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Multilayer networks are a powerful paradigm to model complex systems, where various relations might occur

among the same set of entities. Despite the keen interest in a variety of problems, algorithms, and analysis

methods in this type of network, the problem of extracting dense subgraphs has remained largely unexplored.

As a first step in this direction, in this work we study the problem of core decomposition of a multilayer

network. Unlike the single-layer counterpart in which cores are all nested into one another and can be computed

in linear time, the multilayer context is much more challenging as no total order exists among multilayer

cores; rather, they form a lattice whose size is exponential in the number of layers. In this setting we devise

three algorithms which differ in the way they visit the core lattice and in their pruning techniques. We assess

time and space efficiency of the three algorithms on a large variety of real-world multilayer networks.

We then move a step forward and study the problem of extracting only the maximal or, as we call them in

this work, the inner-most cores, i.e., the cores that are not dominated by any other core in terms of their index

on all the layers. As inner-most cores are orders of magnitude less than all the cores, it is desirable to develop

algorithms that effectively exploit the maximality property and extract inner-most cores directly, without first

computing a complete decomposition.

Moreover, we showcase an application of the multilayer core-decomposition tool to the problem of densest-

subgraph extraction from multilayer networks. We introduce a definition of multilayer densest subgraph

that trades-off between high density and number of layers in which the high density holds, and show how

multilayer core decomposition can be exploited to approximate this problemwith quality guarantees. As further

applications, we exploit multilayer core decomposition to speed-up the extraction of frequent cross-graph

quasi-cliques [49] and to generalize the community-search problem [71] to the multilayer setting.
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1 INTRODUCTION
In social media and social networks, as well as in several other real-world contexts – such as

biological and financial networks, transportation systems and critical infrastructures – there might

be multiple types of relation among entities. Data in these domains is typically modeled as a

multilayer network (also known as multidimensional network), i.e., a graph
1
where multiple edges

of different types may exist between any pair of vertices [22, 27, 55].

Extracting dense structures from large graphs has emerged as a key graph-mining primitive in

a variety of scenarios [56], ranging from web mining [42], to biology [35, 54], and finance [28].

Although the literature on multilayer graphs is growing fast, the problem of extracting dense

subgraphs in this type of graph has been, surprisingly, largely unexplored.

In standard graphs, among the many definitions of dense structures, core decomposition plays a

central role [? ]. The k-core of a graph is defined as a maximal subgraph in which every vertex is

connected to at least k other vertices within that subgraph. The set of all k-cores of a graphG forms

the core decomposition of G [68]. The importance of core decomposition relies in the fact that it

can be computed in linear time [15, 58], and can be used to speed-up/approximate dense-subgraph

extraction according to various other definitions. For instance, core decomposition provides a

heuristic for maximal-clique finding [30], as a k-clique is guaranteed to be contained into a (k−1)-

core, which can be significantly smaller than the original graph. Moreover, core decomposition is

at the basis of linear-time approximation algorithms for the densest-subgraph problem [53] and the

densest at-least-k-subgraph problem [4]. It is also used to approximate betweenness centrality [44].

In this work we study the problem of core decomposition in multilayer networks: although the

number of multilayer cores can be exponential in the number of layers, we devise efficient algorithms

to compute the complete core decomposition. However, efficiency of the core decomposition is

not enough. Given the potentially high number of cores, we need to provide the data analyst

with additional tools to browse through the output, being able to focus only on the patterns of

interest. The situation resembles that of the classic association rules and frequent itemsets mining: a

potentially exponential output, efficient algorithms to extract all the patterns, the need to define

concise summaries of the extracted knowledge, and the opportunity of using the extracted patterns

as building blocks for more sophisticated analyses.

Going in this direction, we present a series of applications built on top of our multilayer core

decomposition. First we focus on the problem of extracting only the maximal or, as we call them in

this work, the inner-most cores, i.e., cores that are not dominated by any other core in terms of their

index on all the layers. As we will see experimentally, inner-most cores are orders of magnitude

less than all the cores. Therefore, it is interesting to develop algorithms that effectively exploit the

maximality property and extract inner-most cores directly, without first computing a complete

decomposition. Then, we show how multilayer core decomposition finds application to the problem

of densest-subgraph extraction from multilayer networks [24, 48]. As a further application, we exploit

multilayer core decomposition to speed-up the extraction of frequent cross-graph quasi-cliques [49].

Finally, we show howmultilayer core decomposition can be used to generalize the community-search

problem [71] to the multilayer setting.

1.1 Background and related work

Core decomposition. Let us first recall the classic notion of core decomposition in a simple,

single-layer, graph G = (V ,E). For every vertex u ∈ V , let deд(u) and deдS (u) denote the degree of
u in G and in a subgraph S of G, respectively. Also, given a set of vertices C ⊆ V , let E[C] denote
the subset of edges induced by C .

1
Throughout the paper we use the terms “network” and “graph” interchangeably.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. Y, Article Z. Publication date: April 2018.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Core Decomposition in Multilayer Networks: Theory, Algorithms, and Applications Z:3

Definition 1 (core decomposition). The k-core (or core of order k) of G is a maximal subgraph

G[Ck ] = (Ck ,E[Ck ]) such that ∀u ∈ Ck : deдCk (u) ≥ k . The set of all k-cores G = C0 ⊇ C1 ⊇ · · · ⊇

Ck∗ (k
∗ = arg maxk Ck , ∅) is the core decomposition of G.

Core decomposition can be computed in linear time by iteratively removing the smallest-degree

vertex and setting its core number as its degree at the time of removal [15]. Core decomposition has

established itself as an important tool for analyzing and visualizing complex networks [3, 14] in

several domains, e.g., bioinformatics [10, 81], software engineering [85], and social networks [40, 51].

It has been studied under various settings, such as distributed [2, 50, 59, 63], streaming [57, 67, 86],

and external-memory [25, 78], and for various types of graph, such as uncertain [21], directed [41],

weighted [39], and attributed [84] graphs. Core decomposition has been studied also for temporal

networks: [79] defines the (k,h)-core, where h accounts for the number of multiple temporal edges

between two vertices of degree at least k , while [37] introduces the concept of (maximal) span-core,

i.e., a core structure assigned with clear temporal collocation. See [? ] for a comprehensive survey.

In this paper we adopt the definition of multilayer core by Azimi-Tafreshi et al. [9], which

study the core-percolation problem from a physics standpoint, without providing any algorithm.

They characterize cores on 2-layer Erdős-Rényi and 2-layer scale-free networks, then they analyze

real-world (2-layer) air-transportation networks. To the best of our knowledge, no prior work has

studied how to efficiently compute the complete core decomposition of multilayer networks.

Densest subgraph. Several notions of density exist in the literature, each of which leading to a

different version of the problem of extracting a single dense subgraph. While most variants are

NP-hard, or even inapproximable, extracting dense subgraphs according to the average-degree

density is solvable in polynomial time [43]. As a result, such a density has attracted most of the

research in the field, so that the subgraph maximizing the average-degree density is commonly

referred to as the densest subgraph.

Goldberg [43] provides an exact solution based on iteratively solving ad-hoc-defined minimum-

cut problem instances. Although principled and elegant, Goldberg’s algorithm cannot scale to large

graphs. Asahiro et al. [8] and Charikar [23] provide a more efficient (linear-time)
1

2
-approximation

algorithm that is capable of handling large graphs. The algorithm greedily removes the smallest-

degree vertex, until the graph has become empty. Among all subgraphs produced during this

vertex-removal process, the densest one is returned as output. Note that this algorithm resembles

the one used for core decomposition. In fact, it can be proved that the inner-most core of a graph is

itself a
1

2
-approximation of the densest subgraph.

In the classic definition of densest subgraph there is no size restriction of the output. Variants of

the problem with size constraints turn out to be NP-hard. Thus, approximation algorithms and

other (mostly theoretic) results have been presented [4, 6, 7, 34]. A number of works depart from the

classic average-degree maximization problem and focus on extracting a subgraph maximizing other

notions of density. For instance, Tsourakakis et al. [76] resort to the notion of quasi-clique to define

an alternative measure of density, while Tsourakakis [75] and Wang et al. [77] focus on notions of

density based on k-cliques and/or triangles. The densest-subgraph problem has also been studied

in different settings, such as streaming/dynamic context [11, 17, 29], and top-k fashion [12, 36, 61].

Dense structures in multilayer networks. A number of recent contributions have emerged on

the problem of extracting dense subgraphs from a set of multiple graphs sharing the same vertex set,

which is a setting equivalent to the multilayer one. Jethava and Beerenwinkel [48] define the densest

common subgraph problem, i.e., find a subgraph maximizing the minimum average degree over

all input graphs, and devise a linear-programming formulation and a greedy heuristic algorithm

for it. Andersson et al. [64] provide a Lagrangian relaxation of the Jethava and Beerenwinkel’s

linear-programming formulation, which can be solved more efficiently. Semertzidis et al. [69]
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introduce three more variants of the problem, whose goal is to maximize the average average

degree, the minimum minimum degree, and the average minimum degree, respectively. They show

that the average-average variant easily reduces to the traditional densest-subgraph problem, and

that the minimum-minimum variant can be exactly solved by a simple adaptation of the classic

algorithm for core decomposition. They also devise heuristics for the remaining two variants. A

very recent work by Charikar et al. [24] further focuses on the minimum-average and average-

minimum formulations, by providing several theoretical findings, including NP-hardness, hardness
of the approximation (for both minimum-average and average-minimum), an integrality gap for the

linear-programming relaxation introduced in [48, 64] (for minimum-average), a characterization in

terms of parameterized complexity (for average-minimum).

Other contributions in this area, less directly related to our work, deal with specific cases of

2-layer networks [70, 80] and with the community-detection problem [16, 22, 60, 62, 72, 73, 83].

Boden et al. [19] study subspace clustering for multilayer graphs, i.e., find clusters of vertices that are

densely connected by edges with similar labels for all possible label sets. Yan et al. [82] introduce the

problem of mining closed relational graphs, i.e., frequent subgraphs of a multilayer graph exhibiting

large minimum cut. Jiang et al. [49] focus on extracting frequent cross-graph quasi-cliques, i.e.,

subgraphs that are quasi-cliques in at least a fraction of layers equal to a certain minimum support

and have size larger than a given threshold. Interdonato et al. [47] are the first to study the problem

of local community detection in multilayer networks, i.e., when a seed vertex is given and we want to

reconstruct its community by having only a limited local view of the network. Finally, Zhu et al. [87]

address the problem of finding the k most diversified d-coherent cores, i.e., the k subgraphs having

minimum degree at least d that maximize the coverage of the vertices.

In this work, in Section 5, we introduce a formulation of the densest-subgraph problem in multi-

layer networks that trades off between high density and number of layers where the high density

is observed. We apply our multilayer core-decomposition tools to provide provable approximation

guarantees. Moreover, we show that our formulation generalizes the minimum-average densest-

common-subgraph problem studied in [24, 48, 64, 69] and our method provides approximation

guarantees for this problem as well.

Furthermore, in Section 6, we show how to profitably exploit multilayer core decomposition to

speed-up the problem of finding frequent cross-graph quasi-cliques [49].

Community search. Community search has received a great deal of attention in the data mining

community recently (see e.g., a recent tutorial [46]). Given a simple graph and a set of query vertices,

the community search problem aims at finding a cohesive subgraph containing the query vertices.

Sozio and Gionis [71] are the first to introduce this problem by employing the minimum degree as a

cohesiveness measure. Their formulation can be solved by a simple (linear-time) greedy algorithm,

which is very similar to the one proposed in [23] for the densest-subgraph problem. More recently,

Cui et al. [26] devise a local-search approach to improve the efficiency of the method defined in [71],

but only for the special case of a single query vertex. The minimum-degree-based problem has

been further studied in [13], by exploiting core decomposition as a preprocessing step to allow

more efficient and effective solutions.

Several formulations of the community search has also been studied under different names and

in slightly different settings. Andersen and Lang [5] and Kloumann and Kleinberg [52] study seed

set expansion in social graphs, in order to find communities with small conductance or that are well-

resemblant of the characteristics of the query vertices, respectively. Other works define connectivity

subgraphs based on electricity analogues [31], random walks [74], the minimum-description-length

principle [1], the Wiener index [66], i.e., the sum of all pairwise shortest-path distances between

the vertices of a subgraph, and network efficiency [65], a graph-theoretic notion that measures how
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efficiently a network can exchange information. Finally, community search has been formalized for

attributed [32, 45] and spatial graphs [33] as well.

In this work, in Section 7, we formulate the community-search problem for multilayer graphs,

adopting the early definition by Sozio and Gionis [71] which measures the cohesiveness of a

subgraph by means of its minimum degree, and show how our algorithms for multilayer core

decomposition can be exploited to obtain optimal solutions to this problem.

1.2 Challenges, contributions, and roadmap
Let G = (V ,E,L) be a multilayer graph, where V is a set of vertices, L is a set of layers, and

E ⊆ V ×V × L is a set of edges. Given an |L|-dimensional integer vector k = [kℓ]ℓ∈L , the multilayer

k-core of G is a maximal subgraph whose vertices have at least degree kℓ in that subgraph, for

all layers ℓ ∈ L. Vector k is dubbed coreness vector of that core. The set of all non-empty and

distinct multilayer cores constitutes the multilayer core decomposition ofG. A major challenge of

computing the complete core decomposition of multilayer networks is that the number of multilayer

cores can be exponential in the number of layers, which makes the problem inherently hard, as the

potentially exponential size of the output precludes the existence of polynomial-time algorithms

in the general case. In fact, unlike the single-layer case where cores are all nested into each other,

no total order exists among multilayer cores. Rather, they form a core lattice defining a relation of

partial containment. As a result, the multilayer core-decomposition problem cannot be solved in

linear time like in single-layer graphs: algorithms in the multilayer setting must be crafted carefully

to handle this exponential blowup, and avoid, to the maximum possible extent, the computation of

unnecessary (i.e., empty or non-distinct) cores.

A naïve way of computing a multilayer core decomposition consists in generating all possible

coreness vectors k, run for each vector a subroutine that iteratively removes vertices whose degree

in some layer ℓ is less than the ℓ-th component of k, and filter out duplicated cores. This method

has evident efficiency issues, as every core is computed starting from the whole input graph, and a

significant number of unnecessary (i.e., empty or non-distinct) cores may be generated. Within

this view, our first contribution is to devise three algorithms that exploit effective pruning rules

during the visit of the lattice, thus being much more efficient than the naïve counterpart. The first

two methods are based on a bfs and a dfs strategy, respectively: the bfs method exploits the rule

that a core is contained into the intersection of all its fathers in the lattice, while the dfs method

iteratively performs a single-layer core decomposition that computes cores along a path from a

non-leaf lattice core to a leaf all at once. The third method adopts a hybrid strategy embracing the

main pros of bfs and dfs, and equipped with a look-ahead mechanism to skip non-distinct cores.

We then shift the attention to the problem of computing all and only the inner-most cores, i.e.,

the cores that are not dominated by any other core in terms of their index on all the layers. A

straightforward way of approaching this problem would be to first compute the complete core

decomposition, and then filter out the non-inner-most cores. However, as the inner-most cores are

usually much less than the overall cores, it would be desirable to have a method that effectively

exploits the maximality property and extracts the inner-most ones directly, without computing a

complete decomposition. The design of an algorithm of this kind is an interesting challenge, as it

contrasts the intrinsic conceptual properties of core decomposition, based on which a core of order

k (in one layer) can be efficiently computed from the core of order k − 1, of which it is a subset, thus

naturally suggesting a bottom-up discovery. For this reason, at first glance, the computation of the

core of the highest order would seem as hard as computing the overall core decomposition. In this

work we show that, by means of a clever core-lattice visiting strategy, we can prune huge portions

of the search space, thus achieving higher efficiency than computing the whole decomposition.
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As a major application of multilayer core decomposition, we then focus on the problem of

extracting the densest subgraph from a multilayer network. As we already discussed in Section 1.1,

other methods in the literature, i.e., the ones defined in [24, 48, 64, 69], aim at extracting a subgraph

that maximizes the minimum average degree over all layers. A major limitation of this formulation

is that, considering all layers, even the noisy/insignificant layers would contribute to selecting the

output subgraph, which would be not really dense, thus preventing us from finding a subgraph

being dense in a still large subset of layers. Another simplistic approach at the other end of the

spectrum corresponds to flattening the input multilayer graph and resorting to single-layer densest-

subgraph extraction. However, this would mean disregarding the different semantics of the layers,

incurring in a severe information loss. Within this view, in this work we generalize the problem

studied in [24, 48, 64, 69] by introducing a formulation that accounts for a trade-off between high

density and number of layers exhibiting the high density. Specifically, given a multilayer graph

G = (V ,E,L), the average-degree density of a subset of vertices S in a layer ℓ is defined as the

number of edges induced by S in ℓ divided by the size of S , i.e., |Eℓ [S ] |
|S | . We define the multilayer

densest subgraph as the subset of vertices S∗ such that the function

max

L̂⊆L
min

ℓ∈L̂

|Eℓ[S
∗]|

|S∗ |
|L̂|β

is maximized. β ∈ R+ is a parameter controlling the importance of the two sides of the same coin

of our problem, i.e., high density and number of layers exhibiting such a density. It can be observed

that this problem statement naturally achieves the desired trade-off: the larger the subset L̂ of

selected layers, the smaller the minimum density minℓ∈L̂
|Eℓ [S ] |
|S | registered in those layers. Similarly

to the single-layer case in which the core decomposition can be used to obtain a
1

2
-approximation

of the densest subgraph, in this work we show that computing the multilayer core decomposition

of the input graph and selecting the core maximizing the proposed multilayer density function

achieves a
1

2 |L |β -approximation for the general multilayer-densest-subgraph problem formulation,

and a
1

2
-approximation for the all-layer specific variant studied in [24, 48].

As a further application of our multilayer core-decomposition tool, we show how it can be used

as a profitable preprocessing step to speed-up the problem of extracting frequent cross-graph quasi-

cliques defined in [49]. Specifically, we prove that the search of frequent cross-graph quasi-cliques

can be circumstantiated to a number of restricted areas of the input multilayer graph, corresponding

to multilayer cores that comply with the quasi-clique condition. This allows for skipping visiting

unnecessary parts of the input graph, and, thus, speeding up the whole process, no matter which

specific algorithm is used.

Finally, we also provide a generalization of the community-search problem [71] to the multilayer

setting, and show how to exploit multilayer core decomposition to obtain optimal solutions to this

problem.

Summarizing, this work has the following contributions:

(1) We define the problem of core decomposition in multilayer networks, characterizing its use-

fulness, its relation to other problems, and its intrinsic complexity. We then devise three

algorithms that solve multilayer core decomposition efficiently based on different pruning

techniques (Section 3).

(2) We devise further algorithms that are specifically suited for the computation of the inner-most

cores only (Section 4).

(3) We study the problem of densest-subgraph extraction in multilayer networks, by devising

a novel formulation as an optimization problem that trades-off between high density and
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number of layers exhibiting high density. We exploit multilayer core decomposition to solve

the multilayer densest-subgraph problemwith provable approximation guarantees (Section 5).

(4) We show how the multilayer core-decomposition tool can be exploited to speed up the

extraction of frequent cross-graph quasi-cliques (Section 6).

(5) We formulate the multilayer community-search problem and show that multilayer core

decomposition provides an optimal solution to this problem (Section 7).

An extensive experimental evaluation on a large variety of real multilayer networks is reported

in order to assess the effectiveness of the proposed methods in all the aforementioned contexts. For

each of these contexts, experiments are provided within the corresponding section.

A preliminary version of this work, covering Sections 3 and 5 only, was presented in [38].

Reproducibility. For the sake of reproducibility all our code and some of the datasets used in this

paper are available at https://github.com/egalimberti/multilayer_core_decomposition

2 PRELIMINARIES AND PROBLEM STATEMENTS
In this section we introduce the needed preliminaries and notation, we provide some fundamental

properties of multilayer cores, and then formally define all the problems studied in this work.

2.1 Mulitlayer core decomposition
We are given an undirected multilayer graph G = (V ,E,L), where V is a set of vertices, L is a set of

layers, and E ⊆ V ×V × L is a set of edges. Let Eℓ denote the subset of edges in layer ℓ ∈ L. For a
vertex u ∈ V we denote by deд(u, ℓ) and deд(u) its degree in layer ℓ and over all layers, respectively,
i.e., deд(u, ℓ) = |{e = (u,v, ℓ) : e ∈ Eℓ}|, deд(u) = |{e = (u,v, ℓ) : e ∈ E}| =

∑
ℓ∈L deд(u, ℓ).

For a subset of vertices S ⊆ V we denote by G[S] the subgraph of G induced by S , i.e.,
G[S] = (S,E[S],L), where E[S] = {e = (u,v, ℓ) | e ∈ E,u ∈ S,v ∈ S}. For a vertex u ∈ V we

denote by deдS (u, ℓ) and deдS (u) its degree in subgraph S considering layer ℓ only and all layers,

respectively, i.e., deдS (u, ℓ) = |{e = (u,v, ℓ) : e ∈ Eℓ[S]}|, deдS (u) = |{e = (u,v, ℓ) : e ∈ E[S]}| =∑
ℓ∈L deдS (u, ℓ). Finally, let µ(ℓ) and µ(L̂) denote the minimum degree of a vertex in layer ℓ and

in a subset L̂ ⊆ L of layers, respectively. Let also µ(S, ℓ) and µ(S, L̂) denote the corresponding

counterparts of µ(ℓ) and µ(L̂) for a subgraph (induced by a vertex set) S .
A core of a multilayer graph is characterized by an |L|-dimensional integer vector k = [kℓ]ℓ∈L ,

termed coreness vector, whose components kℓ denote the minimum degree allowed in layer ℓ:2

Formally:

Definition 2 (multilayer core and coreness vector). Given a multilayer graph G = (V ,E,L)
and an |L|-dimensional integer vector k = [kℓ]ℓ∈L , the multilayer k-core of G is a maximal subgraph

G[C] = (C ⊆ V ,E[C],L) such that ∀ℓ ∈ L : µ(C, ℓ) ≥ kℓ . The vector k is referred to as the coreness

vector of G[C].

Given a coreness vector k, we denote by Ck the corresponding core. Also, as a k-core is fully
identified by the vertices belonging to it, we hereinafter refer to it by its vertex set Ck and the

induced subgraph G[Ck] interchangeably.

It is important noticing that a set of vertices C ⊆ V may correspond to multiple cores. For

instance, in the graph in Figure 1 the set {A,B,D,E} corresponds to both (3, 0)-core and (3, 1)-core.
In other words, a multilayer core can be described by more than one coreness vector. However, as

2
Definition 2 corresponds to the notion of k-core used by Azimi-Tafreshi et al. [9] for the multilayer core-percolation

problem. As discussed in Section 1.1, Azimi-Tafreshi et al. do not study (or devise any algorithm for) the problem of

computing the entire core decomposition of a multilayer graph. Core percolation is studied by analyzing a single core of

interest computed with the simple iterative-peeling algorithm (Algorithm 1).
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A B C

D E F

Fig. 1. Example 2-layer graph (solid edges refer to the first layer, while dashed edges to the second layer) with

the following k-cores: (0, 0) = (1, 0) = (0, 1) = (1, 1) = {A,B,C,D,E,F}, (2, 0) = (2, 1) = {A,B,D,E,F}, (3, 0) =
(3, 1) = {A,B,D,E}, (0, 2) = (1, 2) = (0, 3) = (1, 3) = {B,C,E,F}, (2, 2) = {B,E,F} .

formally shown next, among such multiple coreness vectors there exists one and only one that is

not dominated by any other. We call this vector the maximal coreness vector ofC . In the example in

Figure 1 the maximal coreness vector of {A,B,D,E} is (3, 1).

Definition 3 (maximal coreness vector). Let G = (V ,E,L) be a multilayer graph, C ⊆ V be

a core of G, and k = [kℓ]ℓ∈L be a coreness vector of C . k is said maximal if there does not exist any

coreness vector k′ = [k ′
ℓ
]ℓ∈L of C such that ∀ℓ ∈ L : k ′

ℓ
≥ kℓ and ∃ ˆℓ ∈ L : k ′

ˆℓ
> k ˆℓ .

Theorem 1. Multilayer cores have a unique maximal coreness vector.

Proof. We prove the theorem by contradiction. Assume two maximal coreness vectors k =
[kℓ]ℓ∈L , k′ = [k ′

ℓ
]ℓ∈L exist for a multilayer core C . As k , k′ and they are both maximal,

there exist two layers
ˆℓ and ¯ℓ such that k ˆℓ > k ′

ˆℓ
and k ′

¯ℓ
> k ¯ℓ . By definition of multilayer core

(Definition 2), it holds that ∀ℓ ∈ L : µ(C, ℓ) ≥ kℓ, µ(C, ℓ) ≥ k ′
ℓ
. This means that the vector

k∗ = [k∗
ℓ
]ℓ∈L , with k∗

ℓ
= max{kℓ,k

′
ℓ
},∀ℓ ∈ L, is a further coreness vector of C . For this vector it

holds that ∀ℓ , ˆℓ, ℓ , ¯ℓ : k∗
ℓ
≥ k ′

ℓ
, k∗

ˆℓ
> k ′

ˆℓ
, and k∗

¯ℓ
> k ¯ℓ . Thus, k

∗
dominates both k and k′, which

contradicts the hypothesis of maximality of k and k′. The theorem follows. �

The first (and main) problem we tackle in this work is the computation of the complete multilayer

core decomposition, i.e., the set of all non-empty multilayer cores.

Problem 1 (Multilayer Core Decomposition). Given a multilayer graph G = (V ,E,L), find
the set of all non-empty and distinct cores of G, along with their corresponding maximal coreness

vectors. Such a set forms what we hereinafter refer to as the multilayer core decomposition of G.

2.2 Inner-most multilayer cores
Cores of a single-layer graph are all nested one into another. This makes it possible to define

the notions of (i) inner-most core, defined as the core of highest order, and (ii) core index (or core

number) of a vertex u, which is the highest order of a core containing u. In the multilayer setting

the picture is more complex, as multilayer cores are not necessarily all nested into each other. As

a result, the core index of a vertex is not unambiguously defined, while there can exist multiple

inner-most cores:

Definition 4 (inner-most multilayer cores). The inner-most cores of a multilayer graph are

all those cores with maximal coreness vector k = [kℓ]ℓ∈L such that there does not exist any other core

with coreness vector k′ = [k ′
ℓ
]ℓ∈L where ∀ℓ ∈ L : k ′

ℓ
≥ kℓ and ∃ ˆℓ ∈ L : k ′

ˆℓ
> k ˆℓ .

To this purpose, look at the example in Figure 1. It can be observed that: (i) cores are not nested
into each other, (ii) (3, 1)-core, (1, 3)-core and (2, 2)-core are the inner-most cores, and (iii) vertices

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. Y, Article Z. Publication date: April 2018.
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B and E belong to (inner-most) cores (3, 1), (1, 3), and (2, 2), thus making their core index not

unambiguously defined.

The second problem we tackle in this work is the development of smart algorithms able to

compute all the inner-most cores, without the need of computing the complete multilayer core

decomposition.

Problem 2 (Inner-most cores computation). Given a multilayer graph G = (V ,E,L), find the
set of all non-empty and inner-most cores of G, along with their corresponding maximal coreness

vectors.

2.3 Multilayer densest subgraph
As anticipated in Section 1.2, the densest subgraph of a multilayer graph should provide a good

trade-off between large density and the number of layers where such a large density is exhibited.

We achieve this intuition by means of the following optimization problem:

Problem 3 (Multilayer Densest Subgraph). Given a multilayer graphG = (V ,E,L), a positive
real number β , and a real-valued function δ : 2

V → R+ defined as:

δ (S) = max

L̂⊆L
min

ℓ∈L̂

|Eℓ[S]|

|S |
|L̂|β , (1)

find a subset S∗ ⊆ V of vertices that maximizes function δ , i.e.,

S∗ = arg max

S ⊆V
δ (S).

The role of parameter β in Problem 3 is to control the importance of the two ingredients of the

objective function δ , i.e., density and number of layers exhibiting such a density: the smaller β the

larger the importance to be given to the former aspect (density), and vice versa. Also, as a nice

side effect, solving theMultilayer Densest Subgraph problem allows for automatically finding

a set of layers of interest for the densest subgraph S∗. In Section 5 we will show how to exploit it

to devise an algorithm with approximation guarantees for Multilayer Densest Subgraph, thus

extending to the multilayer case the intuition at the basis of the well-known
1

2
-approximation

algorithm [8, 23] for single-layer densest-subgraph extraction.

2.4 Frequent cross-graph quasi-cliques
Another interesting insight into the notion of multilayer cores is about their relationship with

(quasi-)cliques. In single-layer graphs it is well-known that cores can be exploited to speed-up the

problem of finding cliques, as a clique of size k is guaranteed to be contained into the (k − 1)-core.

Interestingly, a similar relationship holds in the multilayer context too. Given a multilayer graph

G = (V ,E,L), a layer ℓ ∈ L, and a real number γ ∈ (0, 1], a subgraph G[S] = (S ⊆ V ,E[S],L) of G
is said to be a γ -quasi-clique in layer ℓ if all its vertices have at least γ (|S | − 1) neighbors in layer

ℓ within S , i.e., ∀u ∈ S : deдS (u, ℓ) ≥ γ (|S | − 1). Jiang et al. [49] study the problem of extracting

frequent cross-graph quasi-cliques, defined next.

Problem 4 (Freqent cross-graph qasi-cliqes mining [49]). Given a multilayer graph

G = (V ,E,L), a function Γ : L → (0, 1] assigning a real value to every layer in L, a real number

min_sup ∈ (0, 1], and an integer min_size ≥ 1, find all maximal subgraphs G[S] of G of size larger

thanmin_size such that there exist at leastmin_sup× |L| layers ℓ for whichG[S] is a Γ(ℓ)-quasi-clique.

In Section 6 we will prove that a frequent cross-graph quasi-clique of size K is necessarily

contained into a k-core described by a maximal coreness vector k = [kℓ]ℓ∈L such that there exists

a fraction of at least min_sup layers ℓ where kℓ = ⌊Γ(ℓ)(K − 1)⌋. Based on this property we will

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. Y, Article Z. Publication date: April 2018.
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show how, by exploiting multilayer core decomposition as a preprocessing step, we can speed-up

any algorithm for Problem 4.

2.5 Multilayer community search
The last application we study is the so called community search problem. Given a graph G = (V ,E)
and a set of query vertices Q ⊆ V , a very wide family of problem requires to find a connected

subgraphH ofG , whichcontains all query verticesQ and exhibits an adequate degree of cohesiveness,

compactness, or density. This type of problem has been termed in the literature in different ways,

e.g., community search [13, 26, 71], seed set expansion [5, 52], connectivity subgraphs [1, 31, 65, 66, 74],

just to mention a few: see [46] for a recent survey. In this work we adopt the early definition by

Sozio and Gionis [71] which measures the cohesiveness of the resulting subgraph by means of the

minimum degree inside the subgraph, and we adapt it to the multilayer setting as follows.

Problem 5 (Multilayer Community Search). Given a multilayer graph G = (V ,E,L), a set of
vertices S ⊆ V , and a set of layers L̂ ⊆ L, we define the minimum degree of a vertex in S , within the

subgraph induced by S and L̂ as:

φ(S, L̂) = min

ℓ∈L̂
min

u ∈S
deдS (u, ℓ).

Given a positive real number β , we define a real-valued density function ϑ : 2
V → R+ as:

ϑ (S) = max

L̂⊆L
φ(S, L̂)|L̂|β .

Given a set of query verticesQ ⊆ V , find a subgraph containing all the query vertices andmaximizing

the density function, i.e.,

S∗ = arg max

Q ⊆S ⊆V
ϑ (S). (2)

In Section 7 we will show how to adapt multilayer core decomposition to efficiently provide an

exact solution to Problem 5.

3 ALGORITHMS FOR MULTILAYER CORE DECOMPOSITION
A major challenge of theMultilayer Core Decomposition problem is that the number of mul-

tilayer cores to be output may be exponential in the number of layers. Specifically, denoting by

Kℓ the maximum order of a core for layer ℓ, the number of multilayer cores is O(
∏

ℓ∈L Kℓ). This

makesMultilayer Core Decomposition intrinsically hard: in the general case, no polynomial-time

algorithm can exist. The challenge in this context hence lies in handling this exponential blowup

by early recognizing and skipping unnecessary portions of the core lattice, such as non-distinct

and/or empty cores.

Given a multilayer graphG = (V ,E,L) and a coreness vector k = [kℓ]ℓ∈L , finding the correspond-
ing core can easily be solved in O(|E | + |V | × |L|) time by iteratively removing a vertex u having

deдG′(u, ℓ) < kℓ in some layer ℓ, where G ′ denotes the current graph resulting from all previous

vertex removals (Algorithm 1, where the set S of vertices to be considered is set to S = V ). Therefore,

a naïve algorithm to compute the entire multilayer core decomposition consists of generating all

possible coreness vectors, run the multilayer core-detection algorithm just described for each

of such vectors, and retain only non-empty and distinct cores. This naïve method requires all

vectors [kℓ]ℓ∈L , where each kℓ component is varied within the interval [0..Kℓ].
3
This corresponds

3Kℓ values can be derived beforehand by computing a single-layer core decomposition in each layer ℓ. This process overall

takes O(|E |) time.
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3,0,0 0,3,0 0,0,32,1,0 2,0,1 0,1,21,0,21,2,0 0,2,11,1,1

2,0,0 1,1,0 0,2,0 1,0,1 0,1,1 0,0,2

1,0,0 0,1,0 0,0,1

0,0,0

Fig. 2. Core lattice of a 3-layer graph.

to a Θ(
∏

ℓ∈L Kℓ) number of vectors. As a result, the overall time complexity of the method is

O
(
(|E | + |V | × |L|) ×

∏
ℓ∈L Kℓ

)
.

This approach has two major weaknesses: (i) each core is computed starting from the whole input

graph, and (ii) by enumerating all possible coreness vectors beforehand a lot of non-distinct and/or

empty (thus, unnecessary) cores may be computed. In the following we present three methods that

solveMultilayer Core Decomposition much more efficiently.

3.1 Search space
Although multilayer cores are not all nested into each other, a notion of partial containment can

still be defined. Indeed, it can easily be observed that a k-core with coreness vector k = [kℓ]ℓ∈L is

contained into any k′-core described by a coreness vector k′ = [k ′
ℓ
]ℓ∈L whose components k ′

ℓ
are

all no more than components kℓ , i.e., k
′
ℓ
≤ kℓ , ∀ℓ ∈ L. This result is formalized next:

Fact 1. Given a multilayer graphG = (V ,E,L) and two coresCk andCk′ ofG with coreness vectors

k = [kℓ]ℓ∈L and k′ = [k ′
ℓ
]ℓ∈L , respectively, it holds that if ∀ℓ ∈ L : k ′

ℓ
≤ kℓ , then Ck ⊆ Ck′ .

Proof. Combining the definition of multilayer core (Definition 2) and the hypothesis on vectors

k and k′, it holds that ∀ℓ ∈ L : µ(Ck, ℓ) ≥ kℓ ≥ k ′
ℓ
. This means that Ck satisfies the definition of

k′-core, thus implying that all vertices in Ck are part of Ck′ too. The fact follows. �

Based on Fact 1, the search space of our problem can be represented as a lattice defining a partial

order among all cores (Figure 2). Such a lattice, which we call the core lattice, corresponds to a dag

where nodes represent cores,
4
and links represent relationships of containment between cores (a

“father” node contains all its “child” nodes). We assume the core lattice keeping track of non-empty

and not necessarily distinct cores: a core is present in the lattice as many times as the number of

its coreness vectors. Each level i of the lattice represents the children of cores at lattice level i − 1.

In particular, level i contains all those cores whose coreness vector results from increasing one

and only one component of its fathers’ coreness vector by one. Formally, a lattice level i contains
all k-cores with coreness vector k = [kℓ]ℓ∈L such that there exists a core at lattice level i − 1 with

coreness vector k′ = [k ′
ℓ
]ℓ∈L where: ∃ℓ ∈ L : kℓ = k

′
ℓ
+ 1, and ∀ ˆℓ , ℓ : k ˆℓ = k

′
ˆℓ
. As a result, level 0

contains the root only, which corresponds to the whole input graph (i.e., the [0] |L |-core), the leaves

correspond to inner-most cores, and any non-leaf node has at least one and at most |L| children.
Moreover, every level i contains all cores whose coreness-vector components sum to i .

Solving theMultilayer Core Decomposition problem is hence equivalent to building the core

lattice of the input graph. The efficient methods we present next are all based on smart core-lattice

4
Throughout the paper we use the term “node” to refer to elements of the core lattice, and “vertex” for the elements of the

multilayer graph.
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Algorithm 1 k-core

Input: A multilayer graph G = (V ,E,L), a set S ⊆ V of vertices, an |L|-dimensional integer vector

k = [kℓ]ℓ∈L .
Output: The k-core Ck of G.
1: while ∃u ∈ S,∃ℓ ∈ L : deдS (u, ℓ) < kℓ do
2: S ← S \ {u}
3: end while

4: Ck = S

Algorithm 2 bfs-ml-cores

Input: A multilayer graph G = (V ,E,L).
Output: The set C of all non-empty multilayer cores of G.
1: C←∅, Q←{[0] |L |}, F ([0] |L |)←∅ # F keeps track of father nodes

2: while Q , ∅ do
3: dequeue k = [kℓ]ℓ∈L from Q
4: if |{kℓ : kℓ > 0}| = |F (k)| then # Corollary 2

5: F∩ ←
⋂

F ∈F(k) F # Corollary 1

6: Ck ← k-core(G, F∩, k) # Algorithm 1

7: if Ck , ∅ then
8: C←C ∪ {Ck}

9: for all ℓ ∈ L do # enqueue child nodes

10: k′← [k1, . . . ,kℓ + 1, . . . ,k |L |]
11: enqueue k’ into Q
12: F (k′) ← F (k′) ∪ {Ck}

13: end for

14: end if

15: end if

16: end while

building strategies that extract cores from smaller subgraphs, while also attempting to minimize

the visit/computation of unnecessary (i.e., empty/non-distinct) cores.

3.2 Breadth-first algorithm
Two interesting corollaries can be derived from Fact 1. First, any non-empty k-core is necessarily
contained in the intersection of all its father nodes of the core lattice. Second, any non-empty

k-core has exactly as many fathers as the number of non-zero components of its coreness vector k:

Corollary 1. Given a multilayer graph G , let C be a core of G and F (C) be the set of fathers of C
in the core lattice of G. It holds that C ⊆

⋂
Ĉ ∈F(C) Ĉ .

Proof. By definition of core lattice, the coreness vector of all father cores F (C) ofC is dominated

by the coreness vector of C . Thus, according to Fact 1, it holds that C ⊆ C ′, ∀C ′ ∈ F (C). Assume a

vertex u <
⋂

Ĉ ∈F(C) Ĉ , u ∈ C exists. This implies that there exists a father core C ′ ∈ F (C) such that

C * C ′, thus leading to a contradiction. �

Corollary 2. Given a multilayer graph G, let C be a core of G with coreness vector k = [kℓ]ℓ∈L ,
and F (C) be the set of fathers ofC in the core lattice ofG . It holds that |F (C)| = |{kℓ : ℓ ∈ L,kℓ > 0}|.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. Y, Article Z. Publication date: April 2018.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Core Decomposition in Multilayer Networks: Theory, Algorithms, and Applications Z:13

Algorithm 3 dfs-ml-cores

Input: A multilayer graph G = (V ,E,L).
Output: The set C of all non-empty multilayer cores of G.
1: C← {V }, R ← L, Q← {[0] |L |}, Q′← ∅
2: while R , ∅ do
3: remove a layer from R
4: for all k ∈ Q do

5: ∀ℓ ∈R s.t. kℓ = 0 : Q′← Q′ ∪ CoreDecomposition(G,Ck, k, ℓ)
6: ∀ℓ ∈L \ R s.t. kℓ = 0 : C← C ∪ {Ck′ | k′ ∈ CoreDecomposition(G,Ck, k, ℓ)}
7: end for

8: C← C ∪ {Ck | k ∈ Q′}, Q← Q′, Q′← ∅
9: end while

Proof. By definition of core lattice, a core C at level i is assigned a coreness vector whose

components sum to i , while the fathers F (C) of C have coreness vector whose components sum to

i−1. Then, the coreness vector of a father ofC can be obtained by decreasing a non-zero component

of the coreness vector of C by one (zero components would lead to negative coreness vector

components, thus they do not count). This means that the number of fathers ofC is upper-bounded

by the non-zero components of its coreness vector. More precisely, the number of fathers of C is

exactly equal to this number, as, according to Corollary 1, no father ofC can be empty, otherwiseC
would be empty too and would not be part of the core lattice. �

The above corollaries pave the way to a breadth-first search building strategy of the core lattice,

where cores are generated level-by-level by properly exploiting the rules in the two corollaries

(Algorithm 2). Although the worst-case time complexity of this bfs-ml-cores method remains

unchanged with respect to the naïve algorithm, the bfs method is expected to be much more

efficient in practice, due to the following main features: (i) cores are not computed from the initial

graph every time, but from a much smaller subgraph given by the intersection of all their fathers;

(ii) in many cases, i.e., when the rule in Corollary 2 (which can be checked in constant time) arises,

no overhead due to the intersection among father cores is required; (iii) the number of empty

cores computed is limited, as no empty core may be generated from a core that has already been

recognized as empty.

3.3 Depth-first algorithm
Although being much smarter than the naïve method, bfs-ml-cores still has some limitations. First,

it visits every core as many times as the number of its fathers in the core lattice. Also, as a second

limitation, consider a path P of the lattice connecting a non-leaf node to a leaf by varying the same

ℓ-th component of the corresponding coreness vectors. It is easy to see that the computation of all

cores within P with bfs-ml-cores takes O(|P| × (|E | + |V | × |L|)) time, as the core-decomposition

process is re-started at every level of the lattice. This process can in principle be performed more

efficiently, i.e., so as to take O(|P| + |E | + |V | × |L|) time, as it actually corresponds to (a simple

variant of) a single-layer core decomposition.

To address the two above cons, we propose a method performing a depth-first search on the

core lattice. The method, dubbed dfs-ml-cores (Algorithm 3), iteratively picks a non-leaf core

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. Y, Article Z. Publication date: April 2018.
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k = [k1, . . . ,kℓ, . . . ,k |L |] and a layer ℓ such that kℓ = 0, and computes all cores [k1, . . . ,kℓ +
1, . . . ,k |L |], . . . , [k1, . . . ,Kℓ, . . . ,k |L |]with a run of theCoreDecomposition(G,Ck, k, ℓ) subroutine.5

A side effect of this strategy is that the same core may be computed multiple times. As an example,

in Figure 2 the (1, 2, 0)-core is computed by core decompositions initiated at both cores (1, 0, 0) and
(0, 2, 0). To reduce (but not eliminate) these multiple core computations, the dfs-ml-cores method

exploits the following result:

Theorem 2. Given a multilayer graphG = (V ,E,L), let [ℓ1, . . . , ℓ |L |] be an order defined over set L.
Let Q0 = {[0] |L |}, and, ∀i ∈ [1..|L|], let Qi = {k′ ∈ CoreDecomposition(G,Ck, k, ℓ) | k ∈ Qi−1, ℓ ∈
(ℓi ..ℓ |L |],kℓ = 0} and Ci = {k′ ∈ CoreDecomposition(G,Ck, k, ℓ) | k ∈ Qi−1, ℓ ∈ [ℓ1..ℓi ],kℓ = 0}.

The set C = {Ck | k ∈
⋃ |L |

i=0
Qi ∪

⋃ |L |
i=1

Ci } is the multilayer core decomposition of G.

Proof. The multilayer core decomposition of G is formed by the union of all non-empty and

distinct cores of all paths P of the lattice connecting a non-leaf node to a leaf by varying the same

ℓ-th component of the corresponding coreness vectors.

Since some of the paths overlap, all cores of the paths Pi , whose coreness vectors k′ = [k ′ℓ]ℓ∈L
have i non-zero components, i.e., whose coreness vectors k′ are in Qi ∪Ci = {k′ : |{k ′

ℓ
: ℓ ∈ L,k ′

ℓ
>

0}| = i}, are derived by executing single-layer core decompositions initiated at a subset of cores of

the paths Pi−1, whose coreness vectors k = [kℓ]ℓ∈L have i−1 non-zero components. Such a subset of

cores is represented by the set of coreness vectors Qi−1 = {k : |{kℓ : ℓ ∈ [ℓ2..ℓ |L |],kℓ > 0}| = i − 1},

i.e., the set of coreness vectors k whose number of non-zero components corresponding to layers

within [ℓ2..ℓ |L |] is equal to i − 1. In addition, single-layer core decompositions for the layers where

kℓ , 0 are avoided, since it is equivalent to visit cores in Pi−1.

As a result, the set {Ck | k ∈
⋃ |L |

i=0
Qi ∪

⋃ |L |
i=1

Ci } correctly contains all possible coreness vectors

of the core lattice. �

Referring to the pseudocode in Algorithm 3, the result in Theorem 2 is implemented by keeping

track of a subset of layers R ⊆ L. At the beginning R = L, and, at each iteration of the main cycle, a

layer ℓ is removed from it. The algorithm is independent of the removal order. Set Q keeps track

of (the coreness vector of) all lattice nodes where the current single-layer core-decomposition

processes need to be run from. Q′ stores the (coreness vector of) cores computed from each node

in Q and for each layer within R, while also forming the basis of Q for the next iteration.

In summary, compared to bfs-ml-cores, the dfs method reduces both the time complexity of

computing all cores in a path P from a non-leaf node to a leaf of the core lattice (from O(|P| ×

(|E | + |V | × |L|)) to O(|P| + |E | + |V | × |L|)), and the number of times a core is visited, which may

now be smaller than the number of its fathers. On the other hand, dfs-ml-cores comes with the

aforementioned issue that some cores may be computed multiple times (while in bfs-ml-cores every

core is computed only once). Furthermore, cores are computed starting from larger subgraphs, as

intersection among multiple fathers can not exploited.

3.4 Hybrid algorithm
The ultimate output of both bfs-ml-cores and dfs-ml-cores correctly corresponds to all distinct

cores of the input graph and the corresponding maximal coreness vectors.
6
Nevertheless, none of

5
Specifically, the CoreDecomposition subroutine returns cores corresponding to all coreness vectors obtained by varying

the ℓ-th component of k within [0..Kℓ ]. In addition, it discards vertices violating the coreness condition specified by vector

k, i.e., vertices whose degree in some layer
ˆℓ , ℓ is less than the

ˆℓ-th component of k.
6
Pseudocodes in Algorithms 2 and 3 guarantee this as cores are added to a set C that does not allow duplicates. Any

real implementation can easily take care of this by checking whether a core is already in C, and update it in case the

corresponding coreness vector contains the previously-stored one.
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Algorithm 4 hybrid-ml-cores

Input: A multilayer graph G = (V ,E,L).
Output: The set C of all non-empty multilayer cores of G.
1: Q←{[0] |L |}, F ([0] |L |)←∅ # F keeps track of father nodes

2: Q′←
⋃

ℓ∈LCoreDecomposition(G,V ,[0] |L |,ℓ) # looked-ahead cores

3: C← {Ck | k ∈ Q′}
4: while Q , ∅ do
5: dequeue k = [kℓ]ℓ∈L from Q
6: if |{kℓ : kℓ > 0}| = |F (k)| ∧ k < Q′ then # Corollary 2

7: F∩ ←
⋂

F ∈F(k) F # Corollary 1

8: Ck ← k-core(G, F∩, k) # Algorithm 1

9: if Ck , ∅ then
10: C←C ∪ {Ck}

11: dµ (Ck) ← [µ(Ck, ℓ)]ℓ∈L # look-ahead mechanism (Corollary 3)

12: Q′← Q′ ∪ {k′ | k ≤ k′ ≤ dµ (Ck)}

13: end if

14: end if

15: if k ∈ Q′ then
16: for all ℓ ∈ L do # enqueue child nodes

17: k′← [k1, . . . ,kℓ + 1, . . . ,k |L |]
18: enqueue k’ into Q
19: F (k′) ← F (k′) ∪ {Ck}

20: end for

21: end if

22: end while

these methods is able to skip the computation of non-distinct cores. Indeed, both methods need to

compute every core C as many times as the number of its coreness vectors in order to guarantee

completeness. To address this limitation we devise a further method where the main peculiarities

of both bfs-ml-cores and dfs-ml-cores are joined into a “hybrid” lattice-visit strategy. This hybrid-

ml-cores method exploits the following corollary of Theorem 1, stating that the maximal coreness

vector of a core C is given by the vector containing the minimum degree of a vertex in C for each

layer:

Corollary 3. Given a multilayer graphG = (V ,E,L), the maximal coreness vector of a multilayer

core C of G corresponds to the |L|-dimensional integer vector dµ (C) = [µ(C, ℓ)]ℓ∈L .

Proof. By Definition 2, vector dµ (C) is a coreness vector ofC . Assume that dµ (C) is not maximal,

meaning that another coreness vector k = [kℓ]ℓ∈L dominating dµ (C) exists. This implies that

kℓ ≥ µ(C, ℓ), and ∃ ˆℓ ∈ L : k ˆℓ > µ(C, ˆℓ). By definition of multilayer core, all vertices in C have

degree larger than the minimum degree µ(C, ˆℓ) in layer
ˆℓ, which is a clear contradiction. �

Corollary 3 gives a rule to skip the computation of non-distinct cores: given a coreC with coreness

vector k = [kℓ]ℓ∈L , all cores with coreness vector k′ = [k ′
ℓ
]ℓ∈L such that ∀ℓ ∈ L : kℓ ≤ k ′

ℓ
≤ µ(C, ℓ)

are guaranteed to be equal toC and do not need to be explicitly computed. For instance, in Figure 2,

assume that the min-degree vector of the (0, 0, 1)-core is (0, 1, 2). Then, cores (0, 0, 2), (0, 1, 1),
and (0, 1, 2) can immediately be set equal to the (0, 0, 1)-core. The hybrid-ml-cores algorithm we

present here (Algorithm 4) exploits this rule by performing a breadth-first search equipped with a
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“look-ahead” mechanism resembling a depth-first search. Moreover, hybrid-ml-cores starts with a

single-layer core decomposition for each layer so as to have more fathers early-on for intersections.

Cores interested by the look-ahead rule are still visited and stored in Q′, as they may be needed for

future core computations. However, no further computational overhead is required for them.

3.5 Discussion
We already discussed (in the respective paragraphs) the strengths and weaknesses of bfs-ml-cores

and dfs-ml-cores: the best among the two is determined by the peculiarities of the specific input

graph. On the other hand, hybrid-ml-cores profitably exploits the main nice features of both bfs-

ml-cores and dfs-ml-cores, thus is expected to outperform both methods in most cases. However, in

those graphs where the number of non-distinct cores is limited, the overhead due to the look-ahead

mechanism can make the performance of hybrid-ml-cores degrade.

In terms of space requirements, bfs-ml-cores needs to keep in memory all those cores having at

least a child in the queue, i.e., at most two levels of the lattice (the space taken by a multilayer core

is O(|V |)). The same applies to hybrid-ml-cores with the addition of the cores computed through

single-layer core decomposition and look-ahead, until all their children have been processed. dfs-

ml-cores instead requires to store all cores where the single-layer core-decomposition process

should be started from, both in the current iteration and the next one. Thus, we expect dfs-ml-cores

to take more space than bfs-ml-cores and hybrid-ml-cores, as in practice the number of cores to

be stored should be more than the cores belonging to two lattice levels.

3.6 Experimental results
In this subsection we present experiments to (i) compare the proposed algorithms in terms of

runtime, memory consumption, and search-space exploration; (ii) characterize the output core
decompositions, also by comparing total number of cores and number of inner-most cores.

Datasets. We select publicly-available real-world multilayer networks, whose main characteristics

are summarized in Table 1.

Homo
7
and SacchCere

7
are networks describing different types of genetic interactions between

genes in Homo Sapiens and Saccharomyces Cerevisiae, respectively. ObamaInIsrael
7
represents

different types of social interaction (e.g., re-tweeting, mentioning, and replying) among Twitter

users, focusing on Barack Obama’s visit to Israel in 2013. Similarly, Higgs
7
is built by tracking the

spread of news about the discovery of the Higgs boson on Twitter, with the additional layer for the

following relation. Friendfeed
8
contains public interactions among users of Friendfeed collected

over two months (e.g., commenting, liking, and following). FriendfeedTwitter
8
is a multi-platform

social network, where layers represent interactions within Friendfeed and Twitter between users

registered to both platforms [27]. Amazon
9
is a co-purchasing temporal network, containing four

snapshots between March and June 2003. Finally, DBLP
10
is derived following the methodology

in [20]. For each co-authorship relation (edge), the bag of words resulting from the titles of all

papers co-authored by the two authors is collected. Then LDA topic modeling [18] is applied to

automatically identify a hundred topics. Among these, ten topics that are recognized as the most

relevant to the data-mining area have been hand-picked. Every selected topic corresponds to a layer.

An edge between two co-authors in a certain layer exists if the relation between those co-authors

is labeled with the topic corresponding to that layer.

7
http://deim.urv.cat/~manlio.dedomenico/data.php

8
http://multilayer.it.uu.se/datasets.html

9
https://snap.stanford.edu/data/

10
http://dblp.uni-trier.de/xml/

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. Y, Article Z. Publication date: April 2018.

http://deim.urv.cat/~manlio.dedomenico/data.php
http://multilayer.it.uu.se/datasets.html
https://snap.stanford.edu/data/
http://dblp.uni-trier.de/xml/


785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Core Decomposition in Multilayer Networks: Theory, Algorithms, and Applications Z:17

Table 1. Characteristics of the real-world datasets: number of vertices (|V |), number of edges (|E |), number of

layers (|L|).

dataset |V | |E | |L| domain

Homo 18k 153k 7 genetic

SacchCere 6.5k 247k 7 genetic

DBLP 513k 1.0M 10 co-authorship

ObamaInIsrael 2.2M 3.8M 3 social

Amazon 410k 8.1M 4 co-purchasing

FriendfeedTwitter 155k 13M 2 social

Higgs 456k 13M 4 social

Friendfeed 510k 18M 3 social

Fig. 3. Runtime of the proposed methods with varying the number of layers (DBLP dataset).

Implementation. All methods are implemented in Python (v. 2.7.12) and compiled by Cython: all

our code is available at github.com/egalimberti/multilayer_core_decomposition. All experiments

are run on a machine equipped with Intel Xeon CPU at 2.1GHz and 128GB RAM except for Figure 3,

whose results are obtained on Intel Xeon CPU at 2.7GHz with 128GB RAM.

Comparative evaluation. We compare the naïve baseline (for short n) and the three proposed

methods bfs-ml-cores (for short bfs), dfs-ml-cores (dfs), hybrid-ml-cores (h) in terms of running

time, memory usage, and number of computed cores (as a measure of the explored search-space

portion). The results of this comparison are shown in Table 2. As expected, n is the least efficient

method: it is outperformed by our algorithms by 1–4 orders of magnitude. Due to its excessive

requirements, we could not run it in reasonable time (i.e., 30 days) on the Friendfeed dataset. Among

the proposed methods, h achieves the best performance in most datasets, as expected. In some

cases, however, h is comparable to bfs, thus confirming the fact that in datasets where the number

of non-distinct cores is not so large the performance of the two methods gets closer. A similar

reasoning holds between bfs and dfs (at least with a small/moderate number of the layers, see

next): bfs is faster in most cases, but, due to the respective pros and cons discussed in Section 3, it

is not surprising that the two methods achieve comparable performance in a number of other cases.

To test the behavior with varying the number of layers, Figure 3 shows the running times of

the proposed methods on different versions of the DBLP dataset, obtained by selecting a variable

number of layers, from 2 to 10. While the performance of the three methods is comparable up to

six layers, beyond this threshold the execution time of dfs grows much faster than bfs and h. This

attests that the pruning rules of bfs and h are more effective as the layers increase. To summarize,

dfs is expected to have runtime comparable to (or better than) bfs and h when the number of

layers is small, while h is faster than bfs when the number of non-distinct cores is large.
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Table 2. Comparative evaluation: proposed methods and baseline. Runtime differs from [38] since a different

server was employed.

dataset #output cores method runtime (s) memory (MB) #computed cores

Homo 1 845 n 1 145 27 12 112

bfs 13 26 3 043

dfs 27 27 6 937

h 12 25 2 364

SacchCere 74 426 n 24 469 55 278 402

bfs 1 134 34 89 883

dfs 2 627 57 223 643

h 1 146 35 83 978

DBLP 3 346 n 103 231 608 34 572

bfs 68 612 6 184

dfs 282 627 38 887

h 29 521 5 037

Obama 2 573 n 37 554 1 286 3 882

InIsrael bfs 226 1 299 3 313

dfs 150 1 384 3 596

h 177 1 147 2 716

Amazon 1 164 n 11 990 425 1 823

bfs 3 981 534 1 354

dfs 5 278 619 2 459

h 3 913 536 1 334

Friendfeed 76 194 n 409 489 220 80 954

Twitter bfs 61 113 215 80 664

dfs 1 973 267 80 745

h 59 520 268 76 419

Higgs 8 077 n 163 398 474 22 478

bfs 2 480 465 12 773

dfs 640 490 14 119

h 2 169 493 9 389

Friendfeed 365 666 bfs 58 278 465 546 631

dfs 13 356 591 568 107

h 47 179 490 389 323

The number of computed cores is always larger than the output cores as all methods might

compute empty cores or, in the case of dfs, the same core multiple times. Table 2 shows that dfs

computes more cores than bfs and h, which conforms to its design principles.

Finally, all methods turn out to be memory-efficient, taking no more than 1.5GB of memory.

Core-decomposition characterization. Figure 4 reports the distribution of number of cores,

core size, and average-degree density (i.e., number of edges divided by number of vertices) of the

subgraph corresponding to a core. Distributions are shown by level of the lattice
11
for the SacchCere

and Friendfeed datasets. Although the two datasets have very different scales, the distributions

exhibit similar trends. Being limited by the number of layers, the number of cores in the first levels

11
Recall that the lattice level has been defined in Section 3.1: level i contains all cores whose coreness-vector components

sum to i .
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Fig. 4. Distribution of number of cores (left), average core size (center), and average average-degree density

of a core (right) to the core-lattice level, for datasets SacchCere (top) and Friendfeed (bottom).

Fig. 5. Number of output cores (total and inner-most).

of the lattice is very small, but then it exponentially grows until reaching its maximum within

the first 25 − 30% visited levels. The average size of the cores is close to the number of vertices in

the first lattice level, when cores’ degree conditions are not very strict. Then it decreases as the

number of cores gets larger, with a maximum reached when very small cores stop “propagating” in

the lower lattice levels. Finally, the average (average-degree) density tends to increase for higher

lattice level. However, there are a couple of exceptions: it decreases (i) in the first few levels of

SacchCere’s lattice, and (ii) in the last levels of both SacchCere and Friendfeed, where the core size

starts getting smaller, thus implying small average-degree values.

In Figure 5 we show the comparison between the number of all cores and inner-most cores for all

the datasets. The number of cores differs quite a lot from dataset to dataset, depending on dataset

size, number of layers, and density. The fraction of inner-most cores exhibits a non-decreasing trend

as the layers increase, ranging from 0.3% of the total number of output cores (FriendfeedTwitter) to

22% (DBLP).
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Algorithm 5 im-ml-cores

Input: A multilayer graph G = (V ,E,L).
Output: The set I of all inner-most multilayer cores of G.
1: sort L by non-decreasing average-degree density

2: M ← ∅

3: I← rim-ml-cores(G,V , [0] |L |, ℓ1,M)

Given that the inner-most cores are per-se interesting and typically one or more orders of

magnitude fewer in number than the total cores, it would be desirable to have a method that

effectively exploits the maximality property and extracts the inner-most ones directly, without

computing a complete decomposition. This is presented in the next section.

4 ALGORITHMS FOR INNER-MOST MULTILAYER CORES
In this section we show how to solve the problem of finding the non-empty inner-most multilayer

cores of a multilayer graph (Problem 2) more efficiently than computing the whole multilayer

core decomposition and a-posteriori filtering out non-inner-most cores. To this end, we devise

a recursive algorithm, which is termed im-ml-cores and whose outline is shown as Algorithm 5

(and Algorithm 6). We provide the details of the algorithm next. In the reminder of this section we

assume the layer set L of the input multilayer graphG = (V ,E,L) to be an ordered list [ℓ1, . . . , ℓ |L |].
The specific ordering we adopt in this work is by non-decreasing average-degree density, as, among

the various orderings tested, this is the one that provides the best experimental results.

The proposed im-ml-cores algorithm is based on the notion of ℓr -right-inner-most multilayer

cores of a core Ck, i.e., all those cores having coreness vector k′ equal to k up to layer ℓr−1, and for

which the inner-most condition holds for layers from ℓr to ℓ |L | .

Definition 5 (ℓr -right-inner-most multilayer cores). Given a multilayer graphG = (V ,E,L)
and a layer ℓr ∈ L, the ℓr -right-inner-most multilayer cores of a core Ck of G, where k = [kℓ]ℓ∈L ,
correspond to all the cores ofG with coreness vector k′ = [k ′

ℓ
]ℓ∈L such that ∀ℓ ∈ [ℓ1, ℓr ) : k ′

ℓ
= kℓ , and

there does not exist any other core with coreness vector k′′ = [k ′′
ℓ
]ℓ∈L such that ∀ℓ ∈ [ℓ1, ℓr ) : k ′′

ℓ
= kℓ ,

∀ℓ ∈ [ℓr , ℓ |L |] : k ′′
ℓ
≥ k ′

ℓ
, and ∃ ˆℓ ∈ [ℓr , ℓ |L |] : k ′′

ˆℓ
> k ′

ˆℓ
.

It is easy to observe that the ℓ1-right-inner-most multilayer cores of the root core C[0]|L | of the
core lattice (i.e., the core having an all-zero coreness vector) correspond to all inner-most multilayer

cores of a multilayer graph.

Fact 2. Given amultilayer graphG = (V ,E,L), let Iℓ1
be the set of all ℓ1-right-inner-most multilayer

cores of core C[0]|L | . Iℓ1
corresponds to all inner-most multilayer cores of G.

The proposed im-ml-cores algorithm exploits Fact 2 and recursively computes ℓr -right-inner-
most multilayer cores, starting from the root of the core lattice (Algorithm 5). The algorithm makes

use of a data structureM which consists of a sequence of nested maps, one for each layer (but

the last one, i.e., ℓ |L |), that keeps track of the minimum-degree constraints for a multilayer core

to be inner-most. Specifically, given a coreness vector k and a layer ℓr , the instructionM[k, ℓr ]
iteratively accesses the nested maps using the elements of k up to layer ℓr as keys. As an example,

consider a coreness vector k = [kℓ]ℓ∈L , with |L| = 3.M[k, ℓ |L |−1] first queries the outer-most map

with key kℓ1
, and obtains a further map. Then, this second map is queried with key kℓ2

, to finally

get the ultimate desired numerical value. Note that the instructionM[k, ℓr ] returns a numerical

value for ℓr = ℓ |L |−1, otherwise it returns a map. If k does not identify a sequence of valid keys for
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Algorithm 6 rim-ml-cores

Input: A multilayer graph G = (V ,E,L), a set S ⊆ V of vertices, a coreness vector k = [kℓ]ℓ∈L , a
layer ℓr ∈ L, and a data structureM.

Output: The set Ir of all right-inner-most multilayer cores of Ck given ℓr .
1: Ir ← ∅
2: if ℓr , ℓ |L | then
3: Q← CoreDecomposition(G, S, k, ℓr ) ∪ {k}
4: C← {Ck′ | k′ ∈ CoreDecomposition(G, S, k, ℓr )} ∪ {S}
5: for all k′ ∈ Q in decreasing order of k ′

ℓr
do

6: M[k′, ℓr ] ← ∅
7: Ir ← Ir ∪ rim-ml-cores(G,Ck′, k′, ℓr+1,M)
8: end for

9: else

10: kM ← 0

11: for all ℓ ∈ [ℓ1, ℓ |L |) do

12: kℓ = [kℓ1
, . . . ,kℓ + 1, . . . ,kℓ|L | ]

13: kM ← max{kM ,M[kℓ, ℓ |L |−1]}

14: end for

15: k′← [kℓ1
, . . . ,kℓ|L |−1

,kM]

16: kI ← Inner-mostCore(G, S, k′, ℓ |L |)
17: if kI , null then

18: Ir ← Ir ∪ kI

19: M[kI , ℓ |L |−1] ← k I
ℓ|L |
+ 1

20: else

21: M[k′, ℓ |L |−1] ← k ′
ℓ|L |

22: end if

23: end if

M, we assume that 0 is returned as a default value.M is initialized as empty, and populated during

the various recursive iterations.

Algorithm 6 consists of two main blocks: the first block (Lines 3 – 8) is responsible for the

recursion, while the second block (Lines 10 – 22) computes the ℓr -right-inner-most cores. The

first block is executed when the current ℓr layer is not the last one. In this case, the algorithm

first computes the core decomposition on layer ℓr of the vertices in S considering the constraints

given by k (Lines 3 and 4, by means of the CoreDecomposition subroutine used in Algorithm 3

and described in Section 3.3). Then, for each coreness vector k′ that has been found, it makes a

recursive call on the next layer ℓr+1, and extends the data structureM with a further (empty)

nested map, to make it ready to be populated within the next recursive execution. The coreness

vectors are processed in decreasing order of k ′
ℓr
: this ordering ensures that once a multilayer core

is identified as ℓr -right-inner-most, it is never removed from the output solution at a later stage.

Note also that, for each k′, the execution of rim-ml-cores can be circumstantiated to Ck′ only, i.e.,

the core of coreness vector k′: this guarantees better efficiency, without affecting correctness.

When the last layer has been reached, i.e., ℓr = ℓ |L | , the current recursion ends, and an ℓr -right-
inner-most multilayer core is returned (if any). First of all, the algorithm computes a coreness

vector k′ which is potentially ℓr -right-inner-most (Lines 10 – 15). In this regard, note that the kM
value is derived form the information that has been stored inM in the earlier recursive iterations.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. Y, Article Z. Publication date: April 2018.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

Z:22 Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano

rim-ml-cores(V, (0, 0, 0), ℓ1)
CoreDecomposition(V , (0, 0, 0), ℓ1)

Q← {(2, 0, 0), (1, 0, 0), (0, 0, 0)}

1

rim-ml-cores(C(2,0,0), (2, 0, 0), ℓ2)

CoreDecomposition(C(2,0,0), (2, 0, 0), ℓ2)

Q← {(2, 0, 0)}

1.1

rim-ml-cores(C(2,0,0), (2, 0, 0), ℓ3)

Inner-mostCore(C(2,0,0), (2, 0, 0), ℓ3) → (2, 0, 3)
1.1.1

rim-ml-cores(C(1,0,0), (1, 0, 0), ℓ2)

CoreDecomposition(C(1,0,0), (1, 0, 0), ℓ2)

Q← {(1, 2, 0), (1, 1, 0), (1, 0, 0)}

1.2

rim-ml-cores(C(1,2,0), (1, 2, 0), ℓ3)

Inner-mostCore(C(1,2,0), (1, 2, 0), ℓ3) → (1, 2, 4)
1.2.1

rim-ml-cores(C(1,1,0), (1, 1, 0), ℓ3)

Inner-mostCore(C(1,1,0), (1, 1, 5), ℓ3) → null

1.2.2

rim-ml-cores(C(1,0,0), (1, 0, 0), ℓ3)

Inner-mostCore(C(1,0,0), (1, 0, 5), ℓ3) → (1, 0, 7)
1.2.3

rim-ml-cores(C(0,0,0), (0, 0, 0), ℓ2)

CoreDecomposition(C(0,0,0), (0, 0, 0), ℓ2)

Q← {(0, 3, 0), (0, 2, 0), (0, 1, 0), (0, 0, 0)}

1.3

rim-ml-cores(C(0,3,0), (0, 3, 0), ℓ3)

Inner-mostCore(C(0,3,0), (0, 3, 0), ℓ3) → (0, 3, 1)
1.3.1

rim-ml-cores(C(0,2,0), (0, 2, 0), ℓ3)

Inner-mostCore(C(0,2,0), (0, 2, 5), ℓ3) → null

1.3.2

rim-ml-cores(C(0,1,0), (0, 1, 0), ℓ3)

Inner-mostCore(C(0,1,0), (0, 1, 5), ℓ3) → (0, 1, 5)
1.3.3

rim-ml-cores(C(0,0,0), (0, 0, 0), ℓ3)

Inner-mostCore(C(0,0,0), (0, 0, 8), ℓ3) → null

1.3.4

Fig. 6. Execution of the im-ml-cores algorithm (Algorithm 5) on a toy 3-layer graph.

Finally, the algorithm computes the inner-most core in ℓ |L | constrained by k′, by means of the Inner-

mostCore subroutine
12
. If Inner-mostCore actually returns a multilayer core, then it is guaranteed

that such a core is ℓr -right-inner-most, and is therefore added to the solution (andM is updated

accordingly).

In Figure 6 we show an example of the execution of the proposed im-ml-cores algorithm for a

simple 3-layer graph, while Figure 7 reports the content of theM data structure for this example.

Every box corresponds to a call of Algorithm 6, for which we specify (i) the input parameters (G and

M are omitted for brevity), (ii) the calls to the subroutines CoreDecomposition or Inner-mostCore,

and (iii) the content of Q (when instantiated). For instance, the coreness vector provided as input

to Inner-mostCore at box 1.3.4 has the last element equal to the maximum between what is stored

intoM at the end of the paths 1→ 0 and 0→ 1, i.e., 8 and 5, that have been set at boxes 1.2.3 and

1.3.3, respectively.

12
The Inner-mostCore subroutine, similarly to the CoreDecomposition subroutine, requires in input a multilayer graph G ,

subset of vertices S , a coreness vector k, and a layer ℓ. It returns the multilayer core having coreness vector of highest ℓ-th

component of the vertices in S , considering the constraints given by k.
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∅1

2→ ∅1.1

2→ {0→ 4}1.1.1

2→ {0→ 4}

1→ ∅
1.2

2→ {0→ 4}

1→ {2→ 5}
1.2.1

2→ {0→ 4}

1→ {2→ 5; 1→ 5}
1.2.2

2→ {0→ 4}

1→ {2→ 5; 1→ 5; 0→ 8}
1.2.3

2→ {0→ 4}

1→ {2→ 5; 1→ 5; 0→ 8}

0→ ∅

1.3

2→ {0→ 4}

1→ {2→ 5; 1→ 5; 0→ 8}

0→ {3→ 2}
1.3.1

2→ {0→ 4}

1→ {2→ 5; 1→ 5; 0→ 8}

0→ {3→ 2; 2→ 5}
1.3.2

2→ {0→ 4}

1→ {2→ 5; 1→ 5; 0→ 8}

0→ {3→ 2; 2→ 5; 1→ 6}
1.3.3

2→ {0→ 4}

1→ {2→ 5; 1→ 5; 0→ 8}

0→ {3→ 2; 2→ 5; 1→ 6; 0→ 8}
1.3.4

Fig. 7. Content of theM data structure during the execution of the im-ml-cores algorithm as per the example

shown in Fig. 6.

4.1 Experimental results

Running times. We asses the efficiency of im-ml-cores (for short im) by comparing it to the

aforementioned naïve approach for computing inner-most multilayer cores, which consists in firstly

computing all multilayer cores (by means of one of the three algorithms presented in Section 3) and

filtering out the non-inner-most ones. The results of this experiment are reported in Table 3. First

of all, it can be observed that the a-posteriori filtering of the inner-most multilayer cores does not

consistently affect the runtime of the algorithms for multilayer core decomposition: this means that

most of the time is spent for computing the overall core decomposition. The main outcome of this

experiment is that the running time of the proposed immethod is smaller than the time required by

bfs, dfs, or h summed up to the time spent in the a-posteriori filtering, with considerable speed-up

from 1.3 to an order of magnitude on the larger datasets, e.g., FriendfeedTwitter and Friendfeed.

The only exception is on the DBLP dataset where bfs and h run slightly faster, probably due to fact

that its edges are (almost) equally distributed among the layers, which makes the effectiveness of

the ordering vanish.

Characterization.We also show the characteristics of the inner-most multilayer cores. Figure 8

reports the distribution of number, size, and average-degree density of all cores and inner-most

cores only. Distributions are shown in a way similar to what previously done in Figure 4, i.e., by

level of the core lattice, and for the SacchCere and Amazon datasets.
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Table 3. Runtime (in seconds) of the methods for multilayer core decomposition, the a-posteriori filtering of

the inner-most multilayer cores, and the proposed im-ml-cores method for directly computing inner-most

multilayer cores.

dataset bfs dfs h filtering im

Homo 13 27 12 0.5 5

SacchCere 1 134 2 627 1 146 24 336

DBLP 68 282 29 1 148

ObamaInIsrael 226 150 177 7 120

Amazon 3 981 5 278 3 913 129 2 530

FriendfeedTwitter 61 113 1 973 59 520 276 1 583

Higgs 2 480 640 2 169 33 356

Friendfeed 58 278 13 356 47 179 394 2 640
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Fig. 8. Comparison of the distributions, to the core-lattice level, of number (left), average size (center), and

average average-degree density (right) of multilayer cores and inner-most multilayer cores, for datasets

SacchCere (top) and Amazon (bottom).

For both datasets, there are no inner-most cores in the first levels of the lattice. As expected,

the number of inner-most cores considerably increases when the number of all cores decreases.

This is due to the fact that some cores stop propagating throughout the lattice, hence they are

recognized as inner-most. In general, inner-most cores are on average smaller than all multilayer

cores. Nonetheless, for the levels 12 and 13 of the Amazon dataset, inner-most cores have greater size

than all cores. This behavior is consistent with our definitions: inner-most cores are cores without

descendants, thus they are expected to be the smallest-sized ones, but they do not necessarily have

to. Finally, the distribution of the average-degree density exhibits a similar trend to the distribution

of the size: this is expected as the two measures depend on each other.
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5 MULTILAYER DENSEST SUBGRAPH
In this section we showcase the usefulness of multilayer core-decomposition in the con-

text of multilayer densest-subgraph discovery. Particularly, we show how to exploit the mul-

tilayer core-decomposition to devise an algorithm with approximation guarantees for the

Multilayer Densest Subgraph problem introduced in Section 2 (Problem 3), thus extending to

the multilayer setting the intuition at the basis of the well-known
1

2
-approximation algorithm [8, 23]

for single-layer densest-subgraph extraction.

5.1 Hardness
We start by formally showing that the Multilayer Densest Subgraph problem (Problem 3) is

NP-hard.

Theorem 3. Problem 3 is NP-hard.

To prove the theorem, we introduce two variants of Problem 3’s objective function, i.e., δall(·),
which considers all layers in L, and δ¬all(·), which considers all subsets of layers but the whole

layer set L. Specifically, for any given multilayer graph G = (V ,E,L) and vertex subset S ⊆ V , the

two functions are defined as:

δall(S) = min

ℓ∈L

|Eℓ[S]|

|S |
|L|β , (3)

δ¬all(S) = max

L̂∈2L\{L }
min

ℓ∈L̂

|Eℓ[S]|

|S |
|L̂|β . (4)

We also define deдmax as the maximum degree of a vertex in a layer:

deдmax = max

ℓ∈L
max

u ∈V
deд(u, ℓ), (5)

and introduce the following three auxiliary lemmas.

Lemma 1. δall(S) ≥
1

|V | |L|
β
, for all S ⊆ V such that ∀ℓ ∈ L : |Eℓ[S]| > 0.

Proof. For a vertex set S spanning at least one edge in every layer, it holds that minℓ∈L
|Eℓ [S ] |
|S | ≥

1

|V | , and, therefore, δall(S) = minℓ∈L
|Eℓ [S ] |
|S | |L|

β ≥ 1

|V | |L|
β
. �

Lemma 2. δ¬all(S) ≤
deдmax

2
(|L| − 1)β , for all S ⊆ V .

Proof. The maximum density of a vertex set S in a layer can be at most equal to the density of

the maximum clique, i.e., at most
(deдmax+1) deдmax

2 (deдmax+1)
=

deдmax
2

. At the same time, the size of a layer

set L̂ in the function δ¬all(·) can be at most |L| − 1 (as the whole layer set L is not considered in

δ¬all(·)). This means that δ¬all(S) = maxL̂∈2L\{L }minℓ∈L̂
|Eℓ [S ] |
|S | |L̂|

β ≤
deдmax

2
(|L| − 1)β . �

Lemma 3.

β >
log |L |−1

(
|V |
2
deдmax

)
× log |L |(|L| − 1)

1 − log |L |(|L| − 1)
⇔

1

|V |
|L|β >

deдmax

2

(|L| − 1)β .
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Proof.

β >
log |L |−1

(
|V |
2
deдmax

)
× log |L |(|L| − 1)

1 − log |L |(|L| − 1)

⇔

(
1 − log |L |(|L| − 1)

)
β > log |L |−1

(
|V |
2
deдmax

)
× log |L |(|L| − 1)

⇔ β > log |L |−1

(
|V |
2
deдmax

)
× log |L |(|L| − 1) + β log |L |(|L| − 1)

⇔
β

log |L |(|L| − 1)
> log |L |−1

(
|V |
2
deдmax

)
+ β

⇔
log |L | |L|

β

log |L |(|L| − 1)
> log |L |−1

(
|V |
2
deдmax

)
+ log |L |−1

(|L| − 1)β

⇔ log |L |−1
|L|β > log |L |−1

(
|V |
2
deдmax (|L| − 1)β

)
⇔ |L|β > |V |

2
deдmax (|L| − 1)β

⇔
1

|V |
|L|β >

deдmax

2

(|L| − 1)β .

�

With Lemmas 1–3 in place, we are now ready to provide the ultimate proof of Theorem 3.

Proof. We reduce from the Min-Avg Densest Common Subgraph (DCS-MA) problem [48],

which aims at finding a subset of vertices S ⊆ V from a multilayer graph G = (V ,L, S) max-

imizing minℓ∈L
Eℓ [S ]
|S | , and has been recently shown to be NP-hard in [24]. We distinguish two

cases. The first (trivial) one is when G has a layer with no edges. In this case any vertex sub-

set would be an optimal solution for DCS-MA (with overall objective function equal to zero),

including the optimal solution to ourMultilayer Densest Subgraph problem run on the same

G (no matter which β is used). In the second case G has at least one edge in every layer. In

this case solving our Multilayer Densest Subgraph problem on G, with β set to any value

>
log|L |−1

(
|V |
2
deдmax

)
×log|L |( |L |−1)

1−log|L |( |L |−1)
, gives a solution that is optimal for DCS-MA as well. Indeed, it can

be observed that, for all S ⊆ V such that ∀ℓ ∈ L : |Eℓ[S]| > 0:

δall(S) ≥
1

|V |
|L|β {Lemma 1}

>
deдmax

2

(|L| − 1)β {Lemma 3}

≥ δ¬all(S). {Lemma 2}

This means that, for that particular value of β , the optimal solution of

Multilayer Densest Subgraph on input G is given by maximizing the δall(·) function,

which considers all layers and is, as such, equivalent to the objective function underlying the

DCS-MA problem. This completes the proof. �

5.2 Algorithms
The approximation algorithm we devise for the Multilayer Densest Subgraph problem is very

simple: it computes the multilayer core decomposition of the input graph, and, among all cores,

takes the one maximizing the objective function δ as the output densest subgraph (Algorithm 7).

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. Y, Article Z. Publication date: April 2018.



1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Core Decomposition in Multilayer Networks: Theory, Algorithms, and Applications Z:27

Algorithm 7 ml-densest

Input: A multilayer graph G = (V ,E,L) and a real number β ∈ R+.
Output: C∗ ⊆ V .

1: C← MultiLayerCoreDecomposition(G)
2: C∗ ← arg maxC ∈C δ (C) # Equation (1)

Despite its simplicity, the algorithm achieves provable approximation guarantees proportional to

the number of layers of the input graph, precisely equal to
1

2 |L |β . We next formally prove this result.

Let C be the core decomposition of the input multilayer graph G = (V ,E,L) and C∗ denote the
core in C maximizing the density function δ , i.e., C∗ = arg maxC ∈C δ (C). Then, C

∗
corresponds

to the subgraph output by the proposed ml-densest algorithm. Let also C(µ) denote the subgraph
maximizing the minimum degree in a single layer, i.e., C(µ) = arg maxS ⊆V f (S), where f (S) =
maxℓ∈L µ(S, ℓ), while ℓ

(µ) = arg maxℓ∈L µ(C
(µ), ℓ). It is easy to see that C(µ) ∈ C. Finally, let S∗

sl

be the densest subgraph among all single-layer densest subgraphs, i.e., S∗
sl
= arg maxS ⊆V д(S),

where д(S) = maxℓ∈L
|Eℓ [S ] |
|S | , and ℓ∗ be the layer where S∗

sl
exhibits its largest density, i.e., ℓ∗ =

arg maxℓ∈L
|Eℓ [S∗

sl
] |

|S∗
sl
|
. We start by introducing the following two lemmas that can straightforwardly

be derived from the definitions of C∗, C(µ), S∗
sl
, ℓ(µ), and ℓ∗:

Lemma 4. δ (C∗) ≥ δ (C(µ)).

Proof. By definition, C(µ) is a multilayer core described by (among others) the coreness vector

k = [kℓ]ℓ∈L with kℓ(µ ) = maxℓ∈L µ(C
(µ), ℓ), and kℓ = 0, ∀ℓ , ℓ(µ). Then C(µ) ∈ C. As C∗ =

arg maxC ∈C δ (C), it holds that δ (C
∗) ≥ δ (C(µ)). �

Lemma 5. δ (S∗) ≤
|Eℓ∗ [S

∗
sl
]|

|S∗
sl
|
|L|β .

Proof.

δ (S∗) = max

L̂⊆L
min

ℓ∈L̂

|Eℓ[S
∗]|

|S∗ |
|L̂|β ≤ max

ℓ∈L

|Eℓ[S
∗]|

|S∗ |
|L|β ≤

|Eℓ∗ [S
∗
sl
]|

|S∗
sl
|
|L|β .

�

The following further lemma shows a lower bound on the minimum degree of a vertex in S∗
sl
:

Lemma 6. µ(S∗
sl
, ℓ∗) ≥

|Eℓ∗ [S
∗
sl
]|

|S∗
sl
|

.

Proof. As S∗
sl

is the subgraph maximizing the density in layer ℓ∗, removing the minimum-degree

node from S∗
sl

cannot increase that density. Thus, it holds that:

|Eℓ∗ [S
∗
sl
]|

|S∗ |
≥
|Eℓ∗ [S

∗
sl
]| − µ(S∗

sl
, ℓ∗)

|S∗
sl
| − 1

⇔ µ(S∗
sl
, ℓ∗) ≥ |Eℓ∗ [S

∗
sl
]|
|S∗
sl
| − 1

|S∗
sl
|
− |Eℓ∗ [S

∗
sl
]|

⇔ µ(S∗
sl
, ℓ∗) ≥

|Eℓ∗ [S
∗
sl
]|

|S∗
sl
|
.

�
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The approximation factor of the proposed ml-densest algorithm is ultimately stated in the next

theorem:

Theorem 4. δ (C∗) ≥ 1

2|L|β
δ (S∗).

Proof.

δ (C∗) ≥ δ (C(µ)) {Lemma 4}

≥ max

ℓ∈L

|Eℓ[C
(µ)]|

|C(µ) |
1
β = max

ℓ∈L

|Eℓ[C
(µ)]|

|C(µ) |
{Equation (1)}

≥
1

2

max

ℓ∈L
µ(C(µ), ℓ) {as avg degree ≥ min degree}

=
1

2

µ(C(µ), ℓ(µ)) {by definition of C(µ)}

≥
1

2

µ(S∗
sl
, ℓ∗) {optimality of C(µ) w.r.t. min degree}

≥
1

2

|Eℓ∗ [S
∗
sl
]|

|S∗
sl
|

{Lemma 6}

≥
1

2|L|β
δ (S∗). {Lemma 5}

�

The following corollary shows that the theoretical approximation guarantee stated in Theorem 4

remains the same even if only the inner-most cores are considered (although, clearly, considering

the whole core decomposition may lead to better accuracy in practice).

Corollary 4. Given a multilayer graphG = (V ,E,L), let Cim be the set of all inner-most multilayer

cores of G, and let C∗
im
= arg maxC ∈Cim

δ (C). It holds that δ (C∗
im
) ≥ 1

2 |L |β δ (S
∗).

Proof. Let C
(µ)
im
∈ Cim be an inner-most core of G whose coreness vector has a component

equal to ℓ(µ). It is easy to see that the result in Lemma 4 holds for C∗
im

and C
(µ)
im

too, i.e., becoming

δ (C∗
im
) ≥ δ (C

(µ)
im
), while the proof of Theorem 4 holds as is, by simply replacing C∗ with C∗

im
and

C(µ) with C
(µ)
im

. �

Finally, we observe that the result in Theorem 4 carries over to the Min-Avg Densest Common

Subgraph (DCS-MA) problem studied in [24, 48, 64, 69] as well, as that problem can be reduced to

ourMultilayer Densest Subgraph problem (as shown in Theorem 3).

5.3 Experimental results
We experimentally evaluate our ml-densest algorithm (Algorithm 7) on the datasets in Table 1.

Figure 9 reports the results – minimum average-degree density in a layer, number of selected layers,

size, objective-function value δ – on the Homo and Higgs datasets, with varying β . The remaining

datasets, which we omit due to space constraints, exhibit similar trends on all measures.

The trends observed in the figure conform to what expected: the smaller β , the more the objective

function privileges solutions with large average-degree density in a few layers (or even just one

layer, for β close to zero). The situation is overturned with larger values of β , where the minimum

average-degree density drops significantly, while the number of selected layers stands at 6 for

Homo and 4 for Higgs. In-between β values lead to a balancing of the two terms of the objective
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Fig. 9. Multilayer densest-subgraph extraction (Homo and Higgs datasets): minimum average-degree density

in a layer, number of selected layers, size, and objective-function value δ of the output densest subgraphs

with varying β .

Fig. 10. Multilayer densest subgraph extracted by Algorithm 7 from the DBLP dataset (β = 2.2).

function, thus giving more interesting solutions. Also, by definition, δ as a function of β draws

exponential curves.

Finally, as anecdotal evidence of the output of Algorithm 7, in Figure 10 we report the densest

subgraph extracted from DBLP. The subgraph contains 10 vertices and 5 layers automatically

selected by the objective function δ . The minimum average-degree density is encountered on the

layers corresponding to topics “graph” and “algorithm” (green and yellow layers in the figure), and

is equal to 1.2. The objective-function value is δ = 41.39. Note that the subgraph is composed of

two connected components. In fact, like the single-layer case, multilayer cores are not necessarily

connected.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. Y, Article Z. Publication date: April 2018.



1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

Z:30 Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano

6 MULTILAYER QUASI-CLIQUES
Another interesting insight into the notion of multilayer cores is about their relationship with

(quasi-)cliques. In single-layer graphs it is well-known that cores can be exploited to speed-up the

problem of finding cliques, as a clique of size k is guaranteed to be contained into the (k − 1)-core.

Interestingly, a similar relationship holds in the multilayer context too. Given a multilayer graph

G = (V ,E,L), a layer ℓ ∈ L, and a real number γ ∈ (0, 1], a subgraph G[S] = (S ⊆ V ,E[S],L)
of G is said to be a γ -quasi-clique in layer ℓ if all its vertices have at least γ (|S | − 1) neighbors

in layer ℓ within S , i.e., ∀u ∈ S : deдS (u, ℓ) ≥ γ (|S | − 1). Jiang et al. [49] study the problem of

extracting frequent cross-graph quasi-cliques:
13
given a multilayer graphG = (V ,E,L), a function

Γ : L → (0, 1] assigning a real value to every layer in L, a real number min_sup ∈ (0, 1], and an

integer min_size > 1, find all maximal subgraphs G[S] of G of size larger than min_size such that

there exist at least min_sup × |L| layers ℓ for which G[S] is a Γ(ℓ)-quasi-clique.
The following theorem shows that a frequent cross-graph quasi-clique of size ≥ min_size is

necessarily contained into a k-core described by a coreness vector k = [kℓ]ℓ∈L such that there

exists a fraction of min_sup layers ℓ where kℓ = ⌈Γ(ℓ)(min_size − 1)⌉.

Theorem 5. Given a multilayer graph G = (V ,E,L), a real-valued function Γ : L→ (0, 1], a real
number min_sup ∈ (0, 1], and an integer min_size > 1, a frequent cross-graph quasi-clique of G
complying with parameters Γ, min_sup, and min_size is contained into a k-core with coreness vector

k = [kℓ]ℓ∈L such that |{ℓ ∈ L : kℓ = ⌈Γ(ℓ)(min_size − 1)⌉}| = ⌈min_sup × |L|⌉.

Proof. Assume that a cross-graph quasi-clique S of G complying with parameters Γ, min_sup,

and min_size is not contained into any k-core with coreness vector k = [kℓ]ℓ∈L such that |{ℓ ∈ L :

kℓ = ⌈Γ(ℓ)(min_size − 1)⌉}| = ⌈min_sup × |L|⌉. This means that S contains a vertex u such that

|{ℓ ∈ L : deдS (u, ℓ) ≥ Γ(ℓ)(min_size−1)}| < min_sup× |L|, which means that |{ℓ ∈ L : deдS (u, ℓ) ≥
Γ(ℓ)(|S | − 1)}| < min_sup× |L| as well, since |S | ≥ min_size. This violates the definition of frequent

cross-graph quasi-clique. �

As a simple corollary, the computation of frequent cross-graph quasi-cliques can therefore be

circumstantiated to the subgraph given by the union of all multilayer cores complying with the

condition stated in Theorem 5.

Corollary 5. Given a multilayer graph G = (V ,E,L), a real-valued function Γ : L → (0, 1], a
real number min_sup ∈ (0, 1], and an integer min_size > 1, let G ′ = (V ′,E ′,L) the subgraph of G
given by the union of all multilayer cores ofG complying with Theorem 5. It holds that all cross-graph

quasi-cliques of G complying with parameters Γ, min_sup, and min_size are contained into G ′.

The finding in Corollary 5 can profitably be exploited to have a more efficient extraction of

frequent cross-graph quasi-cliques. Specifically, the idea is to (i) compute all multilayer cores of the

input graph G (including the non-distinct ones, as the condition stated in Theorem 5 refers to not

necessarily maximal coreness vectors); (ii) process all multilayer cores of G one by one, retain only

the ones complying with Theorem 5, and compute the subgraph G ′ induced by the union of all

such cores; (iii) run any algorithm for frequent cross-graph quasi-cliques onG ′. Based on the above

theoretical results, such a procedure is guaranteed to be sound and complete, and it is expected to

provide a significant speed-up, as G ′ is expected to be much smaller than the original graph G.

13
The input in [49] has the form of a set of graphs sharing the same vertex set, which is clearly fully equivalent to the

notion of multilayer graph considered in this work.
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# solution runtime (s)

Γ min_sup min_size quasi-cliques |V ′ | Corollary 5 [49]

1 1 1 1 .2 .2 1 0.5 6 2 371 3 169

.9 .9 .9 .9 .2 .2 .9 2 371 25 17 561

.8 .8 .8 .8 .2 .2 .8 6 1 196 734 22 932

.7 .7 .7 .7 .2 .2 .7 6 1 196 728 23 376

.6 .6 .6 .6 .2 .2 .6 59 2 300 5 200 28 948

.5 .5 .5 .5 .2 .2 .5 59 2 300 5 123 29 677

# solution runtime (s)

Γ min_sup min_size quasi-cliques |V ′ | Corollary 5 [49]

.5 .5 .5 .5 .2 .2 .5 1 3 2 152 2 281

0.9 2 152 2 282

0.8 28 940 23 292

0.7 323 3 271 205 411

0.6 323 3 271 203 414

0.5 1 630 4 581 2 569 3 075

Table 4. Comparison of the runtime of the efficient extraction of frequent cross-graph quasi-cliques by

Corollary 5 and of the original algorithm [49], for the SacchCere dataset. The evaluation is proposed varying

one of the parameters, i.e., Γ, min_sup, and min_size, at a time. The number of solution quasi-cliques and the

number of vertices |V ′ | of the subgraph G ′ are also reported.

# solution runtime (s)

Γ min_sup min_size quasi-cliques |V ′ | Corollary 5 [49]

1 1 1 1 1 1 1 1 1 1 0.2 8 2 18 0.2 26 496

.9 .9 .9 .9 .9 .9 .9 .9 .9 .9 2 18 0.2 26 112

.8 .8 .8 .8 .8 .8 .8 .8 .8 .8 13 75 0.3 26 867

.7 .7 .7 .7 .7 .7 .7 .7 .7 .7 18 196 1 27 387

.6 .6 .6 .6 .6 .6 .6 .6 .6 .6 18 196 1 27 084

.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 121 801 18 31 508

# solution runtime (s)

Γ min_sup min_size quasi-cliques |V ′ | Corollary 5 [49]

.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 0.5 3 8 182 0.2 26 969

0.4 195 2 375 1 26 964

0.3 3 394 22 659 210 32 981

Table 5. Comparison of the runtime of the efficient extraction of frequent cross-graph quasi-cliques by

Corollary 5 and of the original algorithm [49], for the DBLP dataset. The evaluation is proposed varying

one of the parameters, i.e., Γ, min_sup, and min_size, at a time. The number of solution quasi-cliques and

the number of vertices |V ′ | of the subgraph G ′ are also reported. ++ indicates runtime longer than 259 200

seconds (i.e., 3 days).
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6.1 Experimental results
We show in Tables 4 and 5 the experimental results about the comparison of the algorithm proposed

by Jiang et al. [49] and the more efficient extraction of frequent cross-graph quasi-cliques by

Corollary 5. Table 4 refers to the SacchCere dataset, while Table 5 to the DBLP dataset. To evaluate

the effect of the parameters, i.e., the function Γ, min_sup, and min_size, on the performance of the

two approaches, we vary a parameter at a time keeping the other two fixed. With regards to the

values selected for Γ, we fix Γ(ℓ5) = Γ(ℓ6) = 0.2 in all the experiments involving the SacchCere

dataset, due to the imbalance of the distribution of the edges in favor of the other five layers

(i.e., layers ℓ1, . . . , ℓ4, ℓ7). Instead, given the uniformity of the edge density across the layers of

the DBLP dataset, Γ is modified coherently for all the layer in this latter case. In addition to the

execution times, for each configuration of the parameters, we also report the number of solution

frequent cross-graph quasi-cliques and the number of vertices |V ′ | of the subgraphG ′ identified by

Corollary 5.

The first thing to notice is that, in both datasets and for every configuration, our approach is

faster than the algorithm by Jiang et al. [49]. The actual speed-up varies with the size of |V ′ | (with
respect to |V |) which, in turn, is affected by the mining parameters. For the SacchCere dataset, we

obtain the most extreme cases when varying min_sup (middle table): our approach is able to prune

from 30% (min_sup = 0.5) up to 98% (min_sup = 1) of the input multilayer graph. For the DBLP

dataset, the results are even stronger: in the worst case (i.e., Γ(ℓ) = 0.5 ∀ℓ ∈ L, min_sup = 0.3, and
min_size = 3) we prune the 95% of the original vertex set. The runtime of both our approach and

Jiang et al.’s [49] algorithm varies consistently according to parameters and to |V ′ |. The speed-up
that out method reaches ranges from 1.2 to two orders of magnitude for the SacchCere dataset,

and from one order up to six orders of magnitude for the DBLP dataset.

7 COMMUNITY SEARCH IN MULTILAYER NETWORKS
The idea here is very similar to that of the multilayer densest subgraph.

Problem 5 (Multilayer Community Search). Given a multilayer graph G = (V ,E,L), a set of
vertices S ⊆ V , and a set of layers L̂ ⊆ L, we define the minimum degree of a vertex in S , within the

subgraph induced by S and L̂ as:

φ(S, L̂) = min

ℓ∈L̂
min

u ∈S
deдS (u, ℓ).

Given a positive real number β , we define a real-valued density function ϑ : 2
V → R+ as:

ϑ (S) = max

L̂⊆L
φ(S, L̂)|L̂|β .

Given a set of query verticesQ ⊆ V , find a subgraph containing all the query vertices andmaximizing

the density function, i.e.,

S∗ = arg max

Q ⊆S ⊆V
ϑ (S). (6)

Let C be the set of all non-empty multilayer cores of G. For a core C ∈ C with coreness vector

k = [kℓ]ℓ∈L , we define the score

σ (C) = max

L̂⊆L
(min

ℓ∈L̂
kℓ)|L̂|

β ,

and denote by C∗ a core that contains all query vertices in Q and maximizes the score σ , i.e.,

C∗ = arg max

C ∈C,Q ⊆C
σ (C). (7)

As shown in the following theorem, C∗ is a (non-unique) exact solution to Problem 5.
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Theorem 6. Given a multilayer graphG = (V ,E,L), and a setQ ⊆ V of query vertices, let S∗ andC∗

be the vertex sets defined as in Equation (6) and Equation (7), respectively. It holds that ϑ (C∗) = ϑ (S∗).

Proof. We prove the statement by contradiction, assuming that ϑ (C∗) < ϑ (S∗). Let µℓ =
minu ∈S∗ deдS∗ (u, ℓ), and µ = [µℓ]ℓ∈L . By definition of multilayer core, there exists a core C ∈ C of

G with coreness vector µ such that S∗ ⊆ C . This means that

σ (C) = max

L̂⊆L
(min

ℓ∈L̂
µℓ)|L̂|

β = max

L̂⊆L
(min

ℓ∈L̂
min

u ∈S∗
deдS∗ (u, ℓ))|L̂|

β = ϑ (S∗).

Thus, there exists a core C ∈ C whose ϑ (·) score is equal to ϑ (S∗), which contradicts the original

assumption ϑ (C∗) < ϑ (S∗). �

Algorithms.The coreC∗ can be straightforwardly found by running any of the proposed algorithms

for multilayer core decomposition – bfs-ml-cores (Algorithm 2), dfs-ml-cores (Algorithm 3), or

hybrid-ml-cores (Algorithm 4) – and taking from the overall output core set the core maximizing

the σ (·) score. However, thanks to the constraint about containment of query verticesQ , the various

algorithms can be speeded up by preventively skipping the computation of cores that do not contain

Q . Specifically, this corresponds to the following simple modifications:

• bfs-ml-cores (Algorithm 2): replace the condition at Line 7 with “if Q ⊆ Ck then”.

• dfs-ml-cores (Algorithm 3): stop the CoreDecomposition subroutine used at Lines 5 and 6

as soon as a core not containing Q is encountered and make the subroutine return only the

cores containing Q .
• hybrid-ml-cores (Algorithm 4): replace the condition at Line 9 with “if Q ⊆ Ck then”.

7.1 Experimental results
We experimentally prove the efficiency of themodifications adopted by our algorithms formultilayer

community search by comparing the runtime with respect to the original algorithms for multilayer

core decomposition. For size of the query set |Q | from 1 to 10, we select the query vertices at

random among the whole vertex set of the input multilayer graph and run the modified versions

of bfs-ml-cores, dfs-ml-cores, and hybrid-ml-cores. Each size is evaluated 100 times, while β is

varied between 0.1 and 100. The average runtime in function of |Q | is shown in Table 6; in each

dataset, for each |Q |, the shortest runtime is reported in bold.

In all datasets and for all algorithms, the modifications yield considerable improvement. For

|Q | = 1, which is the most demanding scenario in terms of runtime, we achieve (with the exception

of Amazon) from one to three orders of magnitude of speedup in all the cases. As the number of

query vertices increases, the modifications become even more effective: for |Q | > 2, we obtain at

least one order of magnitude of speedup, with the extreme case of four orders of magnitude for the

Friendfeed dataset.

A further interesting matter is the identification of the fastest method for the multilayer-

community-search problem. For |Q | > 2, h turns out the be the quickest algorithm in all datasets

with the exception of FriendfeedTwitter, for which dfs preserves better performance up to 10 query

vertices. On the other hand, the situation is slightly different for a single query vertex. In this case,

the runtime is more correlated to the underlying algorithm for multilayer core decomposition. In

fact, for the SacchCere and Higgs datasets, bfs and dfs, respectively, are faster than h for |Q | = 1

8 CONCLUSIONS
Core decomposition has proven to be a fundamental graph analysis tool with plenty of applications.

In this work we study core decomposition in multilayer networks, characterizing its usefulness, its

relation to other problems, and its intrinsic complexity. We then devise three efficient algorithms
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Table 6. Comparison of the average runtime (in seconds) between the original algorithms for multilayer core

decomposition and modified methods for community search, in function of the number of query vertices |Q |.
In each dataset and for each |Q |, the fastest runtime is bolded.

|Q |
dataset method original 1 2 3 4 5 6 7 8 9 10

Homo bfs 13 2 1 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6
dfs 27 3 2 1 1 1 0.9 0.9 0.9 0.9 0.9
h 12 0.9 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

SacchCere bfs 1 134 162 25 6 3 1 1 0.7 0.7 0.5 0.5
dfs 2 627 390 58 13 6 2 2 1 1 0.7 0.6
h 1 146 166 25 5 2 0.5 0.8 0.2 0.2 0.1 0.1

DBLP bfs 68 35 35 34 34 34 34 35 34 35 36

dfs 282 55 42 39 39 38 38 38 38 39 39

h 29 5 5 5 5 5 6 6 6 6 6
Obama bfs 226 42 36 34 33 31 32 32 32 32 33

InIsrael dfs 150 51 38 34 33 31 31 31 30 31 31

h 177 15 10 10 9 9 9 9 9 9 9
Amazon bfs 3 981 2 125 1 364 608 582 441 234 231 192 175 167

dfs 5 278 3 103 2 105 1 198 1 072 851 523 515 434 406 371

h 3 913 2 109 1 342 570 546 405 190 190 150 134 127
Friendfeed bfs 61 113 2 464 1 004 597 333 243 185 117 108 85 59

Twitter dfs 1 973 129 73 48 33 30 27 22 21 19 17
h 59 520 2 340 916 523 278 193 136 78 69 49 28

Higgs bfs 2 480 351 149 91 65 62 56 50 45 40 41

dfs 640 125 77 60 52 51 46 46 42 42 39

h 2 169 239 80 43 23 21 16 14 9 8 8
Friendfeed bfs 58 278 150 51 27 25 25 24 23 23 23 23

dfs 13 356 803 220 82 68 68 66 58 58 59 57

h 47 179 10 4 2 2 2 2 2 2 2 2

for computing the whole core decomposition of a multilayer network and we show a series of

non-trivial applications of the core decomposition to solve related problems. In particular:

• Given the large number of multilayer cores, we devise a recursive algorithm for efficiently

computing the inner-most cores only.

• We study densest-subgraph extraction in multilayer graphs as a proper optimization problem

trading off between high density and layers exhibiting high density, and show how core

decomposition can be used to approximate this problem with quality guarantees.

• We show how the multilayer core-decomposition tool can be theoretical exploited to speed

up the extraction of frequent cross-graph quasi-cliques, and experimentally prove the ef-

fectiveness of our approach with respect to the original algorithm for frequent cross-graph

quasi-cliques.

• We generalize the multilayer community-search problem to the multilayer case and show

how to exploit multilayer core decomposition to obtain optimal solutions to this problem.

In our on-going and future investigation we plan to employ multilayer core decomposition for

the analysis of multilayer brain networks in which each layer represents a patient, vertices are

brain regions, and edges are co-activation interactions measured by fMRI scans. In this scenario,
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multilayer core decomposition tool might result to be a powerful tool to identify common patterns

to patients affected by diseases or under the assumption of drugs and, also, to select features in

order to discriminate actual patients from healthy individuals.
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