satisfy generalized Jacobi identities; however Markl’s work has certainly inspired
this paper.
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2 MARCO MANETTI

The point of view which we adopt in this paper is based on the slogan that “the most
important properties for a hierarchy of brackets are naturality, base change and generalized
Jacobi formulas”. Precise definitions will be given in Theorem 2.1; here we only mention
that Markl’s notion of naturality is essentially equivalent to the join of our notions of
naturality and base change.

Whereas in the previous literature on the subject the starting point is Koszul’s definition
in the commutative case, the middle point is the proposal of a non-commutative extension
and the conclusive point is the proof of generalized Jacobi identities, in this paper we reverse
the logical path: we start with a generic hierarchy satisfying naturality, base change and
generalized Jacobi, and then we add assumptions on the initial terms until we reach the
unicity. Quite surprisingly, this approach goes very smoothly and provides, in our opinion,
a simplification of the theory also when restricted to the classical commutative case.

The paper is organized as follows: in Section 1 we fix notation and we recall the definition
of the Nijenhuis-Richardson bracket, in terms of which the generalized Jacobi identities can
be expressed in their simplest form. Section 2 is completely devoted to the proof of the
uniqueness theorem of Koszul brackets, whose first properties, including their restriction
to the commutative case, are studied in Section 3. In Section 4 we shall prove that the
non-commutative Koszul brackets may be also explicitly described by the formulas given
in [3, 7]. The last section is devoted to a discussion about the reduction of Koszul brackets
to non-unitary graded associative algebras.

Acknowledgments. The author thanks the referee for several useful comments and ac-
knowledges partial support by Italian MIUR under PRIN project 2012KNL88Y “Spazi di
moduli e teoria di Lie”.

1. General setup

The symmetric group of permutations of n elements is denoted by Σn. Every graded
vector space, every graded algebra and every tensor product is intended Z-graded and over
a fixed field K of characteristic 0. For every graded vector space V we shall denote by
V ⊙n its nth symmetric power: for simplicity of notation we always identify a linear map
f : V ⊙n → W with the corresponding graded symmetric operator

f : V × · · · × V︸ ︷︷ ︸
n factors

→ W, f(v1, . . . , vn) = f(v1 ⊙ · · · ⊙ vn).

To every graded vector space V we shall consider the following graded Lie algebras:

(1) the algebra of linear endomorphisms:

End∗(V ) = Hom∗
K
(V, V ) =

⊕

n∈Z

Homn
K
(V, V ) ,

equipped with the graded commutator bracket;
(2) the space of affine endomorphisms:

Aff∗(V ) =
⊕

n∈Z

Affn(V ) = {f ∈ End∗(V ⊕K ) | f(V ⊕K ) ⊆ V } ,

considered as a graded Lie subalgebra of End∗(V ⊕K ).

Thus, giving an element f ∈ Affn(V ) = {f ∈ Endn(V ⊕ K ) | f(V ⊕ K ) ⊆ V } is the same
as giving a linear map gi : V

i → V i+n, gi(v) = f(v), for every i 6= 0 and an affine map
g0 : V

0 → V n, g0(v) = f(v + 1).
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It is useful to consider both End∗(V ) and Aff∗(V ) as graded Lie subalgebras of

D(V ) =
∏

n≥−1

Dn(V ), D−1(V ) = V, Dn(V ) = Hom∗
K
(V ⊙n+1, V ),

where the Lie structure on D(V ) is given by the Nijenhuis-Richardson bracket, induced
by the right pre-Lie product ⊼ defined in the following way [20]: given f ∈ Dn(V ) and
g ∈ Dm(V ) the operator

f ⊼ g ∈ Dn+m(V )

is equal to:

(1) f ⊼ g = 0 whenever f ∈ D−1(V ) = V ;
(2) f ⊼ g(v1, . . . , vn) = f(g, v1, . . . , vn) whenever g ∈ D−1(V ) = V ;
(3) when n,m ≥ 0 we have

f ⊼ g(v0, . . . , vn+m) =
∑

σ∈S(m+1,n)

ǫ(σ)f(g(vσ(0), . . . , vσ(m)), vσ(m+1), . . . , vσ(m+n)) .

Here S(m + 1, n) ⊂ Σn+m+1 is the set of shuffles of type (m + 1, n), i.e., the set of
permutations σ of 0, . . . , n+m such that σ(0) < · · · < σ(m) and σ(m+1) < · · · < σ(m+n).
The Koszul sign ǫ(σ) is equal to (−1)α, where α is the number of pairs (i, j) such that i < j,
σ(i) > σ(j) and |vi||vj | is odd. The Nijenhuis-Richardson bracket is defined as the graded
commutator of ⊼:

[f, g] = f ⊼ g − (−1)|f ||g|g ⊼ f .

Notice that, since [Di(V ), Dj(V )] ⊆ Di+j(V ) we have that D0(V ), D−1(V )×D0(V ) and
D≥0(V ) =

∏
n≥0 Dn(V ) are graded Lie subalgebras of D(V ); notice also that [f, IdV ] = nf

for every f ∈ Dn(V ), where IdV is the identity on V .
By definition End∗(V ) = D0(V ) and there exists a natural isomorphism of graded Lie al-

gebras Aff∗(V ) ∼= D−1(V )×D0(V ), where every pair (x, f) ∈ D−1(V )×D0(V ) corresponds
to the linear map

(x, f) : V ⊕K → V, (x, f)(v + t) = f(v) + tx, v ∈ V, t ∈ K .

Remark 1.1. It is well known, and in any case easy to prove, that the Nijenhuis-Richardson
product ⊼ is the symmetrization of the Gerstenhaber product

Hom∗
K
(V ⊗p−n+1, V )×Hom∗

K
(V ⊗n+1, V )

◦
−→ Hom∗

K
(V ⊗p+1, V ),

f ◦ g(v0, . . . , vp) =

p−n∑

i=0

(−1)|g|(|v0|+···+|vi−1|)f(v0, . . . , vi−1, g(vi, . . . , vi+n), vi+n+1, . . . , vp).

More precisely, denoting by N : V ⊙n+1 → V ⊗n+1 the map

N(v0 ⊙ · · · ⊙ vn) =
∑

σ∈Σn+1

ǫ(σ)vσ(0) ⊗ · · · ⊗ vσ(n) ,

we have (f ◦ g)N = fN ⊼ gN .

Remark 1.2. Although not relevant for this paper, it is useful to point out that the graded
Lie algebra D(V ) is naturally isomorphic to the graded Lie algebra of coderivations of the
symmetric coalgebra Sc(V ) =

⊕
n≥0 V

⊙n. The isomorphism

Coder∗(Sc(V ), Sc(V )) → D(V ) ∼= Hom∗
K
(Sc(V ), V )

is induced by taking composition with the projection map Sc(V ) → V , see e.g., [12, 16, 21].
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Definition 1.3. For a unitary graded associative algebra A we consider the sequence of
maps µn ∈ Dn(A), n ≥ −1:

µ−1 = 1, µ0 = IdA, µn(a0, . . . , an) =
1

(n+ 1)!

∑

σ∈Σn+1

ǫ(σ)aσ(0)aσ(1) · · · aσ(n) .

When A is graded commutative we recover the multiplication maps µn(a0, . . . , an) =
a0 · · · an. When the algebra A is clear from the context, we shall simply denote by Id
the identity map IdA : A → A. In order to avoid possible confusion with the Nijenhuis-
Richardson bracket we shall denote the graded commutator of a, b ∈ A by {a, b} = ab −
(−1)|a||b|ba ∈ A .

The following lemma is a straightforward consequence of Remark 1.1.

Lemma 1.4. In the above setup, for every n,m ≥ −1 we have

µn ⊼ µm =

(
n+m+ 1

m+ 1

)
µn+m, [µn, µm] = (n−m)

(n+m+ 1)!

(n+ 1)!(m+ 1)!
µn+m .

2. The uniqueness theorem

Theorem 2.1. There exists a unique way to assign to every unitary graded associative

algebra A a morphism of graded vector spaces

Ψ: Aff∗(A) → D(A), x 7→ Ψx =

∞∑

n=0

Ψn
x, Ψn

x ∈ Dn−1(A),

such that the following conditions are satisfied:

(1) generalized Jacobi: Ψ is a morphism of graded Lie algebras;

(2) naturality: for every morphism α : A → B of unitary graded algebras, for every

x ∈ A and every pair of linear maps f : A → A, g : B → B such that gα = αf , we
have

αΨn
x = Ψn

α(x)α
⊙n, αΨn

f = Ψn
gα

⊙n : A⊙n → B .

(3) base change: the operators Ψn
1 ,Ψ

n
Id are multilinear over the centre of A. More pre-

cisely, if c ∈ A is homogeneous and ac = (−1)|a||c|ca for every homogeneous a ∈ A,
then

Ψn
1 (a1, . . . , anc) = Ψn

1 (a1, . . . , an)c, Ψn
Id(a1, . . . , anc) = Ψn

Id(a1, . . . , an)c,

for every a1, . . . , an.
(4) initial terms: for every x ∈ A, f ∈ End∗(A), we have

Ψ0
x = x, Ψ0

f = f(1) .

(5) gauge fixing: for A = K we have Ψn
Id = 0 for every n > 0.

Proof. We identify Aff∗(A) with the graded Lie subalgebra D−1(A) ×D0(A) ⊂ D(A); for
our goals it is convenient to prove the existence following the ideas of [4, 17]. Notice first
that every operator µn is multilinear over the centre of A and commutes with morphisms
of unitary graded associative algebras. Next, for every sequence K1,K2, . . . of rational
numbers, the map

Ψ̂ : D(A) → D(A), Ψ̂u = exp

([
−,

∞∑

n=1

Knµn

])
exp([−, µ−1])u,
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is an isomorphism of graded Lie algebras which is compatible with morphisms of unitary
graded algebras and gives the required initial terms. A simple recursive argument shows
that the gauge fixing condition

A = K , Ψ̂µ0 = exp

([
−,

∞∑

n=1

Knµn

])
(µ0 + µ−1) = µ−1,

can be written as

exp

([
∞∑

n=1

Knµn,−

])
µ−1 = µ−1 + µ0,

and determines uniquely the coefficients Kn. The first terms are:

K1 = 1, K2 = −
1

2
, K3 =

1

2
, K4 =

2

3
, K5 =

11

12
, K6 = −

3

4
, K7 = −

11

6
, . . . .

According to [17], the formal power series

∑

n≥1

Kn

tn+1

(n+ 1)!
∈ Q[[t]]

is the iterative logarithm of et − 1, cf. [2], and the sequence Kn may be also computed
recursively by the linear equations

K1 = 1, Kn =
−2

(n+ 2)(n− 1)

n−1∑

i=1

{
n+ 1

i

}
Ki ,

where
{
n+1
i

}
are the Stirling numbers of the second kind. It is now sufficient to define Ψ

as the restriction Ψ̂ to the graded Lie subalgebra D−1(A)×D0(A).

Let us now prove the unicity, the first step is to prove, for every algebra A, the formulas:

(2.1) Ψ1 =
∑

n≥0

(−1)nµn−1, ΨId = µ−1 .

Assume first A = K , then µn is a generator of Dn(K ) and therefore there exists a sequence
s0, s1, . . . in K such that

Ψ1 =
∑

n≥0

snµn−1 ,

where s0 = 1 by the initial terms condition. Using the relation [ΨId,Ψ1] = Ψ[Id,1] = Ψ1 we

obtain Ψn
1 = [µ−1,Ψ

n+1
1 ] for every n ≥ −1 and then

snµn−1 = [µ−1, sn+1µn] = −sn+1µn−1, sn+1 = −sn = (−1)n+1 .

Consider now the polynomial algebra K [t], with t a central element of degree 0: by the base
change property

Ψn
1 (t

i1 , . . . , tin) = Ψn
1 (1, . . . , 1)t

i1+···+in = (−1)nµn(t
i1 , . . . , tin),

Ψn
Id(t

i1 , . . . , tin) = Ψn
Id(1, . . . , 1)t

i1+···+in ,

and then (2.1) holds for K [t]. The passage from K [t] to any A is done by using the standard
polarization trick: given a finite sequence of homogeneous elements a1, . . . , an ∈ A we
consider the algebra

B = A[t1, . . . , tn],

where every ti is a central indeterminate of degree |ti| = −|ai|. We have a morphism of
unitary associative algebras

α : K [t] → B, α(t) = a1t1 + · · ·+ antn ,
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which by naturality gives

Ψn
1 (α(t), . . . , α(t)) = αΨn

1 (t, . . . , t) = α((−1)ntn) = (−1)n

(
n∑

i=1

aiti

)n

,

while by symmetry
Ψn

1 (α(t), . . . , α(t)) = n!Ψn
1 (a1t1, . . . , antn) .

Looking at the coefficients of t1 · · · tn, in the first case we get

n!(−1)nµn−1(a1t1, . . . , antn) = n!(−1)n(−1)
∑

i<j
|ei||aj| µn−1(a1, . . . , an)t1 · · · tn,

whereas in the second case, by base change property, we get

n! (−1)
∑

i<j
|ei||aj |Ψn

1 (a1, . . . , an)t1 · · · tn,

and this concludes the proof of the first part of (2.1); the equality ΨId = µ−1 is proved in
the same way. The map

Φ: Aff∗(A) → D(A), Φu = Ψu −Ψ[u,1] .

is a morphism of graded Lie algebras, since it is the composition of Ψ with the Lie isomor-
phism

exp([µ−1,−]) : D−1(A) ×D0(A) → D−1(A) ×D0(A) .

In other words, for a ∈ A and f : A → A we have

Φa = Ψa, Φf = Ψf −Ψf(1), Ψf = Φf +Φf(1) ,

and in particular

(2.2) ΦId = ΨId −Ψ1 =
∑

n≥0

(−1)nµn .

For every a ∈ A, the relation [Id, a] = a gives

Φa = [ΦId,Φa], Φn
a =

∑

h≥0

(−1)h[µh,Φ
n−h
a ]

which, together the condition Φ0
a = Ψ0

a = a implies

(2.3) Φ0
a = a, Φn

a =
1

n

n∑

h=1

(−1)h+1[Φn−h
a , µh] .

For every f : A → A, we have Φ0
f = Ψ0

f − Ψ0
f(1) = 0 and then, for every a ∈ A, the

relation Φ[f,a] = [Φf ,Φa] gives

f(a) = Φ0
[f,a] = [Φ1

f , a] = Φ1
f (a)

proving that Φ1
f = f . Moreover, the relation [f, Id] = 0 gives


Φf ,

∑

h≥0

(−1)hµh


 = 0

and then the recursive formula

(2.4) Φ0
f = 0, Φ1

f = f, Φn+1
f =

1

n

n∑

h=1

(−1)h+1[Φn−h+1
f , µh] .

The proof of the unicity is complete. �

For reference purposes it is convenient to collect as a separate result the recursive for-
mulas obtained in the proof of Theorem 2.1.
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Theorem 2.2. The higher brackets Ψn,Φn are determined by the following recursive formu-

las: for every graded unitary associative algebra A, every x ∈ A and every f ∈ Hom∗
K
(A,A)

we have

Ψn
x = Φn

x , Ψn
f = Φn

f +Φn
f(1),

where

Φ0
x = x, Φn

x =
1

n

n∑

h=1

(−1)h+1[Φn−h
x , µh] ,

Φ0
f = 0, Φ1

f = f, Φn+1
f =

1

n

n∑

h=1

(−1)h+1[Φn−h+1
f , µh] .

We shall prove in Proposition 3.5 that if A is graded commutative then the operators
Ψn

f reduce to the usual Koszul brackets as defined in [14]. Similarly the operators Φn
f are

the higher brackets defined in [1, 6] and called Koszul braces in [18, 19]. We shall refer to
the operators Ψn as Koszul brackets and to the operators Φn as reduced Koszul brackets.

3. Examples and first properties of Koszul brackets

The brackets Φn,Ψn for low values of n can be easily computed by using the recursive
formulas of Theorem 2.2. For every x ∈ A we have:

Ψ0
x = Φ0

x = x,

Ψ1
x = Φ1

x = [x, µ1],

Ψ2
x = Φ2

x =
1

2
[[x, µ1], µ1]−

1

2
[x, µ2],

Ψ3
x = Φ3

x =
1

6
[[[x, µ1], µ1], µ1]−

1

6
[[x, µ2], µ1]−

1

3
[[x, µ1], µ2] +

1

3
[x, µ3] .

For every f ∈ Hom∗
K
(A,A) we have:

Φ1
f = f,

Φ2
f = [f, µ1],

Φ3
f =

1

2
[[f, µ1], µ1]−

1

2
[f, µ2],

Φ4
f =

1

6
[[[f, µ1], µ1], µ1]−

1

6
[[f, µ2], µ1]−

1

3
[[f, µ1], µ2] +

1

3
[f, µ3] .

In the commutative case, the above formulas for Φ2
f and Φ3

f were already observed in [10].
In a more explicit way, for a ∈ A we have:

Φ1
x(a) = Φ1

x(a) = −
1

2
(xa+ (−1)|x||a|ax),

Φ1
f (a) = f(a), Ψ1

f (a) = f(a)−
1

2
(f(1)a+ (−1)|f ||a|af(1)) .

For x, a, b ∈ A we have:

Φ2
x(a, b) =

h(a, b) + (−1)|a||b|h(b, a)

2
, h(a, b) =

xab + (−1)|a||x|4axb+ (−1)|x||ab|abx

6
,

which can be written in the form:

Φ2
x(a, b) =

1

12
(xab + (−1)|a||x|4axb+ (−1)|x||ab|abx) + (−1)|a||b|(a ⇄ b).
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In a similar way, for every f ∈ Hom∗
K
(A,A) and every a, b ∈ A we get:

Φ2
f (a, b) =

f(ab)− f(a)b− (−1)|f | |a|af(b)

2
+ (−1)|a||b|(a ⇄ b) ,

Ψ2
f(a, b) =

f(ab)− f(a)b− (−1)|f | |a|af(b)

2
+

f(1)ab+ (−1)|a||f |4af(1)b+ (−1)|f ||ab|abf(1)

12

+ (−1)|a||b|(a ⇄ b) .

Lemma 3.1. For every x, a2, . . . , an ∈ A, every f ∈ Hom∗
K
(A,A) and every n > 0 we

have:

(1) Φn
x(1, a2, . . . , an) = −Φn−1

x (a2, . . . , an),
(2) Φn

f (1, a2, . . . , an) = Φn−1
f(1)(a2, . . . , an),

(3) Ψn
f (1, a2, . . . , an) = 0.

In particular Φn
f (1, . . . , 1) = (−1)n−1f(1) and then Φn

f = 0 if and only if Ψ0
f = f(1) = 0

and Ψn
f = 0.

Proof. We have seen that ΨId = ΦId +Φ1 = µ−1 and then,

Φx(1, a2, . . . , an) = [Φx, µ−1](a2, . . . , an) = Φ[x,Id+1](a2, . . . , an)

= −Φx(a2, . . . , an) ,

Ψf (1, a2, . . . , an) = [Φf , µ−1](a2, . . . , an) = Ψ[f,Id](a2, . . . , an) = 0 ,

Φf (1, a2, . . . , an) = Ψf (1, a2 . . . , an)− Φf(1)(1, a2, . . . , an)

= −Φf(1)(1, a2, . . . , an) = Φf(1)(a2, . . . , an) .

�

Example 3.2 (Derivations). Let f : A → A be a derivation, then [f, µn] = Ψn+1
f = Φn+1

f =
0 for every n > 0.

In fact, assuming f(ab) = f(a)b+(−1)|a||f |af(b) for every a, b ∈ A, a completely straight-
forward computation gives [f, µ1] = [f, µ2] = 0. According to Lemma 1.4 and Jacobi iden-
tity we have then [f, µn] = 0 for every n > 2. The vanishing of Φn

f for n ≥ 2 it is now an
immediate consequence of Theorem 2.2, while the vanishing of Ψn

f follows from the fact

that f(1) = 0.
The converse of the above implication is generally false when A is not graded commuta-

tive. Consider for instance the algebra A = T (V )/I, where V is a vector space of dimension
≥ 2, T (V ) =

⊕
n≥0 V

⊗n is the tensor algebra generated by V and I is the ideal generated

by V ⊗3. Consider now a map f : A → A such that f(1) = f(v) = f(u⊗ v + v ⊗ u) = 0 for
every u, v ∈ V . Since f(1) = 0 we have Φf = Ψf and it is easy to see that [f, µn] = Ψn+1

f =

Φn+1
f = 0 for every n > 0.

Example 3.3 (Left and right multiplication maps). For a graded associative algebra A
and every x ∈ A we shall denote by Lx and Rx the operators of left and right multiplication
by x:

Lx, Rx : A → A, Lx(a) = xa, Rx(a) = (−1)|a||x|ax .

Denoting by {a, b} = ab− (−1)|a||b|ba the graded commutator in A, we have:

Lx(1) = Rx(1) = x, Ψ1
Lx

(a) = {x, a}, Ψ1
Rx

(a) = {a, x},

Φ2
Lx

(a, b) = Φ2
Rx

(a, b) =
−1

2
((−1)|a||x|axb+ (−1)(|a|+|x|)|b|bxa) .
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Ψ2
Lx

(a, b) = Ψ2
Rx

(a, b) =
1

12
({{x, a}, b}+ (−1)|a||b|{{x, b}, a}) .

and then

Ψ1
Lx+Rx

= 0, Ψ2
Lx+Rx

(a, b) =
1

6
({{x, a}, b}+ (−1)|a||b|{{x, b}, a}) .

Notice that Lx −Rx = {x,−} is a derivation and then

Φn
Lx

= Φn
Rx

, Ψn
Lx

= Ψn
Rx

,

for every n ≥ 2.

Example 3.4. As a partial converse of Example 3.2 we have that if A = T (V ) is a tensor
algebra and f : A → A is linear, then f is a derivation if and only if Φ2

f = 0.

In fact, if Φ2
f = 0, according to the formula Φ2

f (1, 1) = −f(1) = 0 we have f(1) = 0;

replacing f with f − δ, where δ : A → A is the (unique) derivation such that δ(v) = f(v)
for every v ∈ V , it is not restrictive to assume f(V ) = 0. For every a ∈ V , since f(a) = 0,
we have 0 = Φ2

f (a, a) = f(a2); by the same argument 0 = Φ2
f (a

2, a) = f(a3) and more

generally f(an) = 0 for every n.
Next we prove by induction on n that f(V ⊗n+1) = 0; assuming f(V ⊗i) = 0 for every

i ≤ n, we need to prove f(ab) = 0 for every a ∈ V and b = v1⊗· · ·⊗vn ∈ V ⊗n. If ab−ba = 0
then every vi is a scalar multiple of a, and therefore f(ab) = cf(an+1) = 0. If ab 6= ba, then
by the inductive assumption

0 = 2Φ2
f(a, b) = f(ab) + f(ba), 0 = 2Φ2

f(a
2, b) = f(a2b) + f(ba2) .

Moreover, the vanishing of Φ2
f (ab, a) and Φ2

f (a, ba) gives the equalities

f(aba) + f(a2b) = f(ab)a+ af(ab), f(aba) + f(ba2) = f(ba)a+ af(ba),

whose sum gives f(aba) = 0 and therefore

f((ab)2) + f((ba)2) = f((aba)b) + f(b(aba)) = 0 .

abf(ab) + f(ab)ab = f((ab)2) = −f((ba)2) = −baf(ba)− f(ba)ba = baf(ab) + f(ab)ba,

(ab− ba)f(ab) + f(ab)(ab− ba) = 0 .

Since ab− ba 6= 0 the last equality implies f(ab) = 0.

Proposition 3.5. Let x ∈ A be a central element. Then

Ψn
xy = LxΨ

n
y , Ψn

Lxf
= LxΨ

n
f , Ψn+1

f (x, a1, . . . , an) = Ψn
[f,Lx]

(a1, . . . , an) ,

for every y ∈ A, f : A → A. For every sequence of central elements x, c1, . . . , cn ∈ A we

have

Ψn
x(c1, . . . , cn) = (−1)nxc1 · · · cn, Ψn

f (c1, . . . , cn) = [...[[f, Lc1 ], Lc2] . . . , Lcn ](1) ,

and therefore, when A is graded commutative the Koszul brackets Ψn
f are the same of the

ones defined in [14].

Proof. Since x is central we have [Lxφ, µn] = Lx[φ, µn] for every n and every φ ∈ D(A);
the first two formulas follow from this and Theorem 2.2. In particular, for f = Id = L1 we
get ΨLx

= LxΨId, viz. Ψ
0
Lx

= xµ−1 and Ψn
Lx

= 0 for every n > 0. This gives

Ψ[f,Lx] = [Ψf ,ΨLx
] = [Ψf , xµ−1] .

Since [f, L1] = 0 we get Ψn
f (1, a2, . . . , an) = Ψn−1

[f,L1]
(a2, . . . , an) = 0 and, if c1, . . . , cn ∈ A

are central elements, by induction on n we have

Ψn
f (c1, . . . , cn) = Ψ0

[...[[f,Lc1 ],Lc2 ]...,Lcn ] = [...[[f, Lc1 ], Lc2 ] . . . , Lcn ](1) .

�
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Remark 3.6. A well known consequence of Proposition 3.5 is that, in the commutative case,
the Koszul brackets are hereditary: this means that if Ψn

f = 0 for some n > 0, then Ψk
f = 0

for every k ≥ n. This is clear if n = 1 since Ψ1
f = 0 if and only if f = Lf(1). If Ψ

n
f = 0

for some n > 1, then Ψn−1
[f,Lx]

= 0 for every x and by induction Ψk−1
[f,Lx]

= 0 for every x and

every k ≥ n. According to Lemma 3.1 also the reduced Koszul brackets Φn
f are hereditary.

This is generally false in the non-commutative case. Consider for instance an element
x ∈ A of degree 0 and the operator f = Lx + Rx : A → A, f(a) = ax + xa, for which we
have already seen in Example 3.3 that

Ψ1
f = 0, Ψ2

f (a, b) =
1

6
({{x, a}, b}+ (−1)|a||b|{{x, b}, a}) .

Remark 3.7. If A is not commutative and d : A → A is a derivation, then in general
Φ3

d2 6= 0. Therefore the attempt to use Koszul higher brackets to define differential operators
remains unsatisfactory, although slightly better than the trivial extension of Grothendieck’s
definition, cf. [11, Rem. 2.3.5].

4. The formulas of Bering and Bandiera

For a given linear endomorphism f : A → A, the brackets Ψn
f were defined by Koszul

[14] in the commutative case by the formula

Ψn
f (a1, . . . , an) = [...[[f, La1 ], La2 ] . . . , Lan

](1)

=

n∑

k=0

(−1)n−k

k!(n− k)!

∑

π∈Σn

ǫ(π) f(1 · aπ(1) · · · aπ(k))aπ(k+1) · · · aπ(n) ,

where the 1 inside the argument of f is the unit of A. The generalized Jacobi identities

(4.1) Ψn
[f,g] =

n+1∑

i=0

[Ψi
f ,Ψ

n−i+1
g ]

were first proved independently in [6, 15]. Extensions of the brackets Ψn
f to the non-

commutative case satisfying (4.1) were first proposed by Bering [7] and later, with a com-
pletely different approach, by Bandiera [3] as a consequence of a more general formula
about derived brackets. Both approaches involve the sequence Bn of Bernoulli numbers:

B(x) =
∑

n≥0

Bn

xn

n!
=

x

ex − 1

= 1−
1

2

x

1!
+

1

6

x2

2!
−

1

30

x4

4!
+

1

42

x6

6!
−

1

30

x8

8!
+

5

66

x10

10!
+ · · · .

In order to simplify the notation it is useful to introduce the rational numbers

Bi,j = (−1)j
j∑

k=0

(
j

k

)
Bi+k , i, j ≥ 0 ,

together their exponential generating function

B(x, y) =
∑

i,j≥0

Bi,j

xiyj

i! j!
∈ Q[[x, y]] .
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Since

B(x, y) =
∑

i,j

(−1)j
j∑

k=0

Bi+k

(
j

k

)
xiyj

i!j!
=
∑

i,j

j∑

k=0

(−y)j−k

(j − k)!
Bi+k

xi(−y)k

i! k!

= e−yB(x− y) =
x− y

ex − ey

= 1−
(x
2
+

y

2

)
+

1

2!

(
x2

6
+

2xy

3
+

y2

6

)
−

1

3!

(
x2y

2
+

xy2

2

)

+
1

4!

(
−
x4

30
+

2x3y

15
+

4x2y2

5
+

2xy3

15
−

y4

30

)
+ · · · ,

we have B(x, y) = B(y, x) and therefore Bi,j = Bj,i for every i, j; as a byproduct we have
just proved the following (well known) formulas about Bernoulli numbers:

(4.2) (−1)j
j∑

k=0

(
j

k

)
Bi+k = (−1)i

i∑

k=0

(
i

k

)
Bj+k, i, j ≥ 0 .

(4.3)

n∑

k=0

(
n

k

)
Bk = (−1)n

0∑

k=0

(
0

k

)
Bn+k = (−1)nBn, n ≥ 0 .

For x = y we get

∞∑

i,j=0

Bi,j

xi

i!

xj

j!
= e−x

∞∑

n=0

Bn

n!
(x− x)n = e−x

and then
n∑

i=0

Bi,n−i

xn

i!

xj

j!
= (−1)n

xn

n!
,

n∑

i=0

(
n

i

)
Bi,n−i = (−1)n .

Lemma 4.1. The numbers Bi,j are uniquely determined by the following properties:

(1) B0,n = Bn;

(2) Bi,j +Bi+1,j +Bi,j+1 = 0 for every i, j ≥ 0.

Proof. The only nontrivial part is the proof that Bi,j + Bi+1,j + Bi,j+1 = 0. This can be

done either by applying binomial identities to the formulas Bi,j = (−1)j
∑j

k=0

(
j
k

)
Bi+k, or

by applying the differential operator
∂

∂x
+

∂

∂y
to the equality eyB(x, y) = B(x − y). �

We are now ready to prove that both Bering and Bandiera’s brackets coincide with the
brackets defined in Section 2; the key technical points of the proof will be the two lemmas
3.1 and 4.1.

Theorem 4.2 (Bering’s formulas). In the above notation, for every x ∈ A and every

f ∈ Hom∗
K
(A,A) we have

Ψn
x(a1, . . . , an) =

i+j=n∑

i,j≥0

Bi,j

i! j!

∑

π∈Σn

ǫ(π, i, x) aπ(1) · · · aπ(i) xaπ(i+1) · · ·aπ(n) ,

Ψn
f (a1, . . . , an) =

i+j+k=n∑

i,j,k≥0

Bi,j

i! j! k!

∑

π∈Σn

ǫ(π, i, f) aπ(1) · · · aπ(i)·

·f(1·aπ(i+1) · · · aπ(i+k)) aπ(i+k+1) · · ·aπ(n) ,
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where

ǫ(π, i, x) = ǫ(π)·(−1)|x|(|aπ(1)|+···+|aπ(i)|), ǫ(π, i, f) = ǫ(π)·(−1)|f |(|aπ(1)|+···+|aπ(i)|),

are the usual Koszul signs.

Proof. A direct inspection shows that the above formulas are true for n = 0, 1, 2. In general,
expanding the recursive equations of Theorem 2.2 we get

Φn
x(a1, . . . , an) =

i+j=n∑

i,j≥0

Ci,j

i! j!

∑

π∈Σn

ǫ(π, i, x)aπ(1) · · · aπ(i) xaπ(i+1) · · · aπ(n) ,

for a suitable sequence of rational numbers Ci,j . In order to prove the theorem it is sufficient
to prove that C0,n = Bn for every n ≥ 2 and Ci,j +Ci+1,j +Ci,j+1 = 0 for every i, j ≥ 0; to
this end it is not restrictive to assume that A is the free unitary associative algebra generated
by x, a1, . . . , an, |x| = |ai| = 0. The coefficient of a1 · · · ai xai+1 · · ·an in Φn+1

x (1, a1, . . . , an)
is equal to

(i+ 1)
Ci+1,j

(i + 1)!j!
+ (j + 1)

Ci,j+1

i!(j + 1)!
=

Ci+1,j + Ci,j+1

i! j!
.

According to Lemma 3.1, Φn+1
x (1, a1, . . . , an) = −Φn

x(a1, . . . , an) and then the above coef-

ficient is equal to −
Ci,j

i!j .

The proof that C0,n = Bn is done by induction on n. Assuming C0,i = Bi for every
i < n, the coefficient of xa1 · · · an in [Φn−h

x , µh], h > 0, is equal to

Bn−h

(n− h)!

n− h− 1

(h+ 1)!
,

and therefore

C0,n

n!
=

1

n

n∑

h=1

(−1)h+1 Bn−h

(n− h)!

n− h− 1

(h+ 1)!
.

Since (−1)h+1Bn−h(n− h− 1) = (−1)n+1Bn−h(n− h− 1) for every h we have

(−1)n+1C0,n = (n− 1)!
n∑

h=1

Bn−h

(n− h)!

n− h− 1

(h+ 1)!

= n!

n∑

h=1

Bn−h

(n− h)!(h+ 1)!
− (n− 1)!

n∑

h=1

Bn−h

(n− h)!h!

=
1

n+ 1

n∑

h=1

(
n+ 1

n− h

)
Bn−h −

1

n

n∑

h=1

(
n

n− h

)
Bn−h

=
1

n+ 1

n−1∑

s=0

(
n+ 1

s

)
Bs −

1

n

n−1∑

s=0

(
n

s

)
Bs .

Since n ≥ 2 we have
n∑

s=0

(
n+ 1

s

)
Bs =

n−1∑

s=0

(
n

s

)
Bs = 0

and therefore

(−1)n+1C0,n = −
1

n+ 1

(
n+ 1

n

)
Bn = −Bn, C0,n = (−1)nBn = Bn .
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Again by Theorem 2.2 we have

Φn
f (a1, . . . , an) =

n∑

k=1

i+j=n−k∑

i,j≥0

Ci,j,k

i! j! k!

∑

π∈Σn

ǫ(π, i, f)aπ(1) · · · aπ(i)·

· f(1·aπ(i+1) · · · aπ(i+k)) · aπ(i+k+1) · · ·aπ(n) ,

for a suitable sequence of rational numbers Ci,j,k. Therefore

Ψn
f (a1, . . . , an) =

n∑

k=0

i+j=n−k∑

i,j≥0

Ci,j,k

i! j! k!

∑

π∈Σn

ǫ(π, i, f)aπ(1) · · ·aπ(i)·

· f(1 · aπ(i+1) · · · aπ(i+k)) · aπ(i+k+1) · · · aπ(n) ,

where Ci,j,0 = Bi,j for every i, j ≥ 0; in order to prove the theorem it is therefore sufficient to

show by induction on k that Ci,j,k = Bi,j . By Lemma 3.1 we have Ψn+1
f (1, a1, . . . , an) = 0,

whereas the coefficient of a1 · · · ai · f(1 · ai+1 · · · ai+k) · ai+k+1 · · ·an in Ψn+1
f (1, a1, . . . , an)

is equal to

0 = (i+ 1)
Ci+1,j,k

(i+ 1)! j! k!
+ (j + 1)

Ci,j+1,k

i!(j + 1)! k!
+ (k + 1)

Ci,j,k+1

i! j! (k + 1)!
,

and then

Ci,j,k+1 = −Ci+1,j,k − Ci,j+1,k = −Bi+1,j −Bi,j+1 = Bi,j .

�

As already pointed out in [7, 22], although the expression [...[[f, La1 ], La2 ] . . . , Lan
](1)

makes sense in every unitary graded associative algebra, its symmetrization does not give
the Koszul brackets Ψn

f . For instance, if |a| = |b| = |f | = 0 and f(1) = 0, then

[[f, La], Lb] + (−1)|a||b|[[f, Lb], La]

2
−Ψ2

f (a, b) =
{f(a), b}+ {f(b), a}

2
,

where {−,−} denotes the graded commutator in A.

Theorem 4.3 (Bandiera’s formulas). Let A be a graded unitary associative algebra. For

every x ∈ A and every f ∈ Hom∗
K
(A,A) we have:

Ψn
x(a1, . . . , an) =

∑

π∈Σn

ε(π)

n∑

k=0

(−1)nBn−k

k!(n− k)!
{{· · · {xaπ(1) · · · aπ(k), aπ(k+1)}, . . .}, aπ(n)} ,

Ψn
f (a1, . . . , an) =

∑

π∈Σn

ε(π)
n∑

k=0

Bn−k

k!(n− k)!
{{· · · {fk(aπ(1), . . . , aπ(k)), aπ(k+1)}, . . .}, aπ(n)} ,

where {a, b} = ab− (−1)|a||b|ba, and fk : A
⊗k → A is the sequence of operators

f0 = f(1), fn(a1, . . . , an) = [· · · [[f, La1 ], La2 ], . . . , Lan
](1) .

Proof. Denoting momentarily by

Θn
x(a1, . . . , an) =

∑

π∈Σn

ε(π)

n∑

k=0

(−1)nBn−k

k!(n− k)!
{{· · · {xaπ(1) · · · aπ(k), aπ(k+1)}, . . .}, aπ(n)} ,

Θn
f (a1, . . . , an) =

∑

π∈Σn

ε(π)

n∑

k=0

Bn−k

k!(n− k)!
{{· · · {fk(aπ(1), . . . , aπ(k)), aπ(k+1)}, . . .}, aπ(n)} ,
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by Bering’s formulas it is sufficient to prove that

(4.4) Θn
x(a1, . . . , an) =

i+j=n∑

i,j≥0

Bi,j

i! j!

∑

π∈Σn

ǫ(π, i, x) aπ(1) · · · aπ(i) xaπ(i+1) · · ·aπ(n) ,

Θn
f (a1, . . . , an) =

i+j+k=n∑

i,j,k≥0

Bi,j

i! j! k!

∑

π∈Σn

ǫ(π, i, f) aπ(1) · · · aπ(i)·

· f(1 · aπ(i+1) · · ·aπ(i+k)) aπ(i+k+1) · · · aπ(n) .

(4.5)

It’s easy to see that, for every a1, . . . , an ∈ A, we have:

Θn+1
f (1, a2, . . . , an) = 0, Θn+1

x (1, a1, . . . , an) = −Θn
x(a1, . . . , an) ,

and then we can prove (4.4) and (4.5) in the same way as in Theorem 4.2. In fact, expanding
the commutator brackets we can write

Θn
x(a1, . . . , an) =

i+j=n∑

i,j≥0

Ci,j

i! j!

∑

π∈Σn

ǫ(π, i, x)aπ(1) · · · aπ(i) xaπ(i+1) · · ·aπ(n) ,

for some rational coefficients Ci,j . Looking at the coefficient of xa1 · · · an in Θn
x(a1, . . . , an)

we get

C0,n

n!
= (−1)n

n∑

k=0

Bn−k

k!(n− k)!
=

(−1)n

n!

n∑

k=0

(
n

k

)
Bk =

Bn

n!
=

B0,n

n!
,

and the proof ofCi,j = Bi,j follows from the equality Θn+1
x (1, a1, . . . , an) = −Θn

x(a1, . . . , an)
exactly as in Theorem 4.2. Similarly, expanding the operators fk and the commutator brack-
ets we can write

Θn
f (a1, . . . , an) =

n∑

k=0

i+j=n−k∑

i,j≥0

Ci,j,k

i! j! k!

∑

π∈Σn

ǫ(π, i, f)aπ(1) · · ·aπ(i)·

· f(1 · aπ(i+1) · · · aπ(i+k)) · aπ(i+k+1) · · · aπ(n) ,

for certain rational coefficients Ci,j,k. Comparing the coefficients of f(1·a1 · · · ak)·ak+1 · · · an
we get

C0,n−k,k

k! (n− k)!
=

Bn−k

k! (n− k)!
, C0,n−k,k = Bn−k = B0,n−k .

We now prove by induction on i that Ci,j,k = Bi,j and therefore the proof of the equal-
ity Ψf = Θf follows by Bering’s formula; the coefficient of a1 · · ·ai · f(1 · ai+1 · · · ai+k) ·

ai+k+1 · · · an in Θn+1
f (1, a1, . . . , an) is equal to

0 = (i+ 1)
Ci+1,j,k

(i+ 1)! j! k!
+ (j + 1)

Ci,j+1,k

i!(j + 1)! k!
+ (k + 1)

Ci,j,k+1

i! j! (k + 1)!
,

and then

Ci+1,j,k = −Ci,j,k+1 − Ci,j+1,k = −Bi,j −Bi,j+1 = Bi+1,j .

�



UNIQUENESS AND INTRINSIC PROPERTIES OF NON-COMMUTATIVE KOSZUL BRACKETS 15

5. Additional remarks

The uniqueness theorem for non-unitary algebras. It is clear from the proof that
Theorem 2.1 admits several slight modifications, either changing the underlying categories
or the choice of initial terms and gauge fixing conditions. According to Theorem 2.2, the
reduced Koszul brackets Φn also make sense for graded associative algebras without unit.
It is therefore natural to expect an uniqueness theorem also for reduced Koszul brackets in
the setup of non-unitary associative algebras.

Theorem 5.1. There exists a unique way to assign to every graded associative algebra A
a morphism of graded Lie algebras

Φ: End∗(A) → D(A), Φ =
∑

Φn, Φn : End∗(A) → Dn−1(A),

such that the following conditions are satisfied:

(1) naturality: for every morphism of graded associative algebras α : A → B and every

pair of linear maps f : A → A, g : B → B such that gα = αf , we have

αΦn
f = Φn

gα
⊙n : A⊙n → B .

(2) base change: the operators Φn
Id are multilinear over the graded centre of A: more

precisely, if c ∈ A and ac = (−1)|a||c|ca for every a ∈ A, then

Φn
Id(a1, . . . , anc) = Φn

Id(a1, . . . , an)c

for every a1, . . . , an.
(3) initial terms: for every f : A → A we have

Φ0
f = 0, Φ1

f = f .

(4) gauge fixing: at least one of the following conditions is satisfied:

(a) if A = K then ΦId =
∑

n≥0(−1)nµn;

(b) if A = K [t] and ∂2 is the second derivative operator, then Φ2
∂2(a, b) = 2(∂a)(∂b)

and Φn
∂2 = 0 for every n ≥ 3.

Proof. Notice first that when the graded associative algebra A is not unitary, then the
definition of µn : A

⊙n+1 → A makes sense only for n ≥ 0 and Lemma 1.4 holds for every
n,m ≥ 0.

The existence is clear: it is sufficient to take

Φf = exp

([
−,

∞∑

n=1

Knµn

])
f

where Kn is the sequence of rational numbers defined in the proof of Theorem 2.1: when
A is unitary we recover the reduced Koszul brackets. In particular, for A = K [t] we have
∂2(1) = 0,

Φn
∂2(a1, . . . , an) = Ψn

∂2(a1, . . . , an) = [...[[∂2, La1 ], La2 ] . . . , Lan
](1)

and then Φn
∂2 = 0 for every n ≥ 3. The recursive formulas of Theorem 2.2 give [Φ2

∂2 , µn−1] =
[∂2, µn] for every n.

The proof of the unicity is essentially the same as in the the unitary case and we give
only a sketch. Assume that for every graded associative algebra A it is given a morphism
of graded Lie algebras φ : End∗(A) → D(A) which satisfies the condition of the theorem:
we want to prove that φ = Φ.

For A = K we have φId = µ0 +
∑

n≥1 snµn for a suitable sequence s1, s2, . . . ∈ K

and by base change the same holds for A = K [t]. The gauge fixing condition implies that
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sn = (−1)n for every n: this is clear in the first case, while in the second case we have
[φ2

∂2 , µn−1] = [Φ2
∂2 , µn−1] = [∂2, µn] for every n and from the equality

0 = [φ∂2 , φId] = [φ2
∂2 , sn−1µn−1] + [∂2, snµn]

we get sn = −sn−1 for every n.
Considering the inclusion tK [t] → K [t], by naturality the formula φId =

∑
n≥0(−1)nµn

holds also for the algebra tK [t] and the polarization trick gives φId =
∑

n≥0(−1)nµn

for every graded associative algebra A. Finally the formula [φf , φId] = φ[f,Id] = 0 gives
immediately the recursive equations

φ0
f = 0, φ1

f = f, φn+1
f =

1

n

n∑

h=1

(−1)h+1[φn−h+1
f , µh] .

�

The quantum antibracket of Vinogradov, Batalin and Marnelius. Given a graded
associative algebraA, the quantum antibracket associated to a homogeneous element Q ∈ A
of odd degree |Q| = k is defined by the formula

(−,−)Q : A×A → A, (a, b)Q =
1

2
({a, {Q, b}} − (−1)(|a|+k)(|b|+k){b, {Q, a}}) .

This bracket has been introduced by Batalin and Marnelius in [5] as the unique bracket (up
to a scalar factor) satisfying certain natural properties arising in the context of quantization
of classical dynamic. An essentially equivalent construction was also given by Vinogradov
in the algebra of linear endomorphisms of the space of differential forms on a manifold,
with Q = d the de Rham differential [9, 13].

The bracket (−,−)Q is graded skewsymmetric of degree 0 on the shifted complex A[−k]
and corresponds, by standard shifting degrees (décalage) formulas, to the graded symmetric
operator BQ : A⊙2 → A of degree k:

BQ(a, b) = (−1)k|a|(a, b)Q = −
1

2

(
{{Q, a}, b}+ (−1)|a||b|{{Q, b}, a}

)
.

Therefore, according to Example 3.3, we have

Ψ2
LQ

= Ψ2
RQ

= −
1

6
BQ .

Gauge fixing variation and Börjeson’s brackets. Changing the gauge fixing condition
in Theorem 5.1 one can obtain different hierarchies of higher brackets: for instance, setting
ΦId = µ0 we get Φn = 0 for every n ≥ 2, while setting ΦId = µ0 − µ1, i.e., K1 = 1 and
Kn = 0 for every n > 1, it is easy to see that the resulting higher brackets are the graded
symmetrizations of the Börjeson’s brackets [8, 18].
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