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The resistive wall impedance of a vacuum chamber with elliptic cross section is of particular interest
for circular particle accelerators as well as for undulators in free electron lasers. By using the electric field
of a point charge and of a small dipole moving at arbitrary speed in an elliptical vacuum chamber,
expressed in terms of Mathieu functions, in this paper we take into account the finite conductivity of the
beam pipe walls by means of the surface impedance, and evaluate the longitudinal and transverse driving
and detuning impedances for any beam velocity. We also extend the definition of the Yokoya form
factors, valid in the thick wall regime, at any beam energy, and show that, in the ultra-relativistic limit,
they coincide with the ones that are found in literature. The method is also extended to the multilayer
vacuum chamber case. Under conditions generally satisfied with particle accelerator beam pipes, the
classical transmission line theory can be used to modelling the impedance seen by a bunch in a vacuum
chamber with several layers as an equivalent circuit with the same number of load impedances, giving, as
result, a surface impedance that can be used in combination with the fields of the elliptic geometry to
obtain the resistive wall impedance in an elliptical multilayer vacuum chamber. The results are also
compared with a more time consuming 3D electromagnetic code and with solutions for known cases of
circular and flat beam pipe.
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I. INTRODUCTION

The coupling impedance [1–5] due to the finite resis-
tivity of the beam vacuum chamber, generally called
resistive wall impedance, can represent an important source
of impedance, as, for example, in LCLS undulator [6],
or even the main contributor, as in the case of the Future
Circular Collider project [7–10].
Among several geometries, the elliptic cross section is

of particular interest because it can be found in circular
machines [11–13] as well as in undulators for free electron
lasers [14].
The problem of calculating the coupling impedance of a

resistive beam pipe with arbitrary cross section has been
derived in the ultrarelativistic limit in Refs. [15–17]. This
impedance can be expressed in terms of form factors, known

as Yokoya form factors, which depend on the ellipticity of
the beam pipe and correspond to the ratio between the
resistive wall impedance of elliptic shape and the circular
onewith the radius equal to the minor semiaxis of the ellipse.
Moreover, the impedance of an elliptic beam pipe, in the
ultrarelativistic limit, has also been addressed in Ref. [14].
The extension to the nonrelativistic case has been

obtained in Ref. [18], where, the choice of the field
expansions has led to complicated expressions of the
electromagnetic field. Another formulation, written as an
integral form, has been also derived in Ref. [19] in the
classical thick wall regime with a good conductor.
Lastly, there also exist numerical codes that give the

beam coupling impedance due to space charge and resistive
wall for arbitrary transverse geometries [20].
In this paper we expand the formalism of previous

works [21–23], in which we derived the longitudinal and
transverse driving and detuning space charge impedances
produced by a point charge and a small dipole traveling on
the axis of a perfectly conducting elliptic vacuum chamber,
by considering the case of a finite resistivity of the beam
pipe walls. The resistive wall term is introduced by using
the concept of surface impedance, which can also be
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extended to the multilayer case, of interest for many particle
accelerators (see, e.g., [8]).
The equations we derive allow to obtain the impedances

ranging from the circular shape to the parallel plates, taking
into account any value of ellipticity and beam energy.
In the following Sec. II we briefly review the basic

equations used to express the electromagnetic fields
and the impedances by means of the Mathieu functions,
for which we considered, as reference work, the book
of McLachlan [24]. Then, in Secs. III and IV, we obtain
the longitudinal electric field of a point charge and a
dipole including the finite conductivity of the pipe
walls. In Sec. V we write the longitudinal and transverse
driving and detuning impedances expressed in terms of
the surface impedance, and, in Sec. VI, we derive the
Yokoya form factors, extending their validity to any beam
energy. In the following sections we show the impedances
under different conditions. In particular, in Sec. VII we
shortly review the surface impedance for simple cases
that can be treated analytically, in Sec. VIII we discuss
the multilayer vacuum chamber, while some benchmarks
with a 3D electromagnetic code are shown in Sec. IX.
Finally, Sec. X is dedicated to concluding remarks.

II. LONGITUDINAL ELECTRIC FIELD
IN A PERFECTLY CONDUCTING

ELLIPTICAL BEAM PIPE

In the following we suppose to have a beam pipe with
elliptical cross section. For the expansions of the fields and
the impedances, we use the transverse elliptical coordinates

φ and μ, describing respectively a set of hyperbolas having
the same foci, and a set of confocal ellipses, as shown
in Fig. 1.
The relations between elliptical and Cartesian coordi-

nates are given by

�
x ¼ F cosh μ cosφ

y ¼ F sinh μ sinφ;
ð1Þ

where F is the focal distance of the ellipse, related to the
major and minor semiaxes a and b by

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
; ð2Þ

and cosh and sinh are the hyperbolic functions.
With these notations the origin of the coordinate system

is given by (μ ¼ 0, ϕ ¼ π=2), and the boundary of the
beam pipe by

μb ¼ arccosh

�
a
F

�
: ð3Þ

In Ref. [21] we have written, in frequency domain, the
longitudinal electric field of a point charge moving with a
generic velocity v ¼ βc, with c the speed of light and β
the relativistic velocity factor, on the axis of a perfectly
conducting elliptic vacuum chamber (monopolar term) as a
series of combinations of Mathieu functions of the kind

FIG. 1. Elliptical coordinates. The φ coordinate describes a series of hyperbolas having the same foci. The μ coordinate describes
confocal ellipses centered in the origin of the coordinate system.
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E0
z;mðφ; μ; qÞ

¼ 2πG
X∞
l¼0

ð−1Þl A
ð2lÞ
0

p0
2l

ce2lðφ;−qÞ

×

�
Fek2lðμ;−qÞ −

Fek2lðμb;−qÞ
Ce2lðμb;−qÞ

Ce2lðμ;−qÞ
�
;

ð4Þ

with

G ¼ j
Z0Qk0
2πβ2γ2

; q ¼
�
k0F
2βγ

�
2

: ð5Þ

Here Q is the point charge, γ the relativistic energy
factor, Z0 the vacuum impedance, k0 the wave number in
free space, equal to ω=c, and we have used the elliptic
Mathieu functions described in [24]. In Appendix A we
have summarized all the Mathieu functions used through-
out the paper and how the expansion coefficients can be
determined.
Moreover, in Ref. [22], we have also derived the

longitudinal electric field produced by a small dipole
oriented along y and x, and moving with velocity βc as

E0
z;dy

ðφ;μ; qÞ

¼ πGd

X∞
l¼0

ð−1Þl A
ð2lþ1Þ
1

p0
2lþ1

se2lþ1ðφ;−qÞ

×

�
Gek2lþ1ðμ;−qÞ−

Gek2lþ1ðμb;−qÞ
Se2lþ1ðμb;−qÞ

Se2lþ1ðμ;−qÞ
�
;

ð6Þ

E0
z;dx

ðφ;μ; qÞ

¼ πGd

X∞
l¼0

ð−1Þl B
ð2lþ1Þ
1

s02lþ1

ce2lþ1ðφ;−qÞ

×

�
Fek2lþ1ðμ;−qÞ−

Fek2lþ1ðμb;−qÞ
Ce2lþ1ðμb;−qÞ

Ce2lþ1ðμ;−qÞ
�
;

ð7Þ

with

Gd ¼ jZ0

Pk20
2πβ3γ3

; ð8Þ

and the dipole moment P ¼ 2Qd with 2d the distance
between the two charges of the dipole.
In the above equations, the first term on the right-hand

side gives the direct field, while the second term represents
the scattered (or indirect) field due to the elliptic boundary
conditions.

Starting from the above expressions of the fields, which
are valid for a perfectly conducting vacuum chamber, in
the next two sections we derive the fields in presence of a
finite conductivity of the walls.

III. LONGITUDINAL ELECTRIC FIELD
OF A POINT CHARGE DUE TO THE

FINITE CONDUCTIVITY

Let us suppose to have a perfectly conducting elliptic
beam pipe. The azimuthal transverse magnetic field due to
a point charge in an elliptical vacuum chamber can be
obtained with the directional derivative perpendicular to φ
of the longitudinal electric field of Eq. (4), which gives

Hφ;mðφ;μ; qÞ ¼
β2γ2

jk0Z0

ffiffiffi
2

p

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2μ− cos2φ

p ∂E0
z;mðφ;μ; qÞ

∂μ :

ð9Þ

We now use the hypothesis that the magnetic field does
not change in presence of a finite conductivity of the pipe
walls, that is, we consider a relative magnetic permeability
of about 1. This is a good approximation for copper or
aluminium vacuum chambers, even if they have a thin
coating of NEG or other material to mitigate electron cloud
effects and (or) for pumping purposes [7,8]. As a conse-
quence, we can use Eq. (9) to evaluate the magnetic field
also inside the walls. From the knowledge of this field, we
can determine the new scattered electric field on the walls
due to a finite conductivity σ, by using the Leontovich
condition, which gives

Ei
z;mðφ; μb; qÞ ¼ ZsHφ;mðφ; μb; qÞ; ð10Þ

with Zs the surface impedance. The above equation is valid
for cases when the radius of curvature of the conducting
surface is large with respect to the skin depth δ defined as

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2c
jωjσcZ0

s
: ð11Þ

Under this condition, the resulting field inside the
wall can be well approximated by plane waves. When
we evaluate the above fields in μb, we obtain that the term
of Eq. (4) into square brackets becomes proportional to one
of the Wronskians of the Mathieu functions [24], which, by
definition are independent on μ, such that we can write

Ei
z;mðφ; μb; qÞ ¼

QZs

ffiffiffi
2

p

F

X∞
l¼0

ð−1ÞlAð2lÞ
0 ce2lðφ;−qÞ

p0
2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2μb − cos 2φ

p

×
W2l;mð−qÞ
Ce2lðμb;−qÞ

; ð12Þ

with the Wronskian that can be written as
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W2l;mð−qÞ ¼ −ð−1Þl p0
2l

πAð2lÞ
0

ce2lð0;−qÞce2l
�
π

2
;−q

�
:

ð13Þ

In order to determine this electric field also inside the
beam pipe, we suppose that the new total longitudinal
electric field is equal to the sum of that of Eq. (4) with
perfectly conducting walls, plus a term having the same
dependence on φ and μ as the scattered field in Eq. (4),
with unknown amplitude due to the finite conductivity.
This third term can then be written as

Ei
z;mðφ; μ; qÞ ¼

QZs

ffiffiffi
2

p

F

X∞
p¼0

ð−1ÞpD2pce2pðφ;−qÞ

× Ce2pðμ;−qÞ; ð14Þ

with D2p unknown quantities.
The total field, at the elliptic boundary, must be equal to

Eq. (12). Since Eq. (4) at μ ¼ μb is zero, we remain with the
condition

X∞
p¼0

ð−1ÞpD2pce2pðφ;−qÞCe2pðμb;−qÞ

¼
X∞
l¼0

ð−1ÞlAð2lÞ
0 ce2lðφ;−qÞ

p0
2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2μb − cos 2φ

p W2l;mð−qÞ
Ce2lðμb;−qÞ

; ð15Þ

which can be used to determine the unknown expansion
coefficients. By using the orthogonality properties of the
Mathieu functions, after some manipulations shown in
Appendix B, we obtain

D2p ¼ −1
π2Ce2pðμb;−qÞ

X∞
l¼0

ð−1Þlce2lð0;−qÞce2lðπ2 ;−qÞ
Ce2lðμb;−qÞ

×
X∞
r¼0

X∞
t¼0

ð−1ÞrþtAð2pÞ
2r Að2lÞ

2t Lm
r;tðμbÞ; ð16Þ

where

Lm
r;tðμbÞ ¼

ffiffiffi
2

p
πe−ð2jr−tjþ1ÞμbΓð1

2
þ jr − tjÞ

Γð1
2
Þjr − tj! F

�
1

2
; jr − tj þ 1

2
; jr − tj þ 1; e−4μb

�

þ
ffiffiffi
2

p
πe−ð2rþ2tþ1ÞμbΓð1

2
þ rþ tÞ

Γð1
2
Þðrþ tÞ! F

�
1

2
; rþ tþ 1

2
; rþ tþ 1; e−4μb

�
; ð17Þ

with Γ the gamma function, and Fða; b; c; zÞ the hypergeometric 2F1 function. It is important to highlight that, thanks to the
expansion that we have obtained for Lm

r;t involving the hypergeometric functions, the summations for the determination of
the coefficients D2p are rapidly convergent and only few terms are necessary to obtain accurate results. The longitudinal
electric field due to the finite resistivity of the beam pipe becomes then

Ei
z;mðφ; μ; qÞ ¼ −

QZs

ffiffiffi
2

p

π2F

X∞
p¼0

ð−1Þpce2pðφ;−qÞCe2pðμ;−qÞ
Ce2pðμb;−qÞ

×
X∞
l¼0

ð−1Þlce2lð0;−qÞce2lðπ2 ;−qÞ
Ce2lðμb;−qÞ

X∞
r¼0

X∞
t¼0

ð−1ÞrþtAð2pÞ
2r Að2lÞ

2t Lm
r;tðμbÞ: ð18Þ

IV. LONGITUDINAL ELECTRIC FIELD OF A SMALL DIPOLE DUE
TO THE FINITE CONDUCTIVITY

The procedure to determine the longitudinal electric field of a small dipole in case of a finite conductivity of the pipe
walls is similar as that of the point charge. We first obtain the azimuthal magnetic field as in Eq. (9) by using the longitudinal
electric field of the vertical or horizontal dipole of Eqs. (6) and (7), and then we suppose that the magnetic field does not
change in presence of a finite conductivity, so that the new scattered electric field on the walls in the two planes can be
written as

Ei
z;dy

ðφ; μb; qÞ ¼
PZsk0

ffiffiffi
2

p

2βγF

X∞
l¼0

ð−1ÞlAð2lþ1Þ
1 se2lþ1ðφ;−qÞ

p0
2lþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2μb − cos 2φ

p W2lþ1;dyð−qÞ
Se2lþ1ðμb;−qÞ

; ð19Þ
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Ei
z;dx

ðφ; μb; qÞ ¼
PZsk0

ffiffiffi
2

p

2βγF

X∞
l¼0

ð−1ÞlBð2lþ1Þ
1 ce2lþ1ðφ;−qÞ

s02lþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2μb − cos 2φ

p W2lþ1;dxð−qÞ
Ce2lþ1ðμb;−qÞ

; ð20Þ

with the two Wronskians equal to

W2lþ1;dyð−qÞ ¼ −ð−1Þl 2βγp0
2lþ1

πk0A
ð2lþ1Þ
1 F

se02lþ1ð0;−qÞse2lþ1

�
π

2
;−q

�
; ð21Þ

W2lþ1;dxð−qÞ ¼ ð−1Þl 2βγs02lþ1

πk0B
ð2lþ1Þ
1 F

ce2lþ1ð0;−qÞce02lþ1

�
π

2
;−q

�
: ð22Þ

We then use, for the scattered field inside the beam pipe, an expression similar to that of Eq. (14), but with azimuthal and
radial dependencies as se2lþ1ðφ;−qÞ and Se2lþ1ðμ;−qÞ for the vertical plane and ce2lþ1ðφ;−qÞ and Ce2lþ1ðμ;−qÞ for the
horizontal one. By following calculations similar to those of Appendix B, we finally obtain

Ei
z;dy

ðφ; μ; qÞ ¼ −
PZs

ffiffiffi
2

p

π2F2

X∞
p¼0

ð−1Þpse2pþ1ðφ;−qÞSe2pþ1ðμ;−qÞ
Se2pþ1ðμb;−qÞ

×
X∞
l¼0

ð−1Þlse02lþ1ð0;−qÞse2lþ1ðπ2 ;−qÞ
Se2lþ1ðμb;−qÞ

X∞
r¼0

X∞
t¼0

ð−1ÞrþtAð2pþ1Þ
2rþ1 Að2lþ1Þ

2tþ1 L
dy
r;tðμbÞ; ð23Þ

Ei
z;dx

ðφ; μ; qÞ ¼ PZs

ffiffiffi
2

p

π2F2

X∞
p¼0

ð−1Þpce2pþ1ðφ;−qÞCe2pþ1ðμ;−qÞ
Ce2pþ1ðμb;−qÞ

×
X∞
l¼0

ð−1Þlce2lþ1ð0;−qÞce02lþ1ðπ2 ;−qÞ
Ce2lþ1ðμb;−qÞ

X∞
r¼0

X∞
t¼0

ð−1ÞrþtBð2pþ1Þ
2rþ1 Bð2lþ1Þ

2tþ1 Ldx
r;tðμbÞ; ð24Þ

where

L
dy;x
r;t ðμbÞ ¼

ffiffiffi
2

p
πe−ð2jr−tjþ1ÞμbΓð1

2
þ jr − tjÞ

Γð1
2
Þjr − tj! F

�
1

2
; jr − tj þ 1

2
; jr − tj þ 1; e−4μb

�

�
ffiffiffi
2

p
πe−ð2rþ2tþ3ÞμbΓð3

2
þ rþ tÞ

Γð1
2
Þðrþ tþ 1Þ! F

�
1

2
; rþ tþ 3

2
; rþ tþ 2; e−4μb

�
; ð25Þ

with the upper sign for the horizontal plane and the minus for the vertical one.

V. RESISTIVE WALL IMPEDANCES FOR ELLIPTICAL GEOMETRIES

From the fields given by Eqs. (18), (23), and (24), it is possible to derive all the coupling impedances. In particular, the
longitudinal impedance is

Zjj ¼ −
Ei
z;mðφ ¼ π

2
; μ ¼ 0; qÞ

Q
¼ Zs

ffiffiffi
2

p

π2F

X∞
p¼0

ð−1Þp ce2pð
π
2
;−qÞCe2pð0;−qÞ

Ce2pðμb;−qÞ

×
X∞
l¼0

ð−1Þl ce2lð0;−qÞce2lð
π
2
;−qÞ

Ce2lðμb;−qÞ
X∞
r¼0

X∞
t¼0

ð−1ÞrþtAð2pÞ
2r Að2lÞ

2t Lm
r;tðμbÞ; ð26Þ

while the transverse driving impedances [25] are
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Zd⊥;y ¼ −
β

FPk0

∂Ei
z;dy

∂μ
����
φ¼π

2
;μ¼0

¼ Zsβ
ffiffiffi
2

p

π2k0F3

X∞
p¼0

ð−1Þp se2pþ1ðπ2 ;−qÞSe02pþ1ð0;−qÞ
Se2pþ1ðμb;−qÞ

×
X∞
l¼0

ð−1Þl se
0
2lþ1ð0;−qÞse2lþ1ðπ2 ;−qÞ

Se2lþ1ðμb;−qÞ
X∞
r¼0

X∞
t¼0

ð−1ÞrþtAð2pþ1Þ
2rþ1 Að2lþ1Þ

2tþ1 L
dy
r;tðμbÞ; ð27Þ

Zd⊥;x ¼
β

FPk0

∂Ei
z;dx

∂φ
����
φ¼π

2
;μ¼0

¼ Zsβ
ffiffiffi
2

p

π2k0F3

X∞
p¼0

ð−1Þp ce
0
2pþ1ðπ2 ;−qÞCe2pþ1ð0;−qÞ

Ce2pþ1ðμb;−qÞ

×
X∞
l¼0

ð−1Þl ce2lþ1ð0;−qÞce02lþ1ðπ2 ;−qÞ
Ce2lþ1ðμb;−qÞ

X∞
r¼0

X∞
t¼0

ð−1ÞrþtBð2pþ1Þ
2rþ1 Bð2lþ1Þ

2tþ1 Ldx
r;tðμbÞ; ð28Þ

and the detuning (or quadrupolar) ones are

Zq
⊥;y ¼ −

β

F2Qk0

∂2Ei
z;m

∂μ2
����
φ¼π

2
;μ¼0

¼ Zsβ
ffiffiffi
2

p

π2k0F3

X∞
p¼0

ð−1Þp ce2pð
π
2
;−qÞCe002pð0;−qÞ

Ce2pðμb;−qÞ

×
X∞
l¼0

ð−1Þl ce2lð0;−qÞce2lð
π
2
;−qÞ

Ce2lðμb;−qÞ
X∞
r¼0

X∞
t¼0

ð−1ÞrþtAð2pÞ
2r Að2lÞ

2t Lm
r;tðμbÞ; ð29Þ

Zq
⊥;x ¼ −

β

F2Qk0

∂2Ei
z;m

∂φ2

����
φ¼π

2
;μ¼0

¼ Zsβ
ffiffiffi
2

p

π2k0F3

X∞
p¼0

ð−1Þp ce
00
2pðπ2 ;−qÞCe2pð0;−qÞ

Ce2pðμb;−qÞ

×
X∞
l¼0

ð−1Þl ce2lð0;−qÞce2lð
π
2
;−qÞ

Ce2lðμb;−qÞ
X∞
r¼0

X∞
t¼0

ð−1ÞrþtAð2pÞ
2r Að2lÞ

2t Lm
r;tðμbÞ: ð30Þ

All the above impedances have been written per unit
length. They depend on the frequency, on the relativistic
parameters β and γ and on the pipe geometry, that is a and
b. These impedances can also be used with surface
impedances other than that of the resistive wall, as the
case of wall roughness, or small corrugations in elliptic
vacuum chambers.
It is important to underline that, despite the quadruple

infinite sums appearing in the expressions of the imped-
ances, due to the very rapid convergence of the Mathieu
functions, only a number of terms in the order of 10-30 can
be used for the cases of interest in particle accelerators.
When the vacuum chamber tends to be flat, the number of
terms must be a bit higher, up to 50. However, even in the
worse case, such calculations require a few tens of seconds
on a normal PC.
Similar fields and impedances have been obtained from

the Bessel functions for the circular geometry with radius b.
For example for the point charge and a vertical dipole at any
energy we have

Ei
z;m;circðrÞ ¼ −

QZs

2πbI20ðk0bβγ Þ
I0

�
k0r
βγ

�
; ð31Þ

Ei
z;dy;circ

ðr; θÞ ¼ −
PZsk0

2πbβγI21ðk0bβγ Þ
sin θI1

�
k0r
βγ

�
; ð32Þ

from which we derive the impedances [26]

Zk;circ ¼
Zs

2πbI20ðk0bβγ Þ
; ð33Þ

Zd⊥;circ ¼
Zsk0

4πbβγ2I21ðk0bβγ Þ
; ð34Þ

Zq
⊥;circ ¼

Zsk0
4πbβγ2I20ðk0bβγ Þ

: ð35Þ

In Appendix C we show that, in the limit when a → b,
Eqs. (26)–(30) become (33)–(35). It is important to observe
that a quadrupolar impedance different from zero exists
also in a circular beam pipe and, in case of high energy
(β ¼ 1) and not too high frequency such that the argument
of the Bessel functions is much lower than 1, we obtain the
well-known expression
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Zk;circ ¼
Zs

2πb
¼

�
b2ω
2c

�
Zd⊥;circ; ð36Þ

while the quadrupolar impedance tends to zero.

VI. THE YOKOYA FORM FACTORS

In case of an ultrarelativistic beam, the resistive wall impedances for the elliptic geometry can be expressed by means of
the Yokoya form factors by using the impedance of a circular pipe [15]. These factors depend only on the coefficient
qr ¼ ða − bÞ=ðaþ bÞ. We can extend the concept of form factors to any energy by dividing Eq. (26) by (33) and (27)–(30)
by (34). We then obtain for all the planes

fk ¼
2

ffiffiffi
2

p

π

b
F
I20

�
k0b
βγ

�X∞
p¼0

ð−1Þp ce2pð
π
2
;−qÞCe2pð0;−qÞ

Ce2pðμb;−qÞ

×
X∞
l¼0

ð−1Þl ce2lð0;−qÞce2lð
π
2
;−qÞ

Ce2lðμb;−qÞ
X∞
r¼0

X∞
t¼0

ð−1ÞrþtAð2pÞ
2r Að2lÞ

2t Lm
r;tðμbÞ; ð37Þ

fd⊥;y ¼
4

ffiffiffi
2

p

π
I21

�
k0b
βγ

��
βγ

k0b

�
2 b3

F3

X∞
p¼0

ð−1Þp se2pþ1ðπ2 ;−qÞSe02pþ1ð0;−qÞ
Se2pþ1ðμb;−qÞ

×
X∞
l¼0

ð−1Þl se
0
2lþ1ð0;−qÞse2lþ1ðπ2 ;−qÞ

Se2lþ1ðμb;−qÞ
X∞
r¼0

X∞
t¼0

ð−1ÞrþtAð2pþ1Þ
2rþ1 Að2lþ1Þ

2tþ1 L
dy
r;tðμbÞ; ð38Þ

fd⊥;x ¼
4

ffiffiffi
2

p

π
I21

�
k0b
βγ

��
βγ

k0b

�
2 b3

F3

X∞
p¼0

ð−1Þp ce
0
2pþ1ðπ2 ;−qÞCe2pþ1ð0;−qÞ

Ce2pþ1ðμb;−qÞ

×
X∞
l¼0

ð−1Þl ce2lþ1ð0;−qÞce02lþ1ðπ2 ;−qÞ
Ce2lþ1ðμb;−qÞ

X∞
r¼0

X∞
t¼0

ð−1ÞrþtBð2pþ1Þ
2rþ1 Bð2lþ1Þ

2tþ1 Ldx
r;tðμbÞ; ð39Þ

fq⊥;y ¼
4

ffiffiffi
2

p

π
I21

�
k0b
βγ

��
βγ

k0b

�
2 b3

F3

X∞
p¼0

ð−1Þp ce2pð
π
2
;−qÞCe002pð0;−qÞ

Ce2pðμb;−qÞ

×
X∞
l¼0

ð−1Þl ce2lð0;−qÞce2lð
π
2
;−qÞ

Ce2lðμb;−qÞ
X∞
r¼0

X∞
t¼0

ð−1ÞrþtAð2pÞ
2r Að2lÞ

2t Lm
r;tðμbÞ; ð40Þ

fq⊥;x ¼
4

ffiffiffi
2

p

π
I21

�
k0b
βγ

��
βγ

k0b

�
2 b3

F3

X∞
p¼0

ð−1Þp ce
00
2pðπ2 ;−qÞCe2pð0;−qÞ

Ce2pðμb;−qÞ

×
X∞
l¼0

ð−1Þl ce2lð0;−qÞce2lð
π
2
;−qÞ

Ce2lðμb;−qÞ
X∞
r¼0

X∞
t¼0

ð−1ÞrþtAð2pÞ
2r Að2lÞ

2t Lm
r;tðμbÞ: ð41Þ

These form factors depend on the geometry and on the parameter k0=βγ. They are shown in Fig. 2 as a function of qr for
different values of the argument of the Bessel function kp ¼ k0b=βγ. We can observe that for a fixed beam velocity and
geometry (moving along the vertical axis), they also change with frequency.
Moreover, the blue curve in all plots (kp ¼ 10−4) corresponds to an ultrarelativistic beam. In this case, that is when

q → 0, it is possible to simplify the form factors showing that they do not depend on the frequency any more. Indeed, as
already discussed in Appendix C, all the coefficients of the Mathieu expansions are negligible except the diagonal ones,

which are all equal to unity except Að0Þ
0 ¼ 1=

ffiffiffi
2

p
. Therefore we can keep only the first order expansion of the Mathieu

functions which does not depend on q. Moreover the last two summations of the above form factors have only the terms
r ¼ p and t ¼ l. We can then finally write
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fkðγ → ∞Þ ¼ 2
ffiffiffi
2

p

π

b
F

X∞
p¼0

ð−1Þp 1

ϵ0;p coshð2pμbÞ
X∞
l¼0

ð−1Þl 1

ϵ0;l coshð2lμbÞ
Lm
p;lðμbÞ; ð42Þ

fd⊥;yðγ → ∞Þ ¼
ffiffiffi
2

p

π

b3

F3

X∞
p¼0

ð−1Þp 2pþ 1

sinh½ð2pþ 1Þμb�
X∞
l¼0

ð−1Þl 2lþ 1

sinh½ð2lþ 1Þμb�
L
dy
p;lðμbÞ; ð43Þ

fd⊥;xðγ → ∞Þ ¼
ffiffiffi
2

p

π

b3

F3

X∞
p¼0

ð−1Þp 2pþ 1

cosh½ð2pþ 1Þμb
X∞
l¼0

ð−1Þl 2lþ 1

cosh½ð2lþ 1Þμb
Ldx
p;lðμbÞ; ð44Þ

fq⊥;y;xðγ → ∞Þ ¼ �
ffiffiffi
2

p

π

b3

F3

X∞
p¼0

ð−1Þp ð2pÞ2
coshð2pμbÞ

X∞
l¼0

ð−1Þl 1

ϵ0;l coshð2lμbÞ
Lm
p;lðμbÞ; ð45Þ

with ϵ0;p ¼ 1þ δ0;p with δ0;p the Kroneker delta and,
for the quadrupolar form factors, the upper sign is for the
vertical plane. Equations. (42)–(45) constitute an alterna-
tive way to express the Yokoya form factors. Indeed, in
Fig. 3 we have compared these expressions with the
longitudinal and dipolar form factors written in terms of

integrals as described in Ref. [1]. This same figure can also
be compared with Fig. 8 of Ref. [15].
As we expect, the worst case for the driving impedances

is represented by the circular geometry, for which the
form factor is always 1. However, for a given ellipticity, in
particular at low energy, the coupling impedances can be

FIG. 2. Form factors as a function of qr ¼ ða − bÞ=ðaþ bÞ for different values of kp ¼ k0b=ðβγÞ.
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much lower than those evaluated with the Yokoya form
factors. This is also valid for the longitudinal impedance.
The contrary happens for the detuning ones, which are
zero for the circular geometry in the relativistic case.
One interesting result is that the horizontal detuning
form factor changes sign passing from positive to
negatives values. This happens at a fixed geometry
and energy as a function of frequency since kp depends
also on this quantity (on the plots of Fig. 2 we move
along a vertical line). This is due to the fact that the
horizontal detuning impedance for the circular geometry,
with β < 1, is equal to the vertical one and they are
both positive, while for the flat geometry it is negative.
Then, with a given ellipticity, there must be a transition
at a given frequency where the impedance passes from
positive to negative values.

VII. RESISTIVE WALL IMPEDANCES
FOR SIMPLE CASES

In some simple conditions, it is possible to write an
analytical expression of the surface impedance. For exam-
ple, in the case of a single layer of infinite thickness, for a
DC model and in the frequency range [4]

χc
b

≪ ω ≪
cχ−1=3

b
; ð46Þ

where χ ¼ 1=ðZ0σcbÞwith σc the conductivity of the beam
pipe, the surface impedance due to the finite resistivity of
the walls can be written as [28]

Zs ¼ ½1þ jsgnðωÞ�
ffiffiffiffiffiffiffiffiffiffiffi
jωjZ0

2σcc

s
: ð47Þ

This expression, in combination with Eqs. (26)–(30),
allows us to obtain the single layer resistive wall imped-
ances for any ellipticity.
Another interesting application is the case of a beam pipe

with a thin layer of coating to reduce the secondary electron
yield for electron cloud mitigation and, in some cases, to
help the pumping process [29]. As discussed in Ref. [7],
under the condition of a good conductor with σc ≫ ωεwith
ε the material dielectric constant, and with ωb=ðγβcÞ ≪ 1,
the surface impedance can be written as

Zs ¼ ½1þ jsgnðωÞ�
ffiffiffiffiffiffiffiffiffiffiffi
jωjZ0

2σcc

s
α tanh ½1þjsgnðωÞ

δ1
Δ� þ 1

αþ tanh ½1þjsgnðωÞ
δ1

Δ�
; ð48Þ

where δ1 is the skin depth of the coating, Δ its correspond-
ing thickness, and, for a good conductor, α ≃ δ1=δ2, with δ2
the skin depth of the substrate, which is supposed to be of
infinite thickness. Again, this surface impedance, in com-
bination with Eqs. (26)–(30), allows to obtain the resistive
wall impedance for an elliptical beam pipe with a thin
coating. When Δ → 0 and δ1 ¼ δ2 we obtain the simple
case of single layer with infinite thickness.

VIII. RESISTIVE WALL IMPEDANCE
FOR A MULTILAYER BEAM PIPE

The surface impedance concept can be extended to the
case of beam pipe with multi-layer structure of the wall by
using the transmission line (TL) theory. TLWALL [30] is a
code developed at CERN and based on the TL theory that,
resuming the studies of L. Vos [31–33], allows computing
the resistive wall impedance of round chambers.
In spite of its simplicity, the TL theory with some

modification can be used to model the resistive wall
impedance of multilayer structures without loss of general-
ity. The theory can be applied to calculate the surface
impedance of a round chamber loaded by a structure
made of an arbitrary number of layers of finite thickness,
allowing for PEC, vacuum or conductive wall (lossy
materials, i.e., finite electrical conductivity and/or with
complex permeability/permittivity) boundary conditions.
In order to evaluate the coupling impedance for an

elliptic geometry with a multilayer structure, we use the
equivalent surface impedance Zs computed by TLWALL in
combination with the fields of the previous sections.
The impedance obtained from TLWALL also includes the

inductive bypass effect introduced by Vos [32,34] and the
attenuation due to propagation of cylindrical wave intro-
duced in [30] to overcome the limitations of the trans-
mission line approach when the penetration depth becomes
comparable to the pipe radius b.
The application of the method requires the validity of the

Leontovich condition. Moreover, the attenuation due to
propagation of cylindrical waves and the inductive bypass
concept have been derived for round chambers and are then

FIG. 3. Yokoya form factors as a function of qr ¼ ða − bÞ=
ðaþ bÞ. With (Y) we indicate the form factors as expressed by
the integrals in Ref. [1].
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not exact for elliptical chambers. The theory of TLWALL and
all the validity limits, which obviously extend to our
approach, are discussed in pages 86 to 89 of Ref. [30].

TLWALL has been shown to give very accurate results in a
large frequency range (from kHz to GHz range) in several
cases of interest: metal with vacuum boundary, metal with
material (magnetic) boundary, metal with PEC boundary,
metal coatings, ceramic insert, ceramic coatings, metama-
terials [30,35,36].

IX. BENCHMARK EXAMPLES AND
APPLICATIONS

In this section we show some examples by comparing the
results of Eqs. (26)–(30), in combination with the surface
impedance of TLWALL for a multilayer structure, with
the 3D electromagnetic simulation software CST [37] and
IW2D [27], a 2D code developed at CERN for the evaluation

of the wall impedance (resistive wall plus space charge) in
circular and flat multilayer geometries.
As a first example we evaluate the impedance of a two-

layer elliptic beam pipe. The vacuum chamber that we have
considered consisted in a first layer with a small conduc-
tivity (σ ¼ 400 S=m) with a thickness of 5 mm followed
by a perfect electric conductor. One reason for the small
conductivity is due to the fact that we want to compare the
results with CST and we need an impedance per meter of
structure well above the numerical noise level. In addition
to this, CST has two ways of dealing with the resistive wall
impedance: if a material is defined “lossy metal,” then CST

uses the definition of surface impedance similarly to our
case; if we define instead the material as “normal,” then CST

evaluates the fields inside of it in order to determine the
coupling impedance, and this is the method we want to use
to check our results. Since a small conductivity gives quite
a large skin depth, this, associated to the thickness that we

FIG. 4. Coupling impedances per unit of length as given by Eqs. (26)–(30) compared to the results of CST. The beam pipe has
a first layer with σ ¼ 400 S=m and thickness of 5 mm, followed by a perfect electric conductor. The relativistic factor is
γ ¼ 27.7 and qr ¼ 0.29.
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have used, allows to evaluate the fields inside the material
with a high number of mesh cells, but not excessive.
For the geometrical parameters, we considered a minor

semiaxis b ¼ 25 mm and a major semiaxis a ¼ 45 mm
(qr ¼ 0.29). These values, as well as γ ¼ 27.7 are repre-
sentative of the CERN Super Proton Synchrotron vacuum
chamber. It is worth mentioning that each simulation is
optimized for one frequency decade by using the scaling
technique described at page 96 of Ref. [30]. Since the
simulations are quite heavy due to the large number of
mesh cells required to have a dense mesh in the penetration
depth, only two frequency decades have been investigated.
The simulations have been performed between 10 MHz
and 1 GHz. The choice of the decades is such that all the
three resistive wall regimes (thin wall, intermediate, and
thick wall) are covered.
In Fig. 4 we show the results of Eqs. (26)–(30) compared

to CST simulations. The curves have been obtained with
50 terms to get the expansion coefficients A and B, and with
30 terms in all the summations. The impedances are given
per unit of length. The agreement is very good for all the
impedances in the frequency range that we have chosen.
Since with CST we have considered the electromagnetic

propagation of the fields inside the materials, Fig. 4,
demonstrates that it is possible to combine the fields of
the elliptic geometry with the results of TLWALL even in a
multilayer system and not only in the case of a single layer.
In Fig. 5 we also show a comparison of the horizontal

detuning impedance at quite low beta (0.52) with IW2D

in the limits of circular and flat geometries. The radius of
the vacuum chamber is 31.3 mm (corresponding to half

aperture for the flat beam pipe), and we have used three
layers of thicknesses 0.4 mm, 3 mm, infinity and respective
conductivities of 7.7 × 105 S=m, 1 × 104 S=m, and zero
(vacuum boundary). These values are very close to those of
the CERN PS Booster vacuum chamber. As can be seen
from the figure, the results of Eq. (30) for circular and flat
chambers (cyan and blue curves, respectively) agree very
well with IW2D (magenta and red curves). Moreover it is
shown that, with these parameters, by using the Yokoya
form factor, some discrepancies appear at frequencies
around 1 GHz (also note that the vertical scale is
logarithmic).
Of course, with our method we can also cover all the

intermediate cases of elliptic geometries that cannot be
obtained with IW2D. Indeed, in some conditions, it is not
always correct to multiply the impedance of a circular
multilayer pipe by the Yokoya form factor to obtain the
corresponding elliptic impedance. This is particularly
evident if we consider the horizontal detuning impedance,
which is zero or positive for a circular pipe and negative for
a flat chamber. In all the intermediate cases it is not possible
to predict at which frequency the impedance changes sign,
and the simple Yokoya form factor (which is negative)
times the dipolar impedance of the circular chamber can
give, in some cases, incorrect results.
This is clearly shown in Fig. 6, where the real part of

the horizontal detuning impedance given by Eq. (30) with
qr ¼ 0.1 and the same other parameters of Fig. 5, in blue,
is compared with IW2D (green line) for a circular pipe
multiplied by the Yokoya form factor. In a frequency range
around 1 GHz, the discrepancy, as expected, is quite large,
with the correct impedance passing from negative to
positive values. This behavior is also confirmed by more
tricky and time consuming CST simulations, shown in the

FIG. 6. Real part of the horizontal detuning impedance per
unit of length as given by Eq. (30) for qr ¼ 0.1 (blue curve),
compared with IW2D by using the Yokoya factor (green curve).
The beam pipe has three layers of thicknesses 0.4 mm, 3 mm,
infinity and respective conductivities of 7.7 × 105 S=m,
1 × 104 S=m, and zero (vacuum boundary).

FIG. 5. Real part of the horizontal detuning impedance per unit
of length as given by Eq. (30) in the limits of circular and flat
geometries (cyan and blue lines, respectively) for a nonrelativistic
case (β ¼ 0.52), compared with IW2D (magenta and red lines)
and with a circular pipe multiplied by the Yokoya factor
(green dashed line). The beam pipe, with a radius of 31.3 mm
(corresponding to half aperture for the flat beam pipe), has
three layers of thicknesses 0.4 mm, 3 mm, infinity and respective
conductivities of 7.7 × 105 S=m, 1 × 104 S=m, and zero (vac-
uum boundary).
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same figure with the red line [38]. Due to the complexity of
the simulations the materials have been modeled using the
CST surface impedance features.

X. CONCLUSIONS

In this paper we have derived the coupling impedances
due to the finite conductivity of an elliptical vacuum
chamber. The developed theory can be used to obtain
the resistive wall impedance in elliptic geometry by using
the concept of surface impedance in combination with the
expansions of the electric fields in terms of Mathieu
functions.
We have also derived the Yokoya form factors, general-

izing them also for the nonrelativistic case and for any
frequency range. In this last case, however, the Leontovich
condition and the surface impedance concept must be valid.
Moreover, with the use of the theory of transmission

lines, we have obtained the resistive wall impedance for a
multilayer vacuum chamber with elliptical cross section.
The comparisons of the results with the electromagnetic

code CST showed a very good agreement for both ultra-
relativistic and low beta cases in a very large frequency
range for multi-layer vacuum chambers with any ellipticity.
We have also compared the results in the extreme cases of
circular and flat geometries with the code IW2D.
The fields that we have obtained in this paper can also

be used for a more rigorous method which takes into
account the matching conditions between different layers.
In this way we can develop a code able to evaluate the wall
impedance, including also the resistive wall term, for
multilayers vacuum chambers of elliptic cross section
without recurring to the Leontovich condition and the
concept of surface impedance, extending the code IW2D,
currently developed only for the circular case and parallel
plates.
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APPENDIX A: MATHIEU FUNCTIONS AND
EXPANSION COEFFICIENTS

In this Appendix we summarize all the Mathieu func-
tions used in the paper, considering, as reference work, the
book of McLachlan [24].
The periodic angular ordinary Mathieu functions are

given by four series of orthogonal equations, which are
called the elliptic cosine even, cosine odd, sine even, and
sine odd functions. For the electric field generated by a
point charge and a dipole in an elliptic geometry, we need

only the first two and the last one with negative argument
−q, expressed by:

ce2lðφ;−qÞ ¼ ð−1Þl
X∞
r¼0

ð−1ÞrAð2lÞ
2r cosð2rφÞ ðA1Þ

ce2lþ1ðφ;−qÞ ¼ ð−1Þl
X∞
r¼0

ð−1ÞrBð2lþ1Þ
2rþ1 cos½ð2rþ 1Þφ�

ðA2Þ

se2lþ1ðφ;−qÞ ¼ ð−1Þl
X∞
r¼0

ð−1ÞrAð2lþ1Þ
2rþ1 sin½ð2rþ 1Þφ�;

ðA3Þ

and the corresponding radial modified Mathieu functions of
the first and second kind given respectively by

Ce2lðμ;−qÞ ¼
p0
2l

Að2lÞ
0

X∞
r¼0

ð−1ÞrAð2lÞ
2r Irðν1ÞIrðν2Þ ðA4Þ

Ce2lþ1ðμ;−qÞ ¼
s02lþ1

Bð2lþ1Þ
1

X∞
r¼0

ð−1ÞrBð2lþ1Þ
2rþ1 ½Irðν1ÞIrþ1ðν2Þ

þ Irþ1ðν1ÞIrðν2Þ� ðA5Þ

Se2lþ1ðμ;−qÞ ¼
p0
2lþ1

Að2lþ1Þ
1

X∞
r¼0

ð−1ÞrAð2lþ1Þ
2rþ1 ½Irðν1ÞIrþ1ðν2Þ

− Irþ1ðν1ÞIrðν2Þ�; ðA6Þ

and

Fek2lðμ;−qÞ ¼
p0
2l

πAð2lÞ
0

X∞
r¼0

Að2lÞ
2r Irðν1ÞKrðν2Þ ðA7Þ

Fek2lþ1ðμ;−qÞ ¼
s02lþ1

πBð2lþ1Þ
1

X∞
r¼0

Bð2lþ1Þ
2rþ1 ½Irðν1ÞKrþ1ðν2Þ

− Irþ1ðν1ÞKrðν2Þ� ðA8Þ

Gek2lþ1ðμ;−qÞ ¼
p0
2lþ1

πAð2lþ1Þ
1

X∞
r¼0

Að2lþ1Þ
2rþ1 ½Irðν1ÞKrþ1ðν2Þ

þ Irþ1ðν1ÞKrðν2Þ�; ðA9Þ

with

p0
2l ¼ ð−1Þl ce2lð0;−qÞce2lð

π
2
;−qÞ

Að2lÞ
0

ðA10Þ

s02lþ1 ¼ ð−1Þlþ1
ce02lþ1ðπ2 ;−qÞce2lþ1ð0;−qÞffiffiffi

q
p

Bð2lþ1Þ
1

ðA11Þ
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p0
2lþ1 ¼ ð−1Þl se2lþ1ðπ2 ;−qÞse02lþ1ð0;−qÞffiffiffi

q
p

Að2lþ1Þ
1

; ðA12Þ

and ν1 ¼ ffiffiffi
q

p
e−μ and ν2 ¼ ffiffiffi

q
p

eμ. Here IrðxÞ and KrðxÞ are
the modified Bessel functions of first and second kind,
and se02lþ1 and ce02lþ1 are the derivatives of the respective
functions.
It is important to observe that the radial modified

Mathieu functions of the second kind Fekðμ;−qÞ and
Gekðμ;−qÞ play the role, in elliptic geometry, of what the
modified Bessel function of second kind KðxÞ represent in
cylindrical one.

The expansion coefficients Að2lÞ
2r , Að2lþ1Þ

2rþ1 , and Bð2lþ1Þ
2rþ1 ,

are defined in such a way that the angular functions are
orthogonal [24].
They can then be obtained by solving an eigenvalue

problem for the following truncated matrices:

aAð2lÞ
0 − qAð2lÞ

2 ¼ 0

½a − 4�Að2lÞ
2 − qð2Að2lÞ

0 þ Að2lÞ
4 Þ ¼ 0

½a − ð2rÞ2�Að2lÞ
2r − qðAð2lÞ

2r−2 þ Að2lÞ
2rþ2Þ ¼ 0 ðr ≥ 2Þ

ðA13Þ

ða− 1þqÞBð2lþ1Þ
1 −qBð2lþ1Þ

3 ¼ 0

½a− ð2rþ 1Þ2�Bð2lþ1Þ
2rþ1 −qðBð2lþ1Þ

2r−1 þBð2lþ1Þ
2rþ3 Þ ¼ 0 ðr≥ 1Þ

ðA14Þ

ða− 1−qÞAð2lþ1Þ
1 −qAð2lþ1Þ

3 ¼ 0

½a− ð2rþ 1Þ2�Að2lþ1Þ
2rþ1 −qðAð2lþ1Þ

2r−1 þAð2lþ1Þ
2rþ3 Þ ¼ 0 ðr≥ 1Þ;

ðA15Þ
where the terms “a” represent the eigenvalues and the
expansion coefficients are the eigenvectors of the three
truncated linear equations’ systems.

APPENDIX B: EXPANSION COEFFICIENTS OF
THE SCATTERED LONGITUDINAL ELECTRIC

FIELD OF A POINT CHARGE WITH
CONDUCTIVE WALLS

If we multiply both sides of Eq. (15) by
ð−1Þmce2mðφ;−qÞ and integrate in φ from −π to π, by
using the orthogonality properties of the Mathieu functions,
we obtain

πD2mCe2mðμb;−qÞ ¼
X∞
l¼0

ð−1ÞðlþmÞAð2lÞ
0 W2l;mð−qÞ

p0
2lCe2lðμb;−qÞ

Z
π

−π

ce2lðφ;−qÞce2mðφ;−qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2μb − cos 2φ

p dφ

¼
X∞
l¼0

Að2lÞ
0 W2l;mð−qÞ

p0
2lCe2lðμb;−qÞ

X∞
r¼0

X∞
t¼0

ð−1ÞrþtAð2mÞ
2r Að2lÞ

2t

Z
π

−π

cos ð2rφÞ cos ð2tφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2μb − cos 2φ

p dφ: ðB1Þ

The last integral can be written asZ
π

−π

cos ð2rφÞ cos ð2tφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2μb − cos 2φ

p dφ ¼ 1

2

Z
π

−π

cos ½ð2r − 2tÞφ� þ cos ½ð2rþ 2tÞφ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2μb − cos 2φ

p dφ: ðB2Þ

If we define p ¼ jr − tj, the first integral on the right-hand side can be written in terms of the gamma function Γ, and the
hypergeometric 2F1 function Fða; b; c; zÞ [39] as

1

2

Z
π

−π

cos ð2pφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2μb − cos 2φ

p dφ ¼ e−μbffiffiffi
2

p
Z

2π

0

cos ðpsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−4μb − 2e−2μb cos s

p ds

¼
ffiffiffi
2

p
πe−ð2pþ1ÞμbΓð1

2
þ pÞ

Γð1
2
Þp! F

�
1

2
; pþ 1

2
;pþ 1; e−4μb

�
: ðB3Þ

A similar expression can be found for the second integral containing (2rþ 2t), such that we find finally

Z
π

−π

cos ð2rφÞ cos ð2tφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2μb − cos 2φ

p dφ ¼
ffiffiffi
2

p
πe−ð2jr−tjþ1ÞμbΓð1

2
þ jr − tjÞ

Γð1
2
Þjr − tj! F

�
1

2
; jr − tj þ 1

2
; jr − tj þ 1; e−4μb

�

þ
ffiffiffi
2

p
πe−ð2rþ2tþ1ÞμbΓð1

2
þ rþ tÞ

Γð1
2
Þðrþ tÞ! F

�
1

2
; rþ tþ 1

2
; rþ tþ 1; e−4μb

�
; ðB4Þ

which, substituted in Eq. (B1), gives, for D2m the expression of Eq. (16).
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APPENDIX C: THE LIMIT OF CIRCULAR PIPE

In the limit of a → b, we have that F → 0 and q → 0. In
these conditions it is possible to expand the Mathieu
functions to first order in q. All the coefficients of the
expansions are negligible except the diagonal ones [24] so
that the last two summations in Eqs. (26)–(30) have only
r ¼ p and t ¼ l. Moreover, since μb → ∞, the radial
Mathieu functions Ce and Se in the denominators of the
equations must be evaluated at very large values. The
asymptotic expansions in this case give [24]

Ce2lðμb → ∞;−q → 0Þ ¼ p0
2lI2l

�
k0b
βγ

�
; ðC1Þ

Ce2lþ1ðμb → ∞;−q → 0Þ ¼ s02lþ1I2lþ1

�
k0b
βγ

�
; ðC2Þ

Se2lþ1ðμb → ∞;−q → 0Þ ¼ p0
2lþ1I2lþ1

�
k0b
βγ

�
; ðC3Þ

so that Eqs. (26)–(30) become

Zk ¼
Zs

ffiffiffi
2

p

π2F

X∞
p¼0

Að2pÞ
2p

ce2pðπ2 ;−qÞCe2pð0;−qÞ
p0
2pI2pðk0bβγ Þ

X∞
l¼0

Að2lÞ
2l

ce2lð0;−qÞce2lðπ2 ;−qÞ
p0
2lI2lðk0bβγ Þ

Lm
p;lðμb → ∞Þ; ðC4Þ

Zd⊥;y ¼
Zsβ

ffiffiffi
2

p

π2k0F3

X∞
p¼0

Að2pþ1Þ
2pþ1

se2pþ1ðπ2 ;−qÞSe02pþ1ð0;−qÞ
p0
2pþ1I2pþ1ðk0bβγ Þ

X∞
l¼0

Að2lþ1Þ
2lþ1

se02lþ1ð0;−qÞse2lþ1ðπ2 ;−qÞ
p0
2lþ1I2lþ1ðk0bβγ Þ

L
dy
p;lðμb → ∞Þ; ðC5Þ

Zd⊥;x ¼
Zsβ

ffiffiffi
2

p

π2k0F3

X∞
p¼0

Bð2pþ1Þ
2pþ1

ce02pþ1ðπ2 ;−qÞCe2pþ1ð0;−qÞ
s02pþ1I2pþ1ðk0bβγ Þ

X∞
l¼0

Bð2lþ1Þ
2lþ1

ce2lþ1ð0;−qÞce02lþ1ðπ2 ;−qÞ
s02lþ1I2lþ1ðk0bβγ Þ

Ldx
p;lðμb → ∞Þ; ðC6Þ

Zq
⊥;y ¼

Zsβ
ffiffiffi
2

p

π2k0F3

X∞
p¼0

Að2pÞ
2p

ce2pðπ2 ;−qÞCe002pð0;−qÞ
p0
2pI2pðk0bβγ Þ

X∞
l¼0

Að2lÞ
2l

ce2lð0;−qÞce2lðπ2 ;−qÞ
p0
2lI2lðk0bβγ Þ

Lm
p;lðμb → ∞Þ; ðC7Þ

Zq
⊥;x ¼

Zsβ
ffiffiffi
2

p

π2k0F3

X∞
p¼0

Að2pÞ
2p

ce002pðπ2 ;−qÞCe2pð0;−qÞ
p0
2pI2pðk0bβγ Þ

X∞
l¼0

Að2lÞ
2l

ce2lð0;−qÞce2lðπ2 ;−qÞ
p0
2lI2lðk0bβγ Þ

Lm
p;lðμb → ∞Þ: ðC8Þ

Moreover, by substituting p0 and s0 with the corresponding Mathieu functions, we have

Zk ¼
Zs

ffiffiffi
2

p

π2F

X∞
p¼0

ð−1ÞpAð2pÞ
0 Að2pÞ

2p

Ce2pð0;−qÞ
ce2pð0;−qÞI2pðk0bβγ Þ

X∞
l¼0

ð−1ÞlAð2lÞ
0 Að2lÞ

2l
1

I2lðk0bβγ Þ
Lm
p;lðμb → ∞Þ; ðC9Þ

Zd⊥;y¼
Zsβ

ffiffiffi
2

p

π2k0F3
q
X∞
p¼0

ð−1ÞpAð2pþ1Þ
1 Að2pþ1Þ

2pþ1

Se02pþ1ð0;−qÞ
se02pþ1ð0;−qÞI2pþ1ðk0bβγ Þ

X∞
l¼0

ð−1ÞlAð2lþ1Þ
1 Að2lþ1Þ

2tþ1

1

I2lþ1ðk0bβγ Þ
L
dy
p;lðμb→∞Þ; ðC10Þ

Zd⊥;x ¼
Zsβ

ffiffiffi
2

p

π2k0F3
q
X∞
p¼0

ð−1Þpþ1Bð2pþ1Þ
1 Bð2pþ1Þ

2pþ1

Ce2pþ1ð0;−qÞ
ce2pþ1ð0;−qÞI2pþ1ðk0bβγ Þ

X∞
l¼0

ð−1Þlþ1Bð2lþ1Þ
1 Bð2lþ1Þ

2lþ1

1

I2lþ1ðk0bβγ Þ
Ldx
p;lðμb → ∞Þ;

ðC11Þ

Zq
⊥;y ¼

Zsβ
ffiffiffi
2

p

π2k0F3

X∞
p¼0

ð−1ÞpAð2pÞ
0 Að2pÞ

2p

Ce002pð0;−qÞ
ce2pð0;−qÞI2pðk0bβγ Þ

X∞
l¼0

ð−1ÞlAð2lÞ
0 Að2lÞ

2l
1

I2lðk0bβγ Þ
Lm
p;lðμb → ∞Þ; ðC12Þ

Zq
⊥;x ¼

Zsβ
ffiffiffi
2

p

π2k0F3

X∞
p¼0

ð−1ÞpAð2pÞ
0 Að2pÞ

2p

ce002pðπ2 ;−qÞCe2pð0;−qÞ
ce2pð0;−qÞce2pðπ2 ;−qÞI2pðk0bβγ Þ

X∞
l¼0

ð−1ÞlAð2lÞ
0 Að2lÞ

2l
1

I2lðk0bβγ Þ
Lm
p;lðμb → ∞Þ: ðC13Þ

Since, as we have already said, all the coefficients of the expansions are negligible except the diagonal ones, we can keep
only the terms p ¼ l ¼ 0 in the sums. Moreover, when q → 0 we have
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Að0Þ
0 ¼ ce0ð0; 0Þ ¼ ce0

�
π

2
; 0

�
¼ Ce0ð0; 0Þ ¼

1ffiffiffi
2

p ;

ðC14Þ

Að1Þ
1 ¼ Bð1Þ

1 ¼ ce1ð0; 0Þ ¼ Ce1ð0; 0Þ
¼ se01ð0; 0Þ ¼ Se01ð0; 0Þ ¼ 1; ðC15Þ

Ce000ð0;−q → 0Þ ¼ ce000

�
π

2
;−q → 0

�
¼

ffiffiffi
2

p
q; ðC16Þ

so that the impedances become

Zk ¼
Zs

ffiffiffi
2

p

4π2FI20ðk0bβγ Þ
Lm
0;0ðμb → ∞Þ; ðC17Þ

Zd⊥;y;x ¼
Zsβ

ffiffiffi
2

p

π2k0F3I21ðk0bβγ Þ
qL

dy;x
0;0 ðμb → ∞Þ; ðC18Þ

Zq
⊥;y;x ¼

Zsβ
ffiffiffi
2

p

2π2k0F3I20ðk0bβγ Þ
qLm

0;0ðμb → ∞Þ: ðC19Þ

Finally we have also that when since μb → ∞ the
hypergeometric functions tend to 1 so that

Lm
0;0 ¼ 2

ffiffiffi
2

p
πe−μb ¼ 2

ffiffiffi
2

p
πe−arccoshðaFÞ; ðC20Þ

L
dy;x
0;0 ¼

ffiffiffi
2

p
πe−μb

�
1� e−2μb

2

�
¼

ffiffiffi
2

p
πe−arccoshðaFÞ: ðC21Þ

When F → 0 and a ¼ b

lim
F→0

e−arccoshðbFÞ ¼ F
2b

ðC22Þ

and, by using Eq. (5), we finally obtain

Zk ¼
Zs

2πbI20ðk0bβγ Þ
; ðC23Þ

Zd⊥;y;x ¼
Zsk0

4πbβγ2I21ðk0bβγ Þ
; ðC24Þ

Zq
⊥;y;x ¼

Zsk0
4π2bβγ3I20ðk0bβγ Þ

; ðC25Þ

which coincide with the impedances in a circular pipe.
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