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Abstract

We study the inverse problem which arises when designing thin magneto-elastic actuators
with bespoken deformation modes. By using the nonlinear model of magneto-elastic rods
which we have recently proposed, we formulate the design problem as a PDE-constrained
minimization whose solution gives to the optimal distribution of the magnetization profile
necessary to achieve the desired shape. The same problem is extended to control multiple
deformed configurations which would allow a controlled motion of the actuator to be
realised.
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1. Introduction

Magnetic fields are widely used for actuation purposes due to their two main pecu-
liarities: they can operate in the absence of contact and, at low frequency, are essentially
harmless to biological tissues [1]. At small scales, shape-programmable magnetic mate-
rials could potentially achieve mechanical functionalities that are unattainable by other
type of functional materials [2].

From the theoretical side, an interest in the mathematical modelling of magnetoelastic
materials, which dates back to the early works of Brown, Tiersten, and Toupin [3, 4, 5],
was renewed with the discovery of the huge magnetostriction effect and magnetostrictive
shape-memory alloys [6, 7]. For some recent account we refer to [8] or [9, 10]. The sub-
ject received further interest with the introduction of the so-called magneto-rheological
soft-composite or Magneto-Rheological Elastomers (MRE). These materials, obtained by
dispersing magnetic hard particles into a non-magnetic soft matrix, make it possible to
manufacture compliant devices that respond to applied fields by either magnetostric-
tion or by magnetic forces and couples, and are widely used as sensors and actuators
[11, 12, 13]. Their properties can be finely tuned by controlling during the production
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phase, the dispersion of the magnetic particles in terms of orientation, dimension and
volume fraction. Indeed, the orientation of the particles can be tuned by applying a
spatially uniform magnetic field before the curing process of the elastomeric matrix is
concluded. This working principle holds for para- and diamagnetic inclusions, as well
as ferromagnetic inclusions. In fact, under the influence of the external field, para- and
diamagnetic particles become magnetized along a direction not aligned with the field;
this mismatch produces a torque which, in turn, makes the particle rotates and aligns
with the field lines [14]. On the other hand, if the embedding particles are ferromagnetic,
the magnetization can be imprinted permanently upon the application of a sufficiently
high field, with the further advantage being able to control the magnetization profile
after the specimen is cured and the matrix has become solid.

Recently in [15, 16, 17], a different fabrication technique was used to control both
orientation and intensity of the magnetization profile. A mixture of magnetically active
neodynium-iron-boron particles and inactive aluminium powder was used to reinforce a
silicon rubber. By tailoring the ratio between the active and inactive components the
desired magnetization intensity was obtained. The additional control offered by this
technique allows very complex actuation mechanisms to be realised including tiny robots
that crawl, swim and even jump [17].

Be as it may, there is very large availability of filler types and shapes to be used
in MRE, which provides a much larger “design space” compared with other types of
soft actuators. As evidence show, technology is mature to produce such devices, with
the use, for example, of multi-material 3D printers, which make it possible to embed
magnetic fibers in soft matrix to produce regular structures [19]. In addition, it is now
possible to realize self-assembled structures made of magnetic spheres or particles, which
make it possible to obtain ordered structures [20, 21]. Of course, exploiting such freedom
demands substantial understanding of the underlying mechanics. Such understanding
must progress along two parallel lines: on one hand, one must rely on the continuum
theory of magnetoelasticity, a topic that by now seems to be well established [22, 23, 24?
]. On the other hand it is quite important in this setting to understand how the micro
geometry of the composite affects the overall macroscopic response [25, 26, 27? ].

Among all possible shapes, magneto-elastic actuators have been mainly crafted in the
shape of thin beams. This configuration is indeed particularly efficient in storing and
releasing elastic energy. In fact, if ` the length of the beam with, say, cross section of
diameter ε`, with ε << 1, the elastic energy stored in the body obeys the scaling law

strain energy ≈ (ε`)4κ2`, (1)

where κ is the curvature of the axis. Since the volume of the body is ε2`3, the specific
energy density scales as

strain energy

volume
≈ (ε`)2. (2)

Thus, if we use curvature as a measure of shape changes, we see that for a thin rod the
specific energy needed to attain a certain deformation converges to zero as the length
tends to null. For a bulky sample, on the other hand, the energy needed to attain a given
shape change is size independent. This explains why small thin rods have been employed
so much in the context of magnetic actuation. Indeed, rod-shaped magnetic devices have
been succesfully used to manufacture flexible swimmers and surface walkers [28, 16], and
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their performance has been the subject of several theoretical investigations [29, 30].
A fundamental problem to be addressed, however, is to optimize these objects to

achieve maximum actuation or to control their motion with sufficient accuracy. An
investigation of how to maximize the displacement of a magnetoelastic rod under an
applied field can be found in [31]. Both theoretical and experimental investigations have
been carried out in [15, 16]. Indeed, the problem of designing an object having in mind
a target shape, even in a wider context, is obtaining more and more attention, and a
diversity of approaches are being proposed (see for example the approach proposed in
[32] to the design stretch fields in nematic glass sheets).

Magnetoelastic rods. To illustrate how the applied field determines the shape of a rod-
like body, let us consider the cantilever beam sketched in Fig. 1 below. The figure
shows the beam in its undeformed configuration (left), along with the typical deformed
configuration attained when a constant magnetic field is applied (right).

h
φ

α(s)

α(s) + ϑ(s)

ϑ(s)

s

Figure 1: Left: undeformed configuration of a magneto-elastic rod in a cantilever configuration. Right:
deformed configuration under the influence of the external, spatially constant, magnetic field h. Here s
denotes the dimensionless coordinate, α(s) is the local orientation of the magnetization profile and θ(s)
the rotation of the cross-section at s.fig:1

Let ` be the length of the rod. We introduce a dimensionless coordinate s whose
domain of definition is (0, 1), so that ϑ(s) is the rotation of the cross section whose
arc-length distance from the clamp is X1 = s `.

After working out the energetics of the magnetoelastic rod (see Section 2), we find
an energy functional whose smooth stationary points are solutions of the state system:

−ϑ′′(s) + hxm(s) sin(ϑ(s) + α(s))− hym(s) cos(ϑ(s) + α(s)) = 0, in (0, 1),

ϑ(0) = 0,

ϑ′(1) = 0.

(3) eq:2b

Here the constants
hx = h cos(φ), hy = h sin(φ), (4) eq:29

with h > 0 and φ ∈ [0, 2π) are the components of the applied field (see Fig. 1); m(s) is
a dimensionless field representing the (adimensionalized) magnetization per unit length
satisfying

m(s) > 0, max
s
m(s) = 1; (5) eq:22

the angle α(s) ∈ R 1 is the orientation of the magnetization in the reference configuration

1As we shall see later, not only α, but also its derivative is to be taken into consideration. For this
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at the cross section parametrized by s.
We have shown in [33] that there exist choices of α, m, h and φ which make (3) iden-

tical to the boundary-value problem that governs the equilibrium of a clamped Elastica
subjected to a concentrated force at the tip. As for the Elastica, we cannot expect, in
general, that (3) has unique solution. However, numerical evidence from [33] suggests
that there exists a threshold intensity hmax > 0 such that (3) has unique solution when-
ever h2x + h2y < h2max, independently on the magnetization profile and on the orientation
of the field. The task of estimating hmax (or at least provide a good lower bound) appears
nontrivial. For the sake of the current discussion, we just suppose that hmax exists and
we call admissible any field whose intensity is smaller than hmax.

Under the circumstance that the applied field is admissible, the solution ϑ(s) of (3)
is uniquely determined by a quadruplet u of controls:

u ∈ U = {(α(·),m(·), hx, hy) such that (5) eq:21holds} . (6) eq:21

We denote this solution by ϑu(s) and we call it the actual shape induced by u.

A design/control problem. Consider now the problem of designing an admissible control
u so as to attain a given a target shape ϑ(s). If the target shape satisfies the condition

max
s∈[0,1]

ϑ
′′
(s) ≤ hmax, (7) eq:24

there is a trivial solution of this problem. In fact, if we takem(s) = 1, hx = maxs∈[0,1] |ϑ
′′
(s)|,

hy = 0, and with

α(s) = −ϑ(s) + arcsin
(
ϑ
′′
(s)/h

)
, (8) eq:20

and we set u = (α(·),m(·), hx, hy), then u ∈ U and

− ϑ′′(s) + hxm(s) sin(ϑ(s) + α(s)) = 0. (9) eq:31

Since the state system has unique solution, we deduce from (9) that the shape ϑu(s)
induced by the control u coincides with the target shape ϑ(s):

ϑu(s) = ϑ(s). (10)

Once the magnetization profile has been imprinted in the rod, the only control that
we have at our disposal to affect its motion is the applied magnetic field. Thus, if
instead of a single shape we are given a list (ϑi(s))

N
i=1 of target shapes, the most we

can do is to look for a magnetization profile (m(s), α(s)) and a list of N applied fields
(hxi, hyi)

N
i=1 such that the list of shapes {θin(s)}Ni=1 induced by the controls (ui)

N
i=1 =

(α(·),m(·), hxi, hyi)Ni=1 is as close as possible, in a suitable sense, to the list of target
shapes.

Needless to say, the solution of this problem depends on how, given a control u, we
define the error E(u, ϑ) in the attainment of the target shape ϑ(s) by the shape ϑu(s).

reason, we prefer to let the range of α be the entire set of real numbers, although functions differing by
2π

4



What appears to us a reasonable definition of the error is

E(u, ϑ) =

∫ 1

0

(ϑu(s)− ϑ(s))2ds, (11) eq:1

namely, the L2 distance between the attained and the target shape. With this choice, we
derive necessary conditions for a control to be a stationary point of the error. We justify
the model leading to (3) in Sections 2 and 3. In Section 4 we consider a regularization of
the error function and derive the corresponding necessary conditions for optimality. In
Section 5 we illustrate an example. Section 6 contains concluding remarks.

2. The magnetoelastic energy

For the reader’s convenience, this section summarizes the dimension-reduction pro-
cedure carried out in [33]. This presentation is simplified, assuming that the body has a
permament magnetization density as per the experiments in [15, 16].

We suppose for simplicity that in the reference configuration the cantilever is a thin
strip Ωε of length `, width w, and thickness tε = εt, where ε is a small dimensionless
parameter. We assume that the material comprising the body has a permanent magneti-
zation density, whose orientation is given by a field a, of unit vectors and whose intensity
is a scalar field M . If the magnetization process takes place after curing, we may assume
that there is no rearrangement of the magnetic particles in the matrix. Moreover, if the
suspension of particles is sufficiently diluted, there is no mutual interaction and from the
mechanical standpoint the material is mechanically isotropic.

To describe the deformation of the strip, we introduce a coordinate system X =
(X1, X2, X3), and we let {c1, c2, c3} be the associated orthonormal basis. We restrict
attention to deformations that take place on the plane spanned by c1 and c2 and, owing
to the assumption of small thickness we suppose that the deformation is linear with
respect to the thickness coordinate:

f(X) = r(X1) +X2d(X1). (12) defrod

The vectors r(X1) and d(X1) represent, respectively, the position and the orientation of
the typical cross section X1 ∈ (0, `). We rule out axial extension and shear by requiring
that

|r′| = 1, d = c3 × r′ (13) eq:6

where a prime denotes differentiation with respect to the coordinate X1. We write the
strain energy of the body as

Es =

∫
Ωε

ψ̂el(∇f(X))dX, (14) eq:5

where the deformation gradient is

∇f(X) = (1− κX2)r′ ⊗ c1 + d⊗ c2 + c3 ⊗ c3, (15) eq:2

where κ = r′′ ·d is the signed curvature of the axis. Without loss of generality, we assume
that ψ̂el(I) = 0 and that the reference configuration is stress–free, so that ∂F ψ̂el(I) = 0.
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By performing a Taylor expansion with respect to X2 of the integrand in (14) we arrive
at (we refer to [33] for additional details):

Es(f) =
ε3

2

∫ `

0

EIκ2dX1 + o(ε3), with I =
wt3

12
, (16) psiel

where E = ∂2FF ψ̂el(I)[c1 ⊗ c1] · c1 ⊗ c1.
Since the magnetization of the embedded particles is permanent, and since these

particles are firmly embedded in the matrix, the orientation of the magnetization in the
deformed configuration is

ac(F ) =
F (X)a(X)

|F (X)a(X)|
, F = ∇f , (17) eq:12

and the interaction energy with the external applied field hε is

Em(f) = −
∫
Ωε

M(X) hε(f(X)) · ac(∇f(X)) dX. (18) eq:7

The polar decomposition of the deformation gradient F = ∇f is

F (X) = R(r′(X1))U(X1, X2), (19) eq:3-3

with

R(r′) = r′ ⊗ c1 + (c3 × r′)⊗ c2 + c3 ⊗ c3 and U = I − κX2c1 ⊗ c1. (20) eq:11

By (19) and by the second of (13),

ac(∇f) = R(r′)a. (21) eq:4

Moreover,
hε(f(X)) = hε(r(X1)) +X2g(X), (22) eq:8

where g(X) is a bounded function. Starting from (18), and making use of (21) and (22),
and assuming that the magnetic field scales as

hε = ε2h, (23)

we obtain

Em = −ε3
∫ `

0

R(X1)m(X1) · h dX1 + o(ε3), (24)

where m(X1) =
∫ +w/2

−w/2
∫ +t/2

−t/2 M(X)a(X)dX2dX3 it the magnetization per unit length

taken along the axis.
The total energy is the difference between the strain and magnetostatic energy. If no

external loads are present, we can rescale the energy by ε3 without loss of generality and
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neglect higher-order terms in ε, to obtain

Ẽ =
Es + Em
ε3

=

∫ `

0

[
EA

2
(r′′)2 −R(r′)m · h

]
dX1, (25) eq:13

which is of the same form of the energy proposed in [33] but with constant magnetization.

3. Cantilever beam under constant applied field.

For a cantilever beam, we take into account the clamping constrain at X1 = 0 by
requiring that r(X1) = 0 and r′(X1) = c1. In this case, it is convenient to parametrize
the the configuration of the axis r(X1) through the rotation field θ(X1) such that

r′(X1) = cos θ(X1)c1 + sin θ(X1)c2, (26) eq:10

then, the rotation R(r′) introduced in (20) can be written as a the following 3-by-3
matrix

R(r′) = R(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (27)

If the applied magnetic field h = (hx, hy) is constant, the magnetoelastic energy (25)
yields

Ẽ =

∫ `

0

[
EA

2
θ′

2 −R(θ)m · h
]
dX1. (28)

We shall find it convenient to work with dimensionless variables. To this effect, we define
M = maxX1∈[0,`] |m(X1)|, the rescaled coordinate axis

s = X1/`,

the renormalized magnetization densitym(s) = |m(X1)|/M , and the renormalized magnetic-
field intensity h = A`2|h|M/(EI), and the rotation ϑ(s) = θ(`s). Then on denoting by
α(s) the angle between the horizontal direction and the magnetization vector m(`s), we
have

m(X1) = Mm(X1/`)R(α(X1/`))c1. (29)

Likewise, on denoting by φ the angle between the horizontal direction and the applied
field,

h = hR(φ)c1. (30)

Accordingly,

R(θ)m · h =
EI

A`2
hmR(ϑ+ α− φ)c1 · c1 =

EI

A`2
hm sin(ϑ+ α− φ). (31)

On setting E = Ẽ A`
2

EI we obtain

E =

∫ 1

0

[ϑ′2(s)

2
− hm(s)(cos(ϑ(s) + α(s)− φ)

]
ds. (32) eq:3

7



With the position (4), on making E stationary with respect to ϑ, we obtain the first and
the third of (3).

4. The optimization problem

Before formulating the optimization problem, we recall its informal statement, which
we were alluding at in the end of the introduction:

• given a list of N target shapes:

ϑ(s) = (ϑi(s))
N
i=1,

design

– a magnetization profile (m(s), α(s)) (i.e., the intensity and the orientation of
the magnetization) and

– a list of applied fields
h = (hxi, hyi)

N
i=1

such that the state system:
−ϑ′′i +mhxi sin(ϑi + α)−mhyi cos(ϑi + α) = 0 in (0, 1), i = 1 . . . N,

ϑi(0) = 0, i = 1 . . . N,

ϑ′i(1) = 0, i = 1 . . . N,

(33) eq:9a

admits a list of solutions ϑ(s) = (ϑi(s))
N
i=1 which is as close as possible to the

desired list ϑ(s) = (ϑi(s))
N
i=1 of “target”functions.

As a first step, we define the shape distance:

D(ϑ,ϑ) =

n∑
i=1

∫ 1

0

|ϑi − ϑi|2ds . (34)

and the cost functional :

C(ϑ, α,m,h) =
W

2
D(ϑ,ϑ) +R(α,m,h), (35) eq:17

where W is a tuning weight and

R(α,M,h) =

∫ 1

0

(ε
2
α′

2
+
γ

2
m2
)
ds+

γ̃

2

∑
i=1

(h2xi + h2yi), (36) eq:26

is a regularization function dependent on the positive tuning parameters ε, γ, and γ̃.
The design of the actuator is formulated as an ODE constrained minimization of the

cost functional C(ϑ) under the constraint that the functions ϑi which form the vector
ϑ solve the state equation (33), that is to say, we look for the solution of the following
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problem:

minimize C(ϑ, α,m)

with respect to (ϑ, α,m,h),

subject to (33) eq:14.

(37) eq:14

It is important to stress that if a list (ϑ, α,m,h) is a solution of (37), then ϑ does not
minimize the function D(·,ϑ), because of the presence of the regularization function
(36) in the definition (35) of the cost. The introduction of the regularization function
serves the purpose of making the minimization problem well posed, and the choice of a
quadratic regularization is for analytical convenience (see, for instance, [35] or [36]). On
the other hand, we expect that if the regularization parameters are sufficiently small,
then the effect of the regularization will be minimal. This point will be further discussed
in the next section.

As a first step towards an understanding of (37), we write down the necessary
conditions that a solution must satisfy, by introducing a list of Lagrange multipliers
λ(s) = (λi(s))

N
i=1, and by considering the Lagrangean

L(ϑ, α,m,h,φ,λ) = C(θ, α,m)−
N∑
i=1

∫ 1

0

λi (−ϑ′′i +mhxi sin(ϑi + α)−mhyi cos(ϑi + α)) ds.

(38) eq:23

The stationarity conditions for L lead to a set of differential-algebraic equations:

− ϑ′′i +mhxi sin(ϑi + α)−mhyi cos(ϑi + α) = 0, i = 1 . . . n,

− λ′′i +W (ϑi − ϑi)− λi(mhxi cos(ϑi + α) +mhyi sin(ϑi + α)) = 0, i = 1 . . . n,

− εα′′ −
∑
i

[mhxi cos(ϑi + α) +mhyi sin(ϑi + α)] = 0,

γm−
∑
i

λi(hxi sin(ϑi + α)− hyi cos(ϑi + α)) = 0,

γ̃hxi −
∫ 1

0

λim sin(ϑi + α)ds = 0,

γ̃hyi +

∫ 1

0

λim cos(ϑi + α)ds = 0,

(39) eq:15

with the two-point conditions:

ϑi(0) = 0, ϑ′i(1) = 0,

λi(0) = 0, λ′i(1) = 0,

α′i(0) = 0, α′i(1) = 0.

(40)

The last two optimality conditions in (39) are linear with respect to the components of the
applied fields. In the next section we discuss examples where the optimality conditions
(in particular, the first four of (39)) are used to devise an optimal design.
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5. Examples

We have pointed out in the previous section (see the paragraph following (37)) that
the solution of the minimization problem (37) does not necessarily render minimal the
distance between the actual shape and the target shape. We have also pointed out in
the introduction of this paper, that when there is only a single target shape ϑ(s), the
optimal design problem has an explicit solution, in the sense that we have an explicit
formula for a control (α,m, hx, hy) whose induced shape ϑu(s) coincides with the target
ϑ(s). It is then natural for us to use this analytical solution as a benchmark to assess
the performance of the minimization problem as an optimal design tool. Accordingly, in
our first example, we consider problem of designing the actuator to attain a single shape
and we work out a comparison between the control u and the control produced by the
minimization problem (37).

The minimization problem (37) formulated for N = 1 has the list of functions ϑ(s)
composed of the single target shape function ϑ(s) and can be written as

minimize C(ϑ, α,m)

with respect to (ϑ, α,m, hx, hy),

subject to (3) eq:14b.

(41) eq:14b

with the distance function given by

D(ϑ, ϑ) =

∫ 1

0

|ϑ(s)− ϑ(s)|2ds. (42)

Here, we make the following choice for the target shape:

ϑ(s) = A sin
(π

2
s
)
, A > 0. (43) singleshape

This shape is similar to what is proposed in [16] to mimic an artificial cilium. Arguing as
in the introduction, we observe that ϑ(s) is the solution of the boundary value problem

−ϑ′′ + hx sin(ϑ+ α) = 0 in (0, 1),

ϑ(0) = 0,

ϑ′(1) = 0,

(44) eq:9

where

hx =
(π

2

)2
A, α(s) = −π

2
s−A sin

(π
2
s
)
. (45)

Accordingly, the shape ϑu(s) induced by the control u = (α,m, hx, 0) coincides with
ϑ(s). This is equivalent to saying that the list (ϑ, α, 1, hx, 0) is solution of the following
minimization problem

minimize D(ϑ, ϑ)

with respect to (ϑ, α,m, hx, hy),

subject to (44) eq:14c.

(46) eq:14c
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1 Initialisation:

tol = 0.01, α0 = α(s), m0 = 1, hx 0 = hx, hy 0 = 0;

set {W, ε, γ, γ̃};
Ccur = 1;

2 repeat

3 (ϑ1, hx 1, hy 1) = argmin(ϑ,hx,hy)
C(ϑ, α0,m0), subjected to Eq. (3) with hx 0 and hy 0

initial points of the minimization algorithm;

4 (ϑ2, α,m) = argmin(ϑ,α,m)C(ϑ, α,m), subjected to Eq. (3) with hx = hx 1 and

hy = hy 1;

5 α0 = α, m0 = m, hx 0 = hx 1 and hy 0 = hy 1;

6 Cprev = Ccur;

7 Ccur = C(ϑ2, α,m);

8 until |Ccur − Cprev| > tol;

Figure 2: Numerical algorithm used to solve (39) for the single-shape problem. fig:algo

A more accurate control over the magnetization profile is obtained by solving (41) and
adjusting the control parameters {W, ε, γ, γ̃} (see Eq. (36)). In doing so, much care must
be taken to avoid of being be trapped in a local minimum due to the highly nonlinear
character of the functional C. For such a reason, we use an alternate minimization
strategy made of the following two stages:

1. in the first stage, the magnetic fields that minimize (41) with α and m kept fixed
are found;

2. in the second stage, the minimization is carried out in terms of α, m and λ with
values of the magnetic field hx and hy found at previous step.

The initial guess for the minimization algorithm, which constitutes a crucial choice
in this kind of nonlinear problems, is the solution u of (46) (see Fig. 2 for schematic
description of the algorithm). In implementing the algorithm in MATLAB, rather than
carrying out the minimization over an infinite dimensional space, we solve the associated
BVP problem given by Eqs (39)1-4.

The control parameters {W, ε, γ, γ̃} in (35)-(36) can be tuned to improve the solution
achieved. In this respect, Fig. 3 shows two numerical solutions of the minimization
problem (41) obtained for different choices of these control parameters. The deformation
of the actuator is remarkably close to the desired shape which is represented by the red
dashed curve in insets (a), (b) and (c); however, the magnetization profile is quite different
for the three solutions: the yellow curve corresponds to the set of control parameters given
by {W, ε, γ, γ̃} = {200, 0.05, 100, 0.01} which penalizes the variation of the magnetization
intensity rather than its orientation this is why the resulting magnetization profile is
essentially constant. On the opposite, by penalising α′ with the choice {W, ε, γ, γ̃} =
{300, 0.15, 3, 0.005}, one obtains the solution represented by the green curve, for which
the orientation profile is constant but significant variations of the magnetization intensity
are observed.
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Still with reference to the profile of the magnetization orientation shown in Fig. 3, we
observe the smoothening effect of the regularization parameter ε. Indeed, the profile that
gives the magnetization orientation of the numerical solution (blue curve), appears as a
“regularization” of the magnetization orientation α(s) given from the explicit solution
(orange curve). We also notice that α′(0) 6= 0 and α′(1) 6= 0.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.90

0.95

1.00

1.05

Figure 3: Results of the optimization procedure for the single shape problem with ϑ in (43). (left)
magnetization orientation, (right) magnetization intensity for the three solutions considered: (a) repre-
sents the solution of (46), (b) and (c) are the solution of (41) with {W, ε, γ, γ̃} = {200, 0.05, 100, 0.01}
and {W, ε, ε, γ̃} = {300, 0.15, 3, 0.005}, respectively. The coloured arrows indicate the orientation of the
magnetic field. fig:2

The possibility of tuning the control parameter to achieve different types of solutions is
indeed beneficial to the experimentalists and in fact the possibility of mutually control the
magnetization intensity and the orientation can be exploited to obtain multiple complex
shapes [17]. For instance, mimicking an artificial cilium capable of propelling small
objects in a fluid-like environment requires at least two shapes to be defined. For this
purpose, we introduce two target shapes:

ϑ1(s) = A sin(3π/2s), ϑ2(s) = −A sin(π/2s). (47) targetshapes

These shapes represent, respectively, the upward and backward configurations of a cilium
Accordingly, we now have to solve the minimization problem (37) with N = 2. The
results of the optimization algorithm with {W, ε, γ, γ̃} = {200, 0.05, 100, 0.01} are shown
in Fig. 4 together with the corresponding orientation of the magnetic field associated to
each configuration. In particular, the results of the minimum of the problem is achieved
when h1 = (hx1, hy1) = (13.2, 2.2) (configuration (a) in Fig. 4) and h2 = (hx2, hy2) =
(−1.3,−7.4) (configuration (b)).
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Figure 4: Results of the optimization procedure for 2-shapes problem with ϑ1 and ϑ2 given by Eq. (47).
Dashed curves represent the target shapes; solid curves represent the attained shapes. The left graph
shows the magnetization orientation, the right one the magnetization intensity. fig:3

We see that in this case the minimization procedure was able to sort out a magneti-
zation profile and applied field whose associated shapes adequately match the targets.

Of course, one may consider solving the problem with even more shapes that inter-
polate the two targets. However, such interpolation can be obtained by directly inter-
polating the applied fields that produce the two extreme shapes of the motion. More
precisely, a controlled motion of the actuator can be realised by varying the magnetic
field between these two extreme configurations through a control parameters k ∈ [0, 1]
as h(k) = (1 − k) h1 + k h2. Snapshots of the resulting motion is displayed in Fig. 5.
We point out that each configuration of the actuator is the solution of the equilibrium
problem (3) with α and m in Fig. 4.

Figure 5: Controlled motion of the actuator obtained by varying the external magnetic between
(hx1, hy1) = (13.2, 2.2) and (hx2, hy2) = (−1.3,−7.4). Each shape of the actuator is the solution of
the equilibrium problem (3) with α and m in Fig. 4. fig:4

6. Conclusions

In this paper we have considered the problem of steering a magnetized elastic rod
towards a sequence of target shapes by the application of a spatially-uniform and possibly
time-dependent magnetic field, being free to choose the magnetization profile of the rod.
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Since it is not possible to match more than one shape with a given magnetization profile,
an optimality criterion must be devised to obtain a good tradeoff. To this effect, we have
proposed a new optimality criterion for the design of the magnetization profile, based
on a set of optimality conditions drawn from the general theory of PDE-constrained
optimization. We have applied this criterion to two benchmark examples. In the first
example we have compared what is suggested by our criterion with an explicit analytical
solution; in the second example, we have considered the problem of replicating the stroke
of an artificial cilium. In both cases, the design criterion shows good performance.
This preliminary investigation opens the way to further work to enlarge the space of
design variables, by allowing the rod to be tapered, or by allowing the magnetic field
to be spatially-inhomogeneous. This design principle could well be extended to other
structural models, such as plates and shells.
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