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Abstract

Let (X,h) be a compact and irreducible Hermitian complex space of complex dimension m. In this paper
we are interested in the Dolbeault operator acting on the space of L2 sections of the canonical bundle of
reg(X), the regular part of X. More precisely let dm,0 : L2Ωm,0(reg(X), h) → L2Ωm,1(reg(X), h) be an
arbitrarily fixed closed extension of ∂m,0 : L2Ωm,0(reg(X), h)→ L2Ωm,1(reg(X), h) where the domain of the
latter operator is Ωm,0

c (reg(X)). We establish various properties such as closed range of dm,0, compactness
of the inclusion D(dm,0) ↪→ L2Ωm,0(reg(X), h) where D(dm,0), the domain of dm,0, is endowed with the
corresponding graph norm, and discreteness of the spectrum of the associated Hodge-Kodaira Laplacian
d
∗
m,0 ◦dm,0 with an estimate for the growth of its eigenvalues. Several corollaries such as trace class property

for the heat operator associated to d
∗
m,0 ◦ dm,0, with an estimate for its trace, are derived. Finally in the

last part we provide several applications to the Hodge-Kodaira Laplacian in the setting of both compact
irreducible Hermitian complex spaces with isolated singularities and complex projective surfaces.
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Introduction

Consider a complex projective variety V ⊂ CPn. The regular part of V , reg(V ), comes equipped with a natural
Kähler metric g, which is the one induced by the Fubini-Study metric of CPn. In particular, whenever V has
a nonempty singular set, we get an incomplete Kähler manifold of finite volume. In the seminal papers [10]
and [22], given a singular projective variety V , many questions with a rich interaction of topology and analysis,
for instance intersection cohomology, L2-cohomology and Hodge theory, have been raised for the incomplete
Kähler manifold (reg(V ), g). Some of the most important among them are the Cheeger-Goresky-MacPherson’s
conjecture and the MacPherson’s conjecture. The former, which is still open, says that the maximal L2-de Rham
cohomology groups of (reg(V ), g) are isomorphic to the middle perversity intersection cohomology groups of V
while the latter, proved in [29], asks whether the L2-∂-cohomology groups in bidegree (0, q) of (reg(V ), g) are

1



isomorphic to the (0, q)-Dolbeault cohomology groups of Ṽ , where Ṽ is a resolution of V à la Hironaka. Related
to these problems there are many other interesting and deep analytic questions. We can mention for instance
the L2-Stokes theorem which asks whether the maximal and minimal extension of the de Rham differential d are
the same, the existence of a L2-Hodge decomposition for the L2-de Rham cohomology of (reg(V ), g) in terms
of the L2-∂-cohomology of (reg(V ), g), the existence of self-adjoint extensions of the Hodge-de Rham operator

d + dt and the Hodge-Dolbeault operator ∂ + ∂
t

with discrete spectrum, the properties of the heat operator
associated to some self-adjoint extension of the Laplacian and so on. Moreover we point out that many of these
problems admit a natural extension in the more general setting of Hermitian complex spaces. Several papers,
during the last thirty years, have been devoted to these questions. Without any goal of completeness we can
recall here [18] and [24] which concern the Cheeger-Goresky-MacPherson’s conjecture, [9], [15],[28], [27], [29]
and [34] devoted to the L2-∂-cohomology, [26] and [33] concerning the ∂-operator on Hermitian complex spaces,
[7], [14], [30] and [35] dealing with the L2-Hodge decomposition and the L2-Stokes theorem and finally [8], [20],
[23] and [31] devoted to the heat operator.
Now, after this brief overview of the literature, we carry on by describing the aim of this paper. Given a compact
and irreducible Hermitian complex space (X,h) of complex dimension m we are interested in the Dolbeault
operator ∂m,0 acting on the space of L2-sections of the canonical bundle of reg(X), the regular part of X. More
precisely our point of view is to consider ∂m,0 as an unbounded and densely defined operator

∂m,0 : L2Ωm,0(reg(X), h)→ L2Ωm,1(reg(X), h) (1)

with domain Ωm,0c (reg(X)), the space of smooth sections with compact support of Λm,0(reg(X)). Labeling
by dm,0 : L2Ωm,0(reg(X), h) → L2Ωm,1(reg(X), h) any closed extension of (1), we are interested in properties
such as closed range of dm,0, compactness of the inclusion D(dm,0) ↪→ L2Ωm,0(reg(X), h) where D(dm,0), the
domain of dm,0, is endowed with the corresponding graph norm, discreteness of the spectrum of d

∗
m,0 ◦ dm,0 :

L2Ωm,0(reg(X), h)→ L2Ωm,0(reg(X), h), estimates of the growth of the eigenvalues and so on.
Let us now go more into the details by explaining the structure of this paper. The first section is devoted to
the background material. We collect some basic definitions and notions concerning differential operators with
particular regard to the case of the ∂-operator. The second section contains some abstract results that will be
used later on in the paper. In the third section we recall the notion of parabolic Riemannian manifold (M, g),
see Def. 3.1, and then we proceed by studying the Hodge-Dolbeault operator acting on an open, parabolic and
dense subset of a compact Hermitian manifold. Furthermore the remaining part of the third section collects
some useful propositions in the realm of Hermitian manifolds. The forth section contains the main results of this
paper whose applications will provide some satisfactory answers for the questions raised about the operator (1).
More precisely, the forth section starts with the notion of Hermitian pseudometric: given a complex manifold
M , a Hermitian pseudometric h on M is nothing but a positive semidefinite Hermitian product on M which is
positive definite on an open and dense subset of M . As we will see later on, by virtue of Hironaka resolution,
this is a convenient set to deal with many problems involving the ∂-operator on Hermitian complex spaces.
Within this framework the first theorem proved in the forth section is the following:

Theorem 0.1. Let (M, g) be a compact Hermitian manifold of complex dimension m. Let h be a Hermitian
pseudometric on M and let Ah := M \ Zh with Zh the degeneracy locus of h, see Def. 4.1. Let (E, ρ) be a
Hermitian holomorphic vector bundle over M . Assume that (Ah, g|Ah) is parabolic. Let

dE,m,0 : L2Ωm,0(Ah, E|Ah , h|Ah)→ L2Ωm,1(Ah, E|Ah , h|Ah) (2)

be any closed extension of ∂E,m,0 : L2Ωm,0(Ah, E|Ah , h|Ah)→ L2Ωm,1(Ah, E|Ah , h|Ah) where the domain of the
latter operator is Ωm,0c (Ah, E|Ah). Let

∂E,m,0 : L2Ωm,0(M,E, g)→ L2Ωm,1(M,E, g) (3)

be the unique closed extension of ∂E,m,0 : Ωm,0(M,E) → Ωm,1(M,E) where the latter operator is viewed as
an unbounded and densely defined operator acting between L2Ωm,0(M,E, g) and L2Ωm,1(M,E, g). Finally let
D(dE,m,0) and D(∂E,m,0) be the domains of (2) and (3) respectively. Then the following properties hold true:

1. We have a continuous inclusion D(dE,m,0) ↪→ D(∂E,m,0) where each domain is endowed with the corre-
sponding graph norm. Moreover on D(dE,m,0) the operator (3) coincides with the operator (2).

2. The inclusion D(dE,m,0) ↪→ L2Ωm,0(M,E, g) is a compact operator where D(dE,m,0) is endowed with the
corresponding graph norm.
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3. Let d
∗
E,m,0 : L2Ωm,1(Ah, E|Ah , h|Ah)→ L2Ωm,0(Ah, E|Ah , h|Ah) be the adjoint of (2). Then the operator

d
∗
E,m,0 ◦ dE,m,0 : L2Ωm,0(Ah, E|Ah , h|Ah)→ L2Ωm,0(Ah, E|Ah , h|Ah) (4)

whose domain is defined as {s ∈ D(dE,m,0) : dE,m,0s ∈ D(d
∗
E,m,0)}, has discrete spectrum.

We point out explicitly that in the previous theorem the assumption concerning the parabolicity of (Ah, g|Ah)
does not depend on the particular Hermitian metric g that we fix on M . Indeed if g′ is another Hermitian
metric on M then, since g and g′ are quasi-isometric on M , we have that (Ah, g|Ah) is parabolic if and only

if (Ah, g
′|Ah) is parabolic. Consider again the setting of Theorem 0.1 and let ∂

t

E,m,0 be the formal adjoint of

∂E,m,0 with respect to g. Let ∆∂,E,m,0 : Ωm,0(M,E)→ Ωm,0(M,E), ∆∂,E,m,0 = ∂
t

E,m,0 ◦ ∂E,m,0 be the Hodge-
Kodaira Laplacian in bidegree (m, 0). Since M is compact and ∆∂,E,m,0 is elliptic and formally self-adjoint we

have that ∆∂,E,m,0, acting on L2Ωm,0(M,E, g) with domain Ωm,0(M,E), is essentially self-adjoint. With

∆∂,E,m,0 : L2Ωm,0(M,E, g)→ L2Ωm,0(M,E, g) (5)

we mean its unique closed (and therefore self-adjoint) extension. We are now in the position to recall the second
theorem proved in the forth section.

Theorem 0.2. In the setting of Theorem 0.1. Let

0 ≤ µ1 ≤ µ2 ≤ ... ≤ µk ≤ ...

be the eigenvalues of (5) and let
0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk ≤ ...

be the eigenvalues of (4) Then there exists a constant γ > 0 such that for every k ∈ N we have the following
inequality:

γλk ≥ µk. (6)

Moreover we have the following asymptotic inequality:

lim inf λkk
− 1
m > 0 (7)

as k →∞.

Finally the remaining part of the forth section contains various corollaries and remarks. In particular we
show that the heat operator associated to d

∗
E,m,0 ◦ dE,m,0 is a trace class operator and moreover we provide an

estimate for its trace. In the fifth and last section of this paper we collect various applications of Th. 0.1 and
Th. 0.2. Its first part is devoted to the ∂-operator acting on the space of L2-sections of the canonical bundle of
reg(X), see (1). In particular we prove the following result that, for the sake of brevity, here is formulated only
in the version where the canonical bundle is untwisted. For the more general version we refer to Th. 5.1.

Theorem 0.3. Let (X,h) be a compact and irreducible Hermitian complex space of complex dimension m.
Consider the Dolbeault operator ∂m,0 : L2Ωm,0(reg(X), h)→ L2Ωm,1(reg(X), h) with domain Ωm,0c (reg(X)) and
let

dm,0 : L2Ωm,0(reg(X), h)→ L2Ωm,1(reg(X), h) (8)

be any of its closed extensions. The following properties hold true:

1. The inclusion D(dm,0) ↪→ L2Ωm,0(reg(X), h) is a compact operator where D(dm,0) is endowed with the
corresponding graph norm.

2. Let d
∗
m,0 : L2Ωm,1(reg(X), h)→ L2Ωm,0(reg(X), h) be the adjoint of (8). Then the operator

d
∗
m,0 ◦ dm,0 : L2Ωm,0(reg(X), h)→ L2Ωm,0(reg(X), h) (9)

whose domain is defined as {s ∈ D(dm,0) : dm,0s ∈ D(d
∗
m,0)}, has discrete spectrum.
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Let now
0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ ...

be the eigenvalues of (9). Then we have the following asymptotic inequality

lim inf λkk
− 1
m > 0 (10)

as k →∞.
Finally consider the heat operator

e−td
∗
m,0◦dm,0 : L2Ωm,0(reg(X), h)→ L2Ωm,0(reg(X), h)

associated to (9). We have the following properties:

1. e−td
∗
m,0◦dm,0 : L2Ωm,0(reg(X), h)→ L2Ωm,0(reg(X), h) is a trace class operator.

2. Tr(e−td
∗
m,0◦dm,0) ≤ Ct−m for t ∈ (0, 1] and for some constant C > 0.

We stress on the fact that Th. 0.3 does not require assumptions on sing(X) nor on the dimension of X. In
the second part of the fifth section, combining Th. 0.3 with other theorems already available in the literature,
we show the existence of self-adjoint extensions with discrete spectrum for the Hodge-Kodaira Laplacian in the
framework of compact and irreducible Hermitian complex spaces with isolated singularities. For the definition
of Friedrich extension and absolute extension we refer to Prop. 2.5 and (23).

Theorem 0.4. Let (X,h) be a compact and irreducible Hermitian complex space of complex dimension m.
Assume that sing(X) is made of isolated singularities. Then we have the following properties:

1. ∆∂,m,q,abs : L2Ωm,q(reg(X), h)→ L2Ωm,q(reg(X), h) has discrete spectrum for each q = 0, ...,m.

2. ∂m,max + ∂
t

m,min : L2Ωm,•(reg(X), h)→ L2Ωm,•(reg(X), h) has discrete spectrum.

3. ∆F
∂,m,q

: L2Ωm,q(reg(X), h)→ L2Ωm,q(reg(X), h) has discrete spectrum for each q = 0, ...,m.

Finally in the last part of the fifth section, joining again our results with others already available in the
literature, we provide a quite accurate study of the Hodge-Kodaira Laplacian on complex projective surfaces.
We conclude this introduction by summarizing some of these results in the next two theorems.

Theorem 0.5. Let V ⊂ CPn be a complex projective surface and let h be the Kähler metric on reg(V ) induced
by the Fubini-Study metric of CPn. Then for each q = 0, 1, 2 the operator

∆∂,2,q,abs : L2Ω2,q(reg(V ), h)→ L2Ω2,q(reg(V ), h) (11)

has discrete spectrum. Let now
0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk ≤ ...

be the eigenvalues of (11). Then we have the following asymptotic inequality

lim inf λkk
− 1

2 > 0 (12)

as k →∞.
Finally consider the heat operator associated to (11)

e−t∆∂,2,q,abs : L2Ω2,q(reg(V ), h)→ L2Ω2,q(reg(V ), h). (13)

Then (13) is a trace class operator and its trace satisfies the following estimate

Tr(e−t∆∂,2,q,abs) ≤ Cqt−2 (14)

for t ∈ (0, 1] and some constant Cq > 0.

We point out that Th. 0.5 does not require assumptions on sing(V ). On the other hand, assuming moreover
that sing(V ) is made of isolated singularities, we have also the following result.
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Theorem 0.6. Let V ⊂ CPn be a complex projective surface and let h be the Kähler metric on reg(V ) induced
by the Fubini-Study metric of CPn. Assume that V has only isolated singularities. Then for each q = 0, 1, 2 the
operator

∆∂,0,q,abs : L2Ω0,q(reg(V ), h)→ L2Ω0,q(reg(V ), h) (15)

has discrete spectrum. Let
0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk ≤ ...

be the eigenvalues of (15). Then we have the following asymptotic inequality

lim inf λkk
− 1

2 > 0 (16)

as k →∞.
Finally consider the heat operator associated to (15)

e−t∆∂,0,q,abs : L2Ω0,q(reg(V ), h)→ L2Ω0,q(reg(V ), h). (17)

Then (17) is a trace class operator and its trace satisfies the following estimate

Tr(e−t∆∂,0,q,abs) ≤ Cqt−2 (18)

for t ∈ (0, 1] and some constant Cq > 0.

Acknowledgments. I wish to thank Paolo Piazza and Jochen Brüning for interesting discussions. This
research has been financially supported by the SFB 647 : Raum-Zeit-Materie.

1 Background material

We start by briefly recalling some basic notions about Lp-spaces and differential operators. We refer for instance
to [2] and the bibliography cited there. Let (M, g) be an open and possibly incomplete Riemannian manifold
of dimension m. Let E be a vector bundle over M of rank k and let ρ be a metric on E, Hermitian if E is a
complex vector bundle, Riemannian if E is a real vector bundle. Let dvolg be the one-density associated to g. A
section s of E is said measurable if, for any trivialization (U, φ) of E, φ(s|U ) is given by a k-tuple of measurable
functions. Given a measurable section s let |s|ρ be defined as |s|ρ := (ρ(s, s))1/2. Then for every p, 1 ≤ p <∞
we can define Lp(M,E, g) as the space of measurable sections s such that

‖s‖Lp(M,E,g) :=

(∫
M

|s|pρ dvolg

)1/p

<∞.

For each p ∈ [1,∞) we have a Banach space, for each p ∈ (1,∞) we have a reflexive Banach space and in the
case p = 2 we have a Hilbert space whose inner product is given by

〈s, t〉L2(M,E,g) :=

∫
M

ρ(s, t) dvolg .

Moreover C∞c (M,E), the space of smooth sections with compact support, is dense in Lp(M,E, g) for p ∈ [1,∞).
Finally L∞(M,E, ρ) is defined as the space of measurable sections whose essential supp is bounded. Also in
this case we get a Banach space. Clearly, when p ∈ [1,∞), all the spaces we defined so far depend on M , E, ρ
and g but in order to have a lighter notation we prefer to write Lp(M,E, g) instead of Lp(M,E, ρ, g).
Let now F be another vector bundle over M endowed with a metric τ . Let P : C∞c (M,E) −→ C∞c (M,F ) be a
differential operator of order d. The formal adjoint of P

P t : C∞c (M,F ) −→ C∞c (M,E)

is the differential operator uniquely characterized by the following property: for each u ∈ C∞c (M,E) and for
each v ∈ C∞c (M,F ) we have ∫

M

ρ(u, P tv) dvolg =

∫
M

τ(Pu, v) dvolg .
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We can look at P as an unbounded, densely defined and closable operator acting between L2(M,E, g) and
L2(M,F, g). In general P admits several different closed extensions. We recall now the definitions of the maxi-
mal and the minimal one. The domain of the maximal extension of P : L2(M,E, g) −→ L2(M,F, g) is defined as

D(Pmax) := {s ∈ L2(M,E, g) : there is v ∈ L2(M,F, g) such that

∫
M

ρ(s, P tφ) dvolg = (19)

=

∫
M

τ(v, φ) dvolg for each φ ∈ C∞c (M,F, g)}. In this case we put Pmaxs = v.

In other words the maximal extension of P is the one defined in the distributional sense.
The domain of the minimal extension of P : L2(M,E, g) −→ L2(M,F, g) is defined as

D(Pmin) := {s ∈ L2(M,E, g) such that there is a sequence {si} ∈ C∞c (M,E) with si → s (20)

in L2(M,E, g) and Psi → w in L2(M,F, g) to some w ∈ L2(M,F, g)}. We put Pmins = w.

Briefly the minimal extension of P is the closure of C∞c (M,E) under the graph norm ‖s‖L2(M,E,g)+‖Ps‖L2(M,F,g).
It is immediate to check that

P ∗max = P tmin and that P ∗min = P tmax (21)

that is P tmax /min : L2(M,F, g) → L2(M,E, g) is the Hilbert space adjoint of Pmin /max respectively. Moreover

we have the following two L2-orthogonal decompositions for L2(M,E, g)

L2(M,E) = ker(Pmin /max)⊕ im(P tmax /min). (22)

Before to proceed by recalling some general properties we add the following remark.

Remark 1.1. In this paper, when we will say that a closed operator P : L2(M,E, g)→ L2(M,F, g) with domain
D(P ) is a closed extension of P : C∞c (M,E)→ C∞c (M,F ), we will always mean that Pmax is defined on D(P ),
and that Pmax|D(P ) = P . Note that P might be Pmin or Pmax.

We have now the following propositions:

Proposition 1.1. Let (M, g), (E, ρ) and (F, τ) be as above. Let P : C∞c (M,E)→ C∞c (M,F ) be a differential
operator such that P t ◦ P : C∞c (M,E)→ C∞c (M,E) is elliptic. Let P : L2(M,E, g)→ L2(M,F, g) be a closed

extension of P . Let P
∗

be the Hilbert space adjoint of P . Then C∞(M,E) ∩ D(P
∗ ◦ P ) is dense in D(P ) with

respect to the graph norm of P . In particular we have that C∞(M,E)∩D(Pmax /min) is dense in D(Pmax /min)
with respect to the graph norm of Pmax /min.

Proof. See Prop. 2.1 in [2].

Proposition 1.2. Let (M, g), (E, ρ) and (F, τ) be as above. Let P : C∞c (M,E) → C∞c (M,F ) be a first order
differential operator. Let s ∈ D(Pmax). Assume that there is an open subset U ⊂M with compact closure such
that s|M\U = 0. Then s ∈ D(Pmin).

Proof. The statement follows by Lemma 2.1 in [14].

In the remaining part of this introductory section we specialize to the case of complex manifolds and to
the natural differential operators appearing in this setting. Our aim here is to introduce some notations and
to recall some results from the general theory of Hilbert complexes applied to the Dolbeault complex. We
refer to [6] for the proofs. Assume that (M, g) is a complex manifold of real dimension 2m. As usual with
Λp,q(M) we denote the bundle Λp(T 1,0M)∗ ⊗ Λq(T 0,1M)∗ and by Ωp,q(M), Ωp,qc (M) we denote respectively
the space of sections, sections with compact support, of Λp,q(M). On the bundle Λp,q(M) we consider the
Hermitian metric induced by g and with a little abuse of notation we still label it by g. With L2Ωp,q(M, g)
we denote the Hilbert space of L2-(p, q)-forms. The Dolbeault operator acting on (p, q)-forms is labeled by
∂p,q : Ωp,q(M) → Ωp,q+1(M) and similarly we have the operator ∂p,q : Ωp,q(M) → Ωp+1,q(M). When we
look at ∂p,q : L2Ωp,q(M, g) → L2Ωp,q+1(M, g) as an unbounded and densely defined operator with domain
Ωp,qc (M) we label by ∂p,q,max /min : L2Ωp,q(M, g) → L2Ωp,q+1(M, g) respectively its maximal and minimal
extension. Analogous meaning has the notation ∂p,q,max /min : L2Ωp,q(M, g) → L2Ωp+1,q(M, g). In the case of

functions we will simply write ∂ : C∞(M) → Ω0,1(M), ∂max /min : L2(M, g) → L2Ω0,1(M, g) and analogously
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∂ : C∞(M) → Ω1,0(M) and ∂max /min : L2(M, g) → L2Ω1,0(M, g). With ∂
t

p,q : Ωp,q+1
c (M) → Ωp,qc (M) and

∂tp,q : Ωp+1,q
c (M)→ Ωp,qc (M) we mean the formal adjoint of ∂p,q : Ωp,qc (M)→ Ωp,q+1

c (M) and ∂p,q : Ωp,qc (M)→
Ωp+1,q
c (M) respectively. For each bidegree (p, q) we have the Hodge-Kodaira Laplacian defined as

∆∂,p,q : Ωp,qc (M)→ Ωp,qc (M), ∆∂,p,q := ∂p,q−1 ◦ ∂
t

p,q−1 + ∂
t

p,q ◦ ∂p,q.

In the case of functions, that is (p, q) = (0, 0), we will simply write ∆∂ : C∞c (M)→ C∞c (M). We recall now the
definition of the following two self-adjoint extensions of ∆∂,p,q:

∂p,q−1,max ◦ ∂
t

p,q−1,min + ∂
t

p,q,min ◦ ∂p,q,max : L2Ωp,q(M, g)→ L2Ωp,q(M, g) (23)

and
∂p,q−1,min ◦ ∂

t

p,q−1,max + ∂
t

p,q,max ◦ ∂p,q,min : L2Ωp,q(M, g)→ L2Ωp,q(M, g) (24)

called respectively the absolute and the relative extension. The operator (23), the absolute extension, is labeled
in general with ∆∂,p,q,abs and its domain is given by

D(∆∂,p,q,abs) =
{
ω ∈ D(∂p,q,max) ∩ D(∂

t

p,q−1,min) : ∂p,q,maxω ∈ D(∂
t

p,q,min) and ∂
t

p,q−1,minω ∈ D(∂p,q−1,max)
}
.

The operator (24), the relative extension, is labeled in general with ∆∂,p,q,rel and its domain is given by

D(∆∂,p,q,rel) =
{
ω ∈ D(∂p,q,min) ∩ D(∂

t

p,q−1,max) : ∂p,q,minω ∈ D(∂
t

p,q,max) and ∂
t

p,q−1,maxω ∈ D(∂p,q−1,min)
}
.

Using ∆∂,p,q,abs and ∆∂,p,q,rel we obtain the following orthogonal decompositions for L2Ωp,q(M, g):

L2Ωp,q(M, g) = Hp,q
∂,abs

(M, g)⊕ im(∆∂,p,q,abs) = Hp,q
∂,abs

(M, g)⊕ im(∂p,q−1,max)⊕ im(∂
t

p,q,min) (25)

and

L2Ωp,q(M, g) = Hp,q
∂,rel

(M, g)⊕ im(∆∂,p,q,rel) = Hp,q
∂,rel

(M, g)⊕ im(∂p,q−1,min)⊕ im(∂
t

p,q,max) (26)

where
Hp,q
∂,abs

(M, g) := ker(∂p,q,max) ∩ ker(∂
t

p,q−1,min) = ker(∆∂,p,q,abs) (27)

and
Hp,q
∂,rel

(M, g) := ker(∂p,q,min) ∩ ker(∂
t

p,q−1,max) = ker(∆∂,p,q,rel). (28)

Consider now the Hodge-Dolbeault operator ∂p + ∂
t

p : Ωp,•c (M) → Ωp,•c (M) where with Ωp,•c (M) we mean⊕m
q=0 Ωp,qc (M). We can define two self-adjoint extensions of ∂p + ∂

t

p taking

∂p,max + ∂
t

p,min : L2Ωp,•(M, g)→ L2Ωp,•(M, g) (29)

∂p,min + ∂
t

p,max : L2Ωp,•(M, g)→ L2Ωp,•(M, g) (30)

where clearly L2Ωp,•(M, g) =
⊕m

q=0 L
2Ωp,q(M, g). The domain of ∂p,max + ∂

t

p,min is given by D(∂p,max) ∩
D(∂

t

p,min) where D(∂p,max) =
⊕m

q=0D(∂p,q,max) and D(∂
t

p,min) =
⊕m

q=0D(∂
t

p,q,min). Analogously the domain

of ∂p,min + ∂
t

p,max is given by D(∂p,min) ∩ D(∂
t

p,max) where D(∂p,min) =
⊕m

q=0D(∂p,q,min) and D(∂
t

p,max) =⊕m
q=0D(∂

t

p,q,max). In particular we have:

ker(∂p,max /min + ∂
t

p,min /max) =

m⊕
q=0

ker(∂p,q,max /min) ∩ ker(∂
t

p,q−1,min /max) =

m⊕
q=0

Hp,q
∂,abs / rel

(M, g) (31)

im(∂p,max /min + ∂
t

p,min /max) =

m⊕
q=0

(
im(∂p,q−1,max /min)⊕ im(∂

t

p,q,min /max)
)
.

Furthermore we recall that the maximal and the minimal L2-∂-cohomology of (M, g) are defined respectively
as

Hp,q

2,∂max
(M, g) :=

ker(∂p,q,max)

im(∂p,q−1,max)
and Hp,q

2,∂min
(M, g) :=

ker(∂p,q,min)

im(∂p,q−1,min)
. (32)

In particular if Hp,q

2,∂max
(M, g) is finite dimensional then im(∂p,q−1,max) is closed and analogously if Hp,q

2,∂min
(M, g)

is finite dimensional then im(∂p,q−1,min) is closed. We have the following important properties:
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Proposition 1.3. In the setting described above. The following properties are equivalent:

• Hp,q

2,∂max
(M, g) is finite dimensional for every q = 0, ...,m.

• (29) is a Fredholm operator on its domain endowed with the graph norm.

• ∆∂,p,q,abs : L2Ωp,q(M, g) → L2Ωp,q(M, g) is a Fredholm operator on its domain endowed with the graph
norm for each q = 0, ...,m.

Analogously the following properties are equivalent:

• Hp,q

2,∂min
(M, g) is finite dimensional for every q = 0, ...,m.

• (30) is a Fredholm operator on its domain endowed with the graph norm.

• ∆∂,p,q,rel : L2Ωp,q(M, g) → L2Ωp,q(M, g) is a Fredholm operator on its domain endowed with the graph
norm for each q = 0, ...,m.

Clearly, if we replace the operator ∂p,q with ∂p,q, then we get the analogous definitions and properties
for the operators ∂p,q,max /min, ∆∂,p,q, ∆∂,p,q,abs / rel, ∂q + ∂tq and ∂q,max /min + ∂tq,min /max. In particular the

corresponding version of Prop. 1.3 holds for Hp,q
2,∂max /min

(M, g), ∂p,max /min + ∂tmin /max and ∆∂,p,q,abs / rel.

Moreover, according to [19] pag. 116, we have

∂tp,q = − ∗ ∂m−q,m−p−1 ∗ and ∂
t

p,q = − ∗ ∂m−q−1,m−p∗ (33)

and from (33) we easily get that

∂tp,q,max /min = − ∗ ∂m−q,m−p−1,max /min ∗ and ∂
t

p,q,max /min = − ∗ ∂m−q−1,m−p,max /min∗ (34)

where ∗ : L2Ωp,q(M, g)→ L2Ωm−q,m−p(M, g) is the unitary operator induced by the Hodge star operator. Now
let us label by

c : T 1,0M → T 0,1M (35)

the C-antilinear map given by complex conjugation. In particular, given p ∈ M and v ∈ Tp(M), so that
v − iJv ∈ T 1,0

p M , we have c(v − iJv) = v + iJv. Let us label by

cp,q : Λp,q(M)→ Λq,p(M) (36)

the natural map induced by (35). With a little abuse of notation we still label by cp,q the induced map on
(p, q)-forms, that is

cp,q : Ωp,q(M)→ Ωq,p(M). (37)

Clearly both (36) and (37) are C-antilinear isomorphisms such that (cp,q)
−1 = cq,p. Moreover (37) induces an

isomorphism
cp,q|Ωp,qc (M) : Ωp,qc (M)→ Ωq,pc (M). (38)

We have the following well known properties:

Proposition 1.4. In the setting described above. On Ωp,q(M) and Ωp,qc (M) the following properties hold true:

1. ∂p,q = cq+1,p ◦ ∂q,p ◦ cp,q.

2. ∂
t

p,q = cq,p ◦ ∂tq,p ◦ cp,q+1

Proof. For the first point see for instance [37] Prop. 3.6. The second point follows using the first point, (33)
and the fact that the Hodge star operator commutes with the complex conjugation.

Now consider again M endowed with a Hermitian metric g. For each ω ∈ Ωp,qc (M) it is easy to check that
g(ω, ω) = g(cp,qω, cp,qω). Using this equality and the other properties recalled above, we easily get that cp,q
induces a C-antilinear operator

cp,q : L2Ωp,q(M, g)→ L2Ωq,p(M, g) (39)

which is bijective, continuous, with continuous inverse given by cq,p and such that ‖η‖L2Ωp,q(M,g) = ‖cp,qη‖L2Ωq,p(M,g)

for each η ∈ L2Ωp,q(M, g). Finally we close this introduction with the following proposition.
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Proposition 1.5. In the setting described above. The following properties hold true:

1. cp,q
(
D(∂p,q,max)

)
= D(∂q,pmax) and ∂p,q,max = cq+1,p ◦ ∂q,p,max ◦ cp,q.

2. cp,q
(
D(∂p,q,min)

)
= D(∂q,pmin) and ∂p,q,min = cq+1,p ◦ ∂q,p,min ◦ cp,q.

3. cp,q+1

(
D(∂

t

p,q,max)
)

= D(∂tq,pmax) and ∂
t

p,q,max = cq,p ◦ ∂tq,p,max ◦ cp,q+1.

4. cp,q+1

(
D(∂

t

p,q,min)
)

= D(∂tq,pmin) and ∂
t

p,q,min = cq,p ◦ ∂tq,p,min ◦ cp,q+1.

5. ∗
(
D(∆∂,p,q,abs)

)
= D(∆∂,m−q,m−p,rel) and ∗ ◦∆∂,p,q,abs = ∆∂,m−q,m−p,rel ◦ ∗.

6. ∗
(
cp,q(D(∆∂,p,q,abs))

)
= D(∆∂,m−p,m−q,rel) and ∗ ◦ cp,q ◦∆∂,p,q,abs = ∆∂,m−p,m−q,rel ◦ ∗ ◦ cp,q.

Proof. This follows immediately by (34), Prop. 1.4 and the properties of (39).

2 Some abstract results

This section contains some abstract results that will be used later on in the paper. We start by recalling some
well known facts about the Green operator.
Let H1 and H2 be separable Hilbert spaces whose Hilbert products are labeled by 〈 , 〉H1

and 〈 , 〉H2
. Let

T : H1 → H2 be an unbounded, densely defined and closed operator with domain D(T ). Assume that im(T )
is closed. Let T ∗ : H2 → H1 be the adjoint of T . Then im(T ∗) is closed as well and we have the following
orthogonal decompositions: H1 = ker(T ) ⊕ im(T ∗) and H2 = ker(T ∗) ⊕ im(T ). The Green operator of T ,
GT : H2 → H1, is then the operator defined by the following assignments: if u ∈ ker(T ∗) then GT (u) = 0, if
u ∈ im(T ) then GT (u) = v where v is the unique element in D(T ) ∩ im(T ∗) such that T (v) = u. We have
that GT : H2 → H1 is a bounded operator. Moreover, if H1 = H2 and T is self-adjoint then GT is self-adjoint
too. If H1 = H2 and T is self-adjoint and non-negative, that is 〈Tu, u〉H1 ≥ 0 for each u ∈ D(T ), then GT is
self-adjoint and non negative as well. Furthermore we have T ◦GT = Id2−Pker(T∗) and GT ◦ T = Id1−Pker(T )

on D(T ) where Id1 : H1 → H1, Id2 : H2 → H2 are the corresponding identity maps and Pker(T ) : H1 → ker(T ),
Pker(T∗) : H2 → ker(T ∗) are the orthogonal projections on ker(T ) and ker(T ∗) respectively. Finally we recall
that G : H2 → H1 is a compact operator if and only if the following inclusion D(T ) ∩ im(T ∗) ↪→ H1, where
D(T ) ∩ im(T ∗) is endowed with the graph norm of T , is a compact operator.

Proposition 2.1. Let T : H1 → H2 be an unbounded, densely defined and closed operator acting between two
separable Hilbert spaces. Let D(T ) be the domain of T and let T ∗ : H2 → H1 be the adjoint of T . Assume that
im(T ) is closed. Consider the operator T ∗ ◦ T : H1 → H1 with domain D(T ∗ ◦ T ) = {u ∈ D(T ) : Tu ∈ D(T ∗)}.
Then we have the following properties:

1. im(T ∗ ◦ T ) = im(T ∗) and therefore it is closed in H1.

2. GT∗◦T = GT ◦GT∗ .

Proof. Clearly im(T ∗ ◦ T ) ⊂ im(T ∗). Using the orthogonal decomposition H2 = ker(T ∗) ⊕ im(T ) we get that
im(T ∗) = {T ∗s such that s ∈ im(T )∩D(T ∗)}. Hence we can conclude that im(T ∗) = im(T ∗ ◦T ). In particular,
by the fact that im(T ∗) is closed, we have that im(T ∗◦T ) is closed in H1. Consider now the second point. Clearly
if v ∈ ker(T ∗◦T ) then GT (GT∗(v)) = 0. Let now v ∈ im(T ∗◦T ) and let u ∈ D(T ∗◦T )∩im(T ∗◦T ) be the unique
element in D(T ∗ ◦T )∩ im(T ∗ ◦T ) such that T ∗(T (u)) = v. We have GT∗(v) = w where w is the unique element
in D(T ∗) ∩ im(T ) such that T ∗(w) = v. Since T ∗ is injective on D(T ∗) ∩ im(T ) we have T (u) = w because
T ∗(T (u)) = v = T ∗(w). Therefore we have GT (w) = GT (T (u)) = u because u ∈ D(T ∗ ◦ T ) ∩ im(T ∗ ◦ T ) ⊂
D(T )∩im(T ∗). Summarizing we have shown that if v ∈ ker(T ∗◦T ) then GT (GT∗(v)) = 0 while if v ∈ im(T ∗◦T )
then GT (GT∗(v)) = u where u is the unique element in D(T ∗ ◦ T ) ∩ im(T ∗ ◦ T ) such that T ∗(T (u)) = v. We
can thus conclude that GT∗◦T = GT ◦GT∗ .

Proposition 2.2. In the setting of Prop. 2.1. Assume moreover that the following inclusion

D(T ∗ ◦ T ) ∩ im(T ∗ ◦ T ) ↪→ H1 (40)
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where D(T ∗ ◦ T ) ∩ im(T ∗ ◦ T ) is endowed with the graph norm of T ∗ ◦ T , is a compact operator. Then also the
following inclusion

D(T ◦ T ∗) ∩ im(T ◦ T ∗) ↪→ H2 (41)

where D(T ◦ T ∗) ∩ im(T ◦ T ∗) is endowed with the graph norm of T ◦ T ∗, is a compact operator.

Proof. Let us define D := T ◦ T ∗. Then D : H2 → H2 is an unbounded, densely defined, self-adjoint and
non-negative operator such that im(D) is closed. Consider now D2 : H2 → H2 where D(D2) = {u ∈ D(D) :
Du ∈ D(D)}. Then, according to Prop. 2.1, im(D2) is closed. Let GD2 : H2 → H2 be the Green operator of D2.
Again by Prop. 2.1 we know that GD2 = GD ◦GD = GT◦T∗ ◦GT◦T∗ . Moreover, again by Prop. 2.1, we know
that GT◦T∗ = GT∗ ◦GT . Therefore we have GD2 = GT∗ ◦GT ◦GT∗ ◦GT . This tells us that GD2 : H2 → H2 is
a compact operator because, by (40), we know that GT ◦GT∗ : H1 → H1 is a compact operator. On the other
hand, since D is self-adjoint, we have GD2 = G2

D. Therefore, by the fact that GD : H2 → H2 is bounded, self-
adjoint and non-negative, and by the fact that G2

D : H2 → H2 is compact we can conclude that GD : H2 → H2 is
a compact operator. As D = T ◦T ∗ we can eventually conclude that the inclusion D(T ◦T ∗)∩ im(T ◦T ∗) ↪→ H2,
where D(T ◦ T ∗) ∩ im(T ◦ T ∗) is endowed with the corresponding graph norm, is a compact operator.

We have now the following proposition.

Proposition 2.3. Let H1, H2 and H3 be separable Hilbert spaces and let T1 : H1 → H2 and T2 : H2 →
H3 be densely defined and closed operators such that, for each n = 1, 2, im(Tn) is closed in Hn+1 and
im(T1) ⊂ ker(T2). Consider the operator ∆T : H2 → H2, ∆T := T1 ◦ T ∗1 + T ∗2 ◦ T2, with domain given by
{s ∈ D(T2) ∩ D(T ∗1 ) : T2s ∈ D(T ∗2 ) and T ∗1 s ∈ D(T1)}. Then the following inclusions hold true

(D(T1 ◦ T ∗1 ) ∩ im(T1 ◦ T ∗1 )) ⊂ D(∆T ), (D(T ∗2 ◦ T2) ∩ im(T ∗2 ◦ T2)) ⊂ D(∆T ) (42)

and we have the following orthogonal decomposition for D(∆T )

D(∆T ) = (ker(T ∗1 ) ∩ ker(T2))⊕ (D(T1 ◦ T ∗1 ) ∩ im(T1 ◦ T ∗1 ))⊕ (D(T ∗2 ◦ T2) ∩ im(T ∗2 ◦ T2)) (43)

where the addends on the right end side of (43) are closed subspaces of D(∆T ) and are orthogonal to each other
with respect to the graph product of D(∆T ).
Moreover on (D(T1 ◦ T ∗1 ) ∩ im(T1 ◦ T ∗1 )) the graph product of ∆T coincides with the graph product of T1 ◦ T ∗1 .
Analogously on (D(T ∗2 ◦ T2) ∩ im(T ∗2 ◦ T2)) the graph product of ∆T coincides with the graph product of T ∗2 ◦T2.

Proof. The inclusions in (42) follow immediately by the definition of D(∆T ) and by the fact that T2 ◦ T1 = 0
and T ∗1 ◦ T ∗2 = 0. Moreover it is an easy check to verify that the spaces on the right hand side of (43) are
orthogonal to each other with respect to the graph product of ∆T . Therefore the right hand side of (43) is
contained in D(∆T ). In order to complete the proof we have to prove now the opposite inclusion. To this aim
consider the orthogonal decomposition of H2 given by

H2 = (ker(T ∗1 ) ∩ ker(T2))⊕ im(T1)⊕ im(T ∗2 ).

By the fact that im(Tn) is closed in Hn+1, n = 1, 2, we have that im(T ∗2 ◦ T2) = im(T ∗2 ) and that im(T1) =
im(T1 ◦ T ∗1 ), see Prop. 2.1. Therefore we can replace the above decomposition with

H2 = (ker(T ∗1 ) ∩ ker(T2))⊕ im(T1 ◦ T ∗1 )⊕ im(T ∗2 ◦ T2). (44)

Let now s ∈ D(∆T ). Then, according to (44), we have s = s1 + s2 + s3 with respectively s1 ∈ ker(T ∗1 )∩ker(T2),
s2 ∈ im(T1 ◦ T ∗1 ) and s3 ∈ im(T ∗2 ◦ T2). By the fact that s1 ∈ ker(∆T ) we have s2 + s3 ∈ D(∆T ) that is
s2 + s3 ∈ D(T ∗2 ◦ T2) ∩ D(T1 ◦ T ∗1 ). On the other hand s2 ∈ D(T ∗2 ◦ T2) because im(T1 ◦ T ∗1 ) ⊂ ker(T ∗2 ◦ T2)
and s3 ∈ D(T1 ◦ T ∗1 ) because im(T ∗2 ◦ T2) ⊂ ker(T1 ◦ T ∗1 ). Hence this leads us to the conclusion that s2 ∈
im(T1 ◦ T ∗1 ) ∩ D(T ∗2 ◦ T2) ∩ D(T1 ◦ T ∗1 ) and that s3 ∈ im(T ∗2 ◦ T2) ∩ D(T ∗2 ◦ T2) ∩ D(T1 ◦ T ∗1 ), that is,

s2 ∈ im(T1 ◦ T ∗1 ) ∩ D(T1 ◦ T ∗1 ) and s3 ∈ im(T ∗2 ◦ T2) ∩ D(T ∗2 ◦ T2).

This completes the proof of (43). Now, by the fact that (43) is an orthogonal decomposition with respect
to the graph product of ∆T , we can conclude that every addend on the right hand side of (43) is a closed
subspace of D(∆T ) with respect to its graph norm. Finally it is again an immediate check to verify that on
(D(T1 ◦ T ∗1 ) ∩ im(T1 ◦ T ∗1 )) the graph product of ∆T coincides with the graph product of T1 ◦ T ∗1 and that
analogously on (D(T ∗2 ◦ T2) ∩ im(T ∗2 ◦ T2)) the graph product of ∆T coincides with the graph product of T ∗2 ◦
T2.
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Corollary 2.1. In the setting of Prop. 2.3. The operator ∆T : H2 → H2 has closed range. Moreover the
following properties are equivalent:

1. G∆T
: H2 → H2 is a compact operator.

2. The inclusion (D(∆T ) ∩ im(∆T )) ↪→ H2 is a compact operator where D(∆T ) ∩ im(∆T ) is endowed with
the corresponding graph norm.

3. The inclusions (D(T ∗1 ◦ T1) ∩ im(T ∗1 ◦ T1)) ↪→ H1 and (D(T2 ◦ T ∗2 ) ∩ im(T2 ◦ T ∗2 )) ↪→ H3 are both compact
operators where D(T ∗1 ◦T1)∩ im(T ∗1 ◦T1) and D(T2 ◦T ∗2 )∩ im(T2 ◦T ∗2 ) are endowed with the corresponding
graph norms.

4. GT∗1 ◦T1 : H1 → H1 and GT2◦T∗2 : H3 → H3 are both compact operators.

Proof. Consider the operator ∆T : H2 → H2. We have the following chain of inclusions that follows immediately
by (43) and by the fact that im(Tn) is closed for n = 1, 2:

im(∆T ) ⊂ im(∆T ) = im(T1)⊕ im(T ∗2 ) = im(T1)⊕ im(T ∗2 ) = im(T1 ◦ T ∗1 )⊕ im(T ∗2 ◦ T2) = im(∆T ).

Therefore im(∆T ) is closed. Concerning the second part of the corollary the equivalence between the first two
statements follows by the elementary properties of the Green operator that we have recalled previously. For
the same reasons it is clear the equivalence between the third and the forth statement. Finally the equivalence
between the second and the third statement follows immediately by Prop. 2.2 and Prop. 2.3.

We recall also the following property.

Proposition 2.4. Let T : H → K be an unbounded, closed and densely defined operator between two separable
Hilbert spaces. Assume that both T ∗ ◦ T : H → H and T ◦ T ∗ : K → K have discrete spectrum. Given λ > 0 let
us define Hλ := {s ∈ D(T ∗ ◦ T ) : T ∗(Ts) = λs} and analogously Kλ := {u ∈ D(T ◦ T ∗) : T (T ∗u) = λu}. Then,
for every positive λ, we have T (Hλ) = Kλ and

T |Hλ : Hλ → Kλ

is an isomorphism.

Proof. Let s ∈ Hλ. Since Hλ ⊂ D(T ∗ ◦ T ) we have T (s) ∈ D(T ∗). Moreover T ∗(Ts) = λs and therefore
Ts ∈ D(T ◦ T ∗). Finally T (T ∗(Ts)) = λTs and hence we can conclude that Ts lies in Kλ. So we proved that
T (Hλ) ⊂ Kλ. Moreover, by the fact that λ > 0, we get immediately that T |Hλ : Hλ → Kλ is injective. Arguing
in the same way with T ∗ and Kλ we have that T ∗(Kλ) ⊂ Hλ and that T ∗|Kλ : Kλ → Hλ is injective. Finally,
by the fact that T ∗ ◦ T : H → H and T ◦ T ∗ : K → K have discrete spectrum, we know that Hλ and Kλ are
finite dimensional vector spaces. Using the fact that T |Hλ : Hλ → Kλ is injective and that T ∗|Kλ : Kλ → Hλ is
injective we therefore get that dim(Hλ) = dim(Kλ). Ultimately this allows us to conclude that T |Hλ : Hλ → Kλ

is an isomorphism as desired.

Finally we conclude this section with the following proposition. For the definition and the main properties
of the Friedrich extension we refer to [2] and to the bibliography cited there.

Proposition 2.5. Let E,F be two vector bundles over an open and possibly incomplete Riemannian manifold
(M, g). Let ρ and τ be two metrics on E and F respectively. Let D : C∞c (M,E)→ C∞c (M,F ) be an unbounded
and densely defined differential operator. Let Dt : C∞c (M,F ) → C∞c (M,E) be its formal adjoint. Then for
Dt ◦D : L2(M,E, g)→ L2(M,E, g) we have:

(Dt ◦D)F = Dt
max ◦Dmin

where (Dt ◦D)F is the Friedrich extension of Dt ◦D.

Proof. This follows immediately by the definition of Friedrich extension. See for instance [7], pag. 447.
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3 Parabolic open subsets and Hodge-Dolbeault operator

We start with the following definition.

Definition 3.1. Let (M, g) be an open and possibly incomplete Riemannian manifold. Then (M, g) is said
parabolic if there exists a sequence of Lipschitz functions with compact support {φn}n∈N such that

1. 0 ≤ φn ≤ 1 for all n

2. limφn = 1 pointwise a.e. as n→∞

3. lim ‖dminφn‖L2Ω1(M,g) = 0 as n→∞.

We point out that as {φn} is a sequence of Lipschitz functions with compact support then φn ∈ D(dmin) for
each n so that the third point in the previous definition makes sense, see [2]. Moreover the fact that φn ∈ D(dmin)
implies that φn ∈ D(∂min) and by the third point of Def. 3.1 we can easily deduce that ‖∂minφn‖L2Ω0,1(M,g) = 0
as n→∞. Consider now a compact complex Hermitian manifold (M, g) of complex dimension m and let E be
a holomorphic vector bundle over M . With Ωp,q(M,E), Ωp,qc (M,E), we mean respectively the space of smooth
sections, smooth sections with compact support, of Λp,q(M)⊗E. With ∂E,p,q : Ωp,q(M,E)→ Ωp,q+1(M,E) we
label the corresponding Dolbeault operator. If E is endowed with a Hermitian metric ρ then with gρ we label the
natural Hermitian metric induced on Λp,q(M)⊗E. With L2Ωp,q(M,E, g) we mean the Hilbert space of L2-(p, q)-
forms with values in E. Analogously to (29) we have the following notations Ωp,•c (M,E) :=

⊕m
q=0 Ωp,qc (M,E)

and L2Ωp,•(M,E, g) =
⊕m

q=0 L
2Ωp,q(M,E, g). With ∂E,p + ∂

t

E,p : Ωp,•c (M,E) → Ωp,•c (M,E) we mean the
Hodge-Dolbeault operator acting on Ωp,•c (M,E). We are now in the position to state the next proposition.

Proposition 3.1. Let (M, g) be a compact complex Hermitian manifold of complex dimension m. Let (E, ρ) be
a Hermitian holomorphic vector bundle on M . Let A ⊂M be an open and dense subset of M such that (A, g|A)
is parabolic. Then the Hodge-Dolbeault operator

∂E,p + ∂
t

E,p : L2Ωp,•(A,E|A, g|A)→ L2Ωp,•(A,E|A, g|A) (45)

with domain given by Ωp,•c (A,E|A) is essentially self-adjoint for each p = 0, ...,m. Moreover the unique closed
extension of (45) coincides with the operator

∂E,p + ∂
t

E,p : L2Ωp,•(M,E, g)→ L2Ωp,•(M,E, g) (46)

where (46) is the unique closed extension of ∂E,p+∂
t

E,p : Ωp,•c (M,E, g)→ Ωp,•c (M,E, g) viewed as an unbounded
and densly defined operator acting on L2Ωp,•(M,E, g).

Proof. First we observe that since M \ A has measure zero in M we have an equality of Hilbert spaces

L2Ωp,•(M,E, g) = L2Ωp,•(A,E|A, g|A). Let us label by D(∂E,p + ∂
t

E,p), D((∂E,p + ∂
t

E,p)min) and D((∂E,p +

∂
t

E,p)max) respectively the domain of (46), the minimal domain of (45) and the maximal domain of (45). As

a first step we want to show that D(∂E,p + ∂
t

E,p) = D((∂E,p + ∂
t

E,p)min). Since the inclusion D(∂p + ∂
t

p) ⊃
D((∂p+∂

t

p)min) is clear we are left to prove the other inclusion D(∂E,p+∂
t

E,p) ⊂ D((∂E,p+∂
t

E,p)min). According

to Prop. (1.1) we know that Ωp,•(M,E) = Ωp,•(M,E)∩D(∂E,p +∂
t

E,p) is dense in D(∂E,p +∂
t

E,p) with respect

to the corresponding graph norm. Therefore it is enough to prove that Ωp,•(M,E) ⊂ D((∂E,p + ∂
t

E,p)min). As
we assumed that (A, g|A) is parabolic there exists a sequence {φi}i∈N that satisfies the properties of Def. 3.1.

Let ω ∈ Ωp,•(M,E). By the fact that φi is Lipschitz we easily get that φiω ∈ D((∂E,p + ∂
t

E,p)max) and that

(∂E,p + ∂
t

E,p)max(φiω) = φi(∂E,p + ∂
t

E,p)ω + (∂maxφi) ∧ ω − Int(∂maxφi)ω (47)

where the operator Int(∂maxφi) : L2Ωp,•(A,E|A, g|A) → L2Ωp,•(A,E|A, g|A) is the adjoint of the bounded
operator (∂maxφi)∧ : L2Ωp,•(A,E|A, g|A)→ L2Ωp,•(A,E|A, g|A) given by exterior multiplication with (∂maxφi).
That (∂maxφi)∧ : L2Ωp,•(A,E|A, g|A) → L2Ωp,•(A,E|A, g|A) is a bounded operator follows by the fact that
∂maxφi ∈ L∞Ω0,1(A, g|A) which is in turn a consequence of the fact that φi is Lipschitz. Using now that φi has

compact support in A we obtain by Prop. 1.2 that φiω ∈ D((∂E,p + ∂
t

E,p)min) and therefore, by (47), we have

(∂E,p + ∂
t

E,p)min(φiω) = φi(∂E,p + ∂
t

E,p)ω + (∂minφi) ∧ ω − Int(∂minφi)ω. (48)
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Our aim now is to show that when i tends to +∞ then φiω tends to ω in the graph norm of (46). That
φiω tends to ω in L2Ωp,•(M,E, g) is a direct application of the Lebesgue dominated convergence theorem.

Next we consider (∂E,p + ∂
t

E,p)min(φiω); we want to show that this sequence converges to (∂E,p + ∂
t

E,p)(ω) in
L2Ωp,•(M,E, g). We use (48): looking at the three summands on the right hand side we easily see, using again

the Lebesgue dominate convergence theorem, that φi(∂E,p + ∂
t

E,p)ω converges to (∂E,p + ∂
t

E,p)ω whereas for
the last two terms we have the following inequality :

‖(∂minφi) ∧ ω‖L2Ωp,•(A,E|A,g|A) ≤ ‖∂minφi‖L2Ω0,1(A,g|A) ‖ω‖L∞Ωp,•(A,E|A,gρ|A) (49)

which in turn implies

‖Int(∂minφi)ω‖L2Ωp,•(A,E|A,g|A) ≤ ‖∂minφi‖L2Ω0,1(A,g|A) ‖ω‖L∞Ωp,•(A,E|A,gρ|A). (50)

Using the last property in Def. 3.1 we get immediately that the left hand sides in (49) and (50) tend to

0 when i tends to +∞. Summarizing we have shown that D(∂E,p + ∂
t

E,p) ⊂ D((∂E,p + ∂
t

E,p)min) and thus

D(∂E,p+∂
t

E,p) = D((∂E,p+∂
t

E,p)min). Therefore the minimal extension of (45) coincides with (46). Now, using

the fact that ∂E,p + ∂
t

E,p : L2Ωp,•(M,E, g)→ L2Ωp,•(M,E, g) is self-adjoint, we get that ((∂E,p + ∂
t

E,p)min)∗ =

(∂E,p + ∂
t

E,p)min. On the other hand, see (21), we have ((∂E,p + ∂
t

E,p)min)∗ = (∂E,p + ∂
t

E,p)max. Therefore we

are lead to the conclusion that (∂E,p + ∂
t

E,p)max = (∂E,p + ∂
t

E,p)min as desired.

We have now the following application of Prop. 3.1.

Proposition 3.2. Let (M, g), (E, ρ) and A be as in Prop. 3.1. Then the following three operators coincide:

∂E,p,q,max : L2Ωp,q(A,E|A, g|A)→ L2Ωp,q+1(A,E|A, g|A), (51)

∂E,p,q,min : L2Ωp,q(A,E|A, g|A)→ L2Ωp,q+1(A,E|A, g|A), (52)

∂E,p,q : L2Ωp,q(M,E, g)→ L2Ωp,q+1(M,E, g), (53)

where (53) is the unique closed extension of ∂E,p,q : Ωp,q(M,E) → Ωp,q+1(M,E) viewed as an unbounded and
densely defined operator acting between L2Ωp,q(M,E, g) and L2Ωp,q+1(M,E, g).

Proof. This follows immediately by Prop. 3.1 and Lemma 2.3 in [6].

Corollary 3.1. Let (M, g), (E, ρ) and A be as in Prop. 3.1. Then the following three operators coincide:

∂
t

E,p,q,max : L2Ωp,q+1(A,E|A, g|A)→ L2Ωp,q(A,E|A, g|A), (54)

∂
t

E,p,q,min : L2Ωp,q+1(A,E|A, g|A)→ L2Ωp,q(A,E|A, g|A), (55)

∂
t

E,p,q : L2Ωp,q+1(M,E, g)→ L2Ωp,q(M,E, g), (56)

where, similarly to (53), (56) is the unique closed extension of ∂
t

E,p,q : Ωp,q+1(M,E) → Ωp,q(M,E) viewed as
an unbounded and densely defined operator acting between L2Ωp,q+1(M,E, g) and L2Ωp,q(M,E, g).

Proof. This is an immediate application of Prop. 3.2.

We conclude this section by recalling the following property.

Proposition 3.3. Let M be a complex manifold of complex dimension m, let (E, ρ) be a Hermitian vector
bundle on M and let g and h be two Hermitian metrics on M . Then we have an equality of Hilbert spaces

L2Ωm,0(M,E, g) = L2Ωm,0(M,E, h)

and
L2Ω0,m(M,E, g) = L2Ω0,m(M,E, h).

Assume now that cg ≥ h for some c > 0. Then for each q = 1, ...,m there exists a constant ξq > 0 such that for
every s ∈ Ωm,qc (M,E) we have

‖s‖2L2Ωm,q(M,E,g) ≤ ξq‖s‖
2
L2Ωm,q(M,E,h). (57)
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Therefore the identity Ωm,qc (M,E)→ Ωm,qc (M,E) induces a continuous inclusion

L2Ωm,q(M,E, h) ↪→ L2Ωm,q(M,E, g)

for each q = 1, ...,m. Analogously for each p = 1, ...,m there exists a constant ξ′p > 0 such that for every
s ∈ Ωp,mc (M,E) we have

‖s‖2L2Ωp,m(M,E,g) ≤ ξ
′
p‖s‖2L2Ωp,m(M,E,h). (58)

Therefore the identity Ωp,mc (M,E)→ Ωp,mc (M,E) induces a continuous inclusion

L2Ωp,m(M,E, h) ↪→ L2Ωp,m(M,E, g)

for each p = 1, ...,m.

Proof. The statement follows by the computations carried out in [12] pag. 145. See also [34] pag. 2896.

4 Main theorems

This section contains some of the main results of this paper. We start by giving the following definition.

Definition 4.1. Let N be a complex manifold of complex dimension n. A Hermitian pseudometric h on N is
a positive semidefinite Hermitian product on N which is positive definite on an open and dense subset of N .

We will label by Zh the smallest closed subset of M such that h is positive definite on M \ Zh. Thus
(M \ Zh, h|M\Zh) becomes an incomplete Hermitian manifold. Following [29] we will call Zh the degeneracy
locus of h. Consider now a compact complex manifold M of complex dimension m. Let (E, ρ) be a Hermitian
holomorphic vector bundle on M . Let h be a Hermitian pseudometric on M with degeneracy locus Zh. Let us
define Ah := M \ Zh. Our aim is to study the closed extensions of the following operator

∂E,m,0 : L2Ωm,0(Ah, E|Ah , h|Ah)→ L2Ωm,1(Ah, E|Ah , h|Ah) (59)

where the domain of (59) is Ωm,0c (Ah, E|Ah). In order to achieve this goal we need to consider an auxiliary
Hermitian metric. More precisely let us fix an arbitrary Hermitian metric g on M and, as in Prop. 3.2 and
Cor. 3.1, let us label by

∂E,p,q : L2Ωp,q(M,E, g)→ L2Ωp,q+1(M,E, g) (60)

the unique closed extension of ∂E,p,q : Ωp,q(M,E)→ Ωp,q+1(M,E) and by

∂
t

E,p,q : L2Ωp,q+1(M,E, g)→ L2Ωp,q(M,E, g) (61)

the unique closed extension of ∂
t

E,p,q : Ωp,q+1(M,E) → Ωp,q(M,E). Moreover we observe that, since h is
positive semidefinite on M and g is positive definite on M , there exists a constant c > 0 such that h ≤ cg.
Hence, by Prop. 3.3, we know that L2Ωm,1(Ah, E|Ah , h|Ah) ⊂ L2Ωm,1(Ah, E|Ah , g|Ah) and that there exists a
constant γ > 0 such that for each ω ∈ L2Ωm,1(Ah, E|Ah , h|Ah)

‖ω‖2L2Ωm,1(Ah,E|Ah ,g|Ah ) ≤ γ‖ω‖
2
L2Ωm,1(Ah,E|Ah ,h|Ah ). (62)

We have now all the ingredients for the first result of this section.

Theorem 4.1. Let M , g, h, Ah and (E, ρ) be as defined above. Assume that (Ah, g|Ah) is parabolic 1. Let

dE,m,0 : L2Ωm,0(Ah, E|Ah , h|Ah)→ L2Ωm,1(Ah, E|Ah , h|Ah) (63)

be any closed extension of (59). Let D(∂E,m,0) and D(dE,m,0) be the domains of (60) (in bidegree (m, 0)) and
(63) respectively. Then the following properties hold true:

1. We have a continuous inclusion D(dE,m,0) ↪→ D(∂E,m,0) where each domain is endowed with the corre-
sponding graph norm. Moreover on D(dE,m,0) the operator (60) (in bidegree (m, 0)) coincides with the
operator (63).

1As remarked in the introduction it is clear that this property does not depend on the particular Hermitian metric g that we
fix on M . More precisely if g′ is another Hermitian metric on M then, since g and g′ are quasi-isometric on M , we have that
(Ah, g|Ah ) is parabolic if and only if (Ah, g

′|Ah ) is parabolic.
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2. The inclusion D(dE,m,0) ↪→ L2Ωm,0(M,E, g) is a compact operator where D(dE,m,0) is endowed with the
corresponding graph norm.

3. Let d
∗
E,m,0 : L2Ωm,1(Ah, E|Ah , h|Ah)→ L2Ωm,0(Ah, E|Ah , h|Ah) be the adjoint of (63). Then the operator

d
∗
E,m,0 ◦ dE,m,0 : L2Ωm,0(Ah, E|Ah , h|Ah)→ L2Ωm,0(Ah, E|Ah , h|Ah) (64)

whose domain is defined as {s ∈ D(dE,m,0) : dE,m,0s ∈ D(d
∗
E,m,0)}, has discrete spectrum.

Proof. First of all we point out that we have an equality of Hilbert spaces

L2Ωm,0(Ah, E|Ah , h|Ah) = L2Ωm,0(Ah, E|Ah , g|Ah) = L2Ωm,0(M,E, g). (65)

This follows by Prop. 3.3 and by the fact that Ah is open and dense in M . Now we address the first point. Let
D(∂E,m,0,max) be the domain of

∂E,m,0,max : L2Ωm,0(Ah, E|Ah , g|Ah)→ L2Ωm,1(Ah, E|Ah , g|Ah).

According to Prop. 3.2, in order to prove the first point, it is enough to show that we have a continuous inclusion

D(dE,m,0) ↪→ D(∂E,m,0,max) (66)

and that, for each s ∈ D(dE,m,0), we have dE,m,0s = ∂E,m,0,maxs. According to Prop. 1.1 we know that
Ωm,0(Ah, E|Ah) ∩ D(dE,m,0) is dense in D(dE,m,0) with respect to the corresponding graph norm. Hence, in
order to establish the existence of the continuous inclusion (66), it is sufficient to prove that we have a continuous
inclusion (

Ωm,0(Ah, E|Ah) ∩ D(dE,m,0)
)
↪→ D(∂E,m,0,max). (67)

To this aim let s ∈ Ωm,0(Ah, E|Ah) ∩ D(dE,m,0). Then, since s is smooth on Ah, we have dE,m,0s = ∂E,m,0s
where, with the operator on the right hand side of the previous equality, we mean the Dolbeault operator

∂E,m,0 : Ωm,0(Ah, E|Ah)→ Ωm,1(Ah, E|Ah). (68)

Moreover, by (65), we know that s ∈ L2Ωm,0(Ah, E|Ah , g|Ah) and that

‖s‖L2Ωm,0(Ah,E|Ah ,g|Ah ) = ‖s‖L2Ωm,0(Ah,E|Ah ,h|Ah ). (69)

On the other hand, by (62), we know that

‖∂E,m,0s‖2L2Ωm,1(Ah,E|Ah ,g|Ah ) ≤ γ‖∂E,m,0s‖
2
L2Ωm,1(Ah,E|Ah ,h|Ah ). (70)

Therefore s ∈ D(∂E,m,0,max) and by (69) and (70) we get that (67) is a continuous inclusion.
Now let s ∈ D(dE,m,0) and let ω ∈ L2Ωm,1(Ah, E|Ah , h|Ah) such that dE,m,0s = ω. Then there exists a sequence
{sn}n∈N ⊂ Ωm,0(Ah, E|Ah) ∩ D(dE,m,0) such that sn → s in L2Ωm,0(Ah, E|Ah , h|Ah) and ∂E,m,0sn → ω in
L2Ωm,1(Ah, E|Ah , h|Ah) as n → ∞. By (69) and (70) we get that sn → s in L2Ωm,0(Ah, E|Ah , g|Ah) and
∂E,m,0sn → ω in L2Ωm,1(Ah, E|Ah , g|Ah) as n → ∞. Therefore ∂E,m,0,maxs = ω as desired. This establishes
the first point of the theorem. Now we address the second point. According to the first point it is enough
to show that the inclusion D(∂E,0,m) ↪→ L2Ωm,0(M,E, g) is a compact operator. To this aim consider the
Hodge-Dolbeault operator

∂E,m + ∂
t

E,m : Ωm,•(M,E)→ Ωm,•(M,E). (71)

By the fact that M is compact and that ∂E,m + ∂
t

E,m is elliptic, we have a unique closed extension of (71) as
an unbounded and densely defined operator acting on L2Ωm,•(M,E, g). We label this unique extension by

∂E,m + ∂
t

E,m : L2Ωm,•(M,E, g)→ L2Ωm,•(M,E, g). (72)

Let D(∂E,m + ∂
t

E,m) be the domain of (72). Using again the fact that M is compact and that (71) is elliptic
we get that the inclusion

D(∂E,m + ∂
t

E,m) ↪→ L2Ωm,•(M,E, g) (73)
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whereD(∂E,m+∂
t

E,m) is endowed with its graph norm, is a compact operator. On the other handD(∂E,m+∂
t

E,m)
satisfies the following decomposition

D(∂E,m + ∂
t

E,m) =

m⊕
q=0

D(∂E,m,q) ∩ D(∂
t

E,m,q−1) (74)

where D(∂E,m,q) is the the domain of (60) (in bidegree (m, q)) and D(∂
t

E,m,q−1) it is the domain of (61) (in

bidegree (m, q−1)). Thus, by (73) and (74), we get immediately that the inclusion D(∂E,m,q)∩D(∂
t

E,m,q−1) ↪→
L2Ωm,q(M,E, g) is a compact operator, where D(∂E,m,q) ∩ D(∂

t

E,m,q−1) is endowed with the graph norm of

∂E,m+∂
t

E,m. In particular, when q = 0, we have D(∂E,m,0)∩D(∂
t

E,m,−1) = D(∂E,m,0) and ∂E,m+∂
t

E,m acting

on D(∂E,m,0) is simply ∂E,m,0. In this way we can conclude that the inclusion D(∂E,m,0) ↪→ L2Ωm,0(M,E, g)
is a compact operator and this completes the proof of the second point. Finally we prove the third point.
By the fact that d

∗
E,m,0 ◦ dE,m,0 : L2Ωm,0(Ah, E|Ah , h|Ah) → L2Ωm,0(Ah, E|Ah , h|Ah) is self-adjoint the third

point is equivalent to showing that the inclusion D(d
∗
E,m,0 ◦ dE,m,0) ↪→ L2Ωm,0(Ah, E|Ah , h|Ah) is a compact

operator where D(d
∗
E,m,0 ◦ dE,m,0) is endowed with the corresponding graph norm, see [21] pag. 381. For each

s ∈ D(d
∗
E,m,0 ◦ dE,m,0), we have

‖dE,m,0s‖2L2Ωm,1(Ah,E|Ah ,h|Ah ) = 〈s, d∗E,m,0(dE,m,0s)〉L2Ωm,0(Ah,E|Ah ,h|Ah ) ≤
1

2

(
‖s‖2L2Ωm,0(Ah,E|Ah ,h|Ah ) + ‖d∗E,m,0(dE,m,0s)‖2L2Ωm,0(Ah,E|Ah ,h|Ah )

)
and therefore

‖s‖2L2Ωm,0(Ah,E|Ah ,h|Ah ) + ‖dE,m,0s‖2L2Ωm,1(Ah,E|Ah ,h|Ah ) ≤
3

2

(
‖s‖2L2Ωm,0(Ah,E|Ah ,h|Ah ) + ‖d∗E,m,0(dE,m,0s)‖2L2Ωm,0(Ah,E|Ah ,h|Ah )

)
.

The above inequality tells us that we have a continuous inclusion D(d
∗
E,m,0 ◦ dE,m,0) ↪→ D(dE,m,0) where each

domain is endowed with corresponding graph norm. Now, using the first two points of this theorem, we finally
get that the inclusion D(d

∗
E,m,0 ◦ dE,m,0) ↪→ L2Ωm,0(Ah, E|Ah , h|Ah) is a compact operator as desired. The

proof of theorem is thus complete.

We have the following immediate corollary.

Corollary 4.1. In the setting of Theorem 4.1. The following properties hold true:

1. d
∗
E,m,0 ◦ dE,m,0 : L2Ωm,0(Ah, E|Ah , h|Ah)→ L2Ωm,0(Ah, E|Ah , h|Ah) is a Fredholm operator on its domain

endowed with the graph norm.

2. im(dE,m,0) is a closed subset of L2Ωm,1(Ah, E|Ah , h|Ah).

3. ker(dE,m,0) is finite dimensional.

4. We have the following L2-orthogonal decomposition

L2Ωm,0(Ah, E|Ah , h|Ah) = ker(dE,m,0)⊕ im(d
∗
E,m,0).

Proof. By Th. 4.1 we know that d
∗
E,m,0 ◦ dE,m,0 : L2Ωm,0(Ah, E|Ah , h|Ah) → L2Ωm,0(Ah, E|Ah , h|Ah) has

discrete spectrum and this in turn implies in particular that it is a Fredholm operator on its domain endowed
with the graph norm. Therefore we can conclude that im(d

∗
E,m,0 ◦ dE,m,0) is closed in L2Ωm,0(Ah, E|Ah , h|Ah).

By (26) we have the following two orthogonal decompositions for L2Ωm,0(Ah, E|Ah , h|Ah) :

L2Ωm,0(Ah, E|Ah , h|Ah) = ker(dE,m,0)⊕ im(d
∗
E,m,0) = ker(d

∗
E,m,0 ◦ dE,m,0)⊕ im(d

∗
E,m,0 ◦ dE,m,0).

Clearly ker(dE,m,0) = ker(d
∗
E,m,0 ◦ dE,m,0). Hence we have the following chain of inclusions:

im(d
∗
E,m,0 ◦ dE,m,0) ⊂ im(d

∗
E,m,0) ⊂ im(d

∗
E,m,0) = im(d

∗
E,m,0 ◦ dE,m,0) = im(d

∗
E,m,0 ◦ dE,m,0)

which in particular implies that im(d
∗
E,m,0) = im(d

∗
E,m,0) and therefore, taking the adjoint, im(dE,m,0) =

im(dE,m,0) as required. All the other points are immediate consequences of the first two points of this corollary
and Th. 4.1.
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Consider again the setting of Th. 4.1. Let ∆∂,E,m,0 : Ωm,0(M,E)→ Ωm,0(M,E), ∆∂,E,m,0 = ∂
t

E,m,0◦∂E,m,0
be the Hodge-Kodaira Laplacian in bidegree (m, 0). Using again the fact that M is compact and that ∆∂,E,m,0

is elliptic and formally self-adjoint we can conclude that ∆∂,E,m,0, acting on L2Ωm,0(M,E, g) with domain

Ωm,0(M,E), is essentially self-adjoint; we label its unique (and therefore self-adjoint) extension by

∆∂,E,m,0 : L2Ωm,0(M,E, g)→ L2Ωm,0(M,E, g). (75)

Clearly we can write (75) as ∂
t

E,m,0 ◦ ∂E,m,0 where

∂E,m,0 : L2Ωm,0(M,E, g)→ L2Ωm,1(M,E, g) (76)

is defined in (60) and ∂
t

E,m,0 : L2Ωm,1(M,E, g)→ L2Ωm,0(M,E, g) is defined in (61). Furthermore it is another
standard result from classical elliptic theory on closed manifolds that (75) has discrete spectrum. We are now
in the position to state the other main result of this section.

Theorem 4.2. In the setting of Theorem 4.1. Let

0 ≤ µ1 ≤ µ2 ≤ ... ≤ µk ≤ ...

be the eigenvalues of (75) and let
0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk ≤ ...

be the eigenvalues of the operator

d
∗
E,m,0 ◦ dE,m,0 : L2Ωm,0(Ah, E|Ah , h|Ah)→ L2Ωm,0(Ah, E|Ah , h|Ah). (77)

Then, for every k ∈ N, we have the following inequality

γλk ≥ µk (78)

where γ is the constant introduced in (62). Moreover we have the following asymptotic inequality:

lim inf λkk
− 1
m > 0 (79)

as k →∞.

Proof. According to the min-max theorem, see for instance [36], we can characterize the eigenvalues of (75) as

µk = inf
F∈Fk∩D(∆∂,E,m,0)

sup
s∈F

〈∆∂,E,m,0s, s〉L2Ωm,0(M,E,g)

‖s‖2L2Ωm,0(M,E,g)

= inf
F∈Fk∩D(∂E,m,0)

sup
s∈F

〈∂E,m,0s, ∂E,m,0s〉L2Ωm,1(M,E,g)

‖s‖2L2Ωm,0(M,E,g)

where Fk denotes the set of linear subspaces of L2Ωm,0(M,E, g) of dimension at most k, D(∆∂,E,m,0) is the

domain of (75) and D(∂E,m,0) is the domain of (76). In the same way for the eigenvalues of (77) we have

λk = inf
F∈Fk∩D(d

∗
E,m,0◦dE,m,0)

sup
s∈F

〈d∗E,m,0 ◦ dE,m,0s, s〉L2Ωm,0(Ah,E|Ah ,h|Ah )

‖s‖2L2Ωm,0(Ah,E|Ah ,h|Ah )

= (80)

inf
F∈Fk∩D(dE,m,0)

sup
s∈F

〈dE,m,0s, dE,m,0s〉L2Ωm,1(Ah,E|Ah ,h|Ah )

‖s‖2L2Ωm,0(Ah,E|h,h|Ah )

.

Let now {φn, n ∈ N} be an orthonormal basis of L2Ωm,0(Ah, E|Ah , h|Ah) made of eigensections of (77) such that
(d
∗
E,m,0 ◦ dE,m,0)φn = λnφn. Let us define Fk ∈ Fk as the k-dimensional subspace of L2Ωm,0(Ah, E|Ah , h|Ah)

generated by {φ1, ..., φk}. Then, see for instance [36] pag. 279, we have

λk = sup
s∈Fk

〈dE,m,0s, dE,m,0s〉L2Ωm,1(Ah,E|Ah ,h|Ah )

‖s‖2L2Ωm,0(Ah,E|Ah ,h|Ah )

.

Hence, using Theorem 4.1 and (70), we have

γλk = γ sup
s∈Fk

〈dE,m,0s, dE,m,0s〉L2Ωm,1(Ah,E|Ah ,h|Ah )

‖s‖2L2Ωm,0(Ah,E|Ah ,h|Ah )

≥ sup
s∈Fk

〈∂E,m,0s, ∂E,m,0s〉L2Ωm,1(M,E,g)

‖s‖2L2Ωm,0(M,E,g)

≥ inf
F∈Fk∩D(∂E,m,0)

sup
s∈F

〈∂E,m,0s, ∂E,m,0s〉L2Ωm,1(M,E,g)

‖s‖2L2Ωm,0(M,E,g)

= µk.
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This establishes (78). Concerning (79) it is enough to observe that according to the Weyl law, see [32] pag.
115, we have

µk ∼ 4π

(
1

Γ(m+ 1)
volg(M)

) 1
m

k
1
m

as k →∞. Applying now (78) the desired conclusion follows.

As a consequence of Theorem 4.2 we have now the next corollary.

Corollary 4.2. In the setting of Theorem 4.2. Let

e−td
∗
E,m,0◦dE,m,0 : L2Ωm,0(Ah, E|Ah , h|Ah)→ L2Ωm,0(Ah, E|Ah , h|Ah)

be the heat operator associated to (77) and analogously let

e−t∆∂,E,m,0 : L2Ωm,0(M,E, g)→ L2Ωm,0(M,E, g)

be the heat operator associated to (75). We have the following properties.

1. e−td
∗
E,m,0◦dE,m,0 : L2Ωm,0(Ah, E|Ah , h|Ah)→ L2Ωm,0(Ah, E|Ah , h|Ah) is a trace class operator.

2. Tr(e−td
∗
E,m,0◦dE,m,0) ≤ Tr(e−

t
γ∆∂,E,m,0) for each t > 0 and where γ is the constant defined in (62).

3. Tr(e−td
∗
E,m,0◦dE,m,0) ≤ Ct−m for t ∈ (0, 1] and some constant C > 0.

Proof. As in the proof of Theorem 4.2 let us label by {φn, n ∈ N} an orthonormal basis of L2Ωm,0(Ah, E|Ah , h|Ah)
made of eigensections of (77) such that (d

∗
E,m,0 ◦ dE,m,0)φn = λnφn. Then we have

Tr(e−td
∗
E,m,0◦dE,m,0) =

∑
n∈N
〈e−td

∗
E,m,0◦dE,m,0φn, φn〉L2Ωm,0(Ah,E|Ah ,h|Ah ) =

∑
n∈N

e−tλn <∞

for every fixed t > 0 as a consequence of (79). This establishes the first point of the corollary. The second point
follows by (78). Indeed we have

Tr(e−td
∗
E,m,0◦dE,m,0) =

∑
n∈N

e−tλn ≤
∑
n∈N

e−t
µn
γ =

∑
n∈N

e−
t
γ µn = Tr(e−

t
γ∆∂,E,m,0)

for every fixed t > 0. Finally for the third point we argue as follows. Let b > 0 and let us define g′ := b2g.
Clearly g′ is another Hermitian metric on M and we have

‖ ‖L2Ωm,q(M,E,g′) =
1

bq
‖ ‖L2Ωm,q(M,E,g).

Therefore, choosing b in such a way that b2 ≥ γ, we have

b−2‖ ‖2L2Ωm,1(Ah,E|Ah ,g|Ah ) ≤ γ
−1‖ ‖2L2Ωm,1(Ah,E|Ah ,g|Ah ) ≤ ‖ ‖

2
L2Ωm,1(Ah,E|Ah ,h|Ah )

that is
‖ ‖2L2Ωm,1(Ah,E|Ah ,g′|Ah ) ≤ ‖ ‖

2
L2Ωm,1(Ah,E|Ah ,h|Ah ). (81)

Now, in the remaining part of this proof, let us replace the Hermitian metric g with g′. Applying the second
point of this corollary to h and g′ and using (81) instead of (62), we get that

Tr(e−td
∗
E,m,0◦dE,m,0) ≤ Tr(e−t∆∂,E,m,0) (82)

for every t > 0, where now, on the right hand side of (82), ∆∂,E,m,0 : L2Ωm,0(M,E, g′) → L2Ωm,0(M,E, g′)
is the unique closed extension of the Hodge-Kodaira Laplacian in bidegree (m, 0) associated to g′. Finally the
conclusion follows immediately by the asymptotic expansion of the heat trace on the right hand side of (82),
see for instance [4] or [32].
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We stress on the fact that the results of this section hold for

dE,m,0 : L2Ωm,0(Ah, E|Ah , h)→ L2Ωm,1(Ah, E|Ah , h)

which is defined as any closed extension of ∂E,m,0 : L2Ωm,0(Ah, E|Ah , h|Ah) → L2Ωm,1(Ah, E|Ah , h|Ah) where
the domain of the latter operator is Ωm,0c (Ah, E|Ah). Therefore Th. 4.1, Th. 4.2 and the corresponding
corollaries apply in particular to

∂E,m,0,max /min : L2Ωm,0(Ah, E|Ah , h|Ah)→ L2Ωm,1(Ah, E|Ah , h|Ah).

Now we have the following remark.

Remark 4.1. Let A′h be an open and dense subset of Ah. Assume that (A′h, g|A′h) is still parabolic. Then it
is clear that we can reformulate Th. 4.1, Th. 4.2, Cor. 4.1 and Cor. 4.2 by replacing A′h with Ah in the
corresponding statements.

Finally we conclude this section with the following comment. Analogously to (59) let us consider the operator

∂E,m,0 : L2Ω0,m(Ah, E|Ah , h|Ah)→ L2Ω1,m(Ah, E|Ah , h|Ah) (83)

with Ω0,m
c (Ah, E|Ah) as domain and let us label by

dE,m,0 : L2Ω0,m(Ah, E|Ah , h|Ah)→ L2Ω1,m(Ah, E|Ah , h|Ah) (84)

any closed extension of (83). Then by Prop. 3.3 and using analogous strategies to those employed in the
previous proofs it is clear that the corresponding versions of Theorem 4.1, Cor. 4.1, Theorem 4.2 and Cor. 4.2
hold true for (84).

5 Applications

This section contains various applications of the previous results. We start by applying Th. 4.1, Th. 4.2 and
their corollaries to the case of a compact and irreducible Hermitian complex space. The second part concerns
the existence of self-adjoint extensions with discrete spectrum of the Hodge-Kodaira Laplacian in the setting
of compact and irreducible Hermitian complex spaces with isolated singularities. Finally, in the last part, the
Hodge-Kodaira Laplacian on complex projective surfaces is carefully studied.

5.1 Hermitian complex spaces

We start with the following proposition which furnishes a sufficient condition for the parabolicity of certain
incomplete Riemannian manifolds.

Proposition 5.1. Consider a compact Riemannian manifold (M, g). Let Σ ⊂ M be a subset made of a finite
union of closed submanifolds, Σ = ∪mi=1Si such that each submanifold Si has codimension greater than one,
that is cod(Si) ≥ 2. Let A be defined as M \ Σ and consider the restriction of g over A, g|A. Then (A, g|A) is
parabolic.

Proof. See [3].

Let M be a complex manifold of complex dimension m. We recall that a divisor on M is a locally finite
combination

∑
k ckVk where Vk are irreducible analytic hypersurfaces of M and ck ∈ Z. The support of D is

defined as supp(D) = ∪{Vk : ck 6= 0}. A divisor with only normal crossings is a divisor of the form D =
∑
k Vk

where Vk are distinct irreducible smooth hypersurfaces of M and, for any point p ∈ supp(D), there is a local
analytic coordinate system (U, z1, ..., zm) such that supp(D) ∩ U = {z1 · ... · zk = 0} for some 1 ≤ k ≤ m.
Sometimes in the rest of the paper, with a little abuse of notation, we will identify a divisor with only normal
crossings with its support. Now we have the following immediate application of Prop. 5.1.

Proposition 5.2. Let M be a compact complex manifold and let g be a Hermitian metric on M . Let D ⊂ M
be a divisor with only normal crossings. Then (M \D, g|M\D) is parabolic.

Proof. This follows immediately by Prop. 5.1 and the definition of divisor with only normal crossings.
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The next results deal with complex spaces. This is a classical topic in complex geometry and we refer to [11]
and [13] for definitions and properties. Here we recall that an irreducible complex space X is a reduced complex
space such that reg(X), the regular part of X, is connected. Moreover, in order to state the next results, we
spend a few words concerning the resolution of singularities. We refer to the celebrated work of Hironaka [17],
to [5] and to [16] for a thorough discussion on this subject. Furthermore we refer to [12] and to [21] for a quick
introduction. Below we simply recall what is strictly necessary for our purposes.
Let X be a compact irreducible complex space. Then there exists a compact complex manifold M , a divisor
with only normal crossings D ⊂M and a surjective holomorphic map π : M → X such that π−1(sing(X)) = D
and

π|M\D : M \D −→ X \ sing(X) (85)

is a biholomorphism. Furthermore, before to introduce the next results, we recall that a paracompact and
reduced complex space X is said Hermitian if the regular part of X carries a Hermitian metric h such that
for every point p ∈ X there exists an open neighborhood U 3 p in X, a proper holomorphic embedding of
U into a polydisc φ : U → DN ⊂ CN and a Hermitian metric g on DN such that (φ|reg(U))

∗g = h, see for
instance [25] or [34]. In this case we will write (X,h) and with a little abuse of language we will say that h is a
Hermitian metric on X. A natural example of Hermitian complex space is provided by an analytic sub-variety
of a complex Hermitian manifold with the metric induced by the restriction of the metric of the ambient space.
In particular, within this class of examples, we have any complex projective variety V ⊂ CPn endowed with the
Kähler metric induced by the Fubini-Study metric of CPn.
Consider now a compact and irreducible Hermitian complex space (X,h) of complex dimension m. Let π :
M −→ X be a resolution of X as described in (85) and let D ⊂ M be the divisor with only normal crossings
such that π|M\D : M \D −→ X \ sing(X) is a biholomorphism. Let (E, ρ) be a Hermitian holomorphic vector
bundle on reg(X) such that there exists a Hermitian holomorphic vector bundle on M , (F, τ), which satisfies
(π|−1

M\D)∗(F |M\D) = E and (π|−1
M\D)∗(τ |M\D) = ρ. Consider the operator

∂E,m,0 : Ωm,0c (reg(X), E)→ Ωm,1c (reg(X), E) (86)

and, similarly to (63), let

dE,m,0 : L2Ωm,0(reg(X), E, h)→ L2Ωm,1(reg(X), E, h) (87)

be any closed extension of (86). Let us label by D(dE,m,0) the domain of (87). We are finally in the position
to state the next theorem. It gathers the applications of the results proved in the previous section to the case
of compact irreducible Hermitian complex spaces.

Theorem 5.1. In the setting described above. We have the following properties:

1. The inclusion D(dE,m,0) ↪→ L2Ωm,0(reg(X), E, h) is a compact operator where D(dE,m,0) is endowed with
the corresponding graph norm.

2. Let d
∗
E,m,0 : L2Ωm,1(reg(X), E, h)→ L2Ωm,0(reg(X), E, h) be the adjoint of (87). Then the operator

d
∗
E,m,0 ◦ dE,m,0 : L2Ωm,0(reg(X), E, h)→ L2Ωm,0(reg(X), E, h) (88)

whose domain is defined as {s ∈ D(dE,m,0) : dE,m,0s ∈ D(d
∗
E,m,0)}, has discrete spectrum.

Let
0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ ...

be the eigenvalues of (88). Then we have the following asymptotic inequality

lim inf λkk
− 1
m > 0 (89)

as k →∞.
Finally consider the heat operator

e−td
∗
E,m,0◦dE,m,0 : L2Ωm,0(reg(X), E, h)→ L2Ωm,0(reg(X), E, h)

associated to (88). We have the following properties:

1. e−td
∗
E,m,0◦dE,m,0 : L2Ωm,0(reg(X), E, h)→ L2Ωm,0(reg(X), E, h) is a trace class operator.
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2. Tr(e−td
∗
E,m,0◦dE,m,0) ≤ Ct−m for t ∈ (0, 1] and for some constant C > 0.

Proof. Let M , π and D be as in (85) such that, as required above, we have (π|−1
M\D)∗(F |M\D) = E and

(π|−1
M\D)∗(τ |M\D) = ρ. Let h′ := (π|M\D)∗h. Since h is locally given by an embedding we have that h′ extends

as a Hermitian pseudometric on M which is positive definite on M \D. Moreover, according to Prop. 5.2, we
know that (M \D, g|M\D) is parabolic where g is any Hermitian metric on M . Furthermore, by the assumptions
made on (E, ρ), we know that

(π|M\D)∗ : L2Ωm,q(reg(X), E, h)→ L2Ωm,q(M \D,F |M\D, h′|M\D) (90)

is a unitary operator for each q = 0, ...,m. Now, in order to have a lighter notation let us label by T :
L2Ωm,q(reg(X), E, h)→ L2Ωm,q(M \D,F |M\D, h′|M\D) the operator (90). Then the operator

T ◦ dE,m,0 ◦ T−1 : L2Ωm,0(M \D,F |M\D, h′|M\D)→ L2Ωm,1(M \D,F |M\D, h′|M\D) (91)

with domain given by T (D(dE,m,0)), is a closed extension of ∂F,m,0 : Ωm,0c (M\D,F |M\D)→ Ωm,1c (M\D,F |M\D)
unitarily equivalent to (87). Therefore all the statements of this theorem follow immediately by applying Remark
4.1, Theorem 4.1, Theorem 4.2 and Cor. 4.2 to (91). Note that (91) obeys Remark 1.1.

Corollary 5.1. In the setting of Theorem 5.1. We have the following properties.

1. im(dE,m,0) is a closed subset of L2Ωm,1(reg(X), E, h).

2. ker(dE,m,0) is finite dimensional.

3. We have the following L2-orthogonal decomposition:

L2Ωm,0(reg(X), E, h) = ker(dE,m,0)⊕ im(d
∗
E,m,0).

4. d
∗
E,m,0 ◦ dE,m,0 : L2Ωm,0(reg(X), E, h) → L2Ωm,0(reg(X), E, h) is a Fredholm operator on its domain

endowed with graph norm.

Proof. This follows applying Cor. 4.1.

We conclude this section with the following remarks. All the results proved in this section hold in particular
for

∂E,m,0,max /min : L2Ωm,0(reg(X), E, h)→ L2Ωm,1(reg(X), E, h).

Moreover consider again the operator

∂E,m,0 : L2Ω0,m(reg(X), E, h)→ L2Ω1,m(reg(X), E, h) (92)

with Ω0,m
c (reg(X), E) as domain and let us label by

dE,m,0 : L2Ω0,m(reg(X), E, h)→ L2Ω1,m(reg(X), E, h) (93)

any closed extension of (92). Then, according to the remark stated after the proof of Cor. 4.2, we have also
the corresponding versions of Theorem 5.1 and Cor. 5.1 for (93).

5.2 Self-adjoint extensions with discrete spectrum in the setting of isolated sin-
gularities

In this subsection we prove the existence of self-adjoint extensions with discrete spectrum for the Hodge-Kodaira
Laplacian in the framework of compact and irreducible Hermitian complex spaces with isolated singularities.

Theorem 5.2. Let (X,h) be a compact and irreducible Hermitian complex space of complex dimension m.
Assume that sing(X) is made of isolated singularities. Then we have the following properties:

1. ∆∂,m,q,abs : L2Ωm,q(reg(X), h)→ L2Ωm,q(reg(X), h) has discrete spectrum for each q = 0, ...,m.

2. ∂m,max + ∂
t

m,min : L2Ωm,•(reg(X), h)→ L2Ωm,•(reg(X), h) has discrete spectrum.

3. ∆F
∂,m,q

: L2Ωm,q(reg(X), h)→ L2Ωm,q(reg(X), h) has discrete spectrum for each q = 0, ...,m.
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Proof. Consider the first point. The case (m, 0) follows by Th. 5.1. For the remaining cases we argue as follows.
According to [21] pag. 381 ∆∂,m,q,abs : L2Ωm,q(reg(X), h) → L2Ωm,q(reg(X), h) has discrete spectrum if and
only if the inclusion

D(∆∂,m,q,abs) ↪→ L2Ωm,q(reg(X), h) (94)

is a compact operator where D(∆∂,m,q,abs) is endowed with the corresponding graph norm. According to [34]

we know that Hm,q

2,∂max
(reg(X), h) is finite dimensional for each q = 0, ...,m. Therefore, using Prop. 1.3, we

can conclude that, for each q = 0, ...,m, im(∂m,q,max) is closed and that ∆∂,m,q,abs : L2Ωm,q(reg(X), h) →
L2Ωm,q(reg(X), h) is a Fredholm operator on its domain endowed with the graph norm. Hence, by the fact that
∆∂,m,q,abs : L2Ωm,q(reg(X), h) → L2Ωm,q(reg(X), h) is Fredholm and self-adjoint, we know now that (94) is a
compact operator if and only if the following inclusion is a compact operator(

D(∆∂,m,q,abs) ∩ im(∆∂,m,q,abs)
)
↪→ L2Ωm,q(reg(X), h) (95)

where
(
D(∆∂,m,q,abs) ∩ im(∆∂,m,q,abs)

)
is endowed with the graph norm of ∆∂,m,q,abs. Finally, by using [33]

Th. 1.1 or [26] Th. 1.2, we get that (95) is a compact inclusion for q ≥ 1 and this completes the proof of the
first point. Now we tackle the second point. Consider the operator

(∂m,max + ∂
t

m,min) ◦ (∂m,max + ∂
t

m,min) : L2Ωm,•(reg(X), h)→ L2Ωm,•(reg(X), h) (96)

with domain given by

D((∂m,max + ∂
t

m,min) ◦ (∂m,max + ∂
t

m,min)) = {ω ∈ D(∂m,max + ∂
t

m,min) such that

(∂m,max + ∂
t

m,min)ω ∈ D(∂m,max + ∂
t

m,min)}.

We have

(∂m,max + ∂
t

m,min) ◦ (∂m,max + ∂
t

m,min) =

m⊕
q=0

∆∂,m,q,abs

where the domain of the operator on the right hand side is
⊕m

q=0D(∆∂,m,q,abs). By the first point of this
theorem we can thus conclude that (96) has discrete spectrum and eventually this implies that

∂m,max + ∂
t

m,min : L2Ωm,•(reg(X), h)→ L2Ωm,•(reg(X), h)

has discrete spectrum. Now we deal with the third point. Consider the operator

(∂m + ∂
t

m)min : L2Ωm,•(reg(X), h)→ L2Ωm,•(reg(X), h)

that is the minimal extension of ∂m + ∂
t

m : Ωm,•c (reg(X))→ Ωm,•c (reg(X)). Clearly ∂m,max + ∂
t

m,min is a closed

extension of (∂m +∂
t

m)min and therefore, using the second point, we get that the inclusion D((∂m +∂
t

m)min) ↪→
L2Ωm,•(reg(X), h) is a compact operator where D((∂m + ∂

t

m)min) is endowed with the corresponding graph

norm. Let (∂m + ∂
t

m)max : L2Ωm,•(reg(X), h) → L2Ωm,•(reg(X), h) be the maximal extension of ∂m + ∂
t

m.
Consider now the operator

(∂m + ∂
t

m)max ◦ (∂m + ∂
t

m)min : L2Ωm,•(reg(X), h)→ L2Ωm,•(reg(X), h)

with domain given by

D((∂m + ∂
t

m)max ◦ (∂m + ∂
t

m)min) := {η ∈ D((∂m + ∂
t

m)min) : (∂m + ∂
t

m)minη ∈ D((∂m + ∂
t

m)max)}.

By Prop. 2.5 we know that (∂m + ∂
t

m)max ◦ (∂m + ∂
t

m)min is the Friedrich extension of (∂m + ∂
t

m) ◦ (∂m + ∂
t

m)

which in turn coincides with the direct sum
⊕m

q=0 ∆∂,m,q. For each η ∈ D
(

(∂m + ∂
t

m)max ◦ (∂m + ∂
t

m)min

)
we

have the following inequality which is immediate to check

‖(∂m+∂
t

m)minη‖2L2Ωm,•(reg(X),h) ≤
1

2

(
‖η‖2L2Ωm,•(reg(X),h) + ‖(∂m + ∂

t

m)max ◦ (∂m + ∂
t

m)minη‖2L2Ωm,•(reg(X),h)

)
.

(97)

22



The above inequality implies that we have a continuous inclusion

D
(

(∂m + ∂
t

m)max ◦ (∂m + ∂
t

m)min

)
↪→ D

(
(∂m + ∂

t

m)min

)
(98)

where each domain is endowed with the corresponding graph norm. Therefore, using (98), we have eventually
shown that the inclusion

D
(

(∂m + ∂
t

m)max ◦ (∂m + ∂
t

m)min

)
↪→ L2Ωm,•(reg(X), h)

where D((∂m + ∂
t

m)max ◦ (∂m + ∂
t

m)min) is endowed with its graph norm, is a compact operator. As remarked

above this in turn implies that (∂m + ∂
t

m)max ◦ (∂m + ∂
t

m)min : L2Ωm,•(reg(X), h) → L2Ωm,•(reg(X), h) has
discrete spectrum. Finally, by the fact that

(∂m + ∂
t

m)max ◦ (∂m + ∂
t

m)min =

m⊕
q=0

∆F
∂,m,q

see for instance [1] pag. 169, we get that, for each q = 0, ...,m, the operator

∆F
∂,m,q

: L2Ωm,•(reg(X), h)→ L2Ωm,•(reg(X), h)

has discrete spectrum as desired. The proof of the third point is thus complete.

We conclude this subsection with the following corollary.

Corollary 5.2. In the setting of Th. 5.2. We have the following properties:

1. ∆∂,0,q,rel : L2Ω0,q(reg(X), h)→ L2Ω0,q(reg(X), h) has discrete spectrum for each q = 0, ...,m.

2. ∂0,min + ∂
t

0,max : L2Ω0,•(reg(X), h)→ L2Ω0,•(reg(X), h) has discrete spectrum.

3. ∆F
∂,0,q

: L2Ω0,q(reg(X), h)→ L2Ω0,q(reg(X), h) has discrete spectrum for each q = 0, ...,m.

Proof. It is enough to prove the first point. The second and the third point follow by the first one arguing as in
the proof of Th. 5.2. Using (34) and Prop. 1.5 we have that any form ω ∈ L2Ωm,q(reg(V ), h) lies inD(∆∂,m,q,abs)
if and only if cm−q,0(∗ω) ∈ D(∆∂,0,m−q,rel) and if this is the case then we have cm−q,0(∗(∆∂,m,q,absω)) =

∆∂,0,m−q,rel(cm−q,0(∗ω)), see Prop. 1.5. Since cm−q,0 ◦ ∗ : L2Ωm,q(reg(V ), h) → L2Ω0,m−q(reg(V ), g) is a
continuous and bijective C-antilinear isomorphism with continuous inverse the conclusion follows now by Th.
5.2.

5.3 The Hodge-Kodaira Laplacian on complex projective surfaces

In this section we collect various applications to the Hodge-Kodaira Laplacian on complex projective surfaces.
We start with the following theorem.

Theorem 5.3. Let V ⊂ CPn be a complex projective surface. Let h be the Kähler metric on reg(V ) induced by
the Fubini-Study metric of CPn. We have the following properties:

1. ∆∂,2,q,abs : L2Ω2,q(reg(V ), h)→ L2Ω2,q(reg(V ), h) has discrete spectrum for each q = 0, 1, 2.

2. ∂2,max + ∂
t

2,min : L2Ω2,•(reg(V ), h)→ L2Ω2,•(reg(V ), h) has discrete spectrum.

3. ∆F
∂,2,q

: L2Ω2,q(reg(V ), h)→ L2Ω2,q(reg(V ), h) has discrete spectrum for each q = 0, 1, 2.

Proof. We start by considering the operator ∆∂,2,0,abs : L2Ω2,0(reg(V ), h) → L2Ω2,0(reg(V ), h). In this

case the statement is a particular case of Th. 5.1. Now we deal with ∆∂,2,2,abs : L2Ω2,2(reg(V ), h) →
L2Ω2,2(reg(V ), h). We observe that in this case ∆∂,2,2,abs = ∂2,1,max ◦ ∂

t

2,1,min. Applying the Hodge star

operator ∗ : L2Ω2,2(reg(V ), h)→ L2(reg(V ), g) we have ∗(D(∂2,1,max ◦ ∂
t

2,1,min)) = D(∂tmax ◦ ∂min) and

∗ ◦ (∂2,1,max ◦ ∂
t

2,1,min) = (∂tmax ◦ ∂min) ◦ ∗.
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We are therefore left to prove that ∂tmax ◦ ∂min : L2(reg(V ), h) → L2(reg(V ), g) has discrete spectrum. This
is shown as follows. According to Prop. 2.5 we know that ∂tmax ◦ ∂min = ∆F∂ , the Friedrich extension of
∆∂ : C∞c (reg(V )) → C∞c (reg(V )). On the other hand (reg(V ), h) is a Kähler manifold. Therefore we have
∆∂ = ∆∂ on C∞c (reg(V )) and hence we can conclude that the corresponding Friedrich extensions, as operators
acting on L2(reg(V ), h), coincide:

∆F∂ = ∆F
∂
. (99)

Now, according to [20] we know that the right hand side of (99) has discrete spectrum. We can thus conclude that
also ∆F∂ has discrete spectrum and ultimately we have that ∆∂,2,2,abs : L2Ω2,2(reg(V ), h)→ L2Ω2,2(reg(V ), h)

has discrete spectrum as desired. As last step we are left to prove that ∆∂,2,1,abs : L2Ω2,1(reg(V ), h) →
L2Ω2,1(reg(V ), h) has discrete spectrum. As we have already seen, this is equivalent to showing that the
inclusion

D(∆∂,2,1,abs) ↪→ L2Ω2,1(reg(V ), h) (100)

is a compact operator where D(∆∂,2,1,abs) is endowed with the corresponding graph norm. According to [29]

we know that H2,q

2,∂max
(reg(V ), h) is finite dimensional for each q. Therefore, using Prop. 1.3, we can conclude

that, for each q, im(∂2,q,max) is closed and that ∆∂,2,q,abs : L2Ω2,q(reg(V ), h)→ L2Ω2,q(reg(V ), h) is a Fredholm

operator on its domain endowed with the graph norm. Hence, by the fact that ∆∂,2,1,abs : L2Ω2,1(reg(V ), h)→
L2Ω2,1(reg(V ), h) is Fredholm and self-adjoint, we know now that (100) is a compact operator if and only if the
following inclusion is a compact operator(

D(∆∂,2,1,abs) ∩ im(∆∂,2,1,abs)
)
↪→ L2Ω2,1(reg(V ), h) (101)

where
(
D(∆∂,2,1,abs) ∩ im(∆∂,2,1,abs)

)
is endowed with the graph norm of ∆∂,2,1,abs. Since we have already seen

that both the operators ∆∂,2,0,abs : L2Ω2,0(reg(V ), h)→ L2Ω2,0(reg(V ), h) and ∆∂,2,2,abs : L2Ω2,2(reg(V ), h)→
L2Ω2,2(reg(V ), h) have discrete spectrum, we know in particular that both the inclusions D(∆∂,2,0,abs) ↪→
L2Ω2,0(reg(V ), h) and D(∆∂,2,2,abs) ↪→ L2Ω2,2(reg(V ), h) are compact operators. In particular we get that the
following inclusions (

D(∂2,1,max ◦ ∂
t

2,1,min) ∩ im(∂2,1,max ◦ ∂
t

2,1,min)
)
↪→ L2Ω2,2(reg(V ), h) (102)

(
D(∂

t

2,0,min ◦ ∂2,0,max) ∩ im(∂
t

2,0,min ◦ ∂2,0,max)
)
↪→ L2Ω2,0(reg(V ), h) (103)

are both compact operators where each space is endowed with the corresponding graph norm. Therefore we are
now in the position to use Corollary 2.1 in order to conclude that (101) is a compact operator. This completes
the proof of the first point. Finally the second and the third point follow by using the same arguments used to
show the second and the third point of Th. 5.2. The proof is thus complete.

Theorem 5.4. In the setting of Th. 5.3. Let q ∈ {0, 1, 2} and consider the operator

∆∂,2,q,abs : L2Ω2,q(reg(V ), h)→ L2Ω2,q(reg(V ), h). (104)

Let
0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk ≤ ...

be the eigenvalues of (104). Then we have the following asymptotic inequality

lim inf λkk
− 1

2 > 0 (105)

as k →∞.
Consider now the heat operator associated to (104)

e−t∆∂,2,q,abs : L2Ω2,q(reg(V ), h)→ L2Ω2,q(reg(V ), h). (106)

Then (106) is a trace class operator and its trace satisfies the following estimates

Tr(e−t∆∂,2,q,abs) ≤ Cqt−2 (107)

for t ∈ (0, 1] and some constant Cq > 0.
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Proof. Let q = 0. Then in this case the statement follows by Th. 5.1. Consider now the case q = 2. Then, as
pointed out in the proof of Th. 5.3, we have ∗∆∂,2,2,abs∗ = ∂tmax ◦∂min = ∆F∂ = ∆F

∂
. Now the statement follows

using the results proved for ∆F
∂

: L2(reg(V ), h) → L2(reg(V ), h) in [20]. Finally we deal with the case q = 1.
Consider the operator

∂2,0,max + ∂
t

2,1,min : L2Ω2,0(reg(V ), h)⊕ L2Ω2,2,(reg(V ), h)→ L2Ω2,1(reg(V ), h) (108)

whose domain is D(∂2,0,max)⊕D(∂
t

2,1,min) ⊂ L2Ω2,0(reg(V ), h)⊕ L2Ω2,2,(reg(V ), h). Its adjoint is

∂2,1,max + ∂
t

2,0,min : L2Ω2,1(reg(V ), h)→ L2Ω2,0(reg(V ), h)⊕ L2Ω2,2,(reg(V ), h) (109)

with domain given by D(∂2,1,max) ∩ D(∂
t

2,0,min) ⊂ L2Ω2,1(reg(V ), h). Taking the composition of each operator
with the corresponding adjoint we get

(∂2,0,max + ∂
t

2,1,min)∗ ◦ (∂2,0,max + ∂
t

2,1,min) = (110)

∆∂,2,0,abs ⊕∆∂,2,2,abs : L2Ω2,0(reg(V ), h)⊕ L2Ω2,2,(reg(V ), h)→ L2Ω2,0(reg(V ), h)⊕ L2Ω2,2,(reg(V ), h)

and

(∂2,1,max + ∂
t

2,0,min)∗ ◦ (∂2,1,max + ∂
t

2,0,min) = ∆∂,2,1,abs : L2Ω2,1(reg(V ), h)→ L2Ω2,1(reg(V ), h). (111)

By Prop. 2.4 we know that a real number λ > 0 is an eigenvalue for (111) if and only if is an eigenvalue for (110)
and, if this is the case, the corresponding egeinspaces have the same dimension. Hence, by the fact that (110)
is the direct sum of ∆∂,2,0,abs : L2Ω2,0(reg(V ), h) → L2Ω2,0(reg(V ), h) and ∆∂,2,2,abs : L2Ω2,2,(reg(V ), h) →
L2Ω2,2,(reg(V ), h) and by the fact that we have already shown that the asymptotic inequality (105) holds true
for ∆∂,2,0,abs and ∆∂,2,2,abs we are in the position to conclude that (105) holds true also for the eigenvalues of

(111). We can also conclude immediately that e−t∆∂,2,1,abs : L2Ω2,1(reg(V ), h) → L2Ω2,1(reg(V ), h) is a trace
class operator because, thanks to (105), we have

Tr(e−t∆∂,2,1,abs) =
∑
k

e−tλk <∞

where in the above formula {λk}k∈N are the eigenvalues of (111). Finally (107) follows observing that, again
by Prop. (2.4), we have

Tr(e−t∆∂,2,1,abs)− ker(∆∂,2,1,abs) = Tr(e−t∆∂,2,0,abs)− ker(∆∂,2,0,abs) + Tr(e−t∆∂,2,2,abs)− ker(∆∂,2,2,abs) (112)

and therefore for t ∈ (0, 1] we have

Tr(e−t∆∂,2,1,abs) ≤ ker(∆∂,2,1,abs) + C0t
−2 − ker(∆∂,2,0,abs) + C2t

−2 − ker(∆∂,2,2,abs) ≤ C1t
−2

for some C1 > 0.

As a consequence of the previous theorem we recover the McKean-Singer formula on complex projective
surfaces concerning the complex (L2Ω2,q(reg(V ), h), ∂2,q,max).

Corollary 5.3. In the setting of Th. 5.3. Let us label by (∂2,max + ∂
t

2,min)+ the operator defined in (108).

Then (∂2,max + ∂
t

2,min)+ is a Fredholm operator and its index satisfies

ind((∂2,max + ∂
t

2,min)+) =

2∑
q=0

(−1)q Tr(e−t∆∂,2,q,abs). (113)

In particular we have

χ(Ṽ ,KṼ ) =

2∑
q=0

(−1)q Tr(e−t∆∂,2,q,abs) (114)

where π : Ṽ → V is any resolution of V , KṼ is the sheaf of holomorphic (2, 0)-forms on Ṽ and χ(Ṽ ,KṼ ) =∑2
q=0(−1)q dim(Hq(Ṽ ,KṼ )).
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Proof. That (∂2,max + ∂
t

2,min)+ is a Fredholm operator it is clear from Th. 5.3. The equality (113) follows by
(112). Indeed we have

ind((∂2,max + ∂
t

2,min)+) =

2∑
q=0

(−1)q ker(∆∂,2,q,abs) =

2∑
q=0

(−1)q Tr(e−t∆∂,2,q,abs).

The equality (114) follows by (113) and the results established in [29].

Theorem 5.5. In the setting of Th. 5.3. Let q ∈ {0, 1, 2} and consider the operator

∆F
∂,2,q,

: L2Ω2,q(reg(V ), h)→ L2Ω2,q(reg(V ), h) (115)

that is the Friedrich extension of ∆∂,2,q : Ω2,q
c (reg(V ))→ Ω2,q

c (reg(V )). Let

0 ≤ µ1 ≤ µ2 ≤ ... ≤ µk ≤ ...

be the eigenvalues of (115) and let
0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk ≤ ...

be the eigenvalues of (104). Then we have the following inequality for every k ∈ N

λk ≤ µk. (116)

In particular we have
lim inf µkk

− 1
2 > 0 (117)

as k →∞.
Consider now the heat operator associated to (115)

e
−t∆F

∂,2,q : L2Ω2,q(reg(V ), h)→ L2Ω2,q(reg(V ), h). (118)

Then (118) is a trace class operator and

Tr(e
−t∆F

∂,2,q ) ≤ Tr(e−t∆∂,2,q,abs). (119)

In particular we have the following estimate for Tr(e
−t∆F

∂,2,q )

Tr(e
−t∆F

∂,2,q ) ≤ Bqt−2 (120)

for t ∈ (0, 1] and some constant Bq > 0.

Proof. Using again the min-max Theorem as in the proof of Th. 4.2 we have

µk = inf
F∈Fk∩D(∆F

∂,2,q
)
sup
s∈F

〈∆F
∂,2,q

s, s〉L2Ω2,q(reg(V ),h)

‖s‖2L2Ω2,q(reg(V ),h)

(121)

where Fk denotes the set of linear subspaces of L2Ω2,q(reg(V ), h) of dimension at most k. Analogously for the
eigenvalues of (104) we have

λk = inf
F∈Fk∩D(∆∂,2,q,abs)

sup
s∈F

〈∆∂,2,q,abss, s〉L2Ω2,q(reg(V ),h)

‖s‖2L2Ω2,q(reg(V ),h)

. (122)

By Prop. 2.5 we know that ∆F
∂,2,q

= (∂2,q+∂
t

2,q−1)max◦(∂2,q+∂
t

2,q−1)min and by (23) we know that ∆∂,2,q,abs =

(∂2,q,max + ∂
t

2,q−1,min) ◦ (∂2,q,max + ∂
t

2,q−1,min). Therefore (121) and (122) become respectively

inf
F∈Fk∩D((∂2,q+∂

t
2,q−1)min)

sup
s∈F

〈(∂2,q + ∂
t

2,q−1)mins, (∂2,q + ∂
t

2,q−1)mins〉L2Ω2,•(reg(V ),h)

‖s‖2L2Ω2,q(reg(V ),h)

(123)
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and

inf
F∈Fk∩D(∂2,q,max+∂

t
2,q−1,min)

sup
s∈F

〈(∂2,q,max + ∂
t

2,q−1,min)s, (∂2,q,max + ∂
t

2,q−1,min)s〉L2Ω2,•(reg(V ),h)

‖s‖2L2Ω2,q(reg(V ),h)

(124)

where L2Ω2,•(reg(V ), h) = ⊕2
q=0L

2Ω2,q(reg(V ), h). Let now {φn, n ∈ N} be an orthonormal basis of L2Ω2,q(reg(V ), h)

made of eigensections of ∆F
∂,2,q

such that ∆F
∂,2,q

φk = µkφk. Let us define Fk ∈ Fk as the k-dimensional subspace

of L2Ω2,q(reg(V ), h) generated by {φ1, ..., φk}. Then, see for instance [36] pag. 279, we have

µk = sup
s∈Fk

〈(∂2,q + ∂
t

2,q−1)mins, (∂2,q + ∂
t

2,q−1)mins〉L2Ω2,•(reg(V ),h)

‖s‖2L2Ω2,q(reg(V ),h)

.

Since D((∂2,q + ∂
t

2,q−1)min) ⊂ D(∂2,q,max + ∂
t

2,q−1,min) we can deduce that

µk = sup
s∈Fk

〈(∂2,q + ∂
t

2,q−1)mins, (∂2,q + ∂
t

2,q−1)mins〉L2Ω2,•(reg(V ),h)

‖s‖2L2Ω2,q(reg(V ),h)

= sup
s∈Fk

〈(∂2,q,max + ∂
t

2,q−1,min)s, (∂2,q,max + ∂
t

2,q−1,min)s〉L2Ω2,•(reg(V ),h)

‖s‖2L2Ω2,q(reg(V ),h)

≥ inf
F∈Fk∩D(∂2,q,max+∂

t
2,q−1,min)

sup
s∈F

〈(∂2,q,max + ∂
t

2,q−1,min)s, (∂2,q,max + ∂
t

2,q−1,min)s〉L2Ω2,•(reg(V ),h)

‖s‖2L2Ω2,q(reg(V ),h)

= λk.

This establishes (116). The remaining properties follow now immediately using (116) and Th. 5.4.

Concerning the bidegree (1, 0) we have the following application.

Theorem 5.6. In the setting of Th. 5.3. Consider the operator

∆F
∂,1,0

: L2Ω1,0(reg(V ), h)→ L2Ω1,0(reg(V ), h) (125)

that is the Friedrich extension of ∆∂,1,0 : Ω1,0
c (reg(V ))→ Ω1,0

c (reg(V )). Then (125) has discrete spectrum. Let

0 ≤ µ1 ≤ µ2 ≤ ... ≤ µk ≤ ...

be the eigenvalues of (125). We have the following asymptotic inequality

lim inf µkk
− 1

2 > 0 (126)

as k →∞.
Finally consider the heat operator associated to (125)

e
−t∆F

∂,1,0 : L2Ω1,0(reg(V ), h)→ L2Ω1,0(reg(V ), h). (127)

Then (127) is a trace class operator and its trace satisfies the following estimate

Tr(e
−t∆F

∂,1,0) ≤ Ct−2 (128)

for t ∈ (0, 1] and some constant C > 0.

Proof. Using (33) and the Hodge star operator we have ∗ ◦∆∂,2,1 = ∆∂,1,0 ◦ ∗ on Ω2,1
c (reg(V )). By Prop. 2.5 it

is easy to check that the previous equality implies that ∗(D(∆F
∂,2,1

)) = D(∆F∂,1,0) and that ∗◦∆F
∂,2,1

= ∆F∂,1,0 ◦∗.
Moreover, by the Kähler identities, we have ∆∂,1,0 = ∆∂,1,0 on Ω1,0

c (reg(V )) and therefore ∆F∂,1,0 = ∆F
∂,1,0

on

L2Ω1,0(reg(V ), h) as unbounded self-adjoint operators. In conclusion we have shown that ∗◦∆F
∂,2,1

= ∆F
∂,1,0
◦∗,

that is any form ω ∈ L2Ω2,1(reg(V ), h) lies in D(∆F
∂,2,1

) if and only if ∗ω ∈ D(∆F
∂,1,0

) and if this is the

case then ∗(∆F
∂,2,1,

ω) = ∆F
∂,1,0

(∗ω). Now all the statements of this theorem follows by Th. 5.5 because

∗ : L2Ω1,0(reg(V ), h)→ L2Ω2,1(reg(V ), h) is a unitary operator.
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As an immediate application of Th. 5.6 we have the following Hodge theorem.

Corollary 5.4. In the setting of Th. 5.3. The following properties hold true:

1. im(∂1,0,min) is a closed subset of L2Ω1,1(reg(V ), h).

2. ker(∆∂,1,1,rel)
∼= H1,1

2,∂min
(reg(V ), h).

3. H1,1

2,∂min
(reg(V ), h) is finite dimensional.

Proof. According to Th. 5.6 and to Prop. 2.5 we know that ∂
t

1,0,max ◦ ∂1,0,min : L2Ω1,0(reg(V ), h) →
L2Ω1,0(reg(V ), h) has discrete spectrum and this in turn implies in particular that it is a Fredholm opera-

tor on its domain endowed with the graph norm. Therefore we can conclude that im(∂
t

1,0,max ◦∂1,0,min) is closed
in L2Ω1,0(reg(V ), h). By (26) we have the following two orthogonal decompositions for L2Ω1,0(reg(V ), h):

L2Ω1,0(reg(V ), h) = ker(∂1,0,min)⊕ im(∂
t

1,0,max)

L2Ω1,0(reg(V ), h) = ker(∂
t

1,0,max ◦ ∂1,0,min)⊕ im(∂
t

1,0,max ◦ ∂1,0,min).

Clearly ker(∂
t

1,0,max ◦ ∂1,0,min) = ker(∂1,0,min). Therefore we have the following chain of inclusions:

im(∂
t

1,0,max ◦ ∂1,0,min) ⊂ im(∂
t

1,0,max) ⊂ im(∂
t

1,0,max) = im(∂
t

1,0,max ◦ ∂1,0,min) = im(∂
t

1,0,max ◦ ∂1,0,min)

which in particular implies that im(∂
t

1,0,max) = im(∂
t

1,0,max) and therefore, taking the adjoint, im(∂1,0,min) =

im(∂1,0,min). Hence the first point is established. Using again (26) we easily get that

ker(∆∂,1,1,rel)
∼=

ker(∂1,1,min)

im(∂1,0,min)
.

On the other hand, by the first point of this corollary, we know that im(∂1,0,min) = im(∂1,0,min). Thus we have

ker(∆∂,1,1,rel)
∼=

ker(∂1,1,min)

im(∂1,0,min)
=

ker(∂1,1,min)

im(∂1,0,min)
= H1,1

2,∂min
(reg(V ), h).

Finally, according to [27], we know that H1,1

2,∂max
(reg(V ), h) is finite dimensional. By virtue of the L2-Serre dual-

ity, see Th. 2.3 in [34], and using the second point of this corollary, we can thus conclude that H1,1

2,∂min
(reg(V ), h)

is finite dimensional too.

Assuming that sing(V ) is made of isolated singularities we can also deal with the L2-Dolbeault complex
(L2Ω0,q(reg(V ), h), ∂0,q,max) and its associated Laplacians.

Theorem 5.7. Let V ⊂ CPn be a complex projective surface with only isolated singularities. For each q = 0, 1, 2
the operator

∆∂,0,q,abs : L2Ω0,q(reg(V ), h)→ L2Ω0,q(reg(V ), h) (129)

has discrete spectrum. Let
0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk ≤ ...

be the eigenvalues of (129). Then we have the following asymptotic inequality

lim inf λkk
− 1

2 > 0 (130)

as k →∞.
Consider now the heat operator associated to (129)

e−t∆∂,0,q,abs : L2Ω0,q(reg(V ), h)→ L2Ω0,q(reg(V ), h). (131)

Then (131) is a trace class operator and its trace satisfies the following estimates

Tr(e−t∆∂,0,q,abs) ≤ Cqt−2 (132)

for t ∈ (0, 1] and some constant Cq > 0.
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Proof. According to [26] Th. 1.2 we know that
(
D(∆∂,0,q,abs) ∩ im(D(∆∂,0,q,abs)

)
↪→ L2Ω0,q(reg(V ), h) is a

compact inclusion for each q. Moreover, by [34], we know that H0,q

2,∂max
(reg(V ), h) is finite dimensional for

each q and therefore, using Prop. 1.3, we get that ker(∆∂,0,q,abs) is finite dimensional. In conclusion we

have just shown that
(
D(∆∂,0,q,abs)

)
↪→ L2Ω0,q(reg(V ), h) is a compact inclusion for each q and therefore we

can conclude that (129) has discrete spectrum. Now, according to [14] Th 1.2, we know that ∂min = ∂max.
In particular this implies that ∆F

∂
= ∆∂,abs, that is the absolute extension and the Friedrich extension of

∆∂ : C∞c (reg(V )) → C∞c (reg(V )) coincide. Hence the statement of this theorem in the case q = 0 follows
by [20]. By (34) and Prop. 1.5 we know that a form ω ∈ L2Ω2,0(reg(V ), h) lies in D(∆∂,2,0,rel) if and only
if c2,0(∗ω) ∈ D(∆∂,0,2,abs) and if this is the case then we have c2,0(∗(∆∂,2,0,relω) = ∆∂,0,2,abs(c2,0(∗ω)). Since

c2,0 ◦ ∗ : L2Ω2,0(reg(V ), h) → L2Ω0,2(reg(V ), g) is a continuous and bijective C-antilinear isomorphism with
continuous inverse the conclusion for the case q = 2 follows by Th. 5.1. Finally the conclusion in the case q = 1
follows by repeating the arguments, with the obvious modifications, used in the proof of Th. 5.4 to prove the
case (2, 1).

An immediate application of the above theorem is the following McKean-Singer formula for the complex
(L2Ω0,q(reg(V ), h), ∂0,q,max). To this aim consider the operator

∂max + ∂
t

0,1,min : L2(reg(V ), h)⊕ L2Ω0,2(reg(V ), h)→ L2Ω0,1(reg(V ), h) (133)

whose domain is D(∂max)⊕D(∂
t

0,1,min) ⊂ L2(reg(V ), h)⊕ L2Ω0,2(reg(V ), h). Its adjoint is

∂0,1,max + ∂
t

min : L2Ω0,1(reg(V ), h)→ L2(reg(V ), h)⊕ L2Ω0,2(reg(V ), h) (134)

with domain given by D(∂0,1,max) ∩ D(∂
t

min) ⊂ L2Ω0,1(reg(V ), h).

Corollary 5.5. In the setting of Th. 5.7. Let us label by (∂0,max + ∂
t

0,min)+ the operator defined in (133).

Then (∂0,max + ∂
t

0,min)+ is a Fredholm operator and

ind((∂0,max + ∂
t

0,min)+) =

2∑
q=0

(−1)q Tr(e−t∆∂,0,q,abs). (135)

In particular we have

χ(Ṽ ,O(L)) =

2∑
q=0

(−1)q Tr(e−t∆∂,0,q,abs) (136)

where π : Ṽ → V is any resolution of V , L is a suitable holomorphic line bundle on Ṽ 2 and χ(Ṽ ,O(L)) =∑2
q=0(−1)q dim(Hq(Ṽ ,O(L))).

Proof. The equality (135) can be proved in the same way we proved (113). The equality (136) follows by (135)
and the results established in [29] and [34].

In the last part of this section we collect various corollaries that arise, through (34) and Prop. 1.5, as
immediate consequences of the results proved so far.

Corollary 5.6. In the setting of Th. 5.3. For each q = 0, 1, 2 the operator

∆∂,0,q,rel : L2Ω0,q(reg(V ), h)→ L2Ω0,q(reg(V ), h) (137)

has discrete spectrum. Let
0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk ≤ ...

be the eigenvalues of (137); we have the following asymptotic inequality

lim inf λkk
− 1

2 > 0 (138)

2We refer to [29] and to [34] for the definition of L.
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as k →∞.
Finally consider the heat operator associated to (137)

e−t∆∂,0,q,rel : L2Ω0,q(reg(V ), h)→ L2Ω0,q(reg(V ), h). (139)

Then (139) is a trace class operator and we have the following estimate for its trace

Tr(e−t∆∂,0,q,rel) ≤ Cqt−2 (140)

for t ∈ (0, 1] and some constant Cq > 0.

Proof. Using (34) and Prop. 1.5 we have that any form ω ∈ L2Ω2,q(reg(V ), h) lies in D(∆∂,2,q,abs) if and only if
c2−q,0(∗ω) ∈ D(∆∂,0,2−q,rel) and if this is the case then we have c2−q,0(∗(∆∂,2,q,absω)) = ∆∂,0,2−q,rel(c2−q,0(∗ω)).

Since c2−q,0◦∗ : L2Ω2,q(reg(V ), h)→ L2Ω0,2−q(reg(V ), g) is a continuous and bijective C-antilinear isomorphism
with continuous inverse the conclusion follows now by Th. 5.3 and Th. 5.4.

Corollary 5.7. In the setting of Th. 5.3. For each q = 0, 1, 2 the operator

∆F
∂,0,q

: L2Ω0,q(reg(V ), h)→ L2Ω0,q(reg(V ), h) (141)

has discrete spectrum. Let
0 ≤ µ1 ≤ µ2 ≤ ... ≤ µk ≤ ...

be the eigenvalues of (141); we have the following inequality

µk ≥ λk

where 0 ≤ λ1 ≤ ... ≤ λk ≤ ... are the eigenvalues of (137). Moreover we have the following asymptotic inequality

lim inf µkk
− 1

2 > 0 (142)

as k →∞.
Consider now the heat operator associated to (141)

e
−t∆F

∂,0,q : L2Ω0,q(reg(V ), h)→ L2Ω0,q(reg(V ), h). (143)

Then (143) is a trace class operator. We have the following inequality

Tr(e
−t∆F

∂,0,q ) ≤ Tr(e−t∆∂,0,q,rel)

for every t > 0 and furthermore Tr(e
−t∆F

∂,0,q ) satisfies the following estimates

Tr(e
−t∆F

∂,0,q ) ≤ Cqt−2 (144)

for t ∈ (0, 1] and some constant Cq > 0.

Proof. This corollary follows by Th. 5.5 using (34) and Prop. 1.5 as in the proof of Cor. 5.6.

Corollary 5.8. In the setting of Th. 5.7. For each q = 0, 1, 2 the operator

∆∂,2,q,rel : L2Ω2,q(reg(V ), h)→ L2Ω2,q(reg(V ), h) (145)

has discrete spectrum. Let
0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk ≤ ...

be the eigenvalues of (145); we have the following asymptotic inequality

lim inf λkk
− 1

2 > 0 (146)

as k →∞.
Consider now the heat operator associated to (145)

e−t∆∂,2,q,rel : L2Ω2,q(reg(V ), h)→ L2Ω2,q(reg(V ), h). (147)

Then (147) is a trace class operator. Furthermore we have the following estimate for Tr(e−t∆∂,2,q,rel)

Tr(e−t∆∂,2,q,rel) ≤ Cqt−2 (148)

for t ∈ (0, 1] and some constant Cq > 0.
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Proof. This corollary follows by Th. 5.7 using (34) and Prop. 1.5 as in the proof of Cor. 5.6.

Corollary 5.9. In the setting of Th. 5.3. The operator

∆F
∂,1,2

: L2Ω1,2(reg(V ), h)→ L2Ω1,2(reg(V ), h) (149)

has discrete spectrum. Let
0 ≤ µ1 ≤ µ2 ≤ ... ≤ µk ≤ ...

be the eigenvalues of (149); we have the following asymptotic inequality

lim inf µkk
− 1

2 > 0 (150)

as k →∞.
Finally consider the heat operator associated to (149)

e
−t∆F

∂,1,2 : L2Ω1,2(reg(V ), h)→ L2Ω1,2(reg(V ), h). (151)

Then (151) is a trace class operator and its trace satisfies the following estimate

Tr(e
−t∆F

∂,1,2) ≤ Ct−2 (152)

for t ∈ (0, 1] and some constant C > 0.

Proof. The statements of this corollary follow by Th. 5.6 using (34) and Prop. 1.5 as we did in the proof of
Cor. 5.6.

We conclude the paper with the following McKean-Singer formula concerning (L2Ω0,q(reg(V ), h), ∂0,q,min).
Let V and h be as in Th. 5.3. Consider the operator

∂min + ∂
t

0,1,max : L2(reg(V ), h)⊕ L2Ω0,2(reg(V ), h)→ L2Ω0,1(reg(V ), h) (153)

whose domain is D(∂min)⊕D(∂
t

0,1,max) ⊂ L2(reg(V ), h)⊕ L2Ω0,2(reg(V ), h). Its adjoint is

∂0,1,min + ∂
t

max : L2Ω0,1(reg(V ), h)→ L2(reg(V ), h)⊕ L2Ω0,2(reg(V ), h) (154)

with domain given by D(∂0,1,min) ∩ D(∂
t

max) ⊂ L2Ω0,1(reg(V ), h).

Corollary 5.10. In the setting of Th. 5.3. Let us label by (∂0,min + ∂
t

0,max)+ the operator defined in (153).

Then (∂0,min + ∂
t

0,max)+ is a Fredholm operator and

ind((∂0,min + ∂
t

0,max)+) =

2∑
q=0

(−1)q Tr(e−t∆∂,0,q,rel). (155)

In particular we have

χ(Ṽ ,OṼ ) =

2∑
q=0

(−1)q Tr(e−t∆∂,0,q,rel) (156)

where π : Ṽ → V is any resolution of V and χ(Ṽ ,OṼ ) =
∑2
q=0(−1)q dim(H0,q

∂
(Ṽ )).

Proof. The equality (155) can be proved arguing as in the proof of (113). The equality (156) follows by (155)
and the results established in [29].
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