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Abstract

Production of metallic hydrogen is one of the top three open quests of physics[1].
Three different experimental groups claim to have obtained metallic hydrogen at
different pressures, with contradicting results. The firsts [2, 3] measured a transition
from phase III to a new insulator molecular phase at 360 GPa, then to a shiny
metallic phase at 490 GPa. Another work[4] showed how phase III becomes a metal
through indirect bandgap closure at about 360 GPa and it remains stable up to at
least 440 GPa. Lastly, a different work[5] measured the infrared transmission up to
430 GPa, claiming that phase III transforms to a new metallic state at about 420 GPa
through a first-order phase transition. In this scenario, experimental data need the
support from theoretical simulations to correctly understand the hydrogen phase-
diagram, as experiments provide only indirect measurements: optical absorption,
reflectivity, and vibrational spectroscopy.

In this thesis, I feature the paramount role played by nuclear quantum fluctua-
tions in the phase-diagram and the optical and vibrational properties of high-pressure
hydrogen. In the first part of the thesis, I develop a new technique to simulate
the quantum character of nuclei, able to correctly describe both phonon-phonon
and electron-phonon interactions. In this way, the crystal structure can be relaxed,
including lattice parameters, considering quantum and thermal fluctuations. By
optimizing also the lattice with quantum fluctuations, I discover new crystalline
structures, good candidates for high pressure hydrogen phases. Thanks to the
advances I introduce here, it is possible to simulate the anharmonic IR and Raman
spectra with phonon lifetimes, allowing for an unprecedented theoretical accuracy,
enabling the direct comparison with experiments. I simulate also the optical proper-
ties of the high-pressure hydrogen, including the electron-phonon interaction. By
computing the direct and indirect bandgap closure of phase III, I conciliate the
apparent contradicting scenario revealed by experiments[4, 5].
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Introduction

The high-pressure Hydrogen quest
Controlled nuclear fusion, production of metallic hydrogen, and high-temperature
superconductivity have been listed as the top three open problems of physics[1].

All these issues involve atomic hydrogen and its isotopes. Hydrogen is the
simplest and most abundant of all elements. Under ambient conditions, hydrogen is
found in its molecular phase, thanks to the H-H bond, one of the strongest bonds in
chemistry. 80 years ago, Wigner and Huntington[6] theorized the atomic metallic
state of hydrogen (MH), stable over 25 GPa. MH is predicted to be superconductor[7]
above room temperature.

Until now, MH has been undoubtedly observed only at very high temperatures
(over 3000 K) in shock-wave experiments[8]; the main goal of high-pressure solid-state
physics is to produce stable MH at room temperature (300 K). This can be achieved
using diamond-anvil-cells (DAC).

To simplify the task of reaching metallic hydrogen, Ashcroft proposed to combine
hydrogen with heavier ions[7]. This route led to the discovery of other hydrogen-
based high temperature superconductors: in 2015 Drozdov et. al.[9] synthesized a
new metallic state of a hydrogen compound (H3S), beating the high-temperature
superconductor record with a critical temperature of 203 K (the old record was
held by cuprates for decades and was 70 degrees lower). This record has been very
recently broken in another hydrogen compound (lanthanum hydride) at 250 K[9].
Even more recently, the superconductive temperature of 243 K was observed in
YH9[10].

Pure hydrogen metalization in DAC, however, is more challenging than expected.
Hydrogen at high pressures exhibits a very rich phase diagram, that stabilizes other
pre-metallic phases before undergoing into a true atomic metallic state. Four distinct
molecular solid phases have been observed experimentally (there are claims about
the existence of two other phases[11, 12]). However, full characterization of these
phases is challenging since both X-ray and neutron scattering are noneffective on
high-pressure hydrogen. Thus, the structural information must be inferred from
optical and vibrational spectroscopy (Raman and IR). Furthermore, the interaction
between the sample, the diamonds and the coating (used to suppress the quantum
diffusion of hydrogen into the diamond structure), interferes with the measurements,
hampering their interpretation[13].

Recently, Dias and Silvera[3] claimed to have observed the very first example
of MH in static DAC, at pressures about 495 GPa. However, most of the scientific
community is sceptical about this outstanding result[13, 14, 15]. The reason for
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the scepticism is mainly related to the weakness of the experimental measurements
reported, due to the fragility of the sample.

Under these extreme conditions, experiments alone cannot establish if MH has
been synthesized; a detailed theoretical analysis is required.

Numerical “ab-initio” simulations play a fundamental role in structure prediction
and identification. The atomic structures of the hydrogen phases are elucidated up to
phase II. Good crystalline candidates for phase III and IV have been proposed[16, 17],
while existences of phase V and VI are still under debate. However, anharmonicities
and quantum nuclear zero-point motion are often neglected by computer simulation.
They are essential for correctly grasping the energy of the structures and their
optical/vibrational features. Hydrogen is the lightest atom and, in its molecular
state, it has a strong covalent bond. The high vibrational energy results in a Debye
temperature of more than 5000 K. In this regime, classical simulation cannot give
quantitative correct results, even at room temperature, as fluctuations are strongly
dominated by quantum zero-point motion.

The goal of this thesis is the "ab-initio" reconstruction of hydrogen phase-diagram
and the disclosure of the experimental puzzle of the high-pressure phases.

The experimental phase-diagram

Solid hydrogen has a very rich phase-diagram. At low pressure and ambient temper-
ature, hydrogen is in phase I: a hexagonal closed packet crystal where H2 molecules
rotate freely in the lattice sites. Upon increasing pressure (about 100 GPa) and
decreasing temperature (under 100 K), hydrogen changes into a new molecular
solid phase, phase II, where the rotations of molecules are frozen in an ordered
broken symmetry phase[18]. These two structures have been experimentally dis-
closed. If the pressure increases over 150 GPa, hydrogen transforms into phase III.
This phase is characterized by a strong IR activity and an intense vibron whose
peak position depends drastically on pressure. When increasing temperature from
phase III, hydrogen changes structure to phase IV (above 250 GPa)[19]. Thanks to
computer simulation for systematic structure search, we have very good candidates
for both phase III[16] and phase IV[17]. Recent experiments claim the existence
of a room temperature phase V when increasing further the pressure (at about
330 GPa)[11]. A structure candidate has been proposed recently[20] for this phase.
At low temperature, there are claims about another high-pressure phase VI. However,
different experiments report contradicting results: Diaz and Silvera[2] claim phase
III transforms into another insulator molecular phase VI, distinguishable by the
IR spectrum, at 350 GPa. Eremets et. al.[4] claim that phase III remains stable
until 440 GPa by observing a continuous evolution of the Raman spectrum, but by
measuring the conductivity report the metalization of phase III due to an indirect
gap closure. Loubeyre et. al.[5] measured the IR spectrum of phase III until 430 GPa,
and observed a sharp transition to a metallic state at 415 GPa: a first-order phase
transition to phase VI. A structure has been proposed for phase VI[2, 5] only based
on the theoretical computation of the phase-diagram, but no spectroscopic signatures
pinpoint this identification.

A sketch of the possible diagram of molecular solid hydrogen is reported in
Figure 0.1.
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Figure 0.1. Experimental phase-diagram of high-pressure hydrogen, taken from ref.[12].
The existence of phase VI is still strongly debated.
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Figure 0.2. Raman active vibrations in molecular hydrogen as a function of pressure. The
discontinuity of the vibrational frequencies and kinks in their pressure dependence are
the signatures of phase-transitions. Data from Ref.[19].

Experimental signatures of the phases

The difficulties in studying pre-metallic phases of hydrogen are due to both the
technological challenges involved in pressurizing hydrogen to such extreme conditions
and the measurement of structural properties.

Hydrogen, the lightest element in the universe, has no core electrons. The
resulting X-ray cross-section is small, inhibiting the use of the most successful
technique in crystallography for crystal structure detection. Moreover, the small
size of the sample at high-pressure prevents us from using neutron beams. The only
accessible experimental data are optical and vibrational properties, as Raman and
IR spectroscopy. They are indirectly related to the structure and strongly affected
by anharmonicity. Phase transitions are identified through sharp changes in the
vibrational spectrum (see Figure 0.2, where the Raman spectrum is shown during
the transition from phase I to III and IV) or in optical properties.

However, often experiments describe contradicting scenarios[2, 12, 5, 4].
No direct measurement of the structure is available. We must solve an inverse

problem to correctly assign the crystal structure to the experimental phase. First,
a good crystalline candidate must be provided. Then, optical and spectroscopic
properties are computed and matched with the experiments. Finding good candi-
dates is possible thanks to the random structure searches algorithms, that provide
structures optimizing the enthalpy at fixed thermodynamic conditions. However, it
is computationally very expensive to include quantum nuclear effects in both the
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structure search and the prediction of optical and vibrational properties. Almost
every structure prediction and spectroscopic calculation in the literature relies on
the classical nuclei or the harmonic approximation. This, unavoidably, leads to mis-
matches between experiments and theory and hampers the correct structure-phase
identification.

The goal of this thesis is the development and deploy of new computational
techniques to study high-pressure solid phases of hydrogen considering thermal and
quantum fluctuations of nuclei.

Structure of the Thesis
In this thesis, I present the technique I developed to simulate the phase-diagram of
high-pressure Hydrogen and the results I have obtained.

Each chapter is anticipated by a small introduction and followed by a conclusion
section with the take-home messages. All the details of mathematical demonstrations
are demanded in appendices, while the text contains the logical steps to get to the
result.

Chapters from 1 to 4 are theoretical works, in which I progressively develop all
the theory and algorithms used to study the hydrogen. In chapters 5 and 6, I deploy
the theoretical developments on the high-pressure hydrogen. Each chapter relates to
different problems. However, the theoretical chapters should be read sequentially.
In particular, Chapter 4 is a direct continuation of 3.

In Chapter 1, I introduce the theoretical framework used in the thesis: the
Stochastic Self-Consistent Harmonic Approximation (SCHA). Chapter 2 extends the
SCHA to compute the stress tensor and relax the lattice parameters. In Chapter 3,
I devise a time-dependent theory, based on the SSCHA, that allows simulating out-
of-equilibrium phenomena. In Chapter 4, the time-dependent SCHA (TD-SCHA) is
developed to compute the linear response to periodic perturbations and the Raman
or IR dynamical response functions. All these new theoretical developments are
applied on phase III of high-pressure hydrogen in Chapter 5. There, also a new
way to compute the electron-phonon interaction on optical properties is discussed
and applied to assess the recent discrepancies in experimental data[5, 4]. Chapter 6
exploits all the theoretical advances to compute the whole phase-diagram of high-
pressure hydrogen. In this chapter, I discuss the impact of quantum fluctuations,
isotope and temperature effects. In particular, I focus on the contrasting claims of
the presence of a new phase of hydrogen at very high pressure and low temperature.
The final conclusions are presented in Chapter 7.

All the new theoretical developments introduced are not limited to the study of
high-pressure hydrogen, but are applied on a wide variety of systems, among them,
charge density waves, thermoelectric materials, high-pressure hydrates and muon
spectroscopy. In App. A, I will describe these work that are already (or that are up
to be) published.

The complete details about simulation parameters and procedures to reproduce
the data reported in each figure or table are discussed in App. E.
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Chapter 1

The Stochastic Self-Consistent
Harmonic Approximation

1.1 Introduction

The Stochastic Self-Consistent Harmonic Approximation (SSCHA) is a computational
tool to efficiently study the thermodynamics of nuclear motion, even including their
quantum nature.

The idea behind it is to describe the nuclear probability distribution as a
Gaussian, that includes both quantum uncertainty and thermal motion. This nuclear
probability distribution is optimized to minimize the Helmholtz free-energy. The
method is stochastic: we sample the real energy landscape with random nuclear
configurations, extracted from the probability distribution.

The main advantages include:

• Both quantum kinetic energy and entropy are analytical

• Random configurations to sample the space are extracted from a Gaussian
distribution (fast and easy).

• Symmetries: in contrast with both classical and quantum molecular dynamics,
we can impose crystal symmetries directly on the probability distribution,
reducing a lot the number of degrees of freedom, accelerating convergence and
distinguishing between different phases.

• The free-energy is analytical, no thermodynamic integral needed. This allows
comparing directly free energies of different phases and enables the computation
of the phase-diagram.

• The method is unbiased by the starting point: Since the real energy landscape
is randomly explored, the results of SSCHA calculations do not depend on the
starting point. This is not the case of other approximation, where the energy
landscape is fitted around the starting point[21].

In the next section, I discuss the theoretical derivation of the method, introducing
the fundamental notations used in the thesis.
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The main references of the theoretical derivation of the SSCHA are [22, 23, 24, 25].
In Sec. 1.3, I present a very simple application on a 1D system, showing how

SSCHA performs on highly anharmonic systems.
In Sec. 1.5, I discuss the limits of the current implementation of the SSCHA and

how to overcome them. This last section is part of the original work I published[25].

1.2 Theory

The SCHA is a variational principle on the Bohr-Oppenheimer (BO) free energy.
The nuclear quantum Hamiltonian of a generic system can be defined in the BO
approximation as

H =
N∑

n=1

3∑

α=1

pαn
2

2mn
+ V (~R, {~ai}), (1.1)

where V is the BO energy surface, mn is the mass of the n-th atom, pαn and ~R
(Rαn) are the momentum and position operators of the nuclei in the periodic cell (or
super-cell), N is the number of atoms, and {~ai} are the 3 unit-cell vectors. The α
index identifies the Cartesian coordinate. Fixed the temperature T and the volume
(i.e. the cell vectors {~ai}), the free energy of the ionic Hamiltonian H is:

F = U − TS

F ({~ai}) = 〈H〉ρH + kbT 〈ln ρH〉ρH , (1.2)

where ρH is the equilibrium density matrix

ρH = e−βH

Tr e−βH β = 1
kbT

, (1.3)

and the brackets 〈O〉ρH indicate the average of the observable O according to the
ρH density matrix:

〈O〉ρH = Tr [ρHO] . (1.4)

The equilibrium density matrix satisfies the free energy least principle. Given a trial
density matrix ρH, we can define a free energy functional whose minimum is the
free energy:

F({~ai})[ρH] = 〈H〉ρH + kbT 〈ln ρH〉ρH , (1.5)

F ({~ai}) = min
ρH
F({~ai})[ρH]. (1.6)

The SCHA approximation consists in the restriction of all the possible trial density
matrices to solutions of harmonic Hamiltonians:

H ~R,Φ =
N∑

n=1

3∑

α=1

pαn
2

2mn
+ VΦ, ~R(~R), where (1.7a)

VΦ, ~R(~R) = 1
2

N∑

n=1
m=1

3∑

α=1
β=1

uαnΦαβ
nmu

β
m, and (1.7b)
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uαn = Rαn −Rαn. (1.7c)

ρH = ρ ~R,Φ = e−βH ~R,Φ

Tr e−βH ~R,Φ
. (1.7d)

Here, uαa is the displacement of a-th atom along the α direction with respect to the
central position ~R, and Φαβ

nm is the matrix element of the real space force constant
matrix (we use the bold font to indicate tensors and matrices). This auxiliary
harmonic Hamiltonian is just a mathematical artifact to describe the density matrix.
In this way, we solve the representation problem (the density matrix is not completely
free, it must satisfy all the constraint imposed by a real physical system). Also, we
can exploit some features of the harmonic Hamiltonian: we know how to compute
analytically both the kinetic and the entropy for this density matrix. To this aim, it
is better to recast the total free energy as

F( ~R,Φ, {~ai}) = FΦ + 〈V − VΦ, ~R〉ρ ~R,Φ
, (1.8)

where FΦ is the exact free energy of the auxiliary harmonic Hamiltonian and includes
both the kinetic and entropic contribution of the real free energy, as well as a part
of the potential energy:

FΦ(T ) =
3N∑

µ=1

[~ωµ
2 + 1

β
ln
(
1− e−β~ωµ

)]
, (1.9)

where ωµ and ~eµ are, respectively, the eigenvalues and eigenvectors of the Φ matrix
divided by the atomic masses:

N∑

t=1

3∑

β=1

Φαβ
st√

msmt
eµ
β
t = ω2

µeµ
α
s . (1.10)

Note that the only part of Eq. (1.8) to be computed numerically is the “anhar-
monicity”, i.e. how much the real energy landscape deviates from the auxiliary
harmonic potential inside the nuclear probability distribution. This also drastically
reduces the stochastic noise in energy estimation.

The real free energy can be approximated as the minimum of the free energy
functional (Eq. 1.8) with respect to ~R and Φ:

F( ~R, {~ai}) = min
Φ
F( ~R,Φ, {~ai}), (1.11a)

F({~ai}) = min
Φ, ~R
F( ~R,Φ, {~ai}). (1.11b)

From now on, when we drop one of ~R or Φ symbols, we mean the quantity computed
in the value of that variable that minimizes the free energy. For example, the
equilibrium SCHA density matrix is just ρ.

One of the advantages of using the harmonic Hamiltonian to restrict the ρH
space is that we have a trivial physical interpretation of the minimization parameters.
In fact ~R represents the centroid positions of the atoms, i.e. the anharmonic average
positions as measured by, e.g., diffraction experiments:

~R = 〈~R〉ρ . (1.12)
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In the same way, Φ is related to the thermal and quantum fluctuations and defines the
real space density matrix broadening. Within the harmonic auxiliary Hamiltonian,
the probability distribution function defined by the real space density matrix is a
product of Gaussians:

ρ ~R,Φ(~u) = 〈~u|ρ ~RΦ|~u〉

ρ ~R,Φ(~u) =
√

det (Υ/2π) exp


−1

2
∑

stαβ

Υαβ
st u

α
s u

β
t


 (1.13a)

where

Υαβ
st =

√
msmt

∑

µ

2ωµ
(1 + 2nµ)~eµ

α
s eµ

β
t (1.13b)

and nµ are the boson average occupation number for the µ mode. It is important to
notice that ωµ and ~eµ (Eq. 1.10) are not directly equal to the physical phonons, as
we will explore in more details in Chapter 3. They are constrained to be positive
defined[24] and are related to quantum and thermal fluctuations.

It is possible to define the SCHA force as the derivative of the free energy
(Eq. 1.11a) with respect to the nuclear average positions,

− ∂F
∂Rαn

( ~R, {~ai}) = 〈fαn − fHαn〉ρ ~R , (1.14)

where ~f and ~fH are, respectively, the BO and harmonic forces:

fαn = − ∂V

∂Rαn
(~R, {~ai}) (1.15)

fH
α
n = −

∂V ~R,Φ
∂Rαn

= −
N∑

m=1

3∑

β=1
Φαβ
nmu

β
m (1.16)

To numerically minimize the SCHA free energy it is possible to use the steepest
descent (SD) or conjugate gradient (CG) methods[26], both based on the knowledge
of the gradient of the function to minimize. This can be expressed as a function of
the averages of the BO and harmonic forces[22, 24]:

∂F( ~R,Φ, {~ai}))
∂Φab

= −1
2
∑

cdq

∂Υ−1
cd

∂Φab
Υcq 〈uq

[
~fd − ~fHd

]
〉
ρ ~R,Φ

(1.17a)

∂F( ~R,Φ, {~ai})
∂Ra

= −〈fa − fHa〉ρ ~R,Φ , (1.17b)

The derivation of Eq. (1.17a) and (1.17b) is reported in App. B.1. From now
on, we will adopt a short notation, where one index replaces the 3N Cartesian and
atomic coordinates: a↔ α

s .
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1.3 A practical example
In this section, I apply the SSCHA to a one-dimension particle in an external
potential at T = 0 K, to benchmark the algorithm against the exact solution. At
T = 0 K, the free energy is the ground state energy of the wave function.

H |ψ〉 = E |ψ〉 . (1.18)

The SSCHA consists of minimizing the energy constraining the wave-function to a
Gaussian. The energy functional is (given that |ψ〉 is normalized):

E[|ψ〉] = 〈ψ|H|ψ〉 . (1.19)

The Gaussian wave-function in the position basis is parameterized by the average
position x0 and the variance σ2:

〈x|ψ〉 = 4
√

1
2πσ2 exp

[
−(x− x0)2

4σ2

]
, (1.20)

The Hamiltonian can also be expressed in the position basis:

〈x|H|x′〉 = −δ(x− x′) ~2

2m
∂2

∂x2 + V (x)δ(x− x′). (1.21)

Substituting Eq. (1.20) and (1.21) into (1.19) we have:

E(x0, σ) =
∫ ∞

−∞
dx |ψ(x)|2 ~2

4mσ2

[
(x− x0)2

2σ2 − 1
]
dx+

∫ ∞

−∞
V (x)|ψ(x)|2dx , (1.22)

E(σ, x0) = ~2

8mσ2 +
∫ ∞

−∞
V (x)|ψ(x)|2dx . (1.23)

To solve the SSCHA, we must find the minimum of Eq. 1.23 with respect to σ
and x0. To benchmark the SSCHA, we take a highly anharmonic potential V (x),
like the one in Figure 1.1.

We compare three different methods:

• the Quasi-Harmonic Approximation (QHA)

• the Self-Consistent Harmonic Approximation (SSCHA)

• the numerical solution (Exact diagonalization with Lanczos).

The QHA free energy is the minimum of the V (x) plus the free energy of the
quantum harmonic oscillator obtained by the second-order Taylor series of the BO
potential in the minimum1. The Lanczos is an iterative algorithm performing the
exact (numerical) diagonalization of the Hamiltonian. More details on the Lanczos
algorithm are given in Chapter 4.

The results are reported in Figure 1.1. The SCHA correctly assesses both the av-
erage nuclear position and the ground state energy, even when strong anharmonicities
are present and the real wave-function is not Gaussian.
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Figure 1.1. Example of the 1D anharmonic potential energy landscape. The solid line
is the Born-Oppenheimer energy landscape V (x), the scatter points are the solution
of QHA, SSCHA and Lanczos (exact). The x coordinate of the points represents the
average atomic position in the ground state, while the y coordinate is the ground state
energy. QHA scores badly both in energetic and in the average position. SCHA is very
good, as it almost overlaps with the exact solution. Here we used Hartree atomic units,
with m = 1.
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Figure 1.2. Probability distributions of the nuclear ground-state wave-function. Lanczos
is the exact diagonalization.



8 1. The Stochastic Self-Consistent Harmonic Approximation

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
x [Boh ]

−10

0

10

20

30

40
En

e 
gy

 [e
V]

Bo n-Oppenheime  landscape
Ha monic app oximation
SCHA ene gy landscape
Lanczos ene gy
Lanczos
Static + Ha monic
SCHA

Figure 1.3. The quantum energy landscape. This is defined as the quantum ground state
constraining the average nuclear position. The blue solid line is the classical energy
landscape V (x), the blue dotted curve is QHA approximation around the exact solution,
the red dashed curve is the SSCHA quantum energy landscape while the solid black
curve is the Lanczos (exact diagonalization) curve.

In Figure 1.2, I report the ground-state wave-functions. The SSCHA wave-
function is, by construction, a Gaussian, whether the real wave-function present an
asymmetric shape.

The stability of a structure is related to changes in the free energy under small
atomic displacements. We can define a quantum energy landscape, that can be
used to assess the structural stability, performing a constrained optimization of
the wave-function on the average atomic position using Lagrange multipliers. The
Lagrange multiplier term is equivalent to a uniform electric field on the Hamiltonian
of Eq. 1.23.

The harmonic, SSCHA and exact quantum energy landscapes are reported in
Figure1.3.

From this figure, it can be seen how the quantum energy landscape is more
smooth than the classical BO energy landscape. The SSCHA reproduces very well
the quantum landscape. It is a perfect tool to study structure stability. The harmonic
approximation is not valid around the exact solution and the harmonic frequency is
imaginary (it predicts that the system is unstable).

1An advanced version of Quasi-harmonic consists in optimizing the central position around which
expanding the Taylor series[27], however, it is much computational heavier than the SCHA
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Figure 1.4. SCHA solution using different masses for the nucleus. As can be seen, the
many minima are canceled out by the quantum effects.

The SCHA is a good tool for “ab-initio” structure search, as it can overcome
energy barriers thanks to quantum tunnelling: the quantum landscape is smoother
than the classical one. This result holds even when we pick an irregular V (x) with
many local minima, as in Figure 1.4.

The same result applies to real systems. For example, in LaH10 the quantum
landscape is much more regular than the classical one, and above 130 GPa only
one minimum is present (while the BO landscape has many local minima until
250 GPa)[28] (see Figure 1.5). To regularize the quantum landscape also the lattice
must be relaxed. I introduce the lattice relaxation through SCHA in the next
chapter.

1.4 The stochastic implementation

In the SSCHA, we only need to compute averages of the BO energy and forces on
the Gaussian distribution. This can be done in many ways. The Self-Consistent-
Phonons (SCP)[29] implementation, for example, fits the BO energy landscape with
the polynomial regression. In this way, all Gaussian integrals can be evaluated
analytically, and the SSCHA algorithm does not consume CPU time at all. The
expensive computation is, indeed, the high-order force constants tensors required by
the polynomial fit.
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Figure 1.5. Classical vs quantum energy landscape in LaH10. Many local minima of the
classical BO surface disappear when quantum effects are turned on.
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Another clever way to perform these averages is a Monte Carlo approach. We
can extract very quickly Gaussian randomly distributed configurations, without
any need of a Markov chain or a thermalization process. In this approach, each
integral is evaluated numerically and comes with a controlled stochastic error that
can be improved systematically by increasing the number of configurations. With
this approach, no approximation is made on the BO landscape.

Indeed, we pay the improved accuracy on the BO landscape with a higher
computational cost: we cannot solve the SSCHA equations analytically, and we must
recompute the averages after each minimization step. This involves, in principle, the
extraction of a new ensemble and the computation of energies and forces. This is a
very heavy procedure.

However, we can exploit some tricks from the Monte Carlo community, as the
importance sampling. We can recycle the ensemble computed at a previous iteration
by changing the probability distribution.

Let me introduce the concept with a one-dimensional distribution: we must
compute the average of the observable o on the distribution p, but we have generated
an ensemble distributed according to q. We can recast the average as:

〈o〉p =
∫
dxo(x)p(x) =

∫
dxo(x)p(x)

q(x)q(x).

Then, this is equivalent to the average of the q extracted ensemble:

〈o〉p = 〈op
q
〉
q

.

With this technique, we can recycle the ensemble in following iterations, limiting the
number of ab-initio calculations. If we express this integral with the Monte Carlo
summation, p/q is the weight ρi of the configuration.

In the SSCHA this is equal to:

ρi =
ρ ~R,Φ(~Ri)

ρ ~R0,Φ0
(~Ri)

, (1.24)

where, Φ0 and ~R0 are the parameters used to generate the original ensemble. The
averages can be computed as:

〈O〉 ~R,Φ =
∑N
i=1 ρiO(~Ri)∑

i ρi
. (1.25)

If the two probability distributions p(x) and q(x) are too different, then the
stochastic average will be affected by a large error.

In particular, we can define the effective number of configurations Neff as
the number of configurations that would produce the same stochastic error if the
ensemble was generated with the optimal distribution. Therefore, we can define the
effective sample size Neff as Ref.[30]

Neff = N

(∑N
i=1 ρi

)2

∑N
i=1 .ρ

2
i

. (1.26)
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Therefore, we can reuse the ensemble until Neff/N is greater than a given
threshold η.

The full SSCHA algorithm is represented in the flowchart of Figure 1.6.

1.5 The free-energy condition problem

In Sec. 1.3, we applied SSCHA on a one-dimensional toy model, where a trivial
implementation with random moves solves the problem quickly.

However, real systems are not one dimensional; we have 3N degrees of freedom in
the centroid position (N is the number of atoms in the unit cell) plus (3Nsc)(3Nsc +
1)/2 degrees of freedom for the Gaussian covariance matrix (Nsc is the number of
atoms in the super-cell). The number of degrees of freedom of centroids depends
only on the atoms on the unit cell (not the supercell) thanks to the translational
symmetries. For real systems, it is essential to have an efficient minimization
algorithm.

In Eq. (1.17a) and 1.17b, we computed the gradients of the free energy. Any
gradient-based technique can be used for the minimization. The performances of
a gradient-based algorithm depend on the spectrum of the Hessian matrix of the
landscape close to the minimum. The convergence is more difficult if there are both
steep and flat valleys. Gradient methods optimize fast steep directions but they
are inefficient on flat ones, especially if stochastic noise is present. A schematic
representation of a 2D ill-conditioned surface is reported in Figure 1.7.

The condition number is a quantitative measurement of the steepest and the
flattest direction. It is the ratio between the highest and smallest eigenvalue (in
modulus) of the Hessian matrix around the minimum.

C = maxλ |λ|
minλ |λ|

≥ 1 (1.27)

The number of iterations needed to approximate the solution to a given threshold
is proportional to the condition number for the steepest descent and its square root
for the conjugate gradient[31].

Nsdes ∼ C Ncgrad ∼
√
C

Indeed, the optimal value for the condition number is 1.
The condition number of the SSCHA can be computed analytically for a perfectly

harmonic system. The details of the calculation are reported in appendix B.2[25].
The condition number is:

lim
T→0

CΦ =
(
ωmax
ωmin

)3
lim
T→∞

CΦ =
(
ωmax
ωmin

)4
, (1.28)

where ωmax/min are the highest/lowest harmonic frequencies of phonons and T is
the temperature. Therefore, SSCHA is particularly challenging in molecular crystals,
where the typical vibrational energy of covalent bonds is two or more orders of
magnitude greater than inter-molecular interactions. This is also a problem in
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Figure 1.6. Flowchart of the SSCHA implementation. The red box indicates the most
expensive computational part of the SSCHA: the calculation of forces and energies for
the configurations.
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Figure 1.7. Minimization of an ill-conditioned problem. Here, I show the level curves
of the 2D function to be minimized. The green path is the best path followed by the
steepest descent, that is much worse than the optimal path.

materials that are close to structural instability. In correspondence of the second-
order phase transition, the phonon mode associated with the order parameter
becomes imaginary passing through 0, introducing a divergence in Eq. (1.28).

In high-pressure phases of hydrogen, for example, we have:

Chyd(T = 0 K) =
(

5000 cm−1

100 cm−1

)3

= 125000� 1,

with this big condition number, there is no surprise that the SSCHA has been applied
in past only to very small or simple crystals with many symmetries.

Another numerical issue of the SSCHA is the possibility of incurring in nonphys-
ical run-away solutions during the minimization. In fact, Eq. (1.17a) is stochastic
and the dynamical matrix is updated with following scheme:

Φ(n+1) = Φ(n) − λ∇ΦF( ~R,Φ, {~ai}) + d(n), (1.29)

where d(n) is 0 for steepest descent algorithm, or accounts for the gradient at the
previous step in the conjugate gradient. The Φ matrix must be positive definite,
otherwise, the density matrix diverges. However, there is no way to guarantee
that Φ(n+1) is positive definite for a finite step size λ. If this happens during a
minimization, the simulation must be discarded and the ensemble increased to reduce
the stochastic noise.

1.5.1 Solution to the condition problem

Here, I discuss the two workarounds that I implemented to solve both the ill-
conditioning and the runaway solutions. Thanks to these improvements, now the
SSCHA can be applied efficiently in all crystals[25, 32, 33, 34, 35, 28, 36].

The simplest solution to get rid of runaway solutions is a nonlinear change of
variables that constrains Φ to be always positive definite. For example, we optimize
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2n√Φ instead of Φ.

Φ(i) =
(

2n√Φ(i)
)2n

We analyze two cases: n = 1 (square root) and n = 2 (fourth root). The gradient
of F with respect to

√
Φ is obtained from the chain rule:

∇√ΦF =
√

Φ∇ΦF +∇ΦF
√

Φ (1.30)

The
√

Φ matrix is updated with the gradient descend:
√

Φ(n+1) =
√

Φ(n)
− λ∇√ΦF + d(n), (1.31)

In this way, at each step of the minimization, the Φ matrix is defined as:

Φ =
√

Φ ·
√

Φ, (1.32)

and it is positive definite by construction. This definitively solves the problem of
nonphysical runaway solutions. Moreover, the landscape in

√
Φ is distinct from the

Φ one: the condition numbers are different. We can prove (see appendix B.3) that
the condition number for the square root is:

lim
T→0

C√Φ =
(
ωmax
ωmin

)
lim
T→∞

C√Φ =
(
ωmax
ωmin

)2

For the hydrogen we have:

Chyd,
√

Φ(T = 0 K) =
(

5000 cm−1

100 cm−1

)
= 50� Chyd,Φ(T = 0 K)

This is an acceptable condition number (three orders of magnitude better than the
original). it can be further improved using the fourth root. The implementation is
straightforward:

∇ 4√ΦF = 4√Φ∇√ΦF +∇√ΦF
4√Φ, (1.33)

4√Φ(n+1) = 4√Φ(n)
− λ∇ 4√ΦF + d(n). (1.34)

Φ(n+1) = 4√Φ(n+1)
· 4√Φ(n+1)

· 4√Φ(n+1)
· 4√Φ(n+1) (1.35)

In this case the condition number is:

lim
T→0

C√Φ = 1 lim
T→∞

C√Φ =
(
ωmax
ωmin

)

This completely solves the problem for T = 0 K and strongly improves the finite
temperature case.

We can do even better. Thanks to the analytical guess on the hessian matrix (see
App. B.3), we can modify the gradient direction to point directly to the minimum,
compensating for the different steepness of the dimensions. This is a second-order
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Newton’s method for optimization. The minimum position of a quadratic function
is:

Φmin = Φ0 −A−1
Φ ∇ΦF ., (1.36)

where AΦ is the hessian matrix in the Φ variable. With this algorithm we solve
any quadratic problem, no matter the condition number, in one step (following the
blue path in Figure 1.7). Indeed, this method can be combined with the change of
variables:

4√Φmin = 4
√

Φ0 −A 4√Φ∇ 4√ΦF .

In this way, we solve the condition problem for any temperature and avoid
runaway solutions at the same time.

1.6 Conclusions
In this chapter, I introduced the SCHA theory and its numerical implementation.
This theory is based on the free energy variational principle.

I showed how well the SSCHA reproduces the total energy, average nuclear
positions and structural stability, even in anharmonic systems with strong quantum
fluctuations.

Since the SSCHA does not rely on a particular fit of the BO energy landscape,
its result is equally valid even if the solution is very far from the original guess.
Moreover, all the errors in the BO sampling are only due to the stochastic sampling.
They are controlled and can be progressively reduced.

This is a key ingredient to search for new structures including quantum fluctua-
tions or relax an unstable structure to see where we fall in. In these cases, the final
result can be very far from the starting guess.

In the last section, I showed the SSCHA is affected by unphysical runaway
solutions. Moreover, the free energy landscape is ill-conditioned. These issues
prevented its application in systems with many degrees of freedom. Thanks to the
combination of a nonlinear change of variables and the preconditioning, we solved
both, enabling for the first time the application of SSCHA to more complex systems,
as high-pressure molecular phases of hydrogen.
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Chapter 2

Pressure and variable cell
relaxation within Stochastic
Self-Consistent Harmonic
Approximation

2.1 Introduction
In this chapter, I derive an equation for the pressure and the stress tensor within the
SCHA theory. I show how the full stress tensor can be computed after a standard
SSCHA calculation with no additional computational effort. This is in contrast
with what is usually done in other approximations, like the quasi-harmonic (QHA),
where one must compute the stress using a finite difference numerical approach.
The efficient evaluation of the stress enables the relaxation of the lattice degrees of
freedom even when thermal and quantum fluctuations cannot be neglected.

I present an application computing the thermal expansion of common ice, com-
paring the SSCHA with the QHA.

This novel result has already been applied in numerous works[25, 28, 32, 33, 35]
and it is of great importance to study high-pressure hydrogen.

2.2 Pressure and stress tensor
The stress tensor is the free energy response to strain perturbations. The strain is a
deformation of the lattice that affects all the atoms in the system.

The most simple strain is the isotropic volume expansion/contraction. The free
energy response to an isotropic volume contraction is the pressure:

P = −dF
dΩ , (2.1)

where F is the Helmholtz free energy per unit cell, P is the pressure and Ω is the
volume of the unit cell. Indeed, more general strains are possible; for example, one
can expand the volume only along one Cartesian axis, or change the angle between
two lattice parameters. All the possible infinitesimal strains that excludes rotations
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can be represented by a symmetric 3x3 dimensionless tensor ε. A vector in 3D space
~r is strained into ~r′ to ε as follows:

r′a = ~ra +
∑

b=x,y,z
εabrb (2.2)

The change of the free energy with respect to any possible strain is a 3x3 tensor:

Pαβ = − 1
Ω
dF

dεαβ
, (2.3)

here, Pαβ is the “stress tensor”.
A system in equilibrium at constant pressure (that is the condition of many

experiments) must have an isotropic stress tensor. The pressure and the stress are
tightly related each other. In fact, the pressure is equal to the average of the diagonal
elements of the stress:

P = 1
3 (Pxx + Pyy + Pzz) (2.4)

The stress indicates what strain must be applied to the lattice to reduce the free
energy. However, while the Helmann-Feynman theorem provides a way to compute
the stress efficiently from ab-initio DFT calculations, the vibrational contribution of
the stress is usually computed using the finite difference approach, i.e. computing
the free energy for any possible strain. This is the standard procedure for the QHA
(Quasi Harmonic Approximation). It presents several issues, for example, it requires
a highly converged result to dissect different free energies of similar systems. This is
particularly annoying for the SSCHA, as a stochastic error affects the free energy
and huge ensembles are required.

2.3 The SCHA stress-tensor equation
Since the SCHA, as the DFT, is a variational technique, we can exploit the Helmann-
Feynman theorem to compute the derivative of the free energy in the minimum.

The stress tensor is defined as:

Pαβ( ~R, {~ai}) = − 1
Ω
∂F( ~R, {~ai})

∂εαβ

∣∣∣∣∣
ε=0

, (2.5)

where Ω is the volume of the system and the strain tensor εαβ identifies a generic
deformation in which both lattice parameters and centroid positions are affected:

a′i
α = ai

α +
3∑

β=1
εαβai

β, (2.6a)

R′αn = Rαn +
3∑

β=1
εαβRβn. (2.6b)

The final result can be divided into two main contributions (see Appendix C for the
proof):

Pαβ( ~R, {~ai}) = PHαβ( ~R, {~ai}) + PFLC
αβ ( ~R, {~ai}), (2.7)
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where the PHαβ( ~R) is the static contribution, i.e. the stress tensor without quantum
and thermal fluctuations, while PFLC

αβ accounts for fluctuations.

PHαβ(~R, {~ai}) = − 1
Ω
∂V (~R, {~ai})

∂εαβ

∣∣∣∣∣
ε=0

, (2.8a)

PFLC
αβ ( ~R, {~ai}) = 〈PHαβ(~R, {~ai})〉ρ ~R

−PHαβ( ~R, {~ai})−
1

2Ω

N∑

s=1
〈
(
fH

α
s u

β
s + fH

β
su

α
s

)
〉
ρ ~R
,

(2.8b)
Eq. (2.8) requires the the atomic forces fαs (~R, {~ai}) and the electronic stress tensors
PHαβ(~R, {~ai}) for each ionic displacement ~R in the ensemble distributed according to
ρ ~R(~R). These parameters are first derivatives of the ground state electronic energy
and can be evaluated in the same DFT calculation.

Computing Eq. (2.8) is very fast and it does not add any extra computational
cost to a SCHA minimization. In fact the most CPU expensive part of a SCHA
run is the ab-initio calculation of V (~R, {~ai}), fαs (~R, {~ai}) and PHαβ(~R, {~ai}) for each
configuration. All these quantities are needed also by the SCHA minimization.

2.4 Application: Thermal expansion of common ice

In this section, I will show how the pressure can be used to estimate the thermal
expansion of common ice and how the SCHA outperforms the QHA in this system
compared with the experiments.

Thanks to Eq. (2.7), it is possible to compute the pressure as a function of
temperature at a fixed volume with a single SCHA calculation.

As an application, I will compute the thermal expansion of ice. This is a very
interesting problem: the ice thermal expansion is anomalous (negative) for T ≤ 80 K.
This anomalous expansion is a pure quantum effect, and is not reproduced by
classical molecular dynamics. Moreover, the thermal expansion at higher temperature
T ≥ 150 K is also affected by entropic terms related to the topological defects that
may arise due to high mobility of the hydrogen ions. So, up to now, all the failures
in reproducing experimental data at high temperature by using the QHA have
been addressed to entropic effects that are very difficult to simulate. Here, I show
how QHA itself fails in describing the high temperature thermal expansion of ice
compared to the SSCHA. This finding resizes the real impact of topological disorder
in the ice crystal in the thermal expansion. The result of the SSCHA simulation,
compared with both the QHA and the experiments, is reported in Figure 2.1.

The experimental data[37], measured at constant pressure, are converted to
constant volume using the experimental bulk modulus[37].

While the QHA seems to reproduce well the low-temperature behavior, it fails in
the high-temperature regime. This has been ascribed[38] to the disorder induced by
water molecule dissociation occurring in common ice, that is taken into account by
neither the QHA nor the SSCHA. However, the SCHA overlaps almost completely
with the experimental points, indicating that the discrepancy with QHA is more
likely due to not properly accounting for anharmonicity.
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Figure 2.1. Thermal expansion of ice XI, a prototype model of common ice, at fixed
volume. Experimental data are from ref.[37]. Error bars are the stochastic uncertainty
of the SCHA calculation. Different markers for the SCHA points are obtained with the
reweighing from different temperatures. Details of the calculations parameters reported
in App. E.1. Here TSG is the temperature used for the importance sampling for each
simulation, for more details see Ref.[25].

2.5 The constant pressure relaxation

The direct computation of the stress tensor opens the way to constant pressure
simulations. Here, the Helmholtz free energy must be replaced by the Gibbs free
energy, that is obtained by a Legendre transform:

G(P ∗) = min
{~ai}

[F({~ai}) + P ∗Ω({~ai})] (2.9)

where P ∗ here is the target pressure
Since we know how to derive the Helmholtz free energy (and the volume) with

respect to the strain, we can minimize the right-hand side of Eq. (2.9). In particular,
the strain that we must apply is proportional to:

εxy = A [ΩPxy − P ∗δxy] (2.10)

where A is the strain step. The convenient way is to use a guess of the static bulk
modulus B0 of the material to determine the best strain size to converge in one
iteration.

A = 1
3ΩB0

B0 = ΩdP
H

dΩ . (2.11)

Then, if convergence is not achieved in one step, A can be updated using standard
minimization algorithms like line-optimization.

We can formulate an iterative algorithm for the constant pressure SSCHA:
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1. Perform a SCHA relaxation at fixed volume.

2. Compute the stress Pxy using Eq. (2.3).

3. Compute the optimal strain using Eq. (2.10)

4. Update the lattice vector and inner position according to Eq. (2.6):


~a′1
~a′2
~a′3


 =



~a1
~a2
~a3


 ·

[
I + εT

]
. (2.12)

5. Repeat from step 1 until convergence is achieved.

2.5.1 Constant volume cell relaxation

The ability to run constant pressure simulations is a big step forward. However,
in many cases, it is preferable to deal with constant volume quantities. In DFT
calculations, the pressure is always affected by a small convergence error due to
the use of a finite cutoff for the basis set, the K point sampling, and the threshold
for self-consistency, while the volume is known with arbitrary precision, as it does
not change during the self-consistent iterations. To compare quantities, it is more
precise to deal with a constant volume between different simulations rather than
constant pressure, as it is more likely to exploit error cancellations.

However, even a constant volume calculation needs to optimize the lattice
parameters, so we can exploit the cell relaxation algorithm also in this case. To
redefine the algorithm for the constant volume and variable cell we need to apply
the fixed volume constrain to Eq. (2.10).

A strain that does not change the volume must have a zero trace. Since zero
trace symmetric matrices form a linear space, we can simply project Eq. (2.10) into
the subspace of symmetric matrices with a zero trace.

It is easy to prove that this is equal to replace P ∗ with P in Eq. (2.10), where
we recall that

P = 1
3
∑

α

Pαα.

It is still possible that the volume changes a bit, as the zero trace strain preserves
the volume only if the strain step is infinitesimal. To preserve the volume even
with finite steps, we can further force the volume conservation after the new lattice
vectors have been computed (2.12), multiplying each lattice vector by:

[Ω∗]1/3

det



~a′1
~a′2
~a′3







−1/3

,

with Ω∗ being the target (original) volume.
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Harmonic Approximation

2.6 Conclusions
In this chapter, I introduced the equations to compute the stress tensor. This
method does not require any extra computational cost, as all the needed ingredients
are shared with the SSCHA minimization. I applied the stress equation to simulate
the thermal expansion of common ice, showing an important difference with the
quasi-harmonic approximation when compared with experiments.

In the last sections, I introduced the constant pressure and constant volume full
relaxation, that includes the lattice parameters.

The lattice relaxation is essential to see the relative stability of two structures,
especially in presence of a second order phase transition. In fact, if we are relaxing
a low symmetry phase, with a cell distortion, we are not able to recover a higher
symmetry if we do not relax also the lattice (allowing, for example, a monoclinic
lattice to become a orthorombic or hexagonal). This is exactly what happens in
LaH10, where the monoclinic distorted phases of groups C/2 or R−3m, local minima
in the BO surface, must change their lattice parameters in order to recover the
orthorombic symmetry Fm− 3m[28].
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Chapter 3

Dynamical theory for the
Self-Consistent Harmonic
Approximation

3.1 Introduction

The self-consistent harmonic approximation (SCHA) is a static theory. It is a good
technique to compute equilibrium quantities. However, many interesting physical
properties are dynamical or arise from out-of-equilibrium processes, as transport.
This is the case of many emerging fields. In photochemistry, for example, very short
(few femtoseconds) laser pulses are used to shock the sample, inducing a chemical
reaction that can result in a structural deformation[39]. Typical examples are the
retinal isomerization photodynamics[40] (the mechanism through which photons
interact with the retina triggering the mechanism of vision), the intermolecular
vibrational motion in liquid CS2 [41] or the photoinduced dynamics in the green
florescence protein [42].

Other important systems that cannot be studied with equilibrium simulations
are those close to a second-order phase transition. The response function diverges
close to the critical point, leading to strong fluctuations. Experiments in this regime
are very interesting, as the observed photoinduced superconductivity above Tc in
YBa2Cu3Ox[43] and organic K3C60[44]. These are cases where the experimental
probe induces a strong deviation from the equilibrium configuration that is not
sampled through an equilibrium simulation.

Moreover, even when the probe does not bring the system out of equilibrium,
phonons are dynamical properties, that are generated and measured during the
interaction of the atoms with an external field that changes in time. Therefore, to
study the vibrational spectra emerging from IR or Raman experiments, dynamics
must be taken into account.

In this chapter, I will extend the SCHA theory, formulating it on the Dirac least
action principle, to obtain a time-dependent equation of motion for the nuclear
wave-function.

This enables the application of SSCHA to out-of-equilibrium problems and
paves the way to the formulation the Raman/IR response functions in the SSCHA
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framework (that is derived in the next chapter).

3.2 The stationary action principle

In this section, I present the stationary action principle to derive the quantum
equation of motions. The Schrödinger equation can be derived by imposing that
the wavefunction is a stationary solution of the Dirac action. The Dirac action is a
functional of the time dependent wavefunction, defined as:

A[ψ(t)] = 1
t1 − t0

∫ t1

t0
dt 〈ψ(t)|

[
H − i~ d

dt

]
|ψ(t)〉 (3.1)

Deriving the Schrödinger equation is quite easy from this expression. We can do
the variation in δ |ψ(t)〉 and δ 〈ψ(t)|:

δA = 1
t1 − t0

∫ t1

t0
dtδ 〈ψ(t)|

[
H |ψ(t)〉 − i~ d

dt
|ψ(t)〉

]
+

+ 1
t1 − t0

∫ t1

t0

[
〈ψ(t)|H (δ |ψ(t)〉)− i~ 〈ψ(t)|

(
δ
d

dt
|ψ(t)〉

)]
(3.2)

The last term of Eq. (3.2) can be integrated by parts.

δA = 1
t1 − t0

∫ t1

t0
dtδ 〈ψ(t)|

[
H |ψ(t)〉 − i~ d

dt
|ψ(t)〉

]
+

+ 1
t1 − t0

∫ t1

t0

[
〈ψ(t)|H (δ |ψ(t)〉) + i~

(
d

dt
〈ψ(t)|

)
δ |ψ(t)〉

]
, (3.3)

where we imposed the condition:

〈ψ(t1)| (δ |ψ(t1)〉)− 〈ψ(t0)| (δ |ψ(t0)〉) = 0.

This is true in periodic motions (i.e. |ψ(t0)〉 = |ψ(t1)〉) or in presence of an adiabatic
perturbation.

Imposing δA = 0 in Eq. (3.3) we get two independent equations:

H |ψ(t)〉 − i~ d
dt
|ψ(t)〉 = 0 (3.4)

〈ψ(t)|H + i~
d

dt
〈ψ(t)| = 0. (3.5)

Here, 〈ψ(t)| is the complex conjugate of |ψ(t)〉, and the equation that solves |ψ(t)〉
is exactly the Schrödinger equation.

If the wave-function does not depend on time, the time derivative in Eq. 3.1
disappears and the least action becomes the least energy principle.
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3.2.1 The SCHA ansatz for the wavefunction

In the previous section, we found that the Dirac action is stationary if the |ψ〉 solves
the Schrödinger equation. We can use this principle to construct a variational theory.
We can make the same ansatz on the wavefunction as in the static SSCHA: the
wavefunction is a Gaussian during the whole time evolution.

ψ(~R, t) = 4

√
det Υ(t)

2π exp
{
−1

4
∑

ab

Υab(t)[Ra −Ra(t)][Rb −Rb(t)]
}
·

· exp
{
i
∑

a

Qa(t)[Ra −Ra(t)] + i
∑

ab

Cab(t)[Ra −Ra(t)][Rb −Rb(t)]
}
.

(3.6)

This wave-function reproduces the same density probability as Eq. (1.13a),
however, it includes twice as many degrees of freedom, as it contains the phase
information ~Qa(t) and C(t).

This information is necessary when dealing with dynamics. Let us take the
simple one dimensional example and compare two Gaussians with a different phase:

ψ1(x) = 4
√

1
2πσ2 e

− (x−x0)2

4σ2 (3.7)

ψ2(x) = 4
√

1
2πσ2 e

iqxe−
(x−x0)2

4σ2 (3.8)

Both of them share the same density probability ρ(x) = |ψ(x)|2, however, their free
time evolution is very different. The average position of ψ2 will change in time, as it
has a positive q momentum, while ψ1 will not move.

The phase modulation plays the role of the velocity. A uniform phase modulation,
like the one of ψ2 in Eq. (3.8), leads to a drift of the wave-function without deforming
it, while more complex x dependence of the phase deforms the wave-function envelope.

In particular, the quadratic dependence in Eq. (3.6), parameterized by the matrix
C, changes the variance of the Gaussian.

This is the most general wave-function whose free dynamic remains Gaussian.
For the reasons just discussed, I will refer to ~Q as the momentum of the wave-

function, and C as the “chirp”, in analogy to the well studied “chirp” in signal
propagation[39].

3.3 The SCHA equation of motion

To derive the motion of our trial wave-function, parameterized by ~R, ~Q, Υ and C,
we must insert the ansatz of Eq. (3.6) into the Dirac’s action Eq. (3.1) and look for
the dynamical equations that make the action stationary.

The details of the calculation are reported in App. D.4.
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The final equations we get are:




−〈fa〉+ ~Q̇a = 0

−~Ṙa + ~2Qa
ma

= 0

∂F( ~R,Φ, {~ai})
∂Φab

+
∑

cde

2~2

mc

∂Υ−1
de

∂Φab
CcdCce + ~

∑

cd

Ċcd
∂(Υ−1)cd
∂Φab

= 0

−~
∑

cd

∂(Υ−1)ab
∂Φcd

Φ̇cd + 4~2

ma

∑

c

(Υ−1)bcCca = 0

. (3.9)

To simplify the equations, Eq. 3.9 describe the time evolution for Φ instead of Υ.
This Φ matrix is the same from the static theory, uniquely liked to Υ. This is a
convenient choice, as we will see in the next section, it makes possible to define a
time-dependent non-linear Schrödinger equation that our wave-function follows in
analogy to what it is done for the static case, and also to keep the same degrees of
freedom as the static case. The term ∂F( ~R,Φ,{~ai})

∂Φab is the static gradient in Eq. (1.17a).
The first two equations are exactly Newton’s equation of motion. If we derive

the second equation and substitute the first into the second we get:

maR̈a = 〈fa〉 . (3.10)

Here, 〈fa〉 is the average force that acts on the a-th atom in the corresponding
Cartesian coordinate1.

This is a very elegant way also to see how the Newton’s dynamic law emerges
naturally from quantum mechanics.

The last two equations determine how the spread of the wave-function depends
on time. It is interesting to notice how this is proportional to the static free energy
gradient, in a similar way as the centroid positions ~R are related to their static
gradient (the average of the force). These dynamical equations contain inertia.

We can manipulate them a bit: in both cases the time derivative is row by
column multiplied by the same super-operator. This means that, if we are able to
invert the super-operator, we can write an explicit equation for both. In particular
we can multiply both equations times

∂Φab

∂(Υ−1)hk
and we get:

Ċhk = −
∑

ab

1
~

∂Φab

∂(Υ−1)hk
∂FSCHA
∂Φab

−
∑

c

2~
mc
CkcCch (3.11)

In the same way it is possible to invert also the last equation:

Φ̇hk =
∑

abc

∂Φab

∂(Υ−1)hk
4~
ma

Υ−1
bc Cca (3.12)

1Here, I am using compression notation, where both atomic and Cartesian coordinates are
written with one index for brevity.
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Moreover, we can define the Λ tensor as:

Λabcd = 1
2
∂(Υ−1)cd
∂Φab

(3.13)

The explicit calculation of Λ is computed in App. D.1, where it is also proved that
it is the same tensor introduced in [24, 25].

Then the static free energy gradient is (Eq. 1.17a)

∂F( ~R,Φ, {~ai})
∂Φab

= −
∑

cdn

ΛcdabΥcn 〈un(fd − fHd )〉 (3.14)

Then the chirp equation simplifies a lot:

Ċhk = 1
2~
∑

a

Υha 〈ua∆fk〉 −
∑

a

2~
ma
CkaCah (3.15)

where ∆fk = fk − fHk and fHk = −
∑
b Φkb(Rb − Rb) in analogy with what

introduced for the static theory.
And the Φ equation becomes:

Φ̇hk =
∑

abc

Λ−1
abhk

2~
ma

Υ−1
bc Cca (3.16)

These equations are explicit and compact and can be evolved by a symplectic
algorithm, as a leap-frog.

A useful check of the consistency of the equations is that, if we insert the static
solution inside the equation of motion, we get a stationary point:

~̇R = 0 ~̇Q = 0 (3.17)
Ċ = 0 Φ̇ = 0 (3.18)

3.4 The dynamical effective Hamiltonian
In this section, I will show how the equations of motion introduced in Sec. 3.3 are
equivalent of solving an effective time-dependent self-consistent Schrödinger equation.
This puts the dynamical SCHA in the same framework as dynamical Hartree-Fock
or Time-Dependent Density Functional Theory (TDDFT), and justifies the name of
Time-Dependent Self-Consistent Harmonic Approximation (TDSCHA).

A self-consistent time dependent Schrödinger equation has the following form:

i~
d

dt
|ψ〉 = H[|ψ〉] |ψ〉 (3.19)

Where H[|ψ〉] is a non-linear operator, functional of the wave-function itself.
It is not surprising that the new Hamiltonian is a simple extension of the static

SCHA effective Hamiltonian:

H[|ψ〉] =
∑

a

p2
a

2ma
+ 1

2
∑

ab

〈 d2V

dRadRb
〉 (Ra−Ra)(Rb−Rb)−

∑

a

〈fa〉 (Ra−Ra), (3.20)
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The only difference with the static effective Hamiltonian is the presence of a linear
term in (~R− ~R): ∑

a

〈fa〉 (Ra −Ra) (3.21)

This term was not necessary in the static case, as it is always zero at equilibrium,
however, here we are describing an out-of-equilibrium system and it must be taken
into account.

In order to prove Eq. (D.73), we must substitute it in Eq. (3.19) and substitute
the wave-function with our trial wave-function defined in Eq. (3.6).

The detailed calculation is reported in App. D.5. This procedure leads to the
same equations of motion derived from the least-action principle (Eq. 3.9).

3.5 Conclusions
In this chapter, I derived a dynamical formulation of the SCHA, based on the Dirac
least action principle.

The wave-function is constrained to be a Gaussian whose parameters depend
explicitly on time. The evolution of these parameters has been derived from the
Dirac least action principle.

This new theory is analogue to the time-dependent Hartree-Fock or density
functional theory, as it can be obtained by a self-consistent time-dependent Scrödinger
equation.

This theory allows recovering classical physics from quantum mechanics, as the
dynamics of the average position of the Gaussian wave-function follows a Newton-like
equation:

mR̈a = 〈fa〉 ,

where the force f is averaged over the time dependent wave-function.
The new theory is expected to correctly describe out-of-equilibrium dynamics, as

the response of a system close to a second order phase-transition, where the linear
response diverges.

An important application is illustrated in the following chapter, where the
dynamical equations are linearized with respect to a small perturbation, to obtain
the dynamical Green functions.
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Chapter 4

The dynamical linear-response
theory

4.1 Introduction

In the previous chapter, we derived the TD-SCHA equations. They can be used
to study the most general out-of-equilibrium system. In this chapter, we use the
dynamical equations to derive the linear response to time-dependent probes. This
is very useful to simulate dynamical properties like IR and Raman spectra. This
paves the way for comparing the simulations with experiments even when strong
anharmonicity and quantum fluctuations are present. In particular, the TD-SCHA
describes how excited vibrational quasiparticles interact and scatter, leading to finite
lifetimes and energy shifts. This is the reason why the ωµ frequencies, obtained as
eigenvalues of the force constants matrix Φ, are not the energy of the anharmonic
phonons (see Eq. (1.10)). They do not include the dynamical effects, like finite
lifetimes and the energy shifts resulting from the Kramers–Kronig relations.

To emphasize this point, in Sec. 4.2 I introduce a simple anharmonic toy-model,
showing how phonon-phonon scattering introduces a finite lifetime when dynamical
effects are considered. Then, I apply perturbation theory on the TD-SCHA equations
and derive the linear response. I prove that this coincides with the dynamical ansatz
formulated for the SCHA by Bianco et. al.[24]. In Sec. 4.5, I derive a new algorithm
for the computation of the dynamical results, based on the Lanczos continued
fraction. This new algorithm outperforms the one described in[24] and accounts
also for the four phonon scattering. This enables the study of new systems, like
hydrogen, where four phonon scattering terms cannot be neglected.

Moreover, I prove that it is possible to correctly recover also the static limit,
providing a new way for efficiently computing the order parameters of second-order
phase-transitions[24].

4.2 Anharmonic phonon scattering

In this section, I show how the phonon-phonon scattering is responsible for both the
shift and broadening of the vibrational spectrum.
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We study a simple system made by two phonons that we probe with an external
perturbation of finite frequency ω. This perturbation interacts with the two phonons
exciting both of them. They then recombine and we probe the resulting reaction of
the system.

This process is represented by the Feynman diagram in Figure 4.1.

Figure 4.1. Dynamical anharmonic three phonon scattering diagram.
.

So our system is described by a toy potential

V (~u) = 1
2
∑

ab

(2)
Φ̃ ab uaub + 1

6
∑

abc

(3)
Φ abc uaubuc (4.1)

Here we introduce the quantities:

(2)
D̃µν=

∑

ab

(2)
Φ̃ ab e

a
µe
b
ν√

mamb
= ω2

µδµν (4.2)

(3)
Dµνη=

∑

abc

(3)
Φ ab e

a
µe
b
νe
c
η√

mambmc
(4.3)

Since we know the solution for the harmonic potential, we can treat
(3)
D as

the anharmonic perturbation, and deal with it using Feynman diagrams. The
unperturbed result is the following response function (see App. D.2):

G̃ab(ω) = 1

ω2−
(2)
D̃ab

= δab
ω2 − ω2

a

(4.4)

So it has poles at ±ωa/b, that are the two frequencies of our toy model system.
The harmonic Green function has no imaginary part and phonons have an infinite
lifetime.

The diagram reported in Figure 4.1, the bubble, is the lowest order non zero pro-

cess that involves the perturbation
(3)
D. This diagrams adds the following contribution

to the self-energy:

Πab(z) =
∑

cd

(3)
Dacd

(
−1

2χcd(z)
) (3)
Dcdb (4.5)
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Here, −1
2χ(z) is the two phonons propagator, and it is equal to (see App. D.3):

χab(z) = ~
2

1
ωaωb

[(ωa + ωb)(1 + na + nb)
(ωa + ωb)2 − z2 − (ωa − ωb)(na − nb)

(ωa − ωb)2 − z2

]
(4.6)

The first term represents the original frequency z that splits in ωa + ωb, while the
second negative term represents a phonon scattering, where z absorbs ωb and emits
ωa (the process depicted in Figure 4.1).

Another process is present at smallest order of perturbation in
(3)
D, the tadpole

diagram (see App. D.3), however, it is always positive definite and it does not depend
on the perturbation frequency ω (therefore, it does not introduce an imaginary part
for the Krames-Kronig relations). Since it shifts only the harmonic frequency (and
changes the harmonic polarization vectors), it can be included in the definition of
(2)
D̃. This corresponds exactly in substituting the harmonic

(2)
D̃ with the SCHA

(2)
D).

The overall response function is

G−1
ab (ω) = ω2−

(2)
Dab −<Πab(ω + i0+)− i=Πab(ω + i0+) (4.7)

The new phonon frequencies are the poles of the response functions. So <Π(ω+ i0+)
causes a shift of the phonon frequency, while =Π(q, ω + i0+) introduces the lifetime.

Now, if Πab is not zero with a 6= b, the direction identified by a and b, i.e. the
polarization vectors of the harmonic phonons, are no more the directions in which
the green function is diagonal. This is called the “mode-mixing” process.

Let us have a look at how this can profoundly modify the shape of the spectrum.
Here we assume ωa = 100 cm−1 and ωb = 200 cm−1. The two phonons ωa and ωb
have an anharmonic scattering factor d:

(3)
Daab=

(3)
Dabb=

(3)
Daba=

(3)
Dbaa=

(3)
Dbba=

(3)
Dbab= d (4.8)

The spectral function of such a system is reported on Figure 4.2. Even if there
are only 2 phonon modes, there are 3 peaks. This is due to the Fermi resonance:
a process that takes place when there is a strong anharmonic coupling between
two modes and one is in resonance with an overtone of the other. In this case, the
anharmonic coupling opens a gap between the two levels (the overtone and the other
mode) and both become poles of the spectral function. This is one mechanism that
allows anharmonicity to make overtones visible in Raman/IR spectra.

We can even go further, looking what happens to the spectral function as we
increase the anharmonic coefficient (Figure 4.3)

When d is zero, the spectrum coincides with the harmonic only two phonon
modes are visible. However, while increasing the anharmonicities the mode at
200 cm−1 starts splitting (Fermi resonance). As we further increase the anharmonicity
the 200 cm−1 mode goes to zero and becomes imaginary. This is a marker of a
second-order phase transition, driven by the anharmonicity. This means that our
representation is no more accurate, as the excited states of our phonons have lower
energy than the ground state.

The 200 cm−1 mode is much more affected by the anharmonic factor, as it can
decay into two modes of 100 cm−1, while the 100 cm−1 needs to scatter with itself to
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Figure 4.2. Spectral function of a system with two phonons whose harmonic frequencies
are 100 cm−1 and 200 cm−1 that have a very strong anharmonic coupling (T = 0 K).
The resonance between one overtone of the lowest mode and the upper mode makes the
overtone visible and causes a level splitting. This gives rise to 3 peaks in the spectral
function instead of 2. This process is called Fermi resonance.
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Figure 4.3. Spectral function of a system with the Fermi resonance as a function of the
anharmonic coupling between the two modes.
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create the mode of 200 cm−1. This second process requires the presence of thermally
excited modes at 100 cm−1 and it is suppressed at low temperatures.

In this simple toy model, we neglected the dependence of the SCHA
(2)
D matrix

from the d coefficient (that is the tadpole diagram). However, this just shifts the
poles and it is positive definite. It cannot alone trigger a phase-transition and the
qualitative picture provided in this chapter remains valid.

4.3 IR and Raman probe
To derive the linear response to an external dynamical probe we need to linearize
the TD-SCHA equations.

We study how a system in equilibrium reacts to small external time-dependent
perturbations. These are forces that act on nuclei. This is trivially the case of an IR
probe, where an external electromagnetic field is modulated with the same frequency
of the phonons. The atoms with a dipole moment react to the time-dependent
electric field. In this case, the IR probe interacts directly with the nuclear charge
plus the electronic shell that surrounds it. The coupling between the phonon mode
and the IR probe is described by the “effective charge” Zab.

In the BO approximation, the “effective charges” indicate how the atoms displace
when an external electric field is applied. This is related to the second derivative of
the electronic total energy Eel:

Zab = d2Eel
dEadRb

, (4.9)

where ~E is the applied electric field.
The infrared intensity of a particular mode µ is:

I(IR)
µ =

∣∣∣∣∣
∑

ab

ε̂aZab
ebµ√
mb

∣∣∣∣∣

2

(4.10)

where ε̂a is the polarization of the light used as a probe. Here I sketch the derivation,
that is not rigorous but gives an insight into the phenomenon. The IR response can
be modeled as the dipole-dipole correlation function:

Iir(ω) ∼
∫ ∞

−∞
〈 ~M(t) ~M(0)〉 eiωt

~M(t) = dEel

d~E
We make the approximation that the dipole moment depends linearly on the atomic
displacements.

Mb(t) =
∑

a

dEel
dEbdRa

∣∣∣∣
Ra=R(0)

a

[Ra(t)−R(0)
a ] = Zba[Ra(t)−R(0)

a ] (4.11)

〈Ma(t)Mb(0)〉 =
∑

cd

〈 Zac√
mc

√
mc[Rc(t)−R(0)

c ][Rd(0)−R(0)
d ]√md

Zdb√
md
〉 (4.12)
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This is related to the phonon Green function:

Gcd(t) = 〈
√
mc[Rc(t)−R(0)

c ][Rd(0)−R(0)
d ]√md〉

〈Ma(ω)Mb(0)〉 =
∑

cd

ZacZbd√
mcmd

Gcd(ω) =
∑

cd

ZacZbd√
mcmd

∑

µ

ecµe
d
µ

(ω + i0+)2 − ω2
µ

(4.13)

If we look at the coefficient on the intensity of the µ using a field polarized along ε̂:

Iµ ∼
∑

abcd

ε̂aε̂b
ZacZbd√
mcmd

ecµe
d
µ =

∣∣∣∣∣
∑

ac

ε̂aZac
ecµ√
mc

∣∣∣∣∣

2

(4.14)

The Raman works similarly. The incoming photon with frequency ω0 is scattered
by the sample into a new photon of frequency ω0 ± ωvib where ωvib is the energy
of the phonon. The Raman, therefore, involves the interaction between two fields:
the incoming light and the outcoming radiation with a different frequency. In this
case, the system feels a force on the atoms with a frequency modulation given by
the beatings between the two fields that are inside the sample. The polarizability
of the system transforms the resulting electric field with amplitude modulation of
frequency ωvib into a force that pulls the atoms. The Raman intensity can be derived
in the same way we did for the infrared, but this time it is related to the correlation
function of the polarizability. The polarizability α reacts to the two external electric
fields:

Vext(t) = 1
2E

(in)
a (t)αabE

(out)
b (t)

αab = d2Eel
dEadEb

We assume α linearly dependent on the atomic displacements:

αab(t) = α
(0)
ab +

∑

c

dαab
dRc

∣∣∣∣
~R=~R(0)

[Rc(t)−R(0)
c ] (4.15)

The coupling between the two fields and the sample is described by the Raman
tensor:

Aabc = dEel
dEadEbdRc

(4.16)

The Raman intensity of a particular mode in the harmonic approximation is:

I(R)
µ =

∣∣∣∣∣
∑

abc

ε̂(in)
a ε̂

(out)
b Aabc

ecµ√
mc

∣∣∣∣∣

2

. (4.17)

Eq. (4.17) can be derived in the same way as the IR.
Note that in experiments usually only one laser field is directed toward the

sample and the output electric field is automatically generated and scattered. This
phenomenon is the spontaneous Raman. Like spontaneous emission, it is a pure
quantum phenomenon. Here the incoming radiation beats with the vacuum state
of the outcoming radiation. When this interaction is in resonance with a phonon
mode, energy is transferred between the incoming field and the vacuum state of the
outcoming field.
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4.4 The linear response of TD-SCHA

Linearizing Eq. (3.9) is straightforward. We study how a small perturbation from
the static solution evolves in time.

We indicate with 〈·〉0 the averages on the equilibrium ensemble, while with 〈·〉1
the average on the perturbed ensemble. In the same way, we enumerate with apex (1)

the perturbed quantities and (0) the static quantities. When we drop the notation,
we refer to static quantities.

We can recognize that C = 0 in equilibrium, therefore the quadratic term in C
can be neglected. In equilibrium, the SCHA gradient must be zero

∂F( ~R,Φ, {~ai})
∂Φab

= −
∑

cdq

ΛabcdΥcq 〈uq
[
~fd − ~fHd

]
〉
0

= 0 (4.18)

Both −Λ and Υ are positive defined:

〈ua∆fb〉0 = 0 (4.19)

Keeping only linear quantities in the perturbed variables, we derive the system:




maR̈(1)
a = 〈f (1)

a 〉0 + 〈f (0)
a 〉1

Ċ(1)
hk = 1

2~
∑

a

Υha

[
〈uaf (1)

k 〉0 + 〈ua∆fk〉1
]

+ 1
2~Φ(1)

hk

∑

cd

ΛcdabΦ̇(1)
cd =

∑

c

2~
ma

Υ−1
bc C

(1)
ca

(4.20)

External perturbations are:

− ∂V (1)

∂Ra
= 〈f (1)

a 〉0
∂2V (1)

∂Rh∂Rk
=
∑

a

Υha 〈uaf
(1)
k 〉 (4.21)

where f (1)
k is the force of the external perturbation. For infrared spectroscopy, the

perturbing potential is:

V
(1)
IR (~R) = − ~M(~R) · ~E dMa

dRb
= Zab(~R)

− ∂V (1)

∂Ra
= 〈f (1)

a 〉 =
∑

h

Eh 〈Zha〉0 (4.22)

∂2V (1)

∂Ra∂Rb
=
∑

h

Υah 〈uhf
(1)
b 〉 =

∑

hk

EkΥha 〈uhZkb〉0 (4.23)

while the Raman external potential is:

~V
(1)
Raman(~R) = 1

2
∑

ab

E(in)
a αab(~R)E(out)

b

dαab
dRc

= Aabc(~R)
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〈f (1)
k 〉0 = 1

2
∑

ab

E(in)
a E(out)

b 〈Aabk〉0 (4.24)

∂2V (1)

∂Ra∂Rb
=
∑

h

Υah 〈uhf
(1)
b 〉 = 1

2
∑

hkl

E(int)
k E(out)

l Υha 〈uhAklb〉0 (4.25)

If the effective charges and the Raman tensor are independent on the configuration
(harmonic approximation), we can bring them outside the averages and get:

∂2V (1)

∂Ra∂Rb
= 0.

Then the equations of motion can be rewritten in the following way:




R̈(1)
a = 1

ma


〈f (1)

a 〉 −
∑

b

ΦabR
(1)
b −

∑

pqd

(3)
Φ dea ΛpqdeΦ(1)

pq




∑

cd

ΛcdabΦ̈(1)
cd = −

∑

c

Υ−1
bc

ma

[
− Φ(1)

ac +
∑

h

(3)
Φ cah R

(1)
h +

∑

rstd

(4)
Φ cars ΛtdrsΦ(1)

td

]

(4.26)
The passages that lead to these equations are reported in App. D.6. In analogy with
ref.[24], we defined:

(3)
Φ abc= 〈

∂3V

∂Ra∂Rb∂Rc
〉
0
,

(4)
Φ abcd= 〈

∂4V

∂Ra∂Rb∂Rc∂Rd
〉
0
.

Since our perturbation is a Dirac delta in Fourier space and the time-derivatives
become algebraic products, it is convenient to recast this system in the frequency
domain:





−ω2R̃a(ω) = f̃ (1)
a (ω)− 1

ma

∑

b

ΦabR̃b(ω)− 1
ma

∑

pqd

(3)
Φ dea ΛpqdeΦ̃pq(ω)

ω2∑

cd

ΛcdabΦ̃cd(ω) =
∑

c

Υ−1
bc

ma

[
− Φ̃ac +

∑

h

(3)
Φ ach R̃h +

∑

rstd

(4)
Φ cars ΛtdrsΦ̃td

] ,

(4.27)
where we indicate with a˜the Fourier-transformed quantities that are ω dependent.
To simplify a bit the notation, we drop the (ω) explicit dependence of these quantities.

Defining the 4-rank tensor:

Acdab = − δadΥ−1
bc√

mamd
, (4.28)

we can rewrite the second equation from (4.27) as:

∑

cd

(
Acdab − ω2Λcdab

)
Φ̃cd =

∑

cd

Acdab
[∑

h

(3)
Φ cdh R̃h +

∑

rstd

(4)
Φ cdrs ΛtdrsΦ̃td

]
(4.29)
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The final system that solves the linear response theory of the TD-SCHA is:




−ω2R̃a(ω) + 1
ma

∑

b

ΦabR̃b(ω) + 1
ma

∑

pqd

(3)
Φ dea ΛpqdeΦ̃pq(ω) = f (1)

a (ω)

∑

cd

(
Acdab − ω2Λcdab

)
Φ̃cd −

∑

cd

Acdab
[∑

h

(3)
Φ cdh R̃h +

∑

rstd

(4)
Φ cdrs ΛtdrsΦ̃td

]
= 0

(4.30)
In App. D.7, I prove that the solution of this system is equivalent to the T = 0 K

dynamical ansatz of the SCHA proposed in [24]. This ansatz was previously not
demonstrated and based on an analytical continuation at finite ω of the static
response function of SCHA. However, our new formulation of the dynamical problem
provides also a much more efficient way of computing the dynamical results that we
will explore in the next section.

4.5 The Lanczos algorithm for the dynamical Green
functions

Even if we proved that Eq. (4.30) is equivalent to the ansatz reported in ref. [24],
the formulation of the dynamical solution as a linear system where no operator is
function of ω allows us to write an algorithm able to compute the exact response for
any frequency with just one inversion of the system.

We can write the system in Eq. (4.30) in matrix notation as:
(
L− ω2I

)
~v = ~p, (4.31)

where ~p is the perturbation and ~v is the responce of the system.

~v =
(
~̃R
Φ̃

)
~p =

(
~f (1)

0

)
(4.32)

. The L matrix is:

L =




1
mΦ 1

m

(3)
Φ Λ

−Λ−1A
(3)
Φ Λ−1A(I−

(4)
Φ Λ)


 (4.33)

The solution is:
~v =

(
L− ω2I

)−1
~p. (4.34)

We are interested in the response of position displacement with respect to perturba-
tions.

χvp(ω) = 〈v|
(
L− ω2I

)−1
|p〉 (4.35)

In both Raman, IR or the spectral function, we always have to compute only
the diagonal elements of the response function:

χvv(ω) = 〈v|
(
L− ω2I

)−1
|v〉 (4.36)



38 4. The dynamical linear-response theory

Luckily, the right-hand side of Eq. (4.36) is computable very efficiently using the
well known Lanczos continued fraction algorithm if L is symmetric. The explicit
calculation of L and the change of variable that allows us to write it as a symmetric
matrix are reported in App. D.8.

4.5.1 The Lanczos continued fraction

Now we describe the Lanczos procedure to calculate the Green’s function. First of
all, we can define the Krilov subspace of order N as the vector space spanned by
the perturbation plus all the vectors generated by the application of the L matrix
N − 1 times:

KNL = Span
{
|v〉 ,L |v〉 , (L)2 |v〉 , · · · , (L)N−1 |v〉

}
. (4.37)

A good basis of this space is the orthogonal basis generated by the Gram-Schmidt
procedure starting from the first vector:

|e1〉 = |v〉√
〈v|v〉

, (4.38)

|e2〉 = L |e1〉 − |e1〉 〈e1|L|e1〉√
〈e1|L2|e1〉 − 〈e1|L|e1〉2

, (4.39)

|e3〉 = L |e2〉 − |e2〉 〈e2|L|e2〉 − |e〉1 〈e1|L|e2〉√
〈e2|L2|e2〉 − 〈e2|L|e2〉2 − 〈e1|L|e2〉2

, (4.40)

and so on. In this basis the L matrix is tridiagonal, i.e. all the elements farther
from the diagonal by more than one position are zero. This is easy to prove, as the
vector L |ek〉 is, by construction, inside the subspace of the first k + 1 vectors of the
basis and it is, therefore, orthogonal to all the vectors |ek+2〉 · · · |eN 〉:

〈ea|L|eb〉 = 0 if a > b+ 1 (4.41)

But since the L matrix is symmetric, the same must be true if we change the indices:

〈ea|L|eb〉 = 〈eb|L|ea〉 = 0 if a > b+ 1 (4.42)

Therefore we have

〈ea|L|eb〉 = 0 if b− 1 > a > b+ 1 (4.43)

This also allows us to write the general element of the basis in a much easier
way:

|ea+1〉 = L |ea〉 − |ea〉 〈ea|L|ea〉 − |ea−1〉 〈ea−1|L|ea〉√
〈ea|L2|ea〉 − 〈ea|L|ea〉2 − 〈ea−1|L|ea〉2

(4.44)

So the full basis can be written iteratively. If we define the succession:

an = 〈en|L|en〉 bn = 〈en+1|L|en〉 (4.45)
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L =




a1 b1 0 0 · · · 0
b1 a2 b2 0 · · · 0
0 b2 a3 b3 · · · 0
...

... . . . . . . . . . ...




(4.46)

we can rewrithe the matrix in symbolic notation, leaving explicitely the first row
and column and indicating the remaining block as (L− ω2I)2···N,2···N

(
L− ω2I

)
=
(
a1 − ω2 ~b1
~b1

(
L− ω2I

)
2···N,2···N

)
(4.47)

~b1 =




b1
0
0
...




(
L− ω2I

)
2···N,2···N

=



a2 − ω2 b2 0 · · · 0
b2 a3 b3 − ω2 · · · 0
... . . . . . . . . . ...




Since the perturbation vector is the first element of our basis, must compute the
first element of the inverse of this matrix:

〈v|
(
L− ω2I

)−1
|v〉 =



(
a1 − ω2 ~b1
~b1

(
L− ω2I

)
2···N,2···N

)−1


11

(4.48)

Where |v〉 is the vector we must use to initialize the Lanczos algorithm, so that the
〈v| · |v〉 element is the 11-th one. We can perform this inversion iteratively with the
Kramer technique:

〈v|
(
L− ω2I

)−1
|v〉 =

det
(
L− ω2I

)
2···N,2···N

(a1 − ω2) det (L− ω2I)2···N,2···N − b21 det (L− ω2I)3···N,3···N
(4.49)

〈v|
(
L− ω2I

)−1
|v〉 = 1

(a1 − ω2)− b2
1 det(L−ω2I)3···N,3···N
det(L−ω2I)2···N,2···N

(4.50)

Since the L matrix is tridiagonal, we can also rewrite the 1 · · ·N × 1 · · ·N block
in the same way, and obtain:

det
(
L− ω2I

)
3···N,3···N

det (L− ω2I)2···N,2···N
= 1

a2 − ω2 − b2
2 det(L−ω2I)4···N,4···N
det(L−ω2I)3···N,3···N

(4.51)

Therefore we have the iterative procedure:

〈v|
(
L− ω2I

)−1
|v〉 = 1

a1 − ω2 − b2
1

a2−ω2−
b22

a3−ω2−
b23
...

(4.52)

Each iteration of the Lanczos procedure introduces a new pole in the Green function.
We can use a terminator to reach the limit N →∞. We can imagine that the last
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coefficients do not depend on N any more:

1
aL − ω2 − bL

aL−ω2− bL

aL−ω2−
...

= f(ω) (4.53)

This continued fraction is the solution of the following equation:

1
f(ω) = aL − ω2 − bLf(ω) (4.54)

From which we have the following two solutions:

f(ω) =
aL − ω2 ±

√
(aL − ω2)2 − 4b2L
2b2L

(4.55)

Here there is an ambiguity in the sign of the square root, however if one looks
carefully, the square root is the source of the imaginary part in the green func-
tion. The two solutions correspond to the backward and forward green functions.
To be consistent with our convention, we can chose =G(ω) < 0 for ω → aL in
correspondence of the L− th pole.

f(ω) =
aL − ω2 −

√
(aL − ω2)2 − 4b2L
2b2L

(4.56)

In this way, we are able to add an imaginary part of the Green function even
without explicitly including a smearing parameter.

The direct comparison of the Lanczos with the static theory of SCHA to study
response to static perturbation as derived by ref. [24] is reported in App. D.9.

4.6 Convergence of the algorithm
To show the power of the algorithm, I calculate the example of the Raman response
function in the C2/c-24 phase of hydrogen, at 250 GPa.

The detailed description of the properties of this phase is demanded in Chapter 5.
This section is just an anticipation of the results that will be discussed in detail
there.

In Figure 4.4 and 4.5 the Raman signals are reported as a function of the number
of Lanczos steps, to show the convergence of the algorithm. Figure 4.5 has the
terminator, while Figure 4.4 not.

The use of the terminator (Eq. 4.56) is fundamental to achieve a good convergence
with few steps of the algorithm. Without a terminator, the Lanczos algorithm adds a
new pole for each iteration. Many iterations are needed to have poles with distances
lower than the smearing to obtain a smooth curve. This is particularly true for
systems with a huge anharmonicity and strong deviations from the Lorentzian shape,
as in Figure 4.4 and Figure 4.5.

Moreover, from Figure 4.5 is also clear as the first part of the spectrum to
converge is the high-frequency, while the low frequencies are the hardest to converge
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Figure 4.4. Raman dynamical green function using the Lanczos algorithm. Colors scales
from dark purple to yellow as we increase the number of Lanczos iterations. The last
(100th) iteration is shown in bold red. This simulation has been carried without a
terminator. Very big smearing is required to achieve a good convergence of the spectrum.
Data obtained with 10000 configurations.
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Figure 4.5. Raman dynamical green function using the Lanczos algorithm. Colors scales
from dark purple to yellow as we increase the number of Lanczos iterations. The last
(100th) iteration is shown in bold red. Here, I used the terminator to extrapolate the
N →∞, averaging over the last 5 values of the coefficients an and bn. Thanks to the
terminator, a much smaller number of steps are required to achieve the convergence
even with very small smearing. Data obtained with 10000 configurations.
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(the shaded area converges faster in the high-frequency region). This is a drawback
of the Lanczos algorithm, as it is a power-method (based on the application of the L
matrix several times on the perturbation vector). In this way, the highest eigenvalues
of L will be the first one to converge in the Krilov subspace, followed by all the
others.

Indeed, it is possible to overturn the L matrix to do the opposite. In particular,
we can perform the Lanczos algorithm using the following matrix:

L′ = λmaxI −L

where λmax is an estimation of the maximum (in modulus) of the eigenvalues of L.
This is, for an harmonic case, 2ωmax. Then the L matrix in the new Krilov subspace
is again tridiagonal, where the coefficients are:

ai = λmax − a′i bi = −b′i

The highest eigenvalues of the L′ are the lowest eigenvalues of the L.
To further show the potentiality of the new algorithm, I show how it can be

deployed to study the structural stability.
A structure is stable or meta-stable if it is in a local minimum of the free energy

landscape. In other words, the Hessian of the free energy of the atomic coordinates
must be positive definite.

This is a static property, and can be computed inside the standard SCHA
framework, as done in ref. [24].

dF( ~R,Φ, {~ai})
dRadRb

=
(2)
Φ ab +

∑

hklmpq

(3)
Φ ahk

[
1−Λ

(4)
Φ
]−1

hklm

Λlmpq
(3)
Φ pqb (4.57)

This requires to store and compute the inverse of the 4-rank matrix 1−Λ
(4)
Φ,

that has (3N)4 elements, where N is the number of atoms in the supercell.

In most applications up to now, it has been considered
(4)
Φ= 0. This allows one

to avoid storing in memory such a big matrix and performing its inversion. However,

this is impossible for high-pressure hydrogen, where the
(4)
Φ has a major impact on

Eq. 4.57. It is fundamental to determine whether the structure is stable or not.

For example, neglecting
(4)
Φ in Eq. (4.57) leads the phase III of hydrogen to be

unstable at all pressures.
To have an idea of how difficult is the calculation in a real case: for the 2x2x1

super-cell of the C2/c structure with 24 atoms in the unit cell (96 in total), one
would require to invert a matrix of 82944x82944 elements. Only to store such a
matrix in the memory with double precision requires more than 50 Gb of RAM. Its
inversion is a very expensive computation, as it is, in principle, a dense matrix.

This calculation was impossible before I introduced the Lanczos algorithm. In
fact, the Hessian matrix is equal to the inverse of the static green function:

dF( ~R,Φ, {~ai})
dRadRb

= √mambG
−1
ab (ω = 0)
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Therefore, in practice, since Lanczos is very good in computing the diagonal
element of the Green function, we can directly take the polarization vector that
leads to instability and compute the response function as:

χ−1
µµ(ω = 0) = ω̃2

µ (4.58)

Here, ω̃2
µ is the eigenvalue of the hessian matrix associated with the ~eµ eigenvector.

The lowest static frequency ω̃µ of the free energy hessian, as a function of the
number of the Lanczos iterations, is reported in Figure 4.6. To further spot on the

importance of the fourth-order
(4)
Φ I performed two computations, one neglecting it

and one not.
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Figure 4.6. The lowest frequency of the static hessian of phase III of Hydrogen. I report

the two result neglecting or considering
(4)
Φ . The inclusion of the fourth order force

constant makes this phase stable at 250 GPa. This simulation is computed with 40000

configurations to converge the
(4)
Φ

This plot shows clearly how the high order
(4)
Φ cannot be neglected when studying

the stability of the structure. In this system, it is the dominant term that stabilizes the
phase. This term has, up today, always been neglected in all anharmonic calculation,
as it was believed to be zero. Moreover, before the Lanczos algorithm, dynamical
computations including the fourth-order were never carried out. Moreover, the
inversion at Eq. 4.57 cannot be performed using a geometric series as the eigenvalue

of Λ
(4)
Φ are higher than 1, and the series diverges. This spots on the power of the

Lanczos algorithm, that can correctly handle even very extreme cases like this one,
where anharmonicity cannot be treated at any level with perturbation theory.
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4.7 Conclusions
In this chapter, I derived the dynamical linear response theory from TD-SCHA. I
proved, at T = 0 K, the dynamical ansatz formulated by Bianco et. al.[24] based on
the analytical continuation of the static response at finite frequency.

I formulated a new algorithm to compute the static and dynamic response based
on the Lanczos continued fraction. This algorithm outperforms the previous one, be-
ing able to compute the whole dynamical response function with just one calculation,
and provides a natural way to interpolate the result in the thermodynamic limit,
introducing a finite life-time even without (or at least with very small) smearings.
Moreover, the algorithm proved to be very efficient also for static calculations, where
it allows computing the response including four phonons scattering. This element is
essential to describe complex (dirty) crystals like high-pressure hydrogen phases.

Now, we can compute in a very efficient way all the dynamical phonon response
functions in strongly anharmonic systems. This includes Raman and IR spectroscopy.
The perturbation theory on TD-SCHA, in contrast with the dynamical ansatz,
allows one to formulate responses to more complex perturbations, accounting also
for the case in which effective charges or the Raman tensor depend on the atomic
displacements.

In the next chapter, I will show all the potentiality of the newly introduced
technique to simulate phase III of hydrogen.
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Chapter 5

The anharmonicity and
quantum nuclear effects on
hydrogen phase III

5.1 Introduction

In this chapter, I apply the theoretical framework developed in Chapter 1,2 and 4 to
study phase III of hydrogen.

Phase III is found experimentally to be stable at low temperatures (under 200 K)
and high pressure (above 150 GPa).

Here, I discuss how quantum effects completely reshape the structure: atomic
positions, lattice parameters, and collective excitations, like phonon spectrum and
electronic bands structure.

I compute the Raman and IR spectra within the full quantum/anharmonic
approach developed in Chapter 4, strongly improving the agreement with experiments.
I deploy the SSCHA to simulate the optical transmittance and reflectivity of the
sample including the electron-phonon beyond perturbation theory. In this way, I
can conciliate the apparent contradiction in recent experimental results[4, 5].

5.2 How do we solve the electronic problem?

In principle, the SCHA can be coupled with any energy-force engine. However,
thanks to the very efficient implementations available, high accuracy and affordable
computational cost, density functional theory (DFT) is the state of art tool to solve
the electronic problem.

5.2.1 Density functional theory

DFT is a tool to solve the electronic problem in the BO approximation (i.e. dealing
with nuclei as a fixed external electrostatic potential). In DFT, the interacting
many-body electronic problem is mapped into a non interacting one, that shares the
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same density ρ(~r) with the original.

ρ(~r) = 〈ψ|
Nel∑

i=1
δ(~r − ~ri)|ψ| ,

where |ψ〉 is the many-body electron wave-function. This mapping is universal: it
does not depend on the particular external potential, i.e. does not depend on the
nuclear position or species[45, 46]. However, unfortunately, this mapping is unknown.
It is encoded into the so called “exchange-correlation” functional Vxc[ρ]. The non
interacting Hamiltonian can be written as:

HKS [ρ] = −
∫
d3r

e2ρ(~r)
|~r − ~r1|

|r1〉 〈r1|+
P 2

2me
+ Vxc[ρ](~r1) |r1〉 〈r1|+ Vext(~r1) |r1〉 〈r1|

(5.1)
Here, ρ is the self-consistent electron density, found by solving HKS , Vext is the

external potential.
In past years, many efforts were made in modeling an approximate form of

Vxc[ρ], based on exact calculations performed with Quantum Monte Carlo[47] or
Coupled Clusters[48] on prototypical systems. One of the most successful classes
of functionals is the generalized gradient approximation (GGA), where the Vxc is
assumed to be a function only of the local density and its gradient. The exchange
correlation energy functional is:

Exc[ρ] =
∫
drρ(~r)f [ρ(~r), ~∇ρ(~r)]

Vxc[ρ](~r) = f [ρ(~r), ~∇ρ(~r)] + ρ(~r)∂f
∂ρ
− ~∇ ·

[
ρ(~r) ∂f

∂(~∇ρ)

]

The GGA exchange-correlation functional is defined with f [ρ, ~∇ρ]. Some of the
most successful GGA functionals are PBE[49] or BLYP[50]. Indeed, more complex,
accurate, and time-consuming approximations of the exchange-correlation were also
carried out, as hybrid functional, that includes Hartree-Fock exchange explicitly, or
meta-GGA. It is even possible to explicitly account for the van der Waals interactions.

5.2.2 Is DFT good for studying high-pressure Hydrogen?

Many works focus DFT accuracy in simulation high-pressure phases of hydrogen.
Hydrogen is the most simple atom in the universe. Each nucleus carries only one

electron. This means that it is a prototypical system in which DFT can be tested
against more accurate (and much more expensive) methods.

All the correlation effects in hydrogen are encoded in the covalent bonds between
two atoms, the H2 molecule, and the long-range van der Waals forces.

However, most common functionals (like BLYP) are trained to solve the isolated
molecule, and long-range van der Waals forces can be included in a DFT calculation.
Therefore, DFT is a perfect tool for this task, in principle.

However, recent studies underlined limitations of DFT calculations compared
with more accurate methods[51, 52, 53, 54].
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Figure 5.1. Two different QMC static enthalpy calculations, performed by indipendent
groups. On the left the PRL published by Azadi et al on 2014[55], on the right the
PRL published by McMinis et al[56] the following year. The two calculations strongly
disagree, predicting a transition pressure between these two phases respectively at 460
and 700 GPa.

These difficulties do not arise by the intrinsic correlation of hydrogen that DFT
is not able to grasp but, rather, from the high variety of structures very close in
energy discovered. Dissecting the most stable structure requires an accuracy higher
than 1 meV per atom in the energy difference. This small energy difference is behind
the accuracy achievable with standard DFT, therefore, large errors occur in the
determination of phase stability with DFT.

Many studies[51, 52, 20] indicate that BLYP is the semilocal DFT functional
that reproduces best the energy differences between structures versus quantum
Monte Carlo. The error in energy differences between structures of BLYP functional
reduces to less than 1 meV per atom in many cases. So, in the following discussion,
we will always refer to DFT-BLYP as a force engine. More details on the simulation
parameters are discussed in App. E.

5.2.3 Is Quantum Monte Carlo reliable?

In the previous section, we discussed the precision of the DFT functionals. To
overcome the DFT limitations, many works relax the structure using DFT, then
they compute energies using Quantum Monte Carlo (QMC). However, even between
different QMC implementations there are huge discrepancies.

As an example, I report the comparison of the static enthalpies from ref.[55] and
ref.[56] in Figure 5.1. As clearly shown, results lead to completely different phase
diagrams.

This massive failure is justified in the work of McMinis[56] by the different DFT
functional used for the structural optimization upon which QMC energetics are
computed (even if some of the authors of the original work[55] argued this to be not
so effective in a later paper[52]).
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This, indeed, makes most of QMC predictions based on the use of a constant
scissor operator not reliable. As we will see in the next sections, the anharmonic
effects completely change the structural properties of these phases, with differences
that are larger than those between the static relaxation of two DFT functionals and
strongly pressure dependent.

5.3 Phase III in the theoretical literature

Phase III is found experimentally to be stable at low temperatures (under 200 K)
and high pressure (above 150 GPa).

The first models of this phase identified a hexagonal close packet structure with
molecules arranged in layers[57]. The currently most supported structure is an
almost hexagonal phase with C2/c group symmetry and 24 atoms in the unit cell[16],
divided into 4 layers, with stacking ABCD.

This phase is supported by both ab-initio energetic and comparison between
harmonic simulated Raman/IR spectra with experiments. However, the most
important experimental signature of this phase is the characterization of the H2
vibron, located above 3500 cm. This vibration cannot be thermally populated, even
at room temperature, as the corresponding excitation energy is above 5000 K. This
makes impossible to correctly simulate the vibron using classical molecular dynamics
and requires a more sophisticated approach like path-integral. The prediction of
Raman and IR using path-integral is, however, extremely time-demanding. Up to
now, spectroscopic signatures that include anharmonic effects have been computed
mainly within classical molecular dynamics[58, 59], thus strongly underestimating
the fluctuations affecting the crystal structure.

The difficulties in dealing with quantum nuclei lead to the existence of strange
twists in the theoretical literature: while it is commonly recognized that the
PBE exchange-correlation functional performs poorly for high-pressure hydrogen[51,
52, 60, 56, 20], it is still the first choice for comparing vibrational features with
experiments[16, 17, 58, 61, 20]. This is a clear sign that current theoretical methods
lack the precision necessary to compare with experiments, and this is compensated
with the “ad-hoc” choice of the XC functional that best fits with experimental data.
However, in this way, calculations cannot be predictive and the correct assessment
of the crystalline phase is built on the hope of a big error cancellation between
exchange-correlation and quantum nuclear effects.

In this chapter, we will focus on a completely unbiased prediction of the experi-
mental signatures of phase III using one of the most reliable GGA functional that
we have, the BLYP[50].

Even if this functional has the same computational cost of PBE, it has been proven
to strongly outperform the other compared to more accurate methods like Quantum
Monte Carlo[51] or Coupled-Cluster when simulating high-pressure hydrogen.

Nevertheless, if BLYP is used to predict Raman/IR spectra with classical molec-
ular dynamic or harmonic approximation, it spectacularly fails when compared
to experiments. We will show that this failure is mostly due to anharmonicities
activated by quantum fluctuations, therefore, the apparent good agreement of PBE
is only due to casual error cancellation, and cannot be used to accurately compare



5.4 The quantum anharmonic effect on the phase III crystalline structure 51

with experiments.

5.4 The quantum anharmonic effect on the phase III
crystalline structure

In this section, I report how the structure changes as we introduce quantum effects.
I perform the constant pressure quantum relaxation at 150 GPa, 250 GPa, 350 GPa,
and 450 GPa, to cover the whole pressure range spanned by experiments. We can
compare the very recent X-ray measurements[62] up to 250 GPa with our simulations
of phase III. The results on the structural relaxation are shown in Figure 5.2.
Quantum effects expand the volume at fixed pressure and act mainly on the out-
of-plane lattice parameter c. In fact, quantum stress is strongly non isotropic, and
progressively pushes away the layers as we increase the pressure, as reported in
the c/a ratio. We found that quantum fluctuations progressively increase the H2
bond length up to a 6 % in comparison to classical nuclei (see Figure 5.2). Such
an extreme effect was also shown in Cmca-4[63], even if in that case it shows an
opposite trend with pressure. In particular, in C2/c-24, a classical treatment of
nuclei completely misses the H2 dependence on pressure.

The stretching of the H2 molecule has a big impact on physical properties. The
vibron frequency depends strongly on the molecular bond length in both Raman and
IR spectra. If structures are relaxed with classical nuclei, no matter the exchange
correlation functional, the H2 distance is ill-reproduced as its stretching is a pure
quantum effect. This leads to a strong error in both the vibrational frequency and
energy. This error affects also the static phase diagram computed with Quantum
Monte Carlo (QMC). Different QMC calculation on reference structures obtained by
different DFT functionals led to discrepancies[55, 56] of more than 200 GPa on the
transition pressures. Under these conditions, no calculation that deals with classical
nuclei can predict correctly neither spectroscopic features nor the relative energy of
the phases.

The quantum effect on the cell shape are less pronounced, but still important: at
450 GPa the c/a ratio deviates from the static result by about a 0.9%. This effect
is smaller than the H2 bond stretching in percentage, but it is on the same order
of the typical cell shape difference predicted by different DFT exchange correlation
functionals.

The overall effect of anharmonicity is to expand the volume at fixed pressure
(or increase the pressure at fixed volume). This is reported in Table 5.1, where the
quantum contribution to the stress tensor is reported at fixed cell (calculated on
the static cell). These data show a strong anisotropy in the quantum stress that
increases with pressure.

We can compare the cell obtained by the lattice relaxation with the very recent
experimental results obtained for phase I-III-IV at room temperature[62]. Since
X-ray data cannot distinguish the molecular orientation, they see a primitive cell
with higher periodicity, therefore the measured a′ and c′ must be rescaled with the
parameters of the 24 atoms structure Figure 5.2:

a′ = a√
3

c′ = c

2
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its unit cell. Parameters of the simulation discussed in App. E.2.1.
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Pstatic
1
2 (Pxx + Pyy) Pzz

250 GPa 6.0 GPa 12.2 GPa
350 GPa 5.0 GPa 15.7 GPa
450 GPa 4.6 GPa 18.3 GPa

Table 5.1. Table with the static pressure (on the left) and the corresponding quantum
contribution, on the inplane direction, and the one in the out-of-plane direction for the
C2/c-24 structure. This data are obtained on the 1x1x1 phonon mesh. The stochastic
error is about 0.5 GPa, however the overall error is dominated by cell-size effects

Taking care of this we get a very good comparison with experiments (see Fig-
ure 5.2).

5.5 Raman and IR of phase III

To simulate the vibrational spectrum of phase III, we employed a new dynamical
extension of the SSCHA, introduced in Chapter 3 and 4.

In Figure 5.3, we show the comparison between the Harmonic result, the dynam-
ical SSCHA green function, and the experiments for both the IR and the Raman
vibrons.

The dynamical SSCHA green function strongly improves the experimental ac-
curacy, and it introduces the phonon lifetime. The data have been simulated only
with one polarization light, without averaging on all the possible crystal orientations.
This can explain the different peak intensities in the Raman spectrum of the libron
region. To get a complete result, we should average this green function over all the
possible polarizations.

In the case of Raman, we can accurately grasp the spectrum shape and broadening.
The Raman signal shows a significant deviation from the natural Lorentzian shape.
This behavior is due to the huge anharmonicity in the BO landscape along the mode
coordinate. The vibron is the only peak to acquire a non-negligible broadening due
to phonon-phonon scattering. On the other hand, the IR vibron in our simulation is
much more definite than the experimental results (as the full width half maximum).
Here, the experimental broadening may be explained either as nonhomogeneous or a
consequence of the anharmonicity in the effective charges, that change during the
atomic displacements. This kind of broadening was not considered in our simulation,
as we computed the vibrational spectrum contracting the dynamical green function of
the displacements with the effective charges computed in the average position. This
was obtained taking the effective charges as constant outside averages in Eq. 4.22
and Eq. 4.23.

To test that this is not an artifact of using a single crystal orientation, we report
the result of the IR spectrum averaged on the principal crystal orientations neglecting

the
(4)
Φ contribution (Figure 5.4).
Indeed, the average over the possible polarization slightly increases the width

of the peak, however, this effect is not sufficient to explain the disagreement with
experiments.

To test if the peak broadening is due to anharmonicity in the effective charges,
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Figure 5.3. Raman (top panels) and IR (bottom panel) spectra of phase III at 350 GPa.
Experimental data for the Raman spectrum have been taken from ref.[64], while the IR
data from ref.[5]. On the top left panel, the Raman signal has been shifted to overlap
the simulated and the measured vibron peak. Simulation details in App. E.2.1
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Figure 5.4. Comparison of the IR vibron spectrum obtained with the different direction for
the polarization light (or, equivalently, the different orientations of the crystal). Details
of the simulation in App. E.2.1

I computed the effective charges in 10 displaced atomic configurations randomly
distributed according to the SSCHA density matrix in a supercell 2x2x1. In this
way I simulated the IR spectrum with Eq. 4.22 neglecting the contribution arising
from Eq. 4.23. The comparison of the IR simulated on the static SSCHA dynamical
matrix using Eq. (4.22) and the effective charge in the undisplaced configuration is
reported in Figure 5.5. The result does not change much, however, the contribution
of Eq. (4.23), here neglected, should be greater, as it is affected by first-order
corrections to the effective charges on atomic displacements while the lowest order
correction on Eq. (4.22) is the second order.

In Figure 5.6, we report the IR vibron peak and the full-width at half maximum
only due to phonon-phonon scattering (Figure 5.7) as a function of the pressure.

The improvement in the experimental agreement compared to the Harmonic
result is impressive, in both the slope of the vibron and the absolute value. The
FWHM is underestimated by the TD-SSCHA. On the other side, the SSCHA
improves the decrease of the vibron life-time when increasing the pressure.

The Raman vibron energy as a function of pressure is reported in Figure 5.8.
The TD-SSCHA shows a very good improvement in contrast with the Harmonic
case.

Both in Raman and IR, quantum effects correct the slope of the vibron, increasing
the match with the experiments. However, in both the simulations, the SSCHA
result is systematically underestimating the vibrational energy. This effect could be
related to DFT accuracy.

In this work, we used the BLYP functional. This functional is often referred as
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data[5] and the dynamical SSCHA green function. Here, only the phonon-phonon
scattering has been taken into account. The mismatch with experiment is due to
anharmonicity in the effective charges, as shown in Figure 5.5

state-of-art DFT-GGA accuracy accuracy for predicting energetics in high-pressure
hydrogen together with vdW-DF1[51, 52, 20], whether for the prediction of the
vibrational spectra PBE is typically used[16, 17, 58, 20]. The reason is that, as shown
in Figure 5.6 and 5.8, the Harmonic result of BLYP is completely off with respect to
experiment. PBE, instead, which is known to score poorly in energetics[51, 52, 20, 56],
overestimates the H2 equilibrium bond length at static level[52, 65]. This exchange-
correlation error mimics the effect of quantum nuclei (see Figure 5.2) and leads to the
partial fortuitous error cancellation that makes the Harmonic result of PBE closer to
experiment than the BLYP functional. Indeed, the Harmonic vibrons of BLYP have
a much higher frequency than the experiments, as it should, since quantum effects
strongly suppress it. The good agreement with experiments of classical molecular
dynamics[58, 61] using the PBE functional is a clear indication that anharmonicity
on vibron is strongly underestimated by considering only thermal fluctuations even at
room temperature and reflects the quite good agreement of PBE harmonic phonons.
The thermal energy necessary to excite the vibron (and to sample its anharmonicity)
is 5000 K, much above the simulated temperatures. In this regime, the main source
of nuclear dispersion is quantum uncertainty, while the temperature plays only a
very marginal role.

5.6 The band gap closure of phase III

Here we discuss how anharmonic phonons affect the electronic band structure.
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I compute the optical properties of phase III, comparing the results with two
experiments in apparent contradiction[4, 5]. Eremets et. al.[4] (EDWK) observe an
indirect band gap closure of phase III at about 360 GPa, but they continue to see
the Raman spectrum up to 440 GPa, claiming that no phase-transition occurs up to
these very high pressures. On the other side, Loubeyre et. al.[5] (LOD) observe the
IR transmission of the sample up to 430 GPa and claim that the structure remains
an insulator until about 420 GPa, when the transmission drops down very sharply
to zero, indicating a first-order phase transition to a new metallic phase. We will
discuss more in detail this phase transition in Chapter 6, while here we focus our
attention only on the simulation of the IR transmittance and the indirect gap closure,
to verify which experiment is closer to the theoretical prediction.

Moreover, a recent calculation by Azadi et. al.[60] claimed that C2/c-24 cannot
be the experimentally observed phase, as electron-phonon closes the gap very early
(before 300 GPa) inducing metallization, while all the experiments concord phase
III to be insulator up to at least 350 GPa. Their very accurate calculation includes
both exact exchange-correlation effects (a variable scissor correction on the band
gap computed with Diffusion Monte Carlo) and quantum nuclear effects (Path
Integral Molecular Dynamics). To shed light on this observation and assess eventual
finite-size effects in their simulation, we repeated the calculation using SSCHA with
a much bigger cell.

To compute the optical properties we calculate the bare density-density electronic
response χ(ω) at fixed nuclei. Nuclear motion is included averaging the dynamical
dielectric constant over several atomic configurations, displaced according to the
quantum wave-function as obtained by the SCHA relaxation.

In this way, we neglect the non-adiabatic effects of the electron-phonon interaction.
Even if in many systems they have a not so high impact, they could play a role in
high-pressure hydrogen, as the phonon energy can reach 0.5 eV.

Since hydrogen is not a strongly correlated system, we do not expect excitons
to dominate optical properties; we used the independent particle approximation
for computing the dielectric constant, and we included the electron-phonon effects
within the William-Lax framework[66].

To obtain the electronic contribution to the susceptibility tensor χαβ at each
nuclear configuration we employed the following equation:

χαβ(ω + i0+) = −4
(
e

m

)2 1
ΩNk

∑

~k

∑

ij

f(ε
i~k

)− f(ε
j~k

)
ε
i~k
− ε

j~k

Mα
~kij
Mβ
~kji

(ε
i~k
− ε

j~k
)2 − (ω + i0+)2

(5.2)
where

Mα
~kij

= 〈u
i~k
|(−i∇α + kα)|u

j~k
〉 ,

Nk is the total number of k points, f(ε) is the Fermi occupation number, ε
i~k

is the
i-th Kohn-Scham energy level at ~k.

The details of the derivation of this equation are reported in App. F.
The advantage of Eq. (5.2) is that it does not account separately between inter-

band and intra-band contributions, it is well defined even in a disordered system
with many spaghetti-like bands and a very small Brillouin zone. This is the case
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Figure 5.9. Electron DOS including electron-phonon interaction as a function of the
simulation cell size. This simulation corresponds to a pressure of 260 GPa.

of a distorted configuration due to nuclear motion. Moreover, Eq. (5.2) is well
defined both for metals and insulators, allowing us to blindly compute the dielectric
properties (at finite frequencies) without too much care if we are dealing with metals
or insulators.

To carry out these calculations, I implemented Eq. (5.2) inside the Quantum
ESPRESSO[67, 68] software suite.

The electronic density of states (DOS) averaged over many phonon displaced
configurations is reported in Figure 5.9, 5.10 and 5.11 for 250, 350, and 450 GPa.

Here, we confirm the astonishing effect of electron-phonon coupling, that closes
the gap by about 2.3 eV. However, physical properties depend critically on the
simulation cell size. For example, if we look at the DOS at 355 GPa (Figure 5.10,
we can see that using a 2x2x1 (96 atoms) simulation cell leads to an overestimation
of the metallic character of the phase. More details in App. E.2.1.

Since the metallic properties depend critically on the DOS close to the Fermi en-
ergy, a big simulation cell is required to correctly describe these effects. Interestingly,
Azadi et. al.[60] used a simulation cell of only 96 atoms and measured the metallicity
by looking at the differences between highest occupied - lowest unoccupied energy
levels. In this way, they classify a phase as metallic even if an infinitesimal DOS is
present close to the Fermi level. Their observable is very sensitive to the simulation
cell.

From our simulations in bigger cells, the indirect band-gap closes just before
350 GPa. This is in good agreement with recent measurements of resistivity[4],
considering that DFT is known to favor metallization.

However, in all our simulations, the DOS close to the Fermi energy is very small.
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Figure 5.10. Electron DOS including electron-phonon interaction as a function of the
simulation cell size. This simulation corresponds to a pressure of 356 GPa.
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Figure 5.11. Electron DOS including electron-phonon interaction as a function of the
simulation cell size. This simulation corresponds to a pressure of 465 GPa.
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This means that the physical behavior of this phase is similar to a semi-metal. This
is confirmed by measuring the transmitted intensity in the IR regime, as we report
in Figure 5.12.

Also here, the transmittance depends critically on the simulation cell size. To
compare the optical gap with those reported in the experiment it is important to
define a coherent protocol. In structures with many atoms as the C2/c-24 it is in
principle wrong to look at the lowest vertical transition in the band structure. This
is because in disordered systems (or systems with few symmetries like molecular
phases of hydrogen) matrix elements play a crucial role. In particular, C2/c-24 is a
structure made of layers, an electron jump between states that belongs to different
layers is more likely to give a negligible contribution to the transmittance, and thus
not to be revealed experimentally. To properly account all the effects, we compute
the transmittance across a sample of 1.5 µm thick, looking at the first energy value
where the transmittance drops below the 2%. Reflectivity is computed from the
dielectric function as:

R(ω) =
∣∣∣∣∣

√
ε(ω)− nd√
ε(ω) + nd

∣∣∣∣∣

2

, (5.3)

where nd is the diamond refractive index, equal to 2.33 when 0.1 ≤ ω ≤ 4 eV. The
transmittance is computed as:

T (ω) = [1−R(ω)] exp
[
−2ω=

√
ε(ω)d

c

]
, (5.4)

where d is the sample thickness. Here, we ignore the interference due to multiple
reflections inside the sample.

The computed direct band gap is in good agreement with experiments but slightly
underestimated. Again, this effect could be explained by the fact that DFT usually
underestimates the gap.

To include effect beyond DFT we used the HSE0 hybrid functional to assess how
much we are underestimating the gap.

The comparison of the band structure at the centroid position between BLYP
and HSE0 is reported in Figure 5.13.

From this calculation, we can estimate an error of 0.8 eV on the direct gap at
gamma. If we add this to the direct band gap estimation, we improve a lot the
comparison with the experiments (Figure 5.14).

Therefore, also the experiment by Loubeyre et. al.[5] is strongly supported by
our simulation.

The last interesting observable is the reflectivity, which can be measured by
experiments, and provides a signature of the metallic character of the phase.

In Figure 5.15, 5.16 and 5.17 we report the simulation of the reflectivity for
C2/c-24 at 260 GPa, 356 GPa and 465 GPa.

Here is evident how the reflectivity gradually increases with pressure, showing
that no sharp transition appears when the structure metallizes due to the indirect
band gap closure. Also here, electron-phonon coupling and the simulation cell size
play a major role for a quantitative accurate prediction.

To separate between the effect of the stochastic noise with the effect on the cell
size, we report the calculations of the reflectivity and the transmittance for the
355 GPa case of 5 configurations (Figure 5.18).
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Figure 5.12. Transmittance as a function of the frequency. As can be seen in the 355 GPa
panel, even if the phase is metallic (see the DOS of Figure 5.10) still a small amount
of IR signal passes through the sample. This occurs because the system behaves as
a very bad metal, with a very low plasma frequency. The transmittance is used to
calculate the direct gap, as done by experiments[5]. The size effect is strongly pressure
depenedent, however, this is a consequence of the induced metallization at 355 GPa in
the 96 atoms system. The comparison between experimental direct band-gap and the
theoretical simulation is reported in the lower panel. The “No phonons” curve refers to
the electronic structure computed in the average position after the SSCHA relaxation.
The reported direct (optical) gap is not the lowest possible direct transition in the band
structure, as it is properly weighed on the dipole matrix elements between the states.
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Figure 5.13. Comparison between BLYP (in black) and HSE0 (in red) band structure for
the C2/c-24, at 356 GPa. The structure is the average structure after quantum effects
have been relaxed.
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Figure 5.14. Direct band gap calculation of C2/c-24 vs experimental data for phase III[5].
This calculation includes also exact exchange effects using a scissor operator of 0.8 eV as
computed in Figure 5.13.
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Figure 5.15. Reflectivity and Transmittance for the C2/c-24 at 260 GPa
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Figure 5.16. Reflectivity and Transmittance for the C2/c-24 at 356 GPa
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Figure 5.17. Reflectivity and Transmittance for the C2/c-24 at 465 GPa

The optical gap accuracy can be estimated by comparing the results with different
configurations to be of about 0.08 eV for the 96 atoms cell and 0.04 eV for the 432
atoms. This can be neglected if compared with the 0.6 eV of difference between the
optical gaps obtained with 96 and 432 atoms. Figure 5.18 also shows why the effect
of the cell on the optical gap seems to be opposite in the 355 GPa and the 260 GPa
case (the 432 atoms-cell has a lower gap at 260 GPa but an higher one at 355 GPa
than the 96 atoms-cell): in both cases the interband transition contribution to the
absorbtion are higher in energy in the cell with less atoms, however, the presence of
a stronger Drude peak at 355 GPa (due to the higher DOS at the Fermi level in the
96 atoms cell, see Figure 5.10) causes an higher value of the reflectivity that makes
the transmittance to drop down and cover the gap. In fact, interband contribution
is visible for 2 out of 5 configurations for the 96 atoms-cell, where the transmittance
drops below 2% at about 1.2 eV; 0.6 eV higher than the 432 atoms-cell.

All these results argue that the experiments[4, 5] are not in contradiction, at
least regarding the measurements they presented for phase III. However, also the
claim of a first-order phase transition observed by LOD is not in contradiction, as
the two experiments use a different pressure calibration scale. Indeed, LOD used
the 2006 Akahama scale[69], while EDKW used the 2010 Akahama scale[70]. In
their supporting materials, LOD compare the results of the two scales concluding
that the use of the 2010 scale leads to the overestimation of about 30 GPa of the
pressure above 300 GPa for hydrogen (to Akahama 2006).

This mismatch is well represented both by overlapping their Raman vibron
frequency as a function of pressure (Figure 5.8) or by looking at the resonance in
the Raman vibration as a function of the frequency of the laser used to irradiate the
sample (Figure 5.19).
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Figure 5.18. Reflectivity and transmitted intensity for the 355 GPa case computed with 5
different configurations for the two cell-size of 96 and 432 atoms respectively. The cell
size error dominates over the stochastic noise.
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Figure 5.19. Pressure of the Raman resonance using different lights to irradiate the sample.
A comparison between data by Loubeyre et. al.[64] and EDWK[4].
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Therefore, we conclude that the two experiments report consistent results, in
particular, EDKW measured the increase of conductivity related to the indirect
band gap closure, while LOD measured the direct band gap closure, which occurs at
much higher pressure.

However, LOD saw evidence for a first-order phase transition at 425 GPa, which is
above the last pressure at which EDKW see the Raman to disappear after converting
the two pressure scales.

5.7 Conclusions
In this chapter, I used the SCHA and its time-dependent extension to simulate the
properties of phase III.

I showed how this structure is reshaped by the anharmonicity induced by quantum
fluctuations of light hydrogen atoms.

In particular, the H2 molecular bond increases linearly with pressure up to a 6%
value at 450 GPa. This effect is not only absent at the static level, but profoundly
change the properties of the atomic vibrations and the energetics.

I simulated the Raman and IR vibrations, showing how TD-SCHA significantly
improves the agreement with experiments. Moreover, we are able to simulate also
the peak broadening. We showed how the Raman broadening affects almost only
the vibron and is dominated by phonon-phonon scattering. On the other side,
the IR broadening is dominated by the anharmonicity on the effective charges or
inhomogeneous effects.

We used the SCHA theory to compute the electronic and optical properties with
the electron-phonon interaction.

We showed how the C2/c-24 structure reproduces remarkably well the experi-
mental direct and indirect band-gap closure, in opposition with previous results[60].
We showed how the use of a big simulation cell is essential to correctly describe the
electronic DOS close to the Fermi energy.

These results establish the C2/c-24 as a very good candidate for phase III. In
the next chapter, I simulate the whole P-T phase diagram.
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Chapter 6

The Hydrogen Phase-Diagram

6.1 Introduction

In the previous chapter, I simulated phase III of hydrogen, showing how anharmoncity
and quantum fluctuations change structural properties and experimental features,
hampering the correct crystal structure assignment. In this scenario, it is impossible
to predict the correct phase-diagram of high-pressure hydrogen accounting for the
zero point energy only within the harmonic approximation. For this reason, in this
chapter, I compute the full phase-diagram of hydrogen using the SSCHA theory.

In the first section, I review the experimental phase-diagram. I show how it
is strongly affected by quantum zero-point motion. This favours high-symmetry
structures that are saddle points of the static energy landscape. The ability of the
SSCHA algorithm to explore the configuration phase in an unbiased way allows us
to identify three new structures, unknown previously.

The transition to the atomic metallic state, the expected room temperature
superconductor and the isotope effect in the phase diagram are discussed.

Exploiting the new algorithm introduced in Chapter 4, I predict the quantum
melting of phase III, leading the discovery of a new crystal structure, candidate
for phase VI. In the last section, I focus on phase III→VI transition, claimed by
Loubeyre et. al.[5] and contested by other works[4, 71].

6.2 Experimental phase-diagram

Hydrogen presents a very rich phase-diagram. At low pressures and ambient temper-
ature, hydrogen is in a solid molecular phase where H2 molecules are situated in the
sites of a hexagonal closed packed lattice. This is commonly known as phase I. Upon
increasing pressure (about 100 GPa) and decreasing temperature (under 100 K),
hydrogen transits into a new molecular solid phase, phase II, where the rotations of
molecules are frozen in an ordered broken symmetry phase[18]. These two structures
are disclosed and are not topics of this thesis. If pressure increases over 150 GPa a
new structure is found, known as phase III. This phase is characterized by a strong
IR activity and an intense vibron. The structure linked to this phase has been
disclosed by computer simulations and Ab-Initio Random Structure Search (AIRSS)
[16], and it is the one we discussed in Chapter 5. Thanks to the progress in the
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Figure 6.1. Experimental phase-diagram of high-pressure hydrogen, taken from ref [12].
The work by Loubeyre et. al.[5] reports a transition to a new phase at higher pressure
(around 420 GPa), while a more recent experiment by Eremets et. al.[4] reports no
transition to phase VI up to 480 GPa

field of AIRSS, many different structures have been proposed since that moment.
Also for phase IV[19] (obtained in the same pressure range of phase III but at room
temperature), a candidate structure has been identified by simulations[17].

New experiments claimed the existence of two new phases, respectively V and VI
at pressures above 330 Gpa (room and low temperature)[11, 2, 12, 5], but still, no
definitive structure has been found for them, and measurements are still controversial.
Recently, a new experiment claimed that no transition from phase III occurs up to
480 GPa[4]. New structures have been proposed for both phase V and VI[20, 53].

The proposed experimental phase diagram is reported in Figure 6.1.

6.2.1 Phase III to VI transition (low temperature)

Addressing the existence of a molecular phase at low temperature and high pressure
(phase VI) is a target of this thesis.

Phase VI has been claimed experimentally by three competing groups, but all of
them report different signatures. A work by Eremets et. al.[12] (ETD from now on)
was the first one to claim the existence of a semi-metallic phase at low temperatures
above 380 GPa. They guessed this transition by the disappearance of the Raman
spectrum and a simultaneous drop in the measured resistivity when cooling. A
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few months later, a work by Dias et al[2] (DNS from now on) measured the IR
absorption spectrum, showing a sharp transition in the vibrational signatures at low
temperatures above 355 GPa. Very recently, Loubeyre et al[5] (LOD) reported the
measurement of direct band gap closure due to a sharp transition at 415 GPa with IR
absorption measurement, however, the sample remained black (low reflectivity). This
last experiment managed to return to phase III by further reducing the pressure,
showing no hysteresis on this transition. Very recently, another experiment by
Eremets et al[4] (EDKW) contradicted their previous results (ETD), showing the
Raman spectrum in back reflection until 440 GPa, claiming that no transition occurs
until that pressure. Their resistivity data are in agreement with a scenario of
metallization due to indirect band gap closure.

The first three measurements seem to agree on the existence of another phase
above III. This phase cannot be identified as the pure atomic metallic phase, as it
has too low conductivity to be a good metal[12] and it is not shiny[12, 2]. The ETD
and LOD measurements agree in identifying it as a very bad metal, as the drop of
Raman, the increase of conductivity (ETD), and the direct band gap closure (LOD)
point to. On the contrary, the DNS measured an IR vibrational spectrum, that is
observable in transmission only under the hypothesis that the phase is an insulator.

Recently, the Harvard group criticized the LOD claims of metallization for
the lacking of reflectivity measurements and the dark appearance of their sample,
incompatible with a metal[71].

EDKW shows that phase III becomes a metal after 350 GPa, but they did not
identify a transition to a new phase. This is in contradiction with the IR measurement
of DNS.

The apparent contradiction between EDKW and LOD could be possibly explained
by a mismatch between their pressure scale, as already discussed in Chapter 5.

This seems to indicate that at high-pressure, the EDKW pressure data are overes-
timated by about 30 GPa compared to LOD’s one. This is within experimental errors
on pressure uncertainty due to calibration. The EDKW Raman signal disappears at
440 GPa, while the LOD IR absorption drops to zero at 420 GPa.

6.3 The static theoretical phase-diagram

In this section, we show the static high-pressure hydrogen phase diagram, i.e.
neglecting both quantum and thermal fluctuations.

To be consistent with the literature, I name the phases with the symmetry group
followed by the atoms in the unit cell. This nomenclature is, indeed, ambiguous,
especially for symmetry groups with very low symmetries. Sometimes, I will name a
structure according to a specific feature or similarities with other elements.

The most important candidates found by crystal structure search are:

• C2/c-24: This is the commonly accepted candidate for phase III of hydrogen[16],
stable at low temperature between 150 and 420 GPa, composed by layers of
molecules in imperfect rings. A top/side view is shown in Figure 6.2.

• Cmca-12: This is a candidate for phase VI, a high-pressure phase composed
by layers of molecules in imperfect rings, very similar to C2/c-24, but more
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Figure 6.2. Top and side view of C2c-24 phase of hydrogen. This phase has a stacking
ABCD

symmetric. Shown in Figure 6.3.

• P62/c-24: This is a new phase we introduce that we will show to be highly
favored by quantum motion. It is composed of mixed graphene and molecular
layers. Molecular layers are very similar to C2c-24.

• Pc-48: This is a candidate for phase IV[17]. It is a mixed structure of distorted
graphene layers and strongly bonded molecular layers. Shown in Figure 6.5.

• Ibam-8: This is a prototype for the Pc-48 phase, as it has more symmetries.
Shown in Figure 6.6

• P2/c-48: This is a new phase. It is obtained from the quantum relaxation of
Pc-48 at 250 GPa. Shown in Figure 6.7.

• C2/c-16: This is a new phase. It is obtained from P2/c-48 when relaxing with
quantum effect at 350 GPa. Shown in Figure 6.8.

• Cs-IV. This is the accepted candidate for the metallic superconductive hydrogen.
The phase-group is I4-amd with 2 atoms per cell, however, it has the same
structure as Cesium IV, this allows us to better identify structural properties.
Shown in Figure 6.9.

The most stable crystal structure at fixed pressure and T = 0 K is the one with
the lowest enthalpy H, defined as:

Hel = Eel + PΩ,

where E is the electronic energy per cell, P is the pressure and Ω is the volume of
the unit cell.

The Hel as a function of pressure is reported in Figure 6.10. We used DFT-BLYP
as energy and force engine, the convergence parameters are discussed in App. E.
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Figure 6.3. Top and side view of Cmca-12 phase of hydrogen. This phase has a stacking
ABAB

Figure 6.4. Top and side view of P62c-24 phase of hydrogen. This phase has a stacking
ABAC
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Figure 6.5. Top and side view of Pc-48 phase of hydrogen. This phase has a stacking
ABCD.

Figure 6.6. Top and side view of Ibam-8 phase of hydrogen. This phase has a stacking
ABAC. It is prototype for Pc-48
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Figure 6.7. Top and side view of P2/c-48 phase of hydrogen. This phase has a stacking
ABCD. It is obtained after a quantum relaxation of Pc-48 at 250 GPa.

Figure 6.8. Top and side view of C2/c-16 phase of hydrogen. This phase has a stacking
ABAC. It is obtained after a quantum relaxation of Pc-48 at 350 GPa. Not to be
mistaken with C2/c-24, that is the candidate for phase III.
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Figure 6.9. The atomic metallic hydrogen phase CS-IV. This is the only phase considered
not made by layers. Figure from ref.[72].
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Figure 6.10. Static enthalpy vs pressure diagram. For each pressure, the stable structure
is the one with the lowest enthalpy per atom.
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C2/c-24 is the most stable structure up to 460 GPa. Cs-IV, the expected room-
temperature superconductor, has an extremely high enthalpy and it is out of reach
of the current experimental facilities.

DFT-BLYP reproduces a phase-diagram more in agreement with QMC data of
McMinis et al[56], see Figure 5.1.

However, here the main ingredient is still missing: the effect of lattice mo-
tion. Without lattice dynamics, we are not even able to compute the temperature
dependence of the phase diagram.

Both Ibam-8, P62/c-24, P2/c-48 and C2/c-16 are saddle points of the BO energy
landscape. They are unstable and cannot exist in the simulated pressure range.

6.4 The full anharmonic phase-diagram at T = 0 K

Anharmonic quantum effects can be included with all the methodology presented in
Chapter 1 and Chapter 2.

At low temperatures, we are interested in the transition between phase III, the
eventual unknown phase VI, and the metallic superconductive phase. We report
the full quantum anharmonic phase diagram for the low temperature candidates,
C2/c-24, P62/c-24, Cmca-8, Ibam-8, and the atomic metal Cs-IV, in Figure 6.11.
In Figure 6.12, we report a zoom on the transition to Cs-IV, the expected room
temperature superconductor.
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Figure 6.11. Phase diagram of the molecular phases at low temperature. The static
diagram is on the left, the quantum phase diagram on the middle, the phase-diagram of
deuterium on the right. In opposition to the static phase diagram, all the structures
have similar enthalpies.

The phase diagram drastically changes when quantum fluctuations are included.
The saddle point structures, Ibam-8 and P62/c-24, become stable and competitive
in energy. The C2/c-24, ground state up to 450 GPa in the static case, transit to
a new phase at about 325 GPa. Between 325 and 370 GPa, Cmca-12 and P62/c-24
are almost degenerate in energy, then the Cmca-12 dominates at higher pressures.
This transition from phase III to a new phase presents an impressive isotope effect:
it is shifted at about 400 GPa in Deuterium (70 GPa higher).
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Figure 6.12. Phase diagram at high pressure. The metal transition is predicted to occur
at 550 GPa from the Cmca-12 phase

Cmca-12 remains ground state up to 550 GPa, where the Cs-IV phase becomes
less energetic (Figure 6.12). This transition also shows a big isotope effect, being
shifted to about 600 GPa for Deuterium. Here we neglected Cmca-4, another phase
competitive in DFT calculations, but unfavored by QMC[52].

6.4.1 Instability of C2/c-24

The transition from phase III to phase VI is immediately followed by an instability
in the C2/c-24. This means that this phase is no more a local minimum after the
transition.

The calculation of the stability of phase III can be done with the newly introduced
Lanczos algorithm (see Chapter 3).

The unstable mode is an infrared active mode. Its static eigenvalue is reported
as a function of pressure in Figure 6.13

This is a very important result, that has two consequences on experimental
observations:

• Phase III→VI transition should not have hysteresis, phase III cannot exist
above the transition.

• The first-order phase transition is anticipated by a detectable IR mode that
decreases its energy before the transition.

The first evidence for phase III instability has been measured by LOD[5]. They
notice a transition from phase III to a new metallic phase at about 415 GPa. They
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Figure 6.13. Static frequency of the unstable mode in phase C2/c-24. Negative values
means imaginary (instability). In the inset, ω2 (eigenvalue of the free energy Hessian),
that is expected to be linear around the transition. Phase III becomes unstable at about
320 GPa, immediately after the first order phase transition (see Figure 6.11).

returned to phase III unloading pressure without hysteresis. The soft IR mode has
still not been observed, however, no data have been reported in the low energy
infrared region.

The instability of C2/c-24 could be enhanced by the DFT exchange-correlation
error, as pointed out by Rillo et. al.[53], who perform a mixed path-integral
with QMC as energy engine to compare with a standard PIMD-DFT. Another
approximation that can overestimate the melting is the adiabatic approximation.
Here, the vibron has an energy of about 0.5 eV. This value is comparable with the
direct band gap. Therefore, phonons can induce electronic transition, and their
degrees of freedom can mix with electronic ones. Up to now, there is no calculation
pointing out the role of non-adiabatic effects in low-temperature hydrogen crystals.

6.5 The room temperature phases

The experimental phase diagram presents interesting features also at room temper-
ature. Above 200 GPa, phase III transforms to phase VI. This is believed to be a
mixed molecular/atomic phase.

The most supported candidate for this phase is a very low symmetric structure,
Pc-48[17] (48 atoms in the unit cell, and only 2 symmetry operations). I studied
this structure at 250 GPa, 350 GPa and 450 GPa in a 2x1x1 supercell (96 atoms).

The phase diagram is reported in Figure 6.14. During the SSCHA relaxation
of the Pc-48 with quantum effect, I discovered two new crystal structures, namely



82 6. The Hydrogen Phase-Diagram

250 300 350 400 450
Pressure [GPa]

0

5

10

15

20

25

En
th

al
py

 [m
eV

 p
er

 a
to

m
]

Static Nuclei
Ibam-8 (V/VI)
Pc-48 (IV)
C2/c-16 (IV/V)
P2/c-48 (IV/V)
C2/c-24 (III)

250 300 350 400 450
Pressure [GPa]

−2

−1

0

1

2

3

4

5

6

Fr
ee
 e
ne
rg
y 
[m

eV
 p
er
 a
to
m
]

SSCHA
C2/c-16 (IV/V)
P2/c-48 (IV/V)
Ibam-8 (V/VI)
C2/c-24 (III)

Figure 6.14. Free energy of the mixed phases. The Pc-48 disappears in the SCHA phase
diagram as, even at the lowest pressure, it spontaneously transits into the P2/c-48. In
the right panel the temperature of the calculation was 0 K, however it resulted to be
almost unaffected up to 400 K.
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P2/c-48 (at 250 GPa) and C2/c-16 (at 350 GPa).

I found quantum effects to suppress Pc-48 even at the lowest pressure simulated
(250 GPa). When I perform the quantum relaxation, the structure recovers automati-
cally more symmetries and atoms arrange themselves in the P2/c-48 structure. When
increasing pressure to 350 GPa, the P2/c-48 further acquires more symmetries, even
recovering a smaller unit cell. This new phase is C2/c-16 (not to be mistaken with
C2/c-24, the candidate for phase III). The transitions Pc-48→P2/c-48→C2/c-16
are compatible with a second-order type by group-subgroup relationships. It is a
progressive gain of symmetries.

This partially agrees with Monserrat et. al.[20]. Also in their diagram Pc-
48 results destabilized in energy compared to a more symmetric phase (Pca21),
identified using high-symmetry constraints for AIRSS. Interestingly, Pca21 is very
similar to my new P2/c-48. The methodology they used to include quantum effects
is the vibrational self-consistent field (VSCF), a theory developed by Monserrat et.
al[21]. They claim Pca21 to be phase V, even if this result is not directly supported
by the free energies they computed. Their claim is mainly based on Raman/IR
calculation at the harmonic level using the PBE exchange-correlation and the static
band gap of the structure. However, in Chapter 5, I show how these observables are
strongly affected by quantum effects and anharmonicity. A more detailed discussion
is necessary to correctly assess whether these structures describe phase IV or V.

Limiting our analysis only on the SSCHA+BLYP free energies, we predict
the P2/c-48 to be a good candidate for phase IV, while Ibam-8 or C2/c-16 good
candidates for the transition to phase V. The free energy difference in Figure 6.14
between C2/c-16 and Ibam-8 is compatible with the stochastic noise of the SSCHA.
Ibam-8 is very similar to C2/c-16, but with 4 times more symmetries. This is the
reason why their energy is very similar.

The Ibam-8 SSCHA+BLYP calculation is in sharp contrast with VSCF+BLYP[20].
I found Ibam-8 to be favored by quantum fluctuations compared to C2/c-24. Mon-
serrat et al show the opposite behavior. This difference is probably due to the
uncontrolled source of error in VSCF arising by the fit in the BO energy landscape.
This can introduce very big errors in free energy differences[73]. Moreover, they did
not include the effect on lattice relaxation.

However, both SCHA and VSCF show that temperature plays a very little role
in stabilizing these phases compared to C2/c-24.

The free energy difference between C2/c-24 and both Pc-48, P2/c-48, Ibam-8
and C2/c-16 changes less than 1 meV per atom between 0 and 400 K.

This seems to contradict the fact that these phases are responsible for the
observed phase IV, which should be favored at room-temperature.

However, this can be a failure of SCHA, as Pc-48 was shown to have one layer
of molecules that can rotate[58, 53]. Rotation of molecules is ill-represented by a
Gaussian wave-function. The SCHA can underestimate the free energy drop due to
thermal activation of molecular rotations of mixed phases.
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6.6 The electron-phonon on optical properties in the
phase III→ VI transition

Here, we analyze the candidates for the phase III→VI transition observed at low
temperatures while increasing pressure (355 GPa DNS[2], 380 GPa ETD[12], 415 GPa
LOD[5], 440 GPa EDKW[4]).

ETD and LOD agree in identifying this phase as a bad metal, LOD show that
this phase is opaque in the full IR spectrum down to 600 cm−1, in contrast with what
observed by DNS measuring the IR vibrational spectrum at high frequency. More
recently, EDKW showed that phase III resistance drops above 350 GPa, indicating
an indirect band gap closure, and behavior similar to those of a semi-metal. Their
Raman measurement show no sharp transition until 440 GPa, where the Raman
definitively disappears.

From the phase diagram simulation in Chapter 6 we showed that C2/c-24
structure, candidate for phase III, is stable only up to 325 GPa, then it transforms
into a new phase, that could be either P62/c-24 or Cmca-12. Path-Integral with
coupled electron-ion Monte Carlo showed that DFT calculations underestimates the
barrier between C2/c-24 and other phases[53], therefore we may underestimate the
transition pressure.

In this section, I simulate the optical properties including the electron-phonon
scattering of C2/c-24, Cmca-12, and P62/c-24 to assess if this transition is in
agreement with experimental results.

6.6.1 The dark metallic Hydrogen

In the previous chapter, our theoretical analysis conciliated the EDKW and LOD
experimental results in phase III. Then, LOD showed that, at high pressure, phase
III transits into an opaque new phase VI. This phase cannot be the shiny atomic
metal[71], as it appears black. Thus, it must be another molecular metallic phase.
LOD suggested it to be Cmca-12, basing on the DMC phase-diagram. Our more
accurate phase-diagram agrees with this possibility but indicates also another possible
candidate, P62/c-24.

The two phases are topologically very different. P62/c-24 (Figure 6.4) has
graphene-like layers alternated by molecular layers, while Cmca-12 (Figure 6.3) is a
pure molecular phase.

P62/c-24 is a metal protected by topology, thanks to the Dirac cones of the
honeycomb layers. Cmca-12 is a metal with a closed indirect gap, similar to C2/c-24.

Both phases are bad metals, as they have a vanishing density of states (DOS)
close to the Fermi level. This is in agreement with the requirements for phase VI.

The simulations of transmittance and reflectivity are reported in Figure 6.15 and
6.16 for Cmca-12 , while in Figure 6.17 and 6.18 for P62/c-24.

The two phases have very different behavior without electron-phonon effects.
Cmca-12 has a very low plasma frequency, and it becomes transparent at low
pressure for frequencies above 0.6 eV. This phase would have been a transparent
metal. However, phonons affect the band structure and this phase becomes opaque
due to the closure of its direct band gap, smaller to the one of C2/c-24. So this
phase remains opaque at all pressures.
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Figure 6.15. Reflectivity and transmittance for Cmca-12 at 360 GPa.
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Figure 6.16. Reflectivity and transmittance for Cmca-12 at 465 GPa.
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Figure 6.17. Reflectivity and transmittance for P62c-24 at 360 GPa.
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Figure 6.18. Reflectivity and transmittance for P62c-24 at 465 GPa.
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The P62/c-24 is opaque by definition, as interband transitions are possible at
any energies due to the presence of the Dirac cones close to the Fermi surface. Like
graphite, it is black. Both phases have very low reflectivity, between 0.2 and 0.3 in
the visible range, a very small value if compared to typical metals. This explains
why this phase is not shiny and overcomes some of the critics made to the LOD’s
experiment[71].

Unfortunately, after electron-phonon is added, the two phases have very similar
optical properties. One difference is in the reflectivity: the Cmca-12 reflectivity rises
above 2 eV, while P62/c-24 decreases.

The only hope to distinguish between the two phases is the possibility to check
their vibrational spectrum. This can be achieved by looking at the IR in reflection,
or with Raman, tuning the laser wave-length to have a resonant transition.

In their work[2], DOS claimed to found a new insulator phase above 355 GPa,
by seeing a sharp transition in the IR spectrum. They claim this phase to be
Cmca-12. Here we completely rule out this hypothesis, as Cmca-12 is opaque at all
the pressures when electron-phonon interaction is considered. Neither P62/c-24 nor
Cmca-12 are compatible with the IR data reported by DNS, as IR light is completely
absorbed by the sample at any pressure.

6.7 Conclusions
In this chapter, I simulated the phase-diagram of high-pressure hydrogen, fully
accounting for both anharmonicity and quantum fluctuations.

I showed how the quantum effects and anharmonicity are important, and cannot
be neglected to achieve the experimental precision. They stabilize high symmetric
structures. Most of them are saddle points of the Born-Oppenheimer energy land-
scape where the harmonic approximation breaks down. By relaxing with SSCHA the
C2/c-24 and the Pc-48, candidates for phase III and IV, I found three new structures
competitive in energy more symmetric: P62/c-24, P2/c-48, and C2/c-16.

Moreover, C2/c-24 is unstable above 320 GPa and spontaneously breaks the
C2/c symmetry group to fall into the hexagonal P62/c-24. We predict, therefore,
phase III to transit to a new phase without hysteresis. This structure is competitive
with the Cmca-12 in a broad range of pressures, up to 400 GPa, above which the
Cmca-12 dominates. This transition has an impressive isotopic effect: it is shifted by
70 GPa to higher pressures in deuterium. The optical properties of both P62/c-24
and Cmca-12 are compatible with recent experiments[5, 4, 71] on phase VI, but rule
out the possible insulator phase H2-PRE proposed by Dias et.al.[2].
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Chapter 7

Conclusions

This thesis is focused on disclosing the experimental puzzle of the high-pressure
phase diagram of hydrogen.

This is achieved through both theoretical developments and computer simulations.
To fully account for the strong anharmonic character of the lightest element at
high pressures, I employed the stochastic self-consistent harmonic approximation
(SSCHA). In the first part of the thesis, I solve the condition problem in the free
energy optimization algorithm. Thanks to this advance, I was able to simulate
systems with many atoms and few symmetries, like high-pressure molecular phases
of hydrogen. Then, I extend the SSCHA theory to compute the stress tensor and
perform the variable cell optimization. This enables for the very first time to account
for the quantum effects on the stress and relax using a full quantum treatment of
the lattice parameters. The novelty of this approach is very important in hydrates,
like LaH10, where static simulations find a monoclinic ground state crystal. When
quantum fluctuations are considered, the lattice transforms into an orthorhombic
cell, recovering many symmetries and stabilizing a very strong electron-phonon
coupling. This guarantees LaH10 to be the superconductor with the highest critical
temperature known. This continuous transition cannot be described if the lattice is
not allowed to relax with quantum effects[28]. Thanks to this mechanism, LaH10 is a
superconductor more than 100 GPa below what predicted by harmonic calculations.

I also formulated the time-dependent generalization of the SCHA. Throughout
the least action principle, I derived the quantum equation of motion for the nuclear
wave-function. This new theory enables the study of out-of-equilibrium processes.
Using linear response theory, I compute the dynamical Green functions to simulate
the anharmonic Raman and IR spectra. High order force constants (beyond third
order) can be included in the calculation of the Green functions with this new
algorithm very efficiently.

Thanks to all these developments, I simulate the phase diagram of hydrogen. In
particular, I show how phase III is deformed by quantum effects. The H2 bonds grow
as pressure increases and the unit cell is anisotropically deformed. These effects
are bigger than the typical differences between DFT functionals and cannot be
neglected.

Exploiting the new developments, I simulated the vibrational Raman/IR spec-
trum for phase III. Here, anharmonicity changes the spectral features, especially the
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vibrons, introducing a finite life-time and shifting the average frequency of about
800 cm−1 to the harmonic simulation. This is an impressive result if we consider
that most of the effort to identify the structures is currently based on harmonic
calculations. After anharmonicity is considered, I showed how the simulated spectra
for the C2/c-24 increase the agreement with the experimental data for phase III.

I also computed the direct/indirect band-gap closure and the impact of electron-
phonon coupling, that affect the electronic properties by about 2.3 eV. The results I
found conciliate the two apparent contradicting experiments[4, 5]. I found the sample
to metalize by an indirect band gap closure at about 360 GPa (in agreement with[4]),
but the sample remains transparent in the IR until 450 GPa due to the very small
density of states close to the Fermi energy. The direct band gap closure, that can be
measured by IR transmittance, is in excellent agreement with the experiments[5].

My simulations of the full phase-diagram underline how quantum effects favor
high-symmetry phases. In particular, many unstable structures are stabilized by
quantum fluctuations. I show how the most supported candidate for phase IV (Pc-48)
acquires more symmetries even at the lowest simulated pressure of 250 GPa, and it
continues gaining symmetries as pressure is increased. We conclude that a more
symmetric partner of Pc-48 is phase IV and, probably, phase V is due by a new
symmetrization of the atomic layer.

On the other hand, my new algorithm highlights the instability of phase III
at 320 GPa. Following the soft mode, I found a new structure, namely P62/c-24,
made by alternating layers of graphene-like honeycomb and molecules. This phase
is competitive with the previously known Cmca-12. This unstable mode is IR active
and it should be measured experimentally.

In general, I showed how quantum fluctuations smear out the strong differences
between phases that are evident in the static calculation.

I also simulated phase III→VI transition at low temperatures and high-pressure.
My findings show that there is no contradiction between recent experiments[5, 4].
Moreover, I found two candidates compatible with the experimental signatures of
this phase[5]: the Cmca-12 (already proposed as a candidate for this phase) and
P62/c-24 (a new phase proposed here). Moreover, P62/c-24 is connected by no
barrier with phase III, in opposition to Cmca-12; this could explain the lack of
hysteresis observed.

The novel techniques I developed during these three years have a high impact on
quantum atomistic computer simulations. The big number of new phases I found
for high-pressure hydrogen simply relaxing the nuclear wave-functions without any
systematic search is a clear indication of how the SSCHA could strongly improve
common structure search algorithms. These new tools will pave the way to ab-initio
random structure search with fluctuations even at finite temperatures, pushing
forward the field of material design and discovery.
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Appendix A

Other published works

In this appendix, I attach all my works, published or preprinted. Here a list of the
works that are directly related to this thesis:

1. Pressure and stress tensor of complex anharmonic crystals. It is the
work referenced in Chapter 1 and 2. This work focuses on improvements I
introduced in the SCHA algorithm (the preconditioning and the non-linear
change of variables) as well as the stress tensor derivation. These tools are
applied to shed light on the anharmonic effect on the ice thermal expansion.

2. Quantum Crystal Structure in the 250 K Superconducting Lan-
thanum Hydride. This work is currently under revision, and a preprint has
been published. Here, we show how quantum effects completely reshape the
free energy landscape of LaH10, stabilizing a high symmetry structure with as-
tonishing electron-phonon coupling (responsible for the very high-temperature
superconductivity). Thanks to quantum effect, this structure remains the
ground state more than 100 GPa under what predicted by classical simulations.
This strengthens the hope of finding high-temperature superconductivity at a
lower pressure than those predicted by current ab-initio structure searches.

3. Phonon collapse and second-order phase transition in thermoelec-
tric SnSe. Here we use the SSCHA to prove that the phase transition between
the high symmetry Cmcm and the charge density wave Pnma is a second-order
phase transition, driven by a phonon-softening in the Y point of the Brillouin
space. The strong anharmonicity is the main reason why this compound
exhibits such high thermoelectric efficiency.

4. Quantum Enhancement of Charge Density Wave in NbS2 in the
Two-Dimensional Limit. Here we clarified the difference between NbS2
bulk and monolayer. Only the latter exhibits a 3x3 charge density wave, while
anharmonicity completely suppresses it in the bulk. Moreover, we proved
that a very small strain can switch off charge-density-wave in the monolayer,
proposing a device that can easily tune on-off charge ordering with controlled
electric fields.

5. Quantum effects in muon spin spectroscopy within the stochastic
self-consistent harmonic approximation. Here we proved how the SSCHA
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can perform very well in interpreting the results of muon spectroscopy. Anti-
muons behave like very light hydrogen ions. They are similar to defects
and can be detected with magnetic fields. The intrinsically quantum and
anharmonic behavior of the muon wave-function makes the SSCHA the best
tool for interpreting the result of this technique.

6. Strong anharmonicity and high thermoelectric efficiency in high-
temperature SnS from first-principles. Here, we analyze how anhar-
monicity affects the structural stability and the thermal transport of SnS.
Similarly to SnSe, we proved that also this element displays a second-order
phase transition. It is an optimal candidate for cheap and efficient thermoelec-
tric material.

7. Anharmonic melting of the charge density wave in single-layer TiSe2.
Here, we study the charge density wave on TiSe2. We show how excitons
play no role in the single-layer TiSe2 charge density wave ordering, even if
correlation effects strongly affect the electronic properties of the material. This
is achieved by simulating the melting temperature of the charge density wave
by using both hybrid and semi-local functionals within the SSCHA, showing no
difference. Moreover, we prove the doping of the substrate to play a relevant
role in suppressing the temperature of the charge density wave, obtaining
values very similar to the experimental ones.

Besides these works, during my PhD, I also collaborated to other projects:

1. Manipulating impulsive stimulated Raman spectroscopy with a chirped
probe pulse. This is a mixed theoretical and experimental work, that I per-
formed during my master thesis in the Femtoscopy lab and finished during
the first year of my PhD. Here, I developed a theoretical model to describe
the impulsive stimulated Raman scattering. Thanks to this model, I was able
to interpret the experimental result and design a novel technique to increase
the experimental accuracy. My findings were supported by experiments that I
contributed to perform.

2. Entropy evaluation sheds light on ecosystem complexity. This is a
work I did with my friend and colleague Mattia Miotto (a PhD student of my
same year). We introduced a novel technique to measure entropy in out-of-
equilibrium processes, as the dynamics of a toy-model ecosystem. Our findings
shed new light on the dynamical phase transition of the ecosystem, as well as
a change in the spatial ordering when predator hunting efficiency overcomes a
fixed threshold.

3. Gene heterogeneity drives the evolution of species. Here we show how
heterogeneity in gene expression affects the evolution of species. This is an
important open quest in evolutionary biology. Most of the DNA that composes
a complex organism (more than 98%) is non-coding and defined as junk. Even
in the coding part, there is a strong differentiation between genes. This
enormous source of heterogeneity that emerges from biology must be linked to
the evolutionary process; however, the way is still unknown. In this work, we
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identify heterogeneity in gene relevance as the control parameter that allows
species to improve their fitness and originate new species. We also show how
the absence of heterogeneity favors the mutational meltdown of the population
causing the extinction of the species due to the slow accumulation of deleterious
mutations in the genes. These findings are obtained by simulating a novel
minimal model of an ecosystem on a lattice in which two species struggle for
survival. Specimens carry a genome that codes the phenotype of each individual.
Random mutations affect the genes in the genome. Heterogeneity is introduced
by changing the weight of each gene on the overall individual phenotype. The
results we present point out how this heterogeneity is fundamental for assuring
survival, adaptability and sympatric speciations of populations.
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The self-consistent harmonic approximation (SCHA) allows the computation of free energy of anharmonic
crystals considering both quantum and thermal fluctuations. Recently, a stochastic implementation of the SCHA
has been developed, tailored for applications that use total energy and forces computed from first principles.
In this paper, we extend the applicability of the stochastic SCHA to complex crystals, i.e., systems in which
symmetries do not fix the inner coordinates and require the optimization of both the lattice vectors and the atomic
positions. To this goal, we provide an expression for the evaluation of the pressure and stress tensor within the
stochastic SCHA formalism. Moreover, we develop a more robust free-energy minimization algorithm, which
allows us to perform the SCHA variational minimization very efficiently in systems having a broad spectrum of
phonon frequencies and many degrees of freedom. We test and illustrate the approach with an application to
the phase XI of water ice using density-functional theory. We find that the SCHA reproduces extremely well the
experimental thermal expansion of ice in the whole temperature range between 0 and 270 K, in contrast with the
results obtained within the quasiharmonic approximation, that underestimates the effect by about 25%.
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I. INTRODUCTION

Atomic vibrations play a main role in many branches of
physics and chemistry, as they are involved in thermodynamic,
transport, and superconducting proprieties of materials and
molecules. Many spectroscopic techniques, such as Raman
and IR, measure how atoms vibrate. The standard approach to
describe vibrations is the harmonic approximation, in which
the Born-Oppenheimer (BO) energy surface is approximated
as a 3N -dimensional paraboloid around the ionic positions.
The solutions of the harmonic Hamiltonian are well-defined
noninteracting vibrational quasiparticles, phonons with an
infinite lifetime and temperature-independent spectrum. An-
harmonic effects, due to higher orders in the BO energy
surface, introduce interactions between phonons. As a result,
phonons acquire a finite lifetime that is responsible for thermal
transport. Furthermore, phonon spectra become temperature
dependent.

Anharmonic effects are commonly accounted for by pertur-
bation theory, the validity range of which is limited only when
the harmonic contribution dominates in the range defined by
the quantum zero-point motion (ZPM). This is not the case
of many interesting phenomena, such as systems undergoing
a displacive second-order structural phase transition in which
a phonon branch softens as a function of temperature, e.g.,
charge-density waves and ferroelectrics [1–12], or in solids
largely affected by the ZPM, for example in hydrides or in
molecular crystals containing H, like water and high-pressure
phases of hydrogen [13–18]. Classical molecular dynamics
(MD) for ions or methods based on it can be used to extract the

nonperturbative anharmonic renormalized phonon dispersion
[19–27]. However, within these approaches, quantum effects
on nuclei are neglected. These methods are then inappropriate
below the Debye temperature.

In order to correctly account for both quantum and anhar-
monic effects, the ideal technique is path-integral molecular
dynamics (PIMD) [28–30], but its demanding computational
cost limits its applicability to systems with few atoms or to the
use of empirical potentials. To overcome these problems many
self-consistent approximations have been developed [31,32].
Among them, the self-consistent harmonic approximation
(SCHA) allows one to describe anharmonicity through a full-
quantum variational theory. The stochastic implementation of
the SCHA [16] (SSCHA) allows us to apply the powerful
variational SCHA method to many systems with a lower
numerical effort than MD and PIMD, making possible the
calculation of nonperturbative anharmonic effects from first
principles.

So far, the applications of the SSCHA method [15–17,33–
35] have been limited to simple systems with high symme-
try. The main reason is that the variational minimization as
formulated in Ref. [16] can yield “runaway solutions” and
become very inefficient in complex crystals that show a wide
range of phonon frequencies and many degrees of freedom.
Another limitation of the original SSCHA formulation is that
it needs finite-difference approaches to estimate the effect
of ionic fluctuations in the stress tensor, as it happens in
the quasiharmonic approximation (QHA), which is extremely
cumbersome for noncubic crystals. This hinders cell relaxation
within the SSCHA.

2469-9950/2018/98(2)/024106(17) 024106-1 ©2018 American Physical Society
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In this paper, we efficiently overcome these difficulties
by developing an equation for the stress tensor within the
SCHA. Furthermore, we develop a more robust minimization
algorithm based on an analytical preconditioner combined with
a nonlinear change of variables that allows for efficient many-
variables minimizations. Our developments pave the way to
primitive cell relaxations including quantum and anharmonic
effects avoiding finite difference approaches. Thanks to the
improvements, we are able to drop the symmetry constraints
and to study systems with little or no symmetry, as it is in
molecular crystals.

We illustrate and benchmark the method with the phase XI
of ice (H2O), the perfect prototype of a complex molecular
crystal. Ice XI is the ordered phase of common ice formed
below 72 K in the presence of a small amount of an alkali-
metal hydroxide [36]. It is commonly used to study quantum
effects in water thanks to its great similarity to normal ice
(Ih) [37,38]. Ice is characterized by the interplay between
intramolecular covalent OH bonds and intermolecular hydro-
gen bonds. The great difference in strength of intermolecular
and intramolecular forces makes ice phases acquire a very
broad spectrum for their vibrational energies, from the very
low-energy rotons to the large-energy vibrons. Moreover, this
structure of ice experimentally exhibits at low temperature
negative thermal expansion [39] and the “anomalous isotope
volume effect” [37–40]: if hydrogen is replaced by deuterium,
the crystal volume expands by about a 0.1%. This is the
opposite behavior of what is usually observed when a heavier
isotope is substituted in the crystal. These features make the XI
phase of crystal ice a perfect benchmark for the here developed
SSCHA algorithm (Secs. VI and VII).

This paper is organized as follows. We recall the basis
of the SCHA algorithm in Sec. II. We introduce the stress
tensor in the SCHA formalism in Sec. III. We discuss the
stochastic implementation of the algorithm in Sec. IV. We face
the issues of the SSCHA minimization algorithm in Sec. V:
we get an ansatz on the condition number of the minimization
process (Sec. V A), and provide two changes of variables that
suppress it (Secs. V B and V C). Then, we benchmark the
SCHA algorithm in ice XI in Sec. VI. Finally, Sec. VII reports
the results computed with density functional theory (DFT) in
the unit cell of ice XI, compared with the QHA. In Sec. VIII
we summarize the main results of this paper. The paper is
completed with three appendices, where the mathematical
derivations of the presented equations are provided.

II. THE SELF-CONSISTENT HARMONIC
APPROXIMATION

The SCHA is a variational principle on the BO free energy.
The nuclear quantum Hamiltonian of a generic system can be
defined in the BO approximation as

H =
N∑

n=1

3∑
α=1

pα
n

2

2Mn

+ V ( �R,{�ai}), (1)

where V is the BO energy surface, Mn is the mass of the nth
atom, pα

n and �R (Rα
n ) are the momentum and position operators

of the nuclei in the periodic cell (or supercell), N is the number
of atoms, and {�ai} are the three unit-cell vectors. The α index

identifies the Cartesian coordinate. Fixing the temperature T

and the volume (i.e., the cell vectors {�ai}), the free energy of
the ionic Hamiltonian H is

F ({�ai}) = 〈H 〉ρH
+ kbT 〈ln ρH 〉ρH

, (2)

where ρH is the equilibrium density matrix

ρH = e−βH

Tr e−βH
, β = 1

kbT
, (3)

and the brackets 〈O〉ρH
indicate the average of the observable

O according to the ρH density matrix:

〈O〉ρH
= Tr [ρHO]. (4)

The equilibrium density matrix satisfies the free-energy least
principle. Given a trial density matrix ρH, we can define a free-
energy functional the minimum of which is the free energy:

F({�ai})[ρH] = 〈H 〉ρH + kbT 〈ln ρH〉ρH , (5)

F ({�ai}) = min
ρH

F({�ai})[ρH]. (6)

The SCHA consists in the restriction of the possible trial
density matrices to the equilibrium one obtained from a
harmonic Hamiltonian:

H �R,� =
N∑

n=1

3∑
α=1

pα
n

2

2Mn

+ V�, �R( �R), where (7a)

V�, �R( �R) = 1

2

N∑
n=1
m=1

3∑
α=1
β=1

uα
n�αβ

nmuβ
m, and (7b)

uα
n = Rα

n − Rα
n, (7c)

ρH = ρ �R,� = e−βH �R,�

Tr e−βH �R,�

. (7d)

Here uα
a is the displacement of the ath atom along the α

direction with respect to a central position �R, and �
αβ
nm is

the matrix element of the real-space force constant matrix
(we use bold font to indicate tensors and matrices). With
the introduction of the auxiliary harmonic Hamiltonian it is
possible to recast the free energy as

F( �R,�,{�ai}) = F� + 〈V − V�, �R〉
ρ �R,�

, (8)

where F� is the exact free energy of the harmonic Hamiltonian:

F�(T ) =
3N∑
μ=1

[
h̄ωμ

2
+ 1

β
ln
(
1 − e−βh̄ωμ

)]
, (9)

where ωμ and �eμ are, respectively, the eigenvalues and eigen-
vectors of the � matrix divided by the atomic masses:

N∑
t=1

3∑
β=1

�
αβ
st√

MsMt

eμ
β
t

= ω2
μeμ

α
s
. (10)

The real free energy can, therefore, be approximated as the
minimum of the free-energy functional [Eq. (8)] with respect
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to �R and �:

F( �R,{�ai}) = min
�

F( �R,�,{�ai}), (11a)

F({�ai}) = min
�, �R

F( �R,�,{�ai}). (11b)

From now on, when we drop either the �R or � symbol, we
mean the quantity computed in the value of that variable that
minimizes the free energy. For example, the equilibrium SCHA
density matrix is just ρ.

One of the advantages of using the harmonic Hamiltonian to
restrict the ρH space is that we have a trivial physical interpre-
tation of the minimization parameters. In fact �R represents the
centroid positions of the atoms, i.e., the anharmonic average
positions as measured by, e.g., diffraction experiments:

�R = 〈 �R〉ρ . (12)

In the same way, � is related to the thermal and quantum fluc-
tuations and defines the real-space density matrix broadening.
Within the harmonic auxiliary Hamiltonian, the probability
distribution function defined by the real-space density matrix
is a product of Gaussians:

ρ �R,�(�u) = 〈�u|ρ �R�|�u〉 ,

ρ �R,�(�u) =
√

det (ϒ/2π ) exp

⎛
⎝−1

2

∑
stαβ

ϒ
αβ
st uα

s u
β
t

⎞
⎠ (13a)

where

ϒ
αβ
st =

√
MsMt

∑
μ

2ωμ

(1 + 2nμ)h̄
eμ

α
s
eμ

β
t

(13b)

and nμ are the boson average occupation number for the μ

mode. It is important to notice that ωμ and �eμ [Eq. (10)]
are not directly equal to the physical phonons since they are
constrained to be positive defined [35]. Instead, they are related
to quantum and thermal fluctuations: they uniquely define the
ϒ tensor.

It is possible to define the SCHA force as the derivative of
the free energy [Eq. (11a)] with respect to the nuclear average
positions:

− ∂F
∂Rα

n

( �R,{�ai}) = 〈
f α

n − fH
α
n

〉
ρ �R

, (14)

where �f and �fH are, respectively, the BO and harmonic forces:

f α
n = − ∂V

∂Rα
n

( �R,{�ai}), (15)

fH
α
n = −∂V �R,�

∂Rα
n

= −
N∑

m=1

3∑
β=1

�αβ
nmuβ

m. (16)

It is interesting to notice how the harmonic potential V �R,� does
not depend explicitly on the unit-cell vectors {�ai}, while the BO
energy V ( �R,{�ai}) does.

To numerically minimize the SCHA free energy it is possi-
ble to use the steepest descent (SD) or conjugate gradient (CG)
methods [41], both based on the knowledge of the gradient of

the function to minimize. This can be expressed as a function
of the averages of the BO and harmonic forces [16]:

∇�F( �R,�,{�ai}) = −
∑
stαβμ

√
Mt

Ms

(
eμ

α
s
∇� ln aμ + ∇�eμ

α
s

)

× 〈[
f α

s (�u) − fH
α
s (�u)

]
u

β
t

〉
ρ �R,�

eμ
β
t
,

(17a)

∇Rα
s
F( �R,�,{�ai}) = − 〈f α

s − fH
α
s

〉
ρ �R,�

. (17b)

In the next section, we show how to implement the SCHA
in an isobaric ensemble, allowing for the relaxation also of
the unit cell. This is achieved thanks to the introduction of the
stress tensor in the SCHA framework.

III. THE STRESS TENSOR IN THE SELF-CONSISTENT
STOCHASTIC APPROXIMATION

To minimize the free energy with respect to the lattice
parameters in a periodic system, knowledge of the stress tensor
is crucial. The SCHA stress can be defined as

Pαβ ( �R,{�ai}) = − 1




∂F( �R,{�ai})
∂εαβ

∣∣∣∣∣
ε=0

, (18)

where 
 is the volume of the system and the strain tensor
εαβ identifies a generic deformation, where both the lattice
parameters and the average central position are affected:

a′
i

α = ai
α +

3∑
β=1

εαβai
β, (19a)

R′α
n = Rα

n +
3∑

β=1

εαβRβ
n . (19b)

This is equivalent to performing a strain keeping fixed the
internal crystal coordinates of the system. The final result can
be divided into three main contributions (see Appendix A for
the proof):

Pαβ ( �R,{�ai}) = P H
αβ ( �R,{�ai}) + P FLC

αβ ( �R,{�ai})
+P FRC

αβ ( �R,{�ai}), (20)

where theP H
αβ ( �R) is the static contribution, i.e., the stress tensor

computed without quantum and thermal fluctuations (classical
with T = 0), P FLC

αβ is the contribution of the fluctuations to the
stress, and P FRC

αβ is an extra term that takes into account the
work necessary to move the centroids according to the applied
strain ε:

P H
αβ( �R,{�ai}) = − 1




∂V ( �R,{�ai})
∂εαβ

∣∣∣∣∣
ε=0

, (21a)

P FLC
αβ ( �R,{�ai}) = 〈P H

αβ ( �R,{�ai})〉ρ �R
− P H

αβ ( �R,{�ai})

− 1

2


N∑
s=1

〈(
fH

α
s uβ

s + fH
β
s uα

s

)〉
ρ �R

, (21b)
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P FRC
αβ ( �R,{�ai}) = 1

2


N∑
s=1

(
Rβ

s

〈
f α

s − fH
α
s

〉
ρ �R

+Rα
s

〈
f β

s − fH
β
s

〉
ρ �R

)
. (21c)

The last term in Eq. (21b) makes fluctuations on pressure
disappear in a pure harmonic crystal (see Appendix A). The
force term, i.e., Eq. (21c), is nonzero only if the SCHA
centroids �R are not in the equilibrium configuration, i.e., the
SCHA force Eq. (14) on each atom is not zero, and it is
independent of the choice of the origin (the sum of the forces
over atom indices is zero).

Equation (21) can be computed once we know the BO
surface V ( �R,{�ai}), the atomic force f α

s ( �R,{�ai}), and the stress
tensors P H

αβ( �R,{�ai}) for each ionic displacement �R in the

ensemble of the configurations distributed according to ρ �R( �R).
In Sec. IV we discuss an efficient stochastic implementation
to numerically compute this average.

The computation of the SCHA stress tensor enables the
complete unit-cell relaxation in isobaric conditions (fixing the
external P ∗ pressure). This is done by minimizing the Gibbs
free energy, that is obtained from the Helmholtz free energy
through the Legendre transform:

G( �R,P ∗) = F( �R,{�ai}) + P ∗ 
({�ai}). (22)

IV. THE STOCHASTIC IMPLEMENTATION

The SCHA algorithm can be implemented by performing
the stochastic evaluation of all the averages. Thanks to the fact
that the density matrix is a multidimensional Gaussian function
[Eq. (13a)], it is possible to generate an ensemble distributed
according to ρ �R,� without any Metropolis algorithm [16], and

the average of a generic observable O( �R) can be computed
through Monte Carlo integration:

〈O( �R)〉ρ �R,�
= 1

Nc

∑
�RI

O( �RI ), (23)

where Nc and �RI are, respectively, the dimension and the
configurations of the ensemble. To avoid regenerating the en-
semble at each minimization step it is convenient to introduce
the importance sampling reweighting [16]:

ρI = ρ �R,�( �RI )

ρ �RSG,�SG
( �RI )

(24)

where ρ �RSG,�SG
( �RI ) is the density matrix used to extract the

ensemble configurations, i.e., computed with the starting guess
for the centroid positions �RSG and the auxiliary dynamical
matrix �SG. Then, the average of the observable O in a generic
value of �R and � can be computed through

〈O( �R)〉ρ �R,�
= 1

Nc

∑
�RI

ρIO( �RI ). (25)

The reweighting procedure allows us to overtake the usually
high computational effort required by the SSCHA minimiza-
tion. In fact, the computation of the SCHA free-energy gradient
[16], as well as the SCHA stress tensor [Eq. (21)], requires

only the knowledge of the first derivative of the BO energy
in the ensemble, that can be obtained just in one total-energy
calculation per configuration thanks to the Hellmann-Feynman
theorem. Moreover, the total-energy calculation can be com-
puted only one time in the starting ensemble of configurations
�RI , and then recycled on the whole minimization thanks to the

reweighting. When the new variables �R and � are too distant
from the initial ones, �RSG and �SG, the ensemble is no longer
able to provide a good estimation of the stochastic averages and
it must be reextracted. Thus, the overall computational effort
to run an ab initio SSCHA calculation is given by the number
of times the initial ensemble is regenerated.

It is crucial to improve the reliability of the ensemble, in
order to minimize the number of times the initial ensemble
is regenerated during the SSCHA free-energy optimization.
To this purpose, we adopt both a symmetrized sampling and
a stochastic threshold to evaluate the important sampling
accuracy.

The real-space density matrix is a symmetric distribution,
ρ �R,�(�u) = ρ �R,�(−�u), and all observables required in the
SSCHA free-energy minimization are purely even or odd terms
of the Taylor expansion of V ( �R,{�ai}) in ( �R − �R). To reduce the
stochastic noise we implemented the symmetrized sampling
[42]: for each displacement �u generated, also its opposite
−�u is included in the ensemble. This analytically cancels all
the noncontributing terms in the Taylor expansion of the BO
energy. It is important to notice that this advantage is lost when
�R 	= �RSG. However, we still find the symmetrized sampling

to be convenient to reduce the stochastic noise even if the
centroids do not match perfectly the starting guess.

The previous estimator of the importance sampling ac-
curacy used by Errea et al. [16] was the check on the ρI

normalization: ∣∣∣∣∣ 1

Nc

Nc∑
I=1

ρI − 1

∣∣∣∣∣ < η. (26)

However, this threshold can be exceeded if all the weight
constantly drifts from the uniform value, or it can remain
satisfied if they spread a lot. Thus, a much better estimator that
considers the spreading of the different configuration weights
can be implemented. In order to improve the reliability of the
reweighting procedure we found more reliable the Kong-Liu
effective sample size [43]:

Neff =
(∑

I ρI

)2∑
I ρ2

I

< Nc. (27)

A critical threshold η′ can be defined as

Neff

Nc

> η′. (28)

If the weight ρI of a configuration goes to zero, it does not
contribute to the averages. The effective sample size counts
how many configurations are actually contributing to the
Monte Carlo average [Eq. (25)], even if the ρI are properly
normalized.

We set η′ = 0.6 in all the simulations reported in this
paper. If the critical threshold is overcome, the minimization
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is stopped and an ensemble is generated with the final trial
density matrix ρ �R,�.

V. MINIMIZATION INSTABILITIES
AND RUNAWAY SOLUTIONS

The SSCHA algorithm consists in minimizing the free en-
ergy through the stochastic evaluation of its gradient [Eq. (17)],
employing the SD or CG algorithm, and taking advantage
of reweighting to perform multiple SD or CG steps without
recomputing energies and forces of the ensemble at each
step. However, this minimization procedure was empirically
found to be very difficult in some systems, especially in those
near a structural instability, where a phonon mode frequency
softens to zero, while all the other modes are substantially
higher in energy, or molecular crystals, in which hard inter-
molecular vibrations coexist with low-energy intramolecular
modes. In these cases, of very great physical interest, the
stochastic free-energy minimization requires a large number of
ensemble regenerations (and consequently a large number of
first-principles force calculations) to converge. Moreover, the
minimization can lead to runaway solutions: fake nonphysical
solutions of the SCHA self-consistency where the auxiliary
dynamical matrix � is not positive defined.

To understand the convergence properties we consider the
SCHA free energy close to the minimum. It can be approxi-
mated as a quadratic form in the minimization variables ( �R and
�). Under this condition, the SCHA free energy is expressed
by the Hessian matrix A with respect to those variables. From
the Hessian matrix it is possible to define the condition number
[44] C, as

C = max λA

min λA
, (29)

where λA is a generic eigenvalue of the A matrix. In the limit
in which the number of degrees of freedom is much greater
than the number of minimization steps, the SD and the CG
algorithms converge into a fixed threshold with almost N steps
proportional [41] to

NSD ∝ C, (30a)

NCG ∝
√

C. (30b)

In the SCHA case, the number of minimization steps is
proportional to the number of times the critical threshold η′
is overcome. Then, this number must be carefully optimized,
since each time the ensemble is reextracted the ab initio ener-
gies and forces for each configuration must be computed. This
calculation is the overall computational cost of the algorithm.
In the next sections, we provide an ansatz for the condition
number, unveiling that it dramatically diverges in the aforesaid
cases. We further provide two ways to prevent this divergence,
paving the way for the application of SSCHA in these systems.

A. Hessian matrix

In this section, we provide an analytical guess of the free-
energy Hessian matrix A with respect to the minimization
variable �. In general, this is not possible, since computing
the real Hessian matrix corresponds to solving exactly the

problem. However, we can perform the computation in an
analytical test case that, hopefully, will enclose all the physics
of the minimization problems incurred so far. This is a purely
harmonic system, described by a harmonic Hamiltonian. From
now on we introduce a compact notation to describe both
Cartesian and atomic indices (va = vα

s ):

H = 1

2

∑
a

(pa)2

2Ma

+ 1

2

∑
ab

uaKabub. (31)

The free-energy Hessian matrix with respect to the �

variable can be computed analytically. The steps that lead to
the following result are reported in Appendix B:

Aabcd
� = ∂2F( �R,�,{�ai})

∂�ab∂�cd

∣∣∣∣∣
�=K

= 1

2
PabPcd (�abcd + �abdc),

(32)

where the � rank-4 tensor is the same as that introduced by
Bianco et al. [35], and P is a symmetrization factor:

�abcd = − h̄

4

∑
μν

1

ωμων

ea
νe

b
μec

νe
d
μ√

MaMbMcMd

×

⎧⎪⎪⎨
⎪⎪⎩

2nν + 1

2ων

− dnν

dωμ

ων = ωμ

nμ + nν + 1

ωμ + ων

− nμ − nν

ωμ − ων

ων 	= ωμ

, (33)

Pab =
√

2(1 − δab) + δab. (34)

Here the ωμ and �eμ are the frequencies and polarization vectors
of the K matrix. These are, indeed, equal to the � matrix in
the minimum of the SCHA free energy, and represent the real
phonons of the system.

The � matrix can be diagonalized analytically if we con-
sider the case of all equal masses:∑

cd

�abcdec
μed

ν = λ̃μνe
a
μeb

μ. (35)

We can obtain an easy expression of the spectrum of the
Hessian matrix in the pure quantum limit T → 0 and the pure
classical limit T → ∞:

lim
T →0

λ̃μν = − h̄

4M2

1

ωμων(ωμ + ων)
, (36a)

lim
T →∞

λ̃μν = − 1

4βM2

1

ω2
μω2

ν

[
1 + ωμων

(ωμ + ων)2

]
. (36b)

Therefore, the Hessian matrix spectrum goes as ω−3
μ in the

quantum limit and ω−4
ν in the classical one. We can compute

the condition numbers, as defined in Eq. (29):

C�,T =0 ≈
(

ωmax

ωmin

)3

, (37a)

C�,T →∞ ≈
(

ωmax

ωmin

)4

. (37b)

This unveils the pathology in the SSCHA minimization
if the gradient is taken with respect to � as presented in
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Ref. [16] for the mentioned systems: when we have a structural
instability, there is a phonon mode that softens to zero (ωmin →
0), producing a diverging condition number C → ∞. In the
same way, molecular crystals have a broad spectrum, with a
very large difference between the highest vibron modes and
the lowest intermolecular ones (for example, in common ice
we have ωmax/ωmin ∼ 103). This yields extremely high values
of the condition numbers, that makes the minimization really
difficult and requires lots of energy and force recalculations
to achieve a good minimization. This obviously hinders the
fully ab initio application of the SSCHA method in complex
systems.

B. Nonlinear change of variable

The condition number is a function of the minimization
variables. Therefore, a simple change of variables can result
in a powerful improvement in the minimization algorithm. In
this section, we show that it is possible to almost completely
solve the divergences occurring in the condition numbers
[Eq. (37)] with a simple nonlinear change in the � auxiliary
matrix. Moreover, we can also completely cancel the aforesaid
runaway solutions. The runaway solutions are fake nonphysical
solutions of the SCHA that may arise during the minimization
if the � matrix is not positive definite. In order to avoid this
problem, one could perform a constrained minimization. It is
difficult to implement this kind of constraint with the SD or
CG algorithm. We find it much more convenient to introduce a
nonlinear change of variables, where we replace the auxiliary
dynamical matrix � with one of its even roots:

� → 2n
√

�. (38)

This mathematically constrains the minimization to have only
positive defined matrices �. Does this nonlinear change im-
prove the condition number on the minimization?

We can compute the Hessian matrix A√
� with respect to

the square root of � where � minimizes the free energy:

A√
� = ∂2F( �R,�,{�ai})

∂
√

�∂
√

�
= �A� + 2

√
�A�

√
� + A��,

(39)

where A� is the rank-4 Hessian with respect to � [Eq. (32)].
The procedure can be iterated to obtain any even root of�. Here
we report also the 4

√
� expression, since, as we will show, it

has a very favorable condition number:

A 4√
� =

√
�A√

� + 2 4
√

�A√
�

4
√

� + A√
�

√
�. (40)

We can easily compute the condition numbers in the new
variables if all the masses are equal substituting Eq. (32) into
Eqs. (39) and (40) (recalling that � ∼ ω2):

C 2√
�,T =0 ∼

(
ωmax

ωmin

)
, C 2√

�,T →∞ ∼
(

ωmax

ωmin

)2

, (41)

C 4√
�,T =0 ∼ 1, C 4√

�,T →∞ ∼
(

ωmax

ωmin

)
. (42)

The nonlinear change of variable � → 4
√

� both avoids the
nonphysical runaway solutions constraining the minimization
space to admit only positive defined matrices and strongly

Compute the gradient:
∇ΦF(R,Φ, { i})

Get the square root:
Φ →

√
Φ

Get with the chain rule
∇√

ΦF(R,Φ, { i})
Eq. (43)

Get the 4-th root:√
Φ → 4

√
Φ

Get with the chain rule
∇ 4√

Φ
F(R,Φ, { i})
Eq. (44)

Perform the step
with SD or CG:

4
√
Φ

(n) ∇ 4√
Φ
F

−→ 4
√
Φ

(n+1)

Get the new Φ:
4
√
Φ

(n+1) → Φ(n+1)

FIG. 1. Flowchart on a minimization step with the � → 4
√

�

change of variables.

suppress the condition number, making it independent on the
phonon frequencies in the T = 0 case and suppressing it by a
fourth root in the classical case.

In practice, the minimization in the 4
√

� is performed by
computing the free-energy gradient with respect to the new
variable adopting the chain rule on the derivatives:

∇√
�F( �R,�,{�ai}) =

√
�∇�F( �R,�,{�ai})

+∇�F( �R,�,{�ai})
√

�, (43)

∇ 4√
�F( �R,�,{�ai}) = 4

√
�∇√

�F( �R,�,{�ai})
+∇√

�F( �R,�,{�ai}) 4
√

�. (44)

The minimization step is updated as described by the flowchart
reported in Fig. 1.

C. Preconditioning

Even if the fourth root change of variable considerably
improves the condition number, for high-temperature calcula-
tions it still depends on the phonon frequencies linearly, which
could be problematic when a phonon mode goes close to zero
near a structural phase transition. The SSCHA minimization
algorithm corresponds to finding the zeros of the free-energy
gradient:

∇�F( �R,�,{�ai}) = 0. (45)

From the above system, the SD and the CG algorithms are
derived. However, since A� is a positive defined matrix, the

024106-6



PRESSURE AND STRESS TENSOR OF COMPLEX … PHYSICAL REVIEW B 98, 024106 (2018)

solution of the SCHA equation coincides with the solution of
the auxiliary problem:

A−1
� ∇�F( �R,�,{�ai}) = 0. (46)

It can be shown [41,44] that the condition number on the
problem defined by Eq. (46) is equal to 1 if A is the exact
Hessian matrix of F( �R,�,{�ai}). We can, therefore, use the
analytic guess of the Hessian matrix A provided in Eq. (32) to
redefine the minimization algorithm. The SD algorithm on the
problem of Eq. (46) becomes

�(n+1) = �(n) − λA−1
� ∇�F( �R(n),�(n),{�ai}), (47)

where λ is the minimization step. Another advantage of using
the auxiliary problem is that, if A is exact and F( �R,�,{�ai}) is
quadratic, the minimization arrives in the minimum of the free
energy in only one step with λ = 1. In a very similar way also
the CG algorithm can be redefined for the auxiliary problem:

d(0) = 0, (48a)

d(n+1) = A−1
� ∇�F (n+1) + ∇�F (n+1) A−1

� ∇�F (n+1)

∇�F (n) A−1
� ∇�F (n)

d(n),

(48b)

�(n+1) = �(n) − λd(n). (48c)

Here, we omit the explicit dependence of the free energy
∇�F (n) = ∇�F( �R(n),�(n),{�ai}) for simplicity.

Since we can compute the Hessian matrix even of the fourth
root problem, we can combine the two approaches of the
nonlinear change of variable and the preconditioner to achieve
a minimization constrained only on the positive defined � with
the smallest condition number.

D. Hessian in the �R vector

The analysis on the minimization conducted so far in-
vestigates only the minimization problems faced with the
� parameter of the free energy. This is usually the most
problematic part of the minimization, since, being a matrix,
� has many more degrees of freedom than the centroid
positions. Furthermore, the centroid positions are defined in
the unit cell, while the force constant matrix is a supercell
quantity. However, for generality, it is very easy to provide an
approximation also for the Hessian matrix of the free energy
with respect to the �R variables:

Aab
�R = ∂2F( �R,�,{�ai})

∂Ra∂Rb

∣∣∣∣∣
�

. (49)

Differences and similarities between this expression and the
free-energy Hessian studied in Ref. [35] are discussed in
Appendix C. Since we are both neglecting mixed terms in the
Hessian, and we are taking an approximated Hessian also for
the � minimization, we chose

A �R = �SG. (50)

This expression is correct when the �R and the � degrees of
freedom are simultaneously minimized. Moreover, Eq. (50)
provides a good preconditioner as it is always positive defined,

and it does not require any additional computational effort to
the algorithm.

The eigenvalues of � are related to the square of the
phonon frequencies for harmonic systems, therefore we can
approximate the condition number on the �R variables as

C �R ∼
(

ωmax

ωmin

)2

. (51)

This is not as pathological as the condition number seen on
the � minimization. However, we can introduce a precondi-
tioner in the same way as described in Sec. V C to handle
easier minimization in low-symmetry systems, as molecular
crystals, where also many centroid degrees of freedom must
be optimized, and the condition number (51) can be of the
order of 106. Preconditioning also the �R variables allows one
to have a dimensionless step λ for the minimization algorithms
[Eqs. (47) and (48c)], with a clear advantage of reducing the
human time necessary to optimize the two λ steps for the �

and �R minimizations. We remark that the terms in the Hessian
matrix obtained by the mixed derivatives in �R and � are
neglected.

The new SCHA algorithm flowchart is shown in Fig. 2.

VI. TESTS ON ICE XI (H2O)

In order to present the impressive enhancement in the
minimization procedure obtained thanks to the combination
of the preconditioning with the root representation, we report
the calculation on phase XI of ice. The difficulties of applying
the SSCHA to this structure arise due to the presence of both
hard covalent intramolecular bonds and soft intermolecular H
bonds, resulting in a broad phonon spectrum.

Ice XI is the proton ordered phase of common ice [36] that
is stable below 72 K. This is a typical prototype of a molecular
crystal also for the low symmetry of the structure. It belongs
to the Cmc21 group, with four symmetry operations. The unit
cell contains four water molecules (12 atoms). The number of
symmetry independent SCHA degrees of freedom is 11 for the
inner coordinates (Wyckoff positions) and 159 for the unit-cell
force-constant matrix. All the 11 inner coordinates, as well as
the 159 parameters in the force-constant matrix, are allowed
to move in the SSCHA.

We restricted the calculation to the unit cell, as we presented
this example as a test case; however, all the methods developed
here (both the minimization strategy and the stress tensor
computation) are defined on an arbitrary large supercell.

In this section, we use a classical force field that explicitly
includes anharmonicity of the water molecule to compute
energies and forces. The model is q-SPC/FW+anh [45].

A. Stress tensor test

Here we test the anharmonic effects on the stress tensor with
q-SPC/FW+anh. Equation (20) can be checked by performing
the numerical derivative of the SCHA free energy at different
volumes. In Fig. 3 we report the SCHA free energy as a
function of the system volume, with a polynomial fit. The cell
is deformed with an isotropic expansion of the volume so that
the obtained pressure as the derivative of the free energy versus
the volume can be compared with 1/3 of the stress tensor trace
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R0, Φ0

Compute the
preconditioner:

AΦ0 AR0

Generate the ensemble

Update the ρI
distribution

Is
η < 0.6?

Compute
R and Φ
gradients

Is the
gradient
modulus

comparable
with its

stochastic
error?

Minimization step
R(n) → R(n+1)

Φ(n) → Φ(n+1)

See FIG. 1 and
Eqs. (47), (48c)

Is the
stochastic

error
sufficiently

small?

DONE

Increase
the

ensemble
size

yes

no

no

yes

no

yes

FIG. 2. Flowchart of the new SSCHA implementation. The min-
imization step can be expanded by using the root4 algorithm shown
in Fig. 1. In this case, the preconditioner A�0 should be replaced with
A 4√�0

in the initial step. The minimization step is performed using the
CG algorithm as long as the error is much greater than the stochastic
noise, then the last steps are performed using SD. This prevents error
propagation in the conjugation due to the correlated noise introduced
by the importance sampling reweighting procedure.

of Eq. (20). The fit on the SCHA free energy is then used to
evaluate the pressure as a function of the volume:

P = −dF
d


= 1

3

∑
α=x,y,z

Pαα. (52)

820 840 860 880 900 920 940 960

Ω [Bohr3]

590

600

610

620

630

640

F
[m

eV
]

Free energy

Fit

SCHA

FIG. 3. SCHA free energy as a function of the volume. The unit
cell is kept fixed, while only an isotropic scaling factor is considered.
The solid line represents a cubic fit. The simulation is performed at
T = 100 K.

In Fig. 4 we compare the SCHA pressure obtained both as
indicated in Eq. (52) and as the opposite of the total derivative
of the free energy. The stochastic average of the stress tensors
〈P H

αβ ( �R,{�ai}〉ρ is also reported, showing how the pressure
cannot be considered as a physical observable to be computed
in analogy to what is done for general operators: Pαβ 	= 〈P H

αβ〉
ρ
;

in fact, this neglects the kinetic contribution of the vibrations.
It is necessary to compute it as the derivative of the free energy,
as done in Eq. (20). The pressure Pcla without quantum effects
at T = 0 is also reported, and can be computed as 1/3 of the
trace of the stress tensor in the classical equilibrium centroid

820 840 860 880 900 920 940 960

Ω [Bohr3]

−4

−3

−2

−1

0

1

P
[G

P
a]

Pressure

Pcla

−dF
dΩ

PH(R,Ω)

1

3

3∑

i=1

Pii(R,Ω)

FIG. 4. The figure compares the pressure computed with Eq. (20)
(blue circles), the classical pressure Pcla obtained neglecting thermal
and quantum fluctuations (red dashed line), the average of the classical
pressures over the SCHA ensemble (orange diamonds), and the
analytical derivative of the free energy fit reported in Fig. 3 (solid
green line). The simulation is performed at T = 100 K.
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FIG. 5. Minimization progress starting from the harmonic result with the preconditioning linear change of variables. (a) The free energy.
(b) The Kong-Liu effective sample size ratio, defined in Eq. (27). (c) Modulus of the free-energy gradient with respect to the dynamical matrix
�. (d) Modulus of the free-energy gradient with respect to the centroids �R. (e) Frequencies obtained from the eigenvalues of the SCHA �

matrix, as they evolve during the minimization. Preconditioning uniformly converges all the frequencies, achieving the final result much faster.
Panels (a), (c), and (d) contain the stochastic error. For the two gradients, the error is computed as the norm of the error on each component of
the gradient, to make it invariant with respect to the basis used to describe the �.

positions:

Pcla = −1

3

∑
α=x,y,z

1




∂V ( �R0,{�ai})
∂εαα

, (53)

where �R0 is defined as

∂V ( �R,{�ai})
∂ �R

∣∣∣∣∣ �R= �R0

= 0. (54)

B. Tests on the new minimization algorithm

A typical SCHA run with the precondition is reported in
Fig. 5. The ρ �R,� ensemble is reextracted four times. The
first two times (A and B) 2500 configurations were used,
10 000 were used in the C step, and 20 000 were used in D.
As clearly reported, the frequencies of the dynamical matrix
converge uniformly to the final result, as we expect from the
preconditioning, and we achieve a converged good result after
only two steps.

The comparison of the performances between the nonlinear
change � → 4

√
� and the preconditioning is reported in Fig. 6.

As a reference, the SCHA run without the nonlinear change
of variable and without preconditioning is also reported.
The simulations are compared at T = 100 K. It is clear that
both methods greatly outperform the standard algorithm. The
harmonic dynamical matrix around the static equilibrium
positions (neglecting quantum and thermal fluctuations) is used
as a starting point, according to what is usually done in ab
initio calculations [16,17,34]. The q-SPC/FW+anh harmonic

dynamical matrix is close to the SCHA result, as seen by
the low value of the free-energy gradient with respect to �,

FIG. 6. Comparison between the different methods described
here. The free energy is shown as a function of the number of
configurations used for the stochastic evaluation together with its
stochastic error. The first two calculations have 2500 configurations
each. The third (C) is with 10 000. A final calculation is performed as
a reference (D) with 20 000 configurations to check the convergence
of the previous ones. As shown, the minimization without the
preconditioning or the nonlinear change of variables is not able to
get a converged result even using an overall of 35 000 configurations,
preventing the old SCHA from being used with any ab initio technique
in this kind of system.
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(a) Dispersion (b) Unit cell

FIG. 7. (a) Comparison between harmonic (black solid lines) and SCHA (red dashed lines) dispersion and density of states. (b) Unit cell
of the ice XI structure. The parameters a, b, and ϑ represent, respectively, the covalent OH bond, the hydrogen bond, and the molecule angle.
Their average value as a function of the temperature is reported in Table I.

compared with its stochastic error, already in the first step of
Fig. 5. However, the standard minimization is not able to further
minimize the system.

The success of the SCHA implementation on this force field
paves the way to its systematic utilization for the study of water
and any other complex system with many degrees of freedom.

In the next section, we show the capabilities of our method
in a more realistic first-principles potential.

VII. AB INITIO SIMULATION ON ICE XI

Encouraged by the success of the SCHA implementation
on the q-SPC/FW+anh force field, we report also the SCHA
results on a realistic DFT potential. The converged SCHA
phonon dispersion (T = 0 K) is compared to the harmonic one
in Fig. 7. The calculation of energies and forces required to
minimize the SCHA free energy, as well as the computation of
the harmonic dynamical matrix, are performed ab initio with
DFT, Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional [46], and ultrasoft pseudopotentials [47] from the
pslibrary [48], as implemented in the QUANTUMESPRESSO

suite [49,50]. The SCHA dispersion is computed in the unit cell
with 13 000 overall configurations and a wave-function cutoff
of 45 Ry (360 Ry being the charge density cutoff), then the
difference between the harmonic and anharmonic dynamical
matrices is extrapolated in a 3 × 3 × 3 supercell, and the
harmonic dispersion �0 is added:

�(3×3×3) = �
(3×3×3)
0 + (

�(1×1×1) − �
(1×1×1)
0

)(3×3×3)
. (55)

The harmonic phonon dispersion obtained interpolating the
dynamical matrices converges already in a 2 × 2 × 2 supercell,
with a wave-function cutoff of 80 Ry (640 Ry being the charge
density cutoff). The SCHA auxiliary dynamical matrix � is not
directly related to the anharmonic phonon dispersion and, in
general, a more sophisticated calculation is required to extract
the real phonon frequencies in the SCHA approximation [35].
However, it is found [35] that the static phonon dispersion can
be obtained as a perturbative series, the leading order of which
is given by the � matrix itself plus a “bubble” correction. It
has been found in many systems with hydrogen [34,51] that
the bubble correction is much lower than the � contribution.
As an explicative case, here we neglect this correction. It is,
however, worth noticing that the developments presented in
Sec. V A do not affect the bubble computation as reported
in Ref. [35] since it depends only on the converged result
and not on the particular minimization strategy. Therefore, we
report the anharmonic phonon dispersion and density of states
approximated by directly interpolating the � matrix after the
SSCHA optimization in Fig. 7.

All phonon modes below 500 cm−1 (molecular translations)
are almost unaffected by the anharmonicity. The two upper
bands corresponding to symmetric and asymmetric stretching
suffer a redshift, together with the band around 1600 cm−1

(molecular bending). These modes are well described by
molecular vibrons, and the observed redshift is a general
property of the water molecule [52]. Also, the lowest part of the
molecular rotations (the bands between 600 and 1200 cm−1)
are blueshifted. This blueshift of the lowest modes is indeed
very interesting since it involves intermolecular modes. Such

024106-10



PRESSURE AND STRESS TENSOR OF COMPLEX … PHYSICAL REVIEW B 98, 024106 (2018)

TABLE I. Anharmonic effects on the crystal structure predicted
by the DFT-PBE at three temperatures. The average intramolecular
OH distance (covalent bond), the average H-bond distance, and the
water molecule mean angle, as reported in Fig. 7.

Harmonic 0 K 150 K 300 K

a (OH-covalent) 1.00835 Å 1.0159 Å 1.0148 Å 1.0131 Å
b (H-bond) 1.6769 Å 1.673 Å 1.674 Å 1.6765 Å
ϑ (HOH angle) 106.715◦ 106.950◦ 106.951◦ 106.886◦

an effect of anharmonicity is typical of this solid structure of
ice, and cannot be predicted just studying anharmonicity in
the isolated water molecule or the dimer. Moreover, the Debye
temperature of these bands is far above room temperature,
invalidating the dispersion obtained with classical molecular
dynamics since zero-point motion has a predominating role in
these lattice oscillations.

Also the average atomic positions are affected as reported
in Table I. Here, the quantum fluctuations slightly stretch the
water molecule, each covalent OH bond increases its length by
almost 0.7%, and the molecular angle widens by 0.2%.

Even if the anharmonic molecular stretch can seem neg-
ligible compared to what it has been predicted to be for a
high-pressure molecular phase of hydrogen [33], a difference
of 1% in the OH covalent bond has a great contribution to the
energy. As a test, the SCHA average structure can be used for a
classical DFT calculation, where the classical pressure is found
to be 1 GPa lower (negative) than its value in the equilibrium
positions, suggesting that the anharmonic relaxation of the
centroid positions may significantly affect the pressure and,
consequently, the equilibrium volume.

The stress tensor calculation can be used to optimize the
unit cell considering both thermal and quantum effects. The
most advanced calculations to include these effects without
involving PIMD in water have been performed within the QHA
[37,38]. In this scheme the total pressure is obtained expanding
the BO energy surface as a quadratic function around its
minimum at each volume. Then the exact free energy of the
approximated BO surface can be computed analytically:

FQHA( �Rc,{�ai}) = V ( �Rc,{�ai}) +
3N∑
μ=1

[
h̄ω̃μ( �Rc,{�ai})

2

+ 1

β
ln(1 − e−βh̄ω̃μ( �R,{�ai }))

]
, (56)

where ω̃μ are the harmonic frequencies of the BO surface. The
QHA free energy FQHA is obtained minimizing the functional
FQHA at fixed volume and temperature:

FQHA(T ,{�ai}) = min
�Rc

FQHA(T , �Rc,{�ai}). (57)

The QHA pressure is obtained by differentiating the free energy
with respect to a uniform volume deformation:

PQHA = −dFQHA

d

. (58)

In complex systems with many degrees of freedom, like in
ice, the minimization in Eq. (57) is computationally very

expensive, since it requires the calculation of the gradient of the
free energy (that depends on the harmonic dynamical matrix)
with respect to any possible atomic displacement. This involves
the calculation of a third-order derivative of the BO total energy
for each minimization step [53]. Differences and analogies of
QHA and SCHA approaches are discussed in Appendix D.
The QHA implementation with the full atomic coordinates
relaxation in H2O system has never been performed, and
usually the QHA free energy is approximated with �Rc = �R0:
the minimum of the BO energy. The pressure in Eq. (57) is
computed numerically taking finite differences between the
QHA free energies at several volumes. A more convenient
way to compute the QHA pressure is to consider the harmonic
frequencies as a linear function of the volume:

ω̃k(
) = ω̃k(
0)

[
1 − 
 − 
0


0
γk

]
, (59)

where the γk are the Grüneisen parameters. Then the QHA
pressure can be easily obtained at any temperature:

PQHA = PH (
) −
3N∑
μ=1

h̄ωμγμ

2


1

tanh
(

βh̄ωμ

2

) . (60)

The comparison between QHA and the SSCHA pressure calcu-
lations as a function of temperature is reported in Fig. 8(a). Both
the calculations have been performed in the unit cell, allowing
for a direct comparison between the SCHA and the QHA result.
Moreover, we checked the QHA pressure convergence versus
the supercell size, and found that the difference between the
QHA in a 3 × 3 × 2 supercell and in the unit cell was much
lower than the SCHA stochastic error itself.

The experimental fit on the elastic bulk modulus and the
volume expansivity have been used to compare the QHA and
SSCHA pressures at a fixed volume. As clearly shown, the
QHA pressure is shifted by about 4 kbars with respect to the
SSCHA result. This is two times bigger than the whole pressure
range between 0 and 300 K. In Fig. 8(b) the comparison
between the QHA, the SSCHA, and the experimental results
is reported. All the pressures are shifted with respect to
their zero-temperature value. The SSCHA zero-temperature
pressure has been obtained by fitting the SSCHA points with
the experimental curve. The experimental data have been
obtained from the fit reported in Ref. [54].

The QHA grasps the qualitative behavior of the pressure,
including the low-temperature negative thermal expansion
[55], but it deviates from the experiments at temperatures above
80 K. This effect has been associated with the entropy contri-
bution of the proton disorder of the ice Ih with respect to the ice
XI, that is not accounted for in the simulations [55]. However,
the SSCHA result corrects the QHA estimation of the pressure
by a significant amount, matching perfectly the experiments,
suggesting that the underestimation of the pressure at high
temperature can be simply explained as a failure of the QHA.
This indicates that anharmonic effects beyond QHA play an
important role in reproducing the physical properties of ice at
temperatures above 80 K.

We computed also the whole SCHA anharmonic stress
tensor. The effect of fluctuations on pressure anisotropy is
much smaller than that on the isotropic pressure. Indeed, the
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(a) (b)

FIG. 8. (a) Comparison between the QHA and the SSCHA pressure as a function of the temperature at fixed volume. The zero value of
the pressure is Pcla, obtained as 1/3 of the stress tensor trace at T = 0 neglecting quantum fluctuations. (b) Comparison between QHA and
SSCHA simulations and the fit of the experimental results from Ref. [54] (ice Ih). The SSCHA results are computed at temperatures of 0, 150,
and 300 K with 40 000 stochastic configurations. The other temperatures reported have been obtained through reweighting [16], therefore their
stochastic error is correlated.

computed pressure anisotropy is comparable with the statistical
error bars.

Another interesting feature of ice at low temperature is the
anomalous volume isotope effect: the D2O equilibrium volume
is bigger than the H2O one. This effect has been recently
studied within the QHA [37,38]. In particular, Pamuk et al.
[37] showed how the QHA result systematically overestimates
this effect with several DFT functionals but it depends slightly
on the chosen functional, on the difference between ice Ih
and XI, and on the q-grid interpolation. The experimental [39]
difference between the two volumes at 10 K is about 0.09%,
while the difference between the QHA equilibrium volume and
the SSCHA one is 1.8%. Therefore, the isotope volume effect
is a tiny correction with respect to the ZPE contribution on the
equilibrium volume and the difference between the SSCHA
and the QHA.

VIII. CONCLUSIONS

The study of quantum anharmonic effects in complex crys-
tals with lots of degrees of freedom, e.g., molecular crystals, is
a major challenge that impacts many domains of physics and
chemistry, including high-pressure phases of hydrogen, water
anomalies, thermoelectric materials, charge-density waves,
ferroelectrics, multiferroics, and so on. In this paper, we derive
an expression for the anharmonic contribution to the stress
tensor in the SCHA theory. This correction is very important
for accurate pressure estimations and phase-diagram compu-
tations and paves the way for isobaric unit-cell relaxation. We
further improved the stochastic implementation of the SCHA
theory to apply it in complex crystals with a large number
of degrees of freedom. This aim has been achieved thanks to
a preconditioning on the free-energy minimization algorithm,
based on an analytical guess of the Hessian matrix of both the
force-constant matrix and the central nucleus positions, and
with a nonlinear change of variables that restricts the space

of allowed dynamical matrices only to the positive defined
ones.

The algorithm is benchmarked with the phase XI of ice, the
proton-ordered phase of common ice, a prototype molecular
crystal. The quantum ZPM and anharmonicity are proven to
affect the phonon dispersion both in the molecular and in the
intermolecular modes. Also, the O-H and H-H bound distances
are slightly affected by anharmonicity. The importance of the
nonperturbative SCHA contribution to the pressure in this sys-
tem has been benchmarked in q-SPC/FW+anh and calculated
with ab initio DFT PBE, where the quantum fluctuations at
0 K are shown to affect the equilibrium volume by 1.8%.

The thermal expansion of the system has been computed
within both the QHA and the SSCHA. The QHA is found
to miscalculate both the ZPM contribution to the equilibrium
volume (with the wrong sign) and the effect of the thermal
fluctuations at temperatures above 80 K. The latter discrepancy
was associated with the proton disorder of phase Ih of ice.
However, we found the SSCHA to correct this effect, and to
exhibit an excellent agreement with the experiments, unveiling
that anharmonic effects behind QHA are crucial to correctly
describe the thermodynamic properties of ice.

The cell-relaxation and stress calculation here developed
paves the way to a refreshed quantitative and accurate study
of anharmonic effects on water, like the anomalous isotope
volume, the equilibrium isotope fraction, the negative thermal
expansion, and the high-pressure phase diagram. More gener-
ally, the developed stress tensor derivation and the improved
minimization algorithm make the SSCHA an efficient method
to calculate quantum and thermal anharmonic effects on
complex systems with many degrees of freedom.
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APPENDIX A: STRESS TENSOR DERIVATION

To easily compute the derivative of the SCHA free-energy
functional with respect to the strain tensor it is convenient to
use the formalism introduced by Bianco et al. [35]. The average
of a generic observable can be written as

〈O〉ρ �R,�
=
√

det

(
ϒ

2π

)∫
O( �R + �u,{�ai})

× exp

(
−1

2
�uϒ �u

)
d3Nu. (A1)

In order to normalize the Gaussian integral a change of variable
can be applied, so that

uα
s =

∑
μ

Jμ
α
s
yμ, Jμ

α
s

= eμ
α
s√

Ms

√
h̄(1 + nμ)

2ωμ

,

(ϒ−1)αβ
st =

∑
μ

Jμ
α
s
Jμ

β
t
. (A2)

Then we have

〈O〉ρ �R,�
=
∫

O( �R + J�y,{�ai})[dy],

[dy] =
3N∏
μ=1

exp
(−y2

μ

2

)
√

2π
dyμ. (A3)

Since we are deriving the F �R functional [Eq. (9)], the Hellman-
Feynman theorem allows us to neglect the changes introduced
by the strain on the dynamical matrix. Only �R is affected by
the deformation, according to Eq. (19). Therefore we have

d 〈O( �R,{�ai})〉ρR

dεαβ

= ∂ 〈O( �R,{�ai})〉ρ �R

∂εαβ

∣∣∣∣∣
�=�( �R)

, (A4)

∂ 〈O〉ρ �R

∂εαβ

= ∂

∂εαβ

∫
O( �R(ε) + J �y,{�ai(ε)})[dy]

=
∫ ⎛
⎝∑

sγ

∂O

∂R
γ
s

∂Rγ
s

∂εαβ

+
∑
iγ

∂O

∂a
γ

i

∂a
γ

i

∂εαβ

⎞
⎠[dy].

(A5)

Note that the observable O( �R) is derived with respect to its
argument, i.e., the atom positions in the ensemble configuration
�R, not the centroid position �R. This happens because the �R(ε)

appears linearly in the configuration position of O after the
change of variable:

∂ 〈O〉ρ �R

∂εαβ

= 1

2

∑
s

(
Rβ

s

〈
∂O

∂Rα
s

〉
ρ �R

+ Rα
s

〈
∂O

∂R
β
s

〉
ρ �R

)

+
〈∑

iγ

∂O

∂a
γ

i

∂a
γ

i

∂εαβ

〉
ρ �R

. (A6)

The free-energy functional is

F �R = F�( �R) + 〈V − V �R,�( �R)〉ρ �R
, (A7)

where �( �R) is the dynamical matrix that minimizes
F( �R,�,{�ai}) fixing the average atomic positions. The first
term, F�( �R) is an explicit function only of the SCHA dynamical
matrix, and therefore does not contribute to the derivative. The
latter average can be derived thanks to Eq. (A6):

∂ 〈V 〉ρ �R

∂εαβ

= −1

2

N∑
s=1

(
Rβ

s

〈
f α

s

〉
ρ �R

+ Rα
s

〈
f β

s

〉
ρ �R

)− 

〈
P H

αβ

〉
ρ �R

,

(A8)

where P H
αβ is the BO stress tensor. In fact the last term of

Eq. (A6) is the average of the derivatives of the BO energy
when the strain is applied to the unit cell. The “harmonic”
term can be computed in a similar way:

∂ 〈V �R,�〉
ρ �R

∂εαβ

∣∣∣∣∣
�

= 1

2

∑
s

(
Rβ

s

〈
∂V �R,�

∂Rα
s

〉
ρ �R

+ Rα
s

〈
∂V �R,�

∂R
β
s

〉
ρ �R

)

+
〈
∂V �R,�

∂εαβ

〉
. (A9)

In the same way as done for the BO energy surface, it is possible
to introduce the harmonic stress tensor as

P H
αβ = − 1




〈
∂V �R,�

∂εαβ

〉
ρ �R

= 1

2


∑
s

〈
fH

α
s uβ

s + fH
β
s uα

s

〉
ρ �R

= − 1




3N∑
μ=1

N∑
s=1

h̄ωμ

2 tanh
(

βh̄ωμ

2

)eμ
α
s
eμ

β
s
, (A10)

∂ 〈V〉ρ �R

∂εαβ

= −1

2

N∑
s=1

(
Rβ

s

〈
fH

α
s

〉
ρ �R

+ Rα
s

〈
fH

β
s

〉
ρ �R

)− 
P H
αβ.

(A11)

The first term is zero (the harmonic forces �fH are odd, while
the probability distribution ρ �R is even). However, we keep it
as it helps to increase the numerical accuracy [16], as we can
combine it with Eq. (A8) to exploit the correlation between
f α

s and fH
α
s to reduce the statistical noise on the average. In

a pure harmonic crystal also the quantities P H
αβ and P H

αβ are
correlated. Therefore, the final expression of the pressure can
be written as follows:

Pαβ = 〈
P H

αβ − 1

2


N∑
s=1

(
fH

α
s uβ

s + fH
β
s uα

s

)〉
ρ �R

+ 1

2


N∑
s=1

(
Rβ

s

〈
f α

s − fH
α
s

〉
ρ �R

+ Rα
s

〈
f β

s − fH
β
s

〉
ρ �R

)
.

(A12)

The last term is zero if the free energy has been minimized
also with respect to the �R variables (as the average of the BO
forces is the SCHA force acting on each atom, it is zero in the
equilibrium).
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APPENDIX B: DETAILED CALCULATION
FOR THE HESSIAN MATRIX

The real and trial classical forces acting on each configura-
tion identified by the displacements �u are

f α
s = − ∂V

∂uα
s

= −
∑
tβ

K
αβ
st u

β
t , (B1a)

fH
α
s = −∂V �R,�

∂uα
s

= −
∑
tβ

�
αβ
st u

β
t . (B1b)

Defining �δf = �f − �fH we have〈
δf α

s u
β
t

〉
ρH

= −
∑
nη

(
Kαη

sn − �αη
sn

) 〈
uη

nu
β
t

〉
ρ �R,�

. (B2)

From now on, we drop the subscript ρ �R,� for each average,
and consider all the averages computed with respect to the trial
density matrix. We further simplify the notation, introducing
one index for each Cartesian and atomic coordinate, so vα

s →
va . In this new notation Eq. (B2) reads

〈δfaub〉 = −
3N∑
c=1

(Kac − �ac) 〈ucub〉 . (B3)

The average of the product between two displacements of a
Gaussian distributed variable is the covariance between the
two displacements [Eq. (13a)]:

〈ucub〉 = (
ϒ−1)

cb
= 1√

McMb

3N∑
ν=1

ec
νe

b
νa

2
ν , (B4)

where we introduce the mode length aμ:

aμ =
√

h̄

2ωμ

(
1 + 2nμ

)
. (B5)

The gradient of the SCHA free-energy functional with respect
to � is [16]

∇�F �R,� = −
∑
abμ

√
Ma

Mb

(
eb
μ∇� ln aμ + ∇�eb

μ

)
ea
μ 〈δfbua〉 .

(B6)

Substituting the explicit expression of the forces we have

∇�F( �R,�,{�ai}) =
∑

abcμν

(Kac − �ac)
(
ea
μ∇� ln aμ + ∇�ea

μ

)

× eb
μec

νe
b
νa

2
ν√

McMa

. (B7)

It is clear from Eq. (B7) that in the minimum � = K.
Therefore, it is convenient to compact all the other terms into
a symbol:

∂F( �R,�,{�ai})
∂�cd

=
∑
ab

(Kab − �ab)Labcd . (B8)

Here L is a rank-4 tensor. Since we sum on all a and b indices
and the L rank-4 tensor multiplies a symmetrical matrix, it is
convenient to recast it into a symmetrical form:

Labcd =
∑
k,μν

(
ea
μ

∂ ln aμ

∂�cd

+ ∂ea
μ

∂�cd

)
ek
μeb

νe
k
νa

2
ν , (B9)

Labcd = Pab√
MaMb

Labcd + Lbacd

2
, (B10)

Pab =
√

2(1 − δab) + δab, (B11)

Labcd = Pab√
MaMb

∑
μ

[
ea
μeb

μ

∂ ln aμ

∂�cd

+ 1

2

∂(ea
μeb

μ)

∂�cd

]
a2

μ.

(B12)

In the minimum the only nonzero term of the Hessian matrix
is given by

∂2F( �R,�,{�ai})
∂�ab∂�cd

∣∣∣∣∣
�=K

= −Labcd , (B13)

∂2F( �R,�,{�ai})
∂�ab∂�cd

= − Pab√
MaMb

×
∑

μ

[
aμea

μeb
μ

∂aμ

∂�cd

+ 1

2
a2

μ

∂(ea
μeb

μ)

∂�cd

]
.

(B14)

Let us start with the term inside the square brackets. The
derivative of aμ can be obtained with the chain rule:

∂aμ

∂�cd

= ∂aμ

∂ωμ

∂ωμ

∂�cd

= Pcd

2ωμ

ec
μed

μ√
McMd

∂aμ

∂ωμ

. (B15)

The derivative of the polarization versors can be computed with
first-order perturbation theory:

∂
(
ea
μeb

μ

)
∂�cd

= ea
μ

∂eb
μ

∂�cd

+ eb
μ

∂ea
μ

∂�cd

= Pcd√
McMd

ν 	=μ∑
ν

(
ea
μeb

ν + eb
μea

ν

)(
ec
νe

d
μ + ec

μed
ν

)
2
(
ω2

μ − ω2
ν

) .

(B16)

We have a complete expression for the Hessian matrix:

∂2F( �R,�,{�ai})
∂�ab∂�cd

= − PabPcd√
MaMbMcMd

[∑
μ

ea
μeb

μec
μed

μ

4ωμ

∂a2
μ

∂ωμ

+
μ 	=ν∑
μν

ea
μeb

ν (ec
μεd

ν + ec
νe

d
μ)

4

(
a2

μ

ω2
μ − ω2

ν

+ a2
ν

ω2
ν − ω2

μ

)]
. (B17)
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We can use the bosonic occupation number and write aμ as a function of nμ:

aμ =
√

h̄

ωμ

[
nμ(β) + 1

2

]
, (B18a)

aμ

2ωμ

∂aμ

∂ωμ

= − h̄

8ω3
μ

(
2nμ + 1 + 2βh̄ωμn2

μ + 2βh̄ωnμ

)
. (B18b)

Therefore we have

∂2F( �R,�,{�ai})
∂�ab∂�cd

= h̄PabPcd√
MaMbMcMd

[∑
μ

ea
μeb

μec
μed

μ

2nμ + 1 + 2βh̄ωμn2
μ + 2βh̄ωμnμ

8ω3
μ

−
μ 	=ν∑
μν

ea
μeb

ν (ec
μed

ν + ec
νe

d
μ)

8(ω2
μ − ω2

ν)

(
2nμ + 1

ωμ

− 2ων + 1

ων

)]
. (B19)

It is clear from Eq. (B19) that a � matrix can be introduced so that

∂2F( �R,�,{�ai})
∂�ab∂�cd

= 1

2
PabPcd

∑
μν

(
�abcd

μν + �abdc
μν

)
, (B20)

where

�abcd
μμ = h̄ea

μeb
μec

μed
μ√

MaMbMcMd

2nμ + 1 + 2βh̄ωμn2
μ + 2βh̄ωμnμ

8ω3
μ

, (B21a)

�abcd
μν = − h̄√

MaMbMcMd

ea
μeb

νe
c
μed

ν

(ωμ − ων)(ωμ + ων)

2nμων − 2ωμnν + ων − ωμ

4ωμων

. (B21b)

To conclude the proof it is sufficient to show that the � matrix of Eq. (32) is equal to

�abcd =
∑
μν

�abcd
μν . (B22)

First, we introduce an auxiliary function f (ωμ,ων) as

f (ωμ,ων) = 2ωνnμ − 2ωμnν + ων − ωμ

4ωμων(ωμ + ων)(ωμ − ων)
= − 1

4ωμων

[
nμ + nν + 1

ωμ + ων

− nμ − nν

ωμ − ων

]
. (B23)

In the limit ων → ωμ we get

f (ωμ) = lim
ων→ωμ

f (ωμ,ων) = −2nμ + 1 + 2h̄βωμn2
μ + 2h̄βnμωμ

8ω3
μ

, (B24)

f (ωμ) = − 1

4ω2
μ

[
2nμ + 1

2ωμ

− ∂n

∂ω

]
. (B25)

So �abcd
μμ is obtained as the continuous limit of �abcd

μν when μ → ν:

�abcd
μν = − h̄ea

μeb
μec

μed
μ√

MaMbMcMd

f (ωμ,ων), �abcd
μμ = − h̄ea

μeb
μec

μed
μ√

MaMbMcMd

f (ωμ). (B26)

Substituting Eqs. (B23) and (B25) we finally get

�abcd
μν = h̄

4ωμων

ea
μeb

νe
c
μed

ν√
MaMbMcMd

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nμ + nν + 1

ωμ + ων

− nμ − nν

ωμ − ων

ωμ 	= ων

2nμ + 1

2ωμ

− ∂nμ

∂ωμ

ωμ = ων

. (B27)

APPENDIX C: HESSIAN IN THE CENTROIDS

The Hessian matrix approximation that we provide for the
centroids is compared with the free-energy Hessian calculated

in Ref. [35]. In particular, the correct preconditioner should be
chosen according to the minimization strategy. If the inner
degrees of freedom are optimized simultaneously with the
force constant matrix, then the correct preconditioner should be
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the complete Hessian matrix between any couple of degrees of
freedom while the others are fixed. Therefore we are neglecting
the mixed derivatives between the force constant and the
centroids. However, the centroids preconditioner we provided
is the correct one, since the second derivative of the free energy
is computed at a fixed force constant matrix.

The free-energy Hessian provided by Ref. [35] is, instead,
the total derivative of the free energy:

d2F( �R,�( �R),{�ai})
dRadRb

= ∂2F( �R,�,{�ai})
∂Ra∂Rb

+ ∂2F( �R,�,{�ai})
∂Ra∂�

∂�

∂Rb

+ ∂2�

∂Ra∂Rb

∂F( �R,�,{�ai})
∂�

. (C1)

The last term is zero in the minimum of the free energy, due
to the Hellman-Feynman theorem. This is, indeed, the correct
free-energy Hessian to study structural instabilities. It is also
the correct preconditioner if the centroids are moved only
after the full relaxation of the force constant is performed
at each step. This is unpractical: the so-defined minimization
algorithm converges slower, as it needs a full force constant
minimization, the most expensive one, before starting to move
the inner degrees of freedom. Moreover, the computation of the
Hessian in Eq. (C1) is more expensive than the one provided
in this paper, and it is not always positive defined.

APPENDIX D: QHA IN THE SCHA FRAMEWORK

The QHA can be reformulated in the SCHA framework in
order to understand differences between the two approaches.
The SCHA free energy is

F( �R,�,{�ai}) = F� + 〈V − V �R,�〉
ρ �R,�

. (D1)

If the system is perfectly harmonic, then the minimum of the
free energy is found when V �R0,�0

= V , and we get the QHA

free energy:

FQHA = F = F�0 + V ( �R0),

�0αβ = ∂2V

∂Rα∂Rβ

∣∣∣∣ �R= �R0

, (D2)

where �R0 is the minimum of the BO energy surface. So QHA is
equivalent to SCHA for any harmonic potential. If the system
is anharmonic, QHA approximates the potential as the second-
order Taylor expansion around the equilibrium position. This
makes the QHA theory not a self-consistent approach but a
series expansion of the real potential.

If the atomic position coordinates relaxation is allowed, as
introduced by Lazzeri and de Gironcoli [53,56], then the QHA
free energy becomes

FQHA( �Rc) = F�̃( �Rc) + V ( �Rc),

�̃αβ( �Rc) = ∂2V

∂Rα∂Rβ

∣∣∣∣ �R= �Rc

. (D3)

This is equivalent to SCHA [Eq. (D1)] keeping � fixed to the
harmonic dynamical matrix and neglecting the contribution
arising from 〈V − V〉ρ �Rc,�̃( �Rc )

. The anharmonicity is taken into
account by the fact that the harmonic dynamical matrix is
a function of the atomic positions. This approximation is
equivalent to neglecting all the even (from the fourth order)
contribution in the BO surface Taylor expansion around the �Rc

that minimizes FQHA. In this case, the average 〈V − V〉ρ�̃( �Rc )

is equal to zero, and the harmonic dynamical matrix is the
one that minimizes the SCHA free energy [Eq. (17) is exactly
zero]. If only odd anharmonicities are present in the system
(i.e., they dominate in the region of the quantum and thermal
fluctuations), the QHA relaxed free energy coincides with the
SCHA. The SCHA, therefore, is a natural extension to the
relaxed QHA that assures the self-consistency of the theory
for any kind of anharmonicity by explicitly including the
average 〈V − V〉ρ �R,�

in the free energy. Indeed, the SSCHA
algorithm is much more efficient than the QHA relaxation,
since it requires us only to compute energies and forces, while
the QHA relaxation requires the third-order derivatives of the
energy, and the application of the 2n + 1 theorem for each
minimization step [53].
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The discovery of superconductivity at 200K in the hydrogen sulfide system at large pressures [1]
was a clear demonstration that hydrogen-rich materials can be high-temperature superconductors.
The recent synthesis of LaH10 with a superconducting critical temperature (Tc) of 250K [2, 3] places
these materials at the verge of reaching the long-dreamed room-temperature superconductivity.
Electrical and x-ray diffraction measurements determined a weakly pressure-dependent Tc for LaH10

between 137 and 218 gigapascals in a structure with a face-centered cubic (fcc) arrangement of La
atoms [3]. Here we show that quantum atomic fluctuations stabilize in all this pressure range a
high-symmetry Fm-3m crystal structure consistent with experiments, which has a colossal electron-
phonon coupling of λ ∼ 3.5. Even if ab initio classical calculations neglecting quantum atomic
vibrations predict this structure to distort below 230GPa yielding a complex energy landscape with
many local minima, the inclusion of quantum effects simplifies the energy landscape evidencing the
Fm-3m as the true ground state. The agreement between the calculated and experimental Tc values
further supports this phase as responsible for the 250K superconductivity. The relevance of quantum
fluctuations in the energy landscape found here questions many of the crystal structure predictions
made for hydrides within a classical approach that at the moment guide the experimental quest for
room-temperature superconductivity [4–6]. Furthermore, quantum effects reveal crucial to sustain
solids with extraordinary electron-phonon coupling that may otherwise be unstable [7].

The potential of metallic hydrogen as a high-Tc super-
conductor [8, 9] was identified few years after the devel-
opment of the Bardeen-Cooper-Schrieffer (BCS) theory,
which explained superconductivity through the electron-
phonon coupling mechanism. The main argument was
that Tc can be maximized for light compounds due to
their high vibrational frequencies. In view of the large
pressures needed to metallize hydrogen [10], chemical pre-
compression with heavier atoms [11, 12] was suggested as
a pathway to decrease the pressure needed to reach metal-
licity and, thus, superconductivity. These ideas have
bloomed thanks to modern ab initio crystal structure
prediction methods based on density-functional theory
(DFT) [5, 13, 14]. Hundreds of hydrogen-rich compounds
have been predicted to be thermodynamically stable at
high pressures and, by calculating the electron-phonon in-
teraction parameters, their Tc’s have been estimated [4, 5].
The success of this symbiosis between DFT crystal struc-
ture predictions and Tc calculations is exemplified by the
discovery of superconductivity in H3S at 200 K [1, 15, 16].
The prospects for discovering warm hydrogen-based su-
perconductors in the next years are thus high, in clear
contrast with other high-Tc superconducting families such

as cuprates or pnictides [17, 18], where the lack of a clear
understanding of the superconducting mechanism hinders
an in silico guided approach.

DFT predictions in the La-H system proposed LaH10

to be thermodynamically stable against decomposition
above 150GPa. A sodalite type-structure with space
group Fm-3m and Tc∼280K was suggested above ∼220
GPa (see Fig. 1), and a distorted version of it below
with space group C2/m and a rhombohedral La sublat-
tice [19, 20]. By laser heating a lanthanum sample in
a hydrogen-rich atmosphere within a diamond anvil cell
(DAC), a lanthanum superhydride was synthesized right
after [20]. Based on the unit cell volume obtained by
x-ray diffraction, the hydrogen to lanthanum ratio was
estimated to be between 9 and 12. An fcc arrangement
of the La atoms was determined above ∼160GPa, and a
rhombohedral lattice below with R-3m space group for
the La sublattice. Due to the small x-ray cross section
of hydrogen, experimentally it is not possible to resolve
directly the H sublattice. Early this year, evidences of a
superconducting transition at 260K and 188GPa were
reported in a lanthanum superhydride [2]. These findings
were confirmed and put in solid grounds few months later
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Figure 1. Quantum effects stabilize the symmetric Fm-3m phase of LaH10. Top panel: Enthalpy as function of
pressure for different structures of LaH10 calculated neglecting the zero-point energy. The pressure in the figure is calculated
from V (R), neglecting quantum effects on it. The crystal structure of the different phases found are shown. Bottom left: Sketch
of a Born-Oppenheimer energy surface V (R) exemplifying the presence of many local minima for many distorted structures. R
represents the positions of atoms treated classically as simple points. Bottom right: sketch of the configurational E(R) energy
surface including quantum effects. R represents the quantum centroid positions, which determine the center of the ionic wave
functions, i.e., the average atomic positions. All phases collapse to a single phase, the highly symmetric Fm-3m.

by an independent group that measured a Tc of 250K
from 137 to 218GPa in a structure with fcc arrangement
of the La atoms and suggested a LaH10 stoichiometry [3].
Even if it is tempting to assign the record supercon-

ductivity to the Fm-3m phase predicted previously [2, 3],
there is a clear problem: the Fm-3m structure is predicted
to be dynamically unstable in the whole pressure range
where a 250K Tc was observed. This implies that this
phase is not a minimum of the Born-Oppenheimer energy
surface. Consequently, no Tc has been estimated for this
phase in the experimental pressure range. Considering
that quantum proton fluctuations symmetrize hydrogen
bonds in the high-pressure X phase of ice [21] and in
H3S [22, 23], this contradiction may signal a problem of
the classical treatment of the atomic vibrations in the
calculations. We show here how quantum atomic fluctua-

tions completely reshape the energy landscape making the
Fm-3m phase the true ground state and the responsible
for the observed superconducting critical temperature.

We start by calculating with DFT the lowest enthalpy
structures of LaH10 as a function of pressure with state-
of-the-art crystal structure prediction methods [24, 25].
The contribution associated with atomic fluctuations is
not included, so that the energy just corresponds to the
Born-Oppenheimer energy V (R), where R represents the
position of atoms treated classically as simple points. As
shown in Figure 1, different distorted phases of LaH10

are thermodynamically more stable than the Fm-3m
phase. Above ∼250GPa all phases merge to the Fm-
3m symmetric phase. These results are in agreement
with previous calculations [19], even if we identify other
possible distorted structures with lower enthalpy such as
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Figure 2. Phonon band structure of Fm-3m LaH10 at different pressures. The harmonic phonons show large instabilities
in several regions of the Brillouin zone. Only at the high-pressure limit, e.g. above 220-250GPa dynamic (harmonic) stabilization
is reached. The anharmonic phonons obtained from the Hessian of the quantum E(R) energy within the SSCHA are dynamically
stable in the experimentally relevant range. The case of deuterium develops a instability at low pressures (126 GPa) consistent
with experimental evidence. The pressure given corresponds to the calculated from E(R) that considers quantum effects. The
grey area marks the region with imaginary phonon frequencies, which are depicted as negative frequencies.

the R-3m, C2 and P1 (not shown) phases. These phases
not only imply a distortion of the H atoms, also show a La
sublattice without an fcc arrangement, and thus should
be detectable by x-ray. The fact that many structures
are predicted underlines that the classical V (R) energy
surface is of a multifunnel structure tractable to many
different saddle and local minima, as sketched in Figure 1.
This picture completely changes when including the

energy of quantum atomic fluctuations, the zero-point
energy (ZPE). We calculate the ZPE within the stochastic
self-consistent harmonic approximation (SSCHA) [26–28].
The SSCHA is a variational method that calculates the
E(R) energy of the system including atomic quantum
fluctuations as a function of the centroid positions R,
which determine the center of the ionic wave functions.
The calculations are performed without approximating
the V (R) potential, keeping all its anharmonic terms.
We perform a minimization of E(R) and determine the
centroid positions at its minimum. By calculating the

stress tensor from E(R) [28], we relax the lattice parame-
ters seeking for structures with isotropic stress conditions
considering quantum effects. We start the quantum re-
laxation for both R-3m and C2 phases with the lattice
that yields a classical isotropic pressure of 150GPa and
vanishing classical forces, i.e., calculated from V (R). All
quantum relaxations quickly evolve into the Fm-3m phase.
This suggests that the quantum E(R) energy landscape
is much simpler than the classical V (R) as sketched in
Figure 1. And that the sodalite symmetric Fm-3m phase
is the ground state for LaH10 in all the pressure range
of interest. Quantum effects are colossal: reshaping the
energy landscape and stabilizing structures by more than
60meV per LaH10.

Our results further confirm that the structure of LaH10

responsible for the 250K superconductivity is Fm-3m.
This is completely consistent with the fcc arrangement of
La atoms found experimentally [3]. However, Geballe et
al. [20] observed a rhombohedral distortion below ∼160
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GPa, with an R-3m space group for the La sublattice and
a rhombohedral angle of approximately 61.3°(c/a ∼ 2.38
in the hexagonal representation). Our calculations show
that this distortion is compatible with slight anisotropic
stress conditions in the DAC. Indeed, performing a SS-
CHA minimization for our R-3m phase but keeping the
rhombohedral angle fixed at 62.3°(the value that yields
an isotropic pressure of 150GPa at the classical level) the
quantum stress tensor shows a 6% anisotropy between
the diagonal direction and the perpendicular plane. This
suggests that anisotropic conditions inside the DAC can
produce the R-3m phase, while other experimental stress
conditions could favor other crystal phases.
The Fm-3m phonon spectra calculated in the har-

monic approximation from the Hessian of V (R) show clear
phonon instabilities in a broad region of the Brillouin zone
(see Figure 2). These instabilities appear below ∼230GPa.
This is consistent with the fact that below this pressure
many possible atomic distortions lower the enthalpy of
this phase. On the contrary, as shown in Figure 2, when
calculating the phonons from the Hessian of E(R) [27],
which effectively captures the full anharmonicity of V (R),
no instability is observed. This confirms again that the
Fm-3m phase is a minimum in the quantum-energy land-
scape in the whole pressure range where a 250K Tc was
observed. While the Fm-3m phase of LaH10 remains
a minimum of E(R) as low as ∼ 129GPa, the case of
LaD10 shows instabilities at 126GPa, implying that at
this pressure the Fm-3m phase of LaD10 distorts to a
new phase (as suggested by Drozdov et al. [3]). Below
this pressure we also predict that LaH10 composition is
not longer thermodynamically stable and low-hydrogen
compositions are likely to occur.
Flagrantly, the breakdown of the classical harmonic

approximation for phonons makes impossible the estima-
tion of Tc below ∼250 GPa in the Fm-3m phase and
questions all previous calculations [19, 29]. Indeed, the
anharmonic phonon renormalization remains huge also
at 264GPa (see Figure 2). On the contrary, with an-
harmonic phonons derived from the Hessian of E(R)
we can readily calculate the electron-phonon interaction
and the superconducting Tc in the experimental range
of pressure (120–210GPa). The superconducting criti-
cal temperature is estimated fully ab initio –without any
empirical parameter– by solving Migdal-Éliashberg (ME)
equations and applying SuperConducting DFT (SCDFT).
As shown in Figure 3, the numerical solutions of ME
equations with anisotropic energy gap are almost on top
of the experimental values. SCDFT values systemati-
cally show a slightly lower Tc. Our reported values of
Tc evidence the phonon-driven mechanism of supercon-
ductivity and confirm LaH10 in its Fm-3m structure as
responsible for the highest-Tc up to date reported. Our
calculations for LaD10 in the Fm-3m phase are also in
agreement with the experimental point reported. Despite
the large anharmonic effects at play, the isotope coefficient

Figure 3. Summary of experimental and theoretical
Tc values. Superconducting critical temperatures calculated
within anisotropic Migdal-Éliashberg equations and SCDFT.
In both cases the anharmonic phonons obtained with the
SSCHA are used. The results are compared with the experi-
mental measurements by Somayuzulu et al. [2] and Drozdov
et al. [3].

α = − [ln Tc(LaD10)− ln Tc(LaH10)] / ln 2 is close to 0.5
(0.43 around 160 GPa), the expected value in BCS theory,
and it is in agreement with the experimentally reported
α = 0.46.

We finally check Tc for the subtle rhombohedral distor-
tion that could be induced by anisotropic stress conditions
of pressure. Fixing the rhombohedral angle at 62.3° the
obtained Tc for the R-3m phase at 160GPa is a 9% lower
than for the Fm-3m. Thus, the observed weak pressure
dependence of Tc is consistent with the absence of a rhom-
bohedral distortion, as suggested by the x-ray data [3].
However, as argued above, undesired anisotropic stress
conditions in the DAC can induce phase transitions. We
thus believe that other experimental Tc measurements
with lower values but around 200K correspond to dis-
torted structures induced by anisotropic conditions of
pressure. In fact, we can safely rule out that compositions
such as LaH11, proposed to yield a high critical tempera-
ture [3], is responsible for any sizable Tc (see Extended
Data).
In summary, this work demonstrates how quantum

effects are of capital importance in determining the ground
state structures of superconducting hydrides, challenging
all current predictions and evidencing flaws in standard
theoretical methods. It also illustrates that quantum
fluctuations are indispensable to sustain crystals with
huge λ’s (λ reaches a record value of 3.6 at 129GPa for
LaH10) that be otherwise destabilized by the colossal
electron-phonon interaction to distorted (low symmetry)
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structures reducing the electronic density of states at the
Fermi level (see Extended Data) [7]. This is relevant since
large λ is required to guarantee high-Tc [5, 6], not simply
light atomic masses.
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Methods

Calculation details. First-principles calculations
were performed within DFT and the generalized gradi-
ent approximation (GGA) as parametrized by Perdew,
Burke, and Ernzerhof (PBE) [30]. Harmonic phonon
frequencies were calculated within density functional per-
turbation theory (DFPT) [31] making use of the Quan-
tum ESPRESSO code [32, 33]. The SSCHA [26–28, 34]
minimization requires the calculation of energies, forces
and stress tensors in supercells. These were calculated
as well within DFT at the PBE level with Quantum
ESPRESSO. For the final SSCHA populations, 1000 con-
figurations were used to reduce the stochastic noise. In
all these calculations we used ultrasoft pseudopotentials
including 11 electrons for the La atoms, a plane-wave
cut-off energy of 50Ry for the kinetic energy and 500Ry
for the charge density.
In the harmonic phonon calculations for the Fm-3m

and R-3m phases, we used the primitive and rhombohe-
dral lattices, respectively, with one LaH10 formula unit
in the unit cell. A 20×20×20 Monkhorst-Pack shifted
electron-momentum grid was used for these calculations
with a Methfessel-Paxton smearing of 0.02Ry. The DFT
calculations performed for the SSCHA on supercells were
performed on a coarser electron-momentum grid, which
would correspond to a 12×12×12 grid in the unit cell.
We explicitly verified that this coarser mesh yields a fully
converged SSCHA gradient with respect to the electron-
momentum grid, thus, not affecting the SSCHA mini-
mization. The DFT supercell calculations for the SSCHA
minimization on the C2 phase were performed keeping
the same k-point density.

All phonon frequencies for q-points not commensurate
with the supercell used in the SSCHA minimization were
obtained by directly Fourier interpolating the real space

force constants obtained in this supercell, which are cal-
culated form the Hessian of E(R). For the Fm-3m phase
the SSCHA calculation was performed both on a 2×2×2
and 3×3×3 supercell containing, respectively, 88 and 297
atoms. The phonon spectra shown in Figure 2 for the Fm-
3m phase are obtained by Fourier interpolating directly
the SSCHA energy Hessian force constants obtained in a
3×3×3 supercell. In Extended Data Figure 2 we show that
the phonon spectrum obtained interpolating directly the
force constants in a 2×2×2 supercell yields similar results,
indicating that the energy Hessian force constants are
short-range and can be Fourier interpolated. Indeed, the
Tc calculated with the 2×2×2 and 3×3×3 force constants
for interpolating phonons only differs in approximately 3
K. Upon this, the SSCHA quantum structural relaxations
in the R-3m and C2 phases were performed in supercells
with 88 atoms.

As shown in Ref. [27], the Hessian of E(R) is

∂2E(R)

∂R∂R = Φ +
(3)

ΦΛ

[
1−

(4)

ΦΛ

]−1
(3)

Φ . (1)

Bold notation represents matrices and tensors in compact
notation. In Eq. (1), Φ are the variational force constants

of the SSCHA minimization,
(n)

Φ the quantum statistical
averages taken with the SSCHA density matrix of the n-th
order derivatives of V (R), and Λ a tensor that depends
on the temperature and Φ. 1 is the identity matrix.

As we show in Extended Figure 3, setting
(4)

Φ = 0 has a
negligible effect on the phonons obtained from the Hessian

defined in Eq. (1). Therefore,
(4)

Φ is neglected throughout,
and all superconductivity calculations in the Fm-3m and
R-3m phases are performed making use of the phonon
frequencies and polarization vectors obtained from the

Hessian of E(R) with
(4)

Φ = 0. We also estimated Tc with
the phonon frequencies and polarization vectors obtained
instead from Φ, resulting in a critical temperature 12K
lower within Allen-Dynes modified McMillan equation.
This difference is small and within the uncertainty of the
Tc calculation between SCDFT and anisotropic Migdal-
Éliashberg calculations (see Figure 3 and below).
The Éliashberg spectral function, which we used for

the Tc calculations, is defined as

α2F (ω) =
1

NEF

∑

nk,mq,ν

|gνnk,mk+q|2δ(εnk − EF )

× δ(εmk+q − EF )δ(ω − ωqν), (2)

where NEF
is the electronic density of states (DOS) at

the Fermi energy (EF ), n and m are band indices, k
is a crystal momentum, εnk is a band energy, ωqν is
the phonon frequency of mode ν at wavevector q, and
gνnk,mk+q is the electron-phonon matrix element between
a state nk and mk+q. We calculated α2F (ω) combining
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the SSCHA phonon frequencies and polarization vectors
obtained from the Hessian of E(R) with the electron-
phonon matrix elements calculated with DFPT. For the
Fm-3m and R-3m phases, the electron-phonon matrix
elements were calculated in a 6×6×6 q point grid and
a 40×40×40 k point grid. These were combined with
the SSCHA phonons and polarization vectors obtained
by Fourier interpolation to the 6×6×6 q point grid from
the real space force constants coming from the Hessian
of E(R) in a 3×3×3 supercell for the Fm-3m and in a
2×2×2 supercell for the R-3m. The Dirac deltas on the
band energies are estimated by substituting them with
a Gaussian of 0.004Ry width. The calculated α2F (ω)
functions for the Fm-3m phase are shown in Extended
Figures 4 and 5, while in Extended Figure 6 we show the
results for the R-3m phase.

Crystal phase diagram exploration. To sample
the enthalpy landscape of LaH10 we employed the
minima hopping method (MHM) [24, 25], which has been
successfully used for global geometry optimization in a
large variety of applications including superconducting
materials such as H3S, PH3, and disilane at high
pressure [35, 36]. This composition was thoroughly
explored with 1, 2, 3 and 4 formula units simulation cells.
Variable composition simulations were also performed
for other La-H compositions. Energy, atomic forces
and stresses were evaluated at the DFT level with the
GGA-PBE parametrization to the exchange-correlation
functional. A plane wave basis-set with a high cutoff
energy of 900 eV was used to expand the wave-function
together with the projector augmented wave (PAW)
method as implemented in the Vienna Ab Initio
Simulation Package vasp [37]. Geometry relaxations
were performed with tight convergence criteria such that
the forces on the atoms were less than 2meV/Å and
the stresses were less than 0.1 eV/Å3. Extended Data
Figure 1 shows our calculated convex hull of enthalpy
formation without considering the zero-point energy at
100, 150 and 200GPa. Interestingly, there are many
stable compositions in the convex hull. LaH10 becomes
enthalpically stable at ∼125GPa and remains in the
convex well above 300GPa. Below 150GPa, R-3m and
C2 phases (LaH10) show unstable harmonic phonon at Γ,
becoming saddle points of V (R). However, harmonically
one can find P1 stable structures (decreasing symmetry)
by following the instability pattern (softening direction,
i.e. along eigenvector polarization). P1 structures are
degenerate in enthalpy within less 3meV/LaH10 with
respect C2. Hence, we used the C2 as a representative of
highly distorted structures for our study.

Superconductivity calculations in the Fm-3m
phase. Superconductivity calculations were performed
within two different approaches that represent the state-of-
the-art of ab initio superconductivity: Density functional
theory for Superconductors (SCDFT) and the Éliashberg

equations with full Coulomb interaction.
SCDFT is an extension to DFT for a superconducting

ground state [38, 39]. By assuming that the nk anisotropy
in the electron-phonon coupling is negligible (see Ref. 39
for further details), the critical temperature is computed
by solving an (isotropic) equation for the Kohn-Sham
gap:

∆s (ε) = Z (ε) ∆s (ε)−
∫
dε′K (ε, ε′)

tanh

[
βE(ε′)

2

]

2E (ε′)
∆s (ε′) ,

(3)
where ε is the electron energy and β the inverse temper-
ature. The kernels K and Z come from the exchange
correlation functional of the theory [39–44] and depend
on the properties of the pairing interactions: electron-
phonon coupling and screened electron-electron repulsion.
Eq. 3 allows us to calculate Tc completely ab initio, with-
out introducing an empirical µ∗ parameter (Coulomb
pseudopotential). Dynamic effects on the Coulomb in-
teraction (plasmon) were also tested and did not show
any significant effect. In its isotropic form, the screened
Coulomb interaction in SCDFT is accounted for by a
function µ(ε, ε′), which is given by the average [45] RPA
Coulomb matrix element on the iso-energy surfaces ε and
ε′ times the DOS at ε′ (N(ε′)):

µ(ε, ε′) =
∑

n,m

x
d3(kk′)V RPAnk,mk′

δ(ε− εnk)

N(εnk)
δ(ε′ − εmk′).

(4)
The full energy dependence of the DOS is accounted in
the calculations, while the electron-phonon coupling is
described by the α2F (ω) of Eq. (2).

The second approach we use to simulate the supercon-
ducting state is the anisotropic Éliashberg approach [46].
Here we include, together with the energy dependence of
the electron DOS, the anisotropy of the electron-phonon
coupling. The Green’s function form of the Éliashberg
equation [46] we solve is given as

Σnk(iωi) = − 1

Nβ

∑

µ,q,m

V ph
mn(q, iωµ)Gmk+q(iωµ + iωi),

(5)

∆nk(iωi) = − 1

Nβ

∑

µ,q,m

{V ph
mn(q, iωµ) + V C

mn(q, iωµ)}

× |Gmk+q(iωµ + iωi)|2∆mk+q(iωµ + iωi). (6)

Here, Σnk(iωi) and ∆nk(iωi) are the normal and anoma-
lous self energy, and V ph

mn(q, iωµ) and V C
mn(q, iωµ) are the

k-averaged phonon-mediated interaction and Coulomb
interaction, respectively. The explicit form of V ph

mn(q, iωµ)
is given as

V ph
mn(q, iωµ) =

∑

ν

|gνnm(q)|2Dν(q, iωµ), (7)
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where |gνnm(q)|2 is a k-averaged electron-phonon matrix
element,

|gνnm(q)|2 =

∑
k |gνnk,mk+q|2δ(εnk − EF )δ(εmk+q − EF )∑

k δ(εnk − EF )δ(εmk+q − EF )
,

(8)

and Dν(q, iωµ) is a free-phonon Green’s function,
Dν(q, iωµ) = −2ωqν/(ω

2
µ + ω2

qν). The electron-phonon
matrix elements are calculated through a DFPT cal-
culation with 6×6×6 q point grid, and are combined
with the phonon frequencies and polarization vectors
obtained by directly Fourier interpolating to this grid
the force constants coming from the E(R) Hessian
in the 3×3×3 supercell. For the Coulomb interac-
tion, V C

mn(q, iωµ) is approximated by k-averaged static
Coulomb interaction within the random phase approxi-
mation, 1

Nk

∑
k V

RPA
mk,nk+q(iωµ = 0). Using Eq. (5), the

Dyson equation was solved self-consistently and then
Eq. (6) was solved to estimate Tc with 36× 36 × 36 k
point grid and 512 Matsubara frequencies.

In Extended Data Table I we summarize all calculated
Tc’s within anisotropic ME and isotropic SCDFT. We
also include the values obtained with McMillan equation
and Allen-Dynes modified McMillan equation (µ∗=0.1).
The calculated electron-phonon coupling constant, λ =
2
∫∞
0
dωα2F (ω)/ω, and the logarithmic frequency average,

ωlog= exp
(

2
λ

∫∞
0
dωα

2F (ω)
ω logω

)
, are also included in

the table.
Quantum structural relaxations in the R-3m

and C2 phases. In Extended Figure 7 we show the
evolution of the pressure calculated along the different
Cartesian directions for the R-3m throughout the SSCHA
minimization but keeping the rhombohedral angle fixed at
62.3°. Thus, the centroid positions R are optimized only
considering the internal degrees of freedom of the R-3m
phase. Even if at the classical level the stress is isotropic
(within a 0.5%), after the SSCHA quantum relaxation an
anisotropic stress of a 6% is created between the z and
x − y directions. The phonons obtained at the end of
the minimization are shown in Extended Figure 6. Sec-
ondly, in Extended Figure 8, we show that starting from
the result of this minimization but now relaxing also the
lattice, the R-3m phase evolves into the Fm-3m phase.
It is clear how the pressure calculated with quantum
effects becomes isotropic when the rhombohedral angle
becomes 60°, the angle corresponding to a fcc lattice in
a rhombohedral description. Also it is evident that the
Wyckoff positions of the R-3m phase evolve clearly into
the Fm-3m Wyckoff positions, which are summarized in
Extended Data Table II.
In Extended Data Figure 9 we show the evolution of

the diagonal components of the pressure along the three
different Cartesian directions for the monoclininc C2 when
the lattice structure is relaxed with the SSCHA. The
starting point is obtained by first performing a SSCHA

relaxation of only internal atomic coordinates keeping the
lattice parameters that yield an isotropic stress of 150GPa.
It is clear that quantum effects create an anisotropic
stress if the lattice parameters are not modified. When
the quantum relaxation of the lattice is performed, the
lattice parameters are modified and an isotropic stress is
recovered.
Extended Data Figure 10 shows the structures of the

R-3m and C2 phases obtained classically and after the
quantum SSCHA relaxation. After the quantum relax-
ation, the symmetry of both structures is recognized as
Fm-3m with a tolerance of 0.001Å for lattice vectors and
0.005Å for ionic positions, consistent with the stochastic
accuracy of the SSCHA. In the same Figure 10, the elec-
tronic density of states (DOS) as a function of pressure
is plotted. Highly symmetric motif (Fm-3m) maximizes
NEF

, while in distorted structures (R-3m and C2) the oc-
cupation at the Fermi level is reduced by more than 20 %.
This underlines that the classical distortions would lower
NEF

, reducing λ, as expected in a system destabilized by
the electron-phonon interaction.

Transition temperatures from other La-H com-
positions. Different compositions on the La-H phase
diagram have been reported as thermodynamically stable.
Presumably, the stabilization of these compositions and
the measurement of different Tc’s (see Drozdov et al. [3])
demonstrate that other stoichiometries are responsible
for these measured Tc’s. Notably, these Tc’s appear sub-
stantially lower, for instance the values decrease from
250K, to 215K, 110K and to 70K. Experimentally there
is not a clear correlation between sample preparation, Tc
and pressure. In sample preparation of Drozdov et al.
pressures can vary from 100 to 200GPa (gradient inside
the diamond anvil cell) and it was proposed that other
stoichiometries (low-hydrogen content) are responsible for
systematically lower Tc’s.

Conversely, in a later publication the same authors sug-
gested other hydrogen rich system that is enthalpically
competitive (LaH11) and possibly responsible for other
high-Tc phases. In order to explore this possibility, we
did consider structure prediction runs with this stoichiom-
etry and found crystalline structures that were previously
reported in Ref. [47]. Extended Data Figure 11 shows
the structural motif and the corresponding phonons and
α2F (ω) spectral function. We can rule out the possibility
that high-Tc, as measured in different samples, arises from
LaH11 in its P4/nmm (129) structure (lowest enthalpy
structure for this composition at relevant experimental
pressures). As seen in Extended Data Figure 11, this
phase has a strong molecular crystal character, composed
of H2 units weakly interacting with La-lattice. This phase
is indeed a poor metal with low occupation of electrons at
the Fermi level due to its molecular character and cannot
explain 70K, or higher values of Tc. Our estimated Tc
with Allen-Dynes formula, harmonic phonons and using
a µ∗=0.1 is 7K at 100GPa.
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Extended Data Figure 1. Convex hull of enthalpy formation. It is noticeable that at low pressure (left panel, 100GPa)
the composition of LaH10 is not stable and only develops as stable point in the convex hull above ∼125GPa.
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Extended Data Figure 2. SSCHA phonons supercell convergence for LaH10 at 163 GPa. The phonon spectra shown
are calculated by directly Fourier interpolating the force constants obtained from the Hessian of E(R) in a real space 2× 2× 2
and a 3× 3× 3 supercell. The similarity of both phonon spectrum obtained by Fourier interpolation indicates that these SSCHA
force constants are short-ranged and can be Fourier interpolated.
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Extended Data Figure 3. Different anharmonic phonons calculated for LaH10 at 163 GPa. Phonon spectra obtained
from the SSCHA energy Hessian of Eq. (1) making different level of approximations. The purple solid line is the phonon

spectrum calculated with the full energy Hessian, without any approximation. In the blue dotted spectrum we set
(4)

Φ = 0 in the

equation. In the orange dash-dotted line we set
(3)

Φ =
(4)

Φ = 0, so that the phonon spectra corresponds to the one coming directly

from the SSCHA variational force constants Φ. The results clearly show that while the effect of
(3)

Φ is important, setting
(4)

Φ = 0
is perfectly safe. All these phonon spectra in the figures are obtained by Fourier interpolating directly the real space anharmonic
force constants in a 2× 2× 2 supercell.

Extended Data Table I. Summary of calculated superconducting Tc. Values are within different approaches ranging from
empirical to fully ab initio: McMillan equation (Tc

Mc
µ∗=0.1), Allen-Dynes modified McMillan equation (Tc

AD
µ∗=0.1), anisotropic

treatment of Migdal-Éliashberg (Tc
ME
ani ) and SCDFT (TSCDFT

c ). Values of λ and ωlog are also given.

System Pressure (GPa) λ ωlog (meV) Tc
Mc
µ∗=0.1 (K) Tc

AD
µ∗=0.1 (K) Tc

ME
ani (K) TSCDFT

c (K)
LaH10 129 3.62 76.4 171.8 252.6 255.3 230
LaH10 163 2.67 96.4 197.1 247.0 242.8 225
LaH10 214 2.06 115.5 196.3 235.9 237.9 210
LaH10 264 1.73 126.6 189.5 219.2 216.9 201
LaD10 159 3.14 63.5 135.0 184.2 180.4 171
LaD10 210 2.21 81.7 145.5 176.5 172.9 158
LaD10 260 1.80 92.2 142.2 164.6 157.9 151
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Extended Data Figure 4. α2F (ω) for the Fm-3m phase of LaH10. Calculated α2F (ω) for different pressures together with
the integrated electron-phonon coupling constant, which is defined as λ(ω) = 2

∫ ω
0
dΩα2F (Ω)/Ω. The results show that optical

modes, who have hydrogen character, are responsible for the large value of the electron-phonon coupling constant λ. It is worth
noting, however, that acoustic modes with La character contribute between 0.2 and 0.5 to λ and cannot be neglected to estimate
Tc correctly.
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Extended Data Figure 5. α2F (ω) for the Fm-3m phase of LaD10. The integrated electron-phonon coupling constant λ(ω)
is also shown.
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Extended Data Figure 6. Phonon dispersion of LaH10 on the rhombohedral phase. Harmonic and anharmonic phonon
spectrum keeping a 62.3° rhombohedral angle. The harmonic calculation is performed with the internal atomic positions that
yield classical vanishing forces. The anharmonic calculation is performed after relaxing with the SSCHA the internal degrees of
freedom but keeping the 62.3° rhombohedral angle. At the harmonic level there are unstable phonon modes even at Γ. Symmetry
prevents the relaxation of this structure according to the unstable phonon mode at Γ. The harmonic phonons are calculated at
a classic pressure of 150GPa. Quantum effects add an extra ∼10GPa to the pressure. On the right side of the figure is also
shown the behavior of λ(ω) and α2F (ω) for the anharmonic calculation.
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Extended Data Figure 7. Anisotropic pressure of the R-3m phase of LaH10 in a fixed-cell quantum relaxation.
Pressure along the different Cartesian directions during the SSCHA relaxation of the internal parameters keeping the rhombohedral
angle at 62.3° fixed. At step 0 the pressure reported is obtained directly from V (R), neglecting quantum effects. It is isotropic
within one GPa of difference between the x− y and z directions. At the other steps it is calculated from the quantum E(R)
and along the minimization it becomes anisotropic. When the minimization stops at step 12, i.e., the internal coordinates are
at the minimum of the E(R) for this lattice, the stress anisotropy between z and x− y directions is about 6%. This clearly
indicates that quantum effects want to relax the crystal lattice, in particular, since Pz is larger, by reducing the rhombohedral
angle. It is worth noting that quantum effects approximately increase the total pressure by 10 GPa, which is calculated as
P = (Px +Py +Pz)/3. The initial cell parameters before the minimization are a = 3.5473398 Å and α = 62.34158 ° . The initial
values of the free Wyckoff parameters, which yield classical vanishing forces and a 150 GPa isotropic stress, are εa = 0.26043,
εb = 0.09950, εx = 0.10746 and εy = 0.12810. Check the Extended Data Table II for more details.
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Extended Data Figure 8. Details on the R-3m LaH10 cell relaxation including quantum effects. The initial point
for the relaxation is the output from the previous internal relaxation with fixed angle presented in Extended Figure 7. The
R-3m phase in the rhombohedral description is described by three vectors of the same length (a = b = c) and by the angle
between them (α = β = γ). In panel (a) we show the evolution of the rhombohedral angle and in panel (b) the evolution of the
rhombohedral lattice parameter (|a| = |b| = |c|). The evolution of the stress tensor in the quantum SSCHA minimization is
shown in panel (c). It is clear that in the end of the minimization the structure obtains a 60° angle, which matches the angle of
a fcc lattice, and that in this case the stress is isotropic. In panel (d) we show the evolution of the Wyckoff positions in the
minimization and we compare it with those of the Fm-3m. The occupied Wyckoff positions for both R-3m LaH10 and Fm-3m
LaH10 are summarized in the Extended Data Table II. Here, it can be seen the evolution of εa, εb, εx, and εy parameters in the
minimization. The atoms in the first set of 6c positions approach the 8c Wyckoff site of the Fm-3m, while the atoms in the
second set of 6c positions and those in 18h sites approach the atoms in the 32f Wyckoff site of the Fm-3m, where ε = 0.12053.
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Extended Data Table II. R-3m LaH10 and Fm-3m LaH10 Wycokff positions. The table summarizes the occupied Wyckoff
positions for the two structures. We describe the Wyckoff positions in crystal coordinates so that the [x, y, z] coordinate should
be understood as a xa + yb + zc atomic position with a, b, c the lattice vectors. For the R-3m phase we use the rhombohedral
lattice (R), where the three lattice vectors have the same length (a = b = c) and the angle between them is the same (α = β = γ).
The Fm-3m phase is described both in this rhombohedral description (R) and, for comparison, in the standard cubic conventional
lattice (C). In the Fm-3m the lanthanum atom is described by the 4b sites, two hydrogen atoms occupy the 8c sites, and the
remaining 8 hydrogen atoms occupy the 32f sites. Most of the atomic positions are fixed by symmetry and overall the Fm-3m
structure can be described by one single free parameter (ε). In the R-3m the lanthanum atom is locked in the 3b sites, two
pairs of hydrogen atoms occupy the 6c sites, and the remaining 6 hydrogen atoms occupy the 18h sites. In this case symmetry
allows for more freedom, and overall the structure of the R-3m phase can be described by 4 free parameters (εa, εb, εx and εy).

Fm-3m (C) Fm-3m (R) R-3m (R)
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]
[-εa,-εa,-εa]

8 H 32f [ε,ε,ε] 8 H 32f [ε,ε,ε] 2 H 6c [εb,εb,εb]
[-ε,-ε,-ε] [-ε,-ε,-ε] [-εb,-εb,-εb]
[ε,ε,-ε] [-ε,-ε,3ε] 6 H 18h [-εx,-εx,3εy]
[ε,-ε,ε] [-ε,3ε,-ε] [-εy,3εx,-εx]
[-ε,ε,ε] [3ε,-ε,-ε] [3εy,-εx,-εx]
[-ε,-ε,ε] [ε,ε,-3ε] [εx,εx,-3εy]
[-ε,ε,-ε] [ε,-3ε,ε] [εx,-3εy,εx]
[ε,-ε,-ε] [-3ε,ε,ε] [-3εy,εx,εx]

       154

       156

       158

       160

       162

       164

 0  1  2  3  4  5  6  7  8  9  10  11  12

P
 (

G
Pa

)

Simulation Steps

Px Py Pz

Extended Data Figure 9. Anisotropic pressure of the C2 phase of LaH10 in a cell quantum relaxation. The figure
shows the pressures along the different Cartesian directions during the SSCHA cell minimization. The target pressure for this
minimization is 160 GPa. At the end of the minimization the isotropy of the stress tensor is recovered. A symmetry analysis
performed on the structure at the end of the minimization confirms the C2 LaH10 evolves in the Fm-3m LaH10. The initial
values Px = 163.2 (GPa), Py = 159.7(GPa), Pz = 155.0(GPa) are obtained by an atomic internal relaxation performed using the
SSCHA with fixed cell.
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Extended Data Table III. Crystal structure details for relevant phases. Lattice parameters and atomic coordinates for
LaH10 (Immm) and LaH10 (C2) at 150GPa and LaH11 P4/nmm at 100GPa. These pressures are estimated classically. The
positions below give vanishing forces at classical level.

Composition (Space group) Lattice parameters Wyckoff positions

LaH10 (Immm) a = 3.58303 Å La 2c [0.50000, 0.50000, 0.00000]
b = 3.61834 Å H 8m [0.75841, 0.00000, 0.11649]
c = 5.08749 Å H 8l [0.00000, 0.75742, 0.87548]

H 4j [0.50000, 0.00000, 0.74572]

LaH10 (C2) a = 6.15468 Å La 4c [0.49244, 0.00070, 0.25292]
b = 3.60628 Å H 4c [0.13978, 0.24567, -0.05243]
c = 7.23776 Å H 4c [0.09798, 0.24122, 0.45027]
β = 55.71434° H 4c [0.36015, 0.25590, 0.05238]

H 4c [0.40204, 0.26021, 0.54971]
H 4c [-0.09751, 0.00051, -0.05100]
H 4c [0.86810, 0.00071, 0.43706]
H 4c [0.88713, 0.00076, 0.69398]
H 4c [0.87083, 0.00068, 0.19089]
H 4c [0.73058, 0.00043, 0.88088]
H 4c [0.76156, 0.00071, 0.36763]

LaH11 (P4/nmm) a = 3.87435 Å La 2c [0.25000, 0.25000, 0.78577]
b = 3.87435 Å H 4e [0.00000, 0.00000, 0.50000]
c = 5.27636 Å H 8i [0.25000, -0.02052, 0.17824]

H 8i [0.25000, 0.55418, 0.35160]
H 2a [0.75000, 0.25000, 0.00000]
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Extended Data Figure 10. SSCHA minimization on LaH10 and DOS. Top figures: two initial structures (C2 and R-3m)
low enthalpy, considered in our SSCHA simulations. When considering quantum effects both structures evolve towards the
Fm-3m structure. Corresponding total electronic density of states (DOS) as a function of pressure are plotted for each structure
(for comparison in the same energy scale). Highly symmetric motif (Fm-3m) maximizes NEF , while in distorted structures
(R-3m and C2) the occupation at the Fermi level is reduced by more than 23 % for C2 and by 11 % for R-3m, both comparison
at 150GPa w.r.t. Fm-3m. Classical pressures are appended for comparison in DOS panels. Note that DOS shape is also
strongly modified.
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Extended Data Figure 11. Details on LaH11. Left: P4/nmm crystal structure of LaH11 at 100GPa thermodynamically stable
in the convex hull. Right top: harmonic phonons dispersion along momentum space for this composition: it is dynamically stable.
Right bottom: superconducting Éliashberg spectrum function (α2F (ω)) calculated for this composition at the pressure indicated
with harmonic phonons. The estimated Tc with Allen-Dynes formula (µ∗=0.1) is ∼7K at 100GPa (harmonic phonons).
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Since 2014 the layered semiconductor SnSe in the high-temperatureCmcm phase is known to be the most
efficient intrinsic thermoelectric material. Making use of first-principles calculations we show that its
vibrational and thermal transport properties are determined by huge nonperturbative anharmonic effects. We
show that the transition from theCmcm phase to the low-symmetryPnma is a second-order phase transition
driven by the collapse of a zone border phonon, whose frequency vanishes at the transition temperature. Our
calculations show that the spectral function of the in-plane vibrational modes are strongly anomalous with
shoulders and double-peak structures.We calculate the lattice thermal conductivity obtaining good agreement
with experiments only when nonperturbative anharmonic scattering is included. Our results suggest that the
good thermoelectric efficiency of SnSe is strongly affected by the nonperturbative anharmonicity.

DOI: 10.1103/PhysRevLett.122.075901

Thermoelectric materials can convert waste heat into
electricity [1,2]. The thermoelectric efficiency of a material
is measured by the dimensionless figure of merit
ZT ¼ S2σT=κ, where S is the Seebeck coefficient, σ the
electrical conductivity, T the temperature, and κ ¼ κe þ κl
the thermal conductivity, constituted by electronic κe and
lattice κl contributions. The thermoelectric efficiency can
be thus enhanced by decreasing the thermal conductivity
while keeping a high power factor S2σ. Materials have been
doped [3–5] or nanostructured [6,7] in order to get a high
power factor combined with a low thermal conductivity,
yielding, i.e., ZT ≃ 2.2 in PbTe [8]. In the proximity to a
phase transition ZT may also soar, as in the case of Cu2Se
[9]. Recently, however, Zhao et al. reported for SnSe [10]
the highest thermoelectric figure of merit ever reached in a
material without doping, material treatment, or without
being sharply enhanced by the proximity to a phase
transition: ZT ≃ 2.6 above 800 K.
SnSe is a narrow gap semiconductor that crystallizes at

room temperature in an orthorhombic Pnma phase. At T ≃
800 K [10–13] it transforms into a more symmetric base-
centered orthorhombic Cmcm structure (see Fig. 1). The

(a) (b)

(c) (d) (e)

FIG. 1. The primitive lattice vectors of the Cmcm structure are
a1¼ða=2;0;c=2Þ, a2 ¼ ð−a=2; 0; c=2Þ, and a3 ¼ ð0; b; 0Þ, where
a (long axis), b, and c are the lattice constants of the conventional
cell. (a)XZ face of theCmcm structure. Primitive lattice vectors are
denoted with arrows for convenience we show a1 and −a2. (b) XZ
face of the Pnma structure. (c) Atomic displacements of mode Γ1.
(d) Atomic displacements of mode Y2. (e) Atomic displacements of
mode Y1. Sn atoms are red and Se blue.
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order of the transition is not clear: some works [10–12]
claim it is a second-order transition and others it has a first-
order character [13]. A recent work [14] argues the
transition occurs in two steps, where increasing temper-
ature induces first a change in the lattice parameters that
induces after a lattice instability. There is no inelastic
scattering experiment so far for the high-temperature phase,
which should show a prominent phonon collapse at the
transition temperature if it belonged to the displacive
second-order type [15–17].
The most interesting thermoelectric properties appear in

the high-temperature phase, where the reduction of the
electronic band gap increases the number of carriers
providing a higher power factor, while the thermal con-
ductivity remains very low [10]. The value of the intrinsic
κl of SnSe remains controversial, as the extremely low
isotropic 0.3 W=mK value at 800 K reported by Zhao et al.
[10] could not be reproduced in other experiments, where a
clear anisotropy is shown and the in-plane thermal con-
ductivity is considerably larger [18–20]. The lattice thermal
conductivity of the Pnma phase has been calculated from
first principles solving the Boltzmann transport equation
(BTE) using harmonic phonons and third order force-
constants (TOFCs) obtained perturbatively as derivatives of
the Born-Oppenheimer energy surface [21,22]. The Cmcm
phase has imaginary phonon frequencies in the harmonic
approximation [14,22,23], as expected for the high-
symmetry phase in a second-order transition [24–26],
and it is stabilized by anharmonicity [14,22], hindering
the calculation of κl [22].
In this Letter, by performing ab initio calculations

including anharmonicity at a nonperturbative level, we
show that the phonon mode that drives the instability
collapses at the transition temperature Tc demonstrating
that the transition is second order. Anharmonic effects are
so large that the spectral function expected for some in-
plane modes deviates from the Lorentzian-like shape and
shows broad peaks, shoulders, and satellite peaks, as in
other monochalcogenides [25,27]. We calculate the lattice
thermal conductivity of the Cmcm phase by combining the
anharmonic phonon spectra with perturbative and non-
perturbative TOFCs. We show here for the first time that
nonperturbative anharmonic effects are not only crucial in
the phonon spectra, but also in high-order force constants,
which have a huge impact on the calculated thermal
conductivity: κl agrees with experiments [18] only with
nonperturbative TOFCs.
The group/subgroup index of the Cmcm=Pnma tran-

sition is 2, making a displacive second-order transition
possible [28]. In this scenario, the transition temperature Tc
is defined as the temperature at which the second derivative
of the free energy F with respect to the order parameter Q
that transforms the structure continuously from the Cmcm
phase (Q ¼ 0) into the Pnma (Q ≠ 0) vanishes. As was
already pointed out [12], symmetry [29,30] dictates that the

amplitude of the transition is dominated by the distortion
pattern associated to a nondegenerate mode (Y1) at the zone
border Y point with irreducible representation Yþ

2 (see
Fig. 1 for the distortion pattern). This means that ∂2F=∂Q2

is proportional to the eigenvalue of the free energy Hessian
matrix associated to this irreducible representation: ω2

Y1
.

In this work we calculate the free energy Hessian using
the stochastic self-consistent harmonic approximation
(SSCHA) [31,32], which is applied using ab initio
density-functional theory (DFT) calculations within the
Perdew-Burke-Ernzerhof (PBE) [33] or local density
approximation (LDA) [34] parametrizations of the
exchange-correlation functional (see Supplemental
Material [35] for the details of the calculations [40–44]).
The SSCHA is based on variational minimization of the
free energy using a trial harmonic density matrix ρR;Φ
parametrized by centroid positions R and force constants
Φ (bold symbols represent tensors in compact notation).
The centroids R determine the most probable position of
the atoms and Φ is related to the amplitude of their
fluctuations around R. The free energy Hessian can be
calculated as [32]

∂2F
∂R∂R ¼ Φþ Φ

ð3Þ
Λð0Þ½1 − Φ

ð4Þ
Λð0Þ�−1Φ

ð3Þ
; ð1Þ

where Φ
ð3Þ

and Φ
ð4Þ

are third- and fourth-order nonperturbative
force constants obtained as quantum averages calculated

with ρR;Φ: Φ
ðnÞ

¼ h∂nV=∂RniρR;Φ
. The Φ

ðnÞ
force constants

are generally different from the Φ
ðnÞ

perturbative ones
obtained as derivatives of the Born-Oppenheimer potential

V at the minimum: ϕ
ðnÞ

¼ ½∂nV=∂Rn�0. Λð0Þ in Eq. (1) is a
function of the Ω̃μ SSCHA frequencies and polarization
vectors obtained diagonalizing Φab=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MaMb

p
, with Ma the

atomic mass (a labels both an atom and Cartesian index).
The ωμ frequencies obtained instead from the free energy
Hessian after diagonalizing ½ð∂2FÞ=ð∂Ra∂RbÞ�=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MaMb

p
,

e.g., ωY1
, can be interpreted as the static limit of the

physical phonons [32]. The contribution of Φ
ð4Þ
Λ is negli-

gible with respect to the identity matrix [35] and thus it is
neglected throughout.
The calculated temperature dependence of ω2

Y1
is shown

in Fig. 2 for LDA and PBE for two different lattice volumes
in each case. In all cases ω2

Y1
is positive at high temper-

atures, but it rapidly decreases with lowering the temper-
ature, vanishing at Tc. This phonon collapse is consistent
with a second-order phase transition between the Pnma
and Cmcm. We check that a SSCHA calculation at T > Tc
(T ¼ 800 K) starting from the relaxed low-symmetry
Pnma phase (relaxed at DFT static level) yields the
high-symmetry Cmcm atomic positions for the R
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centroids. Thus, the Pnma is not a local minimum of the
free energy above Tc, ruling out the first-order transition.
Our result disagrees with the conclusions drawn in
Ref. [14]. First, because at the Tc calculated in
Ref. [14], which is estimated by comparing the free
energies of the two structures, the Y1 mode of the
Cmcm phase is stable, which implies this phase is a local
minimum at Tc, and, thus, the transition is of first-order
type [14]. And second, because it is argued [14] that the
instability at Y is produced by a slight change in the in-
plane lattice parameters induced by temperature (from
c=b > 1 to c=b < 1), which makes the transition a two-
step process. We do not see this sudden appearance of the
instability [35].
The obtained transition temperature strongly depends on

the exchange-correlation functional and the volume, as it
occurs in similar monochalcogenides [25]. Within LDA Tc
ranges between 168 K with theoretical lattice parameters
and 616 K with experimental lattice parameters [10].
Within PBE Tc barely changes between the experimental
and theoretical lattice parameters. We attribute this result to
the fact that the in-plane lattice parameters b and c are in
perfect agreement with the experimental results within
PBE, while LDA clearly underestimates them. The theo-
retical lattice parameters are estimated neglecting vibra-
tional contributions to the free energy. In order to estimate
the role of the thermal expansion, we calculate the stress
tensor including vibrational contributions at the anhar-
monic level [45]. The in-plane contribution of the stress
tensor calculated at the temperature closest to Tc, Pzz,
shows that both theoretical LDA and PBE lattices should be
stretched. Within LDA it is clear that stretching the lattice
increases Tc. Within PBE, when we take a stretched lattice

to reduce Pzz, Tc increases from 299 to 387 K. In all cases
the other in-plane component of the stress tensor, Pyy, is
very similar to Pzz. The LDA transition temperature with
the experimental lattice parameters yields the transition
temperature in closest agreement with experiments
(Tc ≃ 800 K [10–13,46]). The underestimation of the
transition temperature may be due to the approximated
exchange-correlation or the finite supercell size taken for
the SSCHA.
The predicted phonon collapse should be measurable by

inelastic neutron scattering (INS) experiments. INS experi-
ments [46] show a softening of a zone-center optical mode
of the Pnma phase upon heating, which is consistent with
the condensation of the Y1 mode after the transition. By
making use of a dynamical ansatz [32], we calculate the
mode-projected phonon anharmonic self-energy [35]
Πμðq;ωÞ, from which we obtain the phonon spectral
function:

σðq;ωÞ

¼ 1

π

X
μ

−ωImΠμðq;ωÞ
½ω2 − Ω̃2

μðqÞ − ReΠμðq;ωÞ�2 þ ½ImΠμðq;ωÞ�2
:

ð2Þ

Peaks in σðq;ωÞ represent experimental phonon excita-
tions. Replacing Πμðq;ωÞ → Πμ(q; Ω̃μðqÞ) in Eq. (2) the
Lorentzian approximation is recovered, in which each
peak is represented with a Lorentzian function centered

at ΩμðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω̃2

μðqÞ þ ReΠμ(q; Ω̃μðqÞ)
q

with a linewidth

proportional to ImΠμ(q; Ω̃μðqÞ) [47].
Figure 3 compares the harmonic phonon spectrum with

the anharmonic one in the Lorentzian approximation
obtained at 800 K within LDA in the experimental lattice
(the results below are also obtained within the LDA in the
experimental lattice). The anharmonic correction is large
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FIG. 2. ω2
Y1

as a function of temperature within LDA and PBE
approximations for different lattice volumes (circles). In the LDA
we compare the results obtained with the theoretical and
experimental [10] lattice parameters. In the PBE calculation
we present the results for the experimental lattice parameters and
a stretched unit cell (see Table I for the lattice parameters). The
solid lines correspond to a polynomial fit.

TABLE I. Experimental [10] and theoretical (DFT at static
level) LDA and PBE lattice parameters used in this work. The
stretched cell used in some calculations is also given. a, b, and c
lattice parameters are given in Bohr length units (a0) and the three
components of the stress tensor in GPa units. The pressure is
calculated including vibrational terms at an anharmonic level at
the following temperatures for each case: 200 K (LDA theory),
600 K (LDA Exp.), 400 K (PBE Exp.), 400 K (PBE theory), and
400 K (PBE stretched).

a b c Pxx Pyy Pzz

LDA theory 21.58 7.90 7.90 0.4 0.6 0.7
LDA exp. 22.13 8.13 8.13 −1.1 −2.0 −2.2
PBE theory 22.77 8.13 8.13 0.5 1.1 1.0
PBE exp. 22.13 8.13 8.13 1.8 1.3 1.2
PBE stretched 23.48 8.27 8.27 −0.3 −0.7 −0.7
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for most of the modes across the Brillouin zone. Within the
harmonic approximation, there are five unstable modes: two
(Γ1, Γ2) at Γ, two (Y1, Y3) at Y, and one (R1) at R.
The instabilities at Γ would cause ferroeletric transitions
[22,48], but they suffer an anharmonic renormalization
that prevents it. Y3 and R1 are also stabilized by anharmonic
effects. TheY1mode, however, remainsunstable at 600Kand
it is stabilized after the transition [see Figs. 4(a) and 4(b)].
In highly anharmonic materials [25,27,47,49,50], the

spectral functions show broad peaks, shoulders, and
satellite peaks, strongly deviating from the Lorentzian
picture. In Fig. 4 we show the spectral function keeping
the full frequency dependence on the self-energy, without

assuming the Lorentzian line shape. The spectral function
clearly reproduces the collapse of the Y1 mode at the
transition temperature. The calculated spectral functions
show that the strong anharmonicity present on the phonon
frequency renormalization is also reflected on the spectral
function. The strongly anharmonic features specially affect
in-plane modes in the 25–75 cm−1 energy range. For
instance, at the Γ point the Γ1 mode, which describes a
vibration along the in-plane y axis in opposite direction for
the Sn and Se atoms (see Fig. 1) and is stabilized by
anharmonicity, shows a double peak structure and a broad
shoulder [see Fig. 4(e)]. The mode that describes the same
vibration (Γ2) but in the other in-plane z direction also
shows a complex non-Lorentzian shape. The overall
σðq ¼ Γ;ωÞ consequently has a broad shoulder at
≃25 cm−1 as marked in Fig. 4(c), which is less acute as
temperature increases. At the Y point there are also two
modes, Y2, whose eigenvector is plotted in Fig. 1, and Y3,
which describes the same displacement but in the other y
in-plane direction, that show a strongly anharmonic non-
Lorentzian shape. The modes with complex line shapes are
those that show the largest linewidth in the Lorentzian limit
(see Fig. 3). These modes have strongly anomalous spectral
functions and large linewidths because they can easily
scatter with an optical mode close in energy and an acoustic
mode close to Γ. We identify this by directly analyzing
which phonon triplets contribute more to the linewidth. It is
interesting to remark that if Πμðq;ωÞ is calculated by

substituting Φ
ð3Þ

by ϕ
ð3Þ
, the anomalies of these modes become

weaker [35]. This underlines that in the Cmcm phase the
third-order derivatives of V are not sufficient to calculate
the phonon linewidths and that higher order terms are

important, which are effectively captured by Φ
ð3Þ
.
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at the Γ point (e) and the Y point (f) at 800 K. Different colors correspond to different modes. All the calculations are performed within

LDA in the experimental structure. In each case we use Ω̃μðqÞ calculated at the same temperature as Φ
ð3Þ
.
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In Fig. 5 we present the lattice thermal conductivity
calculated with the SSCHA frequencies (Ω̃μðqÞ) and non-

perturbative TOFCs (Φ
ð3Þ
). For comparison we also calculate

κl substituting Φ
ð3Þ

by ϕ
ð3Þ
. The calculation is performed

solving the BTE assuming the single-mode relaxation time
approximation (SMA). The thermal conductivity of SnSe is
very low, mainly because the contribution of optical modes
is strongly suppressed by the large anharmonicity and the
contribution of acoustic modes is also reduced due to the
large scattering among themselves and with the Γ1 mode.
We compare our results with the values obtained by Zhao
et al. [10] above the transition at 800 K. We also include in
the figure the results obtained by Ibrahim et al. [18] above
600 K (only the in-plane κl is reported at these temper-
atures) in the Pnma phase. Even if the results belong to
different phases, comparing our calculations for the Cmcm
phase with those obtained in the latter work is insightful
because the thermal conductivity of these two phases is
very similar close to the transition [35], as expected in a
second-order phase transition. Though direct comparison
should be taken carefully for this reason, the lattice thermal
conductivity is in better agreement with experimental

results using Φ
ð3Þ

instead of ϕ
ð3Þ
, which overestimates the

lattice thermal conductivity along the in-plane directions.
This is consistent with the larger phonon linewidths
obtained with the nonperturbative TOFCs. The agreement
for the in-plane κyy ∼ κzz with the measurements by Ibrahim
et al. [18] is good in the nonperturbative limit, contrary to
previous calculations that underestimate it [22]. The calcu-
lated out-of-plane κxx is also in good agreement with the

results by Zhao et al. [10], but we find that their ultralow
results for the in-plane κl, in contradiction with the values in
Ref. [18] obtained for the low-symmetry phase close to the
transition, are underestimated. These results suggest that
the thermal conductivity measured by Zhao et al. may have
nonintrinsic effects as it has already been pointed out [51].
In conclusion, we show that the vibrational properties of

SnSe in the Cmcm phase are dominated by huge non-
perturbative anharmonic effects. We show how the collapse
of the Y1 mode is responsible for the second-order phase
transition. The calculated transition temperature is volume
and functional dependent. The spectral functions of in-
plane modes are characterized by anomalous features
deviating from the Lorentzian-like shape. These results
will be crucial to interpret future INS experiments for the
high-temperature phase. The calculated in-plane thermal
conductivity is in good agreement with the experiments by
Ibrahim et al. [18], but not with those by Zhao et al. [10]
which show low anisotropy. These results suggest that the
isotropic ultralow values by Zhao et al. could be the
observation of a nonintrinsic property. Our results show
for the first time that the inclusion of nonperturbative
effects is crucial for obtaining third-order force constants
that yield a lattice thermal conductivity in agreement with
experiments.

The authors acknowledge fruitful discussions with O.
Delaire. Financial support was provided by the Spanish
Ministry of Economy and Competitiveness (FIS2016-
76617-P), the Department of Education, Universities and
Research of the Basque Government and the University of
the Basque Country (IT756-13). U. A. is also thankful to
the Material Physics Center for support. Computer facilities
were provided by the Donostia International Physics Center
(DIPC), the Spanish Supercomputing Network (FI-2017-2-
0007), and PRACE (2017174186).

[1] H. J. Goldsmid, Introduction to Thermoelectricity (Springer,
New York, 2010), pp. 1–7.

[2] K. Behnia, Fundamentals of Thermoelectricity (OUP,
Oxford, 2015).

[3] G.-H. Kim, L. Shao, K. Zhang, and K. P. Pipe, Nat. Mater.
12, 719 (2013).

[4] Y. Pei, A. D. LaLonde, N. A. Heinz, X. Shi, S. Iwanaga, H.
Wang, L. Chen, and G. J. Snyder, Adv. Mater. 23, 5674
(2011).

[5] J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K.
Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J.
Snyder, Science 321, 554 (2008).

[6] C. J.Vineis,A. Shakouri,A.Majumdar, andM. G.Kanatzidis,
Adv. Mater. 22, 3970 (2010).

[7] A. Minnich, M. Dresselhaus, Z. Ren, and G. Chen, Energy
Environ. Sci. 2, 466 (2009).

[8] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T.
Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Science
303, 818 (2004).

600 700 800 900 1000
Temperature (K)

0

0,25

0,5

0,75

1

1,25

1,5

1,75

2

2,25

2,5

2,75

3

3,25

3,5

κ l (
W

/m
K

)

κ
xx

 (P)
κ

yy
 (P)

κ
zz

 (P)
Exp. Zhao κ

xx

Exp. Zhao κ
zz

Exp. Zhao κ
yy

600 700 800 900 1000
Temperature (K)

0

0,25

0,5

0,75

1

1,25

1,5

1,75

2

2,25

2,5

2,75

3

3,25

3,5

κ l (
W

/m
K

)

κ
xx

 (NP)
κ

yy
 (NP)

κ
zz

 (NP)
Exp. Ibrahim κ

zz

Exp Ibrahim κ
yy

FIG. 5. Lattice thermal conductivity of SnSe calculated with

perturbative ϕ
ð3Þ

(P) and nonperturbative Φ
ð3Þ

(NP) at 800 K
compared to the experiments by Ibrahim et al. [18] and Zhao
et al. [10]. We use the Ω̃μðqÞ phonon frequencies calculated at
800 K at all temperatures. Calculations are performed within
LDA using the experimental structure. Different volumes or
exchange-correlation functionals give consistent results [35].
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ABSTRACT: At ambient pressure, bulk 2H-NbS2 displays no charge density wave instability, which is at odds with the
isostructural and isoelectronic compounds 2H-NbSe2, 2H-TaS2, and 2H-TaSe2, and in disagreement with harmonic
calculations. Contradictory experimental results have been reported in supported single layers, as 1H-NbS2 on Au(111) does
not display a charge density wave, whereas 1H-NbS2 on 6H-SiC(0001) endures a 3 × 3 reconstruction. Here, by carrying out
quantum anharmonic calculations from first-principles, we evaluate the temperature dependence of phonon spectra in NbS2
bulk and single layer as a function of pressure/strain. For bulk 2H-NbS2, we find excellent agreement with inelastic X-ray spectra
and demonstrate the removal of charge ordering due to anharmonicity. In the two-dimensional limit, we find an enhanced
tendency toward charge density wave order. Freestanding 1H-NbS2 undergoes a 3 × 3 reconstruction, in agreement with data
on 6H-SiC(0001) supported samples. Moreover, as strains smaller than 0.5% in the lattice parameter are enough to completely
remove the 3 × 3 superstructure, deposition of 1H-NbS2 on flexible substrates or a small charge transfer via field-effect could
lead to devices with dynamical switching on/off of charge order.

KEYWORDS: Transition metal dichalcogenide, monolayer, charge density wave, anharmoncity, size-dependent properties, phonons

Transition metal dichalcogenides (TMDs) are layered
materials with generic formula MX2, where M is a

transition metal (Nb, Ta, Ti, Mo, W, ...) and X a chalcogen (S,
Se, Te). The layers, made of triangular lattices of transition
metal atoms sandwiched by covalently bonded chalcogens, are
held together by weak van der Waals forces, and TMDs can be
readily exfoliated into thin flakes down to the single layer limit,
with mechanical or chemical techniques.1−4 In TMDs, the
interplay between strong electron−electron and electron−
phonon interactions gives rise to rich phase diagrams with a

wide variety of cooperating/competing collective electronic

orderings as charge-density wave (CDW), Mott insulating, and

superconductive phases.5,6 Of the several polytypes, we focus

here on the most common one for NbS2, the H polytype,7,8

where the transition metal is in trigonal prismatic coordination
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with the surrounding chalcogens. In Figure 1 the 1H
(monolayer) and 2H (bulk) crystal structures are shown.

Among metallic 2H bulk TMDs, NbS2 occupies a special
place as no CDW has been reported,9,10 contrary to its
isoelectronic and isostructural 2H-TaSe2, 2H-TaS2, and 2H-
NbSe2. All these systems have very similar band structures and
are conventional (i.e., phonon-mediated) superconductors
with critical temperatures Tc that increases from a sub-Kelvin
value in 2H-TaSe2 and 2H-TaS2 (around 0.2 and 0.5 K,
respectively) up to 5.7 K in 2H-NbS2 and 7.2 K in 2H-
NbSe2.

11−14 They also show quite a different CDW transition
strength.15,16 2H-TaSe2, 2H-TaS2, and 2H-NbSe2 undergo a
triple incommensurate CDW transition to a superlattice with
hexagonal symmetry corresponding roughly to the same wave
vector qCDW = ΓM(1 − δ)2/3 (δ ≃ 0.02 is the
incommensurate factor) of the Brillouin zone. However, the
transition temperature TCDW increases from 30 K for 2H-
NbSe2 to 80 K for 2H-TaS2 and 120 K for 2H-TaSe2 (2H-
TaSe2 actually shows a further commensurate first-order CDW
transition at 92 K with δ dropping continuously to zero).17

Therefore, 2H-NbS2 considerably stands out as it shows only
an incipient instability near qCDW, but it remains stable even at
the lowest temperatures. This circumstance is even more
surprising if it is considered that 2H-NbSe2 and 2H-NbS2
display superconductivity at similar temperatures.
In TMDs, the behavior of the CDW ordering in the two-

dimensional (2D) limit cannot be inferred from the knowledge
of their bulk counterparts, because two competing mechanisms
are expected to play a major role. On the one hand, reduced
dimensionality strengthens Peierls instabilities (due to Fermi
surface nesting) and electron−phonon interactions (due to
reduced dielectric screening), thus favoring stronger CDW. On
the other hand, stronger fluctuation effects from both finite
temperatures and disorders should tend to destroy long-range
CDW coherence in low-dimensional systems.18 In particular,
the effect of dimensionality on the CDW ordering in the H
polytype is a current active research area. In 1H-TaS2, the
CDW vanishes in the 2D limit,19 while in 1H-TaSe2 it remains
unchanged with respect to the bulk.20 For 1H-NbSe2 and 1H-
NbS2, the situation is more debated. In the 1H-NbSe2 case, 3 ×
3 CDW is observed but some controversy is still present in
literature, tentatively attributed either to the sample exposure

to air or to the different substrates, concerning the thickness
dependence of the TCDW (lower/higher TCDW of the
monolayer with respect to the bulk has been reported with
bilayer graphene21/silicon18 substrate, respectively). Supported
single layers of 1H-NbS2 have become recently available, and
although no traces of CDW have been observed down to 30 K
for monolayers grown on top of Au(111),22 a 3 × 3 CDW
ordering has been observed at ultralow temperature (measure-
ments performed below 5 K) for monolayers grown on top of
graphitized 6H-SiC(0001).23

In this Letter, we investigate from first-principles the
vibrational properties of bulk 2H-NbS2 (at zero and finite
pressure) and suspended 1H-NbS2, taking into account
quantum anharmonic effects at nonperturbative level in the
framework of the stochastic self-consistent harmonic approx-
imation (SSCHA).24−27 For bulk 2H-NbS2, we show that
quantum anharmonic effects remove the instability found at
harmonic level and give temperature-dependent phonon
energies in quantitative agreement with experiment. Previous
anharmonic calculations for 2H-NbS2 anticipated the role of
anharmonicity but were limited to a low-dimensional subspace
of the total high-dimensional configurations space and did not
account for the temperature dependence.14 We also show that
quantum anharmonic effects are noticeable even at high
pressure. Moreover, we demonstrate that the difference
between 2H-NbS2 and 2H-NbSe2 is not simply ascribable to
the different chalcogen mass. Finally, we analyze the 2D limit
and show that freestanding single-layer 1H-NbS2 undergoes a 3
× 3 CDW instability in agreement with data on 6H-SiC(0001)
supported samples. However, strains smaller than 0.5% are
sufficient to completely remove the instability, suggesting a
strong dependence of the CDW on the environmental
conditions (substrate, charge transfer, and so forth) and
reconciling the apparent contradiction with supported
Au(111) samples.
For bulk 2H-NbS2, in Figure 2 we compare the computed

anharmonic phonon dispersions with the results of the inelastic

Figure 1. Left-hand side: crystal structure of trigonal NbS2 in the 1H
monolayer and in the 2H (bulk) stacking layer configuration. Right-
hand side: corresponding hexagonal BZ with the high-symmetry
points (in the monolayer configuration only the points ΓMK are
relevant, and they are customarily indicated with a line over the
letter).

Figure 2. 2H-NbS2 harmonic (black dashed lines) and SSCHA
anharmonic phonon dispersion at 300 K (red solid lines) and 0 K
(blue solid lines), calculated using the experimental lattice parameters.
The results are compared with the IXS measurements of ref 7
performed at 300 K (red dots) and 2 K (blue dots). The SSCHA
dispersion corrects the errors of the pure harmonic result near M: the
instability of the two longitudinal acoustic and optical modes is
removed and the softening on lowering temperature is well
reproduced.
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X-ray scattering (IXS) experiment of ref 7 at low and ambient
temperature. We also show the (temperature-independent)
harmonic phonon dispersion. Calculations were performed
with the aExp

2H = bExp
2H = 3.33 Å and cExp

2H = 11.95 Å bulk
experimental lattice parameters at zero pressure.7 The phonon
dispersion is almost everywhere well reproduced with the
harmonic calculation, except close to M, where it predicts that
two longitudinal acoustic and optical modes become
imaginary. Experimental phonon energies show a sensible
temperature dependence in this region of the Brillouin zone
(BZ) and are, obviously, always real. The SSCHA cures the
pathology of the harmonic result; the anharmonic phonon
dispersions do not show any instability and give a very good
agreement with the experiment at both temperatures.
Because SSCHA calculations give dispersions in good

agreement with experiments, we can perform a wider analysis.
In the upper panel of Figure 3, we show the SSCHA phonon
dispersion for different temperatures along the full high-
symmetry path of the BZ. As temperature decreases,
anharmonicity causes the softening of two acoustic and optical
longitudinal modes close to both M and L, but there is no
instability. Thus, quantum fluctuations strongly affected by the
anharmonic potential stabilize 2H-NbS2. In the other two
panels, we show the effect of hydrostatic pressure on the
phonon dispersion. Because there are no available experimental
lattice parameters at high pressures, we estimated them by
assuming that the ratio between experimental and standard
density functional theory (DFT) theoretical lattice parameters
(i.e., the lattice parameters that minimize the DFT energy but
do not take into account any lattice quantum dynamic effects),
aExp
2H (P)/aTh−DFT

2H (P) and cExp
2H (P)/cTh−DFT

2H (P), are independent
of the applied pressure P. Thus, we computed those ratios at
zero pressure and for a given pressure P the calculations were
performed using as lattice parameters a = (aExp

2H /aTh−DFT
2H ) ×

aTh−DFT
2H (P) and c = (cExp

2H /cTh−DFT
2H ) × cTh−DFT

2H (P). By increasing
pressure the anharmonicity of the lowest energy modes around
M and L decreases but remains relevant even up to 14 GPa. A
similar conclusion was drawn for 2H-NbSe2, where where large
anharmonic effects and strong temperature dependence of
these phonon modes were observed as high as 16 GPa, in a
region of its phase diagram where no CDW transition is
observed.28

These results confirm the importance of quantum
anharmonicity in 2H-NbS2 to describe experimental data and
the absence of a CDW instability. It is tempting at this point to
use the same technique to shed light on the different CDW
behavior exhibited by the very similar compound 2H-NbSe2.
Indeed, as we showed in a previous work,28 the SSCHA
correctly displays the occurrence of CDW in 2H-NbSe2 at
ambient pressure. One evident difference between 2H-NbS2
and 2H-NbSe2 is, of course, the mass of the chalcogen atom.
We then performed a SSCHA calculation at 0 K for 2H-NbS2
with “artificial” S atoms having unaltered electronic config-
uration but the mass of Se. In other words, we performed a
SSCHA calculation where the average displacements of the
atoms from the equilibrium position is ruled by the Se mass
but for each fixed position of the atoms the electronic structure
is computed with the normal S atoms. The results are shown in
Figure 4. Also in this case, when quantum anharmonic effects
are included the system does not show any CDW instability.
Thus, the different behavior of 2H-NbS2 and 2H-NbSe2 cannot
be ascribed to a mass effect but has a more complex origin
related to the different electron screening on the ions.

The validity of the results obtained with the SSCHA method
on bulk 2H-NbS2 gives us confidence that a similar calculation
on the 1H-NbS2 monolayer may shine light about the effects
that dimensionality and environmental conditions (substrate,
doping) can have on the CDW ordering in metallic TMDs.

Figure 3. 2H-NbS2 harmonic phonon dispersion (black dashed lines)
and SSCHA anharmonic phonon dispersion at several temperatures
(colored solid lines). Results for different pressures are shown. From
the top to the bottom panel: 0, 7, and 14 GPa. The zero-pressure
results are obtained using the experimental lattice parameters. The
high-pressure results are obtained assuming that the ratio between
experimental and DFT theoretical lattice parameters are independent
of the applied pressure (more details in the main text). Anharmonicity
removes the instability, obtained at harmonic level, of the longitudinal
acoustic and optical modes near M and L at 0 and 7 GPa.
Anharmonicity reduces as the pressure increases but it has a
noticeable effect even at 14 GPa.
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The suspended 1H-NbS2 monolayer was simulated leaving
12.55 Å of vacuum space between a 1H layer and its periodic
replica. At conventional static DFT level, we found that the
theoretical zero pressure in-plane lattice parameter of the
monolayer and the bulk are essentially the same, aTh−DFT

2H ≃
aTh−DFT
1H ≃ 3.34 Å. Therefore, for the suspended monolayer we
use as in-plane lattice parameter the bulk experimental one,
aExp
2H = 3.33 Å. This value is also compatible with the recent
experimental measures 3.29 ± 0.03 and 3.34 Å reported for the
lattice parameter of monolayer grown on substrate in ref 23
and ref 22, respectively.
In the upper panel of Figure 5, we show the harmonic and

SSCHA anharmonic phonon dispersions of suspended 1H-
NbS2 at several temperatures, calculated with the lattice
parameter aExp

2H . As in the bulk case, the system is unstable at
harmonic level, but it is stabilized by quantum fluctuations
strongly sensitive to the anharmonic potential down to 0 K.
However, comparing Figures 2 and 5, we observe that even if
the used in-plane lattice parameter is the same in both cases, at
0 K the softest theoretical phonon frequency is approximately
20% harder in the bulk than in the single layer case,
demonstrating that there is a substantial enhancement of the
tendency toward CDW in the 2D limit. In the monolayer, the
theoretical phonon softening is localized in qCDW = 0.72 ΓM,
which is quite close to the qCDW ≃ 2/3 ΓM of the CDW
instability experimentally found in 1H-NbS2 on 6H-
SiC(0001)23 (and in 1H-NbSe2

18,21). Notice that, since the
computed wave vector of the instability may be affected by the
finite grids used in the calculations, we do not discard that it
may be slightly shifted in the infinite grid limit.
Pressure tends normally to remove CDW ordering. There-

fore, considering the proximity of the instability, it cannot be
discarded that a tensile dilatation due to the substrate may
induce the CDW transition observed for 1H-NbS2 on
graphitized 6H-SiC(0001). However, for the same reason we
cannot exclude the more interesting prospect that the observed
CDW be an intrinsic property of this system. Indeed, even
small variations of the lattice parameter, compatible with the
experimental uncertainly, could have a relevant impact on the
results of the calculations, and a more accurate theoretical
analysis of the monolayer structure is therefore necessary. As

the energy of the soft-mode along ΓM is of the order of ≃58 K,
for a proper analysis of the CDW in the monolayer it is
important to fully take into account quantum effects. Including
quantum anharmonic contributions to strain through the
technique introduced in ref 26, we find that with the used
lattice parameter aExp

2H the structure is sligthly compressed with
an in-plane pressure P = 0.66 GPa. Upon relaxation, we obtain
the theoretical lattice parameter aTh

1H = 3.35 Å, approximatively
0.5% larger than aExp

2H .
The harmonic and quantum anharmonic phonons at 0 K

calculated with the lattice parameter aTh
1H are shown in the

bottom panel of Figure 5. Although at harmonic level the
phonon dispersion is not substantially different from the one
computed with aExp

2H , when quantum anharmonic effects are
included the phonon dispersion at 0 K now shows an
instability at qCDW = 0.72 ΓM thus in agreement with the
CDW observed for 1H-NbS2 on top of 6H-SiC(0001). The
obtained instability is very weak (i.e., the obtained imaginary
phonon frequency is very small). Therefore, this result is also
compatible with the hypothesis that charge doping from the

Figure 4. The 2H-NbS2 harmonic phonon dispersion (black dashed
lines) and SSCHA anharmonic phonon dispersion at 0 K (blue solid
lines) at zero pressure computed replacing the mass of S with the
mass of Se (more details in the main text). Anharmonicity removes
the instability also in this case.

Figure 5. Suspended 1H-NbS2 harmonic phonon dispersion (black
dashed lines) and SSCHA anharmonic phonon dispersion at several
temperatures (colored solid lines), at zero pressure. Top panel: results
obtained with the experimental in-plane bulk lattice parameter aExp

2H .
The softening of the acoustic mode, localized at qCDW = 0.72 ΓM, is
more pronounced than in the 2H bulk case. However, the frequencies
remain real even at 0 K. Bottom panel: results obtained with the
theoretical lattice parameter aTh

1H, obtained by fully relaxing the
structure taking into account quantum anharmonic effects. At 0 K, the
frequency at qCDW = 0.72 ΓM becomes imaginary.
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substrate could be at the origin of the CDW suppression for
1H-NbS2 on top of Au(111), similarly to what it was proposed
for the case of 1H-TaS2 on top of Au(111).

29 Our results show
that if quantum anharmonic effects are included, then even a
small compression/dilatation of approximately 0.5% removes/
induces the charge density wave instability on 1H-NbS2. The
extreme sensitivity of the CDW on environmental conditions
therefore suggests that deposition of 1H-NbS2 on flexible
substrates30−32 or a small charge transfer via field effect could
lead to devices with dynamical on/off switching of the 3 × 3
order.
In conclusion, we have shown that quantum anharmonicity

is the key interaction for the stabilization of the crystal lattice
in bulk 2H-NbS2, as it removes the instability found at the
harmonic level. The calculated temperature dependence of the
phonon spectra are in excellent agreement with inelastic X-ray
scattering data. Anharmonicity remains important even at large
pressures. Given the good agreement between theory and
experiment in bulk 2H-NbS2, we have studied the behavior of
the CDW in the 2D limit by considering single layer 1H-NbS2.
We found that suspended 1H-NbS2 undergoes a quantum
phase transition to a CDW state with approximately 3 × 3
charge ordering in the 2D limit, which is in agreement with
experimental results on supported samples on 6H-SiC(0001).
However, the CDW is extremely sensitive to environmental
conditions, as it is very weak and compressive strains smaller
than 0.5% are enough to suppress it. This explains the absence
of CDW observed in 1H-NbS2 on top of Au(111). This also
suggest that devices with dynamical on/off switching of the 3 ×
3 charge order can be obtained with deposition of 1H-NbS2 on
flexible substrates or through a small charge transfer via field
effect.
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Muon spin rotation experiments involve muons that experience zero-point vibration at their implantation sites.
Quantum-mechanical calculations of the host material usually treat the muon as a point impurity, ignoring its
zero-point vibrational energy that, however, plays a role in determining the stability of calculated implantation
sites and estimating physical observables. As a first-order correction, the muon zero-point motion is usually
described within the harmonic approximation, despite the anharmonicity of the crystal potential. Here we
apply the stochastic self-consistent harmonic approximation, a quantum variational method devised to include
anharmonic effects in total energy and vibrational frequency calculations, in order to overcome these limitations
and provide an accurate ab initio description of the quantum nature of the muon. We applied this full quantum
treatment to the calculation of the muon contact hyperfine field in textbook-case metallic systems, such as Fe,
Ni, Co including MnSi and MnGe, improving agreement with experiments. Our results show that there are
anharmonic contributions to the muon vibrational frequencies with the muon zero-point energies above 0.5 eV.
Finally, in contrast to the harmonic approximation, we show that including quantum anharmonic fluctuations,
the muon stabilizes at the octahedral site in bcc Fe.

DOI: 10.1103/PhysRevMaterials.3.073804

I. INTRODUCTION

In muon spin rotation (μSR) experiments, spin-polarized
positive (anti)muons are used to probe the microscopic field
distribution at the interstitial site(s) where the μ+ stop inside
the sample under investigation. The extreme sensitivity of
the muon to small magnetic fields as well as the absence of
quadrupolar coupling makes this technique very effective in
probing magnetic orders, offering a valuable alternative to
neutron scattering. This approach, which shares many simi-
larities with nuclear magnetic resonance, has the advantage
of being applicable to virtually any material, but it has the
drawback that the interstitial sites where the muon stops and
the nature of muon interaction with the host are generally
unknown. Here we discuss an improved method to tackle this
problem based on computational chemistry methods.

An accurate, ab initio, description of the electron-muon
interaction in periodic solids has been out of reach until a
few years ago. The dramatic increase of both the computa-
tional power and the accuracy of first-principles calculations
make this goal possible. Self-consistent electronic structure

*ifeanyijohn.onuorah@unipr.it
†roberto.derenzi@unipr.it

calculations, in particular those based on density functional
theory (DFT), are already employed to study the muon im-
plantation site, muon interaction parameters, and for under-
standing the muon-induced distortion in the lattice [1–7]. This
turns out to be a very valuable tool for analyzing experimental
data and interpreting the results [8]. The knowledge of the
muon implantation site(s) and of the hyperfine field allows
very important quantitative information, including the mag-
netic structure and the moment size, to be obtained from μSR
experiments. Moreover, a reliable quantum calculation of the
muon embedded in the system under investigation provides an
estimate for its induced perturbation; the probe is an impurity
and it may in principle alter the local electronic properties.
Fortunately this is a very rare case, and yet assessing these
rare cases [9,10] is very important.

However, self-consistent DFT calculations often treat the
muon as just another atom in the lattice, within the Born-
Oppenheimer (BO) approximation [11], without taking into
consideration the quantum effect of the muon zero-point
vibrations, which is sizable relative to those of heavier nu-
clei. The embedded muon, by virtue of its very light mass
(∼1/9th the proton mass), is characterized by zero-point
vibration with amplitude typically of the order of 1 Bohr
radius [1]. The neglect of this effect may have two major
consequences: inaccurate estimation of the contact hyperfine

2475-9953/2019/3(7)/073804(9) 073804-1 ©2019 American Physical Society
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field, and/or incorrect identification of muon implantation
sites. The former is due to neglect of the space extent of
the muon wave function, whereas the latter happens when
the quantum zero-point vibration energy is comparable with
the energy difference between the various implantation sites
[2,3,5,12].

Earlier approaches toward a quantum-mechanical descrip-
tion of the muon zero-point vibration include calculations
within the harmonic approximation [3,13]. However, the
muon potential has been discussed and shown to be anhar-
monic, for instance by total energy calculations with site ex-
ploration algorithms [1,12,14,15]. Furthermore, a breakdown
of the harmonic approximation takes place when within the
range of the muon vibrations the potential is not dominated
by the second-order term in its Taylor expansion.

Alternative methods do take into account the anharmonic
nature of the crystalline potential. One of them consists in
the potential exploration approach [12]. The non-BO meth-
ods represent another computationally demanding alternative,
employing a linear combination of Gaussian basis functions
to realize both the nuclear and the electronic degrees of
freedom [16–19], and optimized local potentials to represent
the nuclear-electron correlation [20]. One of the most ad-
vanced approaches relies on ab initio path integral molecular
dynamics, which allows for contextual quantization of both
the muon and the electrons in the calculation of the electronic
structure and of the interatomic forces [15,21,22]. However,
computational resources required by this method grow ex-
ceedingly with the size of the cell.

In this paper, we describe a stochastic self-consistent har-
monic approximation (SSCHA) that allows us to include the
effects of anharmonicity in the muon vibrations [23–26]. The
SSCHA is a quantum variational method that efficiently cal-
culates anharmonic free energies and phonon frequencies in a
nonperturbative way. This approach has been very successful
for calculating phonon frequencies and superconducting prop-
erties in hydrogen-rich materials, as well as in systems under-
going charge density wave (CDW) transitions, ferroelectrics,
and thermoelectrics [23,27–32]. For the muon, the SSCHA is
variational in the muon (free) energy, with this energy eval-
uated stochastically from forces and energies calculated at a
sufficient number of random muon configurations. The muon
energy is minimized using trial harmonic wave functions that
are Gaussian, while the minimization parameter is the width
of the Gaussian. From the output of the minimization, muon
frequencies including anharmonic contributions and the muon
ground-state energy can be extracted.

With this approach, we demonstrate that there are anhar-
monic contributions to the harmonic muon vibrational modes,
as expected for the muon due to its light mass. We further
use the SSCHA muon wave function to refine the contact
hyperfine field in a series of metals: Fe, Ni, Co, MnSi and
MnGe, where the SSCHA improves the agreement of the
calculated value with the experimental results with respect
to recent point impurity calculations [6]. Finally, the SSCHA
together with energy curvature considerations [25] allows the
stable occupation of the muon at the octahedral site in bcc Fe,
which is unstable within the harmonic regime.

The paper has the following structure: Sec. II discusses
the double Born-Oppenheimer approximation, which allows

us to separate the muon degrees of freedom from those of
the host nuclei and electrons. In Sec. III, we describe the
working principles of the SSCHA, including the stochastic
implementation. In Sec. IV, we discuss the muon zero-point
energy calculation results using the SSCHA together with
the stability of the muon at octahedral and tetrahedral sites
in Fe(bcc). Finally, in Sec. VI we present the results of the
quantum corrections in the calculation of the contact hyperfine
field, and then conclusions are given in Sec. VII.

II. DOUBLE BORN-OPPENHEIMER APPROXIMATION

The BO approximation considers the nuclei frozen on the
time scale of electron dynamics in view of their sufficiently
large mass ratio [11]. Hydrogen is already sufficiently lighter
than most other atoms to allow a further separation of time
scales, and this holds a fortiori true for a positive muon.
This allows for the quantum treatment of a single muon
impurity in the crystal by employing the so-called double
Born-Oppenheimer approximation (DBO) [12,14,33]. The
muon dynamics (mμ ∼ 200me) is much slower than that of
electrons, thus justifying an electron structure obtained by
DFT with frozen muon and nuclei. The same muon dynamics
is still much faster than that of other nuclei, since transition
metals are typically 400 times heavier than a muon (care must
be taken when considering, e.g., hydrogen, which is only nine
times heavier than a muon). Therefore, it is justified to use
total DFT energy versus the muon configuration coordinates
as a frozen potential energy landscape in which the muon
dynamics takes place on its characteristic time scale. This
allows us to consider the zero-point vibration of only the muon
within the potential energy surface, drastically reducing the
computational load requirements for the calculations.

The total Hamiltonian Htot describing the many-body inter-
action including explicitly the muon coordinates is written as

Htot = Te + Tμ + TN + V (re, rμ, RN ), (1)

with subscript μ describing the muon-related quantities while
e and N describe those of the electrons and host nuclei,
respectively. T and V are the kinetic and potential energy,
respectively. The Schrödinger equation is then written as

Htot|�tot〉 = Etot|�tot〉. (2)

This further allows us to write the DBO wave function as a
product wave function of the electrons, the muon, and the
nuclei in the form

|�tot〉 = |ψe〉|φμ〉|�N 〉. (3)

The Hamiltonian for the electronic problem can be rewritten
to specifically point out the presence of the muon position
operator as

He = Te + V (re; rμ, RN ). (4)

Similar to the BO approximation, only the position operators
of the muon and the nuclei enter in the eigenvalue problem
of the electrons. The solution of the electronic problem gives
the BO potential energy surface, V (rμ, RN ), dependent on the
muon and the nuclei position operators.
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Hence, the ground-state Hamiltonian Hμ for the muon can
be written as

Hμ = Tμ + V (rμ; RN ), (5)

where the muon kinetic energy Tμ is defined as

Tμ =
3∑

λ=1

p2
λ

2mμ

,

with p the momentum operator along the Cartesian compo-
nent indexes λ while mμ is the muon mass.

The acquisition of the DBO potential energy surface
V (rμ; RN ) for the solution of the Schrödinger equation (5) is
still a long and difficult task. However, the DBO approxima-
tion is advantageous since it allows us to consider separately
only the degrees of freedom of the muon. For this reason,
in the next section we revisit the SSCHA theory originally
presented in Refs. [23,24], specializing its application to
muon dynamics.

III. STOCHASTIC SELF-CONSISTENT HARMONIC
APPROXIMATION FOR MUONS

To begin with the formal description of the stochastic self-
consistent harmonic approximation (SSCHA) restricted only
to the muon modes, let us write the muon Hamiltonian Hμ,
the muon wave function φμ, and the DBO potential energy
surface V (rμ; RN ), appearing in the previous section, simply
as H, φ, and V (rμ), respectively.

The muon zero-point energy from the Hamiltonian H is
given as

E = 〈φ|H |φ〉, (6)

where |φ〉 is the muon ground-state wave function. Calculat-
ing E is far from trivial since the form of the muon potential
[Eq. (5)] is not known. However, it is possible to establish
a quantum variational principle for the muon ground-state
energy E by replacing the exact muon wave function |φ〉
with the wave function |φ̃〉 of a trial muon Hamiltonian H̃ =
Tμ + Ṽ (rμ) with energy

Ẽ = 〈φ̃|H̃ |φ̃〉. (7)

This is such that one can define an energy functional of the
trial Hamiltonian as

ẼH [H̃ ] = 〈φ̃|H |φ̃〉. (8)

The variational form of the muon ground-state energy can be
written as

E � ẼH [H̃] (9)

such that the equality holds when the true and trial potentials
are the same.

By adding and subtracting Eq. (7) to and from Eq. (8),
ẼH [H̃ ] is written in the form

ẼH [H̃ ] = Ẽ + 〈φ̃|(V − Ṽ )|φ̃〉. (10)

The above definitions allow us to formulate a variational prin-
ciple following the Gibbs-Bogoliubov inequality theorem [34]
at zero temperature, similar to the Rayleigh-Ritz inequality
[35].

According to the trial wave function, the probability of
finding the muon in the position rμ is

ρ̃(rμ) = 〈rμ|φ̃〉〈φ̃|rμ〉 = |φ̃(rμ)|2. (11)

Thus, an observable A dependent only on rμ can be averaged
statistically within the form of the corresponding Hamiltonian
H̃ as

〈A〉H̃ =
∫

drμA(rμ )̃ρ(rμ), (12)

and the muon energy in Eq. (10) can be evaluated as

ẼH [H̃ ] = Ẽ +
∫

drμρ̃(rμ)[V (rμ) − Ṽ (rμ)]. (13)

With the above form of ẼH [H̃ ], the muon energy can be
evaluated at each step during the variational minimization.
One can directly see that the equality in the form of the
variation in Eq. (9) holds if V = Ṽ . Hence, with the variational
principle, the ground state of the muon is determined if the
potential Ṽ (rμ) that minimizes ẼH [H̃] is found.

To proceed with the minimization of ẼH , in the SSCHA
implementation we restrict the muon wave functions only to
the Gaussian form. The term harmonic in the technique refers
to the fact that each Gaussian is the ground state of a trial
harmonic Hamiltonian, with known analytic solutions (see
Appendix A) where the trial potential is expressed in terms of
a force-constant matrix. Moreover, using Gaussian functions
has the advantage of allowing us to sample the wave function
by extracting randomly distributed configurations without any
METROPOLIS algorithm that requires long equilibration time
and also provides an analytic expression for the kinetic energy.

Finally, the actual minimization is obtained using the
conjugate gradient (CG) algorithm [36], which requires an
evaluation of the energy gradient, whose analytic form is
given in Ref. [24] and in Appendix B for the muon case,
and depends on the forces acting on the muon when displaced
from the equilibrium position.

The evaluation of the quantities of interest at each min-
imization step, namely ẼH and its gradient, is performed
stochastically. One of the advantages of the stochastic sam-
pling resides in the gradual optimization of the potential felt
by the muon during the iterative process. This ensures that the
entire BO landscape, beyond the harmonic component around
the minimum, is sampled, hence capturing the anharmonic
effects.

The stochastic sampling of the BO energy and of the
forces acting on the muon and entering the energy gradi-
ent (see Appendix B) can be calculated with any ab initio
method including DFT [37] and Hartree-Fock [38–40] based
approaches.

The evaluation of the forces and energies for the random
muon configurations in the stochastic sampling represents
the most computationally demanding task in the SSCHA
minimization cycle. This effort can be partially alleviated with
a reweighting procedure based on importance sampling. The
reader is referred to Ref. [24] for a detailed description of this
additional detail.

When the energy gradient vanishes numerically, the Ẽ that
minimizes ẼH [H̃] is the zero-point energy of the muon, and
the anharmonic vibrational frequencies ω̃i of the auxiliary
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TABLE I. Harmonic muon frequencies ωh
i along the mode i and harmonic zero-point energy Eh = ∑3

i=1 h̄ωh
i /2, together with the SSCHA

muon frequencies ω̃i and energy Ẽ at the minimum that includes the anharmonic contribution.

Host ωh
x (cm−1) ωh

y (cm−1) ωh
z (cm−1) Eh (eV) ω̃x (cm−1) ω̃y (cm−1) ω̃z (cm−1) Ẽ (eV)

Fe-bcca 4364.01 2913.01 4364.62 0.72 4769.08 2572.58 5088.37 0.74
Fe-bccb 1965.08i 1958.72i 6828.00 c 2005.24 2005.24 6364.81 0.53
Co-hcp 2930.41 2929.85 2752.25 0.53 3741.10 3741.10 3476.24 0.61
Co-fcc 2607.29 2607.02 2606.66 0.49 3424.16 3424.16 3424.16 0.56
Ni-fcc 2377.62 2377.60 2377.61 0.44 3317.78 3317.78 3317.78 0.53
MnGe 3123.70 3123.67 3123.66 0.58 3470.29 3470.29 3470.29 0.64
MnSi 3296.27 3296.32 3296.11 0.61 3685.25 3685.25 3685.25 0.67

aMuon at the tetrahedral site.
bMuon at the octahedral site.
cThe muon is not stable at the octahedral site (imaginary frequencies) within the harmonic regime.

Hamiltonian whose SSCHA wave function is the ground state
are obtained, so that

3∑
i=1

1

2
h̄ω̃i = Ẽ . (14)

A formal description of the trial Hamiltonian and the trial
wave function is given in Appendix A.

IV. MUON ZERO-POINT ENERGY

Let us first describe the zero-point energy of the muon
obtained in the harmonic approximation, which is later used
in comparisons with the anharmonic one.

The harmonic muon frequencies ωh
i and the corresponding

energies Eh = ∑3
i=1 h̄ωh

i /2 were calculated by the finite-
difference method [41,42], which allows only the muon fre-
quencies to be singled out, for all the materials under investi-
gation, namely Fe, Co, Ni, MnSi, and MnGe. These were also
used to generate the starting wave functions for the SSCHA
minimization except for the stability discussion in Sec. V
with the muon at the octahedral and tetrahedral site in bcc
Fe. Here, the density functional perturbation theory (DFPT)
within the QUANTUM ESPRESSO suite of code [43,44] was used
to calculate the frequencies of the whole system, including
those of the host Fe nuclei. The resulting harmonic muon
frequencies from both methods in the two Fe systems are in
good agreement.

For the SSCHA minimization and stochastic averaging [see
Eq. (17)], hundreds (100–400) of random configurations were
generated for the muon while keeping the host atoms fixed to
ensure that the muon energy gradient vanishes. Their energies
and Hellmann-Feynman forces [45] were calculated by DFT
as implemented in the QUANTUM ESPRESSO suite of code [44].
The details of the muon site in these systems and DFT input
parameters are contained in Ref. [6]. For all the systems, a 2 ×
2 × 2 supercell constructed starting from the conventional
unit cell was used for the harmonic frequency calculations,
the SSCHA frequency minimization, and the force calculation
within DFT. Other DFT computational details are identical to
those reported in Ref. [6]. To accommodate the muon impurity
in the supercell, the forces introduced by the muon in the
system were relaxed by DFT and the relaxed structures were
used for the SSCHA calculations. Relaxations were converged

with force and energy thresholds of 10−3 a.u. and 10−4 Ry,
respectively.

Figure 1 shows the evolution of the SSCHA muon fre-
quencies and energy during the minimization procedure. Sig-
nificant anharmonic contributions to the resulting SSCHA
frequencies can be deduced from the difference between the
initial values, i.e., the starting harmonic guess, and the final
converged results (the comparison with the anharmonic cor-
rection obtained for host atoms is presented in Appendix C).
The anharmonic correction to the harmonic frequencies is
found to be in the range of 330–820 cm−1 except for the muon
at the octahedral site in Fe.

The stochastic implementation ensures that the effect of
the muon vibrations, the effect of the chemical environment
around the muon, and anharmonic contributions to the forces
acting on the muon are all incorporated in the muon ground-
state minimum.

Table I contains the harmonic frequencies ωh
i and energies

Eh, obtained with the finite-difference method and used as the
starting point of the SSCHA iterative process, and the SSCHA
frequencies ω̃i and energies Ẽ at the end of the minimization.
The error estimates of the reported muon energies are within
the range of 0.1 meV. The results show the anharmonic effects
in the muon vibrational frequencies. Notice that the muon at
octahedral implantation site in Fe is unstable in the harmonic
regime. For all other cases with positive harmonic frequencies
for which Eh can be defined, the difference between the
SSCHA muon vibrational energies and the harmonic ones is
in the range of 0.02–0.09 eV.

V. TETRAHEDRAL AND OCTAHEDRAL MUON SITE IN Fe

Conflicting experimental and theoretical studies report the
muon site in Fe to be either at the tetrahedral (T) or the
octahedral (O) interstitial sites [46–51]. From the point of
view of the DFT total energy, the T site is 0.184 eV lower
that the O site. This would indicate that the T site is the stable
one. However, since the calculated muon zero-point energies
(above 0.5 eV) are large relative to the DFT energy difference,
the possible population of both sites cannot be excluded.

DFPT calculations of the muon frequencies provide further
insight into the stability of the two candidate sites. Unphysical
negative frequencies, generally a signal of instability, are
obtained for the muon at the O site, as opposed to those of the
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FIG. 1. (a) Evolution of the SSCHA muon frequency during the
minimization steps. (b) Evolution of SSCHA muon energy as in
Eq. (13) during the minimization steps. In both figures, the starting
point for the minimization step number = 0 is that of the harmonic
Hamiltonian except for the muon in octahedral site of Fe [Fe (oct)]
when the starting potential is arbitrary.

T site, which are always positive. The harmonic approxima-
tion then appears to indicate an instability of the muon at the
O site.

However, the anharmonic effects, fully captured by the
SSCHA, yield positive frequencies also for the O site

indicating that the instability is an artifact of the harmonic
approximation. As the ω̃i frequencies are positive-definite by
definition, this is not proof that the O site occupation is stable.
Obtaining the frequencies from the energy curvature [25],
which can correctly describe an instability, confirms, however,
that the O site interstitial site is in fact stable. The SSCHA
frequencies for the muon in the O site are larger than the
frequencies resulting from those obtained from the curvature
by only 0.53% along the x, y axis and 0.14% along the z axis.

The quantum correction with the SSCHA shows that both
T and O are stable local minima. The vibrational contribution
to the energy is 0.21 eV less for the O site than for the T site
(see Table I). Adding this to the static DFT contribution makes
the O site energetically favored by approximately 0.03 eV
over the T site, thus indicating that the two sites are basically
degenerate, and possibly both occupied.

VI. QUANTUM CORRECTION ON THE MUON
CONTACT HYPERFINE FIELD

The contact hyperfine field Bc(rμ) at the muon position rμ

is computed ab initio by considering the imbalance in the spin
density at the muon site [6] given as

Bc(rμ) = 2
3μ0μB[n↑(rμ) − n↓(rμ)], (15)

where μ0 is the vacuum permeability, μB is the Bohr magne-
ton, and n↑ − n↓ represents the spin polarization at the muon
site rμ calculated here by DFT. Bc(req

μ ) has been calculated in
this way for metals within a point impurity treatment of the
muon [6]. We now calculate the effect of the muon quantum
delocalization on its contact hyperfine field, using the muon
SSCHA wave functions φ that already contain the anharmonic
contributions.

The quantum expectation value 〈Bc〉 is given by

〈Bc〉 =
∫

drμBc(rμ)|φ(rμ)|2, (16)

where the probability density |φ(rμ)|2 has been defined in
Eq. (11) and is obtained from the SSCHA muon frequencies
ω̃i according to Eq. (A3).

The above integral can be evaluated in a post-DFT calcu-
lation by a statistical average performed stochastically, i.e.,
according to

∫
drμBc(rμ )̃ρ(rμ) � 1

Nc

Nc∑
n=1

Bc
(
rn
μ

) ≡ 〈Bc〉H̃ , (17)

where the sum extends over a number of muon random
configurations Nc displaced from the equilibrium position req

μ

and generated with the probability distribution of the muon
wave function [see Eq. (B1)]. The number of muon random
configurations used is the same as in the SSCHA minimization
of the muon wave function. However, the new muon random
positions are generated considering the anharmonic corrected
SSCHA muon wave function. Figure 2 shows the distribution
of the 100 configurations used for fcc Co in the unit cell.

073804-5



IFEANYI JOHN ONUORAH et al. PHYSICAL REVIEW MATERIALS 3, 073804 (2019)

FIG. 2. 100 random position generated using Eq. (B1) for the
muon at the octahedral site in the Co-fcc unit cell. The equilibrium
octahedral center is depicted by the pink sphere, while the small dark
spheres represent the different random muon positions where the
muon contact hyperfine field within point impurity treatment Bc(rμ)
was also calculated for the purpose of including the quantum effects
of the muon.

Bc(rμ) was calculated by DFT for each of these random
configurations within a 3 × 3 × 3 supercell for Fe, Co, and Ni
and a 2 × 2 × 2 supercell for MnGe and MnSi, while other
computational details are the same as reported in Ref. [6].

Table II and Fig. 3 show the calculated contact field Bc(req
μ )

for a pointlike muon [6] and its stochastically averaged 〈Bc〉
values together with the experimental values. For all the
systems, the statistical error for the stochastic sampling of
〈Bc〉 is in the range of ≈1 mT. The contact hyperfine field
including quantum correction within the SSCHA, 〈Bc〉, im-
proves the agreement with the experiments, thus underlining
the importance of considering the finite muon wave function
when computing muon hyperfine interactions. Admittedly, the
correction to the contact hyperfine field appears to be less
relevant than the outcome obtained on the stability of the
muon at the octahedral site in Fe, still |〈Bc〉| introduces a
correction that ranges between 1% and 18%.

VII. CONCLUSION

In conclusion, we have presented a general, effective, and
robust approach, based on the DBO approximation, to obtain

TABLE II. Calculated contact hyperfine field for the point muon
at the equilibrium position Bc(req

μ ), the calculated contact hyperfine
field averaged over the spread of the muon wave function, 〈Bc〉, and
experimentally observed values (Expt).

Host metals Bc(req
μ ) (T)a 〈Bc〉 (T) Expt.

Fe-bccb −1.25 −1.07 −1.11 [52]
Fe-bccc −1.22 −1.13 −1.11 [52]
Co-hcp −0.79 −0.64 −0.61 [53]
Co-fcc −0.73 −0.68 −0.58 [48]
Ni-fcc −0.15 −0.14 −0.071 [54]
MnGe −1.14 −1.07 −1.08 [55]
MnSi −0.22 −0.21 −0.207 [56]

aReference [6].
bMuon at the tetrahedral site.
cMuon at the octahedral site.

FIG. 3. Contact hyperfine field Bc(req
μ ) at the equilibrium muon

implantation position req
μ , the muon contact field averaged over

the muon wave-function spread, 〈Bc〉, and experimentally observed
values.

the ground-state wave function and zero-point energy of a
positive muon embedded in a crystal from first principles.
The adaptation of the SSCHA to the muon case allows us
to evaluate the delocalized muon wave function including
anharmonic contributions that correct harmonic ones.

Moreover, the SSCHA circumvents the problem of directly
reconstructing the potential energy surface by replacing this
task with a variational problem, and more importantly, it
provides a computationally tractable method to describe the
zero-point energy of the muon. This leads to a number of
important insights concerning the stability of the muon sites
and its coupling with the surrounding electrons.

The first point has been discussed by considering the case
of the muon site in Fe, where anharmonicity plays a crucial
role in establishing the stability of the muon in the tetrahedral
and octahedral sites.

We reformulated the calculation of the muon contact hy-
perfine field by including the effects of its anharmonic zero-
point vibration, improving the agreement with experiments
with respect to previous estimates based on the point impurity
treatment of the muon. Even though the correction is small,
in numerous cases the contact field is of the order of tenths
of a Tesla, thus making the absolute value of the correction
presented here quite relevant.

Finally, the clean iterative procedure of the SSCHA makes
it rather straightforward to define standardized work flows
to automate the computational procedure. This represents
another step toward routinely supporting experimental data
analysis with computational simulation results.
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APPENDIX A: THE TRIAL MUON HARMONIC
HAMILTONIAN

The trial muon harmonic Hamiltonian is of the form

H̃ =
3∑

λ=1

p2
λ

2mμ

+ 1

2

3∑
λν

Kλν
(
rμ − req

μ

)λ(
rμ − req

μ

)ν
, (A1)

where λ and ν are Cartesian component indexes, req
μ is the

muon equilibrium position, mμ is the mass of the muon,
and Kλν is the muon 3 × 3 force-constant matrix. The force-
constant matrix Kλν/mμ can be constructed and diagonalized
as

3∑
ν=1

Kλν

mμ

ε̃ν
i = ω̃2

i ε̃
λ
i , (A2)

where i is the index of each of the orthogonal modes, ε̃ν
i

is the polarization vector, and ω̃i is the muon frequency
corresponding to the trial Hamiltonian H̃ for each mode.

Assuming a trial harmonic potential, the probability of
finding the muon at rμ can be written simply as

ρ̃(rμ) = 1∏3
i=1

√
2πσ̃ 2

i

exp

(
−

3∑
λνi

ε̃λ
i ε̃ν

i

2σ̃ 2
i

(
rμ−req

μ

)λ(
rμ−req

μ

)ν

)
,

(A3)

where σ̃i, the normal length for each of the modes i, is given
as

σ̃i =
√

h̄

2mμω̃i
. (A4)

Using the quantum statistical averaging defined in Eq. (12),
the energy of the trial harmonic Hamiltonian can be calculated
as

Ẽ =
3∑

i=1

1

2
h̄ω̃i. (A5)

APPENDIX B: RANDOM CONFIGURATION SAMPLING
AND MINIMIZATION DETAILS

The distribution for the generation of the random muon
position configurations is realized using random numbers
{ξin}n=1,...,Nc generated with the Gaussian distribution ρ̃(rμ)
and rescaled by the corresponding normal length modes σ̃i

and polarization vector ε̃λ
i . The generated positions are thus

obtained as (
rn
μ

)λ = (
req
μ

)λ +
3∑

i=1

ε̃λ
i σ̃iξin. (B1)

This constitutes the set of points used in the stochastic
evaluation of Ẽ and of the gradient of the energy functional,

FIG. 4. Evolution of the SSCHA muon frequency (ω̃ in the upper
panel) and those of Fe (nearly static low-frequency lines in the lower
panel) during minimization for the muon in the tetrahedral site of
bcc Fe. The figure depicts the expected anharmonicity effects on
the SSCHA muon frequencies and nearly nonexistent anharmonicity
effects on those of Fe, due to the large mass difference of the muon
and Fe nuclei. The muon is ≈490 times lighter.

namely ∇K ẼH [H̃ ], with respect to the force constant K . The
analytic form of this last term is written as (see also Ref. [24])

∇K ẼH [H̃ ] = −
∑
iλν

(̃
ελ

i ∇K ln σ̃i + ∇K ε̃λ
i

)̃
εν

i

×
∫

drμ[ f λ(rμ) − f̃ λ(rμ)]
(
rμ − req

μ

)ν
ρ̃(rμ),

(B2)

where f λ(rμ) is the muon force component in the λ Carte-
sian direction for all muon positions rμ, and f̃ λ(rμ) are
the forces obtained with the Ṽ potential. The SSCHA mini-
mization is performed with respect to the symmetries of the
crystal [24].

We also add that with the SSCHA, it is possible to mini-
mize the energy both with respect to the muon position rμ and
also the force-constant matrix Kλν . However, for the materials
considered in this paper, there is sufficient knowledge of the
equilibrium muon position req

μ . Hence, the muon energy is
only minimized with respect to the force-constant matrix K .
For the muon in a high symmetry position, the force-constant
matrix is a 3 × 3 matrix, with the diagonal elements of the
matrix accounting for the dominant contribution.

Finally, it is important to note that, in order to obtain
physical phonons from the ground-state minimized quantities
provided by the SSCHA, the second derivative (curvature)
of SSCHA energy at the minimum with respect to rμ has
to be calculated [25], which includes a correction term to
the force-constant matrix Kλν/mμ in Eq. (A2). We verified
that for the cases under study here the muon frequencies are
affected less than 1% by this extra correction. Thus, we can
treat the ω̃i frequencies as the physical vibrational energies of
the muons.
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APPENDIX C: EVOLUTION OF MUON AND HOST Fe
SSCHA FREQUENCIES

The evolution of the frequencies in the SSCHA calculation
including anharmonic effects both for the Fe host nuclei and
the muon at the tetrahedral site in a 2 × 2 × 2 supercell is
shown in Fig. 4. The figure indicates that there is a significant

anharmonic contribution to the muon eigenfrequencies after
several iterations (upper panel), whereas the lower frequency
modes of the heavier Fe nuclei (lower panel) remain neg-
ligibly changed. This consideration together with the DBO
approximation discussed in Sec. II also supports separating
and concentrating only on the muon degrees of freedom.
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SnS and SnSe are isoelectronic materials with a common phase diagram. Recently, SnSe was found
to be the most efficient intrinsic thermoelectric material in its high-temperature Cmcm phase above
800 K. Making use of first-principles calculations, here we show that the electronic and vibrational
properties of both materials are very similar in this phase and, consequently, SnS is also expected
to have a high thermoelectric figure of merit at high temperature in its Cmcm phase. In fact,
the electronic power factor and lattice thermal conductivity are comparable for both materials,
which ensures a similar figure of merit. As in the case of SnSe, the vibrational properties of SnS in
the Cmcm phase are far from trivial and are dominated by huge anharmonic effects. Its phonon
spectra are strongly renormalized by anharmonicity and the spectral functions of some particular
in-plane modes depict anomalous non-lorentzian profiles. Finally, we show that non-perturbative
anharmonic effects in the third-order force-constants are crucial in the calculation of the lattice
thermal conductivity. Our results motivate new experiments in the high temperature regime to
measure the figure of merit of SnS.

I. INTRODUCTION

Thermoelectricity is a technologically interesting ma-
terial property that allows to transform residual heat
into useful electricity1,2. The efficiency of this energy
transformation is controlled by the dimensionless figure
of merit

ZT = S2σT/κ, (1)

where S is the Seebeck coefficient, σ the electrical con-
ductivity, T the temperature, and κ = κe + κl the sum
of electronic κe and lattice κl thermal conductivities.
Therefore, a good thermoelectric performance requires a
high power factor PF = S2σ together with a low thermal
conductivity.

Monochalcogenides have proven to be efficient ther-
moelectric materials3–6 mainly due to their strongly
anharmonic lattice that implies a low lattice ther-
mal conductivity7–11. PbTe is an appropriate exam-
ple of the potential technological relevance of thermo-
electric monochalcogenides: it shows a high ZT in the
600 − 800 K temperature range12, as high as 2.2 when
nanostructured13, and has been successfully applied in

spacecrafts14. In the last years SnSe has attracted a great
deal of attention since it was measured to be the most
efficient intrinsic thermoelectric material15. Its figure of
merit soars to 2.6 after a structural phase transition15–18

at around 800 K from the low-symmetry Pnma phase
to the high-symmetry Cmcm. In the high-symmetry
phase the electronic band gap is reduced without af-
fecting its ultralow thermal conductivity, providing the
record ZT . A recent theoretical work shows that the
phase transition19 is second order and non-perturbative
anharmonicity is very important to get a thermal con-
ductivity in agreement with experiments.

SnS is isoelectronic to SnSe and shows very simi-
lar electronic and vibrational properties17,18,20 at low
temperatures. Experimentally it also shows a phase
transition17,18 from the Pnma to the Cmcm structure
and a very low thermal conductivity in the former21,22

phase. Therefore, it is expected to be a very efficient
thermoelectric material in the high temperature phase,
which together with the fact that S is a much more earth
abundant element than Se, makes it a very interesting
candidate for technological applications. Actually, in
Refs. 21 and 22 it is shown how the ZT of undoped
SnS increases very fast before the phase transition as in
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the case of SnSe. However, as far as we are aware, there
are no experimental transport measurements for the high
temperature phase of SnS. First-principles calculations of
its thermoelectric properties are also absent in the liter-
ature, hindered by the unstable modes obtained within
the harmonic approximation as in the case of SnSe23,24.

In this work, by performing ab initio calculations we
propose that Cmcm SnS is expected to be a very effi-
cient intrinsic thermoelectric material, as good as SnSe
in this phase. We show that the PF of SnSe and SnS are
expected to be very similar in this phase, as long as the
electronic relaxation time is similar in both materials.
By including anharmonicity in the phonon calculation
at a non-perturbative level within the Stochastic Self-
Consistent Harmonic Approximation25–27 (SSCHA), we
show that the phonon spectrum of SnS suffers a strong
anharmonic renormalization. The phase transition is
driven by the collapse of a zone-border phonon. Anhar-
monicity is so large that the spectral function of some vi-
brational modes deviates from the Lorentzian-like shape
as it happens in other monochalcogenides8,11. Finally,
we calculate the lattice thermal conductivity of Cmcm
SnS obtaining ultralow values below ≈ 1.0 Wm−1K−1.
Non-perturbative anharmonic corrections to the third-
order force-constants are important in its calculation as
it happens in SnSe19. There is a clear anisotropy between
in-plane and out-of-plane thermal conductivities. The
similarity of the power factors and the lattice thermal
conductivities of SnSe and SnS suggest that the latter
may be an earth abundant efficient thermoelectric ma-
terial and motivate more experimental effort to measure
its ZT in the high-temperature phase.

This article is organized as follows. In section II we
briefly review the theoretical background for the calcula-
tion of anharmonic phonons, thermal conductivity, and
electronic transport properties. In section III we specify
the computational details. In section IV we discuss the
results of our work. Conclusions are given in section V.

II. THEORETICAL BACKGROUND

A. Electronic transport properties

Within the semiclassical Boltzmann transport theory28

the electrical conductivity and the Seebeck coefficient can
be calculated respectively as

σ(T, µ) = e2

∫ ∞

−∞
dε

[
−∂f(T, µ, ε)

∂ε

]
Σ(ε) (2)

S(T, µ) =
e

Tσ(T, µ)

∫ ∞

−∞
dε

[
−∂f(T, µ, ε)

∂ε

]
Σ(ε)(ε− µ),

(3)

where e is the electron charge, µ the chemical potential,
f(T, µ, ε) the Fermi-Dirac distribution function, and Σ(ε)
the transport distribution function. The latter is defined

as

Σ(ε) =
1

ΩNk

∑

nk

τenk|vnk|2δ(ε− εnk), (4)

where Ω is the unit cell volume, Nk the number of k
points in the sum, and εnk, vnk and τenk are, respec-
tively, the energy, Fermi velocity and relaxation time of
the electronic state with band index n and crystal mo-
mentum k. Our goal here is to compare the power factors
PF (T, µ) = σ(T, µ)S2(T, µ) of SnSe and SnS coming from
their different band structure without explicitly calculat-
ing the electronic relaxation times. We thus assume that
τenk = τe is just the same constant for both compounds.
In these conditions it is easy to see from Eqs. (2)-(4) that
the power factor is proportional to τe. In the following we
will limit ourselves to the analysis of PF (T, µ)/τe, which
only depends on the band structure of the compounds.

B. Free energy of strongly anharmonic crystals

We study the vibrational properties of SnS within the
Born-Oppenheimer (BO) approximation, in which the
Hamiltonian H that determines the dynamics of the ions
consists of the ionic kinetic energy and the BO potential
V (R). R denotes Rαs(l) in component free notation,
which specifies the atomic configuration of the crystal. α
is a Cartesian direction, s labels an atom within the unit
cell, and l a lattice vector. From now on, we will use a
single composite index a = (α, s, l) and bold letters to
indicate quantities in component-free notation. We will
keep this composite index for Fourier transformed com-
ponents adding a bar, ā, to distinguish that in this case
ā just denotes a Cartesian index and an atom in the unit
cell.

As it will be shown below and as it happens in Cmcm
SnSe19,23,24, the harmonic approximation collapses for
Cmcm SnS. Truncating the Taylor expansion of V (R) for
this phase at second order and diagonalizing the resulting
harmonic force-constants φ large imaginary frequencies
are obtained. This makes the calculation of any thermo-
dynamic and transport property involving phonons im-
possible at the harmonic level. We overcome this prob-
lem by solving the ionic Hamiltonian within the SSCHA,
a variational method that includes anharmonic effects at
a non-perturbative level in the calculation of the vibra-
tional free energy25–27.

The SSCHA performs a variational minimization of the
free energy with respect to a trial density matrix ρH that
solves an auxiliary harmonic Hamiltonian

H =
∑

a

P 2
a

2Ma
+

1

2

∑

ab

(R−R)aΦab(R−R)b, (5)

where P is the kinetic energy and Ma the atomic mass
of atom a. The variational parameters in the mini-
mization are the Φ force-constants, which should not
be confused with the harmonic force-constants φ, and
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the R positions. The R positions are referred as the
centroid positions, i.e., the most probable atomic posi-
tions. The Φ force-constants are related to the broad-
ening of the ionic wave functions around the centroid
positions. At the minimum, the SSCHA yields a free en-
ergy F that takes into account anharmonicity without
approximating the BO potential. The minimization can
be performed by calculating atomic forces and energies in
stochastic atomic configurations in supercells using im-
portance sampling and reweighting techniques25–27. The
supercell atomic configurations are created according to
the probability distribution function related to ρH. Since
the BO energy landscape is sampled stochastically, the
SSCHA method does not use any fit or approximation
on the V (R). It is, therefore, unbiased by the starting
point.

C. Free energy Hessian and second-order phase
transition

In a displacive second-order phase transition, at high
temperature the free energy F has a minimum in a high-
symmetry configuration (Rhs), but, on lowering the tem-
perature, Rhs becomes a saddle point at the transition
temperature Tc. Therefore, the free energy Hessian eval-
uated at Rhs, ∂

2F/∂R∂R|Rhs
, at high temperature is

positive definite but it develops one or multiple negative
eigendirections at Tc. The SSCHA free energy Hessian
can be computed by using the analytic formula26

∂2F

∂R∂R = Φ +
(3)

ΦΛ(0)[1−
(4)

ΦΛ(0)]−1
(3)

Φ , (6)

with

(n)

Φ =

〈
∂nV

∂Rn

〉

ρH

. (7)

Here 〈〉ρH denotes the quantum statistical average taken
with the density matrix ρH. All these averages are eval-
uated here stochastically as described in Ref. 26. The
(n)

Φ non-perturbative n-th order force-constants should
not be confused with the n-th order perturbative force-

constants
(n)

φ , which are calculated as derivatives of the
BO potential at a reference position 0 and not as quan-
tum statistical averages:

(n)

φ =

[
∂nV

∂Rn

]

0

. (8)

In Eq. (6) the value z = 0 of the fourth-order tensor Λ(z)
is used. For a generic complex number z it is defined, in

components, by

Λabcd(z) = −1

2

∑

µν

F̃ (z, Ω̃µ, Ω̃ν)×
√

~
2MaΩ̃µ

eaµ

√
~

2MbΩ̃ν
ebν

√
~

2McΩ̃µ
ecµ

√
~

2MdΩ̃ν
edν , (9)

with Ω̃2
µ and eaµ the eigenvalues and corresponding eigen-

vectors of

D
(S)
ab = Φab/

√
MaMb, (10)

respectively. In Eq. (9)

F̃ (z, Ω̃µ, Ω̃ν) =
2

~

[
(Ω̃µ + Ω̃ν)[1 + nB(Ω̃µ) + nB(Ω̃ν)]

(Ω̃µ + Ω̃ν)2 − z2
−

(Ω̃µ − Ω̃ν)[nB(Ω̃µ)− nB(Ω̃ν)]

(Ω̃µ − Ω̃ν)2 − z2

]
, (11)

where nB(ω) = 1/(eβ~ω − 1) is the bosonic occupation
number. Evaluating through Eq. (6) the free energy
Hessian at Rhs and studying its spectrum as a func-
tion of temperature, we can predict the occurrence of a
displacive phase transition and estimate Tc. This tech-
nique has been successful to study phase-transition tem-
peratures in high-pressure hydrides, monochalcogenides,
and transition metal dichalcogenides undergoing charge-
density wave transitions11,29,30.

D. Dynamical properties of solids and phonon
frequencies

As shown in Ref. 26, even if the SSCHA is a ground-
state theory, it is possible to formulate a valid ansatz in
order to calculate dynamical properties of crystals such
as phonon spectral functions. The one-phonon Green
function G(z) for the variable

√
Ma(Ra − Ra) can be

calculated as

G−1(z) = z21−M− 1
2 ΦM− 1

2 −Π(z). (12)

With this definition, in the static limit the Green function
becomes the dynamical matrix obtained with the free
energy Hessian: G−1(0) = −D(F ), with

D
(F )
ab =

1√
MaMb

∂2F

∂Ra∂Rb
. (13)

We will label with ωµ the eigenvalues of D(F ). The SS-
CHA self-energy is given by

Π(z) = M− 1
2

(3)

ΦΛ(z)[1−
(4)

ΦΛ(z)]−1
(3)

ΦM− 1
2 , (14)

where Mab = δabMa is the mass matrix. We have explic-

itly verified that neglecting
(4)

Φ in Eq. (6) has a completely
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negligible impact on the eigenvalues of D(F ). We consis-

tently neglect
(4)

Φ in Eq. (12) as well. This reduces the
SSCHA self energy to the so-called bubble self energy,
namely

Π(z) ≈ Π(B)(z) = M− 1
2

(3)

ΦΛ(z)
(3)

ΦM− 1
2 . (15)

The cross section in an inelastic, e.g. neutron, exper-
iment is proportional to the spectral function σ(ω) =
−ωTrImG(ω + i0+)/π31. Its peaks signal the presence
of collective vibrational excitations (phonons) having cer-
tain energies and linewidth. In order to recognize the
contribution of each phonon mode to this spectral func-
tion, we first take advantage of the lattice periodicity and
Fourier transform the spectral function and the self en-
ergy, and second we neglect the mixing between phonon
modes and assume that Π(z) is diagonal in the basis of
the eigenvectors:

Πµ(q, ω) =
∑

āb̄

eāµ(−q)Πāb̄(q, ω + i0+)eb̄µ(q). (16)

The cross section is then given by

σ(q, ω) =

1

π

∑

µ

−ωImΠµ(q, ω)

(ω2 − Ω̃2
µ(q)−ReΠµ(q, ω))2 + (ImΠµ(q, ω))2

.

(17)

In Eqs. (16) and (17) Ω̃2
µ(q) and eāµ(q) are, respectively,

the eigenvalues and eigenvectors of D(S)(q), the Fourier
transform of Eq. (10).

The cross section calculated as in Eq. (17) does not
have any given lineshape. However, when Πµ(q, ω) is

small compared to Ω̃2
µ(q), it is justified to approximate

Πµ(q, ω) ∼ Πµ(q, Ω̃µ(q)), which turns σ(q, ω) into a sum
of Lorentzian functions. In this Lorentzian approxima-
tion the peaks appear at the Ωµ(q) phonon frequencies,
with

Ω2
µ(q) = Ω̃2

µ(q) +ReΠµ(q, Ω̃µ(q)), (18)

and the linewidths are proportional to Im[Πµ(q, Ω̃µ(q))].

E. Thermal conductivity

We calculate the lattice thermal conductivity within
the single mode relaxation time approximation (SMA)32

making use of the eigenvalues and eigenvectors of D(S)(q)
(as it will be shown below it is not possible at the har-
monic level due to the instabilities obtained) as well as

the non-preturbative third-order force-constants
(3)

Φ . In
the SMA the lattice thermal conductivity is written as

follows33:

καβl =
~2

ΩNqkBT 2
×

∑

qµ

cαµ(q)cβµ(q)Ω̃2
µ(q)nB(Ω̃µ(q))

[
nB(Ω̃µ(q)) + 1

]
τµ(q),

(19)

where, for the phonon mode µ with momentum q, cαµ(q)
is the Cartesian component α of its lattice group ve-
locity and τµ(q) its lifetime. Nq is the number of q
points used in the sum. The Bose-Einstein occupation of
each mode is given by the Boltzmann Transport Equa-
tion (BTE) and the inverse phonon lifetime (with γµ(q)
the half width at half maximum) is calculated as33

1

τµ(q)
= 2γµ(q) =

π

~2Nq

∑

q′νη

|
(3)

Φ µνη(q,q′,q′′)|2

×[(1+nB(Ω̃ν(q′))+nB(Ω̃η(q′′)))δ(Ω̃µ(q)−Ω̃ν(q′)−Ω̃η(q′′))

+2(nB(Ω̃ν(q′))−nB(Ω̃η(q′′)))δ(Ω̃µ(q)+Ω̃ν(q′)−Ω̃η(q′′))],
(20)

with q+q′+q′′ = G, G being a reciprocal lattice vector.

Here
(3)

Φ µνη(q,q′,q′′) is the third order force-constants
matrix written in the space of the normal modes:

(3)

Φ µνη(q,q′,q′′) =
∑

āb̄c̄

√
~3

8MāMb̄Mc̄Ω̃µ(q)Ω̃ν(q′)Ω̃η(q′′)

× eāµ(q)eb̄ν(q′)ec̄η(q′′)
(3)

Φ āb̄c̄(q,q
′,q′′), (21)

where
(3)

Φ āb̄c̄(q,q
′,q′′) are the Fourier transformed non-

perturbative third-order force-constants. We also cal-
culate the thermal conductivity with the perturba-
tive third-order force-constants by substituting the non-

perturbative
(3)

Φ by the perturbative
(3)

φ in Eqs. (20) and
(21).

III. COMPUTATIONAL DETAILS

We calculate the electronic bands using ab initio Den-
sity Functional Theory (DFT) calculations within the lo-
cal density approximation (LDA)34 and the generalized
gradient approximation in the Perdew Burke Ernzerhof
(PBE) parametrization35 as implemented in the Quan-
tum ESPRESSO36,37 software package. Harmonic

phonons and perturbative third-order force-constants
(3)

φ
are calculated using Density Functional Perturbation
Theory33,38. We use projector augmented wave39 (PAW)
pseudopotentials that include 5s2 5p2 4d10 electrons in
the case of Sn and 3s2 3p4 in the case of S or Se. For
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the perturbative third-order force-constants we use norm-
conserving pseudopotentials which were shown19 to pro-
vide very similar third-order force-constants compared to
the PAW result. A 16×16×16 sampling of the first Bril-
louin zone of the primitive cell and an energy cutoff of
70 Ry are employed for the DFT self-consistent calcu-
lation. For the electronic transport calculations we use
the Boltztrap software package40. For the sum in Eq. 4
we perform a non self-consistent DFT calculation in a
30× 30× 30 sampling of the first Brillouin zone. We use
experimental lattice parameters at the transition tem-
perature as we got better agreement with experiments
for SnSe in a previous work19. The experimental lat-
tice parameters taken from Refs.16,17 are a = 22.13 a0,
b = 8.13 a0, c = 8.13 a0 for SnSe and a = 21.69 a0,
b = 7.84 a0, c = 7.84 a0 (a0 is the Bohr length) for SnS.
The structures of the high temperature Cmcm and low
temperature Pnma phases are shown in Figure 1.
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a) b)

c) d) e)
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Г
1

Figure 1. XY face of the a) Cmcm and b) Pnma structures.
Atomic displacements of modes c) Γ1, d) Y2 and e) Y1. Sn
atoms are red and S green.

Anharmonic phonons and non-perturbative third-
order force-constants are calculated within the SSCHA
using a 2 × 2 × 2 supercell. For the SSCHA calculation
we use forces calculated within DFT. Once we get the
anharmonic force-constants, we substract the harmonic
ones and interpolate the difference to a 6 × 6 × 6 grid.
Then, we add this interpolated difference to the harmonic
dynamical matrices in a 6× 6× 6 grid, which yields an-
harmonic force-constants in a fine grid. By Fourier inter-
polating the latter we can calculate phonon frequencies
at any point in the Brillouin zone. We impose the acous-
tic sum rule to the third-order force-constants with an
iterative method prior to their Fourier interpolation19,33.
The lattice thermal conductivity is calculated with Eq.
(19) using a 10× 10× 10 grid. For the calculation of the
phonon linewidths we use a 20×20×20 mesh in Eq. (20)
with a Gaussian smearing of 1 cm−1 for the Dirac deltas.

IV. RESULTS AND DISCUSSION

A. Electronic transport

Figure 2 (a) shows the electronic band structures of
SnS and SnSe in the high symmetry phase. It shows that
the electronic properties of these materials are very simi-
lar because their electronic band structures are basically
the same as expected for isoelectronic compounds with
the same atomic structure. The major difference is that
the indirect (the conduction and valence bands that con-
stitute the gap are denoted with an arrow in Figure 2 (a))
energy gap (0.45 eV for SnSe and 0.7 eV for SnS) is big-
ger in the case of SnS, in agreement with experiments15,41

and previous calculations20. As expected, the calculated
electronic gaps within LDA underestimate the experi-
mental values (0.86−0.948 eV for SnSe and 0.9−1.142 eV
for SnS). Using these band structures we have calculated
the Seebeck coefficient, which within the approximation
of a constant electronic relaxation time it is independent
of it, and the electrical conductivity over the electronic
relaxation time σ/τe. The Seebeck coefficient is very sim-
ilar for both materials, but σ/τe is slightly larger in the
case of SnSe due to the smaller electronic gap. Using
these two quantities we have calculated PF /τ

e, shown in
Figure 2 (b). As we can see, PF /τ

e is very similar for
both materials, but slightly higher in the case of SnSe.
As we can see, PF /τ

e increases as temperature increases
and the difference between SnSe and SnS is less than
5% at 1000 K. These results make clear that regarding
the electronic transport properties these two materials
are very similar in the high temperature phase provided
that the relaxation time for the electrons is similar for
both materials, which is expected for isoelectronic and
isostructural compounds.

B. Pnma to Cmcm phase transition

As it was already pointed out17,19, symmetry42,43 dic-
tates that it is possible to have a second-order phase
transition between the Cmcm and Pnma phases. The
transition is dominated by the distortion pattern associ-
ated to a non-degenerate mode (Y1) at the zone border
Y point. This means19 that, in a second-order displacive
phase transition scenario, the transition temperature Tc
is defined as ∂2F/∂Q2(T = Tc) = 0 where Q is the order
parameter that transforms the system continuously from
the Pnma (Q 6= 0) to the Cmcm (Q = 0) phase. As the
distortion is dominated by the Y1 phonon, ∂2F/∂Q2(T )
is proportional to ω2

Y1
(T ), which we can calculate diago-

nalizing D(F ).
Figure 3 shows ω2

Y1
(T ) within the LDA and PBE ap-

proximations. As in the case of SnSe19, the second
derivative of the free energy is positive at high tempera-
tures and decreases lowering the temperature. For both
approximations, it becomes negative at the critical tem-
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Figure 3. ω2
Y1

as a function of temperature within LDA and
PBE approximations using the experimental lattice parame-
ters (circles). The solid lines correspond to a polynomial fit.
We include the pressure component Pzz, which is the pressure
in the direction where the atoms move in the transition. This
pressure is calculated including the anharmonic vibrational
energy within the SSCHA as discussed in Ref. 27.

perature Tc, which means that the Pnma phase is not
any longer a minimum of the free energy and the struc-
ture distorts adopting the Pnma phase. Tc strongly de-
pends on the approximation of the exchange-correlation
functional: it is 600 K for LDA and 465 K for PBE.
Our LDA calculation agrees better with the experimental
value, around 900 K17. We associate the discrepancy be-
tween LDA and PBE to the different pressures obtained
in the transition direction, Pzz. In fact, as shown in the
case of SnSe19, Tc depends strongly on the pressure in
this z direction. The pressure in Figure 3 includes an-
harmonic vibrational effects on the energy following the
procedure outlined in Ref. 27. For the same lattice pa-
rameter LDA displays a much smaller pressure, as gen-

erally LDA predicts smaller lattice volumes than PBE.
The underestimation with respect to experiments may
be attributed to the small supercell size used for the SS-
CHA calculations (2×2×2). Even if experimentally Tc is
around 100 K higher in SnS than in SnSe, our LDA cal-
culations give basically the same transition temperature
for both materials as Tc = 616 K in SnSe according to
our previous calculations19. However, within PBE SnSe
does show a lower transition temperature since Tc = 299
K for SnSe K19.

C. Anharmonic phonons

Figure 4 (a) compares the harmonic phonon spec-
trum with the anharmonic one calculated within the
Lorentzian approximation at 800 K within the LDA. In
the anharmonic spectrum shown the phonon energies cor-
respond to the Ωµ(q) values of Eq. (18). The linewidth
obtained in the Lorentzian approximation is also shown.
The phonon spectrum suffers from a huge anharmonic
renormalization. The harmonic spectrum shows broad
instabilities, which are stabilized by anharmonicity. The
Y1 mode is unstable below the transition temperature,
but it is stabilized after the transition. By having a
look at the the phonon linewidths, we can see that two
modes at the Γ point (Γ1 and Γ2) not only suffer a strong
anharmonic renormalization, but they also have a large
linewidth compared to the rest of the modes in the first
Brillouin zone. These modes describe optical in-plane
atomic displacements (see Figure 1, Γ2 has the same
atomic displacements as Γ1 but in the other in-plane di-
rection), which are the same atomic displacements of Y2

and Y3 at the point Y with a different periodicity due to
the different momentum. The Y2 and Y3 in-plane modes
also show a very large linewidth. On the contrary, the
linewidth of mode Y1 is not so large even if it is respon-
sible for the phase transition (see Figure 1).

In strongly anharmonic materials7,8,11,19,29,44, the
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Φ at 800 K and Ω̃µ(q) at 800 K. (b) and (c) σ(ω) spectral functions at the points Γ and Y , respectively, calculated
as in Eq. (17). Solid lines correspond to individual modes and dashed lines are the total spectral functions.

phonon spectral functions σ(q, ω) show broad peaks,
shoulders, and satellite peaks that cannot be captured
by the simple Lorentzian picture. In Figure 4 (b) and (c)
we show the spectral function keeping the full frequency
dependence on the self-energy (see Eq. (17)). The calcu-
lation is done for the Γ and Y points. The great major-
ity of the modes describe a Lorentzian shape. However,
the modes with a large linewidth within the Lorentzian
approximation (see Figure 4 (a)) are those that clearly
deviate from the Lorentzian profile (Γ1, Γ2, Y2, Y3). This
non-Lorentzian shape makes clear that these modes are
strongly anharmonic and the frequency dependence of
the self-energy is crucial to account for their spectral
function. In this case, as we can see in in Figures 4
(b) and (c), the non-Lorentzian shapes of the strongly
anharmonic modes do not create appreciable shoulders
or satellite peak in the total spectral function, however,
their contribution is far from trivial.

D. Lattice thermal transport

In Figure 5 (a) we show the lattice thermal conductiv-
ity of Cmcm SnS as a function of temperature calculated

using
(3)

Φ and
(3)

φ for solving the BTE within the SMA.

We recall that
(3)

Φ are non-perturbative third-order force-

constants calculated using Eq. 7 and
(3)

φ are perturbative
third-order force-constants calculated using Eq. 8. In
Figure 5 (b) we show the lattice thermal conductivities

of Cmcm SnS and SnSe using
(3)

Φ . We can see that the

non-perturbative calculation using
(3)

Φ is lower than the

perturbative one using
(3)

φ for the three Cartesian direc-
tions. This result makes clear that the non-perturbative

anharmonicity is very important to calculate the thermal
conductivity in this kind of thermoelectric materials. By
looking at the values of the lattice thermal conductiv-
ity we can see that both materials show very similar ul-
tralow values, below ≈ 1.0 Wm−1K−1. In-plane results
are slightly higher for SnSe and out-of-plane calculations
higher for SnS, in agreements with another calculation20

where the thermal conductivities of SnS and SnSe for
the low-temperature Pnma phase are calculated with
harmonic phonons and perturbative third-order force-
constants. Theoretical calculations following the same
procedure also show that the thermal conductivities of
Pnma SnSe and SnS are very similar23,45, in agreement
with experiments15,22. Our calculations confirm that in
the high-temperature Cmcm phase the thermal conduc-
tivity of these two compounds is also very similar. Both
materials show a clear anisotropy between in-plane and
out-of-plane calculations in agreement with experimen-
tal results46 for the low-temperature phase close to the
phase transition.

V. CONCLUSIONS

In conclusion, we have calculated the electronic and
vibrational transport properties of Cmcm SnS using
first-principles calculations. We have seen that the
electronic transport properties of SnS and SnSe are
comparable and that a similar power factor is expected
for these isoelectronic and isostructural compounds.
As in the case of SnSe, SnS suffers a second-order
phase transition from the Cmcm to the Pnma phase
driven by the collapse of a zone border phonon. We
have also seen that SnS shows a strongly anharmonic
phonon spectrum. Many phonon modes have a very
large linewidth and show non-Lorentzian profiles in
the spectral function. Finally, we have calculated the
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Figure 5. a) Lattice thermal conductivity of Cmcm SnS calcu-
lated within non-perturbative (NP) and perturbative (P) ap-

proaches. We have used Ω̃µ(q) at 800 K for both and
(3)

Φ at 800
K for the non-perturbative calculation in both cases. Calcula-
tions are within the LDA. b) Lattice thermal conductivity of
Cmcm SnS and SnSe calculated within the non-perturbative
(NP) approach.

lattice thermal conductivity of Cmcm SnS and we have
seen that nonperturbative anharmonicity substantially
corrects the third order force-constants. The thermal
conductivity of both materials is very similar and
ultralow. Therefore, by comparing the electronic and
vibrational transport properties of SnS and SnSe in
the Cmcm high-temperature phase, we conclude both
should be good thermoelectrics. Thus, we suggest
that SnS may be an earth-abundant very efficient
high-temperature thermoelectric material. This work
motivates more experimental effort in this regime for its
characterization.
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Low dimensional systems with a vanishing band-gap and a large electron-hole interaction have
been proposed to be unstable towards exciton formation. As the exciton binding energy increases
in low dimension, conventional wisdom suggests that excitonic insulators should be more stable in
2D than in 3D. Here we study the effects of the electron-hole interaction and anharmonicity in
single-layer TiSe2. We find that, contrary to the bulk case and to the generally accepted picture,
the electron-hole exchange interaction is much smaller in 2D than in 3D and it has negligible effects
on phonon spectra. By calculating anharmonic phonon spectra within the stochastic self-consistent
harmonic approximation, we obtain TCDW≈ 440K for an isolated and undoped single-layer and
TCDW≈ 364K for an electron-doping n = 4.6 × 1013 cm−2, close to the experimental result of
200−280K on supported samples. Our work demonstrates that anharmonicity and doping melt the
charge density wave in single-layer TiSe2.

The occurrence of charge ordering in bulk TiSe2 (see
Fig. 1) and its possible interplay with electronic ex-
citations has attracted increasing interest over the last
years. Two scenarios for the occurrence of the charge
density wave (CDW) have been proposed: the first one
is purely electronic and is based on exciton condensation
[1–5], while in the second the lattice plays a dominant role
via the electron-phonon interaction [6–8]. However, both
scenarios are incomplete, as there are currently no expla-
nations of the strong temperature dependence of phonon
spectra in the high-T [7] and low-T phases [9, 10] and
of the magnitude of TCDW. Surprisingly, little is known
about anharmonicity and its effect on the CDW in TiSe2.

From the theoretical point of view, it has been
shown that harmonic calculations in bulk TiSe2 including
the electron-phonon interaction within density-functional
perturbation theory (DFPT) [11] correctly reproduce the
occurrence of a CDW with a 2×2×2 periodicity [6, 8, 12].
However, the electronic structures of the high- and low-
T phases as well as Raman and infrared spectra of the
low-T phase at T = 0K can only be explained by includ-
ing the electron-hole exchange interaction within hybrid
functionals [8]. Density functional theory (DFT) with
semi-local kernels leads to a metallic electronic structure,
in disagreement with the angle-resolved photoemission
spectroscopy (ARPES) experiments [6, 12, 13] that show
a weakly doped semiconductor in both phases. Moreover,
they underestimate the square of the electron-phonon de-
formation potential of a factor of 3 [8].

Recently, single-layer TiSe2 was synthesized either by
exfoliation or molecular beam epitaxy (MBE). It displays
a 2 × 2 CDW with a TCDW that is enhanced with re-

spect to the bulk case (Tbulk
CDW ≈ 200K) and is strongly

substrate dependent [14–20]: single-layer TiSe2 on top
of insulating MoS2 has TCDW= 280K [14], while on top
of n-doped bilayer graphene or highly oriented pyrolytic
graphite (HOPG) [14, 18–20] TCDW= 200 − 230K. This
strong variability of TCDW has been tentatively ascribed
to the different substrate dielectric constants in possible
relation with an excitonic insulator picture [14]. Indeed,
as the exciton binding energy increases in low dimen-
sion [1–4, 21], conventional wisdom suggests that exci-
tonic insulators should be more stable in 2D than in 3D.
However, other effects such as charge transfer from the
substrate, the non-stoichiometry due to Se vacancies or
doping could be very relevant. From theory, on the one
hand the TCDW of TiSe2 monolayer has up to now only
been estimated from a variation of the electronic tem-
perature Te. At the harmonic level this assumption pre-
dicts a TCDW≈ 1195K within PBE and TCDW≈ 1920K
by including the exchange interaction via HSE06 [22], in
complete disagreement with the experimental data and
leading to an incorrect estimation of TCDW of at least a
factor of 5. On the other hand, little is known about the
effects of electron-hole exchange interaction on the vibra-
tional properties of single-layer TiSe2 and its dependence
on doping. It has been shown that, neglecting the spin-
orbit coupling, semi-local functionals are successful in re-
producing the semiconducting state of the low-T phase
[23], contrary to what happens in the bulk case.

In this work we study the anharmonic phonon spec-
tra of an isolated single-layer TiSe2 within the stochas-
tic self-consistent harmonic approximation (SSCHA) [24–
27] that has been successfully applied to study the an-
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(a) top view

(b) side view

(c) displacements in CDW phase

Ti

Se

FIG. 1. (a) and (b): top and side schematic views of crystal
structure of monolayer TiSe2 in the high-T phase on a 2× 2
cell. (c): top view of the atomic displacements of the low-T
phase (i.e., the CDW phase) with respect to the high-T phase.
Blue and green balls represent Ti and Se atoms, respectively.

harmonicity of other transition metal dichalcogenides
[28, 29]. In particular, by including the exchange in-
teraction via semi-local and hybrid functionals [30], we
determine the CDW transition and demonstrate that its
melting is determined by the combined effect of phonon-
phonon scattering and electron doping and not by an
excitonic mechanism.

ARPES measurements show that the high-T phase of
single-layer TiSe2 is a weakly n-doped semiconductor [18,
19, 31] with a 0.098 eV indirect band gap between the
Γ (i.e., derived from Se 4pxy states) and M (i.e., derived
from Ti 3d states) points in the Brillion zone (BZ). In Fig.
2 (a) the calculated electronic band structures in both
PBE and HSE06 approximations are presented. PBE
predicts a metallic state with a negative band gap of
−0.45 eV between the Γ and M points in BZ, in good
agreement with previous calculations [23, 32, 33] but in
disagreement with ARPES. The HSE06 yields a positive
band gap of 0.092 eV, in perfect agreement with ARPES.

The PBE and HSE06 harmonic phonon dispersion are
very similar, despite a different electronic structure, as
shown in Fig. 2 (b). The A1u mode at the M point
is strongly unstable (imaginary phonon frequencies are
represented as negative values in all dispersion plots),
indicating formation of a 2 × 2 superstructure. The two
functionals lead to ≈ 20 cm−1 (i.e., 12%) difference in the
A1u imaginary phonon frequency. Other modes at higher
energy suffer of a somewhat stronger renormalization. In
order to understand if the effect of exchange on the CDW
is small, we also calculate the energy gain with respect to
the displacement of Ti atoms corresponding to the CDW
pattern (see Fig. 1) using the experimental ratio δTi/δSe
= 3 [20, 34], as shown in the inset of Fig. 2 (b). Again,
the two approximations yield a similar minimum indicat-
ing a similar CDW instability, which eventually confirms
the negligible effect of electron-hole exchange in the soft-
mode harmonic phonon bands. Interestingly, also the
position of the energy minimum versus δTi is practically
the same, indicative of an akin CDW structure. Note
that in bulk TiSe2, the energy gain for a distortion hav-
ing modulation q = ΓL in HSE06 is approximately three

times larger than the PBE one [8] and the minimum oc-
curs at substantially larger δTi in HSE06 than in PBE.

This puzzling difference between bulk and single layer
can be understood by noting that in the former the strong
electron-hole interaction is between the 4pxy occupied
states at zone center and some of the empty Ti 3d states
at the L point. In the bulk, for a distortion having pe-
riodicity q = ΓM (i.e., all the TiSe2 layers distort in
phase), and coupling the Brillouin zone regions around
the A point with those around the L point, the energy
gain by the distortion is reversed with respect to the case
of a distortion having modulation q = ΓL, namely the
PBE energy gain is much larger than the HSE06 one
[22]. Thus, in the bulk, the exchange interaction effects
depend crucially on the modulation of the distortion and
on the electronic states involved. In the single layer, the
electronic structure of the high-T phase along ΓM is very
similar to the one of the undistorted bulk along the A-
L line, with Γ and M in the single layer corresponding
A and L in the bulk. For this reason, the effect of the
exchange interaction on the phonon dispersion is much
weaker for a q = ΓM modulation in the single layer than
for the case of a q = ΓL distortion on the bulk. On top of
that, other effects contribute to the different energy gain
by the q = ΓM distortion in bulk and single layer, such
as the weak but non-negligible band dispersion along kz

close to the A and L high symmetry points in the bulk
and the slightly different fillings of the Ti d-band at L
in the bulk and M in the single layer. This explains
why in single layer the effects of exchange on the charge
density wave distortion are negligible and demonstrates
how simple arguments based on isotropic coulomb inter-
actions [1–4, 21] do not apply easily in layered materials
with weak interlayer binding, such as TiSe2.

Even if the two functionals give practically identical
energy versus displacement profiles, this is not enough
to conclude that the exchange interaction is irrelevant
for the soft mode at the anharmonic level. For this pur-
pose, we calculate the phonon dispersion including non-
perturbative anharmonic effects within the SSCHA us-
ing both HSE06 and PBE as force engines. Namely, we
evaluate the temperature dependent dynamical matrix

D = M− 1
2

∂2F
∂R∂R

∣∣∣
Req

M− 1
2 where M is the matrix of the

ionic masses Ma with Mab = δabMa within the SSCHA.
The free energy curvature with respect to the vector of
the centroid positions R reads [25]:

∂2F

∂R∂R = Φ +
(3)

ΦΛ(0)
(3)

Φ +
(3)

ΦΛ(0)ΘΛ(0)
(3)

Φ , (1)

where Φ represents the SSCHA force constant,
(3)

ΦΛ(0)
(3)

Φ is the so-called “static bubble term”, and
(3)

ΦΛ(0)ΘΛ(0)
(3)

Φ contains the higher order terms. Here
(n)

Φ refers to the n-th order anharmonic force constants
averaged over the density matrix of the SSCHA hamil-
tonian (see Ref. [25] for more details on notation). All
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FIG. 2. (a) Electronic bands from PBE and HSE06 approximations. (b) The harmonic phonon bands calculated on a 4 × 4
supercell and the energy gain as a function of δTi where ∆E is the energy difference per 2×2 cell. (c) The anharmonic phonon
dispersion on a 4× 4 supercell at 0 and 100 Kelvin from PBE and HSE06 force engines. PBE and HES06 results are obtained
from QUANTUM ESPRESSO and CRYSTAL, respectively.

these quantities can indeed be recasted as appropriate
stochastic averages over the atomic forces. As the HSE06
calculation is computationally expensive, we perform the
calculation on a 4 × 4 supercell (i.e., 48 atoms). Even if
this supercell size is not completely converged and TCDW

is underestimated, as it will be shown later, it is clear
from Fig. 2 (c) that PBE and HSE06 yield practically
the same low energy dispersion around the M point even
with full inclusion of anharmonicity. Moreover, the tem-
perature dependence of the soft mode is also very similar,
indicative of a practically identical TCDW (i.e., identi-
fied as the point where the energy of the soft phonon
at M crosses zero) for the two functionals on the 4 × 4
cell. Other phonon modes, particularly around zone cen-
ter, suffer of a somewhat stronger renormalization by ex-
change (analogous to the harmonic case), however, as we
are mainly interested in the CDW transition, we can stick
to the PBE functional and proceed with calculations on
larger supercells (see [22] for additional technical details
and the magnitude of the different terms in Eq. (1)).

The anharmonic phonon spectrum obtained by evalu-
ating Eq. (1) on a 8 × 8 supercell (i.e., 192 atoms) for
several temperatures is shown in Fig. 3. As it can be
seen, the harmonic phonon frequency of the lowest en-
ergy mode at M is ωA1u ≈ −135 cm−1, while at 300K
the anharmonic phonon frequency of the same mode is
≈ −26 cm−1. Thus, already at room temperature, the
anharmonic correction is of the same order of the har-
monic phonon frequency. Between 400 and 500K, this
phonon mode becomes positive, compatible with a CDW
transition within this temperature range. Note that this
transition temperature differs substantially with respect
to the one on a 4 × 4 supercell which reflects the impor-
tance of cell size. To better illustrate this point, in the
inset of Fig. 3 we show the convergence of the soft mode
phonon frequency as a function of the cell size at 300K.
The A1u phonon frequency at M is fully converged on the
8 × 8 cell [22]. We can then obtain TCDW≈ 440K for a
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FIG. 3. Harmonic and anharmonic phonon dispersion on a
8× 8 supercell. Inset: the convergence of the lowest phonon
frequency at the M point ωA1u with respect to the size of the
cell at 300K. The results of the cell larger than 8 × 8 come
from the interpolation method detailed in [22].

suspended and undoped monolayer TiSe2.

Our calculated TCDW from first-principles SSCHA is
1.6-2.0 times higher than the measured one (depending
on the substrate [14–16, 35]). However, our calculation is
for an undoped isolated monolayer, the measured samples
are instead supported by the substrate and substantially
n-doped. In order to understand the origin of this dis-
crepancy, we investigate the effect of electron-doping to
see if it can be responsible for the decrease in TCDW. To
this end, we first determine the electron doping amount
by performing HSE06 n-doped electronic structure calcu-
lations by changing the number of valence electrons and
adding a compensating jellium (i.e., the virtual crystal
approximation (VCA)) until the bands agree well with
the ARPES spectra [19] (see [22] for details). With this
electron density (i.e., 4.6×1013 cm−2 indicative of a sub-
stantial doping), we then perform a PBE linear response
harmonic calculation to obtain the harmonic phonon dis-
persion shown in Fig. 4. It turns out that the harmonic
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phonon dispersion (and consequently the effects of the
electron-phonon interaction) are doping independent at
this level of doping (by comparing the two black dot-
ted curves in Figs. 3 and 4), consistent with an earlier
study [23]. However, when anharmonicity is included, the
electron-doping substantially suppresses the CDW insta-
bility as illustrated in Fig. 4 leading to TCDW≈ 364K for
a suspended TiSe2 monolayer, close to the experimental
data of 280K on insulating MoS2 substrate [14].

In conclusion, we study anharmonic effects in a free-
standing TiSe2 monolayer within the stochastic self-
consistent harmonic approximation. We have shown that
the electron-hole exchange plays only a marginal role on
the vibrational properties of its high-T phase, at odds
with its bulk counterpart where the exchange interac-
tion is crucial. We showed that the weakening of the
electron-hole interaction in single layer is related to the
different periodicity of the modulation with respect to
the bulk and the fact that it couples different states in
the electronic structure. Our results upturns the conven-
tional wisdom that the electron-hole interaction should
be stronger in low dimension due to an increase in bind-
ing energy [1–4, 21], mainly because of the strong mo-
mentum dependence of the electron-hole interaction and
the complex multiband nature of the electronic structure
in TiSe2. It also underlines that simple qualitative ar-
guments based on the exciton binding energy and its de-
pendence on the effective mass and on the screening (see
Eq. (1) in Ref. [1]) do not easily apply since they are
unable to explain the occurrence of charge density waves
and the temperature dependence of phonon spectra when
reducing the dimensionality.

By studying the temperature dependence of the A1u

soft mode at the M point, we find the TCDW of an
isolated and undoped single-layer to be ≈ 440K, while
TCDW≈ 364K for an electron-doping n = 4.6 × 1013

cm−2, close to the experimental value for supported sam-
ple. Thus, TCDW is strongly doping dependent when in-
cluding anharmonicity, an effect completely absent at the
harmonic level as harmonic spectra are weakly doping

dependent. Our work establishes phonon-phonon scat-
tering and the density of carriers in the conduction band
as the two mechanisms determining the melting of CDW
in a single-layer TiSe2.
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ABSTRACT: Photophysical and photochemical processes are often dominated by
molecular vibrations in various electronic states. Dissecting the corresponding, often
overlapping, spectroscopic signals from different electronic states is a challenge
hampering their interpretation. Here we address impulsive stimulated Raman
spectroscopy (ISRS), a powerful technique able to coherently stimulate and record
Raman-active modes using broadband pulses. Using a quantum-mechanical treatment of
the ISRS process, we show the mode-specific way the various spectral components of the
broadband probe contribute to the signal generated at a given wavelength. We
experimentally demonstrate how to manipulate the signal by varying the probe chirp and
the phase-matching across the sample, thereby affecting the relative phase between the
various contributions to the signal. These novel control knobs allow us to selectively
enhance desired vibrational features and distinguish spectral components arising from
different excited states.

Ultrafast spectroscopy aims to study nonequilibrium
atomic and molecular dynamics in the gas phase or

the condensed phase on the femtosecond time scale.1 This is
most simply achieved by the pump−probe technique: an
actinic pump beam prepares the sample in a nonstationary
superposition state, while the transmission of a delayed probe
subsequently reveals the state of the system at a given instant
following photoexcitation. Ultrafast spectroscopy has wit-
nessed a significant growth during the last two decades thanks
to the development of temporal compression techniques, able
to synthesize optical pulses with a few femtosecond duration
and Fourier-transform-limited bandwidth.2 This is a key tool
for several spectroscopic approaches based on multiple pulses
sequences, such as impulsive stimulated Raman spectroscopy
(ISRS).3−5

The ISRS experiment exploits a time-domain probe protocol
consisting of two temporally separated laser fields, the Raman
and the probe pulses, to stimulate and read out vibrational
coherences on a given electronic state, respectively. Con-
sequently, it is not hampered by the background signals
induced by the temporal overlap of multiple pulses,
commonly affecting other kinds of ultrafast experiments.6,7

The ISRS signal records the changes in the transmitted probe
pulse as a function of its temporal delay with respect to the
Raman pulse, T, and its wavelength λs, thereby resulting in a
2D signal. Fourier transforming over T recovers the

spontaneous Raman spectrum. The heterodyne detection of
ISRS spectra, engraved onto the highly directional probe field,
suppresses fluorescence and other incoherent processes. The
addition of a photochemical actinic pump allows for mapping
out vibrational dynamics, triggering the system photoreaction
with high temporal resolution.8

The power of ISRS has been recently demonstrated by
investigating prototypical cases of photoinduced dynamics in
Bacteriorhodopsin,9 intermolecular vibrational motions in
liquid CS2,

10 isomerization of Channelrhodopsins,11 and the
excited-state proton transfer of green fluorescent protein.12

The ISRS probing process is, in general, affected by
concurring vibrational coherences from both the ground and
excited states, and discerning the two is a most challenging
task. Much effort has been made in this direction.6 Strategies
to identify the electronic state hosting a vibrational coherence
at its generation have been proposed based on temporal
dispersion by introducing a chirped resonant pump pulse.13−15

Furthermore, ISRS extension to study the presence of
electronic coherences in the X-ray domain16,17 has been
theoretically demonstrated.
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Here we study a three-beam experimental ISRS config-
uration. We start by a photoexcitation using a resonant actinic
pulse (AP), followed by an ISRS detection, which combines
an off-resonant Raman pulse (RP) and, critically, a properly
shaped, chirped, broadband white-light continuum (WLC)
probe. This allows us to unveil the undetermined population
states following the photoreaction process triggered by the
AP. Keeping the Raman pulse electronically off-resonant
guarantees that the vibrational coherence is solely generated
in the electronic state manifold involved in the photoreaction
process, preventing contributions arising from additional
electronic resonances. Moreover, taking advantage of a
chirped WLC probe pulse provides access to the higher
frequency region of the Raman spectrum (compared with a
noncollinear optical parametric amplifier-based probe) without
compromising the temporal resolution.18 Last, but not least,
introducing nonresonant chirped WLC, we demonstrate
mode-selective enhancement of the ISRS signal.
We theoretically describe ISRS signals and their variation

with the scattering geometry, elucidating the role of the
phase-matching condition and the effect of a strongly chirped
probe pulse. The response of the system is derived using a
perturbative framework based on the diagrammatic expansion
of the density matrix,19,20 which allows us to take into account
individually all of the nonlinear processes underlying the ISRS
signal. Finally, we demonstrate how chirping and phase
matching can be used to disentangle ground state from
excited-state vibrational coherences.
The interpretation of broadband ISRS spectra is not easy,

even in the apparently simple case of nonresonant probe
pulses and in the absence of AP excitation reported in Figure
1. Here we show a broadband ISRS experiment, performed in
a common solvent, liquid cyclohexane (C6H12). The ISRS
signal intensity as a function of the probe wavelength,
measured with an off-resonant Raman pulse, clearly reveals a
different behavior of various vibrational ground-state modes.

The 384 cm−1 mode has the maximum of its intensity around
the center of the probe λs = 555 nm, while the 800 cm−1

mode shows a minimum in the same wavelength region. The
behavior of the 800 cm−1 mode is well described by previous
theoretical descriptions based on classical or semiclassical
approaches,5,21,22 which predict a bilobed profile in the probe-
wavelength resolved 2D maps across each vibrational mode.
In the time domain, this corresponds to an amplitude
modulation of the probe pulse at the stimulated vibrational
frequencies, which vanishes at the spectral maximum. Notably,
the red and blue spectral wings oscillate with an opposite
phase. However, the 384 cm−1 mode signal in Figure 1
behaves differently, suggesting a more complex underlying
process. To understand these differences, we derive the ISRS
spectral response, taking into account probe chirp and finite
sample size effects, within a quantum perturbation theory
framework.
In the dipole approximation,23 the ISRS process is

described by the dipole Power−Zienau24 radiation−matter
interaction Hamiltonian HI = μ⃗·E⃗, where μ⃗ and E⃗ are the
dipole and the local electric field operators. E⃗ can be
separated into creation and annihilation operators

∑⃗ = ϵ̂ ⃗ + ⃗
α

α
†E r t r t[ ( , ) ( , )]

j
j j

, (1)

where ϵα̂ and j run over the polarization and mode of the
fields, respectively. The ISRS heterodyne-detected signal can
be defined as the derivative of the mean number of photons
Ns in mode s of the probe pulse25,26

∫= ⟨ ⟩
′ ′ = ℏ ⟨ + − ⟩

−∞
+∞ † †S

N
t

t
i

V V
d

d
d ( )( )s

s s (2)

where V and V† represent the molecule excitation lowering
and raising operators (see Methods).
We consider here the ISRS pulse sequence shown in Figure

2a. The actinic pulse promotes the system into an electronic

Figure 1. 2D broadband ISRS spectrum of cyclohexane as a function of the probe wavelength and the Raman frequency. The intensity of the 800
cm−1 mode exhibits a minimum in correspondence of the maximum probe intensity (reported in the right panel as green shaded area), with two
maxima on the red and the blue sides of the probe central wavelength. The 384 cm−1 mode shows an opposite behavior, with the maximum in
the center position. The top panel shows the marginal spectrum obtained by integrating over all probe wavelengths. The amplitude of the 384
and 800 cm−1 modes as a function of the probe wavelength is reported in the right panel (red and blue lines, respectively).
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excited state, which can only relax (before the Raman pulse
arrival time) down to the ground g or to the electronically
excited state e, depending on its relaxation dynamics
(indicated by the gray boxes in Figure 2b). At this point,
the system could be vibrationally excited, as it happens in the
presence of hot vibrational populations27,28 or time-dependent
frequencies along reaction coordinates.29,30 However, for the
sake of simplicity, we will consider in the following
vibrationally relaxed cases. Accordingly, we will not include
the actinic excitation pulse explicitly in the calculation, rather
considering a molecular system characterized by three

electronic levels g, e, and f and a single (common) vibrational
mode (see Figure 2a). In this case, the ISRS signal is
described by the six α−ζ diagrams in Figure 2b. The above
possible extensions can be handled by evaluating additional
diagrams originating from hot electronic states, weighted by
the instantaneous thermal population, or by accounting for
delay-dependent Green functions in eq 3.
Using the Heisenberg equation to calculate the derivative in

eq 2,20,31 the ISRS signal can be read out from the diagrams
in Figure 2b

∫ ∫ ∫ω
μ μ

ω ω ω ω ω ω ω δ ω ω ω ω

ω ω ω ω ω ω ρ

ω ω ω ω ω ω ρ

ω ω ω ω ω ω ρ

ω ω ω ω ω ω ρ

ω ω ω ω ω ω ρ

ω ω ω ω ω ω ρ

= ℏ ℑ ̃* ̃ ̃ ̃* − + −

+ − − −
+ − + −
− + − − −
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+ − + −

−∞
∞
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1
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(3)

where Gij(ω)= (ω−ωij+iη)
−1 is the matrix element of the

frequency domain Green’s function, η a positive infinitesimal

Figure 2. (a) ISRS experiment geometry and temporal envelopes of the laser fields are represented. Energy ladder scheme involved in the ISRS
optical transitions is also indicated. We consider three electronic states g (ground), e, and f (excited); g1 and e1 are the corresponding vibrationally
excited states. (b) Feynman diagrams for the ISRS process. Upon resonant actinic pump excitation, the system may evolve, ending up in an
unknown population state (either the ground g or the electronically excited e) depending on the specific relaxation pathway (gray boxes). Dashed
boxes represent the two ISRS signals surviving in the absence of actinic photoexcitation.
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that ensures causality, and ρee (ρgg) is the density matrix in the
excited (ground) electronic state at the Raman pulse arrival
time after the preparation process.
Calculating the matter correlation functions, taking into

account for the finite sample length in a pencil shaped sample
aligned with the probe pulse direction, as shown in the
Methods section, eq 3 is recast as

∫∑ω
μ μ

ω ω

ω ω ω ω ω ω

ω ω ω ω

ω ω ω

= ℏ ℑ

̃* ̃ ̃ + − ̃*
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(4)

where ωs is the detected probe frequency, ℑ z( ) indicates the

imaginary part of z, ̃Ei stands for the spectral envelope of the i
pulse, and ω̃ij = ωi − ωj − iγij, where γij is the dephasing rate
of the vibrational coherence between i and j. Pj(−T) indicates
the population in the excited electronic state for diagrams j =
α − δ and in the ground state for diagrams j = ϵ − ζ at the
arrival time (−T) of the Raman pulse. The correlation
functions Fj(ωs,ω1,ω2) contain the matter response, and
Δk(ω1,ω2) indicates the phase-matching condition for the
six diagrams. Both are given in the Methods section, as well as
the details of eq 4 derivation.25

We define the 2D signal S(Ω,ωs) as

∫ω ωΩ =
−∞

∞ ΩS T S T( , ) d e ( , )s
i T

s (5)

In the following, we show experimental and simulated signals

as a function of the wavelength λ = π
ωs
2

s
, instead of the angular

frequency ωs, to be consistent with the previous literature.12,32

To interpret the experimental results reported in Figure 1,
eq 3 needs to be evaluated without the effect of the actinic
photoexcitation and for off-resonant Raman and probe pulses.
This is done by retaining the last two terms corresponding to
the third-order processes indicated in the dashed boxes of the
ϵ−ζ diagrams in Figure 2b. Because the pulses wavelengths
are far from any electronic transition, the rotating wave
approximation (RWA) cannot be made and, in principle, six
additional diagrams should be taken into account. However,
as shown in the Supporting Information, they generate signals
that are identical to those from ϵ and ζ diagrams.
At first, we neglect the dispersion in the sample and the

chirp on the probe pulse and consider a collinear pulse
geometry. Thus setting Δk = 0 in eq 4, we obtain the 2D
signal shown in Figure 3. The two contributions oscillate with
an opposite phase, in agreement with predictions of previous
models.22

More generally, because of the finite sample length, the
phase-matching condition can significantly influence the signal
due to wave vector dispersion. For Δk ≠ 0, it is possible to
integrate eq 4 analytically for Lorentzian pulse envelopes (see
the Supporting Information). This offers a test for the
numerical integration in the case of general envelopes. A
numerical integration of eq 5, performed using transform
limited Gaussian envelopes, with λWLC = 540 nm, ΔλWLC =
100 nm, λRP = 545 nm, and ΔλRP = 60 nm in a noncollinear
geometry (with an angle θ = 4° between the Raman pulse and
the WLC), is reported Figure 4a,b.

Figure 3. Simulation of the nonresonant third-order ISRS response (eq 4) for Δk(ω1, ω2) = 0 in the absence of actinic photoexcitation. Central
panel: 2D map of S(T, λs) and S(Ω, λs). The two energy ladder diagrams that describe the process, corresponding to the boxed section of the
ϵ−ζ Feynman diagrams in Figure 2b, are shown. The signal arises from the interference of these two pathways that generate time oscillations
with opposite phases and cancel out in the central region of the spectrum, resulting in a bilobed profile along λs for each vibrational mode.
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In Figure 4a, we assume a nondispersive medium, with a
dispersion curve n(λ) constant over all wavelengths. The
Δk(ω1,ω2) term in eq 4 carries a wavelength-independent
phase factor, which modulates the ISRS intensity over L but
does not affect the spectral shape of the signal. In Figure 4b,
the experimental dispersion curve of the cyclohexane33 has
been used to calculate the Δk(ω1,ω2) function in eq 21. In
this case, the spectral shape of the signal is affected by the
group velocity dispersion (GVD), which acts asymmetrically
for the two pathways ϵ and ζ that generate the signal. Because
the phase mismatch is different for the two diagrams, they
yield different amplitudes, resulting in the asymmetric double
peak profile in Figure 4b. The presence of a phase factor
between the two interfering diagrams also prevents a total
cancellation of the ISRS signal around the central wavelength
of the probe.
The GVD further induces a temporal broadening of the

Raman and probe pulses, while propagating along the sample.
When the duration of the Raman pulse is longer than the

vibrational mode period ( = π
ω

Te e
2

e e1
1
) the signal cannot be

coherently generated. Hence, for sample size greater than a
critical length (Lc, usually few millimeters), the signal reaches

a stationary intensity. Lc depends on the Raman pulse initial
duration, on the beam relative angle, on the vibrational mode
frequency and on the sample group velocity dispersion.
Notably, the suppression of the ISRS signal for L > Lc, as
soon as the Raman pulse is temporal profile is stretched to a
duration longer than Te1e, also sets an upper limit for the
temporal resolution in ISRS-based pump−probe experiments.
This is a useful advantage over other kinds of ultrafast
measurements, where the temporal broadening of the pulses
diminishes the temporal resolution.
Our results may be used to rationalize the experimental

results reported by Kukura et. al,3 who reported the ISRS
spectral dependence on the sample size. They had pointed
out that the intensity normalized by the number of molecules
decreases as the sample length increases as a result of the
combination between GVD and group velocity mismatch
(GVM) between the Raman and the probe pulse. The
intensity decrease with L can be also explained in the absence
of these two phenomena (Figure 4a): the signal varies with
the length of the sample in a sinusoidal fashion, while the
number of molecules grows linearly. This would imply signal
attenuation independent of the wavelength. Instead, Kukura et
al. observed that the signal blue side is suppressed strongly:

Figure 4. S(Ω = 800 cm−1, λs), from eq 5, as a function of the sample length L and the probe chirp, for nonresonant ISRS in absence of actinic
photoexcitation. In panel a, the sample is considered as a nondispersive medium (all spectral components propagate with the same velocity), and
the phase-matching condition is ruled only by the relative angle between the Raman and probe pulses (θ = 4°). Under this regime, the phase
mismatch produces a wavelength-independent phase factor, periodically modulating the signal in L. In panel b, the dispersion curve of
cyclohexane has been taken into account. While propagating in the sample, the Raman pulse undergoes a temporal broadening due to the group
velocity dispersion; this reflects in a critical length beyond which the Raman pulse is longer than the vibrational mode period and the signal is no
more generated, breaking the periodicity over L. Panels c and d depict the signal dependence on the probe chirp for two different vibrational
modes. The experimental data (dashed lines in the plots) are overlapped with the theoretical simulations (solid lines) for two different values of
the probe chirp, indicated by the dashed horizontal lines in the colormaps. The red features correspond to those presented in Figure 1.
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this can be explained as an effect of GVD that suppresses the
blue-side peak (Figure 4b).
Remarkably, while the sample geometry and the GVD can

significantly modulate the signal shape, because the two
diagrams interfere destructively, they cannot generate single-
lobe profiles centered around the maximum of the probe,
such as reported in Figure 1.
The effect of a linear chirp of the probe can be taken into

account in eq 4 by introducing a chirp (C) dependence in the
probe electric field envelope

ω ω̃ = ̃ ω ω−E C E( , ) ( )es s
iC( )0

2

(6)

where the leading frequency is indicated as ω0 and

ω̃ =
σ π

ω ω σ− −E ( ) es
1
2

( ) /2
s

s0
2 2

is the Gaussian envelope of the

electric probe field (centered in ω0).
As shown in Figure 4c,d, chirping the probe pulse strongly

affects the spectral shape of the signal because it modifies the
relative phase between the two Feynman diagrams ϵ and ζ.
The 2D maps report the intensity of the 800 and 384 cm−1

modes of cyclohexane as a function of C and λs. On the top
of Figure 4c,d, the experimental results (continuous lines) for
two different chirped probe pulses are compared with the
simulations (dashed lines), showing a good agreement.
Modifying the chirp enables us to reshape and enhance the
signal profile, in particular, switching from a bilobed to a
monolobed dependence over the probe wavelength, as shown
for the 800 cm−1 mode (red and green lines in of Figure 4c).
This peculiar behavior can be easily interpreted. The ISRS
signal is generated by the linear superposition of two Liouville
pathways, represented by the Feynman diagrams ϵ and ζ in
Figure 2b. Each diagram involves a different frequency
component of the probe, which is shifted (with respect to

the probed one) by the vibrational mode revealed by the
signal. Consequently, on the tails of the probe spectrum, only
one diagram dominates, the one generated by a frequency in
which the probe is more intense. At the center of the probe
spectrum, the two diagrams are in counter-phase and they
cancel out. However, chirping the probe introduces a phase
difference between the two contributions generating the
signal. This means that there are some periodic values of the
chirp in which the two diagrams constructively interfere,
leading to a strong signal enhancement. Because the relative
phase between the processes generating the ISRS response
introduced by the WLC chirp depends quadratically on the
observed vibrational frequency, the 384 cm−1 mode is much
more weakly dependent on the probe chirp than the 800
cm−1, as shown in Figure 4b,c. A small WLC chirp (50 fs2)
causes a relative phase between diagram ϵ−ζ for the 384 cm−1

Raman mode, making the two components no longer
opposite in phase and turning the bilobed shape into a
(much more intense) monolobed one. This behavior survives
even for much higher values of chirp (>400 fs2), resulting in a
monolobed profile for all explored chirp values. Only a higher
value of C (∼500 fs2) would generate the bilobed profile, with
destructive interference between ϵ and ζ.
Introducing a chirp on the probe pulse can be used to

enhance specific vibrational modes and, most importantly, to
separate contributions involving different potential energy
surfaces upon resonant actinic excitation. Under such
circumstances, the contributions from the two additional
diagrams α−β in Figure 2b should be included in the ISRS
response. Notably, the corresponding additional signals are
identical to diagrams ϵ−ζ and therefore do not allow us to
discriminate between processes involving ground or excited
states. This goal can be achieved by a resonant probe, which

Figure 5. (a) S(Ω = 800 cm−1, λs, C) ISRS signal intensity from eqs 5 and 6 for a 800 cm−1 vibrational mode as a function of the probed
wavelength and the probe chirp, C, for the processes starting from the ground state |g⟩⟨g| (top panel and ϵ−ζ diagrams) and the excited state |
e⟩⟨e| (bottom panel and α−β−γ−δ diagrams). The probe is tuned in resonance with all electronic transitions involved in the six diagrams. The
shape of the signal is stretched along the chirp direction for vibrational coherences generated in the electronic excited state due to the destructive
interference between α−γ and β−δ pathways. (b) Signal intensity as a function of C at selected probe wavelengths. The wavelength-dependent
phase of Raman mode amplitude enables us to distinguish between the electronic levels in which the vibrational coherence is generated.
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has two consequences: (i) the signals corresponding to α−β
and ϵ−ζ are no longer the same and (ii) two additional
diagrams (γ−δ) arise.
We now apply the proposed chirped probe scheme to the

more challenging case of overlapping electronic resonances,
where the resonance condition occurs in the same probe
wavelength region, and hence the broadband nature of the
probe could not be directly exploited to discriminate the
involved electronic transition. The vibrational and electronic
energy levels considered are shown in the diagram of Figure
2a, together with the pulse scheme used in the proposed
experiment. In Figure 5, we show the corresponding ISRS
response for a 800 cm−1 Raman mode, reproducing the
vibrational peak amplitude as a function of the probe chirp C
and wavelength λs. In the top panel of Figure 5a, only
diagrams ϵ−ζ for a system prepared in the electronic ground
state are switched on, while in the bottom panel, the 2D
signal is calculated for diagrams α−δ, where only the states
prepared in the excited electronic state |e⟩⟨e| are interrogated
by the ISRS process. As emphasized by the slices for fixed
probed wavelength shown in Figure 5b, the specific involved
electronic resonance introduces a wavelength-dependent phase
shift on the chirp axis between the ISRS signal generated by a
system prepared in the ground state and one in the excited
state, as can be seen in eqs 15−20. Such a resonance-specific
phase-factor can be conveniently sampled, taking advantage of
the broadband nature of the probe pulse, which ensures us to
access spectral regions strongly sensitive to the involved
electronic level. This establishes a novel method to assign
vibrational features to specific electronic states.
In summary, we have investigated the role of phase

matching and probe chirp conditions in an ISRS experiment,
through a diagrammatic treatment of the signal generation,
enabling us to dissect the pathways that generate the
nonlinear response and to rationalize the spectral dependence
on the probe wavelength.
The ISRS signal, for a given detected wavelength, indeed

results from the sum of concurring and distinct third-order
processes, associated with photons, which are red- and blue-
shifted by one vibrational quantum. This gives rise to
contributions oscillating as a function of the time delay
between the Raman and probe pulses.
In off-resonant ISRS with unchirped pulse, the two

oscillations interfere destructively, explaining the strong signal
suppression that can be observed in the central part of the
spectrum. This explains why the weak Raman bands are often
buried in the noise.
Our results suggest that an optimal probe chirping profile

can be used to selectively enhance specific vibrational modes
and are relevant for signal analysis improvement. The
identification of the signal dependence on the probe
wavelength for each mode indeed allows us to perform the
correct weighted average over the entire probe spectrum,
improving the signal-to-noise ratio.
Furthermore, our results establish a way to assign a given

vibrational dynamics to the relevant potential energy surface:
fine-tuning the relative phase between the processes
contributing to the signal generation represents a powerful
control knob to assign spectral features to specific electronic
states, allowing for discerning excited from ground-state
vibrational coherences.

■ METHODS
The μ⃗ and E⃗ terms in the interaction Hamiltonian indicate
the dipole and the local electric field operators and can be
expressed as

∑ ∑μ μ μ⃗ = ⃗ | ⟩⟨ | ⃗ = ⟨ | ⃗ | ⟩
α

α
≠

i j i e r j
i j i j

ij ij
, , (7)

Here |i⟩ indicates an eigenvector of the non interactive matter
Hamiltonian and α is an index that runs over the atom
positions.
The positive ( j) and negative ( †

j) frequency components
of the electric field can be expressed as
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where j is the single mode of the electromagnetic radiation.
The time derivative of the number of photons in eq 2 has

been computed using the Ehrenfest theorem,20,31 and V is the
molecular dipole transition operator

∑ μ μ= | ⟩⟨ | + =
>

†V i j V V
i j j i

ij
, , (9)

We dropped the vectorial notation absorbing the thermody-
namic average of the scalar product between the electric field
polarization vector and the dipole in the symbol μ.
Considering an homogeneous 1D sample, the dipole

operator is uniform

μ μθ θ= −z z L z( ) ( ) ( ) (10)

where θ(z) is the Heaviside function. The coherent laser light
state is an eigenvector of the electric field operator

∑ | ⟩ = ⃗ | ⟩E E t r T E( , , )
j

j
(11)

Restricting along the z direction

∫ ω ω⃗ = ̃ ω

−∞
∞ − + ϑE t r T k E k T( , , ) d d ( , , )e i t ikz cos

(12)

Here ϑ is the angle between the chosen beam and the sample
direction. The plane wave hypothesis leads to19

ω ω δ ω̃ = ̃ −E k T E T k k( , , ) ( , ) [ ( )] (13)

where k(ω) contains the dispersion of the sample

ω ω ω=k
c

n( ) ( )
(14)

where n is the refractive index for the given frequency.
The density matrix formalism can be used to obtain the

average in eq 2, through the relation ⟨O⟩ = Tr[Oρ(t)], which
holds for a generic operator O; here the time evolution of the
density matrix ρ(t) can be evaluated by the perturbative
expansion of the Liouville equation. The correlation functions
Fj(ωs,ω1,ω2) in eq 4 are given by

ω ω ω
ω ω ω ω ω ω ω

= − ̃ + ̃ − + ̃αF ( , , )
1

( )( )( )s
s fe ef ee

1 2
1 1 21 1

(15)
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and the Δk ⃗ (ω1, ω2) phase mismatch is

ω ω ω ω ω ω ω ωΔ⎯→⎯ = − ⃗ + ⃗ + ⃗ + − − ⃗k k k k k( , ) ( ) ( ) ( ) ( )a a s s s s1 2 1 2 1 2

(21)

The couples of eqs 15 and 16, 17 and 18, and 19 and 20
enlighten the fact that the resonance conditions for these
diagrams, containing two distinct correlation functions, are
different. In fact, considering, for example, eqs 15 and 16, the
difference between ω2 and ω1 that maximizes the signal is,
respectively, ωee1 and ωe1e. Remarkably, this leads to two
different phase-matching condition in eq 21 for the two
processes.
Moreover, the presence of different maximum conditions

for these two diagrams (ω1−ω2 = ωee1 and ω2−ω1 = ωe1e →

ω1−ω2 = −ωee1) rationalizes the π phase shift between the
two pathways. In fact, in the off resonant regime, the
imaginary parts of the denominator can be neglected, and
hence the dominant contributions to the integrals in eq 4 are
∝ eiωee1 T and ∝ e−iωee1 T, whose imaginary parts (sin[ωee1 T]

and sin[−ωee1 T]) oscillate with opposite phase.
Notably, when the probe wavelength is tuned to match the

e → f electronic transition energy, the real part of the first
denominators in eqs 15 and 16 cancels out, leaving an
imaginary term proportional to the vibrational dephasing time.
Hence, under resonant conditions, the leading contributions
to the integral are ∝ i·eiωee1 T and ∝ i·e−iωee1 T, whose imaginary
parts (cos[ωee1 T] and cos[−ωee1 T]) oscillate in phase. The
analytic derivation of the phase relation between the Liouville
pathways for Lorentzian pulse envelopes is reported in the
Supporting Information.
The experimental setup exploited for the measurements on

cyclohexane is based on a Ti:sapphire laser source that
generates 3.6 mJ, 35 fs pulses at 800 nm and 1 kHz repetition
rate. The Raman pulse is synthesized by a noncollinear optical
parametric amplifier (NOPA) that produces tunable visible
pulses in the range (500−700 nm) and compressed using
chirped mirrors to ∼10 fs. The time interval between the
Raman and probe pulses is settled by a computer-controlled
delay line on the Raman pulse optical path. The WLC probe
pulse is synthesized, focusing part of the source pulse on a
nonlinear medium plate. The shape of the spectral envelope

can be varied by changing the parameters of super continuum
generation inside the nonlinear crystal, such as the pump
power and the material used for the WLC generation. The
time duration of the Raman pulse is measured by second-
harmonic noncollinear autocorrelation, while the probe chirp
can be estimated from the relative delay of the onset of
oscillations at different probe wavelengths. Notably, as shown
in the Supporting Information, a more accurate character-
ization of the chirp can be extracted using as a reference the
coherent artifact between the two beams
A synchronized chopper blocks alternating Raman pulses to

record the modification induced to transmitted WLC probe,
which is frequency-dispersed by a spectrometer onto a CCD
device. The Raman spectrum is obtained from the detected
oscillating temporal signal using fast Fourier transform (FFT)
algorithm. Zero padding algorithm and specific spectral
Kaiser−Bessel windowing are exploited to enhance the
spectral definition.3,34
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Preserving biodiversity and ecosystem stability is a challenge that can be pursued through modern statistical
mechanics modeling. Here we introduce a variational maximum entropy-based algorithm to evaluate the entropy
of a minimal ecosystem on a lattice in which two species struggle for survival. The method quantitatively
reproduces the scale-free law of the prey shoals size, where the simpler mean-field approach fails: the direct
near-neighbor correlations are found to be the fundamental ingredient describing the system self-organized
behavior. Furthermore, entropy allows the measurement of structural ordering we found to be a key ingredient in
characterizing two different coexistence behaviors, one where predators form localized patches in a sea of preys
and another where species display more complex patterns. The general nature of the introduced method paves
the way for its application in many other systems of interest.

DOI: 10.1103/PhysRevE.98.042402

I. INTRODUCTION

The general formulation of statistical mechanics and infor-
mation theory opened the way of physics to complex systems.
The entropy definition is the basis of both theories. Although
the concept of entropy was introduced in thermodynamics, it
has been adapted to other fields of study, including economics,
biophysics, and ecology.

In this work, we focus on an ecological system and its
entropy, which we show to be pivotal in understanding how
the phenotype, the characteristics of an organism resulting
from the interaction between its genotype and the environ-
ment [1,2], discriminates and provides information about
survival and extinction of species. This is a very important
effort that must be pursued to prevent ecological disasters.

In a very general way, entropy is a property of the distribu-
tion function out of which the states of the system have been
drawn. It is the capacity of the data to provide or convey in-
formation [3]. Consequently, knowing the entropy allows us to
set limits on the information we can extract from observations
and to the predictability of the system. It has been widely used
to study information transport in neural networks [4,5] and in
flocks of birds [6–8], complexity and hierarchy in written lan-
guages [9], and risk assessment in financial markets [10,11].
In particular, predictability plays a very important role in
economics where the awareness of markets entropy allows
one to maximize the investment profits [10]. Recently, entropy
has been exploited in inference problems, with great results
in biological phenomena, such as bacterial growth [12,13],
evolution [14], and protein folding [15].

Here, we show how entropy is crucial also in the con-
text of ecological systems. Ecosystems can be defined as
a community of living organisms in conjunction with the
environment [16,17], where the latter affects the organisms

*mattia.miotto@roma1.infn.it
†lorenzo.monacelli@roma1.infn.it

without being in turn influenced by them [18]. However, all
living beings within the ecosystem are interdependent, in fact,
variations in the size of one population influence all others.
This is particularly clear for prey and predator dynamics. In
fact, if the number of preys in an ecosystem grows, predators
will respond to the supply of available food by increasing their
number. The growth of predator number will reduce preys
until the system can no longer sustain the predator population.
The process has either to attain a steady state or to end in
species extinction. To avoid extinction, both preys and preda-
tors need to optimize their phenotypes: predators must, for
example, adapt for improving efficiency in hunting to catch
enough food to ensure survival. Prey species, however, must
be proficient in escaping their predators and reproduction; if
enough of them are to survive for the species to endure [19–
21]. Disturbances, which are perturbations that move the
system away from its steady state [22], may affect species
phenotypes. Such disturbances can originate from changing of
environmental variables such as temperature and precipitation
or in modifications of the populations, like the appearance or
disappearance of a species. Besides the theoretical challenge
of understanding the behavior of that kind of complex system,
worthy of notice is also the practical importance of predicting
the response to perturbations, particularly the ones produced
by humans. Relevant cases are the fight against parasites in
agriculture [23] and the perturbations in sea populations due
to fishing activities [24]. From the groundbreaking works
of Lotka [25] and Volterra [26], ecosystem modeling has
been addressed in various ways, from sets of differential
equations [27–29] to simulations on lattice [30–32].

Taking inspiration from the work of Dewdney [33], we
modeled the simplest nontrivial ecosystem in which two
species struggle for survival. Sharks (predators) and fishes
(preys) occupy the nodes of the toroidal 2D lattice; they can
move, reproduce, and hunt. The rules of the model resemble
the ones described by Mobilia et al. [34] and are introduced
in Sec. III A. This system has been extensively studied and
several critical behaviors have been observed [35,36].

2470-0045/2018/98(4)/042402(11) 042402-1 ©2018 American Physical Society
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Measuring the entropy of this kind of complex system
without any explicit expression for a prior probability distri-
bution is very challenging [37]. In fact, the Shannon definition
of entropy relies on the system probability distribution P ,
which depends on all the degrees of freedom of the system [9].
The entropy measurement requires a fine sampling of this
function, becoming not affordable even for small lattices.

The maximum entropy (MaxEnt) technique has been de-
veloped to obtain an approximation for the probability distri-
bution. Given a set of observables xi that partially describes
the inquired system, MaxEnt algorithm allows one to find
the less structured probability distribution that reproduces the
chosen set of the real system observables. This technique was
first introduced by Jaynes [38] in 1957, but it reached an out-
standing interest only recently thanks to the availability of a
huge amount of experimental and numerical data. MaxEnt has
been successfully applied to countless problems, both in equi-
librium and out-of-equilibrium systems [39]; among them,
the prediction of protein amino acid contacts [15,40] and the
analysis of neural networks [41] are of particular interest.
However, even if MaxEnt provides an analytic expression for
the probability distribution, computing the associated entropy
is still a major issue [7].

In Sec. II A we outline how it is possible to obtain the
exact entropy of the MaxEnt probability distribution taking
advantage of all the data generated during the convergence of
the algorithm, without any further time-consuming computa-
tion. Furthermore, in Sec. II B, we introduce a least entropy
principle that justifies the use of the MaxEnt distribution as a
truncation of a series that converges toward the real entropy
of the system. Availing the variational principle, the approx-
imation on the resulting entropy is of second order. While
the method is formally derived for dealing with equilibrium
systems, in Sec. III we apply it to the study of an ecosystem.
In Sec. III D we examine the insights the entropy provides and
discuss its limitations in the case of a nonequilibrium steady-
state system, like the one we treat. Although we apply this
method only to the introduced ecosystem, it is very general:
it can be used whenever it is possible to define a probability
distribution on a site model.

Maximum entropy

The MaxEnt framework we are going to discuss can deal
with any stochastic process defined on a graph composed
of M nodes. Each node is in one out of q possible states.
If we indicate with P the probability that the system is in
a given configuration the entropy is defined accordingly to
Boltzmann-Shannon as

S[P ] = −〈ln P 〉P , (1)

where 〈·〉P indicates the average over the P probability distri-
bution.

The standard MaxEnt algorithm consists in maximizing
S[P ] with respect to P in presence of a set of N constraints.
The restraints are the set of observables {x}Ni=1 that best
describes the system; in other words, some degrees of freedom
are fixed and the entropy is maximized among the remaining
ones to have the broadest possible probability function. Each
observable xi is a generic function that associates any possible

configuration of the system to a real number. Note that the
index i identifies the observable in the set of constraints, not
the specific site on the graph, as the xi observable can be a
function of more than one node, e.g., the average dimension
of clusters of nodes in the same state.

Defining the auxiliary Lagrange functional � as

�[P, λ1, · · · , λn] = −S[P ] +
N∑

i=1

λi 〈xi〉P , (2)

the correct constrained maximum entropy distribution P ∗ is
found solving the set of equations:

δ�

δP ∗ = 0, (3a)

〈xi〉P ∗ = x̄i ∀i = 1, · · · , N, (3b)

where x̄i is the measured expected value of xi . Equation (3) is
very hard to solve, even numerically, since P depends still on
qM variables. P can be used to define an auxiliary effective
Hamiltonian, according to the Boltzmann definition:

P (�σ ) = e−H (�σ )

Z
,

where �σ represents the configuration and Z the partition
function that normalizes P .

Equation (3a) is solved by the Hamiltonian [38]:

H =
N∑

i=1

λixi, (4)

where λi are fixed so that the expectation values of xi respect
the bounds over the real observables.

The values of λi can be obtained analytically only in
very few cases. The simplest one is the mean-field solution,
where only one-body observables are constrained, e.g., the
numbers of nodes in each state. In the latter case, the number
of observables is equal to the number of states q and the
Lagrange multipliers that satisfy the imposed constraints are

λi = − ln

(
x̄i

M

)
. (5)

The passages to prove Eq. (5) are sketched in Appendix A. In
this case, the entropy per node is

S ′ = −
q∑

i=1

(
x̄i

M

)
ln

(
x̄i

M

)
, (6a)

S = MS ′. (6b)

This entropy evaluation corresponds to the standard one
obtained by the Shannon-Fano algorithm [42,43]. This is a
“Hartree-Fock” theory of the complex system, where the en-
tropy is maximized using topology-independent Hamiltonians
only. This framework paves the way to a more precise entropy
computation.

II. ENTROPY ALGORITHM

The general solution of Eq. (3) has been matter of discus-
sion [41,44–47]. On the way of Bialek and Ranganathan [47],
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we introduce an auxiliary function χ̃2 whose global minimum
coincides with the solution:

χ̃2 =
N∑

i=1

Wi (〈xi〉H − x̄i )
2, (7)

where 〈xi〉H is the average of the xi observable computed
using the trial Hamiltonian H while x̄i is the average over the
real observable evaluated by the data. Wi are coefficients that
do not affect the minimum of the χ2, however, if wisely cho-
sen, may accelerate the convergence process. The χ̃2 function
defined in Eq. (7), in the minimum, is a random distributed
Pearson variable only if all the observables are independent
of each other and the Wi correspond to the inverses of the
variances. This is not true in most MaxEnt applications, e.g.,
in the mean field case where the sum of the xi is fixed to M .

We propose the introduction of a corrected χ2 that takes
into account linear correlations:

χ2 =
N∑

i=1
j=1

(x̄i − 〈xi〉H )
(
�−1

)
ij

(x̄j − 〈xj 〉H ), (8)

where � is the covariance matrix between the N chosen
observables. It must be stressed that Eq. (8) is still not a
true χ2 variable since we corrected only linear correlations.
Moreover, eigenvectors of � will be uncorrelated, but not
necessarily independent. However, the linear approximation
for correlations between observables has a long history in
statistical analysis [48,49] and usually leads to very good
results.

Equation (8) is well defined only if � can be inverted.
Diagonalizing the covariance matrix �, we can restrict the
minimization only in the subspace spanned by its eigenvectors
whose eigenvalues are greater than zero. Using these eigen-
vectors yi as a basis, the Pearson χ2 can be redefined as

χ2 =
N ′∑
i=1

(ȳi − 〈yi〉H )2

σ̃ 2
i

, (9a)

N ′ = N − dim ker �, (9b)

yi =
N∑

j=1

Sij xj , (9c)

where σ̃ 2
i is the ith eigenvalue of the � matrix and S is a

N ′ × N matrix that diagonalizes �. The dim ker � indicates
the dimension of the � kernel.

The gradient of Eq. (8) can be computed as follows:

∂χ2

∂λk

= −2
N ′∑
i=1

(ȳi − 〈yi〉H )

σ̃ 2
i

∂ 〈yi〉H
∂λk

, (10a)

∂ 〈yi〉H
∂λk

=
N∑

j=1

Sij

∂ 〈xj 〉H
∂λk

, (10b)

∂〈xj 〉H
∂λk

= −σ MC
jk , (10c)

where σ MC
jk is the covariance matrix between observables xj

and xk for the current Hamiltonian:

σ MC
jk = 〈xjxk〉H − 〈xj 〉H 〈xk〉H . (11)

The final expression of the gradient is

∂χ2

∂λk

= 2
N ′∑
i=1

(ȳi − 〈yi〉H )

σ̃ 2
i

N∑
j=1

Sijσ
MC
jk , (12)

or, equivalently, in a compact form:

�∇χ2 = 2S†σ ′
MC

( ��y

σ 2

)
, (13)

where σ ′
MC is the Monte Carlo covariance matrix in the non

singular subspace and ��y/σ 2 is the vector:( ��y

σ 2

)
i

= ȳi − 〈yi〉H
σ̃ 2

i

. (14)

The minimization of Eq. (8) can be initialized by the mean-
field solution Eq. (5), choosing zero for each λi associated
with a non topology-independent observable. Equation (12)
ensures that any standard gradient-based minimization algo-
rithm can be used.

Moreover, to fasten the convergence [50], it is possible to
derive the expression of the Hessian matrix in the minimum
and utilize it as a precondition on the minimization:

Dhk = ∂2χ2

∂λk∂λh

∣∣∣∣ �∇χ2=0

, (15)

Dhk = 2
N ′∑
i=1

1

σ̃ 2
i

N∑
j=1
l=1

SijSilσ
MC
jk σ MC

hl , (16)

or, equivalently:

D = 2σMCS†�−1SσMC. (17)

A. Entropy evaluation

In usual MaxEnt implementations, minimization data are
wasted and information about the system is inferred solely
from the final probability distribution. Here we show how to
recycle the whole minimization procedure to infer the entropy
of the system. In fact, computing the entropy directly from the
converged probability distribution is a very challenging task.
However, entropy can be obtained from an adiabatic integra-
tion through the minimization path of the Hamiltonians. The
values of the observables during the minimization can be used
to obtain a measurement of the entropy of the system without
any further Monte Carlo computations.

To compute entropy, it is convenient to define, as done for
the effective Hamiltonian, an auxiliary function equivalent to
the Helmholtz free energy:

F = − ln Z,

which can be computed through a thermodynamic integration
along the minimization path. Entropy is obtained by inverse
Legendre transformation from the auxiliary free energy of the
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system. Even if the free energy is not well defined (the energy
is defined up to a constant), the entropy is.

The free energy at the final value of the minimization is

F (ξ = 1) = F0 +
∫ 1

0

dF

dξ
dξ, (18)

where ξ is a variable that parametrizes the path of the Hamilto-
nian during the minimization. The F0 value is the free energy
at the starting condition, that is the noninteracting system:

F0 = −M ln

⎛
⎝ q∑

j=1

e−βλj (0)

⎞
⎠, (19)

Fξ = − ln Zξ , (20)

dF

dξ
=

〈
dHξ

dξ

〉
ξ

. (21)

The integral can be done parametrizing the Hamiltonian as

Hξ =
N∑

i=1

λi (ξ )xi, (22)

where xi are the observables while λi are both the Lagrangian
multipliers of the MaxEnt algorithm and the parameters
through which the χ2 function is minimized. Therefore, we
get

dF

dξ
=

N∑
i=1

dλi

dξ
〈xi〉ξ , (23)

so that only the averages of the observables during the mini-
mization are required to compute the free energy:

F = 〈H 〉 − T S, (24a)

S = 〈H 〉 − F

T
. (24b)

Fixing T = 1, we obtain

S[λi (ξ )] = M ln

⎛
⎝ q∑

j=1

e−λj (0)

⎞
⎠

+
N∑

i=1

[
λi (1) 〈xi〉1 −

∫ 1

0
dξ

dλi

dξ
(ξ ) 〈xi〉ξ

]
. (25)

The only required quantities are the Hamiltonian during the
minimization, i.e., the λi (ξ ), and the values of the observables
〈xi〉ξ , both already computed during the minimization. In
addition, if all the configurations generated during the χ2 min-
imization are stored, the importance sampling (IS) can be used
to interpolate between different Monte Carlo points, providing
a very good sampling of the integral. IS implementation for
the minimization is discussed in Appendix B.

B. Least maximum entropy principle

Entropy can be defined in the framework of a least prin-
ciple. The MaxEnt approach finds the probability distribution
that maximizes the entropy on the subset where the expected

values of the observables xi are constrained. The entropy SME

associated with the MaxEnt probability distribution is greater
than the true entropy Sreal of the system since the true P lies
in the chosen subset:

Sreal � SME. (26)

Moreover, SME decreases whereas new constraints are added
due to a contraction of the probability distribution space.
In Appendix C we provide a rigorous proof that a set of
constraints for which Eq. (26) becomes an equality exists. The
true entropy of the system is then the least maximum entropy
of all possible choices of the constraints.

Just like any variational least energy principle in physics,
from Hartree-Fock to density functional theory (DFT), the
energy (entropy in our case) and its derivatives are the targets
of the theory, while the wave functions (probability distribu-
tions) are side effects. We want to remark that the error on the
entropy due to the limited number of constraints is of second
order, while the resulting probability distribution is affected
by a first order error.

III. ECOSYSTEM ANALYSIS

Although the so far introduced method is quite general, we
discuss its implication in ecosystems. In particular, we analyze
a two dimensional model on a regular 2D lattice of edge L

(number of nodes M = L2), whose sites can either be empty
or occupied by a fish or a shark. In the application of the
MaxEnt algorithm, we limited the constraints xi introduced
in Eq. (2) to the numbers of preys and predators and near-
neighbor fish-fish, shark-shark, and fish-shark couples. The
corresponding MaxEnt Hamiltonian describes a three-state
Potts model [51].

A. Model definition

Along the lines of Dewdney [33] and Mobilia et al. [34],
we modeled a minimal ecosystem composed of two species
interacting each other as a 2D lattice model. Each site can be
occupied either by the environment or a fish or a shark, rep-
resented with the integers 0, 1, 2, respectively. At every time
step, fishes can move, breed, or remain still with probability
pm

f , p
f

f , and 1 − pm
f − p

f

f . Sharks can move (pm
s ) or remain

still (1 − pm
s ). Furthermore, sharks eat fishes whenever they

step into a cell occupied by a prey. In this case, sharks can
reproduce with probability p

f
s . If a shark does not eat a fish

during its round, it can die with probability pd
s . This set of

rules defines a Markovian process described by the transition
matrix �(�σi → �σj ). It gives the probability of the system to
transit from the �σi to the �σj state, where �σx identifies the
values of all sites in the lattice. The probability to find the
system in the �σi state at the t + 1 time step is defined by

P (�σi, t + 1) =
∑
�σj

�(�σj → �σi )P (�σj , t ). (27)

Studying the time evolution of P (�σ , t ) through dynamical
Monte Carlo simulations (see Appendix D), it is possible to
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FIG. 1. Comparison between the in silico ecosystem (EcoLat) and the maximum entropy (MaxEnt) result. (a) Representation of an EcoLat
snapshot in the steady-state regime. Fishes are colored in green, sharks in red, while blue represents the environment. Phenotypic parameters
are reported in Appendix F. (b) A configuration extracted from the MaxEnt probability distribution obtained by constraining the numbers of
fishes, sharks, and near-neighbor couples. Both simulations ran on a lattice of edge L = 110. (c) Spatial correlation functions of fish-shark
(top), fish-fish (medium), and shark-shark (bottom). (d) Shoal-size distribution of fishes (green shades) and sharks (red shades) computed on
EcoLat (circles) and MaxEnt (triangles) configurations. Fishes are power-law distributed, while sharks exhibit an exponential decay.

assess that the system reaches a steady-state distribution:

P (�σi ) =
∑
�σj

�(�σj → �σi )P (�σj ). (28)

Depending on the choice of the parameters, the system that we
named EcoLat (Ecosystem on Lattice) presents three different
states: (i) fish saturation due to the extinction of sharks; (ii)
life extinction, where sharks eat all fishes and then extinguish;
(iii) nonequilibrium steady-state (NESS), in which fish and
shark densities fluctuate around a constant value.

The probability distribution can be defined by extracting
configurations from the evolving system after a transient
time. Sampling configurations sufficiently distant in time it
is possible to introduce an ergodic hypothesis (Appendix E),
i.e., the so defined probability distribution is equivalent to the
one of an infinite ensemble of independent systems. In this
framework, the entropy becomes a well-defined quantity.

It is important to notice that such formulation neglects
the time-correlations of the evolving configuration, i.e., it
disregards the flux of probability distribution that uniquely
characterizes the generic nonequilibrium steady state [52].

B. MaxEnt distribution benchmark

The configurations extracted from EcoLat are used to eval-
uate the constraints of the MaxEnt distribution (the number of

fishes, sharks, and near-neighbor couples). We found a good
agreement between EcoLat and MaxEnt distributions (Fig. 1).

In Figs. 1(a) and 1(b), two sample configurations are com-
pared. The general aspect of the system is well reproduced
by near neighbors MaxEnt, except the shape of the shoals
that exhibits some differences. This is reflected by the spatial
correlation functions in Fig. 1(c), computed as the Pearson
coefficient:

fij (x) = 〈σi (X)σj (X + x)〉 − 〈σi (X)〉 〈σj (X + x)〉√
(〈σi (X)2〉 − 〈σi (X)〉2)(〈σj (X)2〉 − 〈σj (X)〉2)

,

(29)

where σi (X) is one if the site X is occupied by the ith species;
note that fij does not depend on X thanks to the translational
symmetry of the system. MaxEnt approximation, although it
maintains the qualitative agreement, predicts lower fish-fish
spatial correlation at larger distances. This does not affect the
cluster-size distribution, see Fig. 1(d), that decays with the
same slope both in EcoLat and MaxEnt. The reason can be
understood by looking at the snapshots of the configurations
in Figs. 1(a) and 1(b), where fishes create shoals of similar size
but having more roundish shapes in EcoLat than in MaxEnt
configuration, explaining the higher spatial correlations even
if shoals exhibit the same size distributions. This is a general
feature of the system independent on the choice of the phe-
notypes. It unveils that, in the dynamical steady state, fishes
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FIG. 2. Entropy per site as a function of species phenotypes. Blue triangles indicate the Shannon-Fano entropy Eq. (6a), while red circles
indicate the MaxEnt entropy Eq. (25). The ranges of parameters that lead species to extinction are underlined by obliques lines. (a) Entropy
vs. fish breading probability. A qualitative difference in the entropy behaviors appear when p

f

f > 0.5; MaxEnt entropy starts decreasing while
Shannon-Fano one saturates to the maximum value. (b) Entropy vs. shark mobility. Also in this case a similar difference in behaviors manifests
in the region 0.7 < pm

s < 0.9. These differences outline that structural ordering is occurring in the system. (c) Entropy vs. shark filiation. (d)
Entropy vs. shark mortality. In these two cases, the Shannon-Fano approximation grasps qualitatively well the entropy trends, although the
numerical values are overestimated.

cooperatively interact beyond near neighbors, while all other
interactions seem operating on near-neighbor sites.

The power-law decay in EcoLat shoal size distribution
[Fig. 1(d)] has been already observed [53] and assigned to
a self-organized behavior of the system, moreover, it seems
to be a general characteristic of several spatial ecology mod-
els [54].

The MaxEnt distribution is very close to a critical point.
This can be checked by introducing a parameter T in analogy
to the Boltzmann temperature; however, the T dependence
alone is not an evidence of the criticality in the original
system [55].

C. Entropic curves

Thanks to the method introduced in Eq. (25), it is possible
to compute the entropy of the model and to shed light on
several features of the ecosystem.

In Fig. 2 we report, as a function of the species relevant
phenotypes, the entropy per site of the system normalized by
its maximal value ln 3. The entropy has been measured both
through the mean-field Shannon-Fano algorithm Eq. (6a) and
with the new approach based on the MaxEnt calculation of
Eq. (25). The MaxEnt entropy estimation is always lower than
the mean-field result, as expected due to the variational nature
of the least-entropy-principle. Regions of phenotype values

leading the system to extinction are filled with obliques lines.
Figures 2(a) and 2(b), showing entropy curves as a function
of p

f

f and pm
s , respectively, manifest qualitative differences

between Shannon-Fano and MaxEnt entropy trends. In partic-
ular, while Shannon-Fano predicted entropies reach a plateau
whenever p

f

f � 0.5 or pm
s � 0.7, MaxEnt ones display a

maximum around those values. The increasing difference
between Shannon-Fano and MaxEnt entropy is a clear sign
that structural ordering is occurring since MaxEnt entropy is
the exact entropy of the Potts-like Hamiltonian that takes into
account spatial correlations even beyond near-neighbor ones
[Fig. 1(c)].

This feature, particularly visible in Fig. 2(b), is related to
the formation of waves of predator and preys [see snapshots
in Fig. 3(b)].

Furthermore, extrapolation of Figs. 2(b)–2(d) entropy
curves manifests sharp points in pm

s = 0.4, p
f
s = 0.4, and

pd
s = 0.6, which are a peculiar sign of a second-order phase

transition between coexistence and extinction. On the con-
trary, when pm

s = 0.9 or pd
s = 0.1 entropy displays a sudden

jump into the extinction phase. This transition is due to a
finite-size effect [56,57]: increasing the lattice size the prob-
ability of the system to extinguish in a fixed time becomes
sharper as a function of the phenotypes but the transition
threshold drifts to the bond value pm

s = 0 in the thermody-
namic limit.
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FIG. 3. (a) Distributions of prey shoal sizes for three different values of predator mobility (all parameters are reported in Appendix F).
Distributions for pm

s = 0.47, 0.70, 0.90 are shown in green dots, red triangles, and cyan diamonds, respectively. Blue stars represent the
distribution of the independent-site model (Non interacting) with the fish density fixed to match the EcoLat one with pm

s = 0.7. The EcoLat
distributions have been fitted with a function x−γ exp(x/ξ ). The lower mobility case has ξ = ∞ and γ = 2.97 ± 0.04, medium mobility has
ξ = 3450 ± 220 and γ = 1.55 ± 0.01, while high shark motility gives a fish shoal distribution with ξ = 2440 ± 180 and γ = 1.69 ± 0.01.
(b) Snapshots taken from the EcoLat steady-state distribution while tuning the shark mobility pm

s from 0.47 (left) to 0.90 (right). Fishes are
depicted in green, sharks in red, empty sites in blue.

D. Discussion

The measurement of disorder provides a new insight into
the ecosystem. It allows us to recognize the second order
phase transition near predator extinction threshold, to char-
acterize the self-organized behavior of prey shoals, and to
unveil the increase of structural ordering the system acquires
improving the predator hunting capability. Here we discuss
these findings following the ecosystem behavior while tuning
the shark mobility (pm

s ) as in Fig. 2(b), since it is a particu-
larly explicative parameter of the model. Increasing the shark
mobility the system passes from an absorbing state where
the lattice is crowded with preys to a phase in which sharks
start appearing in small shoals swimming in a sea of fishes.
This is a critical point known in literature [32,35,36] and it
was characterized by its dynamical properties, where predator
population decays in time with a power law, and it belongs
to the directed percolation universality class. The criticality of
this point is reflected in the entropy behavior which manifests
a sharp point.

This phase transition, marking the passage between
species coexistence and extinction, happens where the en-
tropy reaches zero (sharp points in Figs. 2(b)–2(d) at pm

s =
0.4, p

f
s = 0.4, and pd

s = 0.6), and it can be attained dimin-
ishing the shark hunting ability as well as their fertility or
increasing their mortality. The zero entropy of this critical
point can be explained in a Shannon-Fano framework; in fact,

the predominance of preys unbalances the average numbers of
sharks and fishes.

Moving away from the aforesaid criticality, fish clusters
acquire a power-law distribution [54] well described by the
MaxEnt approximation (Fig. 1). Very interestingly, this kind
of distribution cannot be simply explained in a Shannon-Fano
framework. In fact, if we simulate an independent size model,
fixing the densities as the real EcoLat ones, we obtain the
cluster size distribution of Fig. 3(a) that does not match with
the EcoLat one. Moreover, the Fisher exponent of the EcoLat
distribution varies in the studied parameter ranges between 1.5
and 3 not matching with the fixed 2.05 one of the independent-
site model at the percolation threshold (ordinary percolation).
It is worth to notice that the observed power-law is completely
accounted for and described by near-neighbor interactions,
as the MaxEnt approach is able to quantitatively reproduce
it [Fig. 1(d)]. Furthermore, the MaxEnt Hamiltonian is very
close to a critical point. Even if this feature alone is not a
signature that the real EcoLat is itself close to a criticality [55],
the MaxEnt power-law cluster distribution is related to this
criticality. Is the power-law distribution a marker of self-
organized criticality in the EcoLat model? The excellent ac-
cordance with the critical MaxEnt power-law seems to support
this hypothesis.

Increasing pm
s from the directed percolation critical point

we see the disorder growing [first two snapshots of Fig. 3(b)].
At first, the system starts getting rid of fish dominance (i.e.,

042402-7



MATTIA MIOTTO AND LORENZO MONACELLI PHYSICAL REVIEW E 98, 042402 (2018)

it moves away from direct percolation critical point) simply
increasing the number of predators. Both the higher number
of sharks and their increased motility make the ecosystem
drift toward more disordered configurations (both Shannon-
Fano and MaxEnt entropies increase). At a certain point, the
interactions between species dominate and the system passes
to a regime where it starts regaining order. From Figs. 2(b)
and 3, we see that entropy discriminates these two distinct
dynamical behaviours of species at coexistence: the one with
a predominance of fishes and sharks grouping in small shoals,
and the other where both preys and predators form elaborate
shoals, characterized by a spreading wavelike fronts of fishes
and sharks [32,58] with predators surrounding the shoals of
preys [Fig. 3(b)]. Very interestingly, this crossover is clearly
characterized by a decreasing MaxEnt entropy with respect
to a constant Shannon-Fano one [Fig. 2(b)], remarking the
structuring of the system and the impossibility of grasping
this behavior just considering the mean-field approximation.
The progressive reachievement of order can be visualized by
looking at the last two EcoLat snapshots in the steady-state
regime [Fig. 3(b)]. Notably, this new structural order is very
different from the mean-field order close to the shark extinc-
tion threshold [last versus first snapshots of Fig. 3(b)]. The
structural order can be measured as the difference between
Shannon-Fano and MaxEnt entropy. In fact, Shannon-Fano
order is a mean-field quantity that does not depend on the
disposition of species in the lattice, while MaxEnt entropy
considers the order resulting from all possible correlations
reproduced by a three-state Potts model. An analogy with
the Ising model (where the MaxEnt algorithm is exact) gives
a clearer picture: in the overcritical region, T > Tc and no
external magnetic field, the Shannon-Fano entropy is always
at its maximum value since there is an equal number of spin
up and spin down. However, the true entropy decreases as
T → Tc since ordered spin domains appear.

Finally, another transition between coexistence and ex-
tinction is reached by further increasing the shark mobility
(as well as decreasing the fish fertility and shark mortality).
Contrariwise to the first critical point, the entropy does not
continuously go to zero in correspondence of the phase tran-
sition, but abruptly jumps to zero (Fig. 2). This is a finite-size
effect [56,57] that disappears when L → ∞. It is worth to
notice that, at fixed L, it is possible to continuously tune the
phenotype to get a steady-state metastable phase even in the
extinction region that lives until a sufficiently large stochastic
fluctuation causes a brutal extinction. This is very worrying;
in fact, it is difficult to predict since no precursors are present
and can bring to an ecological catastrophe.

IV. CONCLUSIONS

Entropy measurements in complex systems have always
been challenging. MaxEnt is a powerful tool to obtain an
estimation of the probability distribution of the system from
simulations or experimental data. Until now, the information
provided by the intermediate steps of the MaxEnt solution was
wasted. We introduce a way to recycle it to directly evaluate
the entropy of the system without any further time-consuming
computation [Eq. (25)]. Thanks to the MaxEnt nature of the
probability distribution, a variational principle for entropy

evaluation of the real system can be formulated, which ensures
that the obtained entropy is always greater or equal to its
true value. Moreover, Eq. (25) is quite general, allowing us
to compute entropy wherever it is possible to formulate a
MaxEnt algorithm.

Among many possible applications, the knowledge of
entropy in ecological systems plays a pivotal role describ-
ing the complexity due to the phenotype variability. In the
studied prey-predator ecosystem, it sheds new light on the
self-organizing behavior of preys. The direct near-neighbor
correlations used in our MaxEnt approach are found to be the
fundamental ingredient in this self-organized behavior: The
MaxEnt Hamiltonian quantitatively reproduces the scale-free
behavior of the prey shoals size, where the simpler mean-field
approach fails. Furthermore, entropy allows the measurement
of structural ordering, that is found to be a key ingredient
in characterizing the crossover between two different coex-
istence behaviors, one where predators form localized patches
(dominated by mean-field disorder) and another where preda-
tors chase preys in spreading prey-predator fronts (dominated
by structural order).

As a matter of fact, the entropy curves reported in Fig. 2 are
a powerful tool to investigate the system from quite different
perspectives. This new tool will enable the study of entropic-
driven phenomena, like entropic forces, already found to be
of great importance in many biological systems as flocks of
birds [7].

Furthermore, the general nature of the method encourages
its application in many other systems of interest.
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APPENDIX A: MEAN-FIELD MAXENT

Here we derive Eq. (5). In the mean-field approximation,
only one-body observables {xi}qi=1 are constrained, e.g., 〈xi〉
is the average number of nodes in the ith state. Now, Eq. (4)
describes a noninteracting effective Hamiltonian:

〈xi〉 = 1

Z

∑
σ1···σM

(
M∑

k=1

δσk,i

)
exp

(
−

q∑
h=1

λh

M∑
k=1

δσk,h

)
, (A1)

where Z is the normalization of the probability distribution
and we identified the configuration �σ with its site values:

�σ =

⎛
⎜⎜⎜⎜⎝

σ1

σ2

...

σM

⎞
⎟⎟⎟⎟⎠. (A2)

The (
∑M

k=1 δσk,i ) is the application of the xi observable on the
�σ state. Since xi does not depend on the particular site k, we
have

〈xi〉 = M
e−λi∑q

h=1 e−λh
. (A3)
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Equation (A3) defines a complete set of linear equations. They
are dependent since we have the constraint:

q∑
i=1

〈xi〉 = M. (A4)

It is straightforward to show that the most general solution of
the system is given by

λi = − log

( 〈xi〉
M

)
+ C, (A5)

where C is an arbitrary constant that does not affect any
physical quantity. For the sake of simplicity, in Eq. (5) we set
C = 0.

APPENDIX B: IMPORTANCE SAMPLING

The minimization of Eq. (8) is computationally expensive.
In each step, the expected values of the observables for the
trial set of λi parameters must be computed through a Monte
Carlo–metropolis integration. A natural extension of the
Metropolis algorithm consists of re-weighting the extracted
configurations at each step. This method takes the name of
importance sampling (IS), and it has been widely applied
in many physical applications [59,60]. It was introduced in
MaxEnt by Broderick et al. [61].

The average of an observable with an Hamiltonian H ′ can
be computed using a set uniform distributed configurations
{c}Nc

i=1 as follows:

〈A〉H ′ =
Nc∑
i=1

(
A(ci )

PH ′ (ci )

PH (ci )

)
PH (ci ) =

〈
A

PH ′

PH

〉
H

. (B1)

This average can be computed using Monte Carlo integration
on a set of metropolis extracted configurations {c′}Nc

i=1 with the
H Hamiltonian:

〈A〉H ′ ≈ 1

Z(Nc )

Nc∑
i=1

A(c′
i )e

−β[H ′(c′
i )−H (c′

i )], (B2a)

Z(Nc ) =
Nc∑
i=1

e−β[H ′(c′
i )−H (c′

i )]. (B2b)

Handling with large lattices, energy differences can be consid-
erable, and the exponential term may give rise to numerical
instabilities. To correct these instabilities a constant factor a

can be added to both exponential terms, equal to the maximum
energy difference of all extracted configurations.

Estimating the goodness of IS in MaxEnt implementation
can be difficult. In fact, we lack the a priori knowledge of
the partition function of the original probability distribution.
To upstage, the problem we implemented a new statistical
evaluator for the MaxEnt algorithm and in general for IS
Metropolis implementation. At each step the total extracted
configurations are divided into two random groups and the
normalization factors are compared:

η =
∣∣∣∣ Z′(Nc/2)

Z′′(Nc/2)
− 1

∣∣∣∣. (B3)

FIG. 4. Number of Monte Carlo simulations to reach conver-
gence as a function of the ηc parameter Eq. (B3). The optimal
working point lies in the marked region.

If η exceeds a critical value ηc, new configurations are ex-
tracted from the Metropolis algorithm. Figure 4 shows the
performance of IS vs the ηc parameter. For ηc � 1, Eq. (B3)
is symmetric with respect to Z′ and Z′′. For higher values
of ηc the symmetry is recovered by random shuffling the
configurations at each step.

APPENDIX C: PROOF OF THE LEAST MAXIMUM
ENTROPY PRINCIPLE

By definition, the MaxEnt entropy is always greater than
the true entropy:

Sreal � SME[{x̂i}], (C1)

where Sreal is the real entropy of the system, while SME[{xi}] is
the maximum entropy of all possible probability distributions
that fix the set of x̂i observables.

To prove the least maximum entropy principle, a set of
observables x̂i must exist so that Eq. (C1) is an equality. In any
finite-size system, where configurations can be represented
with a finite dimension vector, this is trivial, since it is possible
to choose a set of observables ŷi defined as

ŷi (�σ ) = δ(�σ, �σi ), (C2)

where �σ is the configuration on which the observables act, �σi

is a particular configuration associated with the observable ŷi ,
and δ is the Kronecker symbol.

If two probability distributions are different, then a config-
uration �σi must exist so that their probabilities differ:

p1(�σi ) = p2(�σi ). (C3)

The two distributions give two distinct expected values for the
corresponding ŷi observable:

〈yi〉p1
=

∑
j

p1(�σj )δ(�σj , �σi ) = p1(�σi ) = p2(�σi ) = 〈yi〉p2
.

(C4)
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FIG. 5. Time evolution of the mean fish and shark densities
and near-neighbor Pearson correlation coefficients computed on an
ensemble composed by 100 replicas of the system. The simulation
is prepared in an initial uniform distribution fixing the densities of
preys and predators to 4/5 and 1/5, respectively.

The complete set of ŷi fixes the probability distribution, so
that

Sreal = SME[{ŷi}]. (C5)

Indeed, single-site density and couple density can be written
as linear combination of the complete set of ŷi observables.
Therefore, the introduction of more independent constraints
assures the convergence of the MaxEnt entropy toward the real
entropy.

APPENDIX D: DYNAMICAL MONTE CARLO
SIMULATIONS OF THE ECOLAT MODEL

Dynamical Monte Carlo allows us to simulate the EcoLat
master equation [Eq. (27)]. Since the number of possible
states is huge (3M ) it is impossible to numerically evolve
the probability distribution. However, a stochastic solution of
Eq. (27) is still possible: N replicas of the system, extracted
according to an initial distribution P (�σ , 0), can be evolved
according to the transition matrix �. The obtained time-
dependent ensemble can be used to compute the averages of
any observable as a function of time.

The EcoLat model reaches the asymptotic steady-state
distribution described by Eq. (28). Figure 5 shows the time
dependence of the mean density of preys and predators as well
as the near-neighbor correlation coefficients [Eq. (29)].

Note that, although the time evolution of the single system
continues to oscillate in the steady state, the correlation time
is finite. This assures that, after a transient time, all the N

simulations are independent and distributed according to the
P (�σ ) [Eq. (28)].

APPENDIX E: ERGODIC HYPOTHESIS

Here we discuss the stability of the steady-state distribution
that depends on the ergodicity of the system [62]. Generally
speaking, a system is ergodic if it can move between any
couple of points in the phase space in a finite number of
steps [63]. EcoLat does not satisfy this requirement; in fact,
two traps are present in the phase space: if the system gets
a configuration without preys or predators, it always evolves
toward an absorbing state. However, in simulations, once the
system has reached the nonabsorbing steady state (Fig. 5),
it remains there during all the simulation time. So, we can
postulate a weak ergodic hypothesis, where we imagine to
restrict the feasible phase space excluding the absorbing
traps. This is equivalent to neglecting the elements of the
� transition matrix that lead the system into the absorbing
traps. Such an approximation makes sense if the lifetime τ

of the metastable equilibrium is much larger than the typical
time scales of the system. All the dynamical Monte Carlo
simulations computed in Fig. 2 have τ � tmax, where tmax is
the maximum simulation time (106).

APPENDIX F: SIMULATION DETAILS

Phenotypic parameters for the EcoLat simulation of
Fig. 1 are: p

f

f = 0.2, pm
f = 0.8, pm

s = 0.7, p
f
s = 1, pd

s =
0.3. Phenotypic parameters for the EcoLat simulation of Fig. 3
are the same apart for pm

s that assumes the values of 0.47,
0.70, and 0.90.

All simulations and computations were carried out using
authors handmade C and Python scripts. Python packages
NumPy [64], SciPy [65], and MatPlotlib [66] were utilized
during analysis and figure realization.
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We study a minimal model for the evolution of an ecosystem where
two antagonist species struggle for survival on a lattice. Each speci-
men possesses a toy genome, encoding for its phenotype. The gene
pool of the populations changes in time due to the effect of random
mutations on genes (entropic force) and of interactions with the en-
vironment and between individuals (natural selection).
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We prove that the relevance of each gene in the manifestation of the
phenotype is a key feature for evolution. In presence of a uniform
gene relevance, a mutational meltdown is observed. Natural selec-
tion acts quenching the ecosystem in a non-equilibrium state that
slowly drifts, decreasing the fitness and leading to the extinction of
the species.
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Conversely, if a specimen is provided with a heterogeneous gene
relevance, natural selection wins against entropic forces, and the
species evolves increasing its fitness. We finally show that hetero-
geneity together with spatial correlations is responsible for sponta-
neous sympatric speciation.
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Evolution by natural selection shaped the marvelous biodi-1

versity we presently observe in nature. Starting with one2

(or few) living organisms, the tree of life progressively branched3

as living beings managed to survive to different environments4

through adaptations and speciations (1).5

Both processes arise by a complex interplay between intrin-6

sic forces (e.g. mutations) and extrinsic ones, provided by the7

interactions between the different components of the ecosys-8

tem (2). This results in changes of behavior, morphology, and9

physiology (or combinations thereof) in the organisms.10

Since its first formulation, the theory of evolution regarded11

natural selection, i.e. the effect of environment and interaction12

inter and intraspecies in selecting the organisms with maximum13

fitness, as the pivotal mechanisms of evolution. Several more14

years were required to clearly define the ’microscopic’ role of15

genome mutations (alongside genetic drift, hitchhiking ext.) as16

the other main component of the evolutionary process (3–6).17

Quantifying the simultaneous effects of natural selection18

and genomic mutations is far from being an easy task (5, 7–9).19

Its understanding is however not only a fascinating theoretical20

challenge but carries important practical implications. In fact,21

a continuously increasing literature highlights the connection22

between the rules governing ecology to the one regarding cell23

populations (10–12). Preeminent is the case of cancer cells,24

that are both subject to high entropic forces (fast mutation25

rates) and a strong natural selection, due to the selective26

pressure given by both the competition with the immune27

system and the effect of anti-cancer therapies. Bacteria drug28

resistance is under much scrutiny, too, since the selection29

done by antibiotics influences the evolution of resilient traits.30

Experimentally, the evolution of genomes during speciation31

has been studied only recently with the availability of next-32

generation sequencing technologies (13–15). In particular,33

recent findings highlighted how mutations on certain genes34

considerably enhance the speciation process (15). Also the 35

increase of the genome length, due to duplication errors (e.g. 36

the presence of redundant genes/chromosomes) has been 37

pointed as one mechanism for evolution/speciation (16). 38

39

Parallel to experiments, several theoretical models were 40

developed to study ecosystem dynamics(17, 18) and evolution, 41

both at the molecular level (7, 19) and at the population 42

level, such as population-environment interaction (20–23) and 43

specie-species interactions (24–31). 44

In particular, agent-based models proved to be very efficient 45

to include spatial information/features (32–36). Here, evolu- 46

tion is accounted either at phenotype level, i.e. the phenotype 47

of a species is randomly modified generation by generation 48

according to a particular law (20, 24, 37), or at genotype level, 49

i.e. an evolution law is assumed for a genome upon which the 50

phenotype is computed (38–41). More refined models have 51

been considered accounting for dominant and recessive alleles, 52

sex recombination (cross-over) or spatially resolved ecosystem 53

dynamics (41–43). 54

This work aims to study how heterogeneity in gene relevance 55

affects the evolution of the species. In particular, we study 56

the evolution of a minimal ecosystem on a lattice, initially 57

composed by one species of predators and one of preys. Each 58

specimen possesses a toy genome composed of 3N genes that 59

encode for three essential macro-phenotypic features of the 60

animal: i) its capability of moving/hunting, ii) its fertility and 61

iii) the mean life-time of the specimen (mortality). 62

The genome pool of the two prey-predator species can 63

change in time due to random mutations at the level of the 64

single genes (entropic force) and to predation/death events 65

(selection force). Aiming at limiting the number of parameters 66

and developing an evolutionary model as minimal as possible, 67

we do not insert mating in the model, i.e. we have an asexual 68
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Fig. 1. Features of the EvoLat model. a)
Snapshot of an EvoLat configuration in the
steady-state regime. Fishes are colored in yel-
low, sharks in blue, while purple cells represent
the environment. Each animal on the lattice pos-
sesses a toy genome, composed of 3N genes.
Each gene is represented by a real number be-
tween 0 and 1 that concurs in manifesting three
macro-phenotypes associated with the animals.
Animal mobility is represented by the probabil-
ity of moving, pm, their fertility by the breeding
probability (pf ) and their life-time by the death
probability (pd). b)Mutation events can happen
with a rate, µ with equal probability on each gene.
If one gene is subject to a mutation, a new value
between 0 and 1 is extracted from the underline
phenotype distribution q(x), whose asymmetry
accounts for the fact that mutations tend to be
deleterious for the organisms. c) The phenotype
of the individual is obtained as the weighted aver-
age over all the N independent genes encoding
for it. In the present work, we assume two pos-
sible kinds of weights, uniform mean (all genes
equally concur to the phenotype) or power-law
weighted mean (some genes influence the phe-
notype more than others).

reproduction. Since mating is not taken into consideration,69

we will not look for speciation according to Mayr’s Biology70

Speciation Concept, where different species are separated if71

mating does not produce fertile off-springs (4). Instead, we72

speak of speciation in terms of differences in phenotype distri-73

butions (44), where well-separated peaks can be interpreted74

as different species while the width of each peak accounts for75

the intra-species differentiation.76

Two different kinds of genome are considered: i) a uniform77

genome (where all the genes have the same impact on the78

phenotype), and a heterogeneous genome (where each gene79

has a different weight on the overall phenotype). We show80

that, while in the first case entropy dominates, fostering the81

mutational meltdown (45–47), in the latter one natural selec-82

tion allows the ecosystem to increase predator fitness. For83

each genome, we also look for the emergence of spontaneous84

speciation.85

1. Model86

We consider a variant of the EcoLat (Ecosystem on Lattice)87

model (34), where each site of a L× L square lattice can be88

occupied exclusively either by the environment or a prey or89

a predator. To use the same notation adopted in (34), we 90

identify preys as fishes (f) and predators as sharks (s). At 91

every discrete time step, fishes can move, breed or remain 92

still with probability pmf , pff and 1 − pmf − pff . Sharks can 93

move (pms ) or remain still (1− pms ). Furthermore, predators 94

eat preys whenever they step into a cell occupied by a prey. In 95

this case, sharks can reproduce with probability pfs . If a shark 96

does not eat a fish during its round, it can die for starvation 97

with probability pds . We assumed that fishes may only die 98

murdered by a predator (i.e. pdf = 0). 99

The set of three probabilities, {pm(s,f), p
f
(s,f), p

d
(s,f)}, consti- 100

tutes the macro-phenotype of each individual, dictating the 101

rates with which the specimen carries out three essential tasks 102

of life. 103

Each specimen has a genome that codes the macro- 104

phenotype of the individual. The macro-phenotype is obtained 105

as a weighted averages over all the N genes (gi) that code for 106

a particular feature: 107

py =
N∑

i=1

gyiWi y = (m,f,d)
(s,f) , [1] 108

where Wi expresses the weight of the i-th gene in the manifes- 109

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Miotto et al.
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Fig. 2. Time evolution of
predators death-rate after
quenching. The predator
relaxation time diverges as
a power-law, in a way that
resemble the dynamic of
glassy systems. Different
colors correspond to differ-
ent simulations performed
starting from several val-
ues of psd. a) Shark mortal-
ity distribution. The dashed
vertical line is the stationary
state for predator growing in
a breeding farm (no natural
selection).b) Relaxation time
as a function of the initial phe-
notype. c) Exponent of the
power law as a function of the
genome length. It converges
to a value of about 2.57. Sim-
ulation in panel a and b are
performed with N = 90.

tation of the phenotype (see Figure 1a).110

Genome is subject to point mutations, i.e. Poisson-111

distributed random events in time occurring with a constant112

rate for each gene every time a new individual is born (repro-113

duction is asexual). If a mutation event occurs on a gene, its114

value is reset to a random number between 0 and 1. In order115

to tune the average value of the new mutated gene, we choose116

the new value gi = x according to the following probability117

distribution:118

q(x) =
(

1
〈x〉 − 1

)
(1− x)

1
〈x〉 −2 [2]119

with 〈x〉 is a tunable parameter that determines the average120

value of the gene after the mutation (see Figure 1b). Such121

kind of asymmetric distributions is widely used for phenotype122

modeling, e.g. in the contest of bacterial growth rates, where123

slow rates dominate over fast ones (20, 48, 49). In this way,124

deleterious mutations can be enforced to be more common125

than favorable ones. This is quite reasonable, as a random126

mutation in the coding DNA produces a random change in the127

amino-acid chain of a protein, that is far more likely to produce128

an unfolded structure than a more functional one (50, 51).129

Finally, in this work we will consider two weight distribu-130

tions (see Figure 1c):131

• a uniform distribution, where all genes equally contribute132

to manifest the phenotype (discussed in Sec. A)133

Wi = 1
N
, [3]134

• a power-law distribution allowing for the presence of pre-135

eminent genes, as discussed in Sec. B,136

Wi ∝ i−α. [4]137

To assess the outcome of evolution, we define the fitness 138

measured as the average size of the population. Such definition, 139

profoundly linked with the usual fitness measurements (growth 140

rate or the number of nephews per individual), is enforced by 141

the finite carrying capacity, dictated by the lattice. 142

2. Results 143

A. Uniform genome. To begin with, we investigated the model 144

behavior in presence of a uniform genome, where each phe- 145

notype is determined as the uniform average over all the 146

genes associated to that phenotype (as given by Eq. (1) with 147

Eq. (3)). 148

After preparing the ecosystem in a non-equilibrium steady 149

state (NESS) with fixed initial phenotypes, we turned on 150

mutations and followed the evolution of prey’s and predator’s 151

traits on long periods. To prevent predators to acquire infinite 152

lifetimes, we strongly favored deleterious mutations in the 153

shark death rate (entropic force). This is achieved by tuning 154

the 〈x〉 parameter in Eq. (2). In fact, if the average phenotype 155

is above (or below) 〈x〉, random mutations will try to restore 156

it around 〈x〉. 157

Fig. 2a shows the dynamic of the predator mortality dis- 158

tribution for various initial conditions (marked by different 159

colors). In all simulations, sharks have a well-defined phe- 160

notype at each time step, so no speciation is observed. All 161

distributions, even if with different timescales, tend at long 162

times to converge toward a unique final distribution with a 163

mean close to the average value chosen for the entropic force 164

(dashed line in the figure). The time required to reach this 165

value diverges quickly (following a power-law with exponent 166

∼ 2.57), the farther we prepared the system from the final 167

state. Note that the exponent of the power-law slightly de- 168
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pends on the genome size N , as shown in Fig. 2c. This kind169

of dynamic reminds of a system close to a glassy phase (52)170

where the distance between the initial and final phenotypes171

plays the role of the difference between the quenched and172

equilibrium temperatures in a typical quenching experiment.173

Such behavior provides great insight into the evolutionary174

dynamics. Firstly, we observe the role natural selection plays175

in freezing the system into a meta-stable state for long times.176

In fact, phenotypes subject to the sole effect of entropic forces177

would converge to the steady-state exponentially fast (see SI).178

Furthermore, we see how the ecosystem and predators, in179

particular, react to negative mutations. In fact, shark fitness180

decreases due to the entropic force of the mutations (see SI for181

the anti-correlation between fitness and shark death-rate). If182

a population has a phenotype distribution whose mean is far183

from the mean entropy value (〈x〉 in Eq. (2)), a mutation of the184

genome will tend to produce an individual with lower fitness185

than the rest of the population. The lowest the fitness the186

faster this individual will be suppressed by natural selection.187

If the fitness worsens only slightly (the mutation is very188

soft), the specimen will reproduce and that deleterious muta-189

tion will remain inside the genome pool. On long timescales,190

the accumulations of these very soft negative mutations slowly191

drive the whole population toward the entropic limit. This192

phenomenon is observed in real ecosystems and is known as193

mutational meltdown(45–47). The meltdown we observe origi-194

nates by the even impact genes have on the phenotype. We195

discuss how it scales with the system carrying capacity in SI.196

Fig. 2 clearly show how evolution is not able to improve197

the fitness of predators. In fact, although natural selection is198

freezing the dynamics (strongly reducing the effect of genetic199

drift) if we wait for sufficient time, sharks will finally increase200

their death-rate, therefore reducing their fitness. This behavior201

is opposite to what is commonly observed in nature, where202

the combined effect of mutations and natural selection leads203

to an overall improvement of the fitness on long times.204

This finding highlights the deleterious role of entropy in205

the evolution of the species. We will show in the next section206

that the capability to improve the fitness can be recovered207

even in the presence of a strong entropic force if genome208

variability is considered. This feature alone will be able both209

to allow predators to evolve and to provide a mechanism for210

spontaneous speciation.211

B. Heterogeneous genome. To include the effect of genome212

heterogeneity in the simulation, i.e. the uneven impact that213

different genes have on the phenotype, we inserted a gene-214

dependent weight ( Eq. (4)) in Eq. (1).215

Fig. 3 depicts the time evolution of the distribution of216

shark’s mortality starting from different initial values for two217

different exponent of Eq. (4), namely α = 1 and α = 2.218

The evolution is observed with both choices of exponents.219

Predators improve their expected life-time and the fitness (see220

SI) much above the equilibrium value obtained in Fig. 2.221

Positive evolution occurs thank to the combination of two222

effects; i) the phenotype population is normally quenched (see223

Sec. A) and ii) genes exert a different role on the phenotype224

manifestation. The quenching allows the quasi-species to sur-225

vive in an out-of-equilibrium situation where common random226

negative mutations usually kill the individuals. The species227

can survive long enough that a very rare, positive, mutation228

occurs in an important gene (with a big Wi), causing a discon-229

tinuity in the phenotype distribution and a sudden evolution of 230

the population. This speciation creates two kinds of predators, 231

with a quantitative different phenotype. The quasi-species 232

which is more fitted to the environment very quickly gets fixed 233

while the less fitted alleles vanish from the gene pool of the 234

population. 235

Such a rare, discontinuous event is not possible in a uniform 236

genome, where each gene has only a moderate impact on the 237

overall phenotype and a massive number of positive mutations 238

would be required to obtain the same shift ( that is a so rare 239

event that never occurs in practice). Conversely, heterogeneity 240

allows the positive discontinuity in the phenotype to depend 241

on the mutation of a relatively small number of genes, which 242

is much more likely to occur. 243

Heterogeneity has another important effect on preys pheno- 244

type distribution. In Fig. 4 we show the preys breeding rate 245

as it evolves as a function of time. After a while, the prey 246

population splits into two well-separated traits. In particular, 247

the two species have a different reproduction rate (pff ), respec- 248

tively of 0.78 and 0.90, but they share the same fitness in the 249

environment, therefore no one overcomes the other. This is 250

a very important feature for sympatric speciation, and it is 251

possible only thanks to the presence of the spatial organization 252

of the animals. In fact, the species with a higher reproduc- 253

tion rate tend to regenerate the shoals faster, being, therefore, 254

more prone to shark predation. This delicate trade-off between 255

higher fertility and the different spatial organization of the 256

shoal that favors predation stabilizes the two species, that can 257

coexist. In a mean-field scenario, predators would hunt the 258

two species in the same way, and this leads, at a long time, to 259

a supremacy of the prey with the higher reproduction rate. 260

3. Discussion 261

We simulate the evolution of a minimal prey-predator system. 262

Each species is characterized by a toy genome through which 263

three macro-phenotypes manifest. Providing each specimen 264

with N genes for each phenotype, we showed that the gene 265

relevance (i.e. the weight of each gene according to Eq. 1) in 266

coding for phenotypes is a key feature for evolution. 267

To survive, an organism must be robust to deleterious 268

mutations. A convenient choice, the organism can opt for, 269

could be to rely on many genes for the manifestation on one 270

phenotype. If the information for the phenotype is evenly 271

distributed in several genes, then a damage on some gene 272

has the minimum impact on the resulting phenotype. As a 273

counterpart, we showed that this condition favors the accumu- 274

lation of detrimental mutations that lead to the mutational 275

meltdown. Conversely, packing all the phenotype information 276

in few genes enables abrupt variations of phenotype. This 277

prevents the mutational meltdown, at the cost of reducing 278

the differentiation between individuals and consequently the 279

adaptability of the species. In this case, a drastic change in 280

the environment would provoke a sudden extinction of the 281

species. 282

Relying on a heterogeneous distribution of information 283

in many genes assures both broad differentiation of a huge 284

genome, and the possibility to have astonishing positive mu- 285

tations that drive the evolution and prevents the mutational 286

meltdown. EvoLat, albeit of representing a minimal model 287

of an ecosystem, reproduces a rich variety of scenarios, upon 288

varying a single parameter. In fact, tuning the α exponent in 289

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Miotto et al.
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Fig. 3. Evolution of the shark death-probability distribution as a function of
time, in presence of a heterogeneous genome. Heterogeneity allows the specie
to evolve to higher average life-time, while this does not occur in presence of a uniform
genome (Fig. 2). Different colors correspond to different starting values. The two
simulation correspond to a different value of the power-law exponent α (see Eq. (4)).
Both simulations exhibit a qualitative different behaviour if compared to a uniform
genome. The less fitted individual can improve their fitness far above the entropic
value.

Eq. 4, i.e. assigning different weights to genes associated to290

the same phenotype, the system exhibits different behaviors.291

Indeed, a uniform distribution of weights (α = 0) leads to a292

progressive reduction of the fitness due to the accumulation293

of detrimental mutations (see Fig. 2). On the opposite side, if294

only one gene encodes for all the traits (α =∞) the mutational295

meltdown is prevented as species can improve their fitness.296

However, in this regime, there is no differentiation inside the297

same population, exposing the species to the threat of sudden298

environmental changes. Life lies in between, where the high299

impact of few genes prevents the mutational meltdown while300

the bulk of the remaining genes guarantees differentiation.301

Notably, fishes provided with a heterogeneous genome re-302

spond to the fluctuation of the environment and to the natural303

selection operated by sharks by a sympatric speciation (53).304

Spontaneous speciation and in particular sympatric one is305

rarely reproduced (41) by models which manage to observe306

differentiation due to Mendelian inheritance (54). Accord-307

ing to our simulations, two key ingredients are important to308

observe the emergence of sympatric speciations: the hetero-309

geneity in gene relevance and the explicit spatial extension310

of the simulation. Moreover, our minimal model provides311

a theoretical framework to deal with the everlasting debate312

about the physical feasibility of evolution.313

The idea that life had evolved by the combined action of314

mutations in the genome and natural selection of the most315

fitted individuals is accepted by a vast majority of scientists.316

Those, who are skeptics, argue that random mutations on the317

genome should progressively increase the disorder (entropy)318

and consequently be incompatible with life. Indeed, this319

happens only in case of a uniform genome, where mutations 320

lead the phenotypes toward the entropic values. This argument 321

is, therefore, based on the wrong assumption that all the genes 322

equally contribute to the phenotype. 323

In our simple model, each part of the genetic sequence in- 324

fluences the phenotype with different weights. This is a coarse 325

grain representation of the underlying biological mechanism 326

through which the phenotype is manifested. In nature, only 327

2-3% of DNA is “coding” (it can be translated into mRNA and 328

then into proteins). Several studies(55, 56) have shown that 329

also the non-coding DNA (often referred to as junk) can affect 330

the phenotype. This is a mechanism for strong heterogeneity 331

in how the phenotype manifests from the underlying genetic 332

sequence. 333

Overall, in our opinion, the most limiting choices we made 334

were not to include sexual reproduction, correlations in gene 335

expression and modifications in the food chain (a prey cannot 336

become a predator). This limits the sources of variation 337

between individuals only to the effect of mutations since both 338

sexual recombination and gene flow are neglected together 339

with the complex correlations between the expression of genes 340

confers to the specimen. On the other hand, the reduced 341

number of parameters allows one to look for general features 342

of evolution. 343

In conclusion, we proved that heterogeneity in gene rele- 344

vance is a key feature to prevent a mutational meltdown in a 345

species. Moreover, we showed evidence that spatial correlations 346

are fundamental to account for sympatric speciation. These 347

findings contribute to disentangling how genomes change to 348

create new species and provide a step forward in understanding 349

the mechanisms of evolution. 350
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Appendix B

SCHA calculation details

B.1 The SCHA gradients
Here I derive the equations for the gradient and introduce some useful formula for
dealing with SCHA averages and derivatives.

First of all, lets derive the equations for computing the derivative of an observable
with respect the atomic positions ~R and the fluctuation matrix Φ.

∂ 〈O〉ρ ~R,Φ
∂Ra

= ∂

∂Ra

√
det (Υ/2π)

∫
O( ~R+ ~u) exp

[
−1

2~uΥ~u
]∏

a

dua (B.1)

The derivative only acts on the probability distribution ρ ~R,Φ. However, we can
perform a change of variable to normalize the ρ ~R,Φ, in this way we move the
dependence of the ~R and Φ to the observable.

~y =
√

Υ~u (B.2)
∏

dy = det
√

Υ
∏

du =
√

det Υ
∏

du (B.3)

〈O〉ρ ~R,Φ = 1√
(2π)3N

∫
O
(
~R+
√

Υ−1
~y
)∏

µ

e−
y2
µ
2 dyµ (B.4)

Eq. B.4 all the dependence from the minimization parameters have been moved
inside the observable.

∂ 〈O〉ρ ~R,Φ
∂Ra

= 1√
(2π)3N

∫
∂O

∂Ra
(~u)

∏

µ

e−
y2
µ
2 dyµ

= 〈 ∂O
∂Ra
〉
ρ ~R,Φ

(B.5)

∂ 〈O〉ρ ~R,Φ
∂Φab

= 1√
(2π)3N

∑

cd

∂
√

Υ−1
cd

∂Φab

∫
yd
∂O

∂Rc

∏

µ

e−
y2
µ
2 dyµ (B.6)
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∂ 〈O〉ρ ~R,Φ
∂Φab

= 1√
(2π)3N

∑

cdlm

∂
√

Υ−1
cd

∂Φab

∫ √
Υdl

√
Υ−1

lmym
∂O

∂Rc

∏

µ

e−
y2
µ
2 dyµ (B.7)

∑

dl

∂
√

Υ−1
cd

∂Φab

√
Υdl =

∑

dlhk

∂
√

Υ−1
cd

∂Φab

√
Υ−1

dh

√
Υhk

√
Υkl

= 1
2
∑

ch

∂Υ−1
ch

∂Φab
Υhl (B.8)

∂ 〈O〉ρ ~R,Φ
∂Φab

= 1√
(2π)3N

∑

cdlm

1
2
∂Υ−1

cd

∂Φab
Υdl

∫ √
Υ−1

lmym
∂O

∂Rc

∏

µ

e−
y2
µ
2 dyµ (B.9)

∂ 〈O〉ρ ~R,Φ
∂Φab

=
∑

cdl

1
2
∂Υ−1

cd

∂Φab
Υdl 〈ul

∂O

∂Rc
〉
ρ ~R,Φ

(B.10)

From Eq. B.5 it is possible to compute the free energy gradient with respect to
the atomic position:

F( ~R,Φ, {~ai}) = FΦ + 〈V − V〉ρ ~R,Φ (B.11)

∂F( ~R,Φ, {~ai})
∂Ra

=
∂ 〈V − V〉ρ ~R,Φ

∂Ra
= −〈fa − fHa〉ρ ~R,Φ (B.12)

The gradient of the free energy with respect to the Φ matrix is:

∂F( ~R,Φ, {~ai})
∂Φab

= ∂FΦ
∂Φab

−〈 ∂V
∂Φab

〉
ρ ~R,Φ

−
∑

cdl

1
2
∂Υ−1

cd

∂Φab
Υdl 〈ul(fc − fHc)〉ρ ~R,Φ (B.13)

we need first to compute the gradient of the harmonic free energy:

∂FΦ
∂Φab

=
∑

µ

∂FΦ
∂ω2

µ

∂ω2
µ

∂Φab
(B.14)

FΦ =
∑

µ

[
ωµ
2 + 1

β
ln
(
1 + e−βωµ

)]

∂FΦ
∂ω2

µ

= 1
2ωµ

∂FΦ
∂ωµ

= 1
2ωµ

(1
2 + nµ

)
(B.15)

The other derivative can be computed with the inverse:

∂Φab

∂ω2
µ

= eaµe
b
µ.
√
mamb (B.16)
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We can use the relation:
∑

h

∂ω2
µ

∂Φah

∂Φhb

∂ω2
µ

= δab (B.17)

to prove that
∂ω2

µ

∂Φab
=

eaµe
b
µ√

mamb
(B.18)

∂FΦ
∂Φab

=
∑

µ

1 + 2nµ
4ωµ

eaµe
b
µ√

mamb
= 1

2Υ−1
ab (B.19)

V = 1
2
∑

ab

uaΦabub

∂V
∂Φab

= 1
2uaub

〈 ∂V
∂Φab

〉
ρ ~R,Φ

= 1
2 〈uaub〉ρ ~R,Φ = 1

2Υ−1
ab

here we exploited the fact that Υ is the inverse of the co-variance matrix.
From which we get that

∂FΦ
∂Φab

− 〈 ∂V
∂Φab

〉
ρ ~R,Φ

= 0

Therefore,

∂F( ~R,Φ, {~ai})
∂Φab

= −
∑

cdl

1
2
∂Υ−1

cd

∂Φab
Υdl 〈ul(fc − fHc)〉ρ ~R,Φ (B.20)

B.2 The hessian matrix of the SCHA minimization

In this appendix I derive the hessian matrix in the minimum for the SCHA mini-
mization problem with respect to the fluctuations Φ. This work has been published
in ref[25].

Aabcd
Φ = ∂F

∂ΦabdΦcd

In this section, we provide an analytical guess of the free energy Hessian matrix
A with respect to the minimization variable Φ. In general, this is not possible,
since computing the real Hessian matrix corresponds to solving exactly the problem.
However, we can perform the computation in an analytical test case that, hopefully,
will enclose all the physics of the minimization problems incurred so far. This is
a purely harmonic system, described by a harmonic Hamiltonian. From now on
we introduce a compact notation to describe both Cartesian and atomic indices
(va = vαs ).

H = 1
2
∑

a

(pa)2

2ma
+ 1

2
∑

ab

uaKabub, (B.21)
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The free energy Hessian matrix with respect to the Φ variable can be computed
analytically. The steps that lead to the following result are reported in B.2.1:

AabcdΦ = − ∂2F( ~R,Φ, {~ai})
∂Φab∂Φcd

∣∣∣∣∣
Φ=K

= 1
2PabPcd

(
Λabcd + Λabdc

)
, (B.22)

where the Λ 4-rank tensor is the same introduced by Bianco et al. [24], and P is a
symmetrization factor

Λabcd = −~
4
∑

µν

1
ωµων

eaνe
b
µe
c
νe
d
µ√

mambmcmd
×

×





2nν + 1
2ων

− dnν
dωµ

ων = ωµ

nµ + nν + 1
ωµ + ων

− nµ − nν
ωµ − ων

ων 6= ωµ

, (B.23)

Pab =
√

2 (1− δab) + δab. (B.24)

Here the ωµ and ~eµ are the frequencies and polarization vectors of the K matrix.
These are, indeed, equal to the Φ matrix in the minimum of the SCHA free energy,
and represent the real phonons of the system.

The Λ matrix can be diagonalized analytically if we consider the case of all equal
masses ∑

cd

Λabcdecµedν = λ̃µνe
a
µe
b
µ. (B.25)

We can obtain an easy expression of the spectrum of the Hessian matrix in the pure
quantum limit T → 0 and the pure classical limit T →∞:

lim
T→0

λ̃µν = ~
4m2

1
ωµων(ωµ + ων) , (B.26a)

lim
T→∞

λ̃µν = 1
4βm2

1
ω2
µω

2
ν

[
1 + ωµων

(ωµ + ων)2

]
. (B.26b)

Therefore, the Hessiam matrix spectrum behaves as ω−3
µ in the quantum limit and

ω−4
ν in the classical one. We can compute the condition numbers, as defined in

Eq. (1.27):

CΦ,T=0 ≈
(
ωmax
ωmin

)3
, (B.27a)

CΦ,T→∞ ≈
(
ωmax
ωmin

)4
. (B.27b)

This unveils the pathology in the SSCHA minimization if the gradient is taken with
respect to Φ as presented in Ref.[22] for the mentioned systems: when we have
a structural instability, there is a phonon mode that softens to zero (ωmin → 0),
producing a diverging condition number C → ∞. In the same way, molecular
crystals have a broad spectrum, with a very large difference between the highest
vibron modes and the lowest intermolecular ones (for example in common ice we
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have ωmax/ωmin ∼ 103). This yields extremely high values of the condition numbers,
that makes the minimization really difficult and requires lots of energy and force
recalculations to achieve a good minimization. This obviously hinders the application
of the SSCHA method fully “ab-inito” in complex systems.

B.2.1 Detailed derivation of the Hessian matrix

In this section I report all the details of the calculations reported in appendix B.2.
The real and trial classical forces acting on each configuration identified by the

displacements ~u are:
fαs = − ∂V

∂uαs
= −

∑

tβ

Kαβ
st u

β
t , (B.28a)

fH
α
s = −

∂V ~R,Φ
∂uαs

= −
∑

tβ

Φαβ
st u

β
t . (B.28b)

Defining ~δf = ~f − ~fH we have

〈δfαs u
β
t 〉ρH = −

∑

nη

(Kαη
sn − Φαη

sn ) 〈uηnu
β
t 〉ρ ~R,Φ . (B.29)

From now on, we drop the subscript ρ ~R,Φ for each average, and consider all the
averages computed with respect to the trial density matrix. We further simplify
the notation, introducing one index for each Cartesian and atomic coordinate, so
vαs → va. In this new notation Eq. (B.29) reads:

〈δfaub〉 = −
3N∑

c=1
(Kac − Φac) 〈ucub〉 . (B.30)

The average of the product between two displacements of a Gaussian distributed
variable is the covariance between the two displacements (Eq. 1.13a):

〈ucub〉 =
(
Υ−1

)
cb

= 1
√
mcmb

3N∑

ν=1
ecνe

b
νa

2
ν , (B.31)

where we introduce the mode length aµ:

aµ =
√

~
2ωµ

(1 + 2nµ). (B.32)

The gradient of the SCHA free energy functional with respect to Φ is[22]:

∇ΦF ~R,Φ = −
∑

abµ

√
ma

mb

(
ebµ∇Φ ln aµ +∇Φe

b
µ

)
eaµ 〈δfbua〉 . (B.33)

Substituting the explicit expression of the forces we have:

∇ΦF( ~R,Φ, {~ai}) =
∑

abcµν

(Kac − Φac)
(
eaµ∇Φ ln aµ +∇Φe

a
µ

)
×

×
ebµe

c
νe
b
νa

2
ν√

mcma
. (B.34)
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It is clear from Eq. (B.34) that in the minimum Φ = K. Therefore, it is convenient
to compact all the other terms into a symbol:

∂F( ~R,Φ, {~ai})
∂Φcd

=
∑

ab

(Kab − Φab)Labcd. (B.35)

Here L is a 4-rank tensor. Since we sum on all a and b indexes and L 4-rank tensor
multiplies a symmetrical matrix, it is convenient to recast it into a symmetrical
form:

Labcd =
∑

k,µν

(
eaµ
∂ ln aµ
∂Φcd

+
∂eaµ
∂Φcd

)
ekµe

b
νe
k
νa

2
ν , (B.36)

Labcd = Pab√
mamb

Labcd + Lbacd
2 , (B.37)

Pab =
√

2(1− δab) + δab, (B.38)

Labcd = Pab√
mamb

∑

µ

[
eaµe

b
µ

∂ ln aµ
∂Φcd

+ 1
2
∂(eaµebµ)
∂Φcd

]
a2
µ. (B.39)

In the minimum the only non zero term of the hessian matrix is given by:

∂2F( ~R,Φ, {~ai})
∂Φab∂Φcd

∣∣∣∣∣
Φ=K

= −Labcd, (B.40)

∂2F( ~R,Φ, {~ai})
∂Φab∂Φcd

= − Pab√
mamb

∑

µ

[
aµe

a
µe
b
µ

∂aµ
∂Φcd

+ 1
2a

2
µ

∂(eaµebµ)
∂Φcd

]
. (B.41)

Let us start with the term inside the square brackets. The derivative of aµ can be
obtained with the chain rule:

∂aµ
∂Φcd

= ∂aµ
∂ωµ

∂ωµ
∂Φcd

= Pcd2ωµ
ecµe

d
µ√

mcmd

∂aµ
∂ωµ

. (B.42)

The derivative of the polarization versors can be computed with first order pertur-
bation theory:

∂(eaµebµ)
∂Φcd

= eaµ
∂ebµ
∂Φcd

+ ebµ
∂eaµ
∂Φcd

= Pcd√
mcmd

ν 6=µ∑

ν

(
eaµe

b
ν + ebµe

a
ν

) (
ecνe

d
µ + ecµe

d
ν

)

2(ω2
µ − ω2

ν) . (B.43)

We have a complete expression for the hessian matrix:

∂2F( ~R,Φ, {~ai})
∂Φab∂Φcd

= − PabPcd√
mambmcmd

[∑

µ

eaµe
b
µe
c
µe
d
µ

4ωµ
∂a2

µ

∂ωµ
+

+
µ 6=ν∑

µν

eaµe
b
ν(ecµεdν + ecνe

d
µ)

4

(
a2
µ

ω2
µ − ω2

ν

+ a2
ν

ω2
ν − ω2

µ

)]
. (B.44)

We can use the bosonic occupation number and write aµ as a function of nµ:

aµ =
√

~
ωµ

[
nµ(β) + 1

2

]
, (B.45a)
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aµ
2ωµ

∂aµ
∂ωµ

= − ~
8ω3

µ

(
2nµ + 1 + 2β~ωµn2

µ + 2β~ωnµ
)
. (B.45b)

Therefore we have:

∂2F( ~R,Φ, {~ai})
∂Φab∂Φcd

= ~PabPcd√
mambmcmd

[∑

µ

eaµe
b
µe
c
µe
d
µ

2nµ + 1 + 2β~ωµn2
µ + 2β~ωµnµ

8ω3
µ

+

−
µ 6=ν∑

µν

eaµe
b
ν(ecµedν + ecνe

d
µ)

8(ω2
µ − ω2

ν)

(
2nµ + 1
ωµ

− 2ων + 1
ων

)]

(B.46)

It is clear from Eq. (B.46) that a Λ matrix can be introduced so that:

∂2F( ~R,Φ, {~ai})
∂Φab∂Φcd

= −1
2PabPcd

∑

µν

(
Λabcdµν + Λabdcµν

)
, (B.47)

where

Λabcdµµ = −
~eaµebµecµedµ√
mambmcmd

·
2nµ + 1 + 2β~ωµn2

µ + 2β~ωµnµ
8ω3

µ

, (B.48a)

Λabcdµν = ~
√
mambmcmd

eaµe
b
νe
c
µe
d
ν

(ωµ − ων)(ωµ + ων)
2nµων − 2ωµnν + ων − ωµ

4ωµων
. (B.48b)

To conclude the proof it is sufficient to show that the Λ matrix of Eq. (B.22) is
equal to:

Λabcd =
∑

µν

Λabcdµν . (B.49)

First, we introduce an auxiliary function f(ωµ, ων) as

f(ωµ, ων) = 2ωνnµ − 2ωµnν + ων − ωµ
4ωµων(ωµ + ων)(ωµ − ων) = − 1

4ωµων

[
nµ + nν + 1
ωµ + ων

− nµ − nν
ωµ − ων

]
.

(B.50)
In the limit ων → ωµ we get:

f(ωµ) = lim
ων→ωµ

f(ωµ, ων) = −
2nµ + 1 + 2~βωµn2

µ + 2~βnµωµ
8ω3

µ

(B.51)

f(ωµ) = − 1
4ω2

µ

[
2nµ + 1

2ωµ
− ∂n

∂ω

]
. (B.52)

So Λabcdµµ is obtained as the continue limit of Λabcdµν when µ→ ν:

Λabcdµν =
~eaµebµecµedµ√
mambmcmd

f(ωµ, ων), Λabcdµµ =
~eaµebµecµedµ√
mambmcmd

f(ωµ). (B.53)

Substituting Eq. (B.50) and (B.52) we finally get:

Λabcdµν = − ~
4ωµων

eaµe
b
νe
c
µe
d
ν√

MaMbMcMd
×





nµ + nν + 1
ωµ + ων

− nµ − nν
ωµ − ων

ωµ 6= ων

2nµ + 1
2ωµ

− ∂nµ
∂ωµ

ωµ = ων

. (B.54)
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B.3 Condition number of the square/4-th root algo-
rithm

The hessian matrix of the minimization problem using
√

Φ or 4√Φ can be derived
directly from AΦ computed in appendix B.2.

This can be obtained exploiting the chain rule:

A√Φ = ∂2F( ~R,Φ, {~ai})
∂
√

Φ∂
√

Φ
= ΦAΦ + 2

√
ΦAΦ

√
Φ +AΦΦ, (B.55)

where AΦ is the 4-rank Hessian with respect Φ (Eq. B.22). The procedure can be
iterated to obtain any even root of Φ. Here we report also the 4√Φ expression, since,
as we will show, it has a very favorable condition number:

A 4√Φ =
√

ΦA√Φ + 2 4√ΦA√Φ
4√Φ +A√Φ

√
Φ. (B.56)

We can easily compute the condition numbers in the new variables if all the masses
are equal substituting Eq. (B.22) into (B.55) and (B.56) (recalling that Φ ∼ ω2):

C 2√Φ,T=0 ∼
(
ωmax
ωmin

)
C 2√Φ,T→∞ ∼

(
ωmax
ωmin

)2
, (B.57)

C 4√Φ,T=0 ∼ 1 C 4√Φ,T→∞ ∼
(
ωmax
ωmin

)
. (B.58)
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Appendix C

Stress tensor calculation

To easily compute the derivative of the SCHA free energy functional with respect
to the strain tensor, it is convenient to use the formalism introduced by Bianco et
al[24]. The average of a generic observable can be written as:

〈O〉ρ ~R,Φ =
√

det
(Υ

2π

)∫
O( ~R+ ~u, {~ai}) exp

(
−1

2~uΥ~u
)
d3Nu, (C.1)

In order to normalize the Gaussian integral a change of variable can be applied, so
that:

uαs =
∑

µ

Jµ
α
s yµ Jµ

α
s =

eµ
α
s√
ms

√
~(1 + nµ)

2ωµ

(
Υ−1

)αβ
st

=
∑

µ

Jµ
α
s Jµ

β
t . (C.2)

Then we have:

〈O〉ρ ~R,Φ =
∫
O( ~R+ J~y, {~ai}) [dy] [dy] =

3N∏

µ=1

exp
(
−y2

µ

2

)

√
2π

dyµ. (C.3)

Since we are deriving the F ~R functional in the minimum (Eq. 1.9), the Hellman-
Feynman (HF) theorem allows us to neglect the changes introduced by the strain on
the dynamical matrix. Since we want the most general expression, even when ~R is
not in the minimum, we need to take into account how the atomic position changes
when we apply the strain.

dF( ~R, {~ai})
dεαβ

=
3∑

i=1

∂F( ~R, {~ai})
∂~ai

∣∣∣∣∣ cart.
coord.

d~ai
dεαβ

+ ∂F( ~R, {~ai})
∂ ~R

d ~R
dεαβ

(C.4)

The last term is zero if we are in the minimum. This means that the final equation
for the stress does not depend on the particular atomic deformation induced by the
strain. This correspond in doing the derivative of the free energy keeping fixed the
crystalline coordinates, that is:

dF( ~R, {~ai})
dεαβ

=
3∑

i=1

∂F( ~R, {~ai})
∂~ai

∣∣∣∣∣cryst.
coord.

d~ai
dεαβ

(C.5)
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This expression is more convenient, as it coincides with the definition of stress
tensor of a system whose atomic positions are out of equilibrium. The free energy
functional is:

F ~R = FΦ( ~R) + 〈V − V ~R,Φ( ~R)〉ρ ~R
, (C.6)

where Φ( ~R) is the dynamical matrix that minimizes F( ~R,Φ, {~ai}) fixing the average
atomic positions. The first term, FΦ( ~R) is an explicit function only of the SCHA
dynamical matrix, therefore does not contribute to the derivative.

dF( ~R, {~ai})
dεαβ

=
3∑

i=1

∂ 〈V − V ~R,Φ( ~R)〉ρ ~R
∂~ai

∣∣∣∣∣∣cryst.
coord.

d~ai
dεαβ

(C.7)

Joining Eq. (C.7) with Eq. (C.3) we can compute the derivative of an average in the
SCHA ensemble with respect to the strain:

∂ 〈O〉ρ ~R
∂εαβ

= ∂

∂εαβ

∫
O
(
~R(ε) + J~y, {~ai(ε)}

)
[dy] =

∫ ∑

iγ

∂O

∂aγi

∣∣∣∣∣cryst.
coord.

∂aγi
∂εαβ

[dy] ,

(C.8)
∂ 〈O〉ρ ~R
∂εαβ

= 〈
∑

iγ

∂O

∂aγi

∣∣∣∣∣cryst.
coord.

∂aγi
∂εαβ

〉
ρ ~R

. (C.9)

∂ 〈V 〉ρ ~R
∂εαβ

= 〈
∑

iγ

∂V

∂aγi

∣∣∣∣∣cryst.
coord.

∂aγi
∂εαβ

〉
ρ ~R

= −Ω 〈PHαβ〉ρ ~R
, (C.10)

The term with the harmonic potential V can be derived writing its explicit dependence
from the strain tensor ε:

V ~R,Φ(ε) = 1
2
[
(I + ε)

(
~R− ~R

)]
Φ
[
(I + ε)

(
~R− ~R

)]T
(C.11)

From which we immediately can write the derivative:

dV ~R,Φ
dε

∣∣∣∣∣
ε=0

= 1
2
(
~R− ~R

)
⊗Φ

(
~R− ~R

)
+ 1

2
(
~R− ~R

)
Φ⊗

(
~R− ~R

)
=

= −1
2
(
~R− ~R

)
⊗ ~fHs −

1
2
~fHs ⊗

(
~R− ~R

)
(C.12)

Where the outer product must be taken only on the Cartesian coordinates (as it is a
consequence of the ε derivative). Explicitying the last equation in all cartesian and
atomic indices it is:

dV ~R,Φ
dεαβ

∣∣∣∣∣
ε=0

= −
Natoms∑

s=1

1
2
(
uαs fH

β
s + uβs fH

α
s

)
(C.13)

From which we have:
d 〈V ~R,Φ〉ρ ~R

dεαβ
= −1

2 〈
Natoms∑

s=1

(
uαs fH

β
s + uβs fH

α
s

)
〉
ρ ~R

(C.14)
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dF( ~R, {~ai})
dεαβ

= −Ω 〈PHαβ〉ρ ~R
+ 1

2 〈
Natoms∑

s=1

(
uαs fH

β
s + uβs fH

α
s

)
〉
ρ ~R

(C.15)

Therefore, the final expression of the stress tensor is:

Pαβ = − 1
Ω
dF( ~R, {~ai})

dεαβ
(C.16)

Pαβ = 〈PHαβ −
1

2Ω

N∑

s=1

(
fH

α
s u

β
s + fH

β
su

α
s

)
〉
ρ ~R

(C.17)

It is interesting to notice that the “harmonic” contribution could also be computed
analytically:

PHαβ = − 1
2Ω 〈

N∑

s=1

(
fH

α
s u

β
s + fH

β
su

α
s

)
〉
ρ ~R

= − 1
Ω

3N∑

µ=1

N∑

s=1

~ωµ
2 tanh

(
β~ωµ

2

)eµαs eµ
β
s ,

(C.18)
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Appendix D

TDSCHA

D.1 The Lambda matrix
In this section I prove the relation(3.13):

Λabcd = 1
2
∂(Υ−1)cd
∂Φab

We recall:
Υ−1

cd = 1
√
mcmd

∑

µ

ecµe
d
µ

1 + 2nµ
2ωµ

(D.1)

Φab = √mamb

∑

µ

ω2
µe
a
µe
b
µ (D.2)

Then we have:
∂Υ−1

cd

∂Φab
=
∑

µ

∂Υ−1
cd

∂ωµ

∂ωµ
∂Φab

+
∑

µhk

∂Υ−1
cd

∂(ekµehµ)
∂(ekµehµ)
∂Φab

(D.3)

∂Φab

∂ωµ
= √mamb 2ωµeaµebµ

∂ωµ
∂Φab

=
eaµe

b
µ

2ωµ
√
mamb

(D.4)

The derivative with respect of the perturbation vectors has been calculated in
Eq. (B.43).

∂(eaµebµ)
∂Φcd

= Pcd√
mcmd

ν 6=µ∑

ν

(
eaµe

b
ν + ebµe

a
ν

) (
ecνe

d
µ + ecµe

d
ν

)

2(ω2
µ − ω2

ν) . (D.5)

Lets compute some factors:
∂nµ
∂ωµ

= −βn2
µe
βωµ (D.6)

∂

∂ωµ

(
1 + 2nµ

2ωµ

)
= −

2βωeβωn2
µ + 1 + 2nµ
2ω2

µ

(D.7)

= −
2βωµ(eβωµ − 1)n2

µ + 2βωn2
µ + 1 + 2nµ

2ω2
µ

= (D.8)

= −
2βωnµ + 2βωn2

µ + 2nµ + 1
2ω2

µ

(D.9)
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∂Υ−1
cd

∂ωµ
= − 1
√
mcmd

ecµe
d
µ

2βωnµ + 2βωn2
µ + 2nµ + 1

2ω2
µ

(D.10)

So the first part is computable easily:

∑

µ

∂Υ−1
cd

∂ωµ

∂ωµ
∂Φab

= 1
√
mcmd

∑

µ

ecµe
d
µ

2βωnµ + 2βωn2
µ + 2nµ + 1

2ω2
µ

eaµe
b
µ

2ωµ
√
mamb

(D.11)

∑

µ

∂Υ−1
cd

∂ωµ

∂ωµ
∂Φab

=
∑

µ

eaµe
b
µe
c
µe
d
µ√

mambmcmd

2βωnµ + 2βωn2
µ + 2nµ + 1

4ω3
µ

(D.12)

Now we compute the other part:

∂Υ−1
cd

∂(ekµehµ) = 1
√
mcmd

1 + 2nµ
2ωµ

(δhcδkd + δhdδkc)
Pcd
2 (D.13)

∑

µhk

∂Υ−1
cd

∂(ekµehµ)
∂(ekµehµ)
∂Φab

=
∑

µ

PabPcd√
mambmcmd

ν 6=µ∑

ν

(
ecµe

d
ν + edµe

c
ν

) (
eaνe

b
µ + eaµe

b
ν

)

2(ω2
µ − ω2

ν)
1 + 2nµ

2ωµ
(D.14)

We can explicit the sum over ab by exchanging µ and ν:

∑

µhk

∂Υ−1
cd

∂(ekµehµ)
∂(ekµehµ)
∂Φab

= PabPcd√
mambmcmd

∑

µν
ν 6=µ

(
ecµe

d
ν + edµe

c
ν

)
eaµe

b
ν

2(ω2
µ − ω2

ν)

(
1 + 2nµ

2ωµ
− 1 + 2nν

2ων

)

(D.15)
Joining Eq. (D.11) with Eq. (D.15) and comparing with Eq. (B.46) we recognize

immediately that:
∂Υ−1

cd

∂Φab
= 2Λabcd (D.16)

D.2 Harmonic Green functions

Here we study an harmonic quantum crystal with Green functions. The green
function for the phonons can be defined as the response function with respect to
atomic displacements:

Gab(t) = −i 〈ψ0|T
√
ma[Ra(t)−Ra]

√
mb[Rb(0)−Rb]|ψ0〉 (D.17)

Where the position operators Ra(t) and Rb(0) are in the Heisenberg picture

Ra(t) = eiHtRae
−iHt,

and T is the time-ordering operator.
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We can express the position operator as a function of phonon creation and
annihilation operators:

√
ma(Ra −Ra) =

∑

µ

eaµ

√
1

2ωµ

(
c†µ + cµ

)
(D.18)

Where µ are all the modes in the supercell. Substituting in the green function
we get:

Gab(t) = −i
∑

µν

eaµe
b
ν

2√ωνωµ
〈ψ0|T

[
c†µ(t) + cµ(t)

] [
c†ν + cν

]
|ψ0〉 (D.19)

From Eq. (D.19) it is clear that µ = ν. Harmonic phonons do not interact. The
only non zero terms are those where a phonon is firstly created and then annihilated.
In this case, thanks to the time ordering T operator, we have also a non vanishing
backward propagation in time:

Gab(t) = −i
∑

µ

eaµe
b
µ

2ωµ
〈ψ0|

[
cµ(t)c†µθ(t) + cµc

†
µ(t)θ(−t)

]
|ψ0〉 (D.20)

This backward propagation is always present for Hermitian operators.
We can explicit the Heisenberg picture and compute the green function.

〈ψ0|cµc†µ|ψ0〉 = 1

Gab(ω) = −i
∑

µ

eaµe
b
µ

2ωµ

[∫ ∞

0
ei(ω−ωµ+i0+)tdt+

∫ 0

−∞
ei(ω+ωµ−i0+)tdt

]
(D.21)

Gab(ω) = −i
∑

µ

eaµe
b
µ

2ωµ

[∫ ∞

0
ei(ω−ωµ+i0+)tdt+

∫ ∞

0
e−i(ω+ωµ−i0+)tdt

]
(D.22)

From which we get

Gab(ω) =
∑

µ

eaµe
b
µ

2ωµ

[
1

ω − ωµ + i0+ −
1

ω + ωµ − i0+

]
(D.23)

Gab(ω) =
∑

µ

eaµe
b
µ

2ωµ
2(ωµ − i0+)

ω2 − (ωµ − i0+)2 (D.24)

We can keep only first order poles. They are non vanishing only when ω = ±ωµ, we
can rewrite the equation as:

Gab(ω) =
∑

µ

eaµe
b
µ

1
(ω + i0+)2 − ω2

µ

(D.25)

Since this is diagonal in the eigenmode space, we can write it in matricial form:

Dab =
∑

µ

eaµe
b
µω

2
µ

G(ω) =
[
ω2 −D + 2iω0+

]−1
(D.26)
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D.3 Perturbation series
Here we want to derive the correct perturbation expansion (at T = 0 K for simplicity)
for the anharmonic problem:

V = 1
2
∑

ab

√
mamb

(2)
Dab uaub + 1

6
∑

abc

√
mambmc

(3)
Dabc uaubuc

We ignore higher order terms.
Here, the third order introduces a scattering channel between phonons. The

interacting green function is, therefore:

Gab(ω) = −i 〈ψ0|TS(∞,−∞)
√
maua(t)

√
mbRb(0)|ψ0〉 (D.27)

Where |ψ0〉 is the interacting ground state and S(∞,−∞) is the propagator. We
can expand the propagator in series

S(t, 0) = T exp
{
−i
∫ t

0
dt′

1
6
∑

abc

√
mambmc

(3)
Dabc ua(t′)ub(t′)uc(t′)

}
(D.28)

We can take the second order expansion of the propagator (the first order gives
zero, as it contains an odd number of creation operators)

S(∞,−∞) ≈ 1− 1
36
∑

abc
def

∫ ∞

−∞
dt′
∫ ∞

−∞
dt′′

(3)
Dabc ũa(t′)ũb(t′)ũc(t′)

(3)
Ddef ũd(t′′)ũe(t′′)ũf (t′′)

(D.29)
where ũ =

√
mu for a more compact expression.

Substituting this inside the Green function we get:

Ghk(ω) =G(0)
hk (ω) + 1

36
∑

abc
def

(3)
Dabc

(3)
Ddef

∫ ∞

−∞
eiωtdt

∫ ∞

−∞
dt′
∫ ∞

−∞
dt′′

〈ψ0|Tuh(t)ua(t′)ub(t′)uc(t′)ud(t′′)ue(t′′)uf (t′′)uk(0)|ψ0〉 (D.30)

The last contraction can be evaluated using the Wick theorem. Among all
possible contractions, we can easily see that the only non disconnected diagrams are
of the type:

〈uh(t)ua(t′)〉 〈ub(t′)ud(t′′)〉 〈uc(t′)ue(t′′)〉 〈uf (t′′)uk(0)〉

This diagram can be obtained also exchanging a ↔ b ↔ c, d ↔ e ↔ f . Therefore
it appears 36 times in the summation. This diagram is the bubble. The other non
vanishing diagram is the tadpole:

〈uh(t)ua(t′)〉 〈ub(t′)ud(t′′)〉 〈ue(t′′)uf (t′′)〉 〈uc(t′)uk(0)〉

Also this diagram appears 36 times in the summation. We can cancel the 1/36 and
the summation and account only for one diagram.
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Here, I will consider only the bubble, as it is the term we find to be more
interesting. We can make the following change of variables:

t′′ = τ1 t′ − t′′ = τ2 t− t′ = τ3

Since the times vary from −∞ to ∞, so the τ variables do. Then the integral
becomes:

∫∫∫ ∞

−∞
dτ3dτ2dτ1e

iω(τ1+τ2+τ3)G
(0)
ha (τ3)G(0)

bd (τ2)G(0)
ce (τ2)G(0)

fk (τ1) (D.31)

We can call the two phonons propagator χ(ω) as:

1
2χabcd(ω) =

∫ ∞

−∞
dteiωtG(0)

ac (t)G(0)
bd (t) (D.32)

And the bubble term is:

Ghk(ω) = G
(0)
hk (ω) +G

(0)
ha (ω)

∑

a≥b≥c
d≥e≥f

(3)
Dabc

1
2χbcde(ω)

(3)
Ddef G

(0)
fk (ω) (D.33)

Using a self-energy approach, we can extract the bubble self-energy:

Π(ω) = −
∑

a≥b≥c
d≥e≥f

(3)
Dabc

1
2χbcde(ω)

(3)
Ddef (D.34)

And we get
G = G(0) −G(0)ΠG (D.35)

(1 +G(0)Π)G = G(0) (D.36)

G = (1 +G(0)Π)−1G(0) (D.37)

G−1 = (G(0))−1(1 +G(0)Π) = (G(0))−1 + Π (D.38)

So now lets compute the two phonon propagator:

1
2χabcd(ω) =

∫
dteiωtG(0)

ac (t)G(0)
bd (t) (D.39)

G(0)
ac (t) = −i

∑

µ

eaµe
c
µ

2ωµ

[
θ(t)e−iωµt + θ(−t)eiωµt

]

1
2χabcd(ω) = −i

∑

µν

eaµe
c
µe
b
νe
d
ν

4ωµων

[∫ ∞

0
dtei(ω−ωµ−ων+i0+)t +

∫ ∞

0
dte−i(ω+ωµ+ων−i0+)t

]

(D.40)
So we have

1
2χabcd(ω) =

∑

µν

eaµe
c
µe
b
νe
d
ν

4ωµων

[
1

ω − ωµ − ων + i0+ −
1

ω + ωµ + ων − i0+

]
(D.41)

1
2χabcd(ω) =

∑

µν

eaµe
c
µe
b
νe
d
ν

4ωµων
1

ω2 − (ωµ + ων − i0+)2 (D.42)
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D.4 Least action principle
We can split the action in the same way as done in the 1D case:

A1 = 1
T

∫ T

0
dt 〈ψ(t)|K|ψ(t)〉 (D.43)

A2 = 1
T

∫ T

0
dt 〈ψ(t)|V (t)|ψ(t)〉 (D.44)

A3 = − i
~

1
T

∫ T

0
dt 〈ψ(t)| d

dt
|ψ(t)〉 (D.45)

where K is an abbreviation for the kinetic energy operator:

K =
3N∑

a=1

P 2
a

2ma

D.4.1 A1 computation

The first term is just:

−
∑

i

~2

2mi

∫
d3NRψ∗(~R, t)∂

2ψ

∂R2
i

(~R, t) (D.46)

∂2ψ

∂R2
a

=
[
− Υaa

2 + 2iCaa + 1
4
∑

bc

ΥabΥac(Rb −Rb)(Rc −Rc)−Q2
a−

− 4
∑

bc

CabCac(Rb −Rb)(Rc −Rc)− iQa
∑

b

Υab(Rb −Rb)−

− 2i
∑

bc

ΥabCac(Rb −Rb)(Rc −Rc)− 4Qa
∑

b

Cab(Rb −Rb)
]
ψ(~R, t) (D.47)

when computing the integral all the terms linear in the displacement are cancelled,
recalling that:

∫
d3NRψ∗(~R, t)(Ra −Ra)(Rb −Rb)ψ(~R, t) = (Υ−1)ab (D.48)

∫
d3Nψ∗(~R, t)∂

2ψ

∂R2
a

(~R, t) = −Υaa

4 −Q2
a − 4

∑

bc

Cab(Υ−1)bcCca (D.49)

Then the kinetic term is:

〈ψ|K|ψ〉 = ~2∑

a

[
Υaa

8ma
+ Q2

a

2ma
+ 2
ma

∑

bc

Cab(Υ−1)bcCca

]
(D.50)

From which we can get the first part of the action:

A1 = ~2

T

∫ T

0
dt
∑

a

[
Υaa

8ma
+ Q2

a

2ma
+ 2
ma

∑

bc

Cab(Υ−1)bcCca

]
(D.51)
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Now we can compute the variation of the action:

δA1
δQa

= ~2Qa
ma

δA1
δRa

= 0 (D.52)

δA1
δCab

= 2~2

ma

∑

c

(Υ−1)bcCca + 2~2

mb

∑

c

Cbc(Υ−1)ca (D.53)

Since each term is symmetric if I change a with b I can just take:

δA1
δCab

= 4~2

ma

∑

c

(
Υ−1

)
bc
Cca (D.54)

δA1
δΦab

=
∑

c

~2

mc

1
8
∂Υcc

∂Φab
+
∑

cde

2~2

mc
Ccd

∂(Υ−1)de
∂Φab

Cec (D.55)

The last term can be rewritten as:

∂Υcc

∂Φab
= −

∑

hk

ΥchΥck
∂Υ−1

hk

∂Φab
(D.56)

If T = 0 we have:
∑

c

~2

4mc
ΥacΥcb = Φab (D.57)

δA1
δΦab

= −
∑

de

1
2Φde

∂Υ−1
de

∂Φab
+
∑

cde

2~2

mc
Ccd

∂(Υ−1)de
∂Φab

Cec (D.58)

D.4.2 A2 computation

To compute the action of the second term we must perform the derivatives of:

δA2 = δ
1
T

∫ T

0
dt 〈ψ|V (t)|ψ〉 (D.59)

δA2
δΦab

= 1
2
∑

cd

∂Υ−1
cd

∂Φab
〈 ∂2V

∂Rc∂Rd
〉 (D.60)

It is quite easy to provide the derivative of both A1 and A2 respect to Φ since it
would be equal to the static free energy derivative in absence of the quadratic chirp
C.

δ(A1 +A2)
δΦab

=
∑

cd

∂Υ−1
cd

∂Φab

(
1
2 〈

∂2V

∂Rc∂Rd
〉 − 1

2Φcd +
∑

e

2~2

me
CceCed

)
(D.61)

It is interesting to notice how the old free energy gradient appears here:

∂FSCHA
∂Φab

= 1
2
∑

cd

∂Υ−1
cd

∂Φab

(
〈 ∂2V

∂Rc∂Rd
〉 − Φcd

)
(D.62)
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The derivative respect to R is trivial:

δA2
δRa

= −〈fa〉 (D.63)

The derivative respect to the two phases is zero:

δA2
δQa

= 0 δA2
δCab

= 0 (D.64)

D.4.3 A3 computation

Let us compute the last term:

A3 = −i ~
T

∫ T

0
dt 〈ψ(t)| d

dt
|ψ(t)〉 (D.65)

〈ψ(t)| d
dt
|ψ(t)〉 =

∫
d3NR ψ∗(R, t) d

dt
ψ(R, t) (D.66)

If we consider the derivative on the real part of the wavefunction, we get zero,
because for those term we have:

∫
d3NR

d

dt
|ψ(R, t)|2 = d

dt

∫
d3NR |ψ(R, t)|2 = 0 (D.67)

Therefore, only the derivative in the phase term will give a non zero contribution
to the A3 term:

〈ψ(t)| d
dt
|ψ(t)〉 = −

∑

a

iQaṘa + i
∑

ab

Ċab(Υ−1)ab (D.68)

We obtain the variation easily:

δA3
δQa

= −~Ṙa
δA3
δRa

= ~Q̇a (D.69)

δA3
δCab

= −~
∑

cd

∂(Υ−1)ab
∂Φcd

Φ̇cd
δA3
δΦab

= ~
∑

cd

Ċcd
∂(Υ−1)cd
∂Φab

(D.70)

Putting all together we get:




−〈fa〉+ ~Q̇a = 0

−~Ṙa + ~2Qa
ma

= 0

∂FSCHA
∂Φab

+
∑

cde

2~2

mc

∂Υ−1
de

∂Φab
CcdCce + ~

∑

cd

Ċcd
∂(Υ−1)cd
∂Φab

= 0

−~
∑

cd

∂(Υ−1)ab
∂Φcd

Φ̇cd + 4~2

ma

∑

c

(Υ−1)bcCca = 0

(D.71)

That are the equation of motion we presented in the main text.
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D.5 Effective time-dependent Hamiltonian

In this section we want to prove that the equation of motion corresponds to a
Gaussian wave-function evolving according to the SCHA Hamiltonian, as in the one
dimensional case:

H |ψ〉 = i~
d

dt
|ψ〉 (D.72)

Where H is the SCHA Hamiltonian:

H = K + 1
2
∑

ab

〈 d2V

dRadRb
〉 (Ra −Ra)(Rb −Rb)−

∑

a

〈fa〉 (Ra −Ra) (D.73)

And |ψ〉 is the Gaussian wavepacket introduced in eq. (3.6).
We can derive the equations of motion by combining eq. (D.72), (D.73) and

(3.6).
First of all, let us concentrate on the right hand side of eq. (D.72).

〈~R|K|ψ〉 = −
∑

a

1
2ma

∂2ψ

∂R2
a

(D.74)

∂ψ

∂Ra
=
[
−1

2
∑

b

Υab(Rb −Rb) + iQa + 2i
∑

b

Cab(Rb −Rb)
]
ψ(~R) (D.75)

∂2ψ

∂R2
a

=
{[
−1

2
∑

b

Υab(Rb −Rb) + iQa + 2i
∑

b

Cab(Rb −Rb)
]2

+

+
[
−1

2Υaa + 2iCaa
]}

ψ(~R) (D.76)

∂2ψ

∂R2
a

=
{∑

bc

(Rb −Rb)(Rc −Rc)
[ΥabΥac

4 − 4CabCac − 2iΥabCac
]

+

+
∑

b

(Rb −Rb) [−iQaΥab − 4QaCab]−
1
2Υaa + 2iCaa −Q2

a

}
ψ(~R)

(D.77)

Then, the potential part is:

〈~R|V |ψ〉 = 1
2
∑

ab

〈 d2V

dRadRb
〉 (Ra −Ra)(Rb −Rb)ψ(~R)−

∑

a

〈fa〉 (Ra −Ra)ψ(~R)

(D.78)
We wrote the right-hand side of Eq. (D.72). Now we need to compute the time

derivative:

N(t) = 4

√
det Υ(t)

2π
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dψ

dt
=
{∑

ab

(Ra −Ra)(Rb −Rb)
[
−Υ̇ab

4 + iĊab

]
+ d lnN

dt
− i

∑

a

QaṘa+

+
∑

a

(Ra −Ra)
[
iQ̇a + 1

2
∑

b

ΥabṘb − 2i
∑

b

CabṘb

]}
ψ(~R) (D.79)

Now we can join all together. These equations must hold separately for real/imaginary
part and we can exploit the polinomy equivalence theorem. Then all the coefficients
of the power of (R−R) must be the same. We have the following equations:





−
∑

c

1
2mc

[ΥacΥcb

4 − 4CcaCcb
]

+ 1
2 〈

d2V

dRadRb
〉 = −Ċab

2
∑

c

1
2mc

ΥcaCcb = −Υ̇ab

4

∑

a

2QaCab
ma

− 〈fb〉 = −Q̇b + 2
∑

a

CabṘa

∑

b

QbΥab

2mb
= 1

2
∑

b

ΥabṘb

∑

a

Υaa + 2Q2
a

4ma
=
∑

a

QaṘa

−
∑

a

Caa
ma

= d lnN
dt

(D.80)

From the fourth equation we get:

Ṙb = Qb
mb

(D.81)

That is consistent with our dynamical equation of SCHA.
It is easy to show that:

∑

c

ΥacΥcb

mc
= √mamb

∑

µνc

4ωµωνeaµecµecνebν = 4Φab (D.82)

Therefore the first equation is:

− Φab

2 + 2
∑

c

CcaCcb
mc

+ 1
2 〈

d2V

dRadRb
〉 = −Ċab (D.83)

1
2

[
〈 d2V

dRadRb
〉 − Φab

]
+ 2

∑

c

CcaCcb
mc

= −Ċab (D.84)

∑

ab

1
2
∂Υ−1

ab

∂Φcd

[
〈 d2V

dRadRb
〉 − Φab

]
+ 2

∑

ab

∂Υ−1
ab

∂Φcd

∑

k

CkaCkb
mk

= −
∑

ab

∂Υ−1
ab

∂Φcd
Ċab (D.85)
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The gradient can be easily recognized by the Bianco eq.[24] (A18b)

∂F
∂Φab

+ 2
∑

ab

∂Υ−1
ab

∂Φcd

∑

k

CkaCkb
mk

+
∑

ab

∂Υ−1
ab

∂Φcd
Ċab = 0 (D.86)

That is exactly the other equation of the motion.
We can take the second equation:

4
∑

c

ΥcaCcb
mc

= −Υ̇ab (D.87)

4
∑

ca

Υ−1
kaΥac

Ccb
mc

= −
∑

a

Υ−1
kaΥ̇ab (D.88)

4Ckb
mk

= −
∑

a

Υ−1
kaΥ̇ab (D.89)

4
∑

b

Υ−1
ab
Ckb
mk

= −
∑

bh

Υ−1
abΥ−1

khΥ̇hb (D.90)

We can easily recognize that

d

dt

(
Υ−1

ab

)
= −

∑

cd

Υ−1
acΥ−1

bd
dΥcd

dt
(D.91)

From which we get the equation:

4
∑

k

Υ−1
ak Cbk
mb

= d

dt

(
Υ−1

ab

)
=
∑

cd

∂Υ−1
ab

∂Φcd
Φ̇cd (D.92)

Let us take the third equation.
∑

a

Cab
(2Qa
ma
− 2Ṙa

)
= 〈fb〉 − Q̇b (D.93)

Recognizing the Eq. (D.81) we get:

Q̇a = 〈fa〉 (D.94)

We recollected all the equations of motion, it only remains to check that also
the last two equations are satisfied. But this is trivially true, since they represent
the constraint of a Gaussian wavepacket in the time evolution with the Eq. (D.72).
From the fifth equation we get:

∑

a

Υaa

ma
=
∑

a

Q2
a

2ma
(D.95)

This is just a gauge choice, as if we add a static energy to the Hamiltonian (or a
global phase to the trial wavefunction) will change. And from the last equation we
get:

d lnN
dt

= d

dt

(
1
4
∑

a

lnλa

)
(D.96)
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where λa is the a-th eigenvalue of the Υ matrix. Inside the parenthesis the trace of
the matrix ln Υ is written.

d lnN
dt

= 1
4
d

dt
Tr [ln Υ] (D.97)

We can bring the derivative inside the trace

d lnN
dt

= 1
4Tr

[
d

dt
ln Υ

]
(D.98)

We can perform the derivative

d lnN
dt

= 1
4Tr

[
Υ−1 · Υ̇

]
(D.99)

We can now perform the trace:

d lnN
dt

= 1
4
∑

ab

Υ−1
abΥ̇ba (D.100)

Putting all togheter we have:

−
∑

a

Caa
ma

= 1
4
∑

ab

Υ−1
ab Υ̇ba (D.101)

If we substitute the Eq. (D.87) we get

−
∑

a

Caa
ma

= −1
4
∑

ab

Υ−1
ab

(
4
∑

c

ΥcbCca
mc

)
(D.102)

That is trivially always satisfied.

D.6 Average over the perturbed ensemble

Now we compute the quantity:

〈O〉ρ(1) =
∑

a

∂ 〈O〉
∂Ra

R(1)
a +

∑

ab

∂ 〈O〉
∂Φab

Φ(1)
ab (D.103)

We can use the SCHA relations[24]:

∂ 〈O〉
∂Ra

= 〈 ∂O
∂Ra
〉 (D.104)

∂ 〈O〉
∂Φab

= 1
2
∑

cd

∂Υ−1
cd

∂Φab
〈 ∂2O

∂Rc∂Rd
〉 (D.105)

〈 ∂O
∂Ra
〉 =

∑

b

Υab 〈ubO〉 (D.106)
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Indeed ρ(1)(t) can be computed:

ρ(~R) ∝ exp
[
−1

2
∑

ab

(
Υ(0)
ab + Υ(1)

ab

)
(Ra −R(0)

a −R(1)
a )(Rb −R

(0)
b −R

(1)
b )
]

(D.107)

we can split this exponential:

ρ(~R) = ρ(0)(~R) exp
[
−1

2
∑

ab

Υ(1)
ab uaub + 1

2
∑

ab

Υ(0)
ab

(
ubR(1)

a + uaR(1)
b

)]
(D.108)

ρ(~R) = ρ(0)(~R)
[
1− 1

2
∑

ab

Υ(1)
ab uaub + 1

2
∑

ab

Υ(0)
ab

(
ubR(1)

a + uaR(1)
b

)]
(D.109)

From which it is trivial to obtain the perturbation term of the density matrix:

ρ(1)(~R, t) = 1
2ρ

(0)(~R)
∑

ab

[
Υ(0)
ab

(
uaR(1)

b (t) +R(1)
a (t)ub

)
−Υ(1)

ab (t)uaub
]

(D.110)

Then the average of an observable becomes:

〈O(~u)〉ρ(1)(t) = 1
2
∑

ab

[
Υ(0)
ab

(
〈Oua〉R(1)

b (t) +R(1)
a (t) 〈Oub〉

)
−Υ(1)

ab (t) 〈uaOub〉
]

(D.111)
We can recognize that the first term is a symmetric matrix Υab multiplied with

the symmetrized version of another matrix 〈Oua〉R(1)
b . Since an asymmetric matrix

times a symmetric ones is always zero, we can add the asymmetric part of that
matrix and simplify the expression:

〈O(~u)〉ρ(1) =
∑

ab

[
Υab 〈Oua〉R

(1)
b −

1
2Υ(1)

ab 〈uaOub〉
]

(D.112)

we can exploit the SCHA formalism in order to write them in a much better
way:

∑

b

Υ(0)
ab 〈Oub〉 = 〈 ∂O

∂Ra
〉 (D.113)

Then the equation for the averages becomes:

〈O〉ρ(1) =
∑

a

R(1)
a (t) 〈 ∂O

∂Ra
〉 − 1

2
∑

ab

Υ(1)
ab 〈uaOub〉 (D.114)

Then we can substitute

Ċ(1)
hk = 1

2~ 〈
∂f

(1)
k

∂Rh
〉
ρ(0)

+ 1
2~Φ(1)

hk

+ 1
2~
∑

abc

ΥhaΥbc 〈ucuaδfk〉ρ(0) R(1)
b +

− 1
4~
∑

abc

ΥhaΥ
(1)
bc 〈ubucuaδfk〉
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Using the notation introduced in ref. [24] we recognize:
(3)
Φ abc= −

∑

pq

ΥapΥbq 〈upuqδfc〉 (D.115)

(4)
Φ abcd= −

∑

pqr

ΥapΥbqΥcr 〈upuqurδfd〉 (D.116)

Then we can unwrap the Υ(1)
bc with the following:
∑

b

ΥabΥ−1
bc = δac (D.117)

Applying the derivative we get:
∑

b

[
Υ(1)
ab Υ−1

bc + ΥabΥ−1(1)
bc

]
= 0 (D.118)

∑

b

Υ(1)
ab

∑

c

Υ−1
bc Υcd

︸ ︷︷ ︸
δbd

= −
∑

bc

ΥabΥ−1(1)
bc Υcd (D.119)

Υ(1)
ad = −

∑

bc

ΥabΥcdΥ−1(1)
bc (D.120)

We get

Ċ(1)
hk = 1

2~

(
〈
∂f

(1)
k

∂Rh
〉
ρ(0)

+ Φ(1)
hk

)
− 1

2~
∑

b

(3)
Φ hkb R

(1)
b −

1
4~
∑

pq

(4)
Φ hpqk Υ−1(1)

pq (D.121)

The advantage of having the perturbation written in Υ−1 instead of Υ not

only simplifies the expression allowing for the reconstruction of
(4)
Φ but can also be

expressed in terms of Φ:

Ċ(1)
hk = 1

2~

(
〈
∂f

(1)
k

∂Rh
〉
ρ(0)

+ Φ(1)
hk

)
− 1

2~
∑

b

(3)
Φ hkb R

(1)
b −

1
4~
∑

pqcd

(4)
Φ hpqk

∂Υ−1
pq

∂Φcd
Φ(1)
cd

(D.122)

Ċ(1)
hk = 1

2~


〈∂f

(1)
k

∂Rh
〉
ρ(0)

+ Φ(1)
hk −

∑

b

(3)
Φ hkb R

(1)
b −

∑

pqcd

(4)
Φ hpqk ΛcdpqΦ(1)

cd


 (D.123)

In a very interesting way we can obtain the static limit of the equation when a
constant electric field is applied to the system. The time derivative of the chirp is
zero and we get:

Φ(1)
hk =

∑

b

(3)
Φ hkb R

(1)
b +

∑

pqcd

(4)
Φ hpqk ΛcdpqΦ(1)

cd (D.124)

Then if we derive for the R vector we get:

∂Φhk

∂Ra
=

(3)
Φ hka +

∑

pqcd

(4)
Φ hpqk Λcdpq ∂Φcd

∂Ra
(D.125)

That coincides with the equation (A27) from ref. [24].
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D.6.1 Final equation for the perturbated average

We can join all the equations of the previous section to provide the solution of the
average of an observable over the perturbed ensemble.

〈O〉ρ(1) =
∑

ab

Υab 〈uaO〉R
(1)
b +

∑

bcdpq

Υac 〈uaubO〉ΥbdΛpqcdΦ(1)
pq − 〈O〉

∑

abcd

ΛabcdΦ(1)
cd

(D.126)

D.6.2 Perturbations in Φ
The last perturbation that remains to be taken into account to close the system is
the Φ(1) one.

Rewriting the Φ equation of motion we have.
∑

cd

ΛcdabΦ̇cd =
∑

c

2~
ma

Υ−1
bc Cca (D.127)

Since in the unperturbed state Φ̇ and C are zero, the only first order terms that
survive in perturbation theory are:

∑

cd

ΛcdabΦ̇(1)
cd =

∑

c

2~
ma

Υ−1
bc C

(1)
ca (D.128)

Now that we isolate the time dependence in Φ̇(1) and C(1), it is possible to derive to
couple this equation with the chirp:

∑

cd

ΛcdabΦ̈(1)
cd =

∑

c

2~
ma

Υ−1
bc Ċ

(1)
ca (D.129)

Now we can substitute the Ċ equation (D.123).

∑

cd

ΛcdabΦ̈(1)
cd = −

∑

c

2~
ma

Υ−1
bc

1
2~

[
− 〈∂f

(1)
c

∂Ra
〉
ρ(0)
− Φ(1)

ca +

+
∑

h

(3)
Φ cah R

(1)
h +

∑

rstd

(4)
Φ cars ΛtdrsΦ(1)

td

]
(D.130)

∑

cd

ΛcdabΦ̈(1)
cd = −

∑

c

Υ−1
bc

ma

[
− 〈∂f

(1)
c

∂Ra
〉
ρ(0)
− Φ(1)

ca +

+
∑

h

(3)
Φ cah R

(1)
h +

∑

rstd

(4)
Φ cars ΛtdrsΦ(1)

td

]
(D.131)

D.7 Link with the dynamical ansatz
Here we prove that the (4.30) is equivalent to the dynamical ansatz reported in
ref. [24].
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We can pass in matrix notation:

(
A− ω2Λ

)
Φ̃(ω) = A

[
(3)
Φ ~̃R+

(4)
Φ ΛΦ̃(ω)

]
(D.132)

Φ̃(ω) =
(
A− ω2Λ

)−1
A

[
(3)
Φ ~̃R+

(4)
Φ ΛΦ̃(ω)

]
(D.133)

Φ̃(ω) =
(
A− ω2Λ

)−1
A

(3)
Φ ~̃R+

(
A− ω2Λ

)−1
A

(4)
Φ ΛΦ̃(ω) (D.134)

Then the first equation becomes:

∑

b


 1
ma

Φab + 1
ma

∑

pqcd

(3)
Φ acd Λpqcd∂Φ̃pq

∂R̃b
− ω2δab


 R̃b = ZaEa2ma

(D.135)

To symmetrize the problem with respect to the masses we can define the displacements
in unit of mass, and divide the perturbation by the mass of the index:

∑

b


 Φab√

mamb
+ 1
√
mamb

∑

pqcd

(3)
Φ acd Λpqcd∂Φ̃pq

∂R̃b
− ω2δab

√
ma

mb


√mbR̃b = ZaEa2√ma

(D.136)
The

√
ma
mb

that multiply the δab is of course 1. Therefore we get:

G−1(ω)
(√

mR̃
)

= − Z
~E

2
√
m

(D.137)

Where G(ω) is the dynamical Green function.

G−1(ω) = Iω2−M− 1
2

[
Φ+

(3)
Φ Λ

(
A− ω2Λ

)−1
A

(3)
Φ +

(3)
Φ ΛΘ(ω)(A− ω2Λ)−1A

(3)
Φ
]
M− 1

2

(D.138)
where the Θ tensor inverts the Φ̃ equation.

Θ(ω) =
(
I − (A− ω2Λ)−1A

(4)
Φ Λ

)−1

(D.139)

From which, if we define the self-energy as:

G−1(ω) = G(0)−1 −Π(ω) (D.140)

The sscha unperturbed green function is:

G(0)−1 = Iω2 −D(s) = Iω2 −M− 1
2 ΦM− 1

2 (D.141)

From which we get the self-energy:

Π(ω) = Π(B)(ω) +M− 1
2

[
(3)
Φ ΛΘ(ω)(A− ω2Λ)−1A

(3)
Φ
]
M− 1

2 (D.142)
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If anharmonicities are not too high, it is sufficient to evaluate the Bubble term:

Π(B)(ω) = M− 1
2

(3)
Φ Λ

(
A− ω2Λ

)−1
A

(3)
Φ M− 1

2 (D.143)

This is equal to the Raffaello’s expression if we are able to prove the relation:

Λ(ω) = Λ(0)
[
A− ω2Λ(0)

]−1
A (D.144)

This equation must be taken with care, as in the whole discussion we neglected
acoustic modes. They make it impossible to define the inverse, as the Kernel of
the operators are not empty. However, we are not interested in the acoustic mode
projection at gamma, therefore the inversion must be defined within the space
without translations.

We can start proving the limit. As already shown, the static limit is correctly
satisfied. We can try to prove the ω →∞ limit, that is the strong off-resonant limit:

lim
ω→∞

Λ(ω) = − 1
ω2A (D.145)

We can resemble the T = 0 equation for Λ(ω) as it is in the Raffaello’s paper:

Λabcd(ω) = −
∑

µν

F (ω, ωµ, ων)
8ωµων

eaµe
b
νe
c
µe
d
ν√

MaMbMcMd
(D.146)

where
F (ω, ωµ, ων) = 2 (ωµ + ων)

(ωµ + ων)2 − ω2 (D.147)

lim
ω→∞

F (ω, ωµ, ων) = −2(ωµ + ων)
ω2 (D.148)

lim
ω→∞

Λabcd(ω) = 1
ω2
∑

µν

ωµ + ων
4ωµων

eaµe
b
νe
c
µe
d
ν√

MaMbMcMd
(D.149)

Combining with eq. (D.145)

Aabcd = −
∑

µν

ωµ + ων
4ωµων

eaµe
b
νe
c
µe
d
ν√

MaMbMcMd
(D.150)

If this is true, it is trivial to prove analytically equation (D.144). In fact the
term:

A− ω2Λ(0) (D.151)

Can be explicited as

Aabcd − ω2Λabcd =
∑

µν

(
−ωµ + ων

4ωµων
+ ω2

4ωµων(ωµ + ων)

)
eaµe

b
νe
c
µe
d
ν√

mambmcmd
(D.152)

This can be inverted symbolically as:
[
A− ω2Λ

]−1

abcd
= −

∑

µν

4ωµων(ωµ + ων)
(ωµ + ων)2 − ω2 e

a
µe
b
νe
c
µe
d
ν

√
mambmcmd (D.153)
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If we contract this supermatrix on the left with Λ and on the right with A we can
exploit the fact that they are expressed in the opposite polarization/mass vectors,
therefore they select the same µν for all the matrices. Then we get the solution:
[
Λ
(
A− ω2Λ

)−1
A

]

abcd
= −

∑

µν

1
4ωµων

ωµ + ων
(ωµ + ων)2 − ω2

eaµe
b
νe
c
µe
d
ν√

mambmcmd
(D.154)

That is indeed Λ(ω).
Therefore the final proof of the equivalence with the Raffaello’s ansatz can be

achieved by proving eq. (D.150)
Then let us check the A matrix. Lets rewrite equation (4.28).

Acdab = −1
2

[
δadΥ−1

bc√
mamd

+ δbcΥ−1
ad√

mbmc

]
(D.155)

−
δadΥ−1

bc√
mamd

= −
∑

µν

eaµe
d
µ√

mamd

ebνe
c
ν√

mbmc

1
2ων

(D.156)

Acdab = −1
2
∑

µν

eaµe
b
νe
c
µe
d
ν√

mambmcmd

[
1

2ωµ
+ 1

2ων

]
(D.157)

Acdab = −
∑

µν

eaµe
b
νe
c
µe
d
ν√

mambmcmd

ωµ + ων
4ωνωµ

(D.158)

D.8 The Lanczos matrix
First of all we need to compute the matrix L as a symmetric matrix. We first
introduce the non symmetrix L′ matrix, that works in the

√
m~R and D variables,

then we introduce a change of variables in which our system becomes symmetric
and defines the L matrix. We can rewrite the system in a more convenient case.
From now on we use greek letters for indices of a matrix: Φab = Φα while we use
latin letters for vectors. Let us also define the D matrix as the dynamical matrix,
i.e. the force constant matrix divided by the masses:

Dab = Φab√
mamb

(3)
Dabc=

(3)
Φ abc√
mambmc

(4)
Dabcd=

(4)
Φ abcd√

mambmcmd
(D.159)

And, following the Raffaello notation, we can also redefine:

χαβ = −2MαΛαβMβ χabcd = −2√mambmcmdΛabcd (D.160)

And the new A matrix:

Aαβ = MαA
αβMβ Aabcd = √mambmcmdA

abcd (D.161)

Then the first equation reads as:

− ω2√maR̃a = va −
∑

b

Dab

√
mbR̃b −

∑

αβ

(3)
Daα

(
−1

2χαβ
)
D̃β (D.162)
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In the same way the second equation reads:

−ω2D̃α =
∑

βγ

(
−1

2χαβ
)−1
Aβγ


−D̃γ +

∑

a

(3)
Dγa

√
maR̃a +

∑

λη

(4)
Dγη

(
−1

2χηλ
)
D̃λ




(D.163)

−ω2D̃α = −2
∑

βγ

χ−1
αβA

βγ


−D̃γ +

∑

a

(3)
Dγa

√
maR̃a −

1
2
∑

λη

(4)
Dγη χηλD̃λ


 (D.164)

Let us compute the matrix multiplication between χ and A.

Aabcd = −
∑

µν

eaµe
b
νe
c
µe
d
ν

ωµ + ων
4ωνωµ

(D.165)

χ−1
abcd =

∑

µν

eaµe
b
νe
c
µe
d
ν2ωµων(ωµ + ων) (D.166)

Summing them together we get:
∑

cd

χ−1
abcdA

cdef = −
∑

cd

∑

µνηλ

eaµe
b
νe
c
µe
d
νe
c
λe
d
ηe
e
λe
f
η2ωµων(ωµ + ων)ωλ + ωη

4ωλωη
(D.167)

The summation over cd gives us δλµδην
∑

cd

χ−1
abcdA

cdef = −1
2
∑

cd

∑

µν

eaµe
b
νe
e
µe
f
ν (ωµ + ων)2 (D.168)

We can define a new matrix B as:

Babcd = 1
2
∑

µν

eaµe
b
νe
c
µe
d
ν(ωµ + ων)2 (D.169)

From this it is trivial to see that thee supermatrices B, χ and A commute.
With this convention we have the second equation:

− ω2D̃α = 2
∑

γ

Bαγ

−D̃γ +

∑

a

(3)
Dγa

√
maR̃a −

1
2
∑

λη

(4)
Dγη χηλD̃λ


 (D.170)

Now we can compute all the elements of the L′ matrix.

Lab′ = Dab (D.171)

Laα′ = −
1
2
∑

β

(3)
Daβ χ

βα (D.172)

Lαa′ = −2
∑

γ

Bαγ
(3)
Dγa (D.173)

Lαβ ′ = 2Bαβ +
∑

γδ

Bαγ
(4)
Dγδ χ

δβ (D.174)
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This matrix is not symmetric so its inversion is not so easy. However the
asymmetry is only with regards of the greek letter indices, i.e. the responce of the
fluctuations. I can rewrite the Eq. D.170 as:

−ω2∑

α

√
χ

4Bαβ
D̃α =

∑

γ

√
χBβγ


−D̃γ +

∑

a

(3)
Dγa

√
maR̃a −

∑

ληδ

(4)
Dγη

√
Bχηλ

√
χ

4B λδ
D̃δ




(D.175)
We can use the same trick on the other equation:

− ω2√maR̃a = va −
∑

b

Dab

√
mbR̃b + 1

2
∑

αβγ

(3)
Daα

√
4χBαβ

√
χ

4B βγ
Dγ (D.176)

With this trick we symmetrized the equation, now we can study the perturbation
against

√
mR̃ and

√
χ

4BD Then the matrix of our inversion problem becomes:

Lab = Dab (D.177)

Laα = −
∑

β

(3)
Daβ

√
χBβα (D.178)

Lαa = −
∑

γ

√
χBαγ

(3)
Dγa (D.179)

Lαβ = 2Bαβ +
∑

γλ

√
χBαγ

(4)
Dγλ

√
Bχλβ (D.180)

As can be seen now the L is a symmetric matrix, therefore we can use it to apply
the Lanczos algorithm. For sake of completeness it can be noticed that

√
χB =

√
−A.

This change of variables that brought the L′ matrix to be symmetric does not affect
the perturbation or the responce vectors, as they are defined in the block

√
mR.

D.9 Lanczos and the Static theory
To convince ourselves of what we are doing, we can invert the lanczos superoperator
L in a symbolic way. We can write the superoperator as matrix of matrices:

L =
(
A B
B† C

)
(D.181)

where A is a N ×N matrix (N = number of modes in the supercell), B is a N2×N .
and C is a N2 ×N2 matrix. We are interested on the responce function of only in
the upper left block of the matrix. Therefore we need to compute:

G(ω = 0) = L−1
0,0 (D.182)

The free energy curvature is the inverse of the static green function:

Dodd =
[
L−1

0,0

]−1
(D.183)
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Using the matrix theory we can write explicitly this inverse as a function of the
A, B, C.

Dodd = A−BC−1B† (D.184)

Now we have:

Aab = Dab Ba(bc) = −
∑

β

(3)
Daβ

√
χBβ(bc) (D.185)

C(ab)(cd) = 2B(ab)(cd) +
∑

γλ

√
χB(ab)γ

(4)
Dγλ

√
Bχλ(cd) (D.186)

C−1
(ab)(cd) = 1

2
√
B
−1
[
1 +

√
1
2χ

(4)
D

√
1
2χ
]−1√

B
−1 (D.187)

Let’s recall the definition from the Bianco paper:

W =
√

1
2χ (D.188)

from which we get the same equation as Bianco:

Dodd = D−
(3)
D
√
χ

1
2

[
1 +

√
1
2χ

(4)
D

√
1
2χ
]−1√

χ
(3)
D (D.189)

Dodd = D−
(3)
D W

[
1 +W

(4)
D W

]−1

W
(3)
D (D.190)

From which we got the right limit.

D.9.1 Lanczos in the polarization basis

To further simplify the Lanczos procedure we can write it in the polarization basis:

L′ab = δabωaωb (D.191)

L′a(bc) = −1
2

(3)
Da(bc)

√
ωb + ωc
ωbωc

(D.192)

L′(ab)(cd) = δacδbd(ωa + ωb)2 + 1
4

√
(ωa + ωb)(ωc + ωd)

ωaωbωcωd

(4)
D (ab)(cd) (D.193)

We can convert easily the third and fourth rank matrices in the polarization
basis:

(4)
Dabcd=

∑

uvwz

(4)
Φuvwz√

mumvmwmz
euae

v
be
w
c e

z
d (D.194)

(4)
Dabcd= −

∑

uvwz

∑
pqr ΥupΥvqΥwr 〈upuqurδfz〉√

mumvmwmz
euae

v
be
w
c e

z
d (D.195)
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(4)
Dabcd= −

∑

uvwz

∑
pqrµνη

√
mpmqmre

u
µe
p
µe
v
νe
q
νe
r
ηe
w
η 8ωµωνωη 〈upuqurδfz〉√

mz
euae

v
be
w
c e

z
d

(D.196)
(4)
Dabcd= −

∑

z

∑
pqr
√
mpmqmre

p
ae
q
be
r
c8ωaωbωc 〈upuqurδfz〉√
mz

ezd (D.197)

To speedup the calculation of the
(4)
D matrix we can define the forces and dis-

placements in the polarization basis.

Xa =
∑

v

√
mvuve

v
a Ya =

∑

v

eva√
mv

δfv (D.198)

From which we get the
(4)
D tensor:

(4)
Dabcd= −8ωaωbωc 〈XaXbXcYd〉 (D.199)

In the same way the third order tensor can be calculated:

(3)
Dabc= −4ωaωb 〈XaXbYc〉 (D.200)

D.9.2 Symmetries in the polarization basis

The Lanczos algorithm is very efficient only if the application of L matrix to a vector
scales as a scalar product. In other words, Lanczos is good only if the L matrix is
sparse, that means that most of its values are zero.

In principle, from equation (D.199), all the values of
(4)
D are different from zero

and are needed to be computed. This is the most time consuming part. However,
symmetries come in our help, as they allow us to set to zero some terms.

Let us first check how a symmetry is applied to the force constant matrix.

Φab =
∑

cd

SacSbdΦcd (D.201)

Here the S matrix is a 3N × 3N unitary matrix that represents the symmetry of
the crystal. We can write Φ in the polarization basis:

Φab =
∑

µ

ω2
µe
a
µe
b
µ

√
mamb =

∑

µcd

ω2
µSace

c
µ

√
mcSbde

d
µ

√
md (D.202)

We immediately see how the polarization vectors must change under the generic
symmetry operation of the crystal: In absence of degeneracy the symmetry can at
most change the sign of the polarization vector:

eaµ
√
ma = ±

∑

b

Sabe
b
µ

√
mb if ωµ 6= ων ∀ν (D.203)

In presence of degeneracy, the symmetry can rotate the vector in the degenerate
subspace:

Seµ
√
m ∈ Span

{
eν
√
m
}

∀ν |: ων = ωµ (D.204)
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Now we can apply this definition to the third order force constant:

(3)
Φ abc=

∑

uvz

SauSbvScz
(3)
Φuvz (D.205)

(3)
Φ abc=

∑

αβγ

(3)
Dαβγ e

a
αe
b
βe
c
γ

√
mambmc =

∑

uvz
αβγ

(3)
Dαβγ SauSbvScze

u
αe
v
βe
z
γ

√
mumvmz

(D.206)
If we have no degenerate mode then each symmetry operation of the vector will at
most change the sign. If we indicate with sα the sign of the application of the S
symmetry on the α polarization mode we have:

∑

αβγ

(3)
Dαβγ e

a
αe
b
βe
c
γ

√
mambmc =

∑

αβγ

(3)
Dαβγ e

a
αe
b
βe
c
γ

√
mambmcsαsβsγ (D.207)

Since all the vectors are independent the equality holds for each mode:

(3)
Dαβγ=

(3)
Dαβγ sαsβsγ (D.208)

(3)
Dαβγ= 0 if sαsβsγ = −1 (D.209)

So if we have no degeneracy, each symmetry operation would reduce by a factor
2 the number of non zero elements of the matrix. The same indeed holds for the
fourth order tensor.

(4)
Dαβγδ= 0 if sαsβsγsδ = −1 (D.210)

Let us now extend this behaviour in case of degeneracy: we can exploit the fact
that the polarization vector is in the subspace of the degeneracy after the application
of the S matrix. ∑

b

Sabe
b
µ

√
mb =

∑

ν
ων=ωµ

sµνe
a
ν

√
ma (D.211)

From which we get a direct expression for the sµν matrix:

sµν =
∑

ab

Sabe
a
µe
b
ν

√
mb

ma
(D.212)

∑

αβγ

(3)
Dαβγ e

a
αe
b
βe
c
γ

√
mambmc =

∑

αβγ

∑

λµν
ωλ=ωα
ωµ=ωβ
ων=ωγ

sαλsβµsγνe
a
λe
b
µe
c
ν

√
mambmc

(3)
Dαβγ

(D.213)
We can exchage the greek letters in the right-hand side summations:

(3)
Dαβγ=

∑

λµν
ωλ=ωα
ωµ=ωβ
ων=ωγ

(3)
Dλµν sλαsµβsνγ (D.214)
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This trivially reduces to Eq. (D.209) in case of no degeneracy, and can be trivially
extended to the fourth-order tensor:

(4)
Dαβγδ=

∑

λµνη
ωλ=ωα
ωµ=ωβ
ων=ωγ
ωη=ωδ

(4)
Dλµνδ sλαsµβsνγsηδ (D.215)

These equations for the symmetrization are much better than the original ones
in real space, as the small s matrices are block diagonal in the space of modes.
It, therefore, mixes very few elements of the original matrix, forcing some of the
others to zero. Moreover, it could be possible to chose the polarization so that they
diagonalize the sαβ matrices for a particular symmetry operation. In this case we
will set to zero other elements.

D.9.3 Translational symmetries and momentum conservation

A very important consequence of the translational symmetry is the momentum

conservation. If the
(3)
D or

(4)
D is written in momentum space, then we have:

(3)
Dabc (~q1, ~q2, ~q3) ∝ δ(~q1 + ~q2 + ~q3 + ~G) (D.216)

where ~G is a generic reciprocal lattice vector. This has an important consequence of

reducing the number of indices by one of the
(3)
D or

(4)
D computation. Indeed, since

we work on real polarization vector in real space, they violate the translational
symmetry, so it is impossible to assign a specific ~q at a given polarization vector.
However, we can always define the polarization vector in the supercell starting from
the polarization vector in the momentum space as::

eaµ
(1) = <

(
eãqνe

i~q·~Ra
)

eaµ
(2) = =

(
eãqνe

i~q·~Ra
)

(D.217)

Where ã is the unit cell atom-cartesian coordinate of a (supercell), ~Ra is the supercell
lattice vector of the a coordinate:

~ra = ~Ra + ~τa

In this way, the supercell polarization vector eaµ is a linear combination of two q
points: q and −q. This leads immediately to an approximate momentum conservation
law:

(3)
Dαβγ∝ δ(±~qα ± ~qβ ± ~qγ + ~G) (D.218)

A pure translational symmetry will act in the supercell exchanging the indices of
equivalent atoms in different unit cells.

∑

b

STabRb = Ra + Ta

Where Ta is the a coordinate of the unit cell translation identified by the ST
symmetry
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So, if we apply such a symmetry to a vector defined according to Eq. (D.217) we
get: ∑

b

STabe
b
µ =

∑

b

<
(
eãqνe

i~q·STab ~Rb
)

(D.219)

This is again a vector of periodicity ~q but with a phase factor:
∑

b

STabe
b
µ = <

(
eãqνe

i~q·~Ra+i~q·~Ta
)

(D.220)

∑

b

STabe
b
µ = <

(
eãqνe

i~q·~Ra
)

cos(~q · ~Ta)−=
(
eãqνe

i~q·~Ra
)

sin(~q · ~Ta) (D.221)

∑

b

STabe
b
µ

(1) = eaµ
(1) cos(~q · ~Ta)− eaµ(2) sin(~q · ~Ta) (D.222)

∑

b

STabe
b
µ

(2) = eaµ
(1) sin(~q · ~Ta) + eaµ

(2) cos(~q · ~Ta) (D.223)

The translational symmetry is a rotation in the polarization space defined by our
two vectors. This also clearly shows that does not exist any real basis that allows to
diagonalize the translations.

Lets apply the translational symmetry to the
(2)
Dαβγ , where now this is a 2x2

tensor (each α has two components)

(2)
Dαβ=

∑

α′β′
Sαα′(~qα · ~T )Sββ′(~qβ · ~T )

(2)
Dα′β′ (D.224)

(2)
Dαβ =

(2)
Dαβ cos(φα) cos(φβ) + (−1)sα′ sin(φα) cos(φβ)

(2)
Dα′β +

+ (−1)sβ cos(φα) sin(φβ)
(2)
Dαβ′ +(−1)sα′+sβ′ sin(φα) sin(φβ)

(2)
Dα′β′

This equation admits a non trivial (all zero) solution if, and only if, the system
it defines has a zero determinant. The matrix of coefficients is:

A =




1− cos(φα) cos(φβ) − sin(φα) cos(φβ) − cos(φα) sin(φβ) sin(φα) sin(φβ)
sin(φα) cos(φβ) 1− cos(φα) cos(φβ) − sin(φα) sin(φβ) − cos(φα) sin(φβ)
cos(φα) sin(φβ) − sin(φα) sin(φβ) 1− cos(φα) cos(φβ) − sin(φα) cos(φβ)
sin(φα) sin(φβ) cos(φα) sin(φβ) sin(φα) cos(φβ) 1− cos(φα) cos(φβ)




(D.225)
This ugly big matrix is the tensor product between two rotation matrices, so

its calculation can be trivially extended for 3 or 4-rank tensors. To have a solution
different from zero, we need to impose detA = 0. This leads to:

4[1− cos (φα + φβ)][1− cos (φα − φβ)] = 0

whose solution is φα = ±φβ
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Indeed, one can extend this to a generic n-rank matrix. In the case of th 3-rank
matrix the detA = 0 equation is:

0 = [1− cos (φα + φβ + φγ)][1− cos (φα + φβ − φγ))]·
· [1− cos (φα − φβ + φγ)][1− cos (φα − φβ − φγ)]

That leads to the result:
φα = ±φβ ± φγ (D.226)

Since this must hold for all the possible translations, this condition on the angles
leads to the condition of the ~q vectors:

~q1 = ±~q2 ± ~q3 + ~G (D.227)

From this calculation we learned a new interesting info about how the symmetries
with a irreducible representation size bigger than one can lead to zero mixing between
sub-spaces of degenerate modes, if the determinant of the tensor product between
the symmetry in the polarization vectors minus the identity is different from zero.
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Appendix E

Simulation parameters

In this appendix, I report all the parameters used for the simulations.

E.1 Data on ice

Here I discuss the simulation details of Figure 2.1. The BO landscape is approx-
imated with DFT-PBE exchange correlation, with ultra-soft pseudo-potential, as
implemented in Quantum ESPRESSO. The simulation is performed only at gamma
for the vibrational properties, while electronic properties are computed on a K
mesh 4x4x4, an offset of 0,0,1. The plane-wave basis set is trucated to 110 Ry for
the wavefunctions and 1100 Ry for the electronic density. For the quasi-Harmonic
calculation, harmonic dynamical matrices are computed using linear response theory.
A K mesh of 6x6x6 is used with a cutoff of 180 Ry for the wavefunctions and 1800 Ry
for the electronic density. The SSCHA stress tensor is computed with 40000 ab-initio
configurations.

E.2 Data on hydrogen

All the simulations are performed using density functional theory (DFT). The
exchange correlation functional is BLYP[50]. The pseudo-potential used for the
hydrogen atoms is a norm conserving from Pseudo-Dojo library[74]. The basis set is
plane-wave, with a cutoff of 60 Ry for the SSCHA relaxation and 80 Ry for the final
energy calculation.

The phonon properties have been calculated on supercells of 96 atoms. To check
the convergence, the harmonic part of the free energy is extrapolated to infinite
volume. This resulted in a difference less than 1 meV per atom. To account for
metalization in the distorted atomic configurations, we use a Marzari-Vanderbilt
smearing of 0.03 Ry.

The program used to carry out the DFT simulations is Quantum Espresso[68]
(versions 6.2.1 and 6.4).

The SSCHA minimization where carried out using 1000/4000 configurations
per population (depending on the number of symmetries). The typical calculation
requires about 20 populations to be converged with variable cell relaxation.
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The final Lanczos algorithm to study structure stability as well as Raman and IR
spectrum has been computed using from 10000 to 40000 configurations (depending
on the pressure, configurations where increased doubling the size of the ensemble,
starting from 5000 up to convergence).

The dielectric properties where averaged on many randomly displaced configura-
tions. To achieve convergence, with the 432 atoms cell only 5 configurations where
sufficient as they well represent the thermodynamic limit (in which 1 configuration
is enough).

E.2.1 Properties of phase III

The parameters of the data reported in Figure 5.2. The static calculation are
performed with a K mesh of 12x12x6 with a 1,1,1 offset, a cutoff of 80 Ry for the
wavefunctions and 320 for the electronic density. The SSCHA calculations with
variable cell are firstly performed on a 1x1x1 phonon mesh, then interpolated in a
2x2x1 mesh and relaxed with the variable cell algorithm. Each step is done with 4000
configurations. The DFT calculations for the SSCHA are done using a 4x4x4 K mesh
on the 2x2x1 supercell, with 1,1,1 offset, and a cutoff of 60 Ry for the wavefunctions
and 240 Ry for the electron density.

The parameters of Figure 5.3,5.4 are obtained using the Lnaczos algorithm. I
truncated the iterations after 100 iterations, with the terminator averaged over
the 5 last values of the an and bn coefficients, and a smearing of 0.1 cm−1. The

result is obtained including
(4)
Φ. In Figure 5.3 both Raman and IR are obtained only

considering polarized light along the x direction (parallel to the planes).
Figure 5.5 is obtained using the SSCHA static dynamical matrix in the 2x2x1

supercell, computing the IR spectra using the effective charges computed for 10
randomly distorted configurations. Effective charges are computed using linear
response theory, as implemented in the PHonon package of quantum espresso.

The peak positions and widths reported in Figure 5.6,5.7,5.8 are computed as
the highest peak in the dynamical Green function above 2500 cm−1 and the full
width at half maximum.

The dielectric calculation in Figure 5.11,5.10, 5.9,5.12,5.17,5.16 and 5.15 are
computed using displaced configurations in supercells of 2x2x1 (96 atoms) and 3x3x2
(432 atoms), with K meshes of 10x10x10 and 7x7x5 respectively and a random offset.
The self-consistent calculation are computed using a Gaussian smearing of 0.03 Ry.
The dielectric properties in the Eq. (5.2) are computed with the smearing of 0.1 eV
and electronic temperature of 300 K. The dielectric function is averaged over 5
configurations.

E.2.2 The phase diagram

The phase diagrams of Figure 6.10,Figure 6.11, Figure 6.12, and Figure 6.14 are
obtained using a plane-wave cutoff of 80 Ry and 320 Ry for the density. The details
of the K mesh used for all the structures are reported in Table E.1.

The data of Figure 6.13 are obtained using the Lanczos static algorithm including

the
(4)
Φ. 40000, 20000 and 10000 configurations are used to converge 250 GPa, 350 GPa
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Structure N atm/cell Ks static Qs SSCHA Ks SSCHA offset
C2/c-24 24 12x12x6 2x2x1 6x6x6 1,1,1
P62/c-24 24 12x12x6 2x2x1 6x6x6 1,1,1
Ibam-8 16 12x18x6 2x3x1 6x6x6 1,1,1
Cmca-12 12 12x12x12 2x2x2 6x6x6 1,1,1
Pc-48 48 12x6x6 2x1x1 6x6x6 1,1,1
P2/c-48 48 12x6x6 2x1x1 6x6x6 1,1,1
C2/c-16 16 6x24x12 1x3x2 6x6x6 1,1,1
Cs-IV 2 32x32x32 3x3x3 16x16x16 1,1,1

Table E.1. The K meshes (electrons) and Q meshes (phonon) used for the static and the
SSCHA phase diagrams.

and 450 GPa respectively. Neither the terminator nor the smearing are used. The
forces of the ab-initio configurations are computed using cutoffs of 60 Ry for the
wave-function and 240 Ry for the electron density and a K mesh of 4x4x4 with 1,1,1
as offset.

The dielectric properties discussed in Figure 6.16,6.15,6.18, and 6.17 are computed
with the same parameters as the C2/c-24 discussed in E.2.1. For the Cmca-12, the
K mesh used in the 2x2x2 and 3x3x3 phonon supercell are, respectively, 10x10x10
and 7x7x7.
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Appendix F

Dielectric function

The dielectric function can be computed directly as the from the response function
when we apply an external electric field:

ε(ω) = 1 + 4πχ(ω)

The energy depends on the external electric field as:

Vext = e~r · ~E

Therefore the response function can be computed using the Kubo formula:

χαβ(t) = e2 〈[rα(t), rβ(0)]〉 θ(t) (F.1)

Now, ~r behaves very badly in a system with periodic boundary conditions,
therefore we use a trick to rewrite it:

[~r,H] |hm〉 = ~p

m
|hm〉 (F.2)

~r |hm〉 = (εhm −H)−1 ~p

m
|hm〉 (F.3)

Now we can write the operator using the second quantization formalism:

~r =⇒ 1
m

1√
NkΩ

∑

hm
kn6=hm

〈kn|~p|hm〉
εhm − εkn

c†knchm (F.4)

From which we have the correlation function.

χαβ(t) = e2

m2NkΩ
∑

hkmn
h′k′m′n′

〈hm|pα|kn〉 〈h′m′|pβ|k′n′〉
(εhm − εkn)(εh′m′ − εk′n′)

〈[c†hm(t)ckn(t), c†h′m′ck′n′ ]〉 θ(t)

(F.5)
Since we are studying a system of non interacting fermions, the t evolution can

be explicated:
c†hm(t)ckn(t) = e−i(εkn−εhm)tc†hmckn (F.6)

The commutator in Eq. F.5 is non zero only if:

h′m′ = kn k′n′ = hm
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Therefore we can eliminate the summation over the primate indices.

χαβ(t) = − e2

m2NkΩ
∑

hkmn

〈hm|pα|kn〉 〈kn|pβ|hm〉
(εhm − εkn)2 〈[c†hmckn, c

†
knchm]〉 e−i(εkn−εhm)tθ(t)

(F.7)
Now we can compute explicitly the commutator:

〈[c†hmckn, c
†
knchm]〉 = 〈c†hmcknc

†
knchm〉 − 〈c

†
knchmc

†
hmckn〉 (F.8)

To compute these thermal averages we need to consider all the possible states.
Here we have two fermionic states hm and kn; they can be either 0 or 1. We recall
that:

〈O〉 =
Tr
[
e−βHO

]

Tr [e−βH ]
The energies are:

|00〉 e−βεhm |10〉 e−βεkn |01〉 e−β(εkn+εhm) |11〉

Thus the trace over e−βH on these states is:

1 + e−βεhm + e−βεkn + e−β(εkn+εhm) = (1 + e−βεhm)(1 + e−βεkn)

The creation and annihilation operators select only one state, with coefficient 1
in both cases. The first one of Eq. (F.8) selects a state with |hm = 1, kn = 0〉 where
e−βH acts as e−βεhm while the second one selects the state with |hm = 0, kn = 1〉
with energy e−βεkn . Thus we get:

〈[c†hmckn, c
†
knchm]〉 = e−βεhm

(1 + e−βεhm)(1 + e−βεkn) −
e−βεkn

(1 + e−βεhm)(1 + e−βεkn) (F.9)

Defining the Fermi function as:

f(x) = 1
eβx + 1

we can rewrite the average.

〈[c†hmckn, c
†
knchm]〉 = [1− f(ξkn)]f(ξhm)− [1− f(ξhm)]f(ξkn) = f(ξhm)− f(ξkn)

(F.10)
In frequency domain:

χαβ(ω) = −i e2

m2NkΩ
∑

hkmn

〈hm|pα|kn〉 〈kn|pβ|hm〉
(εhm − εkn)2

∫ ∞

0
e−i(εkn−εhm−ω)t [f(ξhm)− f(ξkn)]

(F.11)

χαβ(ω) = e2

m2NkΩ

hm6=kn∑

hkmn

〈hm|pα|kn〉 〈kn|pβ|hm〉
(εhm − εkn)2

f(ξhm)− f(ξkn)
εkn − εhm − ω − i0+ (F.12)
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This is the standard expression for the interband susceptibility tensor. We can
manipulate it a bit. First of all, the ~p operator is diagonal in the block space. This
selects only vertical transitions with k = h.

χαβ(ω) = e2

m2NkΩ

m 6=n∑

kmn

〈km|pα|kn〉 〈kn|pβ|km〉
(εkm − εkn)2

f(ξkm)− f(ξkn)
εkn − εkm − ω − i0+ (F.13)

This equation suffers a problem if we have spaghetti like bands. In such cases
it is difficult to distinguish between interband and intraband transition and the
denominator diverges when two states are very close in energy. However, this
divergence disappears if we have a finite frequency. To spotlight on this, we must
rearrange terms in the summation. For brevity, we define:

fmn = f(ξkm)− f(ξkn) εmn = εkm − εkn
z = ω + i0+

Then we have

χαβ(z) = − e2

m2NkΩ

m 6=n∑

kmn

fmn
εmn

〈km|pα|kn〉 〈kn|pβ|km〉
εmn

1
εmn + z

(F.14)

This summation acts twice, as we have both m > n and n > m. The matrix
elements are the same, as the ~p operator is Hermitian, while the fmn/ε2

mn changes
the sign. Therefore we can restrict the summation only when n > m:

χαβ(z) = − e2

m2NkΩ

n>m∑

kmn

fmn
εmn

〈km|pα|kn〉 〈kn|pβ|km〉
εmn

[ 1
εmn + z

− 1
εnm + z

]
(F.15)

1
εmn + z

− 1
εnm + z

= 1
εmn + z

+ 1
εmn − z

= 2εmn
ε2
mn − z2 (F.16)

From which we can substitute back in the original formula.

χαβ(z) = −2 e2

m2NkΩ

n>m∑

kmn

fmn
εmn

〈km|pα|kn〉 〈kn|pβ|km〉
ε2
mn − z2 (F.17)

Now this equation does not diverge if εmn → 0. if z 6= 0. This means that we can
now even insert intraband transition with m = n if we allow z to have an imaginary
part.

This expression is very convenient as it unifies the inter-band and intra-band
transition. In disordered systems, or systems where phonon are present, these
transition are not very well defined, Brilluine zone is refolded and many bands
overlaps. In a metal, this means that many transition within the same band are
possible, where εmn is small. Indeed, here a factor 2 from the spin multiplicity is
missing. Therefore the last equation is:

χαβ(z) = −4 e2

m2NkΩ

n≥m∑

kmn

f(ξkm)− f(ξhm)
ξkm − ξhn

〈km|pα|kn〉 〈kn|pβ|km〉
(εkm − εkn)2 − z2 (F.18)
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