
Humanoid Gait Generation via MPC:
Stability, Robustness and Extensions

Sapienza University of Rome

Dottorato di Ricerca in Automatica, Bioingegneria e Ricerca Operativa –
XXXII Ciclo

Candidate

Nicola Scianca
ID number 1047939

Thesis Advisor

Prof. Giuseppe Oriolo

January 2020

Thesis defended on 21 February 2020
in front of a Board of Examiners composed by:

Prof. Gianluca Antonelli, Università di Cassino (chairman)
Prof. Luca Faes, Università di Palermo
Prof. Marco Sciandrone, Università di Firenze

Humanoid Gait Generation via MPC: Stability, Robustness and Extensions
Ph.D. thesis. Sapienza – University of Rome

© 2019 Nicola Scianca. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: scianca@diag.uniroma1.it

iii

Abstract

Research on humanoid robots has made significant progress in recent years, and
Model Predictive Control (MPC) has seen great applicability as a technique for gait
generation. The main advantages of MPC are the possibility of enforcing constraints
on state and inputs, and the constant replanning which grants a degree of robustness.

This thesis describes a framework based on MPC for humanoid gait generation,
and analyzes some theoretical aspects which have often been neglected. In particular,
the stability of the controller is proved. Due to the presence of constraints, this
requires proving recursive feasibility, i.e., that the algorithm is able to recursively
guarantee that a solution satisfying the constraints is found. The scheme is referred
to as Intrinsically Stable MPC (IS-MPC).

A basic scheme is presented, and its stability and feasibility guarantees are
discussed. Then, several extensions are introduced. The guarantees of the basic
scheme are carried over to a robust version of IS-MPC. Furthermore, extension to
uneven ground and to a more accurate multi-mass model are discussed.

Experiments on two robotic platforms (the humanoid robots HRP-4 and NAO)
are presented in the concluding section.

v

Acknowledgements

I would like to thank: my family for their constant support; Prof. Giuseppe Oriolo
and Prof. Leonardo Lanari for their guidance throughout these three years; everyone
at the Robotics Lab in Rome, in particular my co-authors Daniele De Simone, Paolo
Ferrari, Valerio Modugno, Marco Cognetti; the students who I worked with and whose
work contributed to this thesis: Filippo M. Smaldone, Alessio Zamparelli, Ahmed
Aboudonia; Prof. Francesco Borrelli for hosting me at University of California at
Berkeley for six months, which was a very stimulating experience; everyone at the
MPC Lab in Berkeley, in particular Ugo Rosolia who I had the great pleasure to
collaborate with.

vii

Contents

1 Introduction 1
1.1 About humanoid robots . 1
1.2 About Model Predictive Control . 3
1.3 Overview of the thesis . 3

2 Literature review 5

3 Models for humanoid locomotion 9
3.1 Forces acting on a humanoid robot 10
3.2 The Linear Inverted Pendulum . 11
3.3 The perturbed LIP model . 13
3.4 Linear 3D model . 14
3.5 Two-mass model . 15

4 The stability condition 19
4.1 The stability condition for the LIP model 19
4.2 Gait design using the stability condition 22
4.3 Stability conditions for alternative models 23

5 IS-MPC: the basic scheme 25
5.1 Footstep generation . 25

5.1.1 Footstep timing . 27
5.1.2 Footstep placement . 28

5.2 Prediction model . 30
5.3 ZMP constraints . 32
5.4 The stability constraint . 34

5.4.1 The velocity tail . 36
5.5 The IS-MPC algorithm . 38
5.6 Stability and feasibility . 39

5.6.1 Feasibility regions . 39
5.6.2 Recursive feasibility . 42
5.6.3 Stability . 44
5.6.4 Effect of the stability constraint 45
5.6.5 Effect of the velocity tail on feasibility 46

viii Contents

6 IS-MPC with automatic footstep placement 51
6.1 Candidate footstep generation . 52
6.2 Automatic footstep placement scheme 52
6.3 Including footstep orientations . 53
6.4 Simulations . 55

7 Robust IS-MPC 61
7.1 Disturbance model . 61
7.2 Indirect disturbance compensation 62
7.3 ZMP Constraint restriction . 64
7.4 Robustness against bounded disturbances 64
7.5 Observer-based IS-MPC . 68
7.6 Simulations . 68

8 IS-MPC on uneven ground 73
8.1 Footstep planning with random exploration tree 74
8.2 IS-MPC on uneven ground . 76
8.3 Simulations . 79

9 IS-MPC on a multi-mass model 81
9.1 Foot trajectory and automatic footstep placement 81
9.2 Multi-mass IS-MPC scheme . 82
9.3 Simulations . 83

10 Experiments 87

11 Conclusions 91

A Integration of the LIP model 93

Bibliography 95

1

Chapter 1

Introduction

1.1 About humanoid robots

Humanoid robots have a structure that is closely inspired by human morphology.
They typically have an anthropomorphic appearance, with arms and legs which
allow them to manipulate objects and to perform human-like locomotion, and they
may have human-like senses such as a camera mounted on the head to mimic our
visual perception.

As of now humanoid robots still have little applicability outside research. Nev-
ertheless, they have and have always had a prominent place in popular culture.
The general public typically associates the word ‘robot’ to some kind of artificial
human-like being. Many classic works of science fiction feature robots which have
human appearance, sometimes only as a structural resemblance, sometimes to the
point they are indistinguishable from us. It is undeniable that humanoid robots
evoke great interest from the public.

Significant early progress towards the construction of humanoid robots was made
in Japan, starting around 1973 at Waseda University in Tokyo [1]. WABOT-1
was a full-scale anthropomorphic robot which was able to walk on its legs, and its
successor WABOT-2 had hands which made him capable of playing a keyboard
instrument. The Japanese tradition was picked up by Honda, which in 1986 started
a research program to produce humanoids that could coexist with humans in their
environments. Their first humanoid robot was P2, revealed to the public in 1996. It
was followed by P3 in 1997 and by Asimo in 2000 (see Fig. 1.1).

More modern platforms include HRP-4 from Kawada Robotics, Atlas from Boston
Dynamics, Valkyrie from NASA, and many others (see Fig. 1.2). The hardware side
has seen great improvements over the years, and some companies are even starting
to show interest in employing humanoids for industrial purposes [2].

Despite the significant progress made over the years, humanoids still have not
reached the level of performance that is expected from them. Locomotion in complex
environments, where the ground is not flat and obstacles are present, is still a
challenge. Unstructured environments are exactly the kind of scenarios in which
humanoid robots would prove most useful. Examples are disaster areas with high
heat or toxic chemicals, where robots might be needed for exploration and rescue.
Wheeled robots would not be able to easily navigate a cluttered scene, especially if

2 1. Introduction

Figure 1.1. Early humanoid robots developed by Honda. Left to right: P2 from 1996, P3
from 1997, and the first version of Asimo from 2000.

Figure 1.2. Modern humanoid robots: HRP-4 from Kawada Robotics, Atlas from Boston
Dynamics and Valkyrie from NASA.

1.2 About Model Predictive Control 3

it is necessary to step over obstacles. Humanoids on the other hand can achieve this
level of dexterity, at least in principle, but the control techniques need to proceed
hand in hand with the technological advances in construction. This emphasizes the
need for a strong theoretical foundation of the techniques we develop.

1.2 About Model Predictive Control

Several control techniques determine actions as solutions to optimization problems.
A classic example is found in optimal control, which is typically employed to compute
off-line reference trajectories that can be employed as feedforward control sequences.
The solution is computed in its entirety and usually tracked by another controller
(e.g., a PID).

The goal of MPC is to use optimal control techniques in a real-time fashion.
The prediction is limited to a short horizon, which typically produces a sub-optimal
trajectory. However, the prediction window is shifted ahead at each time-step, and
the trajectory is always recomputed, with only the first sample of the predicted
control sequence being applied at each time. This means that inaccuracies in the
prediction are kept under control, as they are absorbed by the constant replanning.
Furthermore, it allows imposing constraints on the state and input.

Achieving real-time execution might require, especially on a complicated system
such as a humanoid robot, a simplification of the prediction model. The simplified
dynamic model is usually a linear system, which allows the controller to run at
a frequency of 100 Hz (or even more), which is a suitable frequency for a robotic
system.

The presence of constraints might pose problems of feasibility, i.e., whether or
not a solution exists at a given time step. Classic MPC theory usually tackles this by
employing a terminal constraint, i.e., a constraint on the state at the last time-step
of the prediction, which is constructed so as to guarantee recursive feasibility of the
scheme. This is a necessary step for proving stability.

MPC was extensively used in the control of humanoid robots in the last few
years, with many interesting results being proposed. However, there is progress to
be made in the theoretical analysis of these control techniques. This work attempts
to take steps in this direction, by formulating an MPC scheme for humanoid gait
generation and analysing its properties with regards to stability and feasibility.

1.3 Overview of the thesis

This thesis will describe a gait generation technique for humanoid robots which we
refer to as Intrinsically Stable MPC (IS-MPC). The name is due to the use of an
explicit stability constraint in the scheme, which provides boundedness guarantees
on the generated trajectories. IS-MPC was proposed in [3], and later revised and
expanded in [4]. Extensions of the basic scheme will also be discussed. What follows
is a brief outline of the content of each of the following chapters.

Ch. 2 will present a review of the literature and of the state of the art with
respect to MPC for humanoid locomotion.

4 1. Introduction

Ch. 3 will discuss the dynamic balance of humanoids and introduce models that
will be employed in later chapters. Each of the models will be used later, either by
the basic IS-MPC scheme or by one of its extensions.

Ch. 4 will introduce the stability condition. This is a tool that will be utilized
throughout the work, and that is required to construct the aforementioned stability
constraint for the MPC scheme.

Ch. 5 will describe IS-MPC in its basic form, and Ch. 6 will introduce automatic
footstep placement, which allows reactive stepping. The material for these chapters
is found in [3] and [4]. A section based on [5] is also included in Ch. 6, for automatic
footstep placement which includes adaptation of the footstep orientations.

Ch. 7 will discuss a robust extension of the scheme. This includes material found
in [6], which is concerned with the design of a stability constraint for a perturbed
model, providing an indirect compensation of the disturbance. More recent work is
also included in the same chapter.

Ch. 8 presents an extension for locomotion on uneven ground. This work was
proposed in [7], and later extended in [8] to include a footstep planner capable of
generating footstep sequences on uneven ground.

Ch. 9 describes an extension that employs a multi-mass model. This constitutes
a more sophisticated model as it accounts for the dynamics of the swinging foot.
The original work can be found in [9].

IS-MPC has also been applied to the generation of evasive motions for human-
humanoid coexistence [10].

5

Chapter 2

Literature review

A large part of the literature on humanoid robot control (and legged robots in general)
uses the concept of Zero Moment Point (ZMP). First introduced by Vukobratović
and Juriĉić [11], its strength is that it gives a geometric interpretation to the problem
of balance: the ZMP must lie inside the support polygon.

Still, the full ZMP dynamics are too complex for real-time control. A simplified
model, employed by several approaches for locomotion, is the Linear Inverted
Pendulum (LIP) [12], which is obtained by the Newton-Euler equations on the full
body of the robot, with a few simplifying assumptions. These assumptions require a
flat ground, a constant CoM height, and neglecting the rate of change of angular
momentum around the robot CoM. The LIP model and the assumptions leading to
it will be explained in detail in Sect. 3.2). The concept of Capture Point (CP), the
point on the ground on which the robot should step to maintain balance [13] is also
closely related to the LIP.

The LIP model allows to control the ZMP dynamics by generating a suitable
CoM trajectory and then kinematically tracking this trajectory. Furthermore, the
linearity of the model allows to design controllers that use predictive techniques. A
major step in this direction was made by [14], which generated a CoM trajectory
using a preview controller. A ZMP trajectory is designed over the prediction horizon,
and the control objective is to track this trajectory while minimizing the CoM jerk
(i.e., its third derivative), by solving a finite time optimal control problem over the
prediction.

The inclusion of explicit ZMP constraints in the preview controller [15] effectively
leads to an MPC formulation. This has several advantages, as the ZMP constraints
guarantee dynamic balance, and remove the need to specify a ZMP trajectory to be
tracked.

MPC has a very rich literature, but the gait generation problem is rendered more
complex by the fact that it deals with time-varying ZMP constraints. This makes
the analysis of its properties, more challenging. Classically in MPC design, stability
is guaranteed by using a terminal constraint. Terminal constraints for standard
control problems such as regulation or tracking are easily found in the literature, but
the problem of gait generation does not fall into those categories, as the trajectory
is not pre-specified.

Terminal constraints were used for humanoid balancing in [16] and for gait

6 2. Literature review

generation in [17]. The latter makes use of a LIP model, requiring its unstable
component to stop at the end of the control horizon, and it is referred to as
capturability constraint (from the concept of capture point [18]). This constraint
has also been used in [19], where it is imposed only at the foot landing instant, and
in [20], which addresses locomotion in a multi-contact setting.

Terminal constraints may have a detrimental effect on feasibility, i.e., the existence
of solutions for the optimization problem which is at the core of any MPC scheme [21].
A particularly desirable property is recursive feasibility, which entails that if the
optimization problem is feasible at a certain iteration it will remain such in future
iterations. It appears that this crucial issue has seldom been explored for MPC-based
gait generation, with the notable exceptions of [22, 23].

MPC for gait generation has been widely adopted, and several control schemes
have been proposed over the years. In [24] an MPC controller is formulated on the
CP dynamics, while in [25] the controller is a nonlinear MPC which includes an
obstacle avoidance constraint. In [26] the authors formulate an MPC with binary
variables to approximate foot orientation constraints and solve it using Mixed-Integer
Quadratic Programming. In [27] the authors propose a LIP-based MPC with a
low-level controller for torque-controlled humanoids, and in [28] an MPC includes
additional considerations to reduce the robot angular momentum, for increased
robustness. An interesting enhancement of [15] allows the MPC to autonomously
assign the position of the footsteps. This is known as automatic footstep placement,
first proposed in [29] as a means of adapting a pre-existing plan, and then developed
in [30, 31] to directly place foot positions based on a reference angular velocity.
It allows the robot to perform reactive stepping to accommodate perturbations,
all while keeping the constraints linear and thus with no significant increase in
computation time.

An important line of research is concerned with maintaining balance, or stable
locomotion, when the robot is subject to perturbations. Robust MPC can be
formulated as the problem of satisfying the constraints under the effect of bounded
disturbances, for which there exist numerous formulations in the literature [32, 33, 34].
A similar idea is used on humanoids in [35], where safety margins are derived to
cope with a given set of uncertainties.

Another path to robustness is to build a disturbance observer and design a con-
troller based on the disturbance estimate. A first example is [36], where an external
force is estimated from its effect on the humanoid. Other examples include [37]
which incorporates an observer in a preview controller, or techniques based on the
divergent component of motion [38, 39].

A strong research topic is constituted by locomotion on uneven ground, for which
gait generation using the LIP model is too restrictive, as vertical motions of the CoM
introduce a nonlinear term in the dynamics. A possible approach, presented in [40],
is to bound the nonlinear term, which can then be taken into account by redesigning
the ZMP constraints. It is possible to accept the nonlinearity and solve the nonlinear
MPC problem that derives from it, as in [41], or [42] where capturability-based
concepts are extended to the 3D case.

Using a pre-assigned vertical CoM motion simplifies the problem and results
in a time-varying frequency of the inverted pendulum. This is used in [43, 44]
and also [45] for the transition between bipedal and quadrupedal locomotion. It is

7

possible however to have a linear model without pre-specifying the CoM height, thus
maintaining a structure that is very similar to that of the LIP. This requires limiting
the possible trajectories of the CoM [46, 47]. [48] employs a related approach by
defining a 3D extension of the DCM and the Virtual Repellent Point (VRP), which
is a close relative of the ZMP for the 3D case.

9

Chapter 3

Models for humanoid
locomotion

Humans, as well as human-inspired robots, achieve locomotion by walking. We walk
by constantly exhanging forces with the environment, exploiting friction with the
ground to move our body forward in space. This requires regularly switching the
contact point with the ground while moving, to produce a delicate dynamic balance
problem.

The contact is normally mediated by our feet. In particular, a foot in contact
with the ground is called support foot. When both feet are on the ground we are in
a double support phase. If this is not the case, we are in a single support phase, and
the foot that is not in contact with the ground is called the swing foot.

Humanoid robots also realize walking by alternating single and double support
phases. When designing a controller, the challenge is to make sure that during any
of these phases the robot does not lose its balance and fall. The most common way
of achieving this is to control the ZMP so that it is at all times within the convex
hull of the contact points between the robot and the ground. This region is called
the support polygon.

The support polygon changes size and shape between different phases of the
walk. During single support it can be considered equivalent to the contact surface
of the support foot, while during double support it includes the contact surfaces of
both feet, as well as the area between them, making it considerably larger. In fact,
the double support phase can be thought of as having the function of transferring
the ZMP from one foot to the other, thus connecting separate single support phases.

For a slower walk, the ZMP is very close to the projection of the CoM on the
ground. This is usually called a static walk, as the robot could be stopped at
any point and it would be statically stable. On the converse, a fast walk exhibits
CoM and ZMP trajectories which are very distinct, and is commonly referred to as
dynamic walk.

Since we are interested in producing a dynamic walk, we need to derive a
mathematical model which describes the dynamics of the ZMP. This chapter will
start by deriving this dynamic model for a general case. This model will still be too
complex for designing a real-time controller, and a few assumptions will be made,
leading to the commonly employed Linear Inverted Pendulum (LIP). Later sections

10 3. Models for humanoid locomotion

of this chapter will discuss other simplified models which turn out to be useful in a
range of situations.

3.1 Forces acting on a humanoid robot
The first step is characterizing the forces that a humanoid robot exchanges with the
environment. Under normal circumstances, the forces we need to take into account,
also shown in Fig. 3.1, are:

• gravity mg = (0, 0,−mg)T , applied at the CoM pc;

• contact forces with the ground f i = (f ix, f iy, f iz)T , where the horizontal compo-
nents f ix and f iy are due to friction and the vertical component is the upward
ground reaction force. The point of application of each force f i is pif .

These forces are balanced by the Newton equation

mp̈c = mg +
∑
i

f i. (3.1)

The non-tilting condition is given by moment balance around a generic point po

(pc − po)×mp̈c + L̇ = (pc − po)×mg + M f , (3.2)

with L the angular momentum around the CoM, and

M f =
∑
i

(pif − po)× f i (3.3)

the moment of the contact forces. The ZMP is defined as the point which, by
computing moments w.r.t. this point, gives M f = 0. We denote the ZMP as pz.
Replacing in (3.2) yields

m(pc − pz)× (p̈c − g) + L̇ = 0. (3.4)

The ZMP is not required to lie on the ground surface. In fact, a line of points
exists, all of which have the characteristic of giving M f = 0. However, it is usually
defined as the intersection of this line with the ground, and here we will employ this
definition. Later we will extend the ZMP to a point in space in order to derive a 3D
model (see Sect. 3.4).

If the contacts are coplanar (i.e., the ground is flat), by dividing (3.4) by the
vertical projection of (3.1), we obtain that

m(pc − pz)× (p̈c − g) + L̇

m(z̈c + g) =
∑
i(pif − pz)× f i∑

i f
i
z

= pp − pz = 0, (3.5)

where

pp =
∑
i p

i
f × f i∑
i f

i
z

(3.6)

is the Center of Pressure (CoP). The CoP, for coplanar contacts, defines the point
of application of the resultant of the contact forces. Implicitly it requires a flat

3.2 The Linear Inverted Pendulum 11

Figure 3.1. Forces acting on a humanoid robot: gravity, inertial forces, and the resultant
of the contact forces.

ground assumption, however, it can be extended to a pair of contacts at different
heights by defining a virtual surface varying continuously from the first to the second
surface [49].

Since, from (3.5), we find that the ZMP on the ground surface coincides with the
CoP, a condition for balance is given by keeping the ZMP within the robot support
polygon (the convex hull of the contact points).

It is useful to project the vector equation (3.8) on the x and y axes. Consider
the projection on the y axis

m(zc − zz)ẍc −m(xc − xz)(z̈c + g) + L̇y = 0, (3.7)

which by reordering the terms gives

ẍc = z̈c + g

zc − zz
(xc − xz)−

L̇y
mzc

. (3.8)

This equation (along with its equivalent obtained by projection on x) relates the ZMP
to the CoM position and acceleration, and to the variation of angular momentum
given by changes of the internal configuration of the robot.

The rate of change of angular momentum L̇ can in principle be expressed as
a function of joint positions q and their derivatives q̇ and q̈ [50]. However, we are
interested in deriving a simplified model which can be used in a real-time MPC
setting, which will be the subject of the following section.

3.2 The Linear Inverted Pendulum
The dynamics expressed by (3.8) include nonlinearities which make it unsuitable
for a real-time MPC formulation. What follows is a set of simplifying assumptions
that are widely employed for controller design purposes [12]. Some of these will be
removed in later sections to derive different and more sophisticated models.

12 3. Models for humanoid locomotion

Assumption 1 The ZMP lies on the ground, i.e., zz = 0.

This assumption has the ZMP coincide with the CoP. This simplifies the balance
condition as it can now be expressed as a geometric condition on the x-y plane,
namely, the ZMP needs to be inside to the support polygon at all times.

Assumption 2 The contribution of the rate of change of angular momentum L̇ can
be neglected.

This is a very widely employed simplification as it removes most nonlinear
contributions to the dynamics.

Assumption 3 The CoM height is constant equal to z̄c

This assumption removes the only remaining nonlinearity which is the coupling
between the horizontal and vertical components of the CoM. What results is the
linear model

ẍc = η2(xc − xz) (3.9)

where η =
√
g/z̄c.

This model can be interpreted as a Linear Inverted Pendulum (LIP) by considering
the ZMP as the input, or as a Cart-Table (CT) by taking the CoM acceleration as
the input. We adopt the first interpretation which leads to the following state-space
formulation (

ẋc
ẍc

)
=
(

0 1
η2 0

)(
xc
ẋc

)
+
(

0
−η2

)
xz (3.10)

This system has two modes, with associated eigenvalues ±η. These can be
decoupled by the change of coordinates [51]

xu = xc + ẋc/η

xs = xc − ẋc/η
(3.11)

which leads to the decoupled dynamics

ẋu = η(xu − xz)
ẋs = −η(xs − xz).

(3.12)

xs and xu represent the stable and unstable components of the LIP dynamics. We
will focus almost exclusively on the unstable component, as we are interested in
preventing the CoM from diverging with respect to the ZMP.

This decoupling of the dynamics has seen numerous applications, and the unstable
component xu has been discussed under different names, which usually emphasize
different interpretations. In particular, it is equivalent to the Capture Point [13],
the Extrapolated Center of Mass [52] and the Divergent Component of Motion [53].

3.3 The perturbed LIP model 13

3.3 The perturbed LIP model

A robotic system is usually subject to disturbances of many different kinds. Some
can be internal, in the form of inaccuracies due to model simplification. Others can
be external, such as forces applied on the system.

To represent these kinds of disturbances, we define a perturbed LIP model. With
respect to (3.9), this model has the additional disturbance term w(t)

ẍc = η2(xc − xz) + w. (3.13)

As for the LIP, system (3.13) can be decomposed in stable and unstable component
using the same change of coordinates (3.11). The resulting system is given by

ẋu = η(xu − xz) + w/η

ẋs = −η(xs − xz) + w/η,
(3.14)

which is a decoupled system similar to (3.12), where both subsystems are affected
by the disturbance.

Let us further characterize the significance of the disturbance term w. Assume
it should model both internal and external disturbances, it is possible to derive an
expression which characterizes the contribution for the different source of disturbance.
Start from the moment balance (3.4) with an additional external force f ext. Suppose
for simplicity this force is aligned with the x-axis, i.e., f ext = (fext, 0, 0)T , although
a more general expression can be derived.

(pc − pz)×mp̈c + L̇ = (pc − pz)×mg + (pp − pz)× f ext (3.15)

Projecting this equation on the y axis (projection on x is similar) gives

mẍczc −mz̈c(xc − xz) + L̇y = mg(xc − xz) + fextzc (3.16)

after which, by solving for xc − xz, we get

xc − xz = L̇y
m(z̈c + g) + ẍczc

z̈c + g
− fextzc
m(z̈c + g) (3.17)

This expression can be substituted in the perturbed LIP equation (3.13)

ẍc = η2
(

L̇y
m(z̈c + g) + ẍczc

z̈c + g
− fextzc
m(z̈c + g)

)
+ w (3.18)

and solving for w gives

w = ẍc

(
1− η2 zc

z̈c + g

)
− η2 L̇y

m(z̈c + g) + η2 fextzc
m(z̈c + g) . (3.19)

If we have a way of estimating this disturbance term, such as with an observer,
we can design a controller which uses the perturbed model for improved accuracy.
This will be discussed in later chapters.

14 3. Models for humanoid locomotion

CoM

xcxz

zc

zz

CoP

ZMP

x

z

CoP

ZMP

CoMCoMz y

x

Figure 3.2. Left: 3D extension of the LIP, with the ZMP above the ground. Right: the
balance condition in 3D case requires the ZMP to be in the green conic polyhedron.

3.4 Linear 3D model
In Sect. 3.2 we assumed a constant height of the CoM to render the model linear.
This is very common, but it has the disadvantage of only allowing walking on flat
ground. For generating walks on uneven ground the CoM necessarily needs to move
in the vertical direction. In this section we will remove Assumptions 1 and 3, and
show that this can still lead to a linear model [7]. The balance condition will need
to be modified accordingly as it cannot be expressed as a planar condition.

Removing Assumption 1 lets the ZMP move in the vertical direction, as it is not
confined to the ground [54]. However, the balance condition still needs to apply to
the CoP, which has to lie inside the support polygon. The geometric interpretation
given in Fig. 3.2 will help to understand how these two are related. The ZMP is on
the line connecting the CoP to the CoM, so the balance condition translates to the
ZMP being inside a conic polyhedron, as shown in Fig. 3.2. The top vertex of the
polyhedron being the CoM makes this a nonlinear constraint, which will need to be
linearized in the controller design phase.

To derive a linear model from (3.8) we set

z̈c + g

zc − zz
= η2. (3.20)

This turns the x and y component into the usual LIP equations, and adds a third
dynamic equation which is directly derived from (3.20)

ẍc = η2(xc − xz)
ÿc = η2(yc − yz)
z̈c = η2(zc − zz)− g.

(3.21)

The vertical dynamics turns out to be very similar to a LIP, but have an additional
constant additive term −g. This implies that the equilibrium is obtained when the
CoM and ZMP are displaced by g/η2.

This model can also be decoupled in a stable and unstable component, as it was
done for the LIP in Sect. 3.2. The x and y component are unchanged so they give

3.5 Two-mass model 15

the exact same decoupled equation, and the vertical component results in

żu = η(zu − zz)− g/η
żs = −η(zs − zz)− g/η.

(3.22)

3.5 Two-mass model

Neglecting the derivative of the angular momentum around the CoM, as required
by Assumption 2, is equivalent to modeling the robot as a point mass. This is
quite reasonable if the internal configuration of the robot does not change very
abruptly. On the other hand, in some situations, this might lead to an inaccurate
ZMP prediction, which can easily result in a fall.

A large part of the neglected angular momentum derivative is concentrated in
the motion of the swinging leg, as the support leg is relatively still and the arms
do not participate significantly in the walk. Therefore we can model the humanoid
as a two-mass model, to recuperate part of the contribution from the neglected
angular momentum derivative. This does not completely remove Assumption 2, but
constitutes some sort of compensation for the model mismatch it introduces.

In this model the system can be represented as a primary mass M and a
secondary mass m. The primary mass represents the contribution of the body, and
the secondary mass represents the contribution of the swing leg. Since there is only
one leg swinging at any given time, a single mass can alternatively account for both
the left and the right leg.

We are interested in deriving a model describing the dynamics of the ZMP of
the two-mass system pz,tot, which following Assumption 1 still corresponds to the
point of application of the equivalent ground reaction force. To find this model we
consider the total moment balance around the ZMP for a two-mass system

M(pM − pz,tot)× p̈M +m(pm − pz,tot)× p̈m = (m+M)(pc − pz,tot)× g. (3.23)

where pM and pm are the positions respectively of the primary and secondary mass.
This equation projected along the y axis gives

MzM ẍM −M(g+ z̈M)(xM −xz,tot) +mzmẍm−m(g+ z̈m)(xm−xz,tot) = 0. (3.24)

Define the two quantities

xz,M = xM −
zM

z̈M + g
ẍM

xz,m = xm −
zm

z̈m + g
ẍm,

(3.25)

which can be interpreted as two individual IP equation, of mass respectively M and
m.

Equation (3.24) can now be rearranged as

(z̈M + g)(xz,tot − xz,M) = m

M
(z̈m + g)(xz,m − xz,tot) (3.26)

16 3. Models for humanoid locomotion

M

m

xz,tot

x

z

xM

zM

zm

�MẍM

�M(g + z̈M)

�m(g + z̈m)

�mẍm

xm

Figure 3.3. 2-mass model with the secondary mass corresponding to the swinging foot.

Here, xz,tot − xz,M represents the contribution of m to the total ZMP. We can
solve (3.26) for xz,tot as

xz,tot =
(

1 + m

M

z̈m + g

z̈M + g

)−1(
xz,M + m

M

z̈m + g

z̈M + g
xz,m

)
(3.27)

It is important to stress that this total ZMP differs from the ZMP of an IP with
mass m+M concentrated in (xc, zc)

xc = MxM +mxm
m+M

, zc = MzM +mzm
m+M

(3.28)

i.e., in the CoM of our 2-mass model. In fact, the corresponding ZMP xz,z,IP satisfies
the following moment balance

(m+M)zcẍc − (m+M)(g + z̈c)(xc − xz,IP) = 0 (3.29)

which, using (3.28), can be shown to differ from (3.24). The difference xz,tot − xz,IP
can be regarded as an increase in ZMP prediction accuracy obtained by moving
from the 1-mass IP to the 2-mass model.

The previous modeling approach can be extended to the case of N masses with
a single primary mass M (e.g. [55]). Denoting by (xi, zi) the coordinates of the
i-th secondary mass mi, the total ZMP can be rewritten in a form that generalizes
(3.27):

xz,tot =
(

1 +
N−1∑
i=1

mi

M

z̈i + g

z̈M + g

)−1(
xz,M +

N−1∑
i=1

mi

M

z̈i + g

z̈M + g
xz,i

)

where xz,i represents the equivalent of (3.25) for each mass mi.
Going back to the case N = 2, assume a constant height zM for the primary

mass to obtain a linear system and thus (3.26) leads to the well-known LIP equation

3.5 Two-mass model 17

which will be called equivalent LIP

xM −
1
η2
M

ẍM = xz,M (3.30)

where η2
M = g/zM and

xz,M = xz,tot + m

M

(
z̈m + g

g

)
(xz,tot − xz,m) (3.31)

In [56, 57] the total desired ZMP xz,tot was assigned and xz,M becomes a known
function of time which can be interpreted as an equivalent ZMP. The gait generation
problem then reduces to finding a bounded solution to (3.30) forced by xz,M .

The model that will be used in later chapters employs an additional assumption
of constant height of the primary mass zM . Thus xz,M is related to xz,tot through
the following equation, from (3.27)

xz,tot =
(

1 + m

M

z̈m + g

g

)−1 (
xz,M + m

M

z̈m + g

g
xz,m

)
. (3.32)

19

Chapter 4

The stability condition

The LIP model (3.9) lets us compute a CoM trajectory that realizes a given ZMP. In
the general case however, this CoM trajectory will be divergent, due to the instability
of the system. This chapter will discuss conditions for which this instability does not
manifest, for the LIP model and then for the alternative models presented in Ch. 3.

4.1 The stability condition for the LIP model
As already noted in Sect. 3.9, the LIP can be decomposed into a stable and an
unstable component. The resulting system is (3.12), with xs and xu denoting
respectively the stable and unstable parts. The state evolution for the decoupled
components, starting from time t0 to a generic time t, is given by

xu(t) = xu(t0)eη(t−t0) − η
∫ t

t0
eη(t−τ)xz(τ)dτ

xs(t) = xs(t0)e−η(t−t0) + η

∫ t

t0
e−η(t−τ)xz(τ)dτ.

(4.1)

Although in general the state evolution of xu for a given ZMP will be divergent, a
special initialization of the state can be found which guarantees a bounded evolution
(see [58], or [59] for the nonlinear case). This initialization is expressed by

x∗u(t0) = η

∫ ∞
t0

e−η(τ−t0)xz(τ)dτ (4.2)

which we refer to as the stability condition.
The stability condition gives guarantees of boundedness of the CoM trajectory

with respect to the ZMP. Before analyzing these guarantees, we shall take a look
at some useful properties which will simplify the following computations. For
compactness, we use the following notation

η

∫ ∞
t0

e−η(τ−t0)xz(τ)dτ = x∗u(t0;xz(t)). (4.3)

Property 1 Linearity in xz(t):

x∗u(t0; axaz(t) + bxbz(t)) = ax∗u(t0;xaz(t)) + bx∗u(t0;xbz(t)).

20 4. The stability condition

Property 2 For a step function xz(t) = δ−1(t− t0), we get

x∗u(t0; δ−1(t− t0)) = 1.

Property 3 For a ramp function xz(t) = ρ(t− t0), we get

x∗u(t0; ρ(t− t0)) = 1/η.

Properties 1-3 are easily derived by explicit computation of the integral in (4.3).

Property 4 If xz(t) = 0 for t < t0, we get

x∗u(t0;xz(t− T)) = e−ηTx∗u(t0;xz(t)), T ≥ 0.

Proof.

x∗u(t0;xz(t− T)) = η

∫ ∞
t0

e−η(τ−t0)xz(τ − T)dτ

= η

∫ ∞
t0−T

e−η(τ ′−t0+T)xz(τ ′)dτ ′

= ηe−ηT
∫ ∞
t0−T

e−η(τ ′−t0)xz(τ ′)dτ ′

= e−ηT η

∫ ∞
t0

e−η(τ ′−t0)xz(τ ′)dτ ′

= e−ηTx∗u(t0;xz(t)).

Property (4) (time shifting) shows how the stability condition for the time-shifted
function xz(t− T) can be written in terms of the stability condition for the original
function xz(t).

As we mentioned, the stability condition guarantees a bounded CoM evolution if
certain conditions are met. This will be described by the following two propositions,
the first dealing with bounded ZMP trajectories (the gait is confined to a finite
space), the second dealing with ZMP trajectories with bounded derivatives.

Proposition 1 Assume that the ZMP trajectory is bounded, i.e., |xz(t)| ≤ C. Then
the CoM trajectory xc(t) is bounded if and only if the stability condition (4.2) is
verified.

Proof. Consider the state evolution at time t of the unstable component, starting
from t0

xu(t) = xu(t0)eη(t−t0) − η
∫ t

t0
eη(t−τ)xz(τ)dτ

= eη(t−t0)
(
xu(t0)− η

∫ t

t0
e−η(τ−t0)xz(τ)dτ

)
.

4.1 The stability condition for the LIP model 21

Choosing the initial state (4.2) yields the following state trajectory

x∗u(t) = eη(t−t0)
(
η

∫ ∞
t0

e−η(τ−t0)xz(τ)dτ − η
∫ t

t0
e−η(τ−t0)xz(τ)dτ

)
= eη(t−t0)

(
η

∫ ∞
t

e−η(τ−t0)xz(τ)dτ
)

= η

∫ ∞
t

e−η(τ−t)xz(τ)dτ,

(4.4)

which, by using the bound on the ZMP and computing the integral, can be bounded
as |x∗u(t)| ≤ C. The state evolution of the stable component is

xs(t) = xs(t0)e−η(t−t0) + η

∫ t

−∞
e−η(t−τ)xz(t)dτ, (4.5)

which by letting t0 → −∞ gives

xs(t) = η

∫ t

−∞
e−η(t−τ)xz(t)dτ. (4.6)

This expression can be bounded similarly to xu(t), and gives

|xs(t)| ≤ C. (4.7)

Combining the two bounds, and recalling that xu(t) + xs(t) = 2xc(t), proves the
sufficiency of (4.1). The necessity is proved by noting that any other initial condition

xu(t0) = x∗u(t0) + ∆x0
u, ∆x0

u 6= 0

gives a divergent xu
xu(t) = x∗u(t) + ∆x0

ue
η(t−t0).

Since xs(t) is still bounded, this proves the proposition.

If the ZMP is not bounded, but its derivative is, the following proposition can
be proved.

Proposition 2 Assume that the ZMP derivative is bounded |ẋz(t)| ≤ D. Then the
CoM trajectory xc(t) is bounded with respect to xz(t) if the stability condition (4.2)
is satisfied.

Proof. Rewrite the ZMP trajectory as

xz(t+ T) = xz(t) +
∫ t+T

t
ẋz(τ)dτ (4.8)

The state trajectory in (4.4) is written as

x∗u(t) = η

∫ ∞
t

e−η(τ−t)
(
xz(t) +

∫ τ

t
ẋz(s)ds

)
dτ (4.9)

22 4. The stability condition

which can be bounded as

η

∫ ∞
t

e−η(τ−t) (xz(t)− (τ − t)D) dτ ≤ x∗u(t) ≤ η
∫ ∞
t

e−η(τ−t) (xz(t) + (τ − t)D) dτ
(4.10)

using Properties 1, 2 and 3, and bringing xz(t) to the mid-side leads to

−D/η ≤ x∗u(t)− xz(t) ≤ D/η. (4.11)

which bounds the unstable component w.r.t. the ZMP.
The stable component is found to be

xs(t) = η

∫ t

−∞
e−η(t−τ)

(
xz(t) +

∫ τ

t
ẋz(s)ds

)
dτ, (4.12)

for which a similar calculation leads to

−D/η ≤ xs(t)− xz(t) ≤ D/η. (4.13)

Summing (4.11) and (4.13), and recalling that xu(t) + xs(t) = 2xc(t), leads to

|xc(t)− xz(t)| ≤ D/η, (4.14)

which proves the proposition.
Note that the stability condition defines an initial state that is dependent on

future values of the input, and is therefore non-causal. Chapter (5) will reformulate
this into a causal relationship which will be used to construct an MPC constraint.

4.2 Gait design using the stability condition
The stability condition (4.2) has been employed in the design of humanoid robot
gaits [51, 60]. The design of a gait consists of the following steps:

• pre-plan a set of footsteps;

• generate a ZMP trajectory (xz(t), yz(t))T that is inside the support foot during
single support phases, and transitions from one foot to the other during double
support phases (e.g., a parametric polynomial trajectory);

• use (4.2) to compute the initial condition (x∗u(t0), y∗u(t0))T associated with the
ZMP trajectory

• pick the initial value of the stable component (xs(t0), ys(t0))T to match the
actual initial position of the CoM, using the coordinate change (3.11)

xs(t0) = 2xc(t0)− x∗u(t0), (4.15)

and analogously for y;

• using (3.11) again, compute the initial velocity as

ẋc(t0) = η
x∗u(t0)− xs(t0)

2 (4.16)

and analogously for y;

4.3 Stability conditions for alternative models 23

• starting from the initial condition (xc(t0), ẋc(t0), yc(t0), ẏc(t0))T integrate the
LIP equation (3.9) using the planned ZMP trajectory (xz(t), yz(t))T , to produce
a CoM trajectory p(t);

• track the obtained CoM trajectory with a standard kinematic controller.

The above procedure starts from a ZMP trajectory which satisfies the balance
condition and computes a suitable CoM trajectory. All trajectories can be expressed
in closed form, which makes the process very fast. The starting position is tied
to the result of the stability condition 4.2. This requires designing a motion that
brings the robot CoM to the proper initial condition, but it makes online replanning
harder. Later chapters will show how MPC is able to overcome this limitation by
using the stability condition to construct a constraint on future inputs, rather than
to compute the initial state.

4.3 Stability conditions for alternative models

This section will give expressions of the stability constraint for the alternative models
presented in Ch. 3.

Perturbed LIP model

The perturbed LIP model (3.13) described in Sect. 3.3 also admits a stability
condition

x∗u(t0) = η

∫ t

t0
e−η(τ−t0)xz(τ)dτ + 1

η2

∫ t

t0
e−η(τ−t0)w(τ)wτ. (4.17)

Here the non-causality of the condition is manifested not only in the dependence
on future values of the input xz, but also in the knowledge of the future value of
the disturbance. This means that the closed form expressions of Sect. 4.1 can only
be obtained if the disturbance is known a priori. This has some applicability, for
example on a robot walking on a known slope. In a reference frame parallel with
the slope the horizontal component of gravity can be considered as a disturbance
and thus computed exactly. Otherwise, unknown disturbances will be taken into
account in the MPC, thanks to its constant replanning.

Linear 3D model

The linear 3D model was described in Sect. 3.4. Here the stability condition is given
by a set of three equations. The expressions along x and y are equivalent to (4.2),
as the model (3.21) is identical to the LIP, but the vertical equation differs in the
presence of an additive term

z∗u(t0) = η

∫ t

t0
e−η(τ−t0)zz(τ)dτ + g

η2 (4.18)

Recall that in this model the ZMP is allowed to leave the ground and the balance
condition is modified accordingly. If the ZMP is fixed on the ground, from this

24 4. The stability condition

expression we recover z∗u(t0) = g/η2. In this case whatever initial CoM height we
choose will stay constant, and will determine the value of η =

√
g/z∗u(t0), which is

equivalent to enforcing Assumption 3 as we did for the standard LIP model.

Two-mass model

The two-mass model derived in Sect. 3.5 is expressed as an equivalent LIP. This makes
it straightforward to derive the stability condition, as it has the same expression of
(4.2) but uses the variables of the equivalent LIP (3.5)

x∗u,M (t0) = η

∫ t

t0
e−η(τ−t0)xz,M (τ)dτ (4.19)

where xz,M (t) is defined in (3.25).

25

Chapter 5

IS-MPC: the basic scheme

This chapter will describe the MPC scheme which constitutes the main contribution
of this thesis. This scheme features an explicit stability constraint which is in charge
of guaranteeing non-divergence of the CoM trajectory with respect to the ZMP
(internal stability). For this reason we adopted the name Intrinsically Stable MPC
(IS-MPC). This chapter will specifically be about the scheme in its basic form [3, 4],
while further extensions or variations will be presented in later chapters.

An overview of the scheme is given in Fig. 5.1. The goal is to follow a set of
high-level velocities, given as the driving (vx, vy) and steering ω velocities of an
omnidirectional single-body mobile robot chosen as a template model for motion
generation. These velocities come from an external source, e.g., a human operator
or an external controller.

At the current time tk, it is assumed that the input reference velocities are
available over a horizon Tp called preview horizon. A module is in charge of planning
the footstep sequence over this preview horizon. The footstep sequence includes
timing, position and orientations of the future F footsteps.

This footstep sequence is sent to the IS-MPC stage which will produce a ZMP
and CoM trajectory. The IS-MPC stage works over a shorter horizon than the
footstep planner, called the control horizon Tc. It should be noted that in the basic
version of this scheme the MPC stage works with given footsteps, which means that
it is not allowed to modify the footstep plan. This should not be confused with
having knowledge of the entire future footstep plan, as it is only planned up to the
preview horizon.

A separate module generates a trajectory for the swing foot. It receives informa-
tion from the footstep plan, and uses parametric polynomials to generate a trajectory
going from the starting pose of the swing foot to the pose of the first predicted
footstep. The CoM and swing foot trajectories are kinematically tracked by the
robot using a classic stack of tasks technique.

5.1 Footstep generation

The footstep generator runs synchronously with the IS-MPC scheme. It is in charge
of determining the timing as well as the position and orientation of the footsteps,
so to realize as closely as possible the high-level reference velocities. The timing is

26 5. IS-MPC: the basic scheme

q

kinematic

control

Intrinsically

Stable

MPC

(IS-MPC)

q

direct

kinematics

footstep

generation

Xf
k k
,Yf

swing foot

trajectory

generation

MPC-based
framework

Tsk£kf

vx, vy, !

over Tp

over Tp over Tc

tk

pc

pswg*

pc

±

Tc = C ±.

Tp= P ±.

, , *

Figure 5.1. The basic version of IS-MPC.

xz
k.

tk

±

t

ts
1 ts

2 ts
F ts

Ftk+C

xz
k+C-1.

tk+P
control horizon Tc
preview horizon Tp

control variables xz
.

~tail xz
.

’

Figure 5.2. At time tk, the control variables determined by IS-MPC are the piecewise-
constant ZMP velocities over the control horizon. The ZMP velocities after the control
horizon are instead conjectured in order to build the tail (see Sect. 5.4.1). Also shown
are the F footstep timestamps placed by the footstep generation module in the preview
horizon; F ′ of them fall in the control horizon.

5.1 Footstep generation 27

determined using a simple rule expressing the fact that a change in the reference
velocity should affect both the step duration and length. The footstep locations and
orientations are then chosen through quadratic optimization.

At time tk the reference velocities are provided over the preview horizon, i.e.
from tk to tk + Tp = tk+P (see Fig. 5.2). The output of the planner is the footstep
sequence (Xk

f , Y
k
f ,Θk

f) over the same interval with the associated timing T ks . In
particular, these quantities are defined1 as

Xk
f = (x1

f . . . xFf)T

Y k
f = (y1

f . . . yFf)T

Θk
f = (θ1

f . . . θFf)T

and
T ks = {T 1

s , . . . , T
F
s },

where (xjf , y
j
f , θ

j
f) is the pose of the j-th footstep in the preview horizon and T js is

the duration of the step between the (j − 1)-th and the j-th footstep, taken from
the start of the single support phase to the next. F is the number of footsteps
falling within the preview horizon, which may change as the footstep timing itself is
variable. Note that these footstep poses and timing alternatively identify left and
right footsteps.

5.1.1 Footstep timing

As a rule for determining the duration of each step, we employ the magnitude
v = (v2

x + v2
y)1/2 of the reference Cartesian velocity at the beginning of that step.

Assume that a triplet of cruise parameters (v̄, T s, L̄s) has been chosen, where v̄
is a central value of v and T s, L̄s are the corresponding values of the step duration
and length, respectively, with v̄ = L̄s/T s. These values clearly should be chosen
respecting the capabilities of the robot.

The idea is that a deviation from v̄ should reflect on a change in both Ts and Ls.
This can be expressed as

v = v̄ + ∆v = L̄s + ∆Ls
T s −∆Ts

,

with ∆Ls = α∆Ts. One easily obtains

Ts = T s
α+ v̄

α+ v
. (5.1)

The resulting rule can be used for determining Ts as a function of v. The
function is shown in Fig. 5.3 and it is compared to other possible simpler rules. For
illustration, we have set v̄ = 0.15 m/s, T s = 0.8 s, L̄s = 0.12 m and α = 0.1 m/s.
It can easily be verified that an increase in v, for example, corresponds to both a
decrease of Ts and an increase in Ls.

1To keep a light notation, the k symbol identifying the current sampling instant is used for the
sequence vectors but not for their individual elements.

28 5. IS-MPC: the basic scheme

Figure 5.3. The proposed rule for determining the step duration Ts as a function of the
magnitude v of the reference Cartesian velocity. For comparison, also shown are the
rules yielding constant step duration and constant step length.

The reference angular velocity ω does not influence the rule (5.1). In fact, step
length and timing do not differ significantly if the Cartesian velocity v is the same.
This also means that if the robot is required to rotate in place, it will do so with the
maximum allowed Ts.

Rule (5.1) is employed by iterating along the preview horizon [tk, tk +Tp] in order
to obtain the footstep timestamps:

tjs = tj−1
s + T s

α+ v̄

α+ v(tj−1
s)

,

with t0s equal to the timestamp of the last footstep before tk. As soon as the end
of the preview is reached, i.e., tjs > tk+P , the iterations are stopped and the last
timestamp is discarded as it is outside the preview horizon. The resulting step
timings are collected as T ks = {T 1

s , . . . , T
F
s }, with T js = tj+1

s − tjs.

5.1.2 Footstep placement

The footstep poses are chosen after their timing has been determined over the preview
horizon. The idea is that the footsteps should follow the trajectory obtained by
integrating the following template model under the action of the high-level reference
velocities over Tp:  ẋ

ẏ

θ̇

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 vx
vy
ω

 . (5.2)

This omnidirectional motion model can be considered as an extension of a unicycle,
which is often employed as a template model for motion generation. Compared

5.1 Footstep generation 29

kinematically
admissible region

µ j-1

`

dk,y

µj

dk,x

j-1 j-1
(xf ,yf)

j j
(xf ,yf)

Figure 5.4. The kinematic constraint on footstep placement.

to the unicycle, it can also generate lateral motions, which the humanoid robot is
allowed to perform.

The footstep plan should be distributed along the trajectory traced by the
template model, but it should also respect the robot kinematic limits. For this
reason, a kinematic constraint will be enforced on the position of the footsteps.
Consider the j-th step in Tc, with the support foot centered at (xj−1

f , yj−1
f) and

oriented as θj−1. The kinematically admissible region for placing the footstep is
defined as a rectangle having the same orientation θj−1 and whose center is displaced
from the support foot center by a distance ` in the coronal direction (see Fig. 5.4).
Denoting by dk,x and dk,y the dimensions of the kinematically admissible region, the
constraint is written as

±
(

0
`

)
− 1

2

(
dk,x

dk,y

)
≤ RTj−1

 xjf − x
j−1
f

yjf − y
j−1
f

 ≤ ±(0
`

)
+ 1

2

(
dk,x

dk,y

)
, (5.3)

with the sign alternating for the two feet. This constraint should be satisfied by all
footsteps in the preview horizon (j = 1, . . . , F).

The footsteps positions and orientations are determined by a sequence of two QP
problems. These need to be solved sequentially, as the second uses the orientations
resulting from the first to construct the rotation matrices RTj−1. The first is

min
Θk

f

F∑
j=1

(
θjf − θ

j−1
f −

∫ tjs

tj−1
s

ω(τ)dτ
)2

subject to |θjf − θ
j−1
f | ≤ θmax

30 5. IS-MPC: the basic scheme

Here, θmax is the maximum allowed rotation between two consecutive footsteps. The
second QP problem is

min
Xk

f
,Y k

f

F∑
j=1

(xjf − x
j−1
f −∆xj)2 + (yjf − y

j−1
f −∆yj)2

subject to kinematic constraints (5.3)

Here, (x0
f , y

0
f) is the known position of the support foot at tk and ∆xj , ∆yj are

given by (
∆xj
∆yj

)
=
∫ tjs

tj−1
s

Rθ

(
vx(τ)
vy(τ)

)
dτ ±Rj

(
0
`/2

)
,

where Rθ, Rj are the rotation matrices associated respectively to θ(τ) (the orientation
of the template robot at any given time τ) and to the footstep orientation θj , and
` is the reference coronal distance between consecutive footsteps. The sign of the
second term alternates for left/right footsteps.

The footstep timings, positions and orientations are then sent to the IS-MPC
stage. Recall that in the basic version of IS-MPC which is presented in this chapter,
the MPC stage is not allowed to change the footstep positions, but the extension
presented in the next chapter will be able to perform automatic footstep placement
for improved robustness to perturbations.

Some examples of footstep generation are shown in Fig. 5.5.

5.2 Prediction model

The IS-MPC stage performs a prediction over the control horizon Tc, to determine
ZMP and CoM trajectories that are compatible with the chosen footstep plan. For
this it uses the LIP as a prediction model (see Sect. 3.2). In order to produce
smoother trajectories, a dynamic extension is employed, in which the input is the
ZMP derivative ẋz, instead of the ZMP itself. The dynamically extended LIP can
be written as  ẋc

ẍc
ẋz

 =

 0 1 0
η2 0 −η2

0 0 0


 xc
ẋc
xz

+

 0
0
1

 ẋz (5.4)

for the x component, with the y component being analogous and decoupled.
The scheme operates in a digital fashion, with time-steps of duration δ. The

input ẋz is assumed to be constant over the discrete time-steps (see Fig. 5.2)

ẋz(t) = ẋiz, t ∈ [ti, ti+1), (5.5)

which makes the ZMP piecewise linear over the time-steps

xz(t) = xiz + ẋiz(t− ti), t ∈ [ti, ti+1), (5.6)

5.2 Prediction model 31

Figure 5.5. Footsteps generated by the proposed method for different high-level reference
velocities corresponding to a circular walk (top), L-walk (center), diagonal walk (bottom).
The paths in black are obtained by integrating model (5.2) under the reference velocities.
Footstep in magenta and cyan refer respectively to the left and right foot.

32 5. IS-MPC: the basic scheme

The discrete time dynamic model is computed by integrating (5.4) over the
time-step δ with a constant input ẋz (see Appendix A for a complete derivation) xk+1

c

ẋk+1
c

xk+1
z

 =

 cosh(ηδ) sinh(ηδ)/η 1− cosh(ηδ)
η sinh(ηδ) cosh(ηδ) −η sinh(ηδ)

0 0 1


 xkc
ẋkc
xkz


+

 δ − sinh(ηδ)/η
1− cosh(ηδ)

δ

 ẋkz .
(5.7)

Note that the discrete model is computed by exact integration of the continuous
model over a constant input, with no approximation required. This ensures that the
ZMP constraints (described in the next section) enforced at the discrete sampled
timings, will also be satisfied in between the samples.

Recall that the IS-MPC stage works over the control horizon, which is in general
shorter than the preview horizon of the footstep generation module. The number of
samples in the preview and control horizon is denoted as P and C respectively. The
predicted state and input variables are notated with a superscript, where k denotes
the current instant corresponding to time tk, and k + i denotes the i-th predicted
instant corresponding to time tk+i. It is useful to collect them in vectors, for the
input

Ẋk
z =

(
ẋkz , ẋ

k+1
z , . . . , ẋk+C−1

z

)T
Ẏ k
z =

(
ẏkz , ẏ

k+1
z , . . . , ẏk+C−1

z

)T (5.8)

and the state

Xk+1
c =

(
xk+1
c , xk+2

c , . . . , xk+C
c

)T
Y k+1
c =

(
yk+1
c , yk+2

c , . . . , yk+C
c

)T
Ẋk+1
c =

(
ẋk+1
c , ẋk+2

c , . . . , ẋk+C
c

)T
Ẏ k+1
c =

(
ẏk+1
c , ẏk+2

c , . . . , ẏk+C
c

)T
Xk+1
z =

(
xk+1
z , xk+2

z , . . . , xk+C
z

)T
Y k+1
z =

(
yk+1
z , yk+2

z , . . . , yk+C
z

)T
.

(5.9)

5.3 ZMP constraints

The ZMP constraint ensures dynamic balance of the humanoid. As mentioned
earlier, there are two distinct phases during locomotion. The single-support phase is
active when the robot has a single foot in contact with the ground, while during
the double-support phase it has two. The ZMP constraint is expressed slightly
differently in these two phases, which will be discussed separately.

5.3 ZMP constraints 33

Single-support ZMP constraints

The ZMP constraint during single-support is enforced by guaranteeing that the ZMP
is in a convex region that is contained within the contact surface of the support foot
with the ground. This is for simplicity approximated by a rectangle, but any convex
polytope could in principle be used, as it can be written as a linear constraint.

−1
2

(
dx,z
dy,z

)
≤ RjT

(
xk+i
z − xjf
yk+i
z − yjf

)
≤ 1

2

(
dx,z
dy,z

)
(5.10)

(xjf , y
j
f) is the position of the j-th support foot in the control horizon, and Rj

is the rotation matrix associated with its orientation. Note that j = 0, . . . , F ′,
where (x0

f , y
0
f) represents the position of the current support foot. (xk+i

z , yk+i
z) is the

predicted position of the ZMP at the i-th time instant into the future. The latter is
easily expressed linearly in the decision variables as(

xk+i
z

yk+i
z

)
=
(
xkz
ykz

)
+ δ

i−1∑
j=k

(
ẋjz
ẏjz

)
. (5.11)

This constraint is imposed for all i for which tk+i is in a single-support phase.

Double-support ZMP constraint

The support polygon during double-support includes the area of the feet in contact
with the ground, as well as the area in between them. If the footstep sequence is
given, the whole area could be expressed as a linear constraint, but this would not
extend well to the case of automatic footstep placement (see next chapter), and its
complex expression would make it more difficult to prove stability and feasibility
properties. For these reasons, during double support we enforce a moving constraint,
which is an approximation that is always contained in the actual support polygon.
We employed this in [5], but a similar idea was utilized in [61]. This constraint has
the shape and size of the constraint during single support, but it gradually shifts
from one footstep to the next during double support.

Consider the construction shown in Fig. 5.6, which considers the case of a single
predicted footstep (i.e., F ′ = 1) for illustration. The support polygon during double
support is outlined in yellow. The ZMP should move from the square in the bottom
left to the one in the top right. Suppose that this transition takes D sampling
intervals (D = 3 in the figure). This leads to define D equispaced support squares.
During the n-th time-step (n = 1, . . . , 3), the support square n is activated. By
doing so, the ZMP is always contained inside the original double support polygon.

According to the above discussion, the ZMP constraint during double support
can be defined by

−1
2

(
dx,z
dy,z

)
≤ RTj

(
xk+i
z − n

D+1x
j−1
f − D+1−n

D+1 xjf
yk+i
z − n

D+1y
j−1
f − D+1−n

D+1 yjf

)
≤ 1

2

(
dx,z
dy,z

)
(5.12)

with n = 1, . . . , D.

34 5. IS-MPC: the basic scheme

double support
polygon

dz,y dz,x

j-1 j-1
(xf ,yf)

j j
(xf ,yf)ZMP

admissible
region

Figure 5.6. Redefining the ZMP constraint during double support.

5.4 The stability constraint
The role of the stability constraint is to ensure internal stability of the scheme. In
the standard MPC practice a similar role is entrusted to a terminal constraint, which
is a constraint on the state at the last instant of the prediction. In fact, for standard
control problems such as regulation and tracking, terminal constraints can be found
which are able to guarantee feasibility and stability of the scheme.

The case under consideration is different, as the goal is neither regulation nor
tracking, but rather satisfying time varying constraints. For this reason a standard
terminal constraint does not seem to be effective. The stability constraint fulfills
the role of a terminal constraint in the IS-MPC scheme and, as we will discuss later,
can be reformulated as a condition on the state at the end of the prediction.

To compute the stability constraint we utilize the stability condition (4.2) for
the LIP system. The reason for this is that we are interested in guaranteeing
boundedness of the CoM w.r.t. the ZMP, thus we can ignore the dynamic extension.

The stability condition (4.2) relates the initial condition to the future of the
ZMP trajectory. However, since we will be enforcing this at every time-step, the
initial time is the current time tk and x(t0) is replaced by xku

xku = η

∫ ∞
tk

e−η(τ−tk)xz(τ)dτ. (5.13)

The stability condition, which involves xu at the initial instant tk of the control
horizon, can be propagated to its final instant tk+C by integrating (3.9) from xku
in (4.2):

xk+C
u = η

∫ ∞
tk+C

e−η(τ−tk+C)xz(τ)dτ. (5.14)

5.4 The stability constraint 35

Condition (5.13) — or equivalently, (5.14) — can be used to set up the corre-
sponding constraint for the MPC problem. To this end, we use the piecewise-linear
profile (5.6) of xz to obtain explicit forms.

Proposition 3 For the piecewise-linear xz in (5.6), condition (4.2) becomes

xku = xkz + 1− e−ηδ

η

∞∑
i=0

e−iηδẋk+i
z , (5.15)

while (5.14) takes the form

xk+C
u = xk+C

z + 1− e−ηδ

η
eCηδ

∞∑
i=C

e−iηδẋk+i
z . (5.16)

Proof. The piecewise-linear ZMP can be directly plugged into the integral, but
the computation is quite lengthy. For a much shorted derivation, rewrite eq. (5.6) as

xz(t) = xkz +
∞∑
i=0

(ρ(t− tk+i)− ρ(t− tk+i+1))ẋk+i
z , (5.17)

where ρ(t) = t δ−1(t) denotes the unit ramp and δ−1(t) the unit step. Using
Properties 1, 4 and 3 given in Sect. 4.2, we get∫ ∞

tk

e−η(τ−tk)(ρ(τ − tk+i)− ρ(τ − tk+i+1))dτ = 1− e−ηδ

η2 e−iηδ.

Plugging this expression in condition (4.2) and using Property 2 of Sect. 4.2 one
obtains (5.15).

To prove (5.16), rewrite (5.17) as

xz(t) = xkz+
C−1∑
i=0

(ρ(t− tk+i)− ρ(t− tk+i+1))ẋk+i
z

+
∞∑
i=C

(ρ(t− tk+i)− ρ(t− tk+i+1))ẋk+i
z .

The contribution of the first two terms of xz to the integral in (5.14) is xk+C
z . Using

Properties 1, 3 and 4 one verifies that the contribution of the third term is exactly
the second term in the right hand side of (5.16). This completes the proof.

In (5.15), we should logically separate the values of ẋiz within the control horizon,
i.e. the control variables ẋiz for i = k, . . . , k + C − 1, from the remaining values, i.e.,
from k + C on. The infinite summation is then split in two parts and (5.15) can be
rearranged as2

C−1∑
i=0

e−iηδẋk+i
z = −

∞∑
i=C

e−iηδẋk+i
z + η

1− e−ηδ (xku − xkz). (5.18)

2Constraint (5.18) can be written as a function of the actual state variables of our prediction
model (xc, ẋc and xz) using the coordinate transformation (3.11). The same is true for all subsequent
forms of the stability constraint as well as of the terminal constraint.

36 5. IS-MPC: the basic scheme

Observe the inversion between (5.15), which expresses the stable initialization at
tk for a given xz(t), and (5.18), which constrains the control variables so that the
associated stable initialization matches the current state at tk. Therefore, we will
refer to (5.18) as the stability constraint.

The control variables do not appear in condition (5.16), which involves only the
value of the state variable xk+C

u at the end of the control horizon. In other terms,
this condition represents a terminal constraint.

Both the stability and the terminal constraint contain an infinite summation
which depends on ẋk+C

z , ẋk+C+1
z , . . . , i.e., the ZMP velocities after the control horizon.

These are obviously unknown, because they will be determined by future iterations
of the MPC algorithm; as a consequence, including either of the constraints in the
MPC formulation would lead to a non-causal (unrealizable) controller. However, by
exploiting the preview information on vx, vy, ω, we can make an informed conjecture
at tk about these ZMP velocities, which we will denote by ˙̃xk+C

z , ˙̃xk+C+1
z , . . . (see

Fig. 5.2) and refer to collectively as the tail in the following. Correspondingly, the
stability constraint (5.18) assumes the form

C−1∑
i=0

e−iηδẋk+i
z = −

∞∑
i=C

e−iηδ ˙̃xk+i
z + η

1− e−ηδ (xku − xkz), (5.19)

while the terminal constraint (5.16) becomes

xk+C
u = xk+C

z + 1− e−ηδ

η
eCηδ

∞∑
i=C

e−iηδ ˙̃xk+i
z . (5.20)

Using either of these in the MPC formulation will lead to a causal (realizable)
controller.

5.4.1 The velocity tail

The ZMP velocities after the control horizon, which we have defined as tail in (5.18)
and (5.16), can be conjectured in a number of different ways. These can be more or
less appropriate in different circumstances, and have different effects on the recursive
feasibility of the scheme.

We will consider three possibilities for the tail, which we denote as truncated tail,
periodic tail and anticipative tail.

Truncated tail

The truncated tail corresponds to setting ẋiz = 0 for t > tk+C . The second summation
is then simply zero and the stability constraint assumes the form

C−1∑
i=0

e−iηδẋk+i
z = η

1− e−ηδ (xku − xkz). (5.21)

This is the simplest possible choice for the velocity tail. It is clearly the most
appropriate when the robot is about to stop.

5.4 The stability constraint 37

By setting ẋk+i
z for i ≥ C in (5.16) it is possible to see that the stability constraint

using the truncated tail (5.21) is equivalent, expressed as a terminal constraint, to

xk+C
u = xk+C

z , (5.22)

known as the capturability constraint [17].

Periodic tail

If the footstep sequence is regular enough, the generated gait will usually exhibit
some kind of periodicity. The periodic tail exploits this periodicity to conjecture the
velocities of the ZMP beyond the MPC control horizon.

Consider the stability constraint, and assume for simplicity that the gait period
is equal to the control horizon. Split the infinite summation in groups of C terms
each
C−1∑
i=0

e−iηδẋk+i
z +

2C−1∑
i=C

e−iηδẋk+i
z +

3C−1∑
i=2C

e−iηδẋk+i
z + · · · = η

1− e−ηδ (xku − xkz). (5.23)

and with a simple change of indices

C−1∑
i=0

e−iηδẋk+i
z +

C−1∑
i=0

e−(i+C)ηδẋk+i+C
z +

C−1∑
i=0

e−(i+2C)ηδẋk+i+2C
z +· · · = η

1− e−ηδ (xku−xkz).

(5.24)
By assumption xk+i

z = xk+i+C
z , which simplifies to

∞∑
j=0

e−jηδC
C−1∑
i=0

e−iηδẋk+i
z = η

1− e−ηδ (xku − xkz). (5.25)

The first sum is a simple geometric series which converges to 1/(1− e−ηδC)

C−1∑
i=0

e−iηδẋk+i
z = η

1− e−ηδC

1− e−ηδ (xku − xkz). (5.26)

It can be shown that the equivalent terminal constraint form when using the periodic
tail becomes

ẋ
tk+C
u = ẋtku . (5.27)

Anticipative tail

The anticipative tail uses the given footstep plan beyond the control horizon to
approximate the ZMP trajectory up to the preview horizon, which we referred to as
an informed conjecture. In principle any ZMP trajectory that is compatible with
the given footstep plan can be used. In practice it is more convenient to use the
trajectory generated by the midpoint between the ZMP constraints.

Whatever trajectory is chosen, the velocity sample obtained are denoted by ẋk+i
z,ant,

for i = C, . . . , P − 1. The anticipative tail is then obtained by:

• setting ˙̃xk+i
z = ẋk+i

z,ant for i = C, . . . , P − 1;

38 5. IS-MPC: the basic scheme

• using a truncated or periodic expression for the residual part of the tail located
after the preview horizon, i.e., for ˙̃xk+i

z , i = P, P + 1,

The stability constraint (5.19) can be written as

C−1∑
i=0

e−iηδẋk+i
z = −

P−1∑
i=C

e−iηδẋk+i
z,ant −

∞∑
i=P

e−iηδ ˙̃xk+i
z +

η

1− e−ηδ (xku − xkz).

which is a simple sum of closed form expressions and does not constitute an additional
load for the real-time implementation.

5.5 The IS-MPC algorithm

The generic step of the algorithm involves solving the following QP problem

min
Ẋk

z ,Ẏ
k

z

‖Ẋk
z ‖2 + ‖Ẏ k

z ‖2

subject to:

• ZMP constraints (5.10) and (5.12)

• stability constraints (5.18) for x and y

The generic iteration of the IS-MPC algorithm goes as follows. The input data
are the sequence (Xk

f , Y
k
f ,Θk

f) of planned footsteps, with the associated timing T ks .
As initialization, one needs xc, ẋc and xz at the current sampling instant tk. One
may either use measured data or the current model prediction, depending on the
available sensors.

The IS-MPC iteration at tk goes as follows.

1. Solve the QP problem to obtain Ẋk
z , Ẏ

k
z .

2. From the solutions, extract ẋkz , ẏkz , the first control samples.

3. Set ẋz = ẋkz in (5.4) and integrate from (xkc , ẋkc , xkz) to obtain xc(t), ẋc(t), xz(t)
for t ∈ [tk, tk+1]. Compute yc(t), ẏc(t), yz(t) similarly.

4. Define the 3D trajectory of the CoM as p∗c =(xc, yc, z̄c) in [tk, tk+1] and return
it.

The swing foot trajectory p∗swg is computed using the planned footsteps. Both
the CoM trajectory p∗c and the swing foot trajectory p∗swg are sent to the kinematic
controller (see Fig. 5.1).

5.6 Stability and feasibility 39

5.6 Stability and feasibility

This section will discuss some properties of the IS-MPC scheme. Recall that the
footstep sequence is given up to the preview horizon Tp, and consider the following
simplifying assumption

Assumption 4 All footsteps have the same orientation θj = 0.

This assumption is useful in simplifying the computations, as it lets us decouple the
x and y components of the MPC constraints. It is possible to remove the assumption
by employing an appropriate coordinate change.

In the following we will introduce the concept of feasibility region, a region of
the state space in which the problem is feasible at time tk. Feasibility regions will
be employed to prove recursive feasibility using the anticipative tail, which will lead
to a proof of internal stability.

5.6.1 Feasibility regions

Consider the k-th step of the IS-MPC algorithm.

Definition 1 The QP problem is feasible at tk if there exists a ZMP trajectory xz(t)
that for t ∈ [tk, tk+C] satisfies both the ZMP constraint

xmz (t) ≤ xz(t) ≤ xMz (t), (5.28)

and the stability constraint

η

∫ tk+C

tk

e−η(τ−tk)xz(τ)dτ = xku − η
∫ ∞
tk+C

e−η(τ−tk)x̃z(τ)dτ. (5.29)

Note the following:

• xmz (t) and xMz (t) are respectively the lower and upper bound of the ZMP
admissible region at time t, as derived from (8.1). Recall that we are employing
the moving constraint (5.12) for the double support phase, so the difference
between xmz (t) and xMz (t) is constant;

• x̃z is the ZMP position3 corresponding (through integration) to the chosen
velocity tail;

• both the ZMP and the stability constraint have been expressed in continuous
time for later convenience (in particular, eq. (5.29) is obtained from (5.13) by
splitting the integral in two and plugging the tail in the second integral);

• all constraints are decoupled under the current assumptions, so only the
expressions for x are given, as the expressions for y are equivalent.

3In the rest of this section, we will for simplicity use the term ‘tail’ for both the ZMP velocity
and the corresponding position.

40 5. IS-MPC: the basic scheme

Proposition 4 At time tk, IS-MPC is feasible if and only if

xk,mu ≤ xku ≤ xk,Mu (5.30)

where

xk,mu = η

∫ tk+C

tk

e−η(τ−tk)xmz dτ + η

∫ ∞
tk+C

e−η(τ−tk)x̃zdτ

xk,Mu = η

∫ tk+C

tk

e−η(τ−tk)xMz dτ + η

∫ ∞
tk+C

e−η(τ−tk)x̃zdτ.

Proof. To show the necessity of (5.30), multiply each side of the ZMP constraint
(5.28) by e−η(t−tk)

e−η(t−tk)xmz (t) ≤ e−η(t−tk)xz(t) ≤ e−η(t−tk)xMz (t), (5.31)

and integrate over time from tk to tk+C .∫ tk+C

tk

e−η(τ−tk)xmz (τ)dτ ≤
∫ tk+C

tk

e−η(τ−tk)xz(τ)dτ ≤
∫ tk+C

tk

e−η(τ−tk)xMz (τ)dτ.

(5.32)
Adding to all sides the integral term in the right-hand side of (5.29), the middle side
becomes exactly xku, while the left- and right-hand sides become xk,mu and xk,Mu as
defined in the thesis.

The sufficiency can be proven by showing that if (5.30) holds then the ZMP
trajectory

xz(t) = xMz (t)− xk,Mu − xku
1− e−ηTc

(5.33)

satisfies both the ZMP constraint (5.28) and the stability constraint (5.29). To prove
this we check if the following expression is an identity

xku = η

∫ tk+C

tk

e−η(τ−tk)
(
xMz (τ)− xk,Mu − xku

1− e−ηTc

)
dτ + η

∫ ∞
tk+C

e−η(τ−tk)x̃zdτ (5.34)

which can be verified by splitting the first integral and rearranging the terms

xku + η

∫ tk+C

tk

e−η(τ−tk)x
k,M
u − xku

1− e−ηTc
dτ =

η

∫ tk+C

tk

e−η(τ−tk)xMz (τ)dτ + η

∫ ∞
tk+C

e−η(τ−tk)x̃zdτ

(5.35)

the argument of the integral on the left side is constant, except for the exponential

xku + η
xk,Mu − xku
1− e−ηTc

∫ tk+C

tk

e−η(τ−tk)dτ =

η

∫ tk+C

tk

e−η(τ−tk)xMz (τ)dτ + η

∫ ∞
tk+C

e−η(τ−tk)x̃zdτ

(5.36)

5.6 Stability and feasibility 41

The integral on the left side now evaluates to (1 − e−ηTc)/η, and the left side
simplifies to xk,Mu . The right side is the definition of xk,Mu , which proves that the
expression is and identity and thus the trajectory satisfies the stability constraint.

We will now prove that the trajectory satisfies the ZMP constraint xmz (t) ≤
xz(t) ≤ xMz (t)

xmz (t) ≤ xMz (t)− xk,Mu − xku
1− e−ηTc

≤ xMz (t) (5.37)

We can split this into two inequalities. The right side inequality is simply

xMz (t)− xk,Mu − xku
1− e−ηTc

≤ xMz (t) (5.38)

xk,Mu − xku
1− e−ηTc

≥ 0 (5.39)

note that xk,Mu − xku is positive by hypothesis because xku is inside the feasibility
region, so the right side inequality is verified.

The left side inequality is

xmz (t) ≤ xMz (t)− xk,Mu − xku
1− e−ηTc

(5.40)

xmz (t) can be written as xMz (t)− dz,x because the ZMP constraint are at a constant
distance equal to the size of the foot

xMz (t)− dz,x ≤ xMz (t)− xk,Mu − xku
1− e−ηTc

(5.41)

xk,Mu − xku
1− e−ηTc

≤ dz,x (5.42)

The latter is verified because the size of the feasibility region is dz,x(1−e−ηTc), which
means that the following is verified

xk,Mu − xku ≤ dz,x(1− e−ηTc) (5.43)

We have shown that trajectory (5.33) is feasible, which proves the thesis.

The interpretation of (5.30) is the following: it is the admissible range for xu
at time tk to guarantee solvability of the QP problem associated to the current
iteration of IS-MPC. Since xu is related to the state variables of the prediction model
through (3.11), eq. (5.30) actually identifies the feasibility region in state space.

Note that the extension of the feasibility region is

xk,Mu − xk,mu = η

∫ tk+C

tk

e−η(τ−tk)(xMz − xmz)dτ = dz,x(1− e−ηTc), (5.44)

where we have used the fact that xMz (t)− xmz (t) = dz,x for all t, as implied by (8.1).
This shows that the extension xk,Mu − xk,mu of the admissible range for xu depends
on the dimension dz,x of the ZMP admissible region, and tends to become exactly
dz,x as the control horizon Tc is increased. On the other hand, the midpoint of

42 5. IS-MPC: the basic scheme

Figure 5.7. Feasibility regions. Top: The robot is taking a single step. Bottom: The robot
is taking a sequence of steps. The anticipative tail is used in both cases. The solid
magenta lines identify the ZMP constraint along the x-axis, while the dashed black lines
show the feasibility region. It can be seen that, when the ZMP is not moving (e.g., top
figure before and after the step) the feasibility region tends to identify with the ZMP
constraint, except for being slightly smaller due to the finite control horizon. When the
ZMP constraint moves, the feasibility region tends to move as well, in a way so as to
anticipate the change.

this range depends on the tail chosen for the stability constraint (5.29), because
η
∫∞
tk+C

e−η(τ−tk)x̃zdτ acts as an offset in both the left- and right-hand sides of (5.30).
Figure 5.7 illustrates how the admissible range for xu moves over time, for the

case of a single step and of a sequence of steps. These results were obtained with
z̄c = 0.78 m, dz,x = 0.04 m and Tc = 0.5 s. In both cases, an anticipative tail was
used, with the residual part truncated; the preview horizon is Tp = 1 s. Note that,
as expected, the extension of the range is constant and smaller than dz,x, and that
the range itself gradually shifts toward the next ZMP admissible region as a step is
approached.

5.6.2 Recursive feasibility

We prove next that the use of an anticipative tail provides recursive feasibility under
a (sufficient) condition on the preview horizon Tp.

Proposition 5 Assume that the anticipative tail is used in the stability constraint (5.29).
Then, IS-MPC is recursively feasible if the preview horizon Tp is sufficiently large.

Proof. To establish recursive feasibility, we must show that if the IS-MPC QP
problem is feasible at tk, it will be still feasible at time tk+1.

5.6 Stability and feasibility 43

Let us assume that (5.30) holds. This implies that the ZMP constraint (5.28)
holds for t ∈ [tk, tk+C], and that the stability constraint (5.29) is satisfied, i.e.,

xku = η

∫ tk+C

tk

e−η(τ−tk)xzdτ + η

∫ ∞
tk+C

e−η(τ−tk)x̃z(τ)dτ,

with x̃z chosen as the anticipative tail at tk.
Using (3.12), the value of xu at tk+1 is written as

xk+1
u = eηδ − η

∫ tk+1

tk

eη(tk+1−τ)xz(τ)dτ.

Plugging the above expression for xku in this equation, simplifying, and considering
that xz(t) ≤ xMz (t) for t ∈ [tk, tk+C] we obtain

xk+1
u ≤η

∫ tk+C

tk+1
eη(tk+1−τ)xMz (τ)dτ + η

∫ ∞
tk+C

eη(tk+1−τ)x̃z(τ)dτ.

According to Proposition 4, feasibility at tk+1 requires4

xk+1
u ≤η

∫ tk+C+1

tk+1
eη(tk+1−τ)xMz (τ)dτ + η

∫ ∞
tk+C+1

eη(tk+1−τ)x̃′z(τ)dτ,

with x̃′z(τ) in the second integral denoting the anticipative tail at tk+1. Recursive
feasibility is then guaranteed if the right-hand side of the last equation is not larger
than that of the penultimate. This condition can be rewritten as∫ tk+C+1

tk+C

eη(tk+1−τ)x̃z(τ)dτ +
∫ ∞
tk+P

eη(tk+1−τ)x̃z(τ)dτ ≤∫ tk+C+1

tk+C

eη(tk+1−τ)xMz (τ)dτ +
∫ ∞
tk+P

eη(tk+1−τ)x̃′z(τ)dτ,

where we have used the fact that the anticipative tails at tk and tk+1 coincide over
[tk+C+1, tk+P]. We introduce the tail error

T =
∫ ∞
tk+P

eη(tk+1−τ)(x̃′z(τ)− x̃z(τ))dτ (5.45)

which encodes the difference between the tail used at tk and the tail used at tk+1.
We rewrite the inequality as∫ tk+C+1

tk+C

eη(tk+1−τ)(xMz (τ)− x̃z(τ))dτ ≥ T

At this point, exploiting the fact (see the end of Sect. 5.4.1) that (i) xMz (t) −
x̃z(t) = dz,x/2 in the preview horizon, and (ii) the residual part of the anticipative
tail is truncated, a tedious but simple calculation leads to the condition

dz,x
2 (1− e−ηδ) ≥ T ,

4From now on, we focus only on the right-hand side of the feasibility condition for compactness.

44 5. IS-MPC: the basic scheme

where (˙̃x′z)k+P is the last velocity sample in the preview horizon of the anticipative
tail at tk+1.

Recall that the tail after the end of the preview horizon is truncated, thus

x̃z = x̃k+P
z

x̃′z = x̃k+P
z + ˙̃xk+P

z (ρ(t− tk+P)− ρ(t− tk+P+1))
(5.46)

where ρ(t) is the unit ramp. The tail error evaluates to

T =
∫ ∞
tk+P

eη(tk+1−τ)(x̃′z(τ)− x̃z(τ)) = e−ηTp
˙̃xk+P
z

η
(1− e−ηδ). (5.47)

The tail error can be bounded using an upper bound on the absolute value of (˙̃x′z)k+P ,
denoted as vmax

z,x . We can claim that a sufficient condition for recursive feasibility is

Tp ≥ Tc + 1
η

log
2 vmax

z,x

η dz,x
, (5.48)

thus concluding the proof.

Note the following points.

• An upper bound vmax
z,x to be used in (5.48) can be derived (and enforced in

the tail) based on the dynamic capabilities of the specific robot or, even more
directly, using the information embedded in the footstep sequence and timing.

• Equation (5.48) shows that a longer preview horizon Tp is needed to guarantee
recursive feasibility for taller and/or faster robots (larger η and/or vmax

z,x ,
respectively), or for robots with more compact feet (smaller dz,x).

• Proposition 5 provides only a sufficient condition, and therefore does not
exclude that recursive feasibility of IS-MPC can be achieved with a smaller
preview horizon, or even with a different tail. For example, in the next
subsection we will describe a case (Simulation 3) in which the periodic tail
represents a sufficiently accurate conjecture and therefore recursive feasibility
is achieved.

5.6.3 Stability

In Sect. 5.6.2 it has been shown that recursive feasibility can be guaranteed by
using the anticipative tail, provided that the preview horizon Tp is sufficiently large
(Proposition 5). Now we prove that recursive feasibility in turn implies internal
stability (i.e., boundedness of the CoM trajectory with respect to the ZMP).

Proposition 6 If IS-MPC is recursively feasible, then internal stability is guaran-
teed, i.e., the CoM trajectory is bounded w.r.t. to the ZMP.

5.6 Stability and feasibility 45

Proof. We have assumed the ZMP trajectory to be piecewise linear in the
prediction model (see Sect. 5.2), and the ZMP is limited to the ZMP constraints.
These constraints cannot accelerate indefinitely due to the maximum velocity allowed
for the robot (recall that the kinematic constraint 5.3 is enforced on the footstep
positions). This means that the derivative of the ZMP can be globally bounded by
some constant D.

Consider the evolution of the stable component xs(t) from time t0 to tk

xks = xs(t0)e−η(t0−tk) + η

∫ tk

t0
e−η(tk−τ)xz(τ)dτ. (5.49)

Let t0 → −∞ and change the integration variable to s = tk − τ . The resulting
integral is

xks = η

∫ ∞
0

e−ηsxz(tk − s)ds, (5.50)

which can be evaluated for a piecewise linear ZMP trajectory (follow the same
procedure given in the proof of Proposition 3) to give

xks = xkz + 1− e−ηδ

η

∞∑
i=0

e−iηδẋk−i−1
z . (5.51)

This expression is analogous to the stability constraint, but the ZMP velocity samples
are selected from past iterations, instead of being future samples.

Summing each member of (5.51) to the expression of the stability constraint (5.19),
and recalling that xku + xks = 2xkc , gives

xkc − xkz = 1− e−ηδ

2η

∞∑
i=0

e−iηδ
(
ẋk+i
z + ẋk−i−1

z

)
. (5.52)

For this equation to be verified, the stability constraint needs to be verified, which
it is because we assumed that IS-MPC is recursively feasible. The absolute value of
the right-hand side of (5.52) can be bounded by D/η, which leads to

|xkc − xkz | ≤
D

η
, (5.53)

proving the proposition.

5.6.4 Effect of the stability constraint

This section presents some MATLAB simulations aimed at showing the effect of the
stability constraint on the controlled system. A CoM height z̄c = 0.78 m is used (an
appropriate value for the HRP-4 humanoid robot). A sequence of evenly spaced
footsteps is given with a constant step duration Ts = 0.5 s, split in Tss = 0.4 s
(single support) and Tds = 0.1 s (double support). The dimensions of the ZMP
admissible regions are dz,x = dz,y = 0.04 m and the sampling time is δ = 0.01 s.
The QP problem is solved with the quadprog function, which uses an interior-point
algorithm.

46 5. IS-MPC: the basic scheme

IS-MPC is compared to a standard MPC for gait generation. In IS-MPC the
stability constraint is active using the periodic tail (see Sect. 5.4.1), while in the
standard MPC the stability constraint is not present and the cost function is
changed to minimizing the norm of the CoM jerk. This corresponds to entrusting
the boundedness of the CoM trajectory entirely to the cost function, by penalizing
diverging behaviors.

Figure 5.8 shows the performance of IS-MPC and standard MPC for Tc = 1.5 s,
i.e., 1.5 times the gait period. Both gaits are stable, with the IS-MPC gait more
aggressively using the ZMP constraints in view of its cost function that penalizes
ZMP variations.

Figure 5.9 compares the two schemes when the control horizon is reduced to
Tc = 1 s. The standard MPC loses stability: the resulting ZMP trajectory is always
feasible but the associated CoM trajectory diverges5 with respect to it, because
the control horizon is too short to allow sorting out the stable behavior via jerk
minimization. With IS-MPC, instead, boundedness of the CoM trajectory with
respect to the ZMP trajectory is preserved in spite of the shorter control horizon
thanks to the embedded stability constraint.

Another interesting situation is that of Fig. 5.10, in which the CoM height is
increased to z̄c = 1.6 m while keeping the ‘long’ control horizon Tc = 1.5 s of
Simulation 1. Once again, standard MPC is unstable while IS-MPC guarantees
boundedness of the CoM with respect to the ZMP. Since it is η2 = g/z̄c, a similar
situation can be met when g is decreased, as in gait generation for low-gravity
environments (e.g., the moon).

It should be noted that adding to the cost function a term aimed at keeping
the ZMP close to the foot center does not allow standard MPC to avoid instability;
actually, this occurs even earlier, because the additional cost term has the effect
of depenalizing the norm of the CoM jerk. Instead, IS-MPC remains stable also
with this modified cost function, with the ZMP pushed well inside the admissible
region. This is not surprising as the properties of stability and recursive feasibility
are independent of the cost function, and only depend on the constraints.

5.6.5 Effect of the velocity tail on feasibility

Here will be reported some comparative MATLAB simulations showing how different
choices for the tail lead to different results in terms of recursive feasibility. The same
LIP model and parameters of Sect. 5.6.4 were used. The control horizon Tc is 0.8 s
while the preview horizon Tp is 1.6 s.

Figure 5.11 shows a comparison between IS-MPC using the truncated and
periodic tail for a regular footstep sequence. When using the truncated tail, gait
generation fails because the system reaches an unfeasible state, due to the significant
mismatch between the truncated tail and the persistent ZMP velocities required by
the gait. Recursive feasibility is instead achieved by using the periodic tail, which
coincides with an anticipative tail for this case.

5In particular, the divergence occurs in this case on the coronal coordinate yc. However, it is
also possible to find situations where divergence occurs on the sagittal coordinate xc, or even on
both coordinates.

5.6 Stability and feasibility 47

Figure 5.12 refers to a situation in which the assigned footstep sequence is
irregular: two forward steps are followed by two backward steps on the same
footsteps. Use of the periodic tail leads now to a loss of feasibility, as IS-MPC
is wrongly conjecturing that the ZMP trajectory will keep on moving forward.
The anticipative tail, which is the recommended choice for this scenario, correctly
anticipates the irregularity therefore achieving recursive feasibility.

48 5. IS-MPC: the basic scheme

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

x [m]

-0.2

0

0.2
y

[m
]

ZMP
CoM
prediction

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

x [m]

-0.2

0

0.2

y
[m

]

ZMP
CoM
prediction

Figure 5.8. Simulation 1: Gaits generated by IS-MPC (top) and standard MPC (bottom)
for Tc = 1.5 s. The given footstep sequence is shown in magenta. Note the larger region
corresponding to the initial double support.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

x [m]

-0.2

0

0.2

y
[m

]

ZMP
CoM
prediction

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

x [m]

-0.2

0

0.2

y
[m

]

ZMP
CoM
prediction

Figure 5.9. Simulation 2: Gaits generated by IS-MPC (top) and standard MPC (bottom)
for Tc = 1.0 s. Note the instability in the standard MPC solution.

5.6 Stability and feasibility 49

-0.5 0 0.5 1 1.5
x [m]

-0.2

0

0.2
y

[m
]

ZMP
CoM
prediction

-0.5 0 0.5 1 1.5
x [m]

-0.2

0

0.2

y
[m

]

ZMP
CoM
prediction

Figure 5.10. Simulation 2 bis: Gaits generated by IS-MPC (top) and standard MPC
(bottom) for Tc = 1.5 s and a higher CoM. Note the instability in the standard MPC
solution.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

x [m]

-0.2

0

0.2

y
[m

]

ZMP
prediction

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

x [m]

-0.2

0

0.2

y
[m

]

ZMP
prediction

Figure 5.11. Simulation 3: Gaits generated by IS-MPC for a regular footstep sequence
with different tails: truncated (top), periodic (bottom). Note the loss of feasibility when
using the truncated tail.

50 5. IS-MPC: the basic scheme

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x [m]

-0.2

0

0.2

y
[m

]

ZMP
prediction

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x [m]

-0.2

0

0.2

y
[m

]

ZMP
prediction

Figure 5.12. Simulation 4: Gaits generated by IS-MPC for an irregular footstep sequence
with different tails: periodic (top), anticipative (bottom). The footstep sequence consists
of two forward steps followed by two backwards steps on the same footsteps. Note the
loss of feasibility when using the periodic tail.

51

Chapter 6

IS-MPC with automatic
footstep placement

Footstep adaptation is an important aspect of legged locomotion. The location
where the robot places its footsteps can be planned in advance, but sometimes it
might be necessary to modify the planned steps in order to maintain balance. This
is even more important if perturbations are present, such as the robot colliding with
an obstacle, or an unforeseen unevenness of the ground.

The idea of automatic footstep placement is to let the optimization problem of
the MPC scheme, also take care of placing the footsteps [29, 30, 31]. This adds a
relatively low number of new variables to the problem, and it is not a heavy burdern
on the computation. The advantage is that now the footsteps can be placed by
taking into account the state of CoM and ZMP, thus allowing for reactive stepping
to maintain balance.

IS-MPC can also be formulated as an automatic footstep placement scheme
[3, 4] without needing to change the stability constraint, as this only depends on the
future ZMP trajectory and the current state. As is shown in Fig. 6.1, the automatic
footstep placement scheme differs very little from the basic scheme of Ch. 5, from an
architectural standpoint. The key difference is that the footstep planner now only
generates candidate footsteps, which the IS-MPC stage will attempt to reproduce.
The objective of the optimization will be to place footsteps as close as possible to the
candidate footsteps generated by the planner, but in the presence of a disturbance
they can be moved so as to maintain balance. The second key difference is that the
kinematic constraint is now also part of the IS-MPC stage. This was introduced in
the footstep planner as a way to guarantee that the planned footsteps are compatible
with the kinematic limitations of the robot, and it is also present in the candidate
footstep planner. However, since IS-MPC is allowed to modify the position of the
footsteps, we need to include the kinematic constraint in the MPC stage itself.

A proof of recursive feasibility and stability for the case of automatic footstep
placement is not presented. A rigorous analysis of these aspects is among the possible
future works.

52 6. IS-MPC with automatic footstep placement

q

kinematic
control

Intrinsically
Stable
MPC

(IS-MPC)

q

direct
kinematics

candidate
footstep

generation

Xf
^ k ^ k, Yf

swing foot
trajectory
generation

Xf
k k
, Yf

MPC-based
framework

Tsk
£kf

£kf

Tsk

vx, vy, !

over Tp

over Tp over Tc

tk

pc

pswg*

*pc

±

Tc = C ±.

Tp = P ±.

Figure 6.1. The block scheme of IS-MPC with automatic footstep placement.

6.1 Candidate footstep generation

The candidate footstep generator is identical to the footstep generation module
described in Sect. 5.1. We employ a difference in notation to emphasize which of
the variables computed by the footstep plan can be changed by the IS-MPC stage.
These are now referred to as candidate footstep positions and denoted as X̂k

f , Ŷ
k
f ,

while the symbols Xk
f , Y

k
f now denote the actual positions, determined by the MPC

(see Fig. 6.1).
The footstep timings T kf are not replanned by IS-MPC, as this would result in

nonlinear constraints. As a consequence, there is no distinction between candidate
and actual timings. The same is true for the footstep orientations Θk

f , although
a later section will discuss a way to include orientations in the MPC stage, by
appropriately linearizing the nonlinear constraints that derive.

6.2 Automatic footstep placement scheme

The expressions of the ZMP constraints (5.10) and (5.12), and the stability con-
straint (5.4) are identical to the ones introduced in Sect. 5 for the basic scheme.
The difference in the ZMP constraints is that now some footstep positions (xjf , y

j
f)

are variables of the optimization. More specifically, for j = 1, . . . ,M they represent
predicted footsteps, and are thus considered as variables, while (x0

f , y
0
f) still represents

a fixed value as it is the position of the current support foot.
As already mentioned, the footstep orientations θjf are not considered as variables,

because this would make the constraint nonlinear. For this reason, the planned
values are maintained and simply plugged in the ZMP constraints. Sect. 6.3 will
discuss approximations of the ZMP constraints which allow to include also the
orientations as decision variables.

The kinematic feasibility constraint, introduced in Sect. 5.1.2 as a way to generate
feasible footsteps in the planner, now needs to also be included as a constraint of the
IS-MPC stage itself. This is necessary as, if the candidate footsteps are modified so to
maintain balance, the altered footsteps must still respect the kinematic capabilities
of the robot, i.e., they cannot stretch too far or cause self collisions between the legs.

The cost function is modified to include a term that penalizes deviation from

6.3 Including footstep orientations 53

the candidate footsteps. The resulting QP problems is

min
Ẋk

z ,Ẏ
k

z

Xk
f ,Y

k
f

‖Ẋk
z ‖2 + ‖Ẏ k

z ‖2 + β
(
‖Xf − X̂f‖2 + ‖Yf − Ŷf‖2

)

subject to:

• ZMP constraints (5.10) and (5.12)

• kinematic constraints (5.3)

• stability constraints (5.19) for x and y

6.3 Including footstep orientations

The IS-MPC scheme with automatically placed footsteps of Sect. 6.2 did not in-
clude footstep orientations as a variable, because that would introduce a nonlinear
constraint. However, we showed in [5] that by constructing approximations of the
ZMP and kinematic constraints, it is possible to include the footstep orientations as
variables of the IS-MPC stage.

ZMP constraint

The constraints need to be redefined so to become independent on the foot orientation.
In particular, consider the construction in Fig. 6.2 (left). For illustration, assume

that the prediction horizon only includes one footstep (F ′ = 1) and dx,z = dy,z
(square footprint). The blue square represents the current footstep, while the red
squares are two different placements of the predicted footstep (same location but
different orientations). The green square, which has the same orientation as the
current footstep but size reduced by a factor of

√
2, is always contained in the red

squares, irrespective of their orientation. Thus, if the ZMP is located inside the green
square, it is certainly contained in the actual footprint, whatever its orientation.

In conclusion, the ZMP constraint during single support can be redefined, for
any value of the number of predicted footsteps F ′, as

−1
2

(
d̃x,z
d̃y,z

)
≤
(
xk+i
z − xjf
yk+i
z − yjf

)
≤ 1

2

(
d̃x,z
d̃y,z

)
,

where d̃x,z = dx,z/
√

2 and d̃y,z = dy,z/
√

2.
The above procedure for preserving linearity obviously implies a small reduction

of the ZMP constraint area with respect to the actual footprint. However, this effect
is more than balanced by the overall increase in the area that becomes feasible for
stepping thanks to the inclusion of the footsteps orientation in the IS-MPC stage.
The double support constraint is subject to a similar reduction, shown in Fig. 6.2
(right).

54 6. IS-MPC with automatic footstep placement

left footstep

right footstep

1

2

3

4

5

left footstep

right footstep

Figure 6.2. Constraint approximations in single-stage IS-MPC. Balance constraint during
single support (left) and double support (right).

Kinematic feasibility constraint

The same kind of nonlinearity is manifested in the kinematic feasibility constraint 5.3.
Figure 6.3 shows two different predictions (same location, different orientations)

for a right footstep and the corresponding feasible areas (solid line) for placing the
next left footstep. Note that both the location and the orientation of these areas
depends on the orientation of the right footstep. To remove this dependency, a
reduced feasible area (dashed line) is defined in each original area. This reduced
region, whose orientation is fixed, is then translated based on the orientation of the
right footstep. By forcing the ZMP to be inside the union of all translated regions,
we guarantee that it is also inside the union of the original feasibility areas. This is
a linear constraint which can be written as(

−d̃x,f/2
`− d̃y,f/2

)
≤
(
xj+1
f − xjf − ` θj

yj+1
f − yjf

)
≤
(

d̃x,f/2
`+ d̃y,f/2

)
,

with d̃x,f , d̃y,f the dimensions of the reduced feasible area.
Note that the above construction is valid for the case in which two footsteps must

to be placed within the control horizon (F ′ = 2). In principle, it can be extended
to the case of multiple predicted footsteps, but the reduced feasible area shrinks
quickly, so that it is only practical for small F ′.

Maximum foot rotation constraint

Finally, we must directly add the linear constraint

|θj − θj−1| ≤ θmax,

which was previously enforced only in the footstep generation stage (see Sect. 5.1.2).

6.4 Simulations 55

right footstep

Figure 6.3. Constraint approximations in single-stage IS-MPC. Kinematic constraint on
the footstep position approximated as a linear function of the footstep orientation.

6.4 Simulations

This section will show some simulations, performed in the V-REP environment,
of IS-MPC with automatic footstep placement. The first two will feature the full-
size humanoid HRP-4 which is executing high-level velocity commands. A third
simulation will show the small-size humanoid NAO which is commanded to reach a
position in the workspace, realizing a walk-to task.

The first two simulations perform automatic footstep placement without including
the orientations as decision variables, and use the following parameters. The
framework runs at 100 Hz (δ = 0.01 s). Footstep timing is determined using
rule (5.1) with L̄s = 0.12 m, T̄s = 0.8 s, v̄ = 0.15 m/s as cruise parameters, and
α = 0.1 m/s (as in Fig. 5.3). Each generated Ts is split into Tss (single support)
and Tds (double support) using a 60%-40% distribution. Candidate footsteps are
generated as explained in Sect. 5.1.2, with θmax = π/8 rad and ` = 0.18 m. In the
IS-MPC module, which uses a control horizon Tc of 1.6 s, we have set z̄c = 0.78 m.
The dimensions of the ZMP admissible region are dx,z = dy,z = 0.04 m, while those
of the kinematically admissible region are dx,f = 0.3 m, dy,f = 0.07 m. The weight
in the QP cost function is β = 104.

The first simulation is shown in Fig. 6.4. The robot is commanded a sagittal
reference velocity vx of 0.1 m/s which is then abruptly increased to 0.3 m/s. The
preview horizon is Tp = 3.2 s and the anticipative tail is used.

In the second simulation, shown in Fig. 6.5, the reference velocities are aimed
at producing a cusp trajectory. In particular, initially we have vx = 0.2 m/s and
ω = 0.2 rad/s; after a quarter turn we change vx to −0.2 m/s; after another quarter
turn, ω is zeroed. As before, Tp is 3.2 s and the anticipative tail is used for the
stability constraint.

In the third simulation the NAO robot, a smaller humanoid, is commanded to
reach a goal in the workspace. This simulation is shown in Fig. 6.6 uses δ = 0.01 s,
a step duration Ts = 0.3 s (0.2 s of single support and 0.1 s of double support)
and a prediction horizon Th = 0.6 s, i.e. one gait period. Other parameters are
hcom = 0.26 m, dx,z = dy,z = 0.04 m, dx,f = 0.1 m, dy,f = 0.05 m, ` = 0.125 m,

56 6. IS-MPC with automatic footstep placement

and θmax = π/16. This simulation is realized by setting the footstep orientations
as decision variables of IS-MPC, as described in Sect. 6.3, and modifying the cost
function to penalize the distance from the goal (see [5]). The reduced constraints
have sizes d̃x,z = 0.08 m and d̃y,f = 0.03 m. Note that this simulation does not
employ the candidate footstep generator, as the footsteps are placed directly by the
IS-MPC stage.

6.4 Simulations 57

0 0.5 1 1.5 2 2.5

x [m]

-0.2

0

0.2

0.4

0.6

y
[m

]

CoM
ZMP

0 5 10 15

t [s]

0

0.2

0.4

0.6

v
[m

/s
]

CoM velocity (sagittal component)
reference velocity (sagittal component)

Figure 6.4. HRP-4 walking in a straight line.

58 6. IS-MPC with automatic footstep placement

0 0.5 1 1.5 2 2.5 3

x [m]

0

0.5

1

1.5

y
[m

]

CoM
ZMP

0 5 10 15 20

t [s]

-0.2

0

0.2

0.4

0.6

v
[m

/s
]

CoM velocity (sagittal component)
reference velocity (sagittal component)

Figure 6.5. HRP-4 walking along a cusp.

6.4 Simulations 59

t=0

t=2

t=4

t=6

t=9

t=15

Figure 6.6. NAO successfully walks to the assigned goal (top); the robot CoM, ZMP and
footsteps along the generated motion (bottom).

61

Chapter 7

Robust IS-MPC

There can be several sources of disturbance during locomotion. These can be external,
like a push or an unanticipated slope, or internal, like model mismatch due to the
adoption of simplifying assumptions in the dynamics. MPC can withstand moderate
disturbances thanks to its constant replanning, but stronger perturbations might
require appropriate handling, especially for the case of persistent disturbances, i.e.,
continuously applied to the robot. Examples of these are found when the robot is
carrying a heavy object, or when it is walking on a slope.

The presence of disturbances on a MPC-controlled system can entail constraint
violations, and possibly lead to instability. If a bound on the disturbance is available,
a solution is to restrict the constraints using a robust positive invariant set [62, 32,
63, 64]. In order for this set to exist, the system needs to be stabilized.

Since, as it was shown in Sect. 5.6.3 the stability constraint already takes care of
stabilizing the system, we wish to provide some guarantee of robustness without the
need of an additional stabilization layer. The first technique described in this chapter
is aimed at this, as it will employ constraint restriction on the unstable perturbed
system directly and establish conditions which preserve recursive feasibility and
stability of the IS-MPC scheme when a disturbance is present. Here, some bounds
on the disturbance signal will be assumed known.

The second part of the chapter (Sect. 7.5) will discuss the inclusion of an observer
in the scheme, which will provide an estimate of the disturbance based on available
measures. This results in a less conservative approach against large disturbances.
An explicit proof of feasibility and stability is not given for this case, although
an analysis of the complete system including the observer would be an interesting
development for future work.

7.1 Disturbance model
This section will discuss the characteristics of the disturbances that are taken into
account in the rest of the chapter, as well as assumptions on them.

The disturbance w is assumed bounded for obvious physical reasons. An increase
in the robustness is possible when, besides the knowledge of the bounds, additional
information is known. Consider disturbances w(t) defined as

w(t) = wkm + ∆w(t) for t ∈ [tk, tk+1] (7.1)

62 7. Robust IS-MPC

¢max

w(t)

t

tk+3

wkm wk+1
m

wk+2
m

tk+2tk+1tk

Figure 7.1. A typical disturbance w(t) considered.

where |∆w(t)| ≤ ∆max and wkm satisfies the additional requirement

|wk+1
m − wkm| ≤ ∆max. (7.2)

The value wkm is defined as the mid range disturbance in [tk, tk+1). We assume to
know the maximum and minimum disturbance value, and thus wkm, in each interval
and make the simplifying assumption that the range amplitude ∆max is always the
same. This can be always obtained in a conservative way by taking ∆max as the
maximum range amplitude.

A possible plot of w(t) is shown in Fig. 7.1. This model can represent the
apparent force on the CoM derived from the pushing of an object, say a cart. Such
force will not be constant, but it could be kept bounded by an arm compliance
controller as in [65].

A common special case arises when wim = wm for all ti, i.e., we have the same mid
range value for every time interval. This situation could represent the disturbance on
a humanoid walking on a not perfectly known slope. The disturbance will be in fact
composed by the constant push/pull plus the unmodeled dynamics (e.g. variable
CoM height).

If furthermore wm = 0 and wmin = −wmax the disturbance could represent the
unmodeled dynamics during a regular gait [35].

7.2 Indirect disturbance compensation
To guarantee boundedness of the CoM with respect to the ZMP in the perturbed
case, we employ the stability condition for the perturbed model (4.17) which requires
the future knowledge of w. Therefore, in order to provide a causal implementation
of (4.17) we should use only the available knowledge of the disturbance at time tk.
The simplest case here considered assumes that the disturbance remains constant,
for t ∈ [tk,∞), at the value wkm in tk, and thus we ignore any further available
information on values of the future mid range disturbance. The expression of the
stability constraint becomes

xku =η

∫ tk+C

tk

e−η(τ−tk)xz(τ)dτ + η

∫ ∞
tk+C

e−ω(τ−tk)x̃z(τ)dτ − wkm
η2 (7.3)

7.2 Indirect disturbance compensation 63

CoM

xc

x

Fext

xz

¢d

z

Figure 7.2. Balancing in the presence of a known constant force acting on the CoM:
IS-MPC with disturbance compensation produces a steady-state displacement between
the ZMP and the COM that can be interpreted as the humanoid “leaning against" the
force. This displacement is exactly equal to the disturbance-related term in the stability
constraint.

Including the known part wkm of the disturbance in the stability constraint leads
to a robust IS-MPC scheme where the control inputs (the ZMP velocities within
the control horizon) are directly modified by the known profile of the disturbance,
realizing a form of indirect disturbance compensation.

To appreciate the effect of the compensation, consider the special case in which
the humanoid must balance (i.e., footsteps are fixed) in the presence of a constant
disturbance w̄ = F̄ext/m, arising from a constant force F̄ext pushing on the CoM,
with m the total mass of the robot. Under the action of IS-MPC with disturbance
compensation, the robot converges to a steady state where — consistently with
eq. (3.13) — the displacement of the ZMP with respect to the COM is

xz − xc = F̄ext
mη2 .

This can be interpreted as the humanoid “leaning against” the force in order to
counteract it (see Fig.7.2).

The prediction model (5.4) is modified to include the disturbance wkm asẋcẍc
ẋz

=

 0 1 0
η2 0 −η2

0 0 0


xcẋc
xz

+

0
0
1

 ẋz+

0
1
0

wkm (7.4)

and is used to propagate at time tk+1 the effect of the first sample ẋkz of the QP
solution.

64 7. Robust IS-MPC

7.3 ZMP Constraint restriction
The main tool introduced to guarantee robustness with respect to bounded distur-
bances is the restriction of the ZMP constraint. Intuitively, if the ZMP is subject to a
tighter constraint we create a safety margin against perturbations and uncertainties.

We first define a restriction function R(t) as a non-decreasing function1, defined
in [0, Tc] s.t.

|R(t)| ≤ d/2 for t ∈ [0, Tc] (7.5)

where d is the extension of the ZMP constraint in the x-coordinate. The simplest
form of restriction function is the linear expression

R(t) = r t for t ∈ [0, Tc] (7.6)

where the slope r is a design parameter to be determined in order to formally
guarantee robustness in the presence of bounded disturbances. With this choice, the
design parameter r needs to be

r ≤ d

2Tc
(7.7)

in order to guarantee (7.5).
The resulting restricted ZMP constraint that will be enforced in the QP at time

tk is then expressed as

xmz (t) +R(t− tk) ≤ xz(t) ≤ xMz (t)−R(t− tk) (7.8)

with t ∈ [tk, tk+C]. Figure 7.3 shows how the restriction function affects the ZMP
constraint over time.

7.4 Robustness against bounded disturbances
The feasibility region discussed in Sect. 5.6.1 is modified by the new stability
constraint (7.3) and the restricted ZMP constraint (7.8). The modified region is

xk,mu +
∫ tk+C

tk

e−η(τ−tk)R(τ − tk)dτ −
wkm
η2 ≤ x

k
u ≤

xk,Mu −
∫ tk+C

tk

e−η(τ−tk)R(τ − tk)dτ −
wkm
η2 .

(7.9)

The following result shows how robust recursive feasibility can be achieved by
properly choosing the slope r of the linear restriction function (7.6).

Proposition 7 Consider the robust IS-MPC in the case of pre-assigned footsteps
with anticipative tail. Let w(t) be a disturbance of the form (7.1) acting on the system.
Then the robust IS-MPC is recursively feasible if the following linear restriction
function is adopted

R(t− tk) = r (t− tk) t ∈ [tk, tk+C] (7.10)
1This choice is instrumental for simplifying our proof but is not strictly necessary.

7.4 Robustness against bounded disturbances 65

tk tk+1

tk tk+1
t

t

R(t-tk)
R(t-tk+1)

xm(t)z

xM(t)z

xM(t) - R(t-tk+1)z

xM(t) - R(t-tk)z

tk+C tk+C+1

d

d/2

Figure 7.3. Use of the linear restriction function R(t−tk) = r(t−tk) in the ZMP constraint.

with r subject to (7.7) and

1
δ(1− e−ηTc)

(
∆maxeηδ

η2 + T max
)
≤ r. (7.11)

T max is the upper bound of the tail error, defined in (5.45).

Proof. The complete proof goes through a set of upper and lower inequalities for
the sagittal motion (similarly for the coronal y motion). The lower inequality are
omitted for compactness.

We start by assuming that the stability constraint (7.3) and restricted ZMP
constraint (7.8) are satisfied in tk. The first step is to derive a bound on xk+1

u .
Integrating (3.14) gives

xk+1
u = eηδxku − η

∫ tk+1

tk

eη(tk+1−τ)xz(τ)dτ + 1
η

∫ tk+1

tk

eη(tk+1−τ)w(τ)dτ. (7.12)

Plugging (7.3) into (7.12), and recalling that the restricted ZMP constraint (7.8) is
satisfied, we can bound xk+1

u as

xk+1
u ≤η

∫ tk+C

tk+1
e−η(τ−tk+1)(xMz −R(τ − tk))dτ+

η

∫ ∞
tk+C

e−η(τ−tk+1)x̃z(τ)dτ + 1
η

∫ tk+1

tk

eη(tk+1−τ)w(τ)dτ − wkme
ηδ

η2 .

(7.13)

We want to check if xu is in the feasibility region (5.30) at time tk+1, i.e.

xk+1
u ≤ η

∫ tk+C+1

tk+1
e−η(τ−tk+1)(xMz −R(τ−tk+1))dτ+η

∫ ∞
tk+C+1

e−η(τ−tk+1)x̃′z(τ)dτ−w
k+1
m

η2

(7.14)

66 7. Robust IS-MPC

where x̃′z(τ) is the tail at tk+1.
By comparing the right-hand side of (7.13) and (7.14) we can obtain conditions

for which (7.14) is always satisfied. Rearranging leads to

η

∫ tk+C

tk+1
e−η(τ−tk+1)(R(τ − tk)−R(τ − tk+1))dτ+

η

∫ tk+C+1

tk+C

e−η(τ−tk+1)(xMz −R(τ − tk+1)− x̃z(τ))dτ+

η

∫ ∞
tk+C+1

e−η(τ−tk+1)(x̃′z(τ)− x̃z(τ))dτ (7.15)

− wk+1 − wk

η2 − 1
η

∫ tk+1

tk

eη(tk+1−τ)(w(τ)− wk)dτ ≥ 0.

We choose to neglect the second integral as it is always positive and much smaller
than the other terms. This leads to a slightly conservative result, but considerably
simplifies the computation. We rename the other terms as

R ≥ T +W (7.16)

where

R =η
∫ tk+C

tk+1
e−η(τ−tk+1)(R(τ − tk)−R(τ − tk+1))dτ

T =η
∫ ∞
tk+C+1

e−η(τ−tk+1)(x̃z(τ)− x̃′z(τ))dτ

W =wk+1 − wk

η2 + 1
η

∫ tk+1

tk

eη(tk+1−τ)(w(τ)− wk)dτ (7.17)

For the considered linear restriction R(t− tk) = r(t− tk) the term R becomes

R = rδ(1− e−ηTc). (7.18)

T is the tail error, due to imperfect conjecture on the velocity tail. As showed in
Sect. 5.6.2 it can be bounded as

T ≤ e−ηTp
1− e−ηδ

η
vmax
z = T max (7.19)

where vmax
z is the maximum velocity of the ZMP in the tail.

W depends on the disturbance and can be bounded using assumptions (7.2) and
|∆w(t)| ≤ ∆max.

W ≤ ∆maxeηδ

η2 . (7.20)

By plugging these bounds into (7.16), the result follows.

For the special case wim = wm for all ti the previous proposition leads to a less
conservative result.

7.4 Robustness against bounded disturbances 67

Corollary 1 Consider the robust IS-MPC in the case of pre-assigned footsteps with
anticipative tail. Let the disturbance w(t) acting on the system be of the form (7.1)
with wim = wm for all ti. Then the robust IS-MPC is recursively feasible if the slope
r of the linear restriction function (7.10) satisfying (7.7) is s.t.

1
δ(1− e−ηTc)

(
∆max(eηδ − 1)

η2 + T max
)
≤ r (7.21)

where T max is the upper bound of the tail error, defined in (5.45).

Proof of Corollary 1. Repeating the proof of Proposition 7 but setting wk+1
m =

wkm = wm in (7.17) results in

W ≤ 1
η

∫ tk+1

tk

eη(tk+1−τ)∆w(τ)dτ ≤ ∆maxeηδ

η2 (eηδ − 1) (7.22)

which proves the inequality.

A few remarks are in order.

• Restriction (7.21) is less conservative than (7.11) because, when wkm = wm, we
are using all the available information in the stability constraint.

• Since (7.7) must hold, there is a maximum disturbance amplitude ∆max which
is tolerated in order to maintain feasibility of the MPC algorithm. This value
is obtained by equating the left side of (7.11) (or (7.21)) to d/2Tc.

• If the whole footstep history is assigned, or equivalently if Tp = ∞, the tail
error is zero since we can choose x̃z = x̃′z for all t ≥ tk+C+1 (see proof of
Proposition 5 or 7). Therefore T max is also equal to zero.

• Note that, increasing the control horizon Tc, makes the lower bound on r
smaller but also limits the maximum attainable slope. This is due to the
particular linear choice of the restriction function R(t). Other choices as
linear/saturated or exponential are possible.

In (7.11) we can distinguish the effect on recursive feasibility of two sources
of errors in the stability constraint: the presence of an unknown but bounded
disturbance and the difference between the conjectured ZMP and its true unknown
future history (tail error).

We can summarize the proposed idea by saying that the stability constraint
indirectly compensates for most of the known part of the disturbance while the ZMP
restriction takes care of the uncertain part in a preventive way based on the known
bound.

We finally claim that having guaranteed robust recursive feasibility we also have
robust internal stability, i.e., the boundedness of the CoM trajectory with respect
to the ZMP trajectory. Due to the physical assumption of bounded disturbances
and since we have designed the restriction function to be linear, we are in the same
hypothesis of Sect. 5.6.3.

68 7. Robust IS-MPC

7.5 Observer-based IS-MPC
The results given in the previous section provide guarantees for bounded disturbances,
by assuming that the minimum and maximum value of the disturbance are known
at each time step. This is equivalent to having information on the mid-range
disturbance, and a bound on the oscillation of the actual disturbance around the
mid-range. A natural development consists in removing some assumptions on the
disturbance and directly estimating it. The estimated term can then be used in the
modified stability constraint (7.3).

The estimate can be provided by a disturbance observer employing information
from the available measures. In the following we assume that the coordinates of
the CoM and the ZMP, respectively xc and xz, are measured (details on how these
measures can be obtained will be discussed in Sect. 7.6 when presenting the dynamic
simulations). Since w is piecewise-linear, we can adopt the following disturbance
model (exosystem):

ẅ = 0,

and use it to extend the perturbed model (7.4), obtaining a system with state
x = (xc, ẋc, xz, w, ẇ) and characterized by the following matrices

A =


0 1 0 0 0
η2 0 −η2 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 B =


0
0
1
0
0


C =

(
1 0 0 0 0
0 0 1 0 0

)
.

(7.23)

Since the system is easily found to be observable, we can build an asymptotic
observer

˙̂x = Ax̂+Bu+G(Cx̂− y) (7.24)

where x̂ is the observer state and y are the available measurements. The gain
matrix G can be computed by simple pole placement. This observer is guaranteed
to reconstruct asymptotically any piecewise-linear disturbance signal.

To perform IS-MPC with disturbance compensation in the general case when
w is unknown, the estimate ŵ provided by the asymptotic observer (7.24) can be
used in the stability constraint (7.3). The next section will show some simulations
with persistent disturbances, and show that observer-based IS-MPC can provide
compensation for constant, as well as for slowly-varying signals.

7.6 Simulations
This section will present a few dynamic simulations obtained in DART (Dynamic
Animation Robotics Toolkit). Simulation are performed on the NAO robot, with
the CoM height z̄c = 0.33 m, and a square ZMP constraint d = 0.05 m. The gait
parameters for the single and double support phases are 0.3 s and 0.2 s, respectively;
the MPC uses a sampling time δ = 0.05 s, although it is recomputed every 0.01 s

7.6 Simulations 69

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

x [m]

-0.1

-0.05

0

0.05

0.1

y
[m

]

CoM
ZMP

Figure 7.4. NAO walking on flat ground with a constant lateral push from t = 2.5 s (top),
CoM and ZMP trajectories during the push (bottom).

which is the sampling time of the kinematic controller. The control horizon is
Tc = 1 s and the preview horizon is Tp = 2 s.

It is important to notice that, since we are testing our controller in a dynamic
simulator, the humanoids unmodeled dynamics represent another source of persistent
disturbance that has been ignored. The resulting stable gait in dynamic simulation
proves the further degree of robustness achieved by IS-MPC.

In the first simulation the robot walks over flat ground and a constant push
of 3.2 N is applied along the positive y axis corresponding to a disturbance w =
0.71 m/s2. The push is applied continuously from t = 2.5 s on. In this case we
have directly derived the value of wkm using a ZMP-based disturbance measure [66],
while we assumed a limited variation range of ∆max = 0.08 m/s2. The value of
r = 0.071 m/s is given by Proposition 7.

In Fig. 7.4 it is possible to notice that the robot CoM and ZMP trajectories are
skewed towards the positive values of the y-axis. This is due to an underestimate of
the wm. The robot is however able to walk without falling, whereas if the constraint
restriction is not applied the MPC becomes infeasible, resulting in a failure.

In the second simulation the robot is walking on a descending ramp with an
assumed slope in the range 1◦ ÷ 2.6◦ (the real value is 2.3◦). The slope generates
a disturbance on the robot CoM along the sagittal axis because the gravity force
is not completely compensated by the ground reaction. Considering the maximal
and minimal disturbance wmin = g sin(1◦) = 0.17 m/s2 and wmax = g sin(2.6◦) =
0.45 m/s2 leads to wm = 0.31 m/s2 and ∆max = 0.14 m/s2. From Corollary 1, a
constraint restriction with r = 0.074 m/s, is able to guarantee a stable gait that
is robust against the disturbance during locomotion, as shown in Fig. 7.5. Also in
this case, the MPC fails without constraint restriction. Note that, in this simulation

70 7. Robust IS-MPC

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

x [m]

-0.1

-0.05

0

0.05

0.1

y
[m

]

CoM
ZMP

Figure 7.5. NAO walking on a ramp with imperfectly known slope. Simulation snapshots
(top), CoM-ZMP trajectories (bottom).

we designed the swing foot trajectory to be compatible with the inclined ground
using the true slope value. This is a slight simplification, which might be removed
by designing a robust swing foot trajectory.

Note that Fig. 7.4 and 7.5 show the unrestricted ZMP constraints as the restriction
is only applied in the prediction. The actual ZMP is allowed to use the full
unrestricted area.

In the third dynamic simulation, a constant external force of 3.8 N along the
sagittal axis is applied to the CoM, and it is estimated using the observer described
in Sect. 7.5, and no ZMP constraint restriction is employed. As shown in Fig. 7.6,
the robot falls when nominal IS-MPC is used, whereas observer-based IS-MPC allows
to counteract the disturbance successfully, producing the expected effect of leaning
against the force (see Sect. 3.3). An interesting aspect of this simulation, clearly
shown in the bottom plot, is that the observer does not estimate only the constant
force, as it also reacts to dynamic effects that are not modeled in the LIP.

In the fourth simulation, a force Fext = 2+3.8 sin 0.45πt N, which includes a
sinusoidal component, acts on both x and y. The disturbance is estimated by the
observer, without using ZMP constraint restriction. Figure 7.7 shows a comparison
between the CoM trajectories generated by nominal vs. observer-based IS-MPC.
Once again, the first fails while the second is able to maintain balance while walking.

The fifth simulation also uses the observer with no ZMP constraint restriction.
Here the disturbance is not directly applied to the CoM. A 0.2 kg pendulum is
attached to the humanoid arm (this could represent, e.g., an oscillating shopping bag),
as in Fig. 7.8. Thanks to the use of observer-based IS-MPC, the robot successfully
counteracts the disturbance.

7.6 Simulations 71

1 2 3 4 5 6 7 8 9 10

Time [s]

-2

0

2

4

6

8

10

F
or

ce
 [N

]

observed disturbance (x component)
actual force

Figure 7.6. NAO dynamic simulation in the presence of an unknown constant force acting
on the CoM. With IS-MPC, the robot is unable to maintain balance (top left). With
observer-based IS-MPC, the robot successfully counteracts the disturbance (top right).
Also shown is the observed force against the actual force (bottom).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x [m]

-0.05

0

0.05

y
[m

]

CoM (nominal IS-MPC)
CoM (observer-based IS-MPC)

Figure 7.7. NAO dynamic simulation in the presence of a slowly-varying force acting on
the CoM. With nominal IS-MPC, the robot is unable to maintain balance, whereas with
observer-based IS-MPC a stable gait is achieved.

72 7. Robust IS-MPC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

x [m]

-0.1

-0.05

0

0.05

0.1

y
[m

]

CoM
ZMP

2 3 4 5 6 7 8 9

Time [s]

-6

-4

-2

0

2

4

F
or

ce
 [N

]

observed disturbance (x component)
observed disturbance (y component)

Figure 7.8. NAO dynamic simulation in the presence of a pendulum attached to the
arm. Using observer-based IS-MPC, a stable gait is achieved (top). Also shown are the
observed disturbances along the two axes (bottom).

73

Chapter 8

IS-MPC on uneven ground

In principle, one of the advantages of humanoids is the possibility of moving through
complex environments. These might include stairs and surfaces at different levels, or
cluttered environments for which it might be necessary to step over or onto obstacles.
However, while there are a large number of locomotion techniques for flat ground,
walking on uneven surfaces poses additional challenges which make it largely an
open field of research.

In the basic version of IS-MPC presented in Ch. 5, as well in the extension of
Ch. 6, the ground was assumed to be flat. The main reason for this assumption
is that it allows the use of the LIP model, which requires a constant CoM height
(see Sect. 3.2). The robust version of Ch. 7 is able to tolerate some unevenness, but
in practice moving on uneven ground requires generating vertical CoM trajectories
using a suitable 3D model of the dynamics.

In this chapter we wish to extend the basic scheme to the case where the
environment is a world of stairs, i.e., the ground is constituted by horizontal patches
at different heights. We will employ the 3D extension of the LIP, which was discussed
in Sect. 3.4.

There will be two main difference with the basic IS-MPC scheme: the footstep
generator and the ZMP constraint. The footstep generator of Sect. 5.1.2 was based
on convex optimization, which cannot be used on uneven ground, as most constraint
become nonlinear. As an example, consider a simple staircase: the foot has to be
placed inside any of the steps, but not in between two different steps, in order for the
foot to not overhang. This makes the constraint on the footstep position non-convex.
The planner of choice will be based on random exploration, and will build a tree of
feasible footstep positions in the scene in order to find the path to a given goal.

The ZMP constraint needs to be modified according to the new balance condition
(see Sect. 3.4), which requires the 3D version of the ZMP to remain inside a convex
polyhedron, whose base is determined by the contact points, and whose vertex is the
CoM. This constraint is nonlinear, but if the height difference between consecutive
steps is small enough it can be well approximated as a linear constraint.

74 8. IS-MPC on uneven ground

Algorithm 1: Footstep Planner
1 root the tree T at vini ← (fL,fR);
2 i← 0;
3 repeat
4 i← i+ 1;
5 generate a random point prand on the ground;
6 select the closest vertex vnear in T to prand according to γ(·,prand);
7 randomly select from the primitive catalogue U a candidate footstep f cand;
8 if f cand is feasible w.r.t. R1–R2 then
9 h← hmin;

10 pcand
swg ← BuildTrajectory(fnear

swg ,f
cand, h);

11 while h ≤ hmax and Collision(pcand
swg) do

12 h← h+ ∆h;
13 pcand

swg ← BuildTrajectory(fnear
swg ,f

cand, h);
14 end
15 if h ≤ hmax then
16 vnew ← (f cand,fnear

sup);
17 add vertex vnew to T as a child of vnear;
18 compute midpoint m between the feet at vnew;
19 end
20 end
21 until m ∈ G or i = imax;

8.1 Footstep planning with random exploration tree

A humanoid robot is assigned a walk-to locomotion task to a desired goal region
G. The environment is a world of stairs, i.e., the ground is uneven and composed
of horizontal patches located at different heights. Depending on its elevation with
respect to the neighboring areas, a patch may be accessible for the humanoid to
climb on from an appropriate direction, or else represent an obstacle to be avoided.
Some low-height patches may be shaped in such a way that the humanoid may
decide to go over (rather then stepping on) them.

A natural choice for representing the considered kind of ground is a 2.5D grid
map of equally-sized cells, also called elevation map [67]. This will be denoted as
Mz, and assumed known in advance so that whenever needed it can be queried as
z = Mz(x, y), to provide the height of the ground at the cell having coordinates
(x, y).

The planner is in charge of finding a sequence of footsteps {f j} leading to
the desired location G, together with the associated swing foot trajectories {pjswg}
between consecutive footsteps. Here, f j = (xjf , y

j
f , z

j
f , θ

j
f)T is the pose of the j-th

footstep, with xjf , y
j
f , and z

j
f representing its position and θjf its orientation.

The footstep sequence needs to be feasible, i.e., each element {f j} and {pjswg}
must satisfy the following requirements:

R1 The height variation w.r.t. the previous footstep is within a maximum range,
i.e., |zjf − z

j−1
f | ≤ ∆zmax.

8.1 Footstep planning with random exploration tree 75

R2 The footstep is fully in contact within a single horizontal patch, i.e., each cell
ofMz belonging to the footprint has the same height zjf .

R3 Apart from the ground contact at the start and at the end, the swing foot
trajectory pjswg is collision-free.

Note that there is no requirement on the distance between consecutive footsteps,
as this would be automatically satisfied as each new footstep is generated using a
primitive catalogue U (see Fig. 8.1). Elements in the catalogue are chosen so as to
be kinematically acceptable for the robot in use.

A pseudocode of the footstep planner is given in Algorithm 1. The idea is
to iteratively build a tree T in the search space, where a vertex v = (f sup,f swg)
specifies the poses f sup and f swg of the two feet during a double support phase. In
all steps originating from v, the support foot will remain at f sup while the swinging
foot will move from f swg. An edge exists between two vertices when there exists a
collision-free trajectory of the swing foot connecting the two.

The algorithm starts by rooting T at vini = (fL,fR), where fL and fR are
the foot poses at the starting configuration. The initial support foot can be chosen
arbitrarily.

The generic iteration of the algorithm begins by selecting a sample point prand
on the ground. We allow the planner to randomly choose between exploration and
exploitation, to bias the growth of the tree towards, respectively, unexplored regions
and the goal. In the first case, prand is generated by randomly choosing its x, y
coordinates and retrieving the corresponding z coordinate fromMz. In the second
case, prand is sampled from the goal region G.

Then, the vertex vnear of T that is closest to prand is selected for an expansion
attempt. The following metric is used for evaluating the distance between a certain
vertex v and a point p ∈ IR3:

γ(v,p) = d(m,p) + α|θp|.

Here, d(m,p) is the Euclidean distance of the midpoint m between the feet (at the
poses f sup and f swg specified in v) from p; θp is the angle between the robot sagittal
axis (defined as the axis passing through m with orientation equal to the average of
the orientations of the two footsteps) and the line joining m to p; α is a positive
scalar.

Once vnear has been identified, the foot poses fnear
sup and fnear

swg are extracted from
it. A candidate footstep f cand is generated by randomly selecting a final pose of the
swinging foot from the catalogue U of primitives, which is defined with respect to
fnear

sup (see Fig. 8.1). The z coordinate of f cand is retrieved from the elevation map
Mz.

At this point, the candidate footstep is checked for feasibility with respect to
requirements R1–R2. If the outcome is positive, the algorithm verifies whether a
collision-free trajectory pcand

swg exists that brings the swinging foot from fnear
swg to f cand

(requirement R3). This is done by using a parametrized trajectory which, once the
endpoints are selected, can be deformed1 by changing the maximum height h along

1As a deformable trajectory we used a polynomial, but other choices (e.g., B-splines and Bezier
curves) are also possible.

76 8. IS-MPC on uneven ground

catalogue

U

f
near
sup

Figure 8.1. The catalogue U of primitives specifies the possible planar poses (in blue) of
the candidate footstep f cand with respect to the pose fnear

sup of the current support foot
(in green). Here we have considered the case of a swinging right foot; the catalogue
for a swinging left foot is specular. Once a primitive is chosen, the z coordinate of the
candidate footstep will be retrieved from the elevation mapMz.

the trajectory. Starting from a lower bound hmin, the algorithm iteratively checks
increasing values for h up to an upper bound hmax. If a collision-free trajectory
is found, a new vertex vnew = (f cand,fnear

sup) is added to the tree, connected to its
parent vnear by pcand

swg . Note that in vnew the roles of the feet have been swapped:
in future steps originating from vnew, the support foot will stay at f cand while the
swinging foot will move from fnear

sup .
Planning terminates when vnew completes the walk-to task (i.e., the corresponding

midpoint m belongs to G) or a maximum number of iterations has been reached. In
the first case, the path joining the root to vnew is extracted from the tree, and the
footstep sequence {f j} is reconstructed with the associated swing foot trajectories
{pjswg}.

8.2 IS-MPC on uneven ground

This section will describe the constraints that are used in IS-MPC for uneven ground.
These includes the 3D ZMP constraint (which in its general form is nonlinear) and
its linear approximation, and the 3D stability constraint, which is derived from the
model in Sect. 3.4. There is no constraint on the footstep positions in the IS-MPC
stage, as in the 3D case we assume the planned footsteps to be non-modifiable. The
modified cost function will be discussed at the end of the section.

3D ZMP constraint

As discussed in Sect. 3.4, in the 3D case the ZMP is allowed to leave the ground
in order to generate vertical CoM motions, and correspondingly żk+i

z becomes a
control variable. As illustrated in Fig. 8.2 (left), the balance condition now requires
the ZMP to remain inside the polyhedral cone defined by the support polygon and
the CoM. However, when the ZMP is allowed to move vertically the cone defines a

8.2 IS-MPC on uneven ground 77

CoP

ZMP

CoMCoMz y

x

Figure 8.2. Left: the balance condition in the 3D case is satisfied if the ZMP is inside the
green polyhedral cone. Right: side view of the polyhedral cone (green) representing the
actual ZMP constraint and the box (red) used for defining approximate linear constraint.
Here, the CoM is at its maximum allowed displacement ∆xc with respect to the center
of the support foot.

nonlinear constraint. In order to remove this nonlinearity, a box constraint is used
instead (see Fig. 8.2):

−1
2


d̃x,z

d̃y,z

dz,z

 ≤ RTk+i


xk+i
z − xk+i

f

yk+i
z − yk+i

f

zk+i
z − zk+i

f

 ≤ 1
2


d̃x,z

d̃y,z

dz,z

 , (8.1)

where dz,z is a design parameter that defines the maximum allowed vertical ZMP
displacement w.r.t. the horizontal patch. To guarantee that the box is contained in
the cone, its x and y dimensions are reduced to d̃x,z and d̃y,z. Suitable values for
these parameters are

d̃x,z = dx,z

(
1− dz,z

2zmin
c

)
− dz,z
zmin
c

∆xc,

where ∆xc is the maximum expected displacement of the CoM with respect to the
center of the support foot and zmin

c is the minimum expected value for the CoM
height. An analogous formula can be written for d̃y,z.

Similarly to the 2D case, the box constraint is kept fixed during single support.
During double support, the box slides linearly from its position around the previous
support foot to its position around the next support foot (see the corresponding 2D
case in Sect. 5.12), thus always remaining within the polyhedral cone which defines
the ZMP balance constraint for this situation (see Fig. 8.3).

3D stability constraint

The stability constraint along x and y is unchanged from the basic case presented in
Sect. 5.4, and whichever tail is most appropriate for the situation can be used. The
z equation requires its own stability constraint, which assumes a form very similar

78 8. IS-MPC on uneven ground

CoM

x

z

Figure 8.3. During double support, the box constraint slides from the previous to the next
support foot.

to the other two, but with an additional term
C−1∑
i=0

e−iηδ żk+i
z = −

∞∑
i=C

e−iηδ żk+i
z + η

1− e−ηδ
(
zku − zkz −

g

η2

)
. (8.2)

Here too, any of the tails discussed in Sect. 5.4 could be used to approximate the
contribution beyond the control horizon. Clearly, the anticipative tail will be the
preferred choice for feasibility reasons. In the paper where this 3D formulation was
first proposed [7], we argued however that the periodic tail is not a good choice here,
because the vertical motion of the CoM, unlike the horizontal components, cannot
be expected to exhibit a cyclic behavior.

QP problem

The QP problem is modified to include the 3D version of the constraints, as well as
a modified cost function.

min
Ẋk

z ,Ẏ
k

z ,Ż
k
z

N−1∑
i=0

(
(ẋk+i
z)2 + (ẏk+i

z)2 + (żk+i
z)2 + β(zk+i

z − zk+i
f)2)

subject to:
• ZMP constraints (8.1)

• stability constraints for x, y and z (5.18) and (8.2)

Here the IS-MPC stage does not perform any kind of footstep adaptation, as it
only employs the planned footsteps as for the case of the basic scheme of Ch. 5. The

8.3 Simulations 79

Figure 8.4. The footstep plans for both simulations.

cost function thus only contains the decision variables (ZMP derivatives) as well as
a term which is charge of bringing the vertical component of the ZMP at ground
level, whenever this is possible.

8.3 Simulations
This section shows two simulations which utilize the footstep planner of Sect. 8.1
along with the 3D gait generation scheme of Sect. The simulations are shown in
Fig. 8.4 and 8.5. The environment is assumed known and the robot has to reach
a circular goal region of radius 0.5 m. The robot is HRP-4 and the simulations
environment is V-REP.

The parameter settings are the same for both these simulations. In the footstep
planning module we have set α = 1, ∆zmax = 0.08 m, hmin = 0.02, hmax = 0.12 and
∆h = 0.02. For the gait generation module, we used ω = 3.6 s−1, the step duration
is Ts = 0.8 s of which 0.5 s of single support and 0.3 s of double support, the size of
the constraints is d̃x,z = d̃y,z = 0.08 m and dz,z = 0.03 m. Finally, the elevation map
Mz has a resolution of 0.02 m.

In the first scenario, the robot and the goal are placed at opposite sides of the
environment. The goal can be reached by walking a mostly straight path, but
footsteps need to be placed appropriately to satisfy all the requirements. Figure 8.5
(top) shows one of the solutions found, with the underlying footstep sequence in
Fig. 8.4 (top). The robot starts walking forward and reaches the proximity of the
bar obstacle, which does not provide a large enough surface to step on. Then, the
robot goes over it by taking a longer step, with a swing foot trajectory sufficiently
high to avoid collisions. After that, the staircase is ascended and descended. Finally,
the robot avoids the black box and reaches the goal region.

The second scenario is traversed by a ditch which can only be entered from the
left and exited from the right, because the platform in the middle of it is too low to
be accessed directly. One solution is shown in Fig. 8.5 (bottom), with the underlying
footstep sequence in Fig. 8.4 (bottom). The robot moves appropriately among the
different levels, first going down in the ditch and then up towards the goal.

80 8. IS-MPC on uneven ground

Figure 8.5. Execution of the plans for both simulations.

81

Chapter 9

IS-MPC on a multi-mass model

In Sect. 3.5 we introduced a multi-mass model, with particular reference to the case
in which the masses are two. They are labeled primary mass, which accounts for
the contribution of the main body of the robot to the total ZMP of the system, and
secondary mass, which accounts for the contribution of the swinging leg. As already
stated, this model gives a more accurate representation of the humanoid robot
dynamics than the LIP because it models, at least approximately, the contribution
from the rate of change of angular momentum around the CoM, which is normally
neglected (see Assumption 2).

In this chapter we describe a variation of the basic IS-MPC scheme which uses
the two-mass model in place of the LIP. This will require correctly reformulating
the constraints, as well as the automatic footstep placement mechanism (see Ch. 6).
The modified scheme will be discussed, starting from the prediction model, the
constraints and cost function, as well as the parametrized foot trajectory which is
used to compute the ZMP contribution of the secondary mass. Some comparative
simulations with the basic scheme will be given in the last section of the chapter.

9.1 Foot trajectory and automatic footstep placement

To compute the contribution of the secondary mass it is necessary to specify its
trajectory. Since it models the swinging leg contribution, we assume the trajectory
to be that of the swinging foot. There are multiple possibilities for the swinging foot

0 0.05 0.1 0.15 0.2 0.25 0.3

t[s]

0

0.5

1

p(
t)

0 0.05 0.1 0.15 0.2 0.25 0.3

t[s]

0

0.02

0.04

z(
t)

[m
]

Figure 9.1. The trajectory of the swing foot used in the 2-mass model MPC. p(t) denotes
the polynomial shape, the actual trajectory is defined by the starting and ending position
of the foot.

82 9. IS-MPC on a multi-mass model

trajectory, and we choose to use polynomial expressions. In particular, we adopt a
fifth degree polynomial p(t) for the x and y components of the trajectory (the shape
of p(t) is shown in Fig 9.1). The swing foot trajectory along x (equivalently along y)
is thus expressed parametrically in the footstep positions

xm = xj−2
f + (xjf − x

j−2
f)p(t) (9.1)

The z component of the swing foot trajectory is a second degree polynomial (i.e., a
parabola)

zm(t) = −4zmax
m

t2ss
t(t− tss). (9.2)

The total ZMP xz,tot is computed from (3.32), using the above trajectory (9.1) and
(9.2)

xz,m = xjf

(
1− p+ zm

g + z̈m
p̈

)
+ xj−2

f

(
p− zm

g + z̈m
p̈

)
(9.3)

If the footstep sequence is fixed, this can be computed before the MPC stage
as it does not depend on any MPC decision variable. If we incorporate automatic
footstep placement (see 6), and make the predicted position of the footsteps a
decision variable of the MPC, this is included as part of the prediction model, as it
is linear in the footstep positions.

9.2 Multi-mass IS-MPC scheme

This section will discuss the prediction model, constraints, and QP problem employed
in IS-MPC for the multi-mass case.

In Sect. 3.5 we showed how the two mass model can be represented as an
equivalent LIP (3.5). The variables xz,M and xz,m, defined in Sect. 3.5, can be
interpreted as the contribution to the ZMP given by each individual mass, with the
total ZMP given by a weighted average of the two. If the position of the footsteps is
fixed, the ZMP contribution of the secondary mass can be computed, and the ZMP
contribution of the primary mass is our degree of freedom. As usual, we extend the
system to include the derivative of the ZMP as the input, which makes ẋz,m the
decision variable in this formulation. ẋM

ẍM
ẋz,M

 =

 0 1 0
ω2
M 0 −ω2

M

0 0 0


 xM
ẋM
xz,M

+

0
0
1

 ẋz,M , (9.4)

where, as for the basic scheme, the input is assumed constant over time-steps δ,
giving a piecewise linear ZMP for the primary mass.

xz,M (t) = xiz,M + (t− ti)ẋiz,M , t ∈ [ti; ti+1). (9.5)

In the following, the constraints will be discussed. The kinematic constraint is
identical to the original (5.3), so it will not be discussed further.

9.3 Simulations 83

ZMP constraint for multi-mass IS-MPC

The balance condition for the two-mass model requires that the total ZMP of the
two-mass systems must be at all times in the support polygon of the robot.

−1
2

(
dx,z
dy,z

)
≤ R

(
θj
)T (xk+i

z,tot − x
j
f

yk+i
z,tot − y

j
f

)
≤ 1

2

(
dx,z
dy,z

)
(9.6)

where xk+i
z,tot is the predicted total ZMP at the i-th predicted time-step, and it is

computed using the prediction model.

Stability constraint for multi-mass IS-MPC

The stability constraint in the case of the multi-mass model is obtained by integrating
(4.19) for a piecewise linear xz,M trajectory.

C−1∑
i=0

e−iηM δẋk+i
z,M = −

∞∑
i=C

e−iηM δẋk+i
z,M + ηM

1− e−ηM δ
(xku − xkz,M). (9.7)

This constraint has the same form and plays the same role of the stability constraint
in standard IS-MPC, and the infinite sum on the right-hand side can be substituted
using any of the tail presented in Sect. 5.4.1.

QP problem

Having defined the constraints, the IS-MPC scheme with multi-mass model is
formulated as

C−1∑
i=0

((
ẋk+i
z,M

)2
+ kxv

(
ẋk+i+1
M − vx

)2
+
(
ẏk+i
z,M

)2
+ kyv

(
ẏk+i+1
M − vy

)2
)

subject to:

• the ZMP constraint (9.6) on xz,tot,

• the stability constraint (9.7),

• the kinematic constraint (5.3).

This particular formulation includes a term in the cost function that penalizes
deviations from a reference velocity (vx, vy), but it might be reformulated as in
Ch. 6 to include a candidate footstep planner and penalize deviations from candidate
footsteps.

9.3 Simulations
Simulations using this technique show an improvement in the accuracy of the ZMP
predicted by the MPC. The simulations are performed using the Dynamic Animations
and Robotic Toolkit (DART), on a NAO humanoid robot. In all simulations every
step lasts 0.5 s with single and double support phases respectively of 0.3 s and 0.2 s.

84 9. IS-MPC on a multi-mass model

0 0.5 1 1.5 2 2.5 3

t[s]

0.3

0.35

0.4

0.45

0.5

x z,
to

t[m
]

0 0.5 1 1.5 2 2.5 3

t[s]

0.3

0.35

0.4

0.45

0.5

x z,
to

t[m
]

0 0.5 1 1.5 2 2.5 3

t[s]

-0.05

0

0.05

y z,
to

t[m
]

0 0.5 1 1.5 2 2.5 3

t[s]

-0.05

0

0.05

y z,
to

t[m
]

Figure 9.2. A comparison between standard IS-MPC (top) and IS-MPC using a 2-mass
model (bottom). The black trajectory is the nominal ZMP as computed by the MPC,
and the red trajectory is the ZMP measured in a dynamic simulator.

0 0.5 1 1.5 2 2.5 3

t[s]

-0.05

0

0.05

y z,
to

t[m
]

0 0.5 1 1.5 2 2.5 3

t[s]

-0.05

0

0.05

y z,
to

t[m
]

0 0.5 1 1.5 2 2.5 3

t[s]

-0.05

0

0.05

y z,
to

t[m
]

0 0.5 1 1.5 2 2.5 3

t[s]

-0.05

0

0.05

y z,
to

t[m
]

Figure 9.3. IS-MPC using a 2-mass model (y-component only). Simulations using different
values for the secondary mass. From the top: 0%, 15%, 30%, 45% of the total mass.

9.3 Simulations 85

The balance constraints are squares with dx,z = dy,z = 0.03 m, while the size of the
feasibility constraints is dx,f = 0.05 m, dy,f = 0.025 m, ` = 0.125 m. The control
horizon is Tc = 1 s (i.e. 2 steps), and the sampling time δ is 0.01 s. The gains for the
cost function are kxv = kyv = 10. The periodic tail is used in the stability constraint
(see Sect. 5.4.1).

In Fig. 9.2 IS-MPC using the 2-mass model is compared to the basic IS-MPC
with automatic footstep placement, which employs the LIP model. The secondary
mass m accounts for 30% of the total mass. In the first case the measured ZMP is
visibly different from the predicted one. The 2-mass MPC provides a better result,
as the measured ZMP is closer to the predicted one during the single support phase,
and the error is reduced by 35%. We do not see a significant improvement in the
double support phase, which is also due to the fact that the dynamic simulator is
less reliable for measuring the ZMP in a situation with multiple contact surfaces, as
it produces several false values.

Figure. 9.3 shows a comparison between four different values of the mass m,
from 0% to 45% with an increase of 15% at each plot. The best fitting during the
single support occurs with a value of 30% which has also been used for the previous
results. Moreover it is also evident that as we continue to increase the mass m, the
performance get worse as clearly shown in the 45% plot.

It is important to notice that the 0% case considers the humanoid CoM coinciding
with the mass M which roughly represents the torso while the first plots in Fig. 9.2
represent the LIP-based MPC case where the reference is generated for the true
humanoid CoM, not the torso. Moreover, by controlling M and requiring that its
height remains constant, it is also evident that the true humanoid CoM will have a
variable height.

87

Chapter 10

Experiments

Experimental validation of IS-MPC was performed on two platforms, i.e., the NAO
and HRP-4 humanoid robots.

On NAO, the scheme is implemented as a custom module in the B-Human
RoboCup SPL team framework. It runs in real-time on the on-board CPU at a
control frequency of 100 Hz (δ = 0.01 s). Footstep timing is determined using
rule (5.1) with L̄s = 0.075 m, T̄s = 0.5 s, v̄ = 0.15 m/s as cruise parameters, and
α = 0.1 m/s (as in Fig. 5.3). The scheme uses the automatic footstep placement
of Ch. 6, and candidate footsteps are generated as explained in Sect. 5.1.2, with
θmax = π/8 rad and ` = 0.1 m. In the IS-MPC module we have set Tc = 1.0 s and
z̄c = 0.23 m. The dimensions of the ZMP admissible region are dz,x = dz,y = 0.03 m,
while those of the kinematically admissible region are dk,x = 0.1 m, dk,y = 0.05 m.
The weight in the QP cost function is β = 104. The anticipative tail is used with a
preview horizon Tp = 2.0 s.

The software architecture of HRP-4 requires control commands to be generated
at a frequency of 200 Hz (δ = 0.005 s). Gait generation runs on an external laptop
PC and joint motion commands are sent to the robot via Ethernet using TCP/IP.
Automatic footstep placement is in use, and the footstep timing is determined using
rule (5.1) with L̄s = 0.12 m, T̄s = 0.8 s, v̄ = 0.15 m/s as cruise parameters, and
α = 0.1 m/s (as in Fig. 5.3). Each generated Ts is split into Tss (single support)
and Tds (double support) using a 60%-40% distribution. Candidate footsteps are
generated as explained in Sect. 5.1.2, with θmax = π/8 rad and ` = 0.18 m. In the
IS-MPC module, which uses a control horizon Tc of 1.6 s, we have set z̄c = 0.78 m.
The dimensions of the ZMP admissible region are dz,x = dz,y = 0.01 m, while those
of the kinematically admissible region are dk,x = 0.3 m, dk,y = 0.07 m. The weight
in the QP cost function is β = 104. The anticipative tail is used in the stability
constraint with a preview Tp = 3.2 s.

Before presenting complete locomotion experiments, Fig. 10.1 reports some data
from a typical forward gait of HRP-4. In particular, the plot shows the nominal
ZMP trajectory, as generated by IS-MPC, together with the ZMP measurements
reconstructed from the force-torque sensors at the robot ankles [68]. Note that these
experiments do not employ any form of robustness like in the scheme described in
Ch. 7, but for increased safety the size of the ZMP admissible region was reduced (by a
constant value, not progressively along the prediction) from that of the corresponding

88 10. Experiments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x [m]

-0.1

-0.05

0

0.05

0.1
y

[m
]

nominal ZMP
measured ZMP
measured CoM

Figure 10.1. Nominal ZMP, measured ZMP and measured CoM along a forward gait of
HRP-4. Note the restricted ZMP regions (magenta, solid) and the original ZMP regions
used in the simulations (magenta, dotted).

Figure 10.2. Experiments on NAO and HRP-4 with automatic footstep placement. The
robots are required to walk forward and then backwards.

simulations (see Sect.6.4). It is possible to notice in Fig. 10.1 how the restriction is
effective, in the sense that while the measured ZMP violates the constraints, it stays
well within the original ZMP admissible region used in the simulation.

In the first experiment, the robots are required to perform a forward-backward
motion as shown in Fig. 10.2. The reference velocities are vx = ±0.15 m/s for the
NAO and vx = ±0.2 m/s for the HRP-4.

In the second experiment, which is shown in Fig. 10.3, the robots are given
reference velocities aimed at performing an L-shaped motion. In particular, we have
vx = 0.15 m/s followed by vy = 0.05 m/s for the NAO, and vx = 0.2 m/s followed
by vy = 0.2 for the HRP-4.

89

Figure 10.3. Experiments on NAO and HRP-4 with automatic footstep placement. The
robots are required to walk in an L-shape.

91

Chapter 11

Conclusions

This thesis has presented IS-MPC, an MPC scheme for humanoid gait generation
with an embedded stability constraint. After introducing the dynamic considerations
leading to the LIP model in Ch. 3, the stability condition was presented in Ch. 4 as
a relation between the current state of the LIP and the future ZMP trajectory. In
Ch. 5 IS-MPC was described along with the stability constraint, and the properties
of recursive feasibility and stability that derive from it were proved and discussed.

Several extensions and additions to the basic scheme were presented: Ch. 6
introduced automatic footstep placement, which allows for reactive stepping whenever
this is necessary to maintain balance; Ch. 7 discussed robust gait generation, proving
conditions for stability and feasibility under the presence of perturbations; Ch. 8
was concerned walking on non-flat ground, using a 3D linear model related to the
LIP and discussing the linearization of the nonlinear constraint; Ch. 9 presented
a version of IS-MPC which uses a multi-mass model for increased accuracy in the
prediction of the ZMP.

The dynamic simulations presented throughout the work, along with the experi-
ments discussed in Ch. 10, have demonstrated the effectiveness and applicability of
the proposed techniques. Two different robotic platforms were used: the small-scale
humanoid robot NAO by SoftBank Robotics, and the human-size robot HRP-4 by
Kawada Robotics.

The proposed techniques open up the way to further research. Among the
possible future developments are:

• experimental validation of the developments beyond the IS-MPC basic scheme

• an analysis of the effect on stability and feasibility of the introduction of the
disturbance observer, in the robust IS-MPC

• an improvement of the footstep planner on uneven ground to allow for online
replanning

93

Appendix A

Integration of the LIP model

The prediction model of MPC, as discussed in Sect. 5.2 is a dynamic extension
of the LIP, that has the ZMP derivative as input. The associated discrete-time
model is derived by integrating the LIP equation over the timestep δ, using the
piecewise linear trajectory (5.6), which reduces to a linear trajectory over a single
timestep. Throughout the following, we will make use of the hyperbolic functions
sinh x = (ex − e−x)/2 and cosh x = (ex + e−x)/2.

First, recall the general solution at time tk+1 of the decoupled system (3.12) for
a generic input xz(t), starting from time tk

xk+1
u = xkue

ηδ − η
∫ tk+1

tk

eη(tk+1−τ)xz(τ)dτ

xk+1
s = xkse

−ηδ + η

∫ tk+1

tk

e−η(tk+1−τ)xz(τ)dτ.

From the change of coordinates (3.11) we recall that xu + xs = 2xc. We can then
write

2xk+1
c = xkue

ηδ − η
∫ tk+1

tk

eη(tk+1−τ)xz(τ)dτ + xkse
−ηδ + η

∫ tk+1

tk

e−η(tk+1−τ)xz(τ)dτ =(
xkc + ẋkc

η

)
eηδ +

(
xkc −

ẋkc
η

)
e−ηδ − η

∫ tk+1

tk

(
eη(tk+1−τ) − e−η(tk+1−τ)

)
xz(τ)dτ

which leads the CoM position at time tk, when the system is subject to a generic
input xz(t)

xk+1
c = xkc cosh(ηδ) + ẋkc

η
sinh(ηδ)− η

∫ tk+1

tk

sinh (η(tk+1 − τ))xz(τ)dτ

In our case we are interested in the linear trajectory xz(τ) = xkz + ẋkz(τ − tk)

xk+1
c = xkc cosh(ηδ) + ẋkc

η
sinh(ηδ)− η

∫ tk+1

tk

sinh (η(tk+1 − τ)) (xkz + ẋkz(τ − tk))dτ

The last integral can be split in two and solved by substituting s = τ − tk. The first
part is readily integrated

−xkzη
∫ δ

0
sinh (η(δ − s)) ds = xkz [cosh (η(δ − s))]δ0 = (1− cosh(ηδ))xkz

94 A. Integration of the LIP model

for the remaining half, integrate by parts

− ẋkzη
∫ δ

0
sinh (η(δ − s)) sds = ẋkz

(
[cosh (η(δ − s)) s]δ0 −

∫ δ

0
cosh (η(δ − s)) ds

)
=

ẋkz

(
[cosh (η(δ − s)) s]δ0 + 1

η
[sinh (η(δ − s))]δ0

)
=
(
δ − 1

η
sinh(ηδ)

)
ẋkz

Substituting back in the initial expression gives the expression for the CoM position
at time tk+1, in terms of the state and input at time tk

xk+1
c = xkc cosh(ηδ) + ẋkc

η
sinh(ηδ) + (1− cosh(ηδ))xkz +

(
δ + 1

η
sinh(ηδ)

)
ẋkz . (A.1)

The next step is to compute the expression of the CoM velocity at time tk+1.
The procedure is similar but now we use 2ẋc/η = xu − xs

2 ẋ
k+1
c

η
= xkue

ηδ − η
∫ tk+1

tk

eη(tk+1−τ)xz(τ)dτ − xkse−ηδ − η
∫ tk+1

tk

e−η(tk+1−τ)xz(τ)dτ

=
(
xkc + ẋkc

η

)
eηδ −

(
xkc −

ẋkc
η

)
e−ηδ − η

∫ tk+1

tk

(
eη(tk+1−τ) + e−η(tk+1−τ)

)
xz(τ)dτ

which leads to

ẋk+1
c = xkcη sinh(ηδ) + ẋkc cosh(ηδ)− η2

∫ tk+1

tk

cosh (η(tk+1 − τ))xz(τ)dτ.

Specializing this equation for a linear ZMP trajectory gives

ẋk+1
c = xkcη cosh(ηδ) + ẋkc sinh(ηδ)− η2

∫ tk+1

tk

cosh (η(tk+1 − τ)) (xkz + ẋkz(τ − tk))dτ

where the last integral is computed by splitting the two terms and substituting
s = τ − tk. For the first half

−xkzη2
∫ δ

0
cosh (η(δ − s)) ds = xkzη [sinh (η(δ − s))]δ0 = −η sinh(ηδ))xkz

and for the second half, integrate by parts

− ẋkzη2
∫ δ

0
cosh (η(δ − s)) sds = ẋkz

(
η [sinh (η(δ − s)) s]δ0 − η

∫ δ

0
sinh (η(δ − s)) ds

)
= ẋkzη

(
[sinh (η(δ − s)) s]δ0 + [cosh (η(δ − s))]δ0

)
= (1− cosh(ηδ)) ẋkz .

Substituting back in the initial expression gives the expression for the CoM velocity
at time tk+1, in terms of the state and input at time tk

ẋk+1
c = xkcη sin(ηδ) + ẋkc cosh(ηδ)− η sinh(ηδ))xkz + (1− cosh(ηδ)) ẋkz . (A.2)

Finally, the ZMP position at time tk+1 is given by simple integration of the linear
trajectory

xk+1
z = xkz + δẋkz . (A.3)

Grouping (A.1), (A.2) and (A.3) into a single equation results in the discrete-time
model (5.7).

95

Bibliography

[1] S. Behnke, “Humanoid robots-from fiction to reality?” KI, vol. 22, no. 4, pp.
5–9, 2008.

[2] A. Kheddar, S. Caron, P. Gergondet, A. Comport, A. Tanguy, C. Ott, B. Henze,
G. Mesesan, J. Englsberger, M. Roa et al., “Humanoid robots in aircraft
manufacturing,” Robotics and Automation Magazine, 2019.

[3] N. Scianca, M. Cognetti, D. De Simone, L. Lanari, and G. Oriolo, “Intrinsically
stable MPC for humanoid gait generation,” in 16th IEEE-RAS Int. Conf. on
Humanoid Robots, 2016, pp. 101–108.

[4] N. Scianca, D. De Simone, L. Lanari, and G. Oriolo, “MPC for
humanoid gait generation: Stability and feasibility,” 2019. [Online]. Available:
https://arxiv.org/abs/1901.08505

[5] A. Aboudonia, N. Scianca, D. De Simone, L. Lanari, and G. Oriolo, “Humanoid
gait generation for walk-to locomotion using single-stage MPC,” in 17th IEEE-
RAS Int. Conf. on Humanoid Robots, 2017, pp. 178–183.

[6] F. M. Smaldone, N. Scianca, V. Modugno, L. Lanari, and G. Oriolo, “Gait gener-
ation using intrinsically stable MPC in the presence of persistent disturbances,”
in 2019 IEEE-RAS Int. Conf. on Humanoid Robots, 2019.

[7] A. Zamparelli, N. Scianca, L. Lanari, and G. Oriolo, “Humanoid gait generation
on uneven ground using intrinsically stable MPC,” IFAC-PapersOnLine, vol. 51,
pp. 393–398, 2018.

[8] P. Ferrari, N. Scianca, L. Lanari, and G. Oriolo, “An integrated motion plan-
ner/controller for humanoid robots on uneven ground,” in 2019 European
Control Conf., 2019.

[9] N. Scianca, V. Modugno, L. Lanari, and G. Oriolo, “Gait generation via
intrinsically stable MPC for a multi-mass humanoid model,” in 2017 IEEE-RAS
Int. Conf. on Humanoid Robots, 2017, pp. 547–552.

[10] D. De Simone, N. Scianca, P. Ferrari, L. Lanari, and G. Oriolo, “MPC-based
humanoid pursuit-evasion in the presence of obstacles,” in 2017 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2017.

[11] M. Vukobratović and D. Juričić, “Contribution to the synthesis of biped gait,”
IEEE Trans. on Biomedical Engineering, no. 1, pp. 1–6, 1969.

96 Bibliography

[12] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3D
linear inverted pendulum mode: A simple modeling for a biped walking pattern
generation,” in 2001 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
vol. 1. IEEE, 2001, pp. 239–246.

[13] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step toward
humanoid push recovery,” in 2006 6th IEEE-RAS international conference on
humanoid robots, 2006, pp. 200–207.

[14] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and
H. Hirukawa, “Biped walking pattern generation by using preview control of
zero-moment point,” in 2003 IEEE Int. Conf. on Robotics and Automation,
2003, pp. 1620–1626.

[15] P.-B. Wieber, “Trajectory free linear model predictive control for stable walking
in the presence of strong perturbations,” in 6th IEEE-RAS Int. Conf. on
Humanoid Robots, 2006, pp. 137–142.

[16] B. Henze, C. Ott, and M. A. Roa, “Posture and balance control for humanoid
robots in multi-contact scenarios based on model predictive control,” in 2014
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. IEEE, 2014, pp.
3253–3258.

[17] A. Sherikov, D. Dimitrov, and P. B. Wieber, “Whole body motion controller
with long-term balance constraints,” in 14th IEEE-RAS Int. Conf. on Humanoid
Robots, 2014, pp. 444–450.

[18] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt, “Capturability-
based analysis and control of legged locomotion, part 1: Theory and application
to three simple gait models,” The International Journal of Robotics Research,
vol. 31, no. 9, pp. 1094–1113, 2012.

[19] T. Sugihara and T. Yamamoto, “Foot-guided agile control of a biped robot
through zmp manipulation,” in 2017 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2017, pp. 4546–4551.

[20] J. Carpentier, R. Budhiraja, and N. Mansard, “Learning feasibility constraints
for multi-contact locomotion of legged robots,” in Robotics: Science and Systems,
2017, p. 9p.

[21] E. C. Kerrigan, “Robust constraint satisfaction: Invariant sets and predictive
control,” Ph.D. dissertation, University of Cambridge, 2001.

[22] M. Ciocca, P.-B. Wieber, and T. Fraichard, “Strong recursive feasibility in
model predictive control of biped walking,” in 2017 IEEE-RAS Int. Conf. on
Humanoid Robots. IEEE, 2017, pp. 730–735.

[23] A. Sherikov, “Balance preservation and task prioritization in whole body motion
control of humanoid robots,” Ph.D. dissertation, Grenoble Alpes, 2016.

Bibliography 97

[24] M. Krause, J. Englsberger, P.-B. Wieber, and C. Ott, “Stabilization of the
capture point dynamics for bipedal walking based on model predictive control,”
IFAC Proceedings Volumes, vol. 45, no. 22, pp. 165–171, 2012.

[25] M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, and P. Souères, “A
reactive walking pattern generator based on nonlinear model predictive control,”
IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 10–17, 2016.

[26] R. J. Griffin and A. Leonessa, “Model predictive control for dynamic footstep
adjustment using the divergent component of motion,” in 2016 IEEE Int. Conf.
on Robotics and Automation. IEEE, 2016, pp. 1763–1768.

[27] S. Faraji, S. Pouya, C. G. Atkeson, and A. J. Ijspeert, “Versatile and robust 3D
walking with a simulated humanoid robot (Atlas): A model predictive control
approach,” in 2014 IEEE Int. Conf. on Robotics and Automation, 2014, pp.
1943–1950.

[28] J. Alcaraz-Jiménez, D. Herrero-Pérez, and H. Martínez-Barberá, “Robust feed-
back control of ZMP-based gait for the humanoid robot Nao,” The Int. Journal
of Robotics Research, vol. 32, no. 9-10, pp. 1074–1088, 2013.

[29] H. Diedam, D. Dimitrov, P.-B. Wieber, K. Mombaur, and M. Diehl, “Online
walking gait generation with adaptive foot positioning through linear model
predictive control,” in 2008 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems. IEEE, 2008, pp. 1121–1126.

[30] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and M. Diehl,
“Online walking motion generation with automatic footstep placement,” Ad-
vanced Robotics, vol. 24, no. 5-6, pp. 719–737, 2010.

[31] A. Herdt, N. Perrin, and P. B. Wieber, “Walking without thinking about it,”
in 2010 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2010, pp.
190–195.

[32] L. Chisci, J. A. Rossiter, and G. Zappa, “Systems with persistent disturbances:
Predictive control with restricted constraints,” Automatica, vol. 37, no. 7, pp.
1019–1028, Jul. 2001.

[33] D. Mayne, M. Seron, and S. V. Raković, “Robust model predictive control of
constrained linear system with bounded disturbances,” Automatica, vol. 41, pp.
219–224, 2005.

[34] G. Pannocchia, J. B. Rawlings, and S. J. Wright, “Conditions under which
suboptimal nonlinear MPC is inherently robust,” Systems & Control Letters,
vol. 60, pp. 747–755, 2011.

[35] N. A. Villa and P. Wieber, “Model predictive control of biped walking with
bounded uncertainties,” in 17th IEEE-RAS Int. Conf. on Humanoid Robots,
2017, pp. 836–841.

98 Bibliography

[36] K. Kaneko, F. Kanehiro, M. Morisawa, E. Yoshida, and J. Laumond, “Distur-
bance observer that estimates external force acting on humanoid robots,” in
12th IEEE Int. Work. on Advanced Motion Control, 2012, pp. 1–6.

[37] S. Czarnetzki, S. Kerner, and O. Urbann, “Observer-based dynamic walking
control for biped robots,” Robotics and Autonomous Systems, vol. 57, no. 8, pp.
839–845, 2009.

[38] R. J. Griffin, A. Leonessa, and A. Asbeck, “Disturbance compensation and step
optimization for push recovery,” in 2016 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2016, pp. 5385–5390.

[39] J. Englsberger, G. Mesesan, and C. Ott, “Smooth trajectory generation and
push-recovery based on divergent component of motion,” in 2017 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2017, pp. 4560–4567.

[40] A. Pajon and P.-B. Wieber, “Safe 3d bipedal walking through linear mpc with
3d capturability,” in 2019 IEEE Int. Conf. on Robotics and Automation, 2019,
pp. 1404–1409.

[41] S. Caron and A. Kheddar, “Dynamic walking over rough terrains by nonlinear
predictive control of the floating-base inverted pendulum,” in 2017 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems. IEEE, 2017, pp. 5017–5024.

[42] S. Caron, A. Escande, L. Lanari, and B. Mallein, “Capturabilitybased analysis,
optimization and control of 3d bipedal walking,” in 2018IEEE Int. Conf. on
Robotics and Automation, 2018.

[43] A. Herdt, “Model predictive control of a humanoid robot,” Ph.D. dissertation,
Ecole Nationale Supérieure des Mines de Paris, 2012.

[44] M. A. Hopkins, D. W. Hong, and A. Leonessa, “Humanoid locomotion on
uneven terrain using the time-varying divergent component of motion,” in 14th
IEEE-RAS Int. Conf. on Humanoid Robots, 2014, pp. 266–272.

[45] T. Kamioka, T. Watabe, M. Kanazawa, H. Kaneko, and T. Yoshike, “Dy-
namic gait transition between bipedal and quadrupedal locomotion,” in 2015
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2015, pp. 2195–2201.

[46] K. Terada and Y. Kuniyoshi, “Online gait planning with dynamical 3d-
symmetrization method,” in 7th IEEE-RAS Int. Conf. on Humanoid Robots,
2007, pp. 222–227.

[47] S. C. Luo, P. H. Chang, J. Sheng, S. C. Gu, and C. H. Chen, “Arbitrary biped
robot foot gaiting based on variate com height,” in 13th IEEE-RAS Int. Conf.
on Humanoid Robots, 2013, pp. 534–539.

[48] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional bipedal
walking control based on divergent component of motion,” IEEE Transactions
on Robotics, vol. 31, no. 2, pp. 355–368, 2015.

Bibliography 99

[49] P. Sardain and G. Bessonnet, “Forces acting on a biped robot. center of pressure-
zero moment point,” IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, vol. 34, no. 5, pp. 630–637, 2004.

[50] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a humanoid
robot,” Autonomous Robots, vol. 35, no. 2-3, pp. 161–176, 2013.

[51] L. Lanari, S. Hutchinson, and L. Marchionni, “Boundedness issues in planning
of locomotion trajectories for biped robots,” in 2014 IEEE-RAS Int. Conf. on
Humanoid Robots, 2014, pp. 951–958.

[52] A. L. Hof, “The ‘extrapolated center of mass’ concept suggests a simple control
of balance in walking,” Human movement science, vol. 27, no. 1, pp. 112–125,
2008.

[53] T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real time motion generation
and control for biped robot-1 st report: Walking gait pattern generation,” in
2009 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. IEEE, 2009,
pp. 1084–1091.

[54] S. Caron and A. Kheddar, “Dynamic walking over rough terrains by nonlinear
predictive control of the floating-base inverted pendulum,” in 2017 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems. IEEE, 2017, pp. 5017–5024.

[55] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to Humanoid
Robotics. Springer Publishing Company Inc., 2014.

[56] L. Lanari and S. Hutchinson, “Inversion-based gait generation for humanoid
robots,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2015, pp.
1592–1598.

[57] ——, “Planning desired center of mass and zero moment point trajectories for
bipedal locomotion,” in 15th IEEE-RAS Int. Conf. on Humanoid Robots, 2015,
pp. 637–642.

[58] L. Lanari and J. T. Wen, “Feedforward calculation in tracking control of flexible
robots,” in [1991] Proceedings of the 30th IEEE Conference on Decision and
Control, 1991, pp. 1403–1408.

[59] S. Devasia, D. Chen, and B. Paden, “Nonlinear inversion-based output tracking,”
IEEE Transactions on Automatic Control, vol. 41, no. 7, pp. 930–942, 1996.

[60] M. Cognetti, D. De Simone, F. Patota, N. Scianca, L. Lanari, and G. Oriolo,
“Real-time pursuit-evasion with humanoid robots,” in 2017 IEEE Int. Conf. on
Robotics and Automation. IEEE, 2017, pp. 4090–4095.

[61] D. Dimitrov, A. Paolillo, and P.-B. Wieber, “Walking motion generation with
online foot position adaptation based on `1- and `∞-norm penalty formulations,”
in 2011 IEEE Int. Conf. on Robotics and Automation, 2011, pp. 3523–3529.

100 Bibliography

[62] E. C. Kerrigan, “Robust constraint satisfaction: Invariant sets and predic-
tive control,” Ph.D. dissertation, Department of Engineering - University of
Cambridge, 2000.

[63] S. Raković and D. Mayne, “A simple tube controller for efficient robust model
predictive control of constrained linear discrete time systems subject to bounded
disturbances,” IFAC-PapersOnLine, vol. 16, 01 2005.

[64] D. Limon, I. Alvarado, and T. Alamo, “Robust tube-based mpc for tracking
of constrained linear systems with additive disturbances,” Journal of Process
Control, vol. 20, pp. 248–260, 03 2010.

[65] N. Motoi, M. Ikebe, and K. Ohnishi, “Real-time gait planning for pushing
motion of humanoid robot,” IEEE Transactions on Industrial Informatics,
vol. 3, no. 2, pp. 154–163, May 2007.

[66] L. Hawley and W. Suleiman, “External force observer for medium-sized hu-
manoid robots,” in 2016 IEEE-RAS Int. Conf. on Humanoid Robots, Nov 2016,
pp. 366–371.

[67] W. Burgard, M. Hebert, and M. Bennewitz, “World modeling,” in Springer
handbook of robotics. Springer, 2016, pp. 1135–1152.

[68] A. Tanguy, D. De Simone, A. I. Comport, G. Oriolo, and A. Kheddar, “Closed-
loop mpc with dense visual slam-stability through reactive stepping,” in 2019
IEEE Int. Conf. on Robotics and Automation, 2019, pp. 1397–1403.

