

Energy Efficient Digital Electronic Systems Design
for Edge-Computing Applications, through
Innovative RISC-V Compliant Processors.

By

Abdallah Cheikh

الشيخ نبيل عبدالله

A Thesis Submitted to the Department of Information Electronics and

Telecommunication Engineering (DIET)

La Sapienza Università di Roma

DOCTOR OF PHILOSOPHY

February 2020

Prof Mauro Olivieri

(Thesis Supervisor)

1

Acknowledgements

These three years of doing research at the LSD lab at Sapienza have passed like the wind. Throughout

my journey on this PhD career, I slowly transformed from being a High-Power Electrical Engineer,

into a Low-Power Computer Architect for IoT devices and Embedded Systems. The only thing I regret

is the amount of strain I placed on my eyes, caused by staring daily at the computer screen for over

12 hours. However, I am much more thankful than regretful for the things I have experienced in this

wonderful journey.

First and foremost, I am thankful to all mighty God الله for giving me everything I have asked for, and

more. He facilitated my means to travel to Italy, He surrounded me with kind hearted, and supportive

people that helped me in a foreign country in which I barely understood the language, and He was

always my guide in the good and the bad moments in life. I never had to beg anyone for anything

neither did I feel at any point in time the struggle to sustain myself. God is great, and no matter how

many times I thank Him, I feel that it is not enough and that I should be ever more thankful.

Needless to mention, but nonetheless I am thankful for both my parents that had never batted an eye

when I asked them for help. They covered any financial shortcomings I had throughout my PhD

career. They provided me with every kind of support in order help me succeed in my career. My

parents never once have abandoned me, and they always prayed for my success. As they grow into

their older days, I wish to support them by giving back at least a fraction of what they’d been giving

me my entire life.

Second of all, I would then like to thank my professor and thesis supervisor Mauro Olivieri, as I feel

eternally grateful for his support throughout my PhD career. I contacted Mauro in early July 2016 for

a chance to pursue a PhD career at Sapienza, and Mauro quickly responded to my request, helping

me every step of the way in the application process until I finally got admitted to the PhD program.

Mauro continued his support and guidance throughout the years providing me with opportunities to

pursue conferences in different parts of Italy and Europe. In May 2018 he again provided me with the

unforgettable and wonderful opportunity to move to Barcelona and collaborate on the European

Processing Initiative (EPI) project. In Barcelona, I met amazing people and gained a lot of experience

in the field of computer architecture. Mauro till this day continues to be a great support, as he

constantly provides me with wonderful opportunities at every turn, and for that I am always very

grateful, and have very much respect for all what he has done for me.

Furthermore, I am grateful to my amazing friend and mentor Antonio Mastrandrea. Antonio from day

one in Italy was there for me. The reason I managed to stay standing on my feet in Italy, without

getting lost or stranded was Antonio himself. He helped me literally in anything I asked for. Antonio

was basically my guide for everything in Italy. Not to mention throughout my PhD he continuously

provided a lot of support in various areas I lacked experience in. Antonio is a great friend, and a great

support, and I really enjoyed his company throughout my PhD career. Thank you, Antonio!

I have met a great deal of people in the past three years, among them is my great friend Simone

Ponzio. Simone volunteered to help me with my work continuously for more than 8 months.

Simone helped, me perform the earlies parts of verification of my work in the second year

and he also was a great friend and a very fun guy to be around. Then came along my colleague

and my dear friend Stefano Sordillo. Without Stefano’s amazing hard work and his

collaboration on common areas of interests in our researcher, I would not have had my work

results flourish as they had today, Stefano was the software developer that made the complex

tests which benchmarked my work. Stefano was a great help at all times, even on the

2

weekends. For all the people that I have met, I want to say you were all amazing, and thank

you all for giving me the pleasure of meeting you.

As a final note I would like to express my gratitude to the Italian government, and their vision

to provide a career opportunity for a both foreign and national students equally by allowing

them to pursue a PhD career all under their expenses, and without any bias in the selection

process be it race, nationality, gender, or religion. Italy in that sense I consider to be a model

country, and I owe my thanks to all the Italians for their kindness and hospitality towards me,

and other foreign researchers as well.

3

Table of Contents

Contents
 ..1

Table of Contents ...1

List of Figures ...5

List of Tables...7

Abstract ..8

Organization of the Dissertation: ..9

Chapter 1 Preface .. 10

1.1. Internet of things ... 10

1.2. Energy efficient IoT devices: .. 13

1.3. Artificial neural networks .. 14

Chapter 2 RISC-V and the Klessydra Processor Family .. 16

2.1. Motivation behind adopting RISC-V .. 16

2.2. Background .. 16

2.3. Instruction set architecture briefing .. 17

2.4. Custom instruction set extensions .. 19

2.5. RISC-V support in Klessydra ... 19

2.6. Patches to the riscv-gnu-toolchain: ... 20

2.7. Concluding remarks ... 21

Chapter 3 The PULPino Microcontroller Platform ... 23

3.1. Motivation behind choosing PULPino ... 23

3.2. Background .. 23

3.3. PULPino native processor cores .. 24

3.4. Embedding non-native Klessydra processing cores in PULPino .. 25

Chapter-4 Klessydra T0 Architecture.. 26

4.1. The Klessydra-T family ... 26

4.2. Motivation for choosing interleaved multithreading .. 26

4.3. Klessydra-T0 introduction and background information .. 27

4.4. Choosing the optimal IMT pipeline organization: ... 29

4.5. Deeper pipeline organizations ... 33

4.6. The T03 core .. 35

4.7. Trap handling ... 40

4.8. Thread synchronization. .. 44

4

4.9. Conclusion ... 46

Chapter 5 Klessydra-T1 Architectures .. 47

5.1. Background .. 47

5.2. Motivation for augmenting the T03 core with a hardware accelerator ... 47

5.3. Special Purpose Mathematical Unit Microarchitecture .. 48

5.4. SPMU Implementations ... 63

5.5. Performance evaluation of the SPMU implementations. ... 69

5.6. Area, Power, and Energy Reports .. 78

5.7. Further Evaluations (memory test, GCC optimizations) .. 81

Chapter 6 C Language Software Suite ... 83

6.1. Instruction level testing: .. 83

6.2. Convolution tests: .. 86

6.3. Supplementary VGG16 libraries .. 90

Conclusions ... 92

Appendix A .. 94

Appendix B .. 124

Glossary ... 155

Bibliography .. 157

5

List of Figures

Figure.1.1, Graph depicting Moore’s Law that predicted the doubling of the transistors per die

every two years .. 10

Figure.1.2. Typical IoT devices in homes .. 11

Figure.1.3. The bandwidth growth with the frequency growth ... 11

Figure.1.4. Coverage area for a set of transmission frequencies ... 12

Figure.1.5. Number of IoT devices to non-IoT and their project growth .. 13

Figure.1.6.Typical depiction of an IoT Embedded System .. 13

Figure.1.7. Layers in an artificial neural network .. 14

Figure.1.8. Accuracy versus number of operations single forward pass for a certain class of CNN 15

Figure.2.1. Base Instruction Formats ... 18

Figure.3.1. Propagation delay versus power supply voltage .. 23

Figure.3.2 Architecture of PULPino .. 24

Figure.3.3 Klessydra family roadmap .. 25

Figure.4.1. Conceptual view of hardware context counter (harc) interleaved execution 28

Figure.4.2. (a) Klessydra T033 datapath, three harts interleave from RF to WB, 33

Figure.4.3 (a) Klessydra T044 datapath five pipeline stage but still works by interleaving only four

harts .. 34

Figure.4.4 Klessydra T033 block organization, interleaves three harts in the instruction pipeline ... 35

Figure.5.1. Klessydra T133 block organization, interleaves three harts and has three execution units

working in parallel ... 48

Figure.5.2. SPMU Block Diagram ... 49

Figure.5.3. Partial Adder Circuit in SIMD=4 .. 55

Figure.5.4. Partial Multiplier Circuit in SIMD=4 .. 57

Figure.5.5. Partial Right Shifter Circuit in SIMD=4.. 59

Figure.5.6. Diagram of the Shared-SPMU, all accesses to the SPMU are shared by all the harts 64

Figure.5.7. Diagram of dedicated SPI shared SPE model. Each hart has a dedicated set of

scratchpads, busy signals will only block the hart belonging to the same SPMU 65

6

Figure.5.8. Diagram of Dedicated-SPMU, each hart has a dedicated SPE and SPI, a busy signal will

only block the hart belonging to the same SPMU ... 68

Figure.5.9. Number of cycles taken to perform an arithmetic vector operation without the SPMU . 69

Figure.5.10. Cycle time using the SPMU with SIMD=1 and hardware loops disabled 69

Figure.5.11. Cycle time using the SPMU with SIMD=1 and hardware loops enabled 70

Figure.5.12. Cycle time using the SPMU with SIMD=4 and hardware loops enabled 71

Figure.5.13. Speed boost from exploiting the DLP, TLP, and both together (Hybrid) 73

Figure.5.14. Total execution time to perform convolutions when running at the maximum attainable

frequency for accelerated and non-accelerated implementations .. 75

Figure.5.15. Layers of the VGG16 deep convolutional neural network .. 77

Figure.5.16. KlessydraT13 Shared-SPMU, Single Thread Vs Multithread cycle count per layer for

VGG16 ... 77

Figure.5.17. KlessydraT13 Dedicated-SPMU SIMD-2, vs Zeroriscy cycle count per layer for

VGG16 execution .. 77

Figure.5.18. Dynamic Power Consumption of the T13 core running 32x32 convolutions 79

Figure.5.19. Energy Consumption for running each implementation at the top frequency on the

different convolution sizes ... 80

Figure.5.20. Vector addition C test performed with GCC optimizations disabled 81

Figure.5.21. Vector addition C test performed with GCC optimizations enabled 82

Figure.6.1. Convolution of feature map on the left and kernel map on the right............................... 87

Figure.6.2. Convolution of feature map on the left and kernel map on the right............................... 87

Figure.6.3. Division of the sub-kernels. On the left shows the overlap with sub-kernel F................ 88

Figure.6.4. Sub-Kernel F executed in the SPMU .. 89

Figure.6.5. Discrete Kmemlds for zeropadded implementations... 89

Figure.6.6. Zero-Padded Convolution method using the SPMU instructions 90

file:///C:/Users/abdal/Documents/PhD%20Thesis%20Abdallah%20Cheikh%20(pending).docx%23_Toc31541051
file:///C:/Users/abdal/Documents/PhD%20Thesis%20Abdallah%20Cheikh%20(pending).docx%23_Toc31541052
file:///C:/Users/abdal/Documents/PhD%20Thesis%20Abdallah%20Cheikh%20(pending).docx%23_Toc31541053
file:///C:/Users/abdal/Documents/PhD%20Thesis%20Abdallah%20Cheikh%20(pending).docx%23_Toc31541054

7

List of Tables

Table.2. 1 Table.2.1 RISC-V mnemonics for RISC-V integer and floating point registers 17

Table.2.2. RAS stack prediction hints .. 18

Table.2.3. RISC-V based opcode map, inst[1:0] = 11 i.e. compressed instructions are not included in

the table .. 19

Table.4.1. Resource Utilization, and Minimum cycle time [ns] .. 29

Table.4.2. Throughput at Maximum Frequency [MIPS] (N.A. = NOT APPLICABLE) 30

Table.4.3. Average Dynamic Power at Maximum Clock Frequency [mW] (N.A. = NOT

APPLICABLE) .. 31

Table.4.5. Control and status registers supported by Klessydra cores ... 40

Table.5. 1 Type, and parallelism of the functional units in the SPE .. 55

Table.5.2. Cycle number to execute a set of convolutions ... 72

Table.5.3. Top frequency for each T13 configuration and Riscy Cores ... 72

Table.5.4. T13 Area Utilization on FPGA for all SPMU Configurations .. 78

Table.5.5. Size in Bytes of the program memory and data memory for different tests 82

8

Abstract

The number of IoT devices has greatly increased over the years, so that they have invaded the

electronic market. IoT describe a device-to-device communication without human interface. A large

class of these devices are battery powered, and the energy consumption inside them is considered

critical.

Today’s embedded IoT systems interface multiple peripherals such as sensors that perform continuous

monitoring of the environment around it, and actuators that are controlled by the embedded systems.

Also, they interface wireless devices for data transmissions. A part of their job includes some basic

pre-processing of the data before transmitting it over those wireless networks. Such pre-processing

“on the edge of the network” minimizes the data to be transmitted over the wireless channels, and

only transmits the desired outputs.

In front of the increase demand to support pre-processing, such as computer vision and voice

recognition, on small embedded systems on the edge of the network, they cannot completely satisfy

those demands due to their little performance

In this study we demonstrate the performance and energy efficiency of interleaved multithreaded

architectures, which can be used in an embedded system on the edge of the IoT interfacing multiple

sensors and peripherals, each serviced by a different hardware thread. We show the optimal pipeline

organization to use in such architectures, and we finally demonstrate how these architectures can be

exploited to easily improve instruction level parallelism by integrating a convolutional neural

networking accelerator that can perform very fast vector arithmetic operations, and finally

benchmarking this accelerator by running a custom implementation of the VGG16 convolutional

neural network.

The microprocessors presented are a part of a family of processing cores called Klessydra. The

Klessydra microprocessors were written such that they have a pinout that are 100 percent identical

with Riscy cores from PULPino SoC. The subset of the Klessydra cores presented in this thesis is

called the Klessydra-T. The letter ‘T’ indicating that the cores are multithreaded, the Klessydra-T

subset has two main implementations used throughout this thesis, they are Klessydra-T03 and

Klessydra-T13. T03 and T13 for short.

The processor cores have been tested with the Modelsim / Questasim simulators. The cores have been

synthesized on the 7-series FPGAs from Xilinx with the Vivado Synthesis tool. Synthesis and Post-

synthesis simulations have been made. Dynamic Power estimations were calculated by Vivado from

the power report generated by Modelsim after having simulated a post-synthesis Vivado netlist. FPGA

synthesis was chosen as our target implementation, as they provide high reconfigurability, which

allows the user to easily customize their own accelerator and make it adapt accordingly to their

specific applications.

In our assessment throughout this thesis we nominated the T03 interleaved multithreaded processor

as our optimal and most balanced pipeline organization. The T03 core had many advantages over

other architectures, however it was only suitable to be used in control applications. T13 solves this

problem by implementing superscalar hardware accelerators. A hybrid implementation of the

hardware accelerator targeting thread level parallelism and slight data level parallelism was the

approach yielding the highest performance and still maintaining a relatively low energy consumption

for energy critical environments.

9

Organization of the Dissertation:

Chapter 1 This dissertation starts with the preface that provides a brief literature review

of IoT devices, and the convergence between cloud computing and embedded systems.

Chapter 2 The second chapter gives an overview of the RISC-V ISA focusing on the

implemented instruction sets in Klessydra-T, and the custom instructions appended to the

native RISC-V ISA.

Chapter 3 The third chapter provides an overview of the PULPino SoC, and describes the

modifications made to the Pulpino environment that made it possible for Klessydra to be

integrated.

Chapter 4 The fourth chapter introduces the Klessydra-T0. In this chapter we investigate

the optimal pipeline organization to adopt through a series of experimental and analytical

studies. Then the building blocks of the Klessydra-T0 will be illustrated, and then we show

some basic libraries written to compliment the hardware side with some software code.

Chapter 5 The fifth chapter introduces the Klessydra-T1, and shows the hardware

accelerator added to the T1 core. Then the accelerator is benchmarked when implemented

in three different approaches, and we deduce which approach is the most ideal to use. The

accelerator is benchmarked with VGG16 DCNN test, and it is shown how it was

benchmarked

Chapter 6 The sixth chapter just shows the software suite of the tests that were used to

benchmark the accelerator in chapter 5. They demonstrate how the convolutions were

implemented on the accelerator, and a brief display of how the different structures in the

VGG16 test were written.

Conclusion We conclude by summarizing the results presented in chapters four and five.

Appendix A Contains the Klessydra technical manual detailing the implementation, the ISA

support, the architecture, and the CSR instructions in the Klessydra-T cores.

Appendix B This RTL of the Klessydra-T is here. The T1 and the T0 implementations can

be generated from the PKG file, as well as all the configurations detailed in chapter 5.

10

Chapter 1 Preface

This chapter is a preface to the work being detailed in this study. In the first section we provide a brief

introduction on IoT devices and their growth in the current electronic market. In the next section we

discuss the artificial neural networks, focusing on the sector of computer vision and convolutional

neural networks. In the last section we show the convergence of AI applications from cloud computing

to embedded low power IoT devices. Then we discuss the energy efficient digital system developed

in this study that target the IoT market, and facilitates the execution of CNNs that are being steadily

embedded in IoT devices.

1.1. Internet of things

The MOSFET was the main driver for the rise of the Internet of things. The scaling of the MOSFET

down to the nanoscale was also followed by the scaling down of the power consumption as well. As

of 2019, the smallest MOSFETs in production are 5nm FinFETs manufactured by Samsung and

TSMC [1][2]. Gordon Moore observed the shrinking of the transistor and predicted that the number

of transistors on an integrated circuit would approximately double every two years (figure 1.1) with

the speed doubling every 18 months without increasing the power [3].

Figure.1.1, Graph depicting Moore’s Law that predicted the doubling of the transistors per die every two years

However, the world was still farfetched from becoming fully connected. Two main inventions

provided the next milestone that facilitated the convergence towards an IoT world, the first was the

development of high-performance multi-core processors, and the second was the emergence of high

bandwidth wireless technologies.

The nanoscale scale parallel microprocessors were capable computing large chunks of data for a very

slight energy consumption. This in turn encouraged the incorporation of these smart technologies into

all types of electronic devices especially inside battery powered devices (figure 1.2). One main

11

example for the use of these smart devices other than home automation domains as shown in the

figure above was the deployment of smart devices for sensing and monitoring tasks, such as office

monitoring, agricultural monitoring, traffic monitoring, defense monitoring, space monitoring, and

not to mention even human monitoring through medical devices and wearable technologies. These

areas were situated with a handful of sensing instrumentation for temperature, humidity, fire, air

pollution, traffic jam, rain wind, storms, etc.) [4].

Figure.1.2. Typical IoT devices in homes

However, these smart devices needed to be accessed over long distances. and this is where the

emergence of wireless technologies played a key role in which they were capable of providing a

connection between two nodes over large distances. But one main drawback to wireless transmission

was that; the larger the distance got between the two nodes; the more transmission power was needed

to maintain the nodes connected. Another challenge was the exorbitant increase in the bandwidth over

the years, required by certain streaming applications, and in order to provide these large bandwidths,

the wireless technologies needed to transmit over higher frequencies in the spectrum as shown in

figure 1.3.

Figure.1.3. The bandwidth growth with the frequency growth

However, the power consumption required to transmit a certain packet of data over a certain distance

‘X’ is much higher than the power consumption required to transmit the same packet over a lower

frequency, and figure 1.3 showed that larger bandwidths broadcasted at higher frequencies. The

tradeoff between coverage area and frequency when transmitting over the same frequency is shown

in figure 1.4.

12

Figure.1.4. Coverage area for a set of transmission frequencies

Figure 1.4 shows that coverage area for transmitting over the same power (dBm), but different

frequency ranges was very different. Such that transmitting over 700MHz covered the 3.5 times the

distance for transmitting over 2.5GHz.

The challenge was to accommodate the demand to transmit high bandwidth of data over very large

distances, while still maintaining low power consumption. Thus, came the third milestone which was

connecting these smart devices to local gateways either through a wire or wirelessly, and the gateways

are connected to a global system of interconnected nodes communicating with an open protocol;

called TCP/IP otherwise known as the internet.

Providing internet connectivity to smart devices made them capable of transmitting very high data

bandwidths over high frequencies to local wireless nodes that are only a few meters away from the

transmitter. These communicating nodes are otherwise known as wireless local area networks

(WLAN). The WLANs are then connected to the internet and provide access to these smart devices

globally. This connection of the various smart devices from over the internet is what is now known

as the Internet of Things (IoT).

However, not every device that has IP connectivity is considered IoT. For example, desktops, laptops,

cellphones, tablets, game consoles are not considered to be IoT [27]. An IoT device is a network of

devices that can communicate without human interactions. In other words, it is a network of things.

Figure 1.5 shows the number of IoT devices available till date, and their projected growth over the

next five to six years.

IoT encompasses only device-to-device interactions and connectivity. Although human interaction

can be present at some endpoint of the IoT network, but all the intermediate device communications

are considered IoT. For example, a wearable smart watch interacts with the cellphones over wireless

personal area networks (WPAN), and cellular mobile stations through LTE, and connect to GPS

systems to provide continuous tracking. All these communications are part of the IoT network, and

the final presentation to the human interface would be the non-IoT human factor in this network [27].

13

Figure.1.5. Number of IoT devices to non-IoT and their project growth

1.2. Energy efficient IoT devices:

Gradual increase in the integration of convolutional neural networks in low power embedded IoT

devices by applying image recognition and classification was prevalent in the recent years [5]. IoT

devices were able to move AI algorithms from cloud computing down to the edge computing [6]. IoT

endpoint SoC refer to a large number of microcontrollers interfacing a various class of sensors on one

end, and a wireless device on the other end. The IoT end-nodes might contain specialized units for

fast memory access such as scratchpad units [22]. The IoT end-node design demands low-power

specialized processors [24][25][26], in which they will be used to collect and pre-processes

information from the peripheral devices, and sends the data over the wireless channel (figure 1.6).

Preprocessing might include in many cases speech and/or image recognition. This is why we

developed a RISC-V processor that can exploit IoT applications which interface multiple peripheral

devices, and also, can pre-process images quickly with high performance and energy efficient CNN

accelerators.

Figure.1.6.Typical depiction of an IoT Embedded System

14

1.3. Artificial neural networks

1.2.1. Background:

The human brain is a collection of billions of neurons connected to each other through synapses and

can pass the signal from one neuron to the next either electrically or chemically. Artificial neural

networks although not identical to biological neural networks, however, they were inspired by them.

They aimed to loosely imitate the behavior of the brain in order to solve some of the problems the

brain does through emulating its learning ability.

 ANNs are a collection of artificial neurons that connect to one another to form a large system of

artificial neurons. These systems are an aggregate of layers that are connected to each other, they are

capable of learning through continuous feedback loop connections, or through algorithms in single-

forward pass networks that modify the weights after the whole operation is done (such as the case in

feed-forward networks like convolutional neural networks). During the learning process, the system

adjusts the weights which can either strengthen or weaken the connection between the two neurons.

Figure 1.7 shows the basic organization of an ANN.

The first layer takes the external data that is known as the input layer, and performs a transformation

of these data and sends its output to the next layer. The final layer of the networks is the output layer

that infers the final result from all the transformations of the previous layers. Between the input and

the output layers, there might exist some intermediate layers also known as hidden layers (figure 1.7).

Figure.1.7. Layers in an artificial neural network

The layers can be fully-connected by having every neuron in layer[i] connect to every other neuron

of layer[i+1], or the connections can be pooling by connecting a set of neurons in layer[i] to a single

neuron in layer[i+1] thereby reducing the number of neurons in layer[i+1].

1.2.2. Learning in ANN

Learning is a continuous process of adjusting connections between the neurons by modifying the

weights, so that the output results will converge towards the correct output after running the network

in each iteration. The learning can be considered complete if the error rate ideally becomes zero, or

that if each iteration of running the network does not reduce the error rate. In order to try and avoid

oscillations of weights inside the neural network during learning, adaptive learning must be

implemented to in order to maintain a gradient ascent or descent of the weights.

15

Final results of the network are mapped into a probability distribution of predicted outputs by using

normalizing functions such as softmax. However, the actual output might not be the desired output.

The error rate in ANN does not typically reach zero, even after the learning is done. A cost function

maps the desired real results to the actual results, and if the error rate determined by the cost function

is deemed too high, then the network is basically is not designed very well, and re-designing it must

be put into consideration.

1.2.3. Deep Convolutional Neural Networks and Deep Learning

A deep neural network (DNN) is a subset of ANN where there exists a large number of layers between

the input the and the output layers. The extra layers in DNN enable the extraction of features from

the previous layers. DNN are feedforward in nature. They do not provided feedback to the previous

layers, and the adjusting of the weights is done at the end of network after the probability distribution

has been calculated.

One of the main fields of DNN is convolutional or deep convolutional neural networks (CNN /

DCNN), they are used in computer vision [28], or speech recognition. CNNs are fully-connected

networks in which each neuron in one layer connects to all the neurons in the next. CNN employ

mathematical convolutions in order to transform the input data into the output. There are a large class

of CNN that were developed over the years. Figure 1.8 arranges them in accuracy versus number of

operations in a single forward pass. One single forward pass indicates how many operations (G-OPS)

are required in order to transform the input data of the network to the output result. The size of the

circles indicates the memory footprint of each network.

Figure.1.8. Accuracy versus number of operations single forward pass for a certain class of CNN

16

Chapter 2 RISC-V and the Klessydra Processor Family

2.1. Motivation behind adopting RISC-V

The first step in building Klessydra a majorly open source family of processing cores, was through

choosing an instruction set. Our choice in that matter considering we are a group of researchers with

limited funding was to adopt an open instruction set free from royalties.

Our motivation for adopting the RISC-V instruction set, was basically similar to the motivation of

the team from University of California, Berkley when they developed the RISC-V ISA. Which was

to make instruction sets free. Another reason encouraged us was that RISC-V was designed to tailor

and exploit all types of architectures. In-order, out-of-order, embedded low-power, supercomputers

and etc. The third reason was that, RISC-V providing encoding space for custom instructions, helped

flourish the research community by allowing students, researchers and industries to test, and

experiment their own non-native instruction sets.

Also, comparing both RISC-V and OpenRISC, RISC-V being a more revised and well-studied ISA

made the case that they were a better option to adopt than OpenRISC for several reasons, most

importantly is that openRISC supports condition codes and branch delay slots which complicate

higher performance implementations. Also, OpenRISC supporting fixed sized 16-bit immediates

made little encoding space to let the ISA grow.

2.2. Background

RISC-V is an open instruction set architecture, the project was started in 2010 at the University of

California, and it still continues to expand the ISA specification till the present day.

The ISA is based on reduced instruction set computing, and it provides two reference manuals. The

first being the user-level ISA, and the second being the privileged architecture [7]. The main

motivation behind having an open source instruction set, was the availability of the open source Linux

operating system, and the open networking protocols TCP/IP [8]. The question came as to why

instruction sets cannot be free as well. This motivated the engineers at Berkley to create an ISA being

open and royalty free. Commercial ISAs from Intel, ARM, and IBM being proprietary limited the

research in computer architectures to those companies themselves. And in order to adopt the

standards, one must undergo a rigorous process of negotiations in order to arrive at an agreeable price

for adopting the proprietary standards, and the process is reported to take about six to twenty-four

months.

RISC-V till date supported the computer architecture research and education consortium in

developing their own proprietary or open-source processors. Currently there are tens of RISC-V

implementations, like Rocket, RI5CY, Ariane, Klessydra, BOOM, Taiga, and many more [9]. One of

their main future goals is to have the instruction set adopted also in industry implementations.

17

In the next sections in this chapter we will make a brief summary or the RISC-V instruction sets, then

we will discuss one huge advantage provided by RISC-V that enabled researches to innovate even

more in the computer architecture domain, by giving more implementation freedom to the user.

Finally, we will discuss which architecture and ISA extensions were adopted in the Klessydra-T cores

presented in this thesis.

2.3. Instruction set architecture briefing

The RISC-V ISA is the base integer ISA, which must be defined in any implementation. The base

integer ISA is the backbone of the entire standard that delivers a minimal set of instructions sufficient

to be provided to compilers, linkers, assemblers, and operating systems. The base integer ISA can be

implemented for both 32-bit and 64-bit architectures.

The base integer ISA is labeled “I” and is preceded by either one of the following labels. “RV32” or

“RV64”. It supports 32 general purpose registers from “x0-x31” with “x0” being a read only register

hardwired to 0. Table 2.1, shows the application binary interface (ABI) of the integer and floating

point registerfiles.

Table.2.1. RISC-V mnemonics for RISC-V integer and floating point registers

The return address register “x1” is not hardwired automatically in function calls, but rather jump

instruction branching to call environments use register “x1” by default to hold the return address. The

stack pointer “x2” is identical to each hardware thread or core, and in RISC-V it always points to the

beginning of the stack, and the loads and stores to the stack are relative to the base address (i.e. stack

pointer in this case).

The base ISA has four instruction formats, as shown in figure 2.1. All instructions have a fixed length

and must be aligned 32-bit aligned.

18

Figure.2.1. Base Instruction Formats

The source rs1, rs2 and destination rd operands always fixed in their positions in order to keep the

decoding simple. The immediates are always sign extended except for CSR immediates.

The base ISA is divided into five categories of instructions:

• The integer computational instructions have a subset of arithmetic, logic, and shifting

operations. That either in majority the I-type or R-type format. LUI/AUIPC use the U-

type.

• The control transfer instructions have a subset of conditional and unconditional jumps.

Conditional jumps are relative to the program counter, and do not link any registers.

Unconditional jumps can behave like a goto statement if there are no pushes to the return

address stack (RAS), or they could behave like function calls, or function returns by

pushing and popping to the RAS (Table 2.2).

Table.2.2. RAS stack prediction hints

• The load and store instructions get the memory address by adding the base address

stored in rs1 to the Immediate in the instruction. Load instructions have the I-

immediate, and Store use the S-Immediate. They can fetch/write bytes, half-words,

and words.

• The memory fence instructions insure that one hart performs its memory access before

the other hart by fencing the memory accesses.

• The control and status instructions access the CSR registers, and modify the ones

that are not read only. A large subset of these are registers used for performance

counting.

• The last are environment call and break points which transfer the execution to a

more privileged environment or to a debugger.

RISC-V supports more extensions that include operations being ubiquitous in the computing world.

They include the M-extension for Multiply/Divide, A-extension for Atomic operations that help

ensure thread synchronization, and memory region locks, F/D-extension for single and double

floating-point instructions, and many more that are still being drafted.

19

2.4. Custom instruction set extensions

RISC-V has been designed to support extensive customization by providing encoding space for

custom-instructions as shown in table 2.3. Any custom implementation is considered to be a part of

the non-standard extensions. The following table shows the map of the base 7-bit opcode and the

spaces reserved for each opcode.

Table.2.3. RISC-V based opcode map, inst[1:0] = 11 i.e. compressed instructions are not included in the table

As seen from table 2.3 the are four base opcode spaces reserved for custom instruction extensions:

custom-0, custom-1, custom-2, and custom-3.

2.5. RISC-V support in Klessydra

All Klessydra implementations till date support the “I” base integer instruction set in 32-bit. The

introduction of the later multithreaded Klessydra-T0 required at least minimal support of the atomic

extensions, by implementing the AMOSWAP instruction from the A-extension. The Klessydra-Fx

implementation continued to support multithreading thus maintaining the atomic support. Also. the

M-extension has been augmented in later releases to provide fast multiplication, especially in the

Klessydra-T1 to help execute small vectors quickly in convolutional neural networks.

As for the custom instruction set augmentation, they were included only in the Klessydra-T1, they

base opcode encoded for the custom instruction was as follows:

• Custom memory instructions encode the opcode space reserved for “custom-0”, the

opcode[6:0] being “7b’0001011 ”

• Custom vector arithmetic instructions encode the opcode space for “custom-1”, the

opcode[6:0] being “7b’0101011”.

Table 2.4 shows the augmented instructions in Klessydra-T1, and their description will be found in

appendix A.

Table.2.4. Klessydra K custom instruction set extensions

 Name Binary format Assembly syntax Opcode
KMEMLD R kmemld rd, rs1, rs2 custom-0

KMEMSTR R kmemstr rd, rs1, rs2 custom-0

KBCASTLD R kaddv rd, rs1, rs2 custom-0

KADDV R kaddv rd, rs1, rs2 custom-1

KSUBV R ksubv rd, rs1, rs2 custom-1

KVMUL R kvmul rd, rs1, rs2 custom-1

KVRED R kvred rd, rs1, rs2 custom-1

KSVADDSC R ksvaddsc rd, rs1, rs2 custom-1

20

KSVADDRF R ksvaddrf rd, rs1, rs2 custom-1

KSVMULSC R ksvmulsc rd, rs1, rs2 custom-1

KSVMULRF R ksvmulrf rd, rs1, rs2 custom-1

KDOTP R kdotp rd, rs1, rs2 custom-1

KDOTPPS R kdotpps rd, rs1, rs2 custom-1

KSRLV R ksrlv rd, rs1, rs2 custom-1

KSRAV R ksrav rd, rs1, rs2 custom-1

KRELU R krelu rd, rs1, rs2 custom-1

KBCAST R kbcast rd, rs1 custom-1

KVCP R kvcp rd, rs1 custom-1

In addition to instructions, also custom CSR registers were added, table 2.5 lists the custom CSR

registers.

Table.2.5. Klessydra K custom CSR extensions

Name CSR_Addr TYPE Reg_Size Description
MVSIZE 0xBF0 R/W Log2(SPM_Size) Contains the vector size the

maximum being

the SPM size

MVTYPE 0xBF8 R/W 2-bits Contains the type of data the vector

has (8-bit, 16-bit. 32-bit)

MPSCLFAC 0xBE0 R/W 5-bits Post scaling factor for right shifts

(used by kdotpps instruction)

2.6. Patches to the riscv-gnu-toolchain:

Two simple modifications were to be made, to the sources in the RISC-V GCC toolchain [35], the

first was to “riscv-opc.c”, where it had all the structures of the RISC-V instruction listings. As seen

below:

/* Vector Extensions */ 1
{"kmemld", "I", "d,s,t", MATCH_K_MEMLD , MASK_K_MEM , match_opcode, 0 }, 2
{"kmemstr", "I", "d,s,t", MATCH_K_MEMSTR, MASK_K_MEM, match_opcode, 0 }, 3
{"kbcastld", "I", "d,s,t", MATCH_K_BCASTLD , MASK_K_MEM , match_opcode, 0 }, 4
{"kaddv", "I", "d,s,t", MATCH_K_ADDV, MASK_K_ARITH, match_opcode, 0 }, 5
{"ksubv", "I", "d,s,t", MATCH_K_SUBV, MASK_K_ARITH, match_opcode, 0 }, 6
{"kvmul", "I", "d,s,t", MATCH_K_VMUL, MASK_K_ARITH, match_opcode, 0 }, 7
{"kvred", "I", "d,s", MATCH_K_VRED, MASK_K_ARITH | MASK_RS2, match_opcode, 0 }, 8
{"kdotp", "I", "d,s,t", MATCH_K_DOTP , MASK_K_ARITH, match_opcode, 0 }, 9
{"ksvaddsc", "I", "d,s,t", MATCH_K_SVADDSC, MASK_K_ARITH, match_opcode, 0 }, 10
{"ksvaddrf", "I", "d,s,t", MATCH_K_SVADDRF, MASK_K_ARITH, match_opcode, 0 }, 11
{"ksvmulsc", "I", "d,s,t", MATCH_K_SVMULSC, MASK_K_ARITH, match_opcode, 0 }, 12
{"ksvmulrf", "I", "d,s,t", MATCH_K_SVMULRF, MASK_K_ARITH, match_opcode, 0 }, 13
{"ksrav", "I", "d,s,t", MATCH_K_SRAV, MASK_K_ARITH, match_opcode, 0 }, 14
{"ksrlv", "I", "d,s,t", MATCH_K_SRLV, MASK_K_ARITH, match_opcode, 0 }, 15
{"kbcast", "I", "d,s", MATCH_K_BCAST, MASK_K_ARITH | MASK_RS2, match_opcode, 0 }, 16
{"krelu", "I", "d,s", MATCH_K_RELU, MASK_K_ARITH | MASK_RS2, match_opcode, 0 }, 17
{"kdotpps", "I", "d,s,t", MATCH_K_DOTPPS, MASK_K_ARITH, match_opcode, 0 }, 18
{"kvcp", "I", "d,s", MATCH_K_VCP, MASK_K_ARITH | MASK_RS2, match_opcode, 0 },19

21

The second modification was made to the “riscv-opc.h”, where all the defines were made that

include the instruction mask and instruction opcode, as well as the CSR defines.

/* Klessydra Extensions */ 1
 2
/* CSR Extensions */ 3
#define CSR_MVSIZE 0xbf0 4
#define CSR_MVTYPE 0xbf8 5
#define CSR_MPSCLFAC 0xbe0 6
 7
/* Vector Instructions Extensions */ 8
#define MASK_K_MEM 0xfe00707f 9
#define MATCH_K_MEMLD 0xb 10
#define MATCH_K_MEMSTR 0x200000b 11
#define MATCH_K_BCASTLD 0x400000b 12
#define MASK_K_ARITH 0xfe00707f 13
#define MATCH_K_ADDV 0x200202b 14
#define MATCH_K_SUBV 0x400202b 15
#define MATCH_K_VMUL 0x800202b 16
#define MATCH_K_VRED 0xC00202b 17
#define MATCH_K_DOTP 0x1000202b 18
#define MATCH_K_SVADDSC 0x1800202b 19
#define MATCH_K_SVADDRF 0x1a00202b 20
#define MATCH_K_SVMULSC 0x1c00202b 21
#define MATCH_K_SVMULRF 0x1e00202b 22
#define MATCH_K_SRAV 0x2000202b 23
#define MATCH_K_SRLV 0x2200202b 24
#define MATCH_K_RELU 0x3000202b 25
#define MATCH_K_DOTPPS 0x3200202b 26
#define MATCH_K_BCAST 0x3c00202b 27
#define MATCH_K_VCP 0x3e00002b28

DECLARE_CSR(mvsize , CSR_MVSIZE) 1
DECLARE_CSR(mvtype, CSR_MVTYPE) 2
DECLARE_CSR(mpsclfac , CSR_MPSCLFAC) 3
 4
DECLARE_INSN(kmemld, MATCH_K_MEMLD, MASK_K_MEM) 5
DECLARE_INSN(kmemstr, MATCH_K_MEMSTR, MASK_K_MEM) 6
DECLARE_INSN(kbcastld, MATCH_K_BCASTLD, MASK_K_MEM) 7
DECLARE_INSN(kaddv, MATCH_K_ADDV, MASK_K_ARITH) 8
DECLARE_INSN(ksubv, MATCH_K_SUBV, MASK_K_ARITH) 9
DECLARE_INSN(kvmul, MATCH_K_VMUL, MASK_K_ARITH) 10
DECLARE_INSN(kvred, MATCH_K_VRED, MASK_K_ARITH) 11
DECLARE_INSN(kdotp, MATCH_K_DOTP, MASK_K_ARITH) 12
DECLARE_INSN(ksvaddsc, MATCH_K_SVADDSC, MASK_K_ARITH) 13
DECLARE_INSN(ksvaddrf, MATCH_K_SVADDRF, MASK_K_ARITH) 14
DECLARE_INSN(ksvmulsc, MATCH_K_SVMULSC, MASK_K_ARITH) 15
DECLARE_INSN(ksvmulrf, MATCH_K_SVMULRF, MASK_K_ARITH) 16
DECLARE_INSN(ksrav, MATCH_K_SRAV, MASK_K_ARITH) 17
DECLARE_INSN(ksrlv, MATCH_K_SRLV, MASK_K_ARITH) 18
DECLARE_INSN(krelu, MATCH_K_RELU, MASK_K_ARITH) 19
DECLARE_INSN(kdotpps, MATCH_K_DOTPPS, MASK_K_ARITH) 20
DECLARE_INSN(kbcast, MATCH_K_BCAST, MASK_K_ARITH) 21
DECLARE_INSN(kvcp, MATCH_K_VCP , MASK_K_ARITH)22

2.7. Concluding remarks

22

In the end RISC-V is not only an open source ISA available for simulations, it is a real ISA suitable

for inherent hardware implementations. The standards were provided to be balanced to be exploited

by all types of architectures. It supports 32 and 64-bit address space and IEEE standard floating-point

standards, it provides custom instruction encoding space to allow researchers to explore native non-

standard custom extensions, or companies to integrate their own specialized instructions and finally

it still has a great potential to become even more pervasive throughout the industry.

23

Chapter 3 The PULPino Microcontroller Platform

3.1. Motivation behind choosing PULPino

Having already chosen to build a RISC-V processor required also choosing a SoC. Designing our

own SoC from scratch was not feasible since our group of researchers were limited. RISC-V being

an emerging technology, the choices among the open SoCs available were not many. Pulpino being

part of the ultra-low power projects also was a good reason to adopt the Systen. Finally, having close

relations and collaborations with the University of Bologna, provided an ongoing communication

channel in order to get continuous support from their side. For the above reasons, we can say that

Pulpino was our choice.

Pulpino is an open-source System-on-Chip embedding a 32-bit RISC-V based microprocessor.

Pulpino targets embedded systems and embeds ultra-low power designs. The Pulpino SoC was

adopted by a large group of researchers globally either for research or commercial purposes.

3.2. Background

PULPino is a smaller version of PULP which stands for Parallel Ultra Low Power processor. The idea

behind starting the PULP project, was that in order to achieve low dynamic power consumption, the

processors needed to be operated at near threshold voltage levels [10]. The speed will drop rapidly

when operating at near threshold voltages since the delay follows a quadratic curve (figure 3.1). Their

solution was to re-ramp up the speed by embedding several processors in PULP to work in parallel.

Figure.3.1. Propagation delay versus power supply voltage

24

PULP is a large project with a very wide scope of work, it incorporates a large group of engineers,

and specialized experts. The project includes open source processors, peripherals, communication

buses, an integrated all-in-one environment to build and test the embedded cores with Modelsim and

Vivado and the entire SoC, also adds a custom RISC-V toolchain.

PULPino is a miniaturized version of PULP which embeds only one core. PULPino is completely

open source[17][18], and can be found on GitHub. Figure 3.2 shows the building blocks of PULPino.

Figure.3.2 Architecture of PULPino

Pulpino targets RTL simulations, FPGAs, and ASICs. It has by default a 32KB program memory, and

a 32KB data memory. The boot ROM is 512B. Peripherals are mapped in the upper region of the core

and are dedicated 4KB each. The peripherals in Pulpino communicate through sending interrupts. All

the interrupts are saved in an interrupt vector table (IVT). When servicing the interrupt, the core will

check the IVT in order to jump to the appropriate interrupt handling routine.

Other than the Peripherals, it features an SPI Slave port that can be used to pre-load programs into

the memories without the help of the core. It is connected on the AXI as an AXI master which allows

external access to all memories and peripherals. Also, Pulpino has a JTAG debugging interface that

accesses all peripherals and memories, and can halt and single step the core.

3.3. PULPino native processor cores

Pulpino integrates two RISC-V processors. They are RI5CY and Zero-Riscy. RI5CY is an in order

four pipeline stage processors. It supports the base integer instruction set RV32I, compressed

instructions RV32C, multiplication extension RV32M, and single precision floating point extensions

RV32F. RI5CY also implements other extensions to the ISA such as hardware loops, bit manipulation

instructions, MAC operations, packed SIMD instructions and many more [52][53].

Zero-Riscy is an in-order, single-issue processor with only two pipeline stages. It supports the base

integer instruction set RV32I, the compressed instructions RV32C, and the multiplication extension

RV32M. The core can be configured to support the embedded extension RV32E, and thus reducing

the registerfile to half its size. A tiny version of zero-riscy can be implemented by enabling the

25

embedded extension (RV32E), and disabling the multipliers and dividers (RV32M). This

implementation is called Micro-Riscy which is the smallest version supported.

3.4. Embedding non-native Klessydra processing cores in PULPino

Figure 3.3 shows the Klessydra and Pulpino Roadmap. Klessydra targeting FPGA implementations,

while Riscy cores targeting ASIC implementations.

Figure.3.3 Klessydra family roadmap

In order to correctly embed Klessydra core and software libraries inside Pulpino, changes had to be

made to the Pulpino environment on many levels:

• Modifying the Klessydra RTL: The pinout of the Klessydra was made one hundred percent

compatible with the riscy cores from Pulpino. Also, the interrupt handling, and exception,

and event handling had to be modified so that it passes the generic tests.

• Modifying the Pulpino RTL: The systemverilog of the Pulpino RTL and testbench were

modified to add the instances of Klessydra cores, and pass the added generic parameter.

• Modifying the Software Environment: The CMake files were modified to include the

generic Klessydra tests and software libraries. Also, they were modified along with a shell

script in order to pass the arguments to the Tcl simulate scripts.

• Modifying the Modelsim compile and Simulate scripts: In addition to the software

environment and RTL, compile scripts were also modified to compile the different versions

of Klessydra among the compiled Pulpino libraries, and similarly the simulate scripts.

26

Chapter-4 Klessydra T0 Architecture

4.1. The Klessydra-T family

Klessydra is a processing core family that features full compliance with the RISC-V instruction set.

Klessydra cores were designed in order to be fitted inside the PULPino SoC. The Klessydra family is

composed of a single in-order two pipeline-stage core named Klessydra-S0 [11], a set of

multithreaded cores named Klessydra-Tx, and a set of fault tolerant cores named Klessydra-Fx

[20][21]. This thesus will cover the Klessydra-Tx family and its different variants. All the Tx cores

have been synthesized and tested for FPGAs from XILINX. FPGA synthesis being our main target,

was because soft-cores are wildly available on embedded systems [11]. A customizable embedded

core is favorable since it can be reconfigured to adapt easily to the user’s target applications.

Klessydra cores support RISC-V ISA, all versions support the base integer instruction set in 32-bit

|”RV32I” in bare metal, the Tx and Fx versions extend the ISA with the atomic instruction extension,

some Tx variants further extend the ISA with multiplication and division extension from RISC-V, and

some augment a set of specialized custom instructions augmented to the RISC-V ISA designed to

accelerate convolutional neural networking applications. The ports of the Klessydra cores are pin-to-

pin compatible with the RISCY cores inside PULPino. The Tx versions of Klessydra support a

multithreading paradigm called interleaved multithreading (IMT) also known as barrel processing.

This chapter illustrates the early version of the Tx cores known as the T0 cores, and the different

variants of the T0 cores. Chapter 5 upgrades the optimal T0 implementation adopted in this chapter

and adds a specialized neural network accelerator that is specifically designed to exploit the IMT

architectures. The upgraded version is known as the T1 core.

4.2. Motivation for choosing interleaved multithreading

A good guideline to follow in order to increase the energy consumption per instruction of an

embedded processor, is through decreasing the idle time of the embedded systems by eliminating the

pipeline stalls.

In-order architectures stall the processor’s pipeline to fence between same-operand read and write

access. These stalls are unfavorable as they degrade the performance of the processor, as well as

decrease the energy efficiency by continuously accumulating the total idle time of the processor.

Out-of-order architectures can easily eliminate the pipeline stalls [49][50][51], however in order to

do that, they employ highly complex dynamic scheduling logic to resolve the data dependency

hazards. These data dependency eliminating schemes give rise to anti-dependency hazards, and again

out-of-order architectures employ register renaming approaches to remove those anti-dependencies.

In addition, these architectures being highly pipelined must integrate a well-advanced branch

predicting logic, since branch miss prediction will greatly impact the overall performance. This type

of architecture succeeded in greatly mitigating the pipeline stalls and improves the overall

performance. However, these designs being very complex greatly increased the area and the power

27

consumption of those architectures. In other words, the performance was actually a tradeoff with the

power and area.

One existing approach named barrel processing or interleaved multithreading (IMT) [16] aimed at

replacing the out-of-order processor’s highly complex approach to mitigate the pipeline stalls with

another relaxed approach. That is by employing hardware threads to utilize the idle time of the core

and fence between the registerfile read and write accesses.

An IMT architecture interleaves a hardware thread (hart) to fill the bubbles in the instruction pipeline

in order to avoid Read-after-Write (RAW) data hazards. Doing so, it does not introduce a new class

of anti-dependency hazards such as Write-after-Read (WAR) and Write-after-Write (WAW) as in the

case of OOO architectures.

A basic IMT processors emulates a single-core single-issue processor with zero pipeline stalls. IMT

processors with their ability to continuously issues instructions without data dependency stalls can

converge easily towards 1 IPC in single issue processors, bit for a certain class of applications. The

first class being decoupled sequential applications, and the second being balanced parallel

applications. Regarding sequential applications, if the IMT processor was running in a way such that

the programs are executing only on one hart and the other harts are idle, the overall performance will

surely suffer from the overhead of the interleaving the other harts in the core, and the bigger the

number of harts an IMT core has, the worse it performs when executing sequential code. A good

practice that exploits the nature of such cores is to have every hart run its own sequential program.

Such that the inputs data of one hart are completely independent from the output results of another

hart. Such applications might include for example a microcontroller interfacing multiple sensors, and

monitoring the changes, then transmitting the data over a wireless channel in order to be interacted

by a human interface.

As for the second class of applications easily exploitable by IMT processors, one might quickly

deduce that an IMT architecture can perform well in applications with parallel workloads. Although

that is partly true, however, the evaluation of how an IMT core performs when running a parallel

application is mainly dependent on how balanced the divided workload is between the harts.A

balanced workload in a parallel program can have inter-thread dependencies that require thread

synchronization; however, the nature of the workload being balanced makes the overhead of thread

synchronization unnoticeable. If the parallel applications are balanced and loosely coupled, they will

perform better than a balanced workload with tightly coupled applications. Such application classes

are very much suitable for IMT architectures since they utilize all the interleaving harts very

efficiently. There are many examples of such applications like; data sorting, searching algorithms,

Monte-Carlo simulations, computational fluid dynamics (CFD) simulations, molecular modeling and

simulations.

4.3. Klessydra-T0 introduction and background information

The Klessydra-T0 core is a basic IMT microprocessor which supports the RV32IMA instruction set

extensions of RISC-V in bare metal. The ‘T’ symbol indicates that the core architecture is

multithreaded. The multithreading paradigm supported is Interleaved Multithreading or IMT. The

Klessydra-T0 can be parametrized to run without the M-extension, and also the registerfiles can also

be parametrized to support the Embedded E-extension instead for area critical environments.

Throughout this chapter, I will refer to the core as “T0” as an abbreviation to the name Klessydra-T0.

The T0 IMT is a single-issue in-order processor which is available in different variants, and the

variants each of which has a different instruction pipeline organization, and they are designated by

28

the following abbreviation: “T0ab”. Where the letter ‘a’ following the zero is the identifier for the

minimum number of hardware threads needed to be interleaved in a core in order to avoid inserting

any bubbles in the pipeline and this is known as the thread pool baseline. The ‘b’ identifier is to

indicate the number of harts present in the current version of the core or otherwise known as thread

pool size.

In order to build an IMT architecture, the following entities must be replicated for each hart:

• Registerfile

• Program Counter

• CSR Unit

After having replicated the above units, a hardware context counter “harc” must be built. The harc

interleaves between the harts in the IMT core, such that on every instruction grant, we send to the

program memory a request from another hart.

Figure.4.1. Conceptual view of hardware context counter (harc) interleaved execution

Klessydra-Tx cores have a parameterizable number of harts to interleave where the hart count is

identified in the package file by a parameter called “THREAD_POOL_SIZE”. The recommended

number of harts to put in a core should be less than or equal to the thread pool baseline. In other

words, T0ab is recommended to be configured such that ‘b’ is less than or equal to ‘a’.

Configuring ‘b’ to be greater than ‘a’ is allowed, however, it will not give any performance boosts,

rather it will significantly slow down the performance when running sequential applications. And

running parallel applications as well degrade the performance by augmenting bigger stall overheads

from idle harts, that will remain idle until all the other harts would have arrived at a thread

synchronization barrier. Not to mention the area of the architecture will grow bigger, and as the

layouts grow bigger, the elements in the FPGA selected during place and route will be placed ever so

farther away from each other, which in turn will yield slower layouts resulted from larger net-delays

between the FPGA element slices.

In order to know the minimum thread baseline needed so that no data hazards arise, we have to know

how many pipeline stages exist from the read port of the registerfile till the write port of the

registerfile. For every pipeline stage separating the read and write ports, a hart must be interleaved,

else the user can choose to configure the core to have a hart count less than the minimum baseline

and NOP operations will be introduced in the pipeline to fence between instructions belonging to the

same hart.

D

e

c
o

d

e

E

x

e
c

W
r

i

t
e

29

4.4. Choosing the optimal IMT pipeline organization:

In this section, we will demonstrate the framework that followed in choosing the optimal pipeline

organization to use in interleaved multithreaded processors [15]. In the end of the section we will

show which T0ab organization was chosen as the most ideal processor to use in our research. This

section is oriented around three main keywords:

• TPS or Thread pool size, which indicates the total number hardware threads in the core.

• TPB or Thread pool baseline that indicates the minimum number of harts needed to avoid

data dependency stalls.

• NT or Number of active threads, which indicates the number of active harts M, in a core

with a TPS equal to N, such that always: .

The exploration parameters of IMT architectures was first studied by implementing a set of pipeline

organizations ranging from two stages to four stage [14]. each being run with a different set of thread

pool sizes. The pipeline implementations studied were as follows:

a. F / RDEW (two pipeline stages)

b. F / R / DEW (three pipeline stages)

c. F / RD / EW (three pipeline stages)

d. F / RD / E / W (four pipeline stages)

e. F / R / DE / W (four pipeline stages)

In the pipeline schemes listed above, F designates the instruction fetch stage, R is the registerfile

reading, D is decoding, E is executing, and W is registerfile writeback. Early T0 versions included a

fetch stage, and flushing logic to discard instruction of the same hart in the fetch when a branch is

taken. However, later releases ignored the stage and the incoming instruction goes directly to the

decode unit. The requested instruction goes directly to the stage after the F. These pipeline structures

were designed to study the optimal pipeline organization to use in an interleaved multithreaded bare

metal RISC-V processor. Synthesis runs were done on XILINX 7 Series FPGAs [3]. The synthesis

timing constraints were set low to make the Vivado compiler generate fast netlists.

The FPGA element utilization from the synthesis runs of the set of configurations is shown in table

4.1. As well as the minimum cycle time of each layout. For instance, T012 architecture has a TPS of

2 and thread pool baseline of 1.

Table.4.1. Resource Utilization, and Minimum cycle time [ns]

Architecture TPS Codename LUT FF Tck

F / RDEW

2 T012 3264 2410 12.7

3 T013 4018 3577 13.9

4 T014 4351 4744 15.9

F / R / DEW

2 T022 3211 2544 8.9

3 T023 3892 3711 9.7

4 T024 4217 4882 9.5

F / RD / EW

2 T022_v2 3583 2653 9.6

3 T023_v2 4461 3853 9.6

4 T024_v2 4608 5052 9.4

F / R / DE / W

2 T032 3242 2679 8.6

3 T033 4011 3914 8.9

4 T034 4187 5144 8.6

F / RD / E / W 2 T032_v2 3635 2725 7.1

30

3 T033_v2 4520 3958 7.3

4 T034_v2 4825 5189 7.4

It is evident from table 4.1 that every increment of a hart (TPS) in the core, increased the number of

flip-flops count by more than 1024 (32*32) registers. And every pipeline stage introduced increased

the flip-flop count by 100~200 or 5% to 7%. For example, going from the pipeline organization T012

to T022 revealed only a 5% increase in the total flip-flop count and a slight decrease in the total LUT

count, and going from the T023_v2 organization to T033_v2 increased the flip-flop count by 6% and

the LUT count by 1%.

The cycle time of each organization is also shown in table 4.1. One concern we had was that the

overhead of the interleaving new harts would increase the area utilization in the FPGA such that

during the post-synthesis place and route phase, Vivado would place the elements very far away from

each other, making the net delay of the critical path a lot bigger. However, the Vivado timing reports

[48] only showed evidence to that situation happening in the F/RDEW pipeline organization where

the cycle time increased from 12.7ns in the T012 to 13.9ns in the T013, and up to 15.9ns in the T014.

However, we don’t care about these implementations, since they were only control configurations

used for comparative purposes to the other T0 pipeline organizations.

Looking at the other implementations shows only little cycle time increase due to interleaving more

harts, and more significant cycle time decrease due to pipelining which is good. Hence, we conclude

from the timing report that the increase overhead of adding a new hart to resolve the data dependency

problems does not really impact the cycle time, and that with every pipeline the maximum frequency

of the core keeps on increasing, such that the cycle time demonstrated a sharp drop from 12.7ns in

the T012 down to 7.4ns in the T034_v2.

The throughput of an IMT processor running an integer arithmetic application at maximum frequency

is shown in table 4.2. The table shows the number of MIPS for each TPS configuration in every

pipeline organization, when the active number of threads NT is less than or equal to the TPS.

• When , the number of MIPS suffers from data dependencies and pipeline flushes.

• When , the number of MIPS will suffer only due to pipeline flushes.

• When , the number of MIPS will not suffer from any pipeline flushes, and data dependency

stalls. However, the MIPS will also not increase with the further increase of NT.

Table.4.2. Throughput at Maximum Frequency [MIPS] (N.A. = NOT APPLICABLE)

Architecture TPS TPB Codename
Number of Active threads NT

NT=1 NT=2 NT=3 NT=4

F / RDEW

2

1

T012 67.9 78.8 n.a. n.a.

3 T013 61.9 71.8 71.8 n.a.

4 T014 54.4 63.1 63.1 63.1

F / R / DEW

2

2

T022 69 96.4 n.a. n.a.

3 T023 63.6 88.8 103 n.a.

4 T024 65 90.8 105.3 105.3

F / RD / EW

2

2

T022_v2 64.6 90.2 n.a. n.a.

3 T023_v2 64.2 89.6 104 n.a.

4 T024_v2 65.6 91.6 106.2 106.2

F / R / DE / W

2

3

T032 50.8 74.6 n.a. n.a.

3 T033 49.1 72.2 100.8 n.a.

4 T034 50.6 74.3 103.8 120.4

31

F / RD / E / W

2

3

T032_v2 58.8 86.4 n.a. n.a.

3 T033_v2 57.4 84.3 117.7 n.a.

4 T034_v2 56.6 83.1 116 134.6

Not applicable are set in cases where NT is greater than TPS (NT >TPS), which is impossible.

Let’s study one example from the table above. Take a look at the T023_v2 implementation, this

implementation has a TPB of 2. When NT is equal to 1, the number of MIPS reported shows the

throughput of the core that is affected by data dependencies and pipeline flushing, while setting NT

to be equal to TPB which is 2, shows the throughput with stalls only due to pipeline flushing, and as

NT becomes greater than TPB (i.e. NT=TPS=3), the pipelines in the core will only have one

instruction per hart at a given time, thus making pipeline flushing unnecessary, and so the

throughput maximizes to the top attainable values.

Table 4.3 and table 4.4 report the average dynamic power consumption when running at the maximum

frequency for each implementation an integer arithmetic application, and the average energy

efficiency of the processor to execute one instruction. Static power consumption was not reported,

since FPGAs consume a constant static power independent of the parameters or test, they are running.

Also, the designs do not provide any ad-hoc mechanisms to reduce the leakage currents [11][12].

Table.4.3. Average Dynamic Power at Maximum Clock Frequency [mW] (N.A. = NOT APPLICABLE)

Architecture TPS TPB
Code-

name

Number of Active threads NT

NT=1 NT=2 NT=3 NT=4

F / RDEW

2

1

T012 43.57 45.67 n.a. n.a.

3 T013 38.44 40.29 40.29 n.a.

4 T014 37.2 38.99 38.99 38.99

F / R / DEW

2

2

T022 53.43 58.43 n.a. n.a.

3 T023 46.77 51.14 53.61 n.a.

4 T024 44.08 48.2 50.53 50.53

F / RD / EW

2

2

T022_v2 45.72 50 n.a. n.a.

3 T023_v2 45.44 49.69 52.08 n.a.

4 T024_v2 38.98 42.63 44.68 44.68

F / R / DE / W

2

3

T032 60.16 65.06 n.a. n.a.

3 T033 49.16 53.17 58.14 n.a.

4 T034 52.49 56.76 62.07 65.06

F / RD / E / W

2

3

T032_v2 67.72 73.24 n.a. n.a.

3 T033_v2 57.92 62.64 68.49 n.a.

4 T034_v2 61.05 66.02 72.2 75.68

Table.4.4 Average Energy Efficiency [nj/instr] (N.A. = NOT APPLICABLE)

Architecture TPS TPB Codename
Number of Active threads NT

NT=1 NT=2 NT=3 NT=4

F / RDEW

2

1

T012 1.63 1.43 n.a. n.a.

3 T013 1.7 1.49 1.49 n.a.

4 T014 1.92 1.68 1.68 1.68

F / R / DEW

2

2

T022 1.75 1.3 n.a. n.a.

3 T023 1.79 1.33 1.17 n.a.

4 T024 1.71 1.27 1.12 1.12

F / RD / EW 2 2 T022_v2 1.74 1.3 n.a. n.a.

32

3 T023_v2 1.75 1.3 1.15 n.a.

4 T024_v2 1.62 1.2 1.05 1.05

F / R / DE / W

2

3

T032 2.5 1.77 n.a. n.a.

3 T033 2.37 1.66 1.24 n.a.

4 T034 2.36 1.67 1.24 1.1

F / RD / E / W

2

3

T032_v2 2.29 1.62 n.a. n.a.

3 T033_v2 2.18 1.54 1.15 n.a.

4 T034_v2 2.26 1.6 1.2 1.06

It is obvious from table 4.3 that implementations with a smaller NT consume less dynamic power

than implementations with bugger NT. However, that does not mean they are more energy efficient,

since within the same implementation, the tests that were utilizing achieved the highest throughput

as shown previously from table 4.2. This is evident, were the implementation running at higher NT,

have the highest energy efficiency. Also, take note that pipelining boosted the top frequency of the

core such that the throughput increase was larger than the dynamic power consumption increase, thus

we can say, and as seen from table 4.4 that the pipelined architectures were not only faster, but also

more energy efficient than their non-pipelined counterparts.

The reported results in the preceding tables show that the most energy efficient implementations were

the T024_v2, and the T034_v2. That is due to the T024_v2 having a very low dynamic power

consumption, and the T034_v2 having the highest throughput. However, our choice as the optimal

IMT implementation to be used in our research was the T033_v2, which is slightly less energy

efficient than T034_v2. One might argue why was our choice not following directly the results in the

tables. That is because of the following reasons:

a) As we suggested at the beginning of this chapter, the recommended number of TPS in an IMT

architecture should be set equal to the TPB. So, the best choice in each pipeline organization

should be as follows, T011, T022, and T033.

b) Fetch buffers were present in the reported results in order to demonstrate the impact of pipeline

flushing on the performance and energy efficiency. They will be removed in the chosen

T033_v2 implementations. In the upgraded implementations of the T033_v2, the fetched

instruction will directly go to the decode stage, and no flushing will be needed.

c) Removing the fetch from the T033_v2 will increase its throughput to match that of the

T034_v2, thus making the T033_v2 to have the highest energy efficiency.

d) T033_v2 is a better choice than T034_v2 in parallel applications, since thread synchronization

overheads will be smaller in the T033_v2.

e) The bigger area increase in the T034_v2 over the T033_v2 tell us that if the two

implementations will be attaining the same throughput at best, then the area increase in the

former does not justify its usage as an efficient processor over the latter.

f) Finally, although not very evident in the pipelined organizations, but the cycle time actually

does slightly increase due to interleaving more harts.

For all the reasons above, they justify that the best option is to use the most pipelined version in which

TPS is set equal to TPB (TPS=TPB). Having chosen the T033_v2 as our ideal implementation for a

fast, and energy efficient processor, in the next section we will see why deeper pipelines like T04 and

T05 were not explored.

33

4.5. Deeper pipeline organizations

4.5.1. Pipelines stages after registerfile read access:

Following the trend from the above tables, it was evident that deeper pipelines provided higher

operating frequencies for the core, and interleaving sufficient threads utilized the wasted energy in

the core by allowing another hart to execute instead of having a delay slot. Figure 4.2, shows the

datapath of the T0 in two different pipeline organizations. The first having the memory accessed from

the execute stage, the second included the memory access from a dedicated memory stage where the

memory address was calculated in the previous pipeline stage.

Although deeper pipelines yielded better results as shown from the previous section. One evident

problem was saturation in the cycle time decrease as the pipelining got deeper, and implementations

such as T044 from figure 4.2b, might not really have higher operating frequencies, since the area

overhead of supplementing additional threads will start to decrease the top frequency by increasing

the net delay more than the increase in the top frequency gained by decreasing the logic delay.

Also, there will be a definite bigger overhead of stalls when synchronizing the hardware threads, or

when there are idle harts in the more pipelined implementations (T044). For example, a program

running on a single hart in the T033 will execute one instruction on the first hart followed by two

wait-for-interrupt (WFI) instructions that act like a NOP. While running an application with a single

hart on the T044 will execute one instruction on the first hart followed by three WFI instructions.

This additional augmented overhead will make deeper pipeline implementations perform worse on

single threaded sequential applications, and unbalanced parallel applications. While for balanced

parallel applications they will maybe not perform much better due to the saturation in the top

frequency increase due to pipelining.

Fetch

Prg Mem

DecodeRF

Execute

Writeback

hart b

hart a

hart c

Fetch

Prg Mem

DecodeRF

Executehart b

hart a

hart c

Writeback

MEM

hart d
Data Mem

Data Mem(a) (b)

Figure.4.2. (a) Klessydra T033 datapath, three harts interleave from RF to WB,

34

(b) T044 datapath interleaves four harts between RF and WB

So, in-order to have a balanced IMT architecture that is fast enough and does not burden the other

harts with a big overhead, T033 remained as our best choice, and post registerfile stage pipelining

was ignored.

4.5.2. Pipelines stages before registerfile read access:

However, there are pipeline implementations that can be made before the registerfile read access, that

do not require the IMT to increase the thread pool baseline as shown in figure 4.3. That is because

the registerfile read and write accesses will still be fenced by the interleaving harts. The first is

separating the decode and the registerfile into separate stages, by placing the decode before the regfile

access as seen in figure 4.3a. The second can be to install a pre-fetch buffer as seen from figure 4.3b.

T033 pipeline was written such that the registerfile access is completely independent of the decode

access, meaning that both entities will work in parallel. Hence separating the decode and the

registerfile stages does not give any performance boosts. Second of all, introducing pre-fetch buffers

will increase the number of instructions per hart in the core such that each hart will have two

instructions in the pipeline, and any branch taken requires the implementation of flushing logic in

order to flush the instruction of the same hart that is present in the pre-fetch buffer. Re-introducing

flushing is completely avoidable, and as demonstrated from the previous section that it has a

significant impact on the throughput of the core thus making it unfavorable as well.

Prg Mem

Executehart b

hart a

hart c

Writeback

MEM

hart d

RF

Decode

Fetch

hart d

Prg Mem

Executehart b

hart a

hart c

Writeback

MEM

hart d

RF

Data Mem

Decodehart d

hart a, b,

c

Prefetch

Buffer

hart a

hart b

hart c

Data Mem

Flushing

Logic

(a) (b)

Figure.4.3. (a) Klessydra T044 datapath five pipeline stage but still works by interleaving only four harts

(b) Klessydra T044 eight pipeline stage still interleaves four harts, and needs flushing logic for branch miss

prediction

For the reasons mentioned earlier, pre-registerfile pipelining is avoided as well since it is either

unnecessary or affects the processor’s throughput by introducing branch delay slots, so we stick again

with the T033 implementation.

35

4.5.3. Conclusion:

Choosing to maintain T033 as the optimal version of the core. In the remaining part of this chapter

we will elaborate more about the building blocks of the T033, and the software developed to facilitate

it. Also, one final note; from here on out, any references to T033_v2 and T022_v2 will be made as

‘T03’ and ‘T02’ respectively since our aim from the beginning was to use IMT cores to have a TPS

equal to the TPB (TPS=TPB).

4.6. The T03 core

In figure 4.4, we show the basic block organization of the T03 core. It is a balanced [23] four-pipeline

stage in order interleaved multithreaded processor. The pipeline stages are Decode/Regfile, Execute,

and Writeback. The Fetch stage does not have any buffers to hold the incoming instructions, hence

incoming instructions directly pass to the Decode stage, but since the fetch has a one cycle latency,

then the fetching is still considered a pipeline stage. And the Registerfile is read in the first stage and

written back in the last stage.

Registerfile reading and instruction decoding is insured to be done in parallel, and all dependencies

between the two processes are eliminated. Since a dependency between instruction decoding and

regfile reading will result in a high logic path delay in that pipeline stage, making the critical path to

become present in that particular pipeline.

Regfile
Decode

PC
PC

CSR

Data Mem

WB

Debug
Updater

harc
Updater

EXEC

hart a

hart b

hart c

Fetch

Prg Mem

Figure.4.4. Klessydra T033 block organization, interleaves three harts in the instruction pipeline

36

The principle of operation of each module in figure 4.4 will be illustrated over the next the few pages.

First, we will start with the datapath in the instruction pipeline, and then moving on to the remaining

modules in the core.

• Fetch: the fetch unit is a simple finite state machine that sends a fetch request packet

containing the program counter of the current active hart whenever the pipeline is not busy.

The received instruction is sent to the decode stage. The RTL description of such a process

is shown in the following code.

 fsm_IF_nextstate : process(all) -- acts as the control unit of the synchronous program memory 1
 begin 2
 if busy_ID = '0' then – checks for a stall from the decode stage 3
 instr_req_o <= '1'; -- request next instruction 4
 else 5
 instr_req_o <= '0'; -- stall the instruction requests 6
 end if; 7
 end process; 8
 9
 process(clk_i, rst_ni) 10
 begin 11
 if rising_edge(clk_i) then 12
 if instr_gnt_i = '1' then – grant from the program memory 13
 -- pc propagation 14
 pc_ID <= pc_IF; -- push the program counter of the incoming instruction to the decode stage 15
 -- harc propagation 16
 harc_ID <= harc_IF; -- push the hart identifier to the decode stage 17
 end if; 18
 end if; 19
 end process;20

• Decoder: Fetched instructions directly go into the decoder. The time to fully decode an

instruction is one clock cycle only. The decoded instruction can be issued to the IE_unit or

Instruction Execute unit, in which all the instructions are executed. Both execution units

receive the type of the decoded instruction in a form of one hot decoding in which the

instruction to be executed corresponds to one bit only of the entire bit-vector. This decoding

scheme passed to the execute stage might generate big vectors as the instruction set supported

grows larger, however, it will relieve the execution stage by making it perform the simplest

re-decoding of the instruction, and limit its parts to only do the execution. The pipeline is

halted whenever the decoder receives a busy_IE signal, from execution stage for each

instruction that requires more than one cycle to execute. The pseudo code below shows the

one hot decoding of the RISC-V instructions, and demonstrates how this one hot pattern are

encoded in the decode stage to be passed to the IE-stage.

 -- EXEC UNIT INSTR SET -- 1
 constant ADDI_pattern std_logic_vector(INSTR_SET_SIZE-1 downto 0) := "0001"; 2
 constant SLTI_pattern std_logic_vector(INSTR_SET_SIZE-1 downto 0) := "0010"; 3
 constant SLTIU_pattern std_logic_vector(INSTR_SET_SIZE-1 downto 0) := "000100"; 4

 fsm_ID_sync : process(clk_i, rst_ni, instr_word_ID_lat) -- synch single state process 1
 begin 2
 if rst_ni = '0' then 3
 …….. 4
 elsif rising_edge(clk_i) then 5
 if busy_IE = '1' then -- halt the decodeif the IE-unit is busy 6
 ……. 7

37

 elsif instr_rvalid_ID = '0' then -- halt if there is no incoming valid instruction 8
 ……. 9
 else -- else decode the incoming instruction 10
 -- Decode OF INSTRUCTION (BEGIN) ----------------------- 11
 12
 ie_instr_req <= '1'; -- enable the IE stage 13
 case OPCODE_wires is 14
 when OP_IMM => 15
 if(rd(instr_word_ID_lat) /= 0) then -- instructions referencing rd=x0 instructions are executed as NOPs 16
 case FUNCT3_wires is 17
 when ADDI => -- ADDI instruction 18
 decoded_instruction_IE <= ADDI_pattern; -- assign the correct one hot pattern to the ADDI instruction 19
 when SLTI => -- SLTI instruction 20
 decoded_instruction_IE <= SLTI_pattern; -- assign the correct one hot pattern to the SLTI instruction 21
 … 22
 … 23
 when LUI => -- LUI instruction 24
 if (rd(instr_word_ID_lat) /= 0) then 25
 decoded_instruction_IE <= LUI_pattern; -- assign the correct one hot pattern to the LUI instruction 26
 else -- R0_INSTRUCTION 27
 decoded_instruction_IE <= NOP_pattern; -- assign the NOP pattern to the LUI instruction 28
 end if; 29
 when AUIPC => -- AUIPC Instruction 30
 … 31
 … 32
 when others => -- ILLEGAL_INSTRUCTION 33
 decoded_instruction_IE <= ILL_pattern; -- assign illegal pattern to instructions with unrecognized opcode 34
 end case; -- OPCODE_wires cases 35
 36
 -- Decode OF INSTRUCTION (END) -------------------------- 37
 end if; -- instr. conditions 38
 end if; -- clk 39
 end process;40

• Registerfile: The T03 has a 2Rd/1Wr operand registerfile with register ‘x0’ being statically

bounded to 0. The registerfile can be configured to be 32x32 regfile following the RV32I

instruction set, or it can be configured to be a 16x32 registerfile thus following the RV32E

extension. While the instructions get decoded, it’s operands are read in parallel by the

registerfile.

• Comparators: are used to make branch decisions. Three comparators are needed to

determine whether the operands satisfy a BEQ, BNE, BLT, BLTU, BGE, BGEU. The

comparators will send a signal to the execute stage to indicate whether the branches will be

taken or not. The separation of the comparators from the execute stage was in order to

balance the decode and the execute stages.

-- COMPARATORS -- 1
 if (signed(regfile(harc_ID)(rs1(instr_word_ID_lat))(31 downto 0)) = 2
signed(regfile(harc_ID)(rs2(instr_word_ID_lat))(31 downto 0))) then 3
 pass_BEQ_ID <= '1'; 4
 else 5
 pass_BNE_ID <= '1'; 6
 end if; 7
 if (signed(regfile(harc_ID)(rs1(instr_word_ID_lat))(31 downto 0)) < 8
signed(regfile(harc_ID)(rs2(instr_word_ID_lat))(31 downto 0))) then 9
 pass_BLT_ID <= '1'; 10
 else 11
 pass_BGE_ID <= '1'; 12

38

 end if; 13
 if (unsigned(regfile(harc_ID)(rs1(instr_word_ID_lat))(31 downto 0)) < 14
unsigned(regfile(harc_ID)(rs2(instr_word_ID_lat))(31 downto 0))) then 15
 pass_BLTU_ID <= '1'; 16
 else 17
 pass_BGEU_ID <= '1'; 18
 end if; 19
--- 20

• Execute: The execute has a four state fsm machine:

◦ Reset State: initial state before the core begins executing instructions.

◦ Sleep State: Idle state in which the core waits for a fetch_en_i signal or an interrupt.

◦ Debug State: Indicates that the core is currently in debug mode.

◦ Data Valid Waiting State: Core is waiting for data to be loaded or stored into the mem.

◦ CSR Instruction Wait State: Indicates that the core is handling CSR instructions.

The execute stage encapsulates all the functional units required to execute the RISC-V

instructions. The functional units are shared by the instructions, and a mapper is included in

order to correctly map the instruction operands to their corresponding FUs:

◦ ADDI, ADD, SUB, AUIPC, JAL, and JALR share the same adder.

◦ SLLI, and SLL instructions share the same left shifter.

◦ SRLI, SRAI, SRL, SRA share the right shifter.

◦ AND, ANDI, OR, ORI, XOR, XORI each share their corresponding logical units.

◦ MUL. MULH, MULHU, MULHSU share the same multiplier.

◦ DIV, DIVU, REM, REMU share the same divider.

◦ LOAD, STORE, instructions have their own adder for address creation.

Branch instructions update the program counter of the corresponding hart if the branch is

taken. T03 implementations of the core do not need any flushing logic, since each hart is only

one instruction in the pipeline at a time. The execute stage also handles CSR instructions, it

puts the registerfile data on the CSR write bus and the CSR data on the read bus.

In addition, pending interrupts are served in the IE stage, more details about interrupt handling

will be elaborated on later in this chapter.

-- 1
 fsm_IE_sync : process(clk_i, rst_ni) 2
 3
 -- pragma translate_off 4
 variable row : line; -- local variable for instruction tracing, not synthesizable 5
 -- pragma translate_on 6
 7
 begin 8
 if rst_ni = '0' then 9
 … 10
 elsif rising_edge(clk_i) then 11
 case state_IE is -- stage state 12
 when normal => 13
 -- check if there is a valid instruction and the thread it belongs to is not in a delay slot: 14
 if instr_rvalid_IE = '0' then 15
 instr_rvalid_WB <= '0'; -- do nothing and wait for valid instruction and finished delay slot 16
 elsif irq_pending(harc_IE) = '1' then 17
 instr_rvalid_WB <= '0'; -- in the sync process we don't need to do anything here 18

39

 else -- process the instruction 19
 -- EXECUTE OF INSTRUCTION (BEGIN) --- 20
 21
 if decoded_instruction_IE(ADDI_bit_position) = '1' or 22
 decoded_instruction_IE(ADD7_bit_position) = '1' or 23
 decoded_instruction_IE(SUB7_bit_position) = '1' or 24
 decoded_instruction_IE(AUIPC_bit_position) = '1' or 25
 decoded_instruction_IE(JAL_bit_position) = '1' or 26
 decoded_instruction_IE(JALR_bit_position) = '1' then 27
 if (rd(instr_word_IE) /= 0) then -- condition for JAL and JALR ops which execute when "rd = x0" 28
 IE_WB_EN <= '1'; 29
 end if; 30
 IE_WB <= std_logic_vector(signed(add_op_A)+signed(add_op_B)); -- ADDER 31
 end if; 32
 33
 if decoded_instruction_IE(SLLI_bit_position) = '1' or 34
 decoded_instruction_IE(SLLL_bit_position) = '1' then 35
 WB_EN <= '1'; 36
 WB <= to_stdlogicvector(to_bitvector(sl_op_A) sll to_integer(unsigned(sl_op_B)));-- LEFT SHIFTER 37
 end if; 38
 … 39
 … 40
 if decoded_instruction_IE(SW_MIP_bit_position) = '1' then 41
 if sw_mip = '1' and halt_IE = '0' then 42
 core_busy_IE_wires := '1'; -- halt the core since the instruction takes more than one cycle 43
 nextstate_IE_wires := csr_instr_wait_state;-- software ints write to the MIP registers of the target 44
hart 45
 end if; 46
 end if; 47
 … 48
 … 49
 -- EXECUTE OF INSTRUCTION (END) --- 50
 end if; -- instr_rvalid_IE values 51
 when csr_instr_wait_state => 52
 … 53
 when others => 54
 … 55
 end case; -- fsm_IE state cases 56
 end if; -- refers to reset signal 57
 end process; 58
;---end of IE stage ----------------- 59
--60

• Writeback: The writeback writes the result from the IE stage back to the registerfile when it

receives a “WB_EN” from the IE stage. Since all the execution units are encapsulated in one

entity, we will get up to one result per cycle only. Certainly, a hart can only write to its own

regfile, so each registerfile needs only one write port since only one result will be ready at a

time.

• Program Counter: A pc_updater fsm updates the program counter of each hart, to fetch the

next instruction by incrementing the current pc address. A program counter may be updated

by events coming from various signals:

o set_branch_condition: event happens in case of unconditional jumps or taken

branches.

o set_except_condition: event happens due to executing an illegal instruction, or

misaligned memory access or due to executing an Environment Call ECALL

instruction, and the program counter will be updated to jump to the exception

handling routine.

40

o irq_pending: event occurs due to incoming external or timer interrupts, or inter-

thread software interrupts. the program counter will be updated to jump to the

interrupt handling routine.

o rst_ni: event occurs only once at the startup time of execution, and updates the

program counter with the boot_pc that contains the boot pointer.

The program counter has the hart interleaving unit also known as the hardware context

counter (harc). The harc updates the program counters of each hart in an interleaved fashion.

• CSR Unit: The control and status register unit handle the execution of the CSR instructions, the

automatic update of some registers due to certain events such as exceptions or interrupts (also

maps the inter-thread software interrupts to the appropriate CSR unit), and handles the MRET

instructions. A subset of the CSR registers is supported in Klessydra and they are listed in table

4,5 Each CSR unit has a unique identification number in the read only MHARTID register.

More details about the implementation of the CSR registers can be found in appendix A.

Table.4.4. Control and status registers supported by Klessydra cores

Name R/W Description

MSTATUS R/W status register

MEPC R/W exception program counter

MCAUSE R/W trap cause

PCER R/W performance counter enabler

MESTATUS R/W exception status register backup

MHPMCOUNTER R/W performance-monitoring counter

MHPMEVENT R/W performance-event selector

MCPUID R cpu description

MIMPID R implementation description

MHARTID R hardware thread integer id

MIP R/W interrupt pending type

MTVEC R/W trap-handler base address

MIRQ R ext. interrupt request number

MBADADDR R/W misaligned address value

• Debug Unit: The core also augments a basic debug unit which can halt the execution through a

debug request or an EBREAK instruction. In debug mode the core can be in two states halt state

in which the cores halts execution after the last fetched instruction, and single step mode in which

the core steps through every instruction in the core. In debug mode, the debug unit can read the

registerfile contents of the hart in the execute stage, to read the contents of the other harts, the

debug unit must single step through the instructions until the desired hart arrives to the execute

stage.

4.7. Trap handling

4.7.1. Trap Handling through hardware

When a trap occurs, the IE stage automatically sends a signal to the program counter so that it updates

the pc value of the hart in the IE stage to jump to the machine trap vector address MTVEC. The CSR

unit updates the corresponding CSR registers:

• MCAUSE is updated with the type of exception if the trap was due to an exception.

• MIP is updated with the type of interrupt if the trap cause was an interrupt request.

• MEPC is updated with the pc value of the executing instruction when the trap occurred.

• MSTATUS indicates trap handling in progress, and disables nested traps handling.

• MESTATUS is backed with the pre-trap MSTATUS value.

41

• MBADADDR holds the misaligned address if the trap was due to a misaligned access.

Interrupts: Klessydra cores support three types of interrupts, external, timer, and software interrupts.

Hart 0 handles timer and external interrupts, and is done as shown from the code below.

 -- synchronous assignment to MIP_internal bits: 1
 -- this is Pulpino-specific assignment, i.e. the timer-related IRQ vector value 2
 – the h index refers to the hart, in this case hart 0 only enters the condition 3
 if h = 0 and unsigned(irq_id_i) >= 28 and irq_i = '1' then -- the irq is a timer interrupt 4
 MIP_internal(h)(7) <= '1'; 5
 else 6
 MIP(h)(7) <= '0'; 7
 end if; 8
 -- this detects the other IRQ vector values in Pulpino 9
 if h = 0 and unsigned(irq_id_i) < 28 and irq_i = '1' then -- the irq is an external interrupt 10
 MIP(h)(11) <= '1'; 11
 else 12
 MIP(h)(11) <= '0'; 13
 end if; -- the MIP(h)(3), software interrupt bit is handled by all the harts14

All the harts on the other hand can send and receive software interrupts through a store word

instruction to a specific address in the memory map. The address tag (upper bits of the SW address)

is checked in the ID stage, and if the tag maps to the software interrupt’s address tag, the store

instruction will instead act as a CSR instruction that writes to the MIP register of the other harts as

shown in the VHDL code below.

 if decoded_instruction_IE(SW_MIP_bit_position) = '1' then – a store word that writes to the MIP of a hart 1
 if sw_mip = '1' then -- the upper bits of the address are decoded in the ID stage to know if the SW is a SW_MIP 2
 csr_op_i <= CSRRW; -- set the type of CSR instruction 3
 csr_instr_req <= '1'; -- enable the CSR unit 4
 ie_csr_wdata_i <= RS2_Data_IE; -- put the data on the CSR bus 5
 csr_wdata_en <= '1'; -- enable csr write 6
 csr_addr_i <= MIP_ADDR; -- the csr address is the MIP register 7
 -- the lower address bits of the SW instruction are decoded to know which hart receives the software interrupt 8
 for i in harc_range loop 9
 if data_addr_internal_IE(3 downto 0) = std_logic_vector(to_unsigned((4*i),4)) then 10
 harc_to_csr <= i; -- harc_to_csr enables the target CSR unit 11
 end if; 12
 end loop; 13
 end if; 14
 end if; 15

When a hart receives an interrupt of any type, it will be directly serviced as soon as the hart arrives

at the IE stage in the pipeline, and the instruction that is currently in the IE stage will not be executed.

The hart will jump to the interrupt servicing routine, and will return at the end of the routine with an

MRET instruction to the same address in order to execute the instruction that was discarded before.

If the instruction discarded happened to be a WFI, this case will be registered when the trap occurs in

the MSTATUS(h)(30) register of the hart indexed in h, and the return from the interrupt routine during

the MRET execution will be to the “WFI_ptr + 4” instead. This is essential in order to break the core

from being stuck in an infinite loop. The following code briefly shows how the CSR units updates

the CSR registers for each type of event Interrupt/exception and how the MSTATUS recovers after

servicing the interrupt routine.

 -- Interrupt-cause CSR updating --------------------------------- 1
 -- note: PC just udpdated, MIP_internals can't have been cleared yet. 2
 if served_irq(h) = '1' and MIP_internal(h)(11) = '1' then 3
 -- it is the MEIP bit, ext. irq 4

42

 MCAUSE_internal(h) <= "1" & std_logic_vector(to_unsigned(11, 31)); -- ext. irq 5
 MESTATUS(h)(2 downto 1) <= MSTATUS_internal(h); -- push the MSTATUS to back MESTATUS register 6
 if WFI_Instr = '1' then -- Indicates to the MEPC that the return address contains a WFI instruction 7
 MCAUSE_internal(h)(30) <= '1'; 8
 else 9
 MCAUSE_internal(h)(30) <= '0'; 10
 end if; 11
 MSTATUS_internal(h)(0) <= '0'; -- interrupt handling temporarily disabled, 12
 MSTATUS_internal(h)(1) <= MSTATUS_internal(h)(0); -- trap handling pending in progress 13
 elsif served_irq(h) = '1' and MIP_internal(h)(3) = '1' then 14
 -- it is the MSIP bit, sw interrupt req 15
 MCAUSE_internal(h) <= "1" & std_logic_vector(to_unsigned(3, 31)); -- sw interrupt 16
 MIP_internal(h)(3) <= '0'; -- we reset the sw int. request just being served 17
 … -- similar assignments as the ext irq 18
 … 19
 elsif served_irq(h) = '1' and MIP_internal(h)(7) = '1' then 20
 -- it is the MTIP bit, timer interrupt req 21
 MCAUSE_internal(h) <= "1" & std_logic_vector(to_unsigned(7, 31)); -- timer interrupt 22
 …-- similar assignments as the ext irq 23
 … 24
 -- Exception-cause CSR updating ---------------------------------- 25
 elsif served_except_condition(h) = '1' then 26
 if served_ie_except_condition(h) = '1' then 27
 MCAUSE_internal(h) <= ie_except_data; -- exception cause passed from IE Stage 28
 end if; 29
 MESTATUS(h)(2 downto 1) <= MSTATUS_internal(h); -- push the MSTATUS to backup register MESTATUS 30
 MEPC_internal(h) <= pc_except_value_wire(h); 31
 MSTATUS_internal(h)(0) <= '0'; -- interrupt handling temporarily disabled, 32
 MSTATUS_internal(h)(1) <= '1'; -- trap handling pending in progress 33
 if misaligned_err = '1' then 34
 MBADADDR(h) <= data_addr_internal; -- store the misaligned address that caused the trap 35
 end if; 36
 37
 -- MRET-cause CSR updating -- 38
 elsif served_mret_condition(h) = '1' then 39
 MSTATUS_internal(h)(1) <= '1'; -- re-enable the trap handling 40
 MSTATUS_internal(h)(0) <= MSTATUS_internal(h)(1); -- indicate the core is no longer handling traps 41
 end if; 42

4.7.2. Trap handling through software

In the startup code there is a an MTVEC label indicating the start of the routine to execute during a

trap. The routine will simply compare the MCASUE value to the table of trap handlers to know

which trap handling to execute, and once the MCAUSE matches the value in the trap table, it will

jump to the trap handling routine defined by PULPino, and then returns back to the execution

environment. Below is a partial assembly snippet of the trap handling routine from the

klessydra_startup.S file.

mtvec_routine: 1
 addi sp,sp,-KLESSYDRA_EXC_STACK_SIZE; // decrement the stack pointer 2
 sw t4,0x00(sp); // save the register to be modified on the stack 3
 sw t5,0x04(sp); 4
 sw t6,0x08(sp); 5
 csrrs t5, k_mcause, x0; // load the casue of the trap 6
 csrr t4, k_mirq; // load the the interrupt id 7
 li t6, EXT_INTERRUPT_CODE; 8
 bne t5, t6, no_ext_interrupt; // Check whether the trap was due to an external interrupt 9
 lw t5, 0x04(sp); 10
 lw t6, 0x08(sp); 11

43

 jr t4; 12
 13
no_ext_interrupt: 14
 li t6, SW_INTERRUPT_CODE_WFI; //In klessydra, if we have a WFI, we write a "1" to the bit mcause(30), 15
to return to the instruction following the WFI 16
 beq t5, t6, sofware_insn_handler; 17
 li t6, SW_INTERRUPT_CODE_NO_WFI; // Check whether the trap was due to a software interrupt 18
 beq t5, t6, sofware_insn_handler; // They jump to the same routine the since mepc is incrememnted in hardware, 19
when the mepc return value is a WFI instruction 20
 li t6, TIMER_INTERRUPT_CODE; // Check whether the trap was due to a timer interrupt 21
 bne t5, t6, exception_trap; 22
 lw t5, 0x04(sp); 23
 lw t6, 0x08(sp); 24
 jr t4; 25
 26
exception_trap: 27
 li t6, ECALL_EXCEPT_CODE; // Check whether the trap was due to an ECALL instruction 28
 beq t5, t6, ecall_insn_handler; 29
 li t6, ILLEGAL_INSN_EXCEPT_CODE; // Check whether the trap was due to executing an illegal instruction 30
 beq t5, t6, illegal_insn_handler; 31
 li t6, LOAD_ERROR_EXCEPT_CODE; // Check whether the trap was due to a load error 32
 beq t5, t6, invalid_addr_handler; 33
 li t6, STORE_ERROR_EXCEPT_CODE; // Check whether the trap was due to a store error 34
 beq t5, t6, invalid_addr_handler; 35
 li t6,LOAD_MISALIGNED_EXCEPT_CODE; // Check whether the trap was due to a misaligned access 36
 beq t5, t6, invalid_addr_handler; 37
 38
 lw t4,0x00(sp); // recover the stack 39
 lw t5, 0x04(sp); 40
 lw t6, 0x08(sp); 41
 addi sp,sp, KLESSYDRA_EXC_STACK_SIZE; // recover the stack pointer 42
 mret; // return to the execution environment 43

Klessydra specific C functions that have been integrated to the libraries inside Pulpino to be used to

quickly send software interrupts. The following is the body of the C function that sends a software

interrupt to a target hart. The function takes one argument which is the hart_id. From the hart_id it

will generate the MIP address and send a store word to that MIP value.

int send_sw_irq(int targethart){ 1
 int mip_data_send = 8; 2
 int store_addr = 0xff00; // Base address of the software interrupt memory section 3
 if(targethart >= THREAD_POOL_SIZE) return 0; // the thread in which the interrupt was sent doesn't exist 4
 else { store_addr = store_addr + (4*targethart); // MIP address generation 5
 store_mem(mip_data_send, store_addr); // Send a store word with address with the MIP address 6
 return 1;}} 7
 8
void store_mem(int data_send, int store_addr) { 9
 __asm__("sw %0, (%1);" 10
 :/*no output register*/ 11
 :"r"(data_send), "r"(store_addr) 12
 :/*no clobbered register*/);} 13

44

4.8. Thread synchronization.

4.7.3. Atomic Instruction Support:

The atomic extensions were augmented to the instruction set supported by Klessydra-T cores in order

to support thread synchronization of the harts. However, only a minimal integration of the atomic

extension was done such that the only atomic instruction implemented was the ‘amoswap’.

Implementing the amoswap instruction is sufficient enough in order to have thread synchronization,

and implement region locks (acquire, and release) on a memory location. Briefly an amoswap

instruction loads a key value from a memory and swaps the loaded value with a lock. In order for the

amoswap to work correctly, the pointers of the instruction must be addressing the regions in the

shared .data section of the data memory by assigning them as global variables, and not the

dedicated .stack section, since each hart has its own dedicated stack region in the memory. The

following are the body of the functions which do lock acquire, and lock release to memory regions.

Both functions take an argument which is a pointer to the lock that is a global variable.

void klessydra_lock_acquire(int *lock){ 1
 int temp0 = 1; 2
 __asm__(3
 "loop: " 4
 "amoswap.w.aq %1, %1, (%0);" // Set the lock by swapping the key ‘0’ with ‘1’. 5
 "bnez %1,loop;" // loop until the lock is released. 6
 ://no output register 7
 :"r" (lock), "r" (temp0) 8
 :/*no clobbered registers*/);} 9
 10
void klessydra_lock_release(int *lock) 11
{ 12
 __asm__(13
 "amoswap.w.rl x0, x0, (%0);" // Release lock by storing 0. 14
 ://no output 15
 :"r" (lock) 16
 ://no clobbered register);} 17

4.7.4. Barrier Functions:

The previous functions can ensure the safe access to shared memory regions by blocking the access

of all the other harts. However, in order to have thread synchronization, the Klessydra libraries include

an additional set of sync_barrier functions to synchronize the threads.

• sync_barrier_reset is used once at the beginning of the code and when the harts are in sync.

The function does a csrw to the MSTATUS register in order to enable the handling of

interrupts (i.e. software interrupts in our case). And initializes all the variables to be read in

the following functions.

• sync_barrier_thread_registration is used when the harts are in sync, and it registers every

hart that calls this function. This registration process is essential to know the total number of

harts interleaving in the IMT core.

• sync_barrier function synchronizes the harts. The harts to be synchronized call the function

in chronological order, all the harts except the last one that enter the function register

themselves in array to indicate they arrived at the barrier. A conditional structure will compare

the number of harts registered versus the number of harts that arrived at the barrier function,

45

and if the number of harts arrived is less than the number of harts registered, then the hart that

entered the barrier function will go to a WFI state. Once the last hart enters the functions and

registers itself, the if condition will check that all the harts arrived, and this hart will go to

‘else’ state and starts sending software interrupts to every sleeping hart in the core. The harts

will return from this function synchronized. One important note about the barrier function is

that the routine for the barrier-arrival-registration of the harts, and the following code to check

the number of the harts arrived is done atomically. Performing this routine without atomicity

might in some cases confuse the hart reading the global variables, and will thus send all the

harts to a WFI state.

The sync_barrier function bodies are shown below.

void sync_barrier_reset(){ 1

int i; 2
 int key = 1; 3
 static int section = 0; 4
 int* ptr_section = §ion; 5
 asm volatile 6
 ("csrrw zero, mstatus, 8;" // enable the interrupt handling 7
 "amoswap.w.aq %[key], %[key], (%[ptr_section]);" 8
 :[key] "r" (key), [ptr_section] "r" (ptr_section):); 9
 if (section == 0){ 10
 for (i=0;i<THREAD_POOL_SIZE; i++) { 11
 sync_barrier_register[i] = 0; }}} 12
 13
void sync_barrier_thread_registration(){ 14
 int my_hart; 15
 my_hart = Klessydra_get_coreID(); 16
 arrived_at_barrier[my_hart] = 0; 17
 sync_barrier_register[my_hart] = 1;} 18
 19
void sync_barrier(){ 20

int my_hart, i; 21
int *ptr_key = &key_barr; 22

 my_hart = Klessydra_get_coreID(); 23
 if(syc_barrier_register[my_hart] == 1) { // checks if the hart entering was registered 24
 klessydra_lock_acquire(ptr_key); // the following routine must be done atomically 25

 barrier_completed[my_hart] = 1; // set to 1 to indicate that all harts arrived, else it will be set to zero 26
 arrived_at_barrier[my_hart] = 1; // notifies the core that the hart with the hart_id in "my_hart" has arrived 27

 for (i=0;i<THREAD_POOL_SIZE; i++) { 28
 if (arrived_at_barrier[i] == 0 && sync_barrier_register[i] == 1) { 29
 barrier_completed[my_hart] = 0;}} // reset to zero, since not all the harts arrived at the barrier 30
 if (barrier_completed[my_hart] == 0){ // send the waiting threads to a WFI state 31
 klessydra_lock_release(ptr_key); // release lock acquired previously 32
 __asm__("WFI;");} // put the hart to sleep with a WFI 33
 else{ 34
 klessydra_lock_release(ptr_key); // release lock acquired previously 35
 for (i=0;i<THREAD_POOL_SIZE; i++){ 36
 if (my_hart != i && sync_barrier_register[i] == 1) { 37
 send_sw_irq(i);} 38
 sync_barrier_register[i]=0; } // unregister all of the registered harts 39
 barrier_completed[my_hart] = 0;}}} 40

46

4.9. Conclusion

Throughout this chapter we studied the IMT processors, and we made an an experimental and

analytical assessment in order to determine the optimal pipeline organization to be adopted. Having

chosen T03 as our optimal IMT implementation, we integrated the T03 inside Pulpino, and we

adjusted the support of the exceptions, and interrupts in order to be compatible with the SoC. Also,

we added a set of libraries to Klessydra that can be utilized to exploit the architecture, In the next

chapter we will see how we can further improve the T03 IMT core.

47

Chapter 5 Klessydra-T1 Architectures

5.1. Background

In the previous chapter we have shown how an IMT processor, can be easily exploited in two classes

of applications. Decoupled applications, each of which runs on a dedicated hart, and balanced parallel

applications that allocate equal or semi-equal workloads to every hart, and the nature of the workloads

being balanced among the harts gives only a tiny overhead during thread synchronization. A good

example of threads running dedicated applications is for instance when using the SoC in an

environment in which each hart interfaces its own peripheral device for instance; I/O devices or

sensors or wireless devices and etc. The previous study from chapter 4 showcased the performance

of the T03 when executing some basic control, or integer arithmetic applications. The advantages of

using the T0 cores covered only small portions of the entire spectrum of applications. However, this

chapter shows that IMT cores can be utilized in broader areas, in which harts can work together to

run specialized applications that are easily exploited with superscalar hardware accelerators coupled

with dedicated low latency local energy efficient scratchpad memories [36][37]. In this chapter, our

aim is to exploit IMT processors to perform well in a broader set of the computing application

spectrum and that is through the augmentation of specialized hardware accelerators. The T03 version

supporting specialized hardware acceleration is called the T13 core.

As mentioned in the previous chapter that T03 is a short hand for T033, and also in this chapter, the

T13 is a short hand for T133. The T13 is part of the Klessydra open source project. [31][32][33][[34]

and it expands the instruction set of T03 with two extensions; the first being the “M” (multiply/divide)

extension which is handled in the IE block, and the second is the “K” custom instruction set extension,

specifically designed to facilitate vector calculations, that is managed by the SPMU. So, the ISA

supported by the T13 core is RV32IMAK. The T13 core was designed to allow superscalar execution,

and yet still interleave only three harts in the core. The superscalar execution of the T13 is done

without creating any highly multi-ported registerfiles as those available in Out-of-Order architectures.

It parallelizes the execution in IMT processors while still maintaining the pipeline stages, and the

thread pool baseline of the T03. It demonstrates how simple it is to augment a hardware accelerator,

and shows how to design the accelerators in order exploit thread level parallelism. Different hardware

accelerator schemes have been implemented in order to see which approach yields the best

performance, area, and energy efficiency.

This chapter starts by demonstrating the motivation for augmenting a hardware accelerator to the T03

architecture in section 5.2. Then it would describe the microarchitecture of the augmented hardware

accelerator in 5.3. Section 5.4 shows how our accelerator can be built in different implementations

Then in section 5.5 a set of different hardware accelerator schemes are provided in order to study the

optimal choice to use for exploiting an IMT processor. Followed by a performance benchmark of the

different hardware accelerator schemes from section 5.4. In section 5.6 the FPGA synthesis results

are reported when synthesizing the T13 core with the different accelerator schemes shown in section

5.3. In section 5.7, supplementary tests are made to further test the T13 hardware accelerator

5.2. Motivation for augmenting the T03 core with a hardware accelerator

The IMT core presented in this chapter is called the Klessydra-T13 (T13 for short). The T13 block

organization is shown in figure 5.1, it maintains the same hart count of its predecessor the T03.

However, unlike the T03, the T13 introduces superscalar execution giving rise to the possibility of

having instructions from different harts in the execute stage as seen below.

48

LSUEXEC

Regfile
Decode

Fetch
PC

PC

CSR

Data Mem

WB

Debug

Prg Mem

Updater
harc

Updater

DSP Initialization

Control / Mapping

Add
Sub

Shft Mul Accum Relu

Accl Exec

SPEAccl Init

hart a

hart a,

b, or c

hart c SPI

B0 B1 B2

Figure.5.1. Klessydra T133 block organization, interleaves three harts and has three execution units working in

parallel

A good practice to make a superscalar processor is to let each augmented execution unit write into its

own memory. Take a look at figure 5.1 for example; The Load-Store Unit (LSU) only allows

superscalar execution with the other units is when the instruction its handling is a store. Since stores

write to the external memory, and not the registerfile. Following the same concept, we have created

a hardware accelerator called the Special Purpose Mathematical Unit (SPMU) that has its own

execution units and its own dedicated local Scratchpad Memories. The SPMU has its own custom

instructions that can read from the SPMs or the registerfile, however, it only writes to the scratchpads

and never to the registerfile. Working in this fashion, the SPMU can automatically be said to work in

parallel with the other execution units, since it does not perform any concurrent writes to shared

memories.

Following this practice, hardware accelerators can be easily augmented to IMT architectures, to

increase their capabilities in targeting a large portion of the spectrum of computing applications.

5.3. Special Purpose Mathematical Unit Microarchitecture

The SPMU is the hardware accelerator. It was given the name “Special Purpose” because it performs

a certain subset of mathematical operations specifically designed to accelerate the execution of

Convolutional Neural Networking Applications (CNN). The SPMU is comprised of two main sub-

systems as seen in figure 5.2. The Special Purpose Engine (SPE) which maps, controls, and executes

the SPMU instructions, and the Scratchpad Memory Interface (SPI) that manages the SPE and LSU

access to the scratchpad memories (not to be confused with SPI “serial peripheral interface”).

49

The SPMU can be compared to a vector processor rather than a packed SIMD [46][47] processor

since it executes on sets of data of variable vector length, unlike SIMD instructions that have a fixed

vector length. However, throughout the rest of this chapter and the next, the word “SIMD will be used

to refer to the nature of the execution of the instructions and not the type of the instructions. The

instructions are of type vector, and not SIMD.

In the T13, the length of the vector to execute in each instruction is set in a custom CSR called

Machine Vector Size “MVSIZE”. Also, similarly the SPMU compares to a vector processor by

allowing the configuration of different data types, the data types supported in the SPMU are integer

8-bit, 16-bit, and 32-bit.

SPE Initialization

Control / Mapping

Add
Sub

Shft Mul Accum Relu

SPE Exec

SPE
Bank Intrlv

Bank1Bank0 BankN

SPISPE Init

Data reorder

Figure.5.2. SPMU Block Diagram

5.3.1. Special Purpose Engine

The execution of the T13 custom K instruction set extensions is done in the SPE. The SPE is

composed of many integral sub-systems, which handle the configuring, fetching, mapping, executing,

and writing of the instruction. At any point in time the SPMU can be in any of the following two

states:

• SPE_INIT: The default state of the SPE, and also the initial state for every instruction, this

state handles the configuring of the functional units, and the exception control checking,

fetching of the first data elements, and buffer the signals coming from the Decode, and CSR

units.

• SPE_Exec: The SPE transfers to this state if there are no exceptions, and in the SPE_Exec

state, we handle the hardware-loops, mapping, fetching the next elements, executing

operations, and writing the results. After the results have been written successfully the SPE

returns back to the SPE_INIT state.

Each of the SPMU’s sub-systems will be described in the following paragraphs detailing their

functions, and also showcasing VHDL snippets of how they were implemented.

The exception handler is a part of the initialization phase which checks for any current exceptions,

and predicts for any future exceptions right at the very first cycle of the execution of a custom

instruction from the “K” extension. All the exceptions are regarding the SPM access.

The main reason for controlling exceptions in the first cycle is that after the first cycle, the core

enables the dispatch of the instructions of the other harts, and the state of the registerfile. So, in the

50

case of encountering an exception in the first cycle, the core will recover the state of the processor

precisely to the time before the exception occurred without having the registerfile being modified.

Detecting exceptions after the first cycle requires a history file to recover the processor’s state

precisely for when the program counter returns from the trap handling routine, which is an efficient

procedure seeing that the nature of an exception happening is quite exceptional.

The following are a list of what might be exception triggers in the SPMU:

1. Out of bound SPM access; in this case, one of the pointers to a data element is pointing to

an address not belonging to any of the SPM memories.

2. Dual SPM read access; a SPM has one read port, and when the two instruction operands

point to the same SPM, we encounter an exception.

3. Overflow data read and write; this happens when the SPM pointer plus the vector size will

overflow the address of the SPM being indexed. This overflow exception only traps when the

operand being indexed is used as a vector, and not scalar.

4. Misaligned access; SPMs are 32-bit word aligned and any misaligned access will trigger this

exception.

Below is the RTL description of the exception handler in the SPMU.

 ------------ Exception handler of SPE Unit -- 1
 SPE_Excpt_Cntrl_Unit_comb : process(all) 2
 begin 3
 … 4
 … 5
 if spe_instr_req = '1' or busy_SPE_internal_lat = '1' then 6
 case state_SPE is 7
 when SPE_init => 8
 overflow_rs1_spm <= std_logic_vector('0' & unsigned(RS1_Data_IE(Addr_Width -1 downto 0)) + 9
 unsigned(MVSIZE(harc_EXEC)) -1); 10
 overflow_rs2_spm <= std_logic_vector('0' & unsigned(RS2_Data_IE(Addr_Width -1 downto 0)) + 11
 unsigned(MVSIZE(harc_EXEC)) -1); 12
 overflow_rd_spm <= std_logic_vector('0' & unsigned(RD_Data_IE(Addr_Width -1 downto 0)) + 13
 unsigned(MVSIZE(harc_EXEC)) -1); 14
 if MVSIZE(harc_EXEC) = (0 to Addr_Width => '0') then -- don’t execute instructions with zero vector elements 15
 null; 16
 elsif MVSIZE(harc_EXEC)(1 downto 0) /= "00" and MVTYPE(harc_EXEC)(3 downto 2) = "10" then 17
 except_condition_wires := '1'; -- Set exception if the number of bytes are not divisible by four 18
 except_data_wire <= ILLEGAL_VECTOR_SIZE_EXCEPT_CODE; 19
 elsif MVSIZE(harc_EXEC)(0) /= '0' and MVTYPE(harc_EXEC)(3 downto 2) = "01" then 20
 except_condition_wires := '1'; -- Set exception if the number of bytes are not divisible by two 21
 except_data_wire <= ILLEGAL_VECTOR_SIZE_EXCEPT_CODE; 22
 elsif (rs1_to_spm = "100" and vec_read_rs1_ID = '1') or 23
 (rs2_to_spm = "100" and vec_read_rs2_ID = '1') o 24
 rd_to_spm = "100" then 25
 except_condition_wires := '1'; -- Set exception for non-scratchpad access 26
 except_data_wire <= ILLEGAL_ADDRESS_EXCEPT_CODE; 27
 elsif rs1_to_spm = rs2_to_spm and vec_read_rs1_ID = '1' 28
 and vec_read_rs2_ID = '1' then 29
 except_condition_wires := '1'; -- Set exception for same read access 30
 except_data_wire <= READ_SAME_SCARTCHPAD_EXCEPT_CODE; 31
 elsif (overflow_rs1_spm(Addr_Width) = '1' and vec_read_rs1_ID = '1') or 32
 (overflow_rs2_spm(Addr_Width) = '1' and vec_read_rs2_ID = '1') then 33
 except_condition_wires := '1'; -- Set exception if reading overflows the scratchpad's address 34
 except_data_wire <= SCRATCHPAD_OVERFLOW_EXCEPT_CODE; 35
 elsif overflow_rd_spm(Addr_Width) = '1' and vec_write_rd_ID = '1' then 36
 except_condition_wires := '1'; -- Set exception if reading overflows the scratchpad's address 37
 except_data_wire <= SCRATCHPAD_OVERFLOW_EXCEPT_CODE; 38
 else -- else we process the instruction 39
 if halt_hart = '0' then 40

51

 nextstate_SPE <= spe_exec; 41
 else 42
 nextstate_SPE <= spe_halt_hart; 43
 end if; 44
 busy_SPE_internal_wires := '1'; 45
 end if; 46
 when others => 47
 null; 48
 … 49

The initialization block configures the functional units correctly in order to execute the instructions

in flight. An example of some configurations might be; Setting the FU controls to execute the data

type to be computed on, such as; chars, shorts or ints. Other configurations might also be to transform

the input operands into their two’s complement or they might be to configure outputs to either become

sign extended or zero extended.

-------- FU Inittialiazion phase -- 1
 -- Set signals to enable correct virtual parallelism operation 2
 if (decoded_instruction_SPE(KADDV_bit_position) = '1' or 3
 decoded_instruction_SPE(KSVADDSC_bit_position) = '1') and 4
 MVTYPE(3 downto 2) = "10" then 5
 carry_pass <= "111"; -- pass all carry_outs 6
 elsif decoded_instruction_SPE(KSVADDRF_bit_position) = '1' and 7
 MVTYPE(3 downto 2) = "10" then 8
 carry_pass <= "111"; -- pass all carry_outs 9
 rf_rs2 <= '1'; 10
 … 11
 elsif decoded_instruction_SPE(KSUBV_bit_position) = '1' and 12
 MVTYPE(3 downto 2) = "10" then 13
 carry_pass <= "111"; -- pass all carry_outs 14
 twos_complement <= "00010001000100010001000100010001"; 15
 elsif decoded_instruction_SPE(KSUBV_bit_position) = '1' and 16
 MVTYPE(3 downto 2) = "01" then 17
 carry_pass <= "101"; -- pass carrries 9, and 25 18
 twos_complement <= "01010101010101010101010101010101"; 19
 elsif decoded_instruction_SPE(KSUBV_bit_position) = '1' and 20
 MVTYPE(3 downto 2) = "00" then 21
 carry_pass <= "000"; -- don't pass carry_outs and keep addition 8-bit 22
 twos_complement <= "11111111111111111111111111111111"; 23
 … 24
 elsif decoded_instruction_SPE(KDOTP_bit_position) = '1' and 25
 MVTYPE(3 downto 2) = "10" then 26
 FUNCT_SELECT_MASK <= (others => '1'); -- This enables 32-bit multiplication with the 16-bit multipliers 27
 dotp <= '1'; 28
 elsif decoded_instruction_SPE(KDOTP_bit_position) = '1' and 29
 MVTYPE(3 downto 2) = "01" then 30
 dotp <= '1'; 31
 MVTYPE(3 downto 2) = "00" then 32
 dotpps <= '1'; 33
 elsif decoded_instruction_SPE(KSVMULRF_bit_position) = '1' and 34
 MVTYPE(3 downto 2) = "10" then 35
 FUNCT_SELECT_MASK <= (others => '1'); 36
 rf_rs2 <= '1'; 37
 elsif (decoded_instruction_SPE(KVMUL_bit_position) = '1' or 38
 decoded_instruction_SPE(KSVMULSC_bit_position) = '1') and 39
 MVTYPE(3 downto 2) = "10" then 40
 FUNCT_SELECT_MASK <= (others => '1'); 41
 end if 42
--- ------------43

52

In the execute state of the SPE, the hardware-controlled loops or shortly hardware loops (hw-loops)

eliminate the overhead required for looping operations. It increments the source operand pointers to

fetch the next element of each operand only when the instruction operands are defined as vector

sources and not scalar sources. The same applies for the writing of the resutls. The hw-loops also

handles decrementing the vector length continuously. When the vector size becomes zero, the hw-

loops stop, and the instruction is considered done. A masking vector is created depending on the

number of elements left, such that if the number of elements is less than the number of bytes processed

in one cycle, the mask will disable the upper bytes of the fetched elements. This is essential when

elements fetched get accumulated. In this case, we need to avoid accumulating data not belonging to

the instruction in order to get correct accumulation results.

A hardware loop saves the following software overhead:
◦ SIMD_LOOP:

◦ VADD *dest, *opA, *opB;

◦ ADDI *opA, *opA, SIMD_SIZE

◦ ADDI *opB, *opB, SIMD_SIZE

◦ ADDI *dest, *dest, SIMD_SIZE

◦ SUB VEC_SIZE , VEC_SIZE, SIMD_SIZE

◦ BEQZ VEC_SIZE, SIMD_LOOP

 if halt_spe = '0' then -- the hardware loops work only when there is no halt from the SPI 1
 -- Increment the write address when we have a result as a vector 2
 if vec_write_rd_lat = '1' and wb_ready = '1' then -- destination address increment 3
 RD_Data_IE_lat <= std_logic_vector(unsigned(RD_Data_IE_lat) + SIMD_RD_BYTES); 4
 end if; 5
 if wb_ready = '1' then -- decrement by SIMD_BYTE Execution Capability 6
 if to_integer(unsigned(MVSIZE_WRITE)) >= SIMD_RD_BYTES then 7
 MVSIZE_WRITE <= std_logic_vector(unsigned(MVSIZE_WRITE) - SIMD_RD_BYTES); 8
 else -- decrement the remaining bytes 9
 MVSIZE_WRITE <= (others => '0'); 10
 end if; 11
 end if; 12
 -- Increment the read addresses 13
 if to_integer(unsigned(MVSIZE_READ)) >= SIMD_RD_BYTES and data_gnt_i = '1' then 14
 if vec_read_rs1_lat = '1' then -- source 1 address increment 15
 RS1_Data_IE_lat <= std_logic_vector(unsigned(RS1_Data_IE_lat) + SIMD_RD_BYTES); 16
 end if; 17
 if vec_read_rs2_lat = '1' then -- source 2 address increment 18
 RS2_Data_IE_lat <= std_logic_vector(unsigned(RS2_Data_IE_lat) + SIMD_RD_BYTES); 19
 end if; 20
 end if; 21
 -- Decrement the vector elements that have already been operated on 22
 if data_gnt_i = '1' then -- decrement by SIMD_BYTE Execution Capability 23
 if to_integer(unsigned(MVSIZE_READ)) >= SIMD_RD_BYTES then 24
 MVSIZE_READ <= std_logic_vector(unsigned(MVSIZE_READ) - SIMD_RD_BYTES); 25
 else -- decrement the remaining bytes 26
 MVSIZE_READ <= (others => '0'); 27
 end if; 28
 end if; 29
 spm_data_read_mask <= (others => '0'); 30
 if data_gnt_i_lat = '1' then 31
 if to_integer(unsigned(MVSIZE_READ_MASK)) >= SIMD_RD_BYTES then 32
 spi_data_read_mask <= (others => '1'); 33
 MVSIZE_READ_MASK<=std_logic_vector(unsigned(MVSIZE_READ_MASK) - 34
 SIMD_RD_BYTES); 35
 else 36
 MVSIZE_READ_MASK <= (others => '0'); 37

Increment Vector A address

Increment Vector B address

Decrement Vector Elements

Branch If the vector elements are zero

Increment Destination address

53

 spi_data_read_mask(to_integer(unsigned(MVSIZE_READ_MASK))*8-1 downto 0)<=(others => '1'); 38
 end if; 39
 end if; 40
 end if;41

The fetched input operands go into the mapping unit, that maps the fetched input data to their

corresponding functional units. Some instructions use multiple functional units and so the outputs of

the first functional unit re-route to the next one. The operands can be either scalar or vector, and they

can be fetched from the SPM or the registerfile. The final outputs of the functional units will connect

again to the mapping unit, in which they will be written back to the SPMs. Below is a brief snippet

from the RTL of the input operand mapper, as for the output mapping, the assignments would be

similar but reversed.

------ INPUT OPERAND MAPPING --- 1
 if (decoded_instruction_SPE_lat(KDOTP_bit_position) = '1' or -- dot product instruction 2
 decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1') and – dot product instruction with post scaling 3
 (MVTYPE_SPE = "01" or MVTYPE_SPE = "10") then 4
 mul_operands(0) <= spi_data_read(0) and spi_data_read_mask; 5
 mul_operands(1) <= spi_data_read(1) and spi_data_read_mask; 6
 if dotp = '1' then 7
 accum_operands <= out_mul_results; 8
 elsif dotpps = '1' then 9
 shift_amount <= MPSCLFAC_SPE; 10
 shifter_operand <= out_mul_results; 11
 accum_operands <= out_shifter_results; 12
 end if; 13
 end if; 14
 … 15
 if decoded_instruction_SPE_lat(KADDV_bit_position) = '1' then – vector-vector add instr 16
 adder_operands(0) <= spi_data_read(0); 17
 adder_operands(1) <= spi_data_read(1); 18
 end if; 19
 20
 if decoded_instruction_SPE_lat(KSVADDSC_bit_position) = '1' and -- vector-scalar add instruction 21
 MVTYPE_SPE = "10" then 22
 adder_operands(0) <= spi_data_read(0); 23
 for i in 0 to SIMD-1 loop 24
 adder_operands(1)(31+32*(i) downto 32*(i)) <= spi_data_read(1)(31 downto 0); 25
 end loop; 26
 end if; 27
 28
 if decoded_instruction_SPE_lat(KSRAV_bit_position) = '1' or – right arithmetic shift instruction 29
 decoded_instruction_SPE_lat(KSRLV_bit_position) = '1' then -- right logic shift instruction 30
 shifter_operand <= spi_data_read(0); 31
 shift_amount <= RS2_Data_IE_lat(4 downto 0); -- map the scalar value (shift amount) 32
 end if; 33
 … 34
 if decoded_instruction_SPE_lat(KRELU_bit_position) = '1' then – relu instruction 35
 relu_operands <= spi_data_read(0); 36
 end if;37

The control unit controls the requests to fetch the input operands and write the output results. It also

halts the vector processor in case the source SPMs are being accessed by the load-store unit. When

the SPE gets a halt signal, all the data in the pipes will maintain their state, and the hardware loops

will stop counting until the SPM accessed becomes free. The Control for KADDV and KDOTP is

shown below. Other instructions have a similar control.

 if decoded_instruction_SPE_lat(KADDV_bit_position) = '1' or -- control for KADDV and KSUBV instructions 1

54

 decoded_instruction_SPE_lat(KSUBV_bit_position) = '1' then 2
 if adder_stage_3_en = '1' then 3
 wb_ready <= '1'; -- the results of the final stage are ready to be written back 4
 elsif recover_state = '1' then 5
 wb_ready <= '1'; -- latch the writeback ready signal for as soon as the write is granted 6
 end if; 7
 if MVSIZE_READ > (0 to Addr_Width => '0') then – keep on reading until all the data has been fetched 8
 spe_to_spm(to_integer(unsigned(rs1_to_spi_lat)))(0) <= '1'; -- assign vs1 to the first SPI read port 9
 spe_to_spm(to_integer(unsigned(rs2_to_spi_lat)))(1) <= '1'; -- assign vs2 to the second SPI read port 10
 spi_req(to_integer(unsigned(rs1_to_spi_lat))) <= '1'; -- request vs1 11
 spi_req(to_integer(unsigned(rs2_to_spi_lat))) <= '1'; -- request vs2 12
 spi_read_addr(0) <= RS1_Data_IE_lat(Addr_Width - 1 downto 0); -- send the address of vs1 13
 spi_read_addr(1) <= RS2_Data_IE_lat(Addr_Width - 1 downto 0); -- send the operand of vs2 14
 end if; 15
 if MVSIZE_WRITE > (0 to Addr_Width => '0') then 16
 nextstate_SPE <= spe_exec; -- latch the execute state of the SPE 17
 busy_SPE_internal_wires := '1'; – the SPE is considered busy until all the outputs are written 18
 end if; 19
 if wb_ready = '1' then – first batch of the vector results becomes ready 20
 spi_we(to_integer(unsigned(rd_to_spi_lat))) <= '1'; -- enable the writeback 21
 spi_write_addr <= RD_Data_IE_lat; -- send the write address which is incremented by the hw_loops 22
 end if; 23
 end if; 24
 … 25
 if decoded_instruction_SPE_lat(KVRED_bit_position) = '1' or --Control of the accumulator using instructions 26
 decoded_instruction_SPE_lat(KDOTP_bit_position) = '1' or 27
 decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1' then 28
 if accum_stage_3_en = '1' then 29
 wb_ready <= '1'; 30
 elsif recover_state = '1' then 31
 wb_ready <= '1'; 32
 end if; 33
 if MVSIZE_READ > (0 to Addr_Width => '0') then – keep on reading until all the data has been fetched 34
 if vec_read_rs2_SPE = '1' then 35
 spi_req(to_integer(unsigned(rs2_to_spi_lat))) <= '1'; -- request vs2 36
 spe_to_spi(to_integer(unsigned(rs2_to_spi_lat)))(1) <= '1'; -- assign vs2 to the second SPI read port 37
 spi_read_addr(1) <= RS2_Data_IE_lat(Addr_Width - 1 downto 0); -- send the address of vs2 38
 end if; 39
 spi_req(to_integer(unsigned(rs1_to_spi_lat))) <= '1'; -- request vs1 40
 spe_to_spm(to_integer(unsigned(rs1_to_spi_lat)))(0) <= '1'; -- assign vs1 to the first SPI read port 41
 spi_read_addr(0) <= RS1_Data_IE_lat(Addr_Width - 1 downto 0); -- send the address of vs1 42
 nextstate_SPE <= spe_exec; 43
 busy_SPE_internal_wires := '1'; 44
 elsif MVSIZE_WRITE = (0 to Addr_Width => '0') then 45
 nextstate_SPE <= spe_init; -- return to the init state when the accumulation is done 46
 else 47
 nextstate_SPE <= spe_exec; -- latch the execute state until all the elements have accumulated 48
 busy_SPE_internal_wires := '1'; -- the SPE is considered busy until all the values have been accumulated 49
 end if; 50
 if wb_ready = '1' then -- final scalar result is ready 51
 spi_we(to_integer(unsigned(rd_to_spi_lat))) <= '1'; -- enable the writeback 52
 spi_write_addr <= RD_Data_IE_lat; -- send the write address of the scalar value 53
 end if; 54
 end if55

The SPE has five different functional units (FUs). All the units work with different data types (8-bit,

16-bits, 32-bit) both signed and unsigned. Three of the FUs work in partial mode; the adder, shifter,

and the multiplier. The partial FUs increase the parallelism for smaller data width elements while

maintaining a small area occupation. Table 1.1 shows how many operations we do in one cycle in

every FU and for each data type when the SIMD parameter is configured to be 1. Bigger SIMD

configurations will double the number of parallelisms on all the functional units.

55

Table.5. 1 Type, and parallelism of the functional units in the SPE

Instruction FU Type Data Type Parallelism

Adder Partial 32 1*SIMD

16 2*SIMD

8 4*SIMD

Shifter Partial 32 1*SIMD

16 2*SIMD

8 4*SIMD

Multiplier Partial 32 1*SIMD

16 2*SIMD

8 2*SIMD

Accumulator Normal 32 1*SIMD

16 2*SIMD

8 2*SIMD

ReLu Normal 32 1*SIMD

16 2*SIMD

8 4*SIMD

We can see the partial adder from figure 5.3, there are a set of four 8-bit adders cascaded together.

To produce 8-bit sums, the initialization block will configure the adders to block the carries

propagated from the partial sums giving four 8-bit sums as outputs. For 16-bit additions, only the first

and the third adders are allowed to propagate their carries, giving two 16-bit outputs. While for the

32-bit sums all the carries are allowed to be propagated giving one 32-bit output.The adders as seen

from figure 5.3 are split into two pipe stages, the carry from the lower 16 bits, goes to the upper

sixteen bits through a register and not a wire.

++++

Carry
Pass
Logic

Carry
Pass
Logic

Carry
Pass
Logic

4*32 A
4*32 B

4*23-16 B

4*15-8 B

4*7-0 B

4*31-24 B

FF

FFFF

4*31-24 A

4*23-16 A

4*15-8 A

4*7-0 A

FFFFFF

Figure.5.3. Partial Adder Circuit in SIMD=4

56

The RTL describing the behavior of the SIMD pipelined partial adders is shown below.

 for i in 0 to SIMD-1 loop 1
 if (adder_stage_1_en = '1' or recover_state_wires = '1') then 2
 add_8_0_wire(i) <= std_logic_vector('0' & unsigned(adder_ops(0)(7+8*(4*i) downto 8*(4*i))) + 3
 unsigned(adder_ops(1)(7+8*(4*i) downto 8*(4*i))) + 4
 twos_complement(0+(4*i))); 5
 add_16_8_wire(i) <= std_logic_vector('0' & unsigned(adder_ops(0)(15+8*(4*i) downto 8+8*(4*i))) + 6
 unsigned(adder_ops(1)(15+8*(4*i) downto 8+8*(4*i))) + 7
 carry_8_wire(i) + 8
 twos_complement(1+(4*i))); -- 9
 -- Carries are either passed or blocked for the 9-th, 17-th, and 25-th bits 10
 carry_8_wire(i) <= add_8_0_wire(i)(8) and carry_pass(0); -- carry_pass is configured in the init stage 11
 carry_16_wire(i) <= add_16_8_wire(i)(8) and carry_pass(1); -- carry_pass is configured in the init stage 12
 end if;13

 for i in 0 to SIMD-1 loop – index ‘i’ is for the SIMD depth of the SPMU 1
 if (adder_stage_2_en = '1' or recover_state_wires = '1') then 2
 add_24_16_wire(i) <= std_logic_vector('0' & unsigned(adder_ops_lat(0)(7+8*(2*i) downto 8*(2*i)))+ 3
 unsigned(adder_ops_lat(1)(7+8*(2*i) downto 8*(2*i))) + 4
 carry_16(i) + twos_complement(2+(4*i))); 5
 add_32_24_wire(i) <= std_logic_vector('0' & unsigned(adder_ops_lat(0)(15+8*(2*i) downto 8+8*(2*i))) + 6
 unsigned(adder_ops_lat(1)(15+8*(2*i) downto 8+8*(2*i))) + 7
 carry_24_wire(i) + twos_complement(3+(4*i))); 8
 -- All the 8-bit adders are lumped into one output write signal that will write to the scratchpads 9
 -- Carries are either passed or blocked for the 9-th, 17-th, and 25-th bits 10
 carry_24_wire(i) <= add_24_16_wire(i)(8) and carry_pass(2); -- carry_pass is configured in the init stage 11
 end if; 12
 end loop;13

 if add_en = '1' and halt_spe_lat = '0' then 1
 carry_16 <= carry_16_wire; -- latch the wires 2
 add_8_0 <= add_8_0_wire; 3
 add_16_8 <= add_16_8_wire; 4
 for i in 0 to SIMD-1 loop – index ‘i’ is for the SIMD depth of the SPMU 5
 if (adder_stage_2_en = '1' or recover_state_wires = '1') then 6
 -- All the 8-bit adders are lumped into one output signal that will write to the scratchpads 7
 out_adder_results(31+32*(i) downto 32*(i)) <= add_32_24_wire(i)(7 downto 0) & -- form the output result 8
 add_24_16_wire(i)(7 downto 0) & 9
 add_16_8(i)(7 downto 0) & 10
 add_8_0(i)(7 downto 0); 11
 end if; 12
 end loop; 13
 end if; 14
 for i in 0 to SIMD-1 loop – index ‘i’ is for the SIMD depth of the SPMU 15
 for j in 0 to 1 loop -- index ‘j’ loops through the upper two 8-bit adders 16
 adder_ops_lat(j)(15 +16*(i) downto 16*(i)) <= adder_ops(f)(j)(31+32*(i) downto 16+32*(i)); -- latch the ops 17
 end loop; 18
 end loop;19

For the 32-bit multiplier the partial multiplication structure is based on four 16-bit multipliers,

according to the following implementation:

A31-0*B31-0 = [(A31-16 << 16) + A15-0] * [(B31-16 << 16) + B15-0]

57

This method can generate two 8-bit, or two 16-bit MULs per cycle, or one 32-bit MUL per cycle. The

circuit describing the multiplier is shown in figure 5.4. If the data type is set to 8-bit, or 16-bit, then

the middle multiplications (AL*BH and AH*BL) will be masked with zeros to block the accumulation

of the partial multiplications into making a 32-bit output. The actual multiplier does not use right

shifters to give this 16-bit offset of zeros, instead it just concatenates a 16-bit zero vector to the upper

portions of the partial multiplications.

The reason this operation was not divided to use 8-bit multipliers instead, was because one DSP [45]

slice is utilized in the FPGA whether an 8-bit or a 16-bit multiplication is done. So, for our current

implementations of the multipliers, we will only get twice the speed-up for 8-bits of data and not four

times as in the case of the partial adders. One note also, the multipliers upper 32-bit outputs are

ignored so we do not emulate any ‘MULH’ operation, because they are not required in our

applications.

Stage 1: SIMD Partial Mult 16-bit

Stage 2: Partial Mult Accum

x

128 A128 B
4*16 Bl

4*16 Bh

4*16 Bl

4*16 Bh

4*16 Al

4*16 Al

4*16 Ah

4*16 Ah

x x x

+

Funct
Select
Logic

Funct
Select
Logic

FF FF
FF

Figure.5.4. Partial Multiplier Circuit in SIMD=4

 ------ Synchronous Partial Multiplication Stage 1 -- 1
if halt_spe_lat = '0' then – index ‘i’ is for the SIMD depth of the SPMU 2
 if mul_en = '1' and (mul_stage_1_en = '1' or recover_state_wires = '1') then 3
 for i in 0 to SIMD-1 loop 4
 mul_a(31+32*(i) downto 32*(i)) <= std_logic_vector(unsigned(mul_ops(0)(15+16*(2*i+1) downto 16*(2*i+1)))* 5
 unsigned(mul_ops(1)(15+16*(2*i+1) downto 6*(2*i+1)))); 6
 mul_b(31+32*(i) downto 32*(i)) <= std_logic_vector((unsigned(mul_ops(0)(16*(2*i+1) - 1 downto 16*(2*i)))* 7
 unsigned(mul_ops(1)(15+16*(2*i+1) downto 16*(2*i+1)))) 8
 and unsigned(FUNCT_SELECT_MASK)); 9
 mul_c(31+32*(i) downto 32*(i)) <= std_logic_vector((unsigned(mul_ops(0)(15+16*(2*i+1) downto 16*(2*i+1)))* 10
 unsigned(mul_ops(1)(16*(2*i+1) - 1 downto 16*(2*i)))) 11
 and unsigned(FUNCT_SELECT_MASK)); 12
 mul_d(31+32*(i) downto 32*(i)) <= std_logic_vector(unsigned(mul_ops(0)(16*(2*i+1) - 1 downto 16*(2*i)))* 13
 unsigned(mul_ops(1)(16*(2*i+1) - 1 downto 16*(2*i)))); 14

58

 end loop; 15
 end if; 16
end if; 17
---18

------ Synchronous Partial Multiplication Stage 2 -- 1
 if mul_en = '1' and (mul_stage_2_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 2
 for i in 0 to SIMD-1 loop 3
 out_mul_results((Data_Width-1)+Data_Width*(i) downto Data_Width*(i)) <= 4
 (std_logic_vector(unsigned(mul_tmp_a(i)) + 5
 unsigned(mul_tmp_b(i)) + 6
 unsigned(mul_tmp_c(i)) + 7
 unsigned(mul_tmp_d(i)))); 8
 end loop; 9
 end if; 10
--- ---------11

------ Combinational Partial Multiplication --- 1
 if mul_en = '1' and (mul_stage_2_en = '1' or recover_state_wires = '1') then 2
 for i in 0 to SIMD-1 loop 3
 if MVTYPE_SPE /= "10" then 4
 -- 5
 mul_tmp_a(i) <= (mul_a(15+16*(2*i) downto 16*(2*i)) & x"0000"); 6
 mul_tmp_d(i) <= (x"0000" & mul_d(15+16*(2*i) downto 16*(2*i))); 7
 -- 8
 elsif MVTYPE_SPE = "10" then 9
 -- The upper 32-bit results of the multiplication are discarded in the SPMU (Ah*Bh) 10
 mul_tmp_b(i) <= (mul_b(15+16*(2*i) downto 16*(2*i)) & x"0000"); -- (Ah*Bl) 11
 mul_tmp_c(i) <= (mul_c(15+16*(2*i) downto 16*(2*i)) & x"0000"); -- (Al*Bh) 12
 mul_tmp_d(i) <= (mul_d(31+32*(i) downto 32*(i))); -- (Al*Bl) 13
 end if; 14
 end loop; 15
 end if; 16
--- ----------17

The partial right shifter in the SPE works in the opposite manner (Figure 5.5). One 32-bit right logic

shifter slides the input operands and computes one 32-bit shifted output. If the data width was 16-

bits, the init config will configure the data to mask the data sliding form one data value to the other.

It will execute as follows: The two 16 bits data will go into the right shifter, the output of the shifter

will be sent to the next stage where the lower bits of the upper 16-bit input that were slided into the

upper bits of the lower 16-bit input will be masked with a bit a zero if the shift was logical, and sign

extended if the shift was arithmetic. A similar approach is applied for 8-bit data types.

The SPMU does not include a left shifter, instead the partial multipliers can be used for left shifting.

As for the implementation of the right shifter, it was implemented to be used for pre-scaling and post-

scaling of the input and output data to be used in convolutions.

59

4*5 shamt 4*32 A

Shift Right Logic

4*32 Y1

Mask_en

Sign_Ext

4*32 Y2

Init configs

Figure.5.5. Partial Right Shifter Circuit in SIMD=4

------ Synchronous Partial Shifter Stage 1 -- 1
 if shift_en = '1' and (shifter_stage_1_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 2
 for i in 0 to SIMD-1 loop 3
 shifter_op(31+32*(i) downto 32*(i)) <= to_stdlogicvector(to_bitvector(shifter_op(31+32*(i) downto 32*(i))) srl 4
 to_integer(unsigned(shift_amount))); -- shift as if it was a 32-bit value 5
 end loop; 6
 if MVTYPE_SPE = "00" then 7
 for i in 0 to 4*SIMD-1 loop -- latch the sign bits 8
 shifter_op_lat(7+8*i downto 8*i) <= (others => shifter_op(7+8*i)); -- latch 8-bit data sign bit for arith shifts 9
 end loop; 10
 elsif MVTYPE_SPE = "01" then 11
 for i in 0 to 2*SIMD-1 loop -- latch the sign bits 12
 shifter_op_lat(15+16*i downto 16*i) <= (others => shifter_op(15+16*i)); -- latch 16-bit data sign bit for arith shifts 13
 end loop; 14
 elsif MVTYPE_SPE = "10" then 15
 for i in 0 to SIMD-1 loop -- latch the sign bits 16
 shifter_op_lat(31+32*i downto 32*i) <= (others => shifter_op(31+32*i)); -- latch 32-bit data sign bit 17
 end loop; 18
 end if; 19
 end if; 20
--- ----------21

------ Synchronous Partial Shifter Stage 2 -- 1
 if shift_en = '1' and (shifter_stage_2_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 2
 if MVTYPE_SPE = "10" then 3
 for i in 0 to SIMD-1 loop 4
 out_shifter_results(31+32*(i) downto 32*(i)) <= shifter_op_lat_wire(31 +32*(i) downto 32*(i)) or 5
 shifter_op(31+32*(i) downto 32*(i)); 6
 end loop; 7
 elsif MVTYPE_SPE = "01" or (decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1' and 8
 MVTYPE_SPE = "00") then 9

60

 -- KDOTPPS8 is added here because the element number loaded per cycle for mul ops is the sane for 8, and 16 types 10
 for i in 0 to 2*SIMD-1 loop 11
 out_shifter_results(15+16*(i) downto 16*(i)) <= shifter_op_lat_wire(15 +16*(i) downto 16*(i)) or 12
 (shifter_operand(15+16*(i) downto 16*(i)) and 13
 shift_enabler(15 downto 0)); 14
 end loop; 15
 elsif MVTYPE_SPE = "00" then 16
 for i in 0 to 4*SIMD-1 loop 17
 out_shifter_results(7+8*(i) downto 8*(i)) <= shifter_operand_lat_wire(7 +8*(i) downto 8*(i)) or 18
 (shifter_operand(7+8*(i) downto 8*(i)) and 19
 shift_enabler(7 downto 0)); 20
 end loop; 21
 end if; 22
 end if; 23
---24

------ Combinational Partial Shifter -- 1
 if shift_en = '1' and halt_spe_lat = '0' then 2
 if MVTYPE_SPE = "01" then 3
 shift_enabler(15 - to_integer(unsigned(shift_amount(3 downto 0))) downto 0) <= (others => '1'); 4
 elsif MVTYPE_SPE = "00" then 5
 shift_enabler(7 - to_integer(unsigned(shift_amount(2 downto 0))) downto 0) <= (others => '1'); 6
 end if; 7
 if (decoded_instruction_SPE_lat(KSRAV_bit_position) = '1' or 8
 decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1') and 9
 MVTYPE_SPE = "10" then -- 32-bit sign extension for srl in stage 1 10
 for i in 0 to SIMD-1 loop 11
 shifter_op_lat_wire(31+32*(i) downto 31 - to_integer(unsigned(shift_amount(f)(4 downto 0)))+32*(i)) <= 12
 shifter_operand_lat(31+32*(i) downto 31 - to_integer(unsigned(shift_amount(f)(4 downto 0)))+32*(i)); 13
 end loop; 14
 elsif (decoded_instruction_SPE_lat(KSRAV_bit_position) = '1' or 15
 decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1') and 16
 MVTYPE_SPE = "01" then -- 16-bit sign extension for srl in stage 1 17
 for i in 0 to 2*SIMD-1 loop 18
 shifter_operand_lat_wire(15+16*(i) downto 15 - to_integer(unsigned(shift_amount(3 downto 0)))+16*(i)) <= 19
 shifter_operand_lat(15+16*(i) downto 15 - to_integer(unsigned(shift_amount(3 downto 0)))+16*(i)); 20
 end loop; 21
 elsif (decoded_instruction_SPE_lat(KSRAV_bit_position) = '1' or 22
 decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1') and 23
 MVTYPE_SPE = "00" then -- 8-bit sign extension for srl in stage 1 24
 for i in 0 to 4*SIMD-1 loop 25
 shifter_operand_lat_wire(7+8*(i) downto 7 - to_integer(unsigned(shift_amount(2 downto 0)))+8*(i)) <= 26
 shifter_operand_lat(7+8*(i) downto 7 - to_integer(unsigned(shift_amount(2 downto 0)))+8*(i)); 27
 end loop; 28
 end if; 29
 end if; 30
--- ---------31

The remaining two functional units are a 2-stage accumulator, which accumulates an input vector

source into a scalar output, and a ReLu unit that rectifies all negative vector elements to zero.

------ Two Stage Accumulator SIMD 2--- 1
 if (decoded_instruction_SPE_lat(KDOTP_bit_position) = '1' or 2
 decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1' or 3
 decoded_instruction_SPE_lat(KVRED_bit_position) = '1') and 4
 MVTYPE_SPE = "10" then 5
 if (accum_stage_1_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 6
 accum_partial_results_stg_1(31 downto 0) <= std_logic_vector(unsigned(accum_op(31 downto 0)) + 7
 unsigned(accum_op(63 downto 32))); 8

61

 end if; 9
 if (accum_stage_2_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 10
 out_accum_results(f) <= std_logic_vector(unsigned(accum_partial_results_stg_1(31 downto 0)) + 11
 unsigned(out_accum_results)); 12
 end if; 13
 elsif (decoded_instruction_SPE_lat(KDOTP_bit_position) = '1' or 14
 decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1' or 15
 decoded_instruction_SPE_lat(KVRED_bit_position) = '1') and 16
 (MVTYPE_SPE = "01" or MVTYPE_SPE = "00") then 17
 if (accum_stage_1_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 18
 accum_partial_results_stg_1(15 downto 0) <= std_logic_vector(unsigned(accum_op(15 downto 0)) + 19
 unsigned(accum_op(31 downto 16))); 20
 accum_partial_results_stg_1(31 downto 16) <= std_logic_vector(unsigned(accum_op(47 downto 32)) + 21
 unsigned(accum_op(63 downto 48))); 22
 end if; 23
 if (accum_stage_2_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 24
 spe_out_accum_results <= std_logic_vector(unsigned(accum_partial_results_stg_1(15 downto 0)) + 25
 unsigned(accum_partial_results_stg_1(31 downto 16)) + 26
 unsigned(out_accum_results)); 27
 end if; 28
 end if; 29
--- -------------------------------------30

------ Synchronous Single Stage ReLu --- 1
 if (relu_stage_1_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 2
 if MVTYPE_SPE = "10" then – ReLu for 32-bit data type 3
 for i in 0 to SIMD-1 loop 4
 if spe_in_relu_operands(31+32*(i)) = '1' then 5
 spe_out_relu_results(31+32*(i) downto 32*(i)) <= (others => '0'); 6
 else 7
 spe_out_relu_results(31+32*(i) downto 32*(i)) <= spe_in_relu_operands(31+32*(i) downto 32*(i)); 8
 end if; 9
 end loop; 10
 elsif MVTYPE_SPE = "01" then – ReLu for 16-bit data type 11
 … 12
 end if; 13
 end if;14

5.3.2. Scratchpad Memory Interface

The engine is interfaced with a set of SPMs through the Scratchpad Memory Interface. Each SPM in

the SPI has a read and write port, and every SPM-line has a set of banks that hold a 32-bit word. The

number of banks in an SPM is dependent on the SIMD configuration chosen. For example, a config-

uration with SIMD 4 has four banks. Each of the banks has a read and write port, and the total width

of the ports in the SPM will be 128-bits (i.e. 32-bits*4). When a fetch request is granted the data will

be read on the next cycle. The RTL below illustrates the implementation of the SPMs in the T13.

------ Scratchpad Memory Generation -- -------- 1
-- 3D array, of memory, the 1st dimension defines the size of each word, the 2nd is number of words in a bank, and the 3rd 2
is the number of banks. 3
signal mem : array_3d(SIMD*SPM_NUM-1 downto 0)(2**(Addr_Width-(SIMD_BITS+2))-1 downto 0)(Data_Width-1 4
downto 0); 5
attribute ram_style : string; 6
attribute ram_style of mem : signal is "block"; 7
 8
 spm_banks : for h in 0 to SIMD*SPM_NUM -1 generate 9

62

 spm_logic: process(clk_i) -- 10
 begin 11
 if(clk_i'event and clk_i='1') then 12
 sc_data_rd(h) <= mem(SIMD*SPM_NUM + h)(to_integer(unsigned(sc_addr_rd(h)))); 13
 if sc_we(h) = '1' then --write mode 14
 mem(SIMD*SPM_NUM + h)(to_integer(unsigned(sc_addr_wr(h)))) <= sc_data_wr(h); 15
 end if; -- we 16
 end if; -- clk 17
 end process; 18
 end generate spm_banks; 19
--- -------------------20

An SPM read or write access will fetch or write an entire line in one cycle. If the fetch pointer was

not pointing to the beginning of the line, the data fetched will be from the line being indexed, and the

next line as well, therefore maintaining the fetching of one complete line per cycle.

Misaligned fetches go into a read-rotator circuit to make it appear as if the fetching is from the begin-

ning of the line. The rotator gives a one extra cycle of latency to execute the instruction. In this manner

operand_a[i] will always be aligned with operand_b[i] and go the same functional unit. Without ro-

tation, misaligned accesses might send operand_a[i] and operand_b[i+2] to go to the same functional

unit, and that produces erroneous outputs. During the result write, the result will be rotated back with

a write rotator to go to the correct bank indexed in the write address.

------ Synchronous Write Rotator --- ------- 1
 for i in 0 to SIMD-1 loop -- index i loops the words inside each SPM 2
 if (to_integer(unsigned(spm_write_addr(SIMD_BITS+1 downto 0))) = 4*i) and (i /= 0) then 3
 wr_offset(i-1 downto 0) <= (others => '1'); 4
 end if; 5
 end loop; 6
 for i in 0 to SIMD-1 loop -- index i loops the words inside each SPM 7
 if (to_integer(unsigned(spm_write_addr(SIMD_BITS+1 downto 0))) = 4*i) then 8
 for j in 0 to SIMD-1 loop 9
 if j <= (SIMD-1)-i then 10
 spm_data_write_int_wire(31+32*(j+i) downto 32*(j+i)) <= spm_data_write_wire(31+32*j downto 32*j); 11
 elsif j > (SIMD-1)-i then 12
 spm_data_write_int_wire(31+32*(j-(SIMD-1)+(i-1)) downto 32*(j-(SIMD-1)+(i-1))) <= 13
 spn_data_write_wire(31+32*j downto 32*j); 14
 end if; 15
 end loop; 16
 end if; 17
 end loop; 18
--- -------------------19

------ Synchronous Read Rotator --- 1
 for k in 0 to 1 loop – index k loops between the two read data operands of the SPI 2
 for i in 0 to SIMD-1 loop -- index i loops the words inside each SPM 3
 if (to_integer(unsigned(spm_read_addr(k)(SIMD_BITS+1 downto 0))) = 4*i) and (i /= 0) then 4
 rd_offset(k)(i-1 downto 0) <= (others => '1'); 5
 end if; 6
 end loop; 7
 for i in 0 to SIMD-1 loop -- index i loops the words inside each SPM 8
 if (to_integer(unsigned(spm_read_addr_lat(k))) = 4*i) then 9
 for j in 0 to SIMD-1 loop 10
 if j >= i then 11
 spm_data_read_wire(k)(31+32*(j-i) downto 32*(j-i)) 12
 <= spm_data_read_int_wire(k)(31+32*j downto 32*j); 13
 elsif j < i then 14

63

 spm_data_read_wire(k)(31+32*((SIMD-1)-i+(j+1)) downto 32*((SIMD-1)-i+(j+1))) 15
 <= spm_data_read_int_wire(k)(31+32*j downto 32*j); 16
 end if; 17
 end loop; 18
 end if; 19
 end loop; 20
 end loop; 21
--- -------------------22

The SPI has a serialized access grant unit, in which the instruction that comes first in program order

will either lock the read and write access of a certain scratchpad. And since T13 is an in-order

processor, there will never be data hazards with the serialized access grant.

LSU accesses to SPI read or write one bank at a time instead of writing the entire SPM line at once.

A bank interleaver will loop consecutively between each bank in the SPM, and once it reaches the

last line of the bank it increments the read or write address, and loops back to bank 0 of the SPM. The

RTL describing the implementation of the bank interleaver is shown below.

--- Synchronous bank counter --- 1
-- Increments the bank count inside each spm memory 2
 if data_rvalid_i = '1' then 3
 if spm_word_count = SIMD-1 then 4
 spm_word_count <= 0; 5
 else 6
 spm_word_count <= spm_word_count + 1; 7
 end if; 8
 end if; 9
---10

--- LSU read port -- 1
 if ls_data_gnt_i(i) = '1' then -- LSU read port 2
 if harc_LS_wire = h then -- data reads the register from the bank counter to index 3
 ls_sc_data_read_wire_replicated(h) <= sc_data_rd(h)((SIMD)*i + sc_word_count(h)); 4
 end if; 5
 end if; 6
 7
 if ls_spi_req(i) = '1' then -- LSU read port 8
 if harc_LS_wire = h then -- address reads the wire from the bank counter to index 9
 spm_addr_rd(h)(spm_word_count_wire + (SIMD)*i) <= ls_spm_read_addr; 10
 end if; 11
 end if; 12
--13

5.4. SPMU Implementations

This section explores a set of hardware accelerator schemes whose architecture was described in

section 5.3, and describes how each one can be used in exploiting the T13 core.

5.4.1. Shared-SPMU (Shared-SPI, Shared-SPE):

The first approach used when augmenting a hardware accelerator to the IMT architecture was having

a Shared SPMU being accessed by all the harts in the core. Figure 5.6 shows a block diagram of this

scheme. The schematic is very identical to that one showed in figure 5.2. In order to access the Shared-

64

SPMU, a request signal is sent from the decode stage. If the Shared-SPMU is busy, the pipeline will

be halted until it becomes free again.

In order to minimize the halts to the pipeline, functional units can be set to execute in SIMD.

Increasing the SIMD multiplies the functional units in the core, and the number of banks in each

SPM. The core could be configured to process data in parallel of up to 256-bits per cycle (SIMD 8

max). Smaller data types perform even faster when boosting the data level parallelism. Since most of

the functional units work in partial mode, and can compute of up to four results per unit as seen from

table 5.1. In the scheme in figure 5.6, all the harts share the same memory space, and the same

execution units. The SPMU can work in superscalar with other non-SPMU instructions, however,

when an SPMU instruction is decoded, and SPMU unit is busy, then the instruction pipeline will be

halted in this scheme.

The RTL describing the implementation of the Shared-SPMU is the same code that was shown in

section 5.3.

Input Mapping

Add
Sub

Shft Mul Accum Relu

SPE

Bank Intrlv

Bank1Bank0 BankN

SPI

Data reorder

Output Mapping

SPMU_busySPMU_req

Figure.5.6. Diagram of the Shared-SPMU, all accesses to the SPMU are shared by all the harts

5.4.2. Dedicated-SPI Shared-SPE

The second hardware accelerator scheme is called the Dedicated-SPI Shared-SPE. The diagram

showing its implementation is shown in figure 5.7. In this hardware scheme, every hart in the T13

core has its own dedicated memory space, but they all share the same functional units. It can be

compared to a multi-threaded hardware accelerator, in which the threads share the access to the logical

elements [38]. In the Dedicated-SPI Shared-SPE, any contention to a functional unit is processed by

a contention handler to determine which hart requested the access first. Since the hart instructions are

issued in order, then there will never be simultaneous requests, and no race conditions. An SPMU

65

busy signal in this hardware scheme will only block SPMU instructions belonging to the same hart

thus minimizing the pipeline halts in the SPMU a lot. Note that there is a buffer to hold the instruction

data for each hart. This gives a great speed advantage over the Shared-SPMU approach as it exploits

thread level parallelism, and still maintains minimal architectural complexity, as no instruction issue

logic is needed to issue out of order.

Every hart can load data to its own SPI, and not to any other SPI. In this manner, the SPMs of each

hart can have overlapping memory addresses. For example, hart 2 can perform burst loads ‘kmemlds’

from the main memory to the SPI(2) only, and hart 1 using the same pointers used in kmemld

instruction from hart 2 can do the same. The decoding of the entire SPM address space becomes much

easier to handle, and makes it also easier for the programmer that will be managing the SPMU address

space. In a similar manner, all SPMU arithmetic instructions read and write from and to their own

SPIs only.

Input Mapping

Data reorder

Output Mapping

contention

handler

SPMU_busy

hart a,b,c
SPMU_req

hart a,b,c

Functional Units

B0

Data reorderData reorder

B1 BnB0 B1 BnB0 B1 Bn

SPISPISPI

SPE

Figure.5.7. Diagram of dedicated SPI shared SPE model. Each hart has a dedicated set of scratchpads, busy

signals will only block the hart belonging to the same SPMU

If the user needs to broadcast some input data to all the SPIs, they can execute another type of load

instruction called broadcast load “kbcastld”. When using kbcastld, if the user wants to send some

input data to SPM(i), then the kbcastld will broadcast the data to the SPM(i) of each SPI. This

broadcasting operation relives the core from having to fill three memories sequentially.

Changes to the RTL required to handle this are minimal. First every SPI is replicated with a “for

generate” structure is needed and a signal to distinguish the load is a broadcast as shown below,

SPM_replicated : for h in accl_range generate 1
 -- The index ‘h’ now refers to each SPI 2
SPI_Unit_comb : process(all)) 3

66

begin 4
… 5
… 6
 if data_rvalid_i = '1' then -- LS write port 7
 if ls_spi_req(i) = '1' and ls_spi_we(i) = '1' and ls_spi_wr_gnt = '1' then 8
 if harc_LSU_wire = h or spm_bcast = '1' then – spm_bcast indicates we have kbcastld, and we always enter the ‘if ’ 9
 spm_we(h)((SIMD)*i + spm_word_count(h)) <= '1'; 10
 spm_data_wr(h)(spm_word_count(h) + (SIMD)*i) <= lsu_data_write_wire(31 downto 0); 11
 spm_addr_wr(h)(spm_word_count(h) + (SIMD)*i) <= lsu_write_addr; 12
 end if; 13
 end if; 14
 end if; 15
… 16
… 17
end process; 18
 19
end generate SPM_replicated;20

In addition to the SPI, the SPE must have a new mapping unit, each hart must have its own hardware

loops, and there must be a functional unit contention access handler.

The RTL below describes, a brief implementation of how the new mapping unit should be. One

disadvantage from the implementation of the mapping unit below, is that all these input SPI operands

mapping to these different functional units requires a huge set of multiplexers to map inputs and

outputs appropriately.

------ Input Mapping -- 1
 -- The index ‘h’ refers the dedicated SPI in the core, and maps them to the adder 2
 if decoded_instruction_SPE_lat(h)(KADDV_bit_position) = '1' then 3
 adder_ops(0) <= spi_data_read(h)(0); 4
 adder_ops(1) <= spi_data_read(h)(1); 5
 end if; 6
 7
------ Output Mapping -- 8
 -- The output results of the adder are again mapped to the appropriate SPI indexed in ‘h’ 9
 if decoded_instruction_SPE_lat(h)(KADDV_bit_position) = '1' then 10
 spe_sc_data_write_wire_int(h) <= out_adder_results; 11
 end if; 12
--- --------------------13

The FU contention handler on the other hand is a bit more complex to implement. The RTL below

shows logic behind the functional unit grant handler. As seen in the RTL below, every functional unit

has its own handler, and any reservation on a busy functional unit stores the ID of the hart requesting

the access inside a buffer, the buffer write-pointer gets incremented as soon as the request becomes

registered, and another hart can reserve access to the busy functional unit at the new write-pointer

value. As soon as the functional unit becomes free. The buffer is read, the read-pointer is incremented,

and the grant will be given to the hart ID stored in the buffer.

------ Synchronous FU access handler --- 1
 for h in accl_range loop 2
 for i in 0 to 4 loop – loops through the five functional units (add, shift. mul, acc, relu) 3
 if fu_req(h)(i) = '1' then -- if a reservation was made, to use a functional unit, store the hart_ID 4
 fu_issue_buffer(i)(to_integer(unsigned(fu_wr_ptr(i)))) <= std_logic_vector(to_unsigned(h,TPS_CEIL)); 5
 if unsigned(fu_wr_ptr(i)) = THREAD_POOL_SIZE - 2 then 6
 fu_wr_ptr(i) <= (others => '0'); 7
 else 8
 fu_wr_ptr(i) <= std_logic_vector(unsigned(fu_wr_ptr(i)) + 1); -- increment the write pointer 9
 end if; 10

67

 if fu_gnt_en(h)(i) = '1' then 11
 if unsigned(fu_rd_ptr(i)) = THREAD_POOL_SIZE - 2 then 12
 fu_rd_ptr(i) <= (others => '0'); 13
 else 14
 fu_rd_ptr(i) <= std_logic_vector(unsigned(fu_rd_ptr(i)) + 1); -- increment the read pointer 15
 end if; 16
 end if; 17
 end if; 18
 end loop; 19
 end loop; 20
--- -------------21

------ Combinational FU access handler -- 1
 for h in accl_range loop 2
 fu_gnt_wire(h) <= (others => '0'); 3
 fu_gnt_en(h) <= (others => '0'); 4
 if add_en_pending_wire(h) = '1' and busy_add_wire = '0' then 5
 fu_gnt_en(h)(0) <= '1'; 6
 end if; 7
 if shift_en_pending_wire(h) = '1' and busy_shf_wire = '0' then 8
 fu_gnt_en(h)(1) <= '1'; 9
 end if; 10
 … 11
 for i in 0 to 4 loop – loops through the five functional units (add, shift. mul, acc, relu) 12
 if fu_gnt_en(h)(i) = '1' then 13
 -- give a grant to fu_gnt(h)(i), such that the 'h' index points to the thread in "fu_issue_buffer" 14
 fu_gnt_wire(to_integer(unsigned(fu_issue_buffer(i)(to_integer(unsigned(fu_rd_ptr(i)))))))(i) <= '1'; 15
 end if; 16
 end loop; 17
 … 18
 end loop; 19
--20

Note that the Dedicated-SPI Shared-SPE approach which already exploits thread level parallelism of

the T13 core, can still be configured to exploit the data level parallelism of the T13 by configuring

the SPMU to execute with larger SIMD settings.

5.4.3. Dedicated-SPMU (Dedicated SPI, Dedicated-SPE)

The Dedicated-SPMU approach, as the name implies assigns a dedicated hardware accelerator to each

hart. Just like the previous implementation was compared to a multi-threaded accelerator, this

implementation can be compared to a multi-core accelerator. The term multicore can be compared to

the CUDA cores in NVIDIA Tesla [39]. Each SPMU has its own SPI and SPE, there is no contention

handler needed at all, since each hart will have its own set of functional units. Figure 5.8 shows the

implementation of such an approach. The advantage to this approach over the Dedicated SPI Shared-

SPE approach is that this approach further decreases the stalls to the instruction pipeline since there

will never be contention over functional units. Also, the mapping unit of this approach is also much

less complex since it does not need that huge crossbar to map the operands to the functional units,

and its implementation will follow that Shared-SPMU.

Like the Dedicated SPI Shared-SPE approach, this unit has one instruction buffer for each hart. A

pipeline stall will only happen when the decode stage has an SPMU instruction going to the same hart

of a busy SPMU. Also, similarly the SPI implementation of the Dedicated-SPMU approach is exactly

the same to that of the previous approach, and it still maintains the support for the broadcast load

68

instruction, However, a disadvantage for this approach is that this approach might utilize a big area

since all the pipelined functional units are replicated.

Input Mapping

Output Mapping

SPMU_busy_hart_aSPMU_req_hart_a

Functional Units

B0 B1 Bn

Data reorder

Input Mapping

Output Mapping

SPMU_busy_hart_cSPMU_req_hart_c

Functional Units

B0 B1 Bn

Data reorder

SPE

SPI

SPE

SPI

Figure.5.8. Diagram of Dedicated-SPMU, each hart has a dedicated SPE and SPI, a busy signal will only block

the hart belonging to the same SPMU

The brief RTL below illustrates how all the signals in the SPMU must be changed relative to the

Shared-SPMU approach, in which all the signals now have a new dimension which is called

<accl_tange>, that ranges through number of hardware accelerators in the core. If the SPMU is

replicated as in this case, the accl_range is equal to the THREAD_POOL_SIZE. While if the

replication was disabled, accl_range would become zero. Also as seen in the RTL that a “for-

generate” must be added to replicate the assignments in the SPE just like the SPI assignments were

replicated in the previous approach. This way, each process assigns to its own dimension indexed

in ’h’.

signal wb_ready : std_logic_vector(accl_range); 1
signal SIMD_RD_BYTES : array_2d_int(accl_range); 2
signal MVSIZE_WRITE : array_2d(accl_range)(Addr_Width downto 0); 3
 4
 SPE_replicated : for h in accl_range generate -- The h index loops through the acc_range above 5
 … 6
 if wb_ready(h) = '1' then 7
 if to_integer(unsigned(MVSIZE_WRITE(h))) >= SIMD_RD_BYTES(h) then 8
 MVSIZE_WRITE(h) <= std_logic_vector(unsigned(MVSIZE_WRITE(h)) - SIMD_RD_BYTES(h)); 9
 else 10
 MVSIZE_WRITE(h) <= (others => '0'); -- decrement the remaining bytes 11
 end if; 12
 end if; 13
 … 14
 end generate15

69

5.5. Performance evaluation of the SPMU implementations.

In order to benchmark the performance of the T13 core when executing vector operations, various

tests have been developed. The first batch is a basic series of instruction level testing. These tests

benchmark the performance contribution of different approaches provided in the SPMU, that helped

boost the execution of arithmetic-vector operations. The second batch of tests, is a set of matrix

convolution being executed with the SPMU, in order to show the how the hardware schemes

introduced in section 5.4 performed. Lastly, we show results of running entire layers of DCNN on the

SPMU, and we compare its performance to the T03, and Riscy cores from Pulpino. Details about the

implementation of the tests are laid out in the chapter 6.

5.5.1. Instruction Level Testing:

In order to benchmark some implementations in the SPMU, a set of basic arithmetic tests were

performed to see which implementations provided the largest performance boost. Figure 5.9 shows

the number of clock cycles took to perform an arithmetic operation in the T13 without using any

hardware accelerator, but still utilizing all the harts in the core.

In figure 5.10, the same vector-arithmetic operations were performed with the SPMU with the

different data types (8,16,32). However, they were performed using software loops instead of zero-

overhead loops (hardware loops). The convolutions were run on the Shared-SPMU scheme

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Vector Length

0

200

400

600

800

1000

1200

1400

1600

1800

Cycle Count

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Vector Length

0

200

400

600

800

1000

Cycle Count

8b OP SW LOOP 16b OP SW LOOP 32b OP SW LOOP

Figure.5.9. Number of cycles taken to perform an arithmetic vector operation without the SPMU

Figure.5.10. Cycle time using the SPMU with SIMD=1 and hardware loops disabled

70

configured with no data level parallelism (SIMD=1). Figure 5.10, shows the advantage of using the

low latency local scratchpad memories.

Comparing figures 5.9 and 5.10 for small vector sizes, the boost was not very evident. However, as

the vector sizes grew, the tests that were running on the SPMU using sw-loops and SIMD equal to

zero, showed that the cycle time grew with a smaller slope then that of the non-accelerated test. This

test clearly outlines the advantage of using low latency scratchpad memories to using the registerfiles.

Such that the total number of cycles dropped by more than 40% for vectors of sixty elements.

The reason for the speedup is obvious, since the non-accelerated operations writing to the registerfile

will have to push the old data to the stack memory to make way for the new computed results, and

then load back the data from the stack when it needs to be read. While when using the SPMU will

load the input data once from the main memory with a burst load instruction. Then, stores the final

results at the end of the operation with a burst store back to the main memory.

Smaller data width such as 16, and 8-bit performed even better since they are more parallel than the

32-bit operations even though the SIMD of the SPMU is set to one. The nature of SPMU using partial

functional units and replicating the non-partial ones will show this very good performance with the

tiny slope relative to the 32-bit operations.

Figure 5.11 shows the advantage of using the zero-overhead loops or hardware loops in the SPMU.

The hardware loops relieve the core from augmenting the following overhead of instructions:

• Incrementing the address of source operand 1.

• Incrementing the address of source operand 2.

• Decrementing the number of elements left to execute.

• Branching to the beginning of the loop if the number elements is not zero.

Enabling the hardware loops in the SPMU, boosted the performance for all vector sizes, such that the

speed boost was over 170% for large vectors, and almost 100% for small vectors comparing to the

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Vector Length

0

50

100

150

200

250

300

350

400

Cycle time

8b OP 16b OP 32b OP

Figure.5.11. Cycle time using the SPMU with SIMD=1 and hardware loops enabled

71

sw-loop approach. While comparing to the non-accelerated from figure 5.9 approach we can see the

speed boost to go over 350% for large vectors.

Finally, figure 5.12 reports the cycle time when executing the same test, however with increasing the

data level parallelism by setting the SIMD equal to four.

Boosting the data level parallelism was the least contributor out of all the implementations to the

performance boosts. Such that the speed boost was barely visible for small vectors, and for large

vectors, the speed boost was about 15% over the previous approach. Not only that, but the area

increases from replicating the functional units, and the registers that hold the data in the pipelines of

functional units, and the read and write SPM rotators size increase can be regarded as considerably

large for such small performance contributions.

More reports regarding the area utilization will be discussed in the section 5.6.

5.5.2. Routine Level Testing

Libraries have been made using the SPMU instructions in order to perform matrix convolutions.

Details about the implementation of the convolutions are included in chapter 6. The matrix

convolutions included different square matrix sizes, typically 4x4, 8x8, 16x16, and 32x32. The data

types used were only 32-bit integers. That is because the neural network test used, uses these data

types as well. The convolution tests have been run on the hardware schemes introduced in section

5.4. Each hardware scheme was configured with different SIMD configurations (1, 2, 4 and 8) to

show the contribution of the data level parallelism in each. Table 5.2 reports the cycle time for each

matrix convolution on each SPMU hardware scheme as well as the non-accelerated versions of the

T13 and the native PULPino Riscy cores.

Now as we delve in the evaluation of the different hardware schemes from section 5.4. I will be using

some terminology to refer to the schemes in order to be brief:

• DLP approach: means increasing the data level parallelism in the Shared-SPMU such that we

go from SIMD-1 to SIMD-8.

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Vector Length

0

50

100

150

200

250

300

350

Speed in Cycles for SIMD=4

8b OP 16b OP 32b OP

Figure.5.12. Cycle time using the SPMU with SIMD=4 and hardware loops enabled

72

• TLP approach: means that we go from the Shared-SPMU SIMD-1 scheme to the Dedicated-

SPMU SIMD-1 or Dedicated-SPI_Shared-SPE SIMD-1 schemes that exploit thread level

parallelism.

• Hybrid Approach: means that we go from the Shared-SPMU SIMD-1 scheme to the

Dedicated-SPMU SIMD-8 or Dedicated-SPI_Shared-SPE SIMD-8 schemes that exploit both

data level parallelism and thread level parallelism.

The evaluation begins as follows starting from small matrix convolutions. Looking at table 5.2, small

matrix convolutions (4x4) performed by the different SPMU configurations gave approximately 2-3

times the speed-up relative to performing the convolutions on the non-accelerated T13 core

(No_ACCL_RV32IM), and more than 2 times the speed-up when being compared to the Riscy core

itself and 4-7 times comparing it to the Zeroriscy core. Riscy achieves a low cycle count as it exploits

the hardware loops and custom DSP extensions, thus there instruction count decreases as much of the

software overhead is performed in hardware.

Table.5.2. Cycle number to execute a set of convolutions

for different SPMU configurations

Core SIMD
Cycle Count

4x4 8x8 16x16 32x32

Klessydra T13

Shared SPMU

1 1105 3060 9727 34201

2 895 2245 6261 20374

4 824 1768 4607 13444

8 824 1613 3692 10069

Dedicated SPMU

1 626 1493 3887 13536

2 629 1190 3123 8681

4 560 1190 2543 7148

8 560 1152 2543 6006

Dedicated SPI Shared SPE

1 663 1521 4153 13565

2 638 1274 3280 9167

4 573 1213 2688 7473

8 573 1079 2580 6285

NO_ACCL (RV32IM) NA 1819 5737 20714 79230

NO_ACCL_(RV32EM) NA 2355 7821 28927 111891

NO_ACCL (RV32I) NA 4883 17877 69087 272394

NO_ACCL_ (RV32E) NA 5568 20707 80478 318084

RISCY NA 1377 4247 15088 57020

ZeroRiscy NA 2510 8111 29583 113793

ZeroRiscy (no RV32M) NA 6406 23601 91233 360081

MicroRiscy NA 7380 27385 106271 419618

Comparing the SPMU schemes to the T13 cores that did not use the accelerator, acceleration became

more evident with bigger convolutions such that 32x32 convolutions achieved up to 5-7 times the

speed-up using the DLP or TLP approach alone. Hybrid approaches exploiting both DLP and TLP

gained up to 16 times the speed-up. While comparing the results to the PULPino Riscy cores we have

even a larger speed-up on bigger convolutions such that hybrid SPMU approaches had up to 12 times

the speed-up relative to the Riscy core, and 10 times the speedup comparing to Zeroriscy.

Moving on to comparing the SPMU schemes with themselves in the bigger matrix convolutions,

using the DLP approach alone we saw more than 3.4 times the speed-up, while using the TLP

approach alone gave approximately 2.5 times the speed-up. Exploiting both DLP and TLP we saw

5.7 times the speed-boost. In bigger matrix convolutions not only did the TLP and DLP approaches

73

gave higher speed-ups than the smaller matrix convolutions, however the rate of the improvement of

the DLP was faster than the rate of the improvement in the TLP such that in bigger matrix it appeared

better to use the DLP approach of the TLP approach.

Many other important notes can also be taken from table 2. First, the Dedicated-SPI_Shared-SPE

approach when being compared to the Dedicated-SPMU approach has achieved from a minimum of

94% to a maximum of 99% the speed boost when compared to the Dedicated-SPMU. This showed

that in fact sharing the resources impacts the speed only a tiny bit as far as matrix convolutions are

concerned.

Second, the speed-up in both approaches exploiting TLP (Dedicated-SPMU, and Dedicated-

SPI_Shared-SPE) can show how much pipeline stalls had an effect on the speed when comparing to

the Shared-SPMU.

Third, the embedded approaches (RV32E implementations) that were aimed at decreasing the

registerfile footprint in the IMT architectures had somewhat discouraging performance results. such

that comparing the NO_ACCL_RV32EM to NO_ACCL_RV32IM showed a speed degradation of

30% in small matrix convolutions and the degradation went up to 41% in the large convolutions, this

nonlinear degradation obtained from bigger convolutions is mostly due to the increase in the memory

transfers to the stack section of the data memory since the registerfile in the RV32E extension has

very little space allocated for saved registers as opposed to the normal registerfile in the RV32I.

Figure 5.13 shows the contribution of the boost from exploiting the DLP, TLP, and the Hybrid

approach were both DLP and TLP are exploited. Obviously, the Hybrid had the biggest boost in the

cycle time, however, comparing the DLP and TLP alone. We saw that for small vectors TLP was

better at giving higher performances and the matrices grew larger (i.e. beyond 16x16) we saw that

TLP boost remained the same, and the DLP boost then became better than the boost from the TLP.

Figure.5.13. Speed boost from exploiting the DLP, TLP, and both together (Hybrid)

The reason behind not seeing much speed-ups due to DLP in small vectors is that:

• The nature of the SPMU being already superscalar with the other non-SPMU execution

units does well in hiding the latencies of its instructions.

74

• The size of the vectors is small such that doubling the functional units can save only a few

cycles and not much more.

Table 5.3 shows the top frequency of the T13, and the PULPino Riscy cores after a post-synthesis

implementation. The timing constraint used in the synthesis was 1ns, which is a tight constraint that

compels Vivado to synthesize the fastest layouts possible.

Core SIMD
Top Frequency

(MHz)

Klessydra T13

Shared SPMU

1 165.29

2 151.17

4 141.16

8 129.99

Dedicated SPMU

1 156.35

2 130.58

4 111.51

8 108.35

Dedicated SPI Shared SPE

1 140.06

2 131.04

4 116.80

8 102.31

NO_ACCL (RV32IM) NA 206.31

NO_ACCL_(RV32EM) NA 209.60

NO_ACCL (RV32I) NA 185.53

NO_ACCL_ (RV32E) NA 216.64

RISCY NA 91.36

ZeroRiscy NA 117.23

ZeroRiscy (no RV32M) NA 133.08

MicroRiscy NA 146.11

Vivado was able to generate fast layouts for all the hardware schemes for SIMD configurations 1 and

2. However, the top speed witnessed a sharper drop as the DLP grew larger (SIMD 4 and SIMD 8)

especially for the hybrid schemes exploiting both TLP and DLP. For the dedicated SPMU approach,

the area overhead became large enough so that the FPGA slices were being placed farther away from

each other, thus increasing the net delay between the FPGA slices themselves.

While the Dedicated-SPI-Shared-SPE approach witnessed even a larger drop in the top frequency for

large SIMD configurations. Looking at the timing report from Vivado, we saw that the crossbar that

maps the Dedicated-SPI input data buses to the shared SPE functional units became the critical path

in the SPMU for both SIMD 4 and 8 implementations. One approach to make this scheme faster is to

pipeline the crossbar, and divide the critical path. However, we will see in the next why this is not a

very favorable approach.

Figure 5.14 shows the execution time it takes to run the convolutions on all the schemes from table

5.3 when operating at the maximum frequency. The figure was separated into two margins left side

being the SPMU hardware schemes while the right side being the non-accelerated implementations

of T13 and Riscy cores. The reason they were separated was so that very high cycle count on the right

side does not saturate the improvements of the TLP and DLP in the SPMU schemes on the left side.

Beginning with our evaluations, increasing the DLP in bigger convolutions such as 16x16 and 32x32

did actually provide a decrease in the cycle time for all the SPMU schemes. Smaller convolutions

actually got slower when increasing the DLP, that is because of the sharp drop in the top frequency

seen from table 5.3 when increasing the DLP was bigger than the boost in the cycle time.

Table.5.14. Top frequency for each T13 configuration and Riscy Cores

75

One conclusion can be made here, that although increasing the DLP does multiply the processor’s

ability to process data in parallel and thus decrease the cycle count, however, your processor might

in turn perform slightly worse especially when the vectors being worked on are smaller (figure 5.14

convolution 4x4). Comparing the T13 non accelerated schemes to the Riscy cores.

Figure.5.15. Total execution time to perform convolutions when running at the maximum attainable frequency

for accelerated and non-accelerated implementations

The T13 cores highly outperformed the Riscy cores since not only do they have a good cycle count,

but also attain a very high top frequency in comparison with the other cores.

76

• The higher cycle count comes as a result of T13 cores having zero data dependency pipeline

stalls, and zero pipeline flushing, and low latency multiplication instruction.

• The high frequency is attained from pipelining and hardware simplicity.

Showing how the non-accelerated implementations of T13 outperformed the PULPino Riscy cores

makes us certain that as far as CNN accelerators are concerned, it is better to use an IMT architecture

over and in-order execution processor.

One final note is that also again, implementations using the embedded extension RV32E had

somewhat discouraging results, which did not convince us that migrating towards an IMT architecture

with a smaller set of registerfiles is better than using the normal registerfile size as defined in the

RV32I ISA.

5.5.3. VGG16 Deep Convolutional Neural Networking Application

In order to further evaluate our SPMU accelerator when executing neural networking applications,

we had to make the SPMU execute an entire CNN. For that, we have chosen the famous VGG16

DCNN [40]. The VGG16 test is a very successful DCNN that can achieve accuracies of up to 92.7%.

It is used in many classifications [41][42][43]. The layers of the VGG16 test are showed in figure

5.15. In order to fully support the convolution layers of the VGG16, the matrix convolutions from the

previous sections were combined with other libraries that performed: pre-scaling, post-scaling, add-

bias, and ReLu, as well as a set of libraries for the fully-connected layers. The remaining parts of the

network did not undergo acceleration (e.g. softmax, maxpool). After having built a unique VGG16

test to run for the various implementations of the SPMU. We have run a particular set of tests to

evaluate the performance of the T13 IMT architecture. The layers in the network are shown in the

image below.

Two tests are shown in figures 5.16 and 5.17. The first shows the difference in performance when

running the VGG16 using one hart only, and when dividing the workload over all the harts in the

core. The other compares the IMT full active harts Dedicated-SPMU versus an in-order architecture

“Zeroriscy”.

The difference between the single-thread test (1 hart active), and the multi-thread test (all harts active)

outlines one very important aspects in IMT architectures. First of all, both implementations interleave

three harts in the core. However, the single-thread implementation shows how poorly an IMT core

performs when the other harts are Idle. When all the harts become active, and the workload becomes

divided among the harts, we will see a large drop in the cycle count that is evident in figure 5.16.

From the results back in the previous sub-section we chose the Dedicated-SPMU SIMD-2 as a very

fast and yet most balanced option to be compared with an in-order architecture such as Zeroriscy. A

few layers were developed to execute on that version of the SPMU, and they were compared with the

Zeroriscy cores as show in figure 5.17.

77

Figure.5.16. Layers of the VGG16 deep convolutional neural network

From figure 5.16 we can still affirm that when running real life applications as the VGG16 the SPMU

accelerator indeed maintains it’s fast trend results that were displayed back in figure 5.13.

Figure.5.17. KlessydraT13 Shared-SPMU, Single Thread Vs Multithread cycle count per layer for VGG16

Figure.5.18. KlessydraT13 Dedicated-SPMU SIMD-2, vs Zeroriscy cycle count per layer for VGG16 execution

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

700,000,000

Lay2 32x32 Lay5 16x16 Lay9 8x8 Lay12 4x4 Lay16 2x2

C
yc

le
 C

o
u

n
t

Klessydra-T13 vs Zeroriscy

78

As a conclusion for the performance evaluation we saw the difference between an IMT core and an

in-order processor. An IMT processor certainly performed better when the applications were

decoupled. Synthesis results showed that IMT processors had very high top frequencies. Attaching

the different SPMU schemes showed the contribution of each SPMU to the performance, and showed

how DLP and TLP differently exploit the processor with small and big vector computations. Not to

mention a layer of the VGG neural network were run, and they showed how the SPMU accelerator

faired in real life applications.

5.6. Area, Power, and Energy Reports

5.6.1. Area Utilization

Table 5.4 reports the area utilization on the FPGA when synthesizing on the Genesys2 board [29]. We

can see clearly that the area increase due to the DLP was really impacting especially in the Hybrid

approaches exploiting both DLP and TLP. One small conclusion can be made here, that the speed-

boost from the DLP showed in the previous section was on average smaller than the TLP speed boost,

and yet the DLP exploiting schemes (Shared-SPMU SIMD-8) consumed a higher area than the TLP

exploiting schemes (Dedicated-SPMU SIMD-1 and Dedicated-SPI_Shared-SPE).

An additional important note to take from these results as well is that the crossbar in the Dedicated-

SPI-Shared-SPE version is large enough, such that the number of LUT utilization is very similar to

that in the Dedicated-SPMU version, and that the reduction in element utilization was only in the FFs

and the DSP slice count. Pipelining the crossbar to get a higher top frequency is possible, however it

will increase the FF utilization in the Dedicated-SPI-Shared-SPE, and hence the FF count saved from

sharing FUs will be utilized in pipelining the crossbar rendering this approach to be somewhat useless,

relative to the Dedicated-SPMU approach. But still this approach can be considered as seen from the

results, we save a huge number in the DSP slice count when sharing the functional units in the

Dedicated-SPI-Shared-SPE approach.

Table.5.3. T13 Area Utilization on FPGA for all SPMU Configurations

Core SIMD
Element Utilization

FF LUT BRAM DSP

Klessydra T13

Shared SPMU

1 6552 10655 6 8

2 6907 12835 6 12

4 7587 15807 6 20

8 9064 21423 12 36

Dedicated SPMU

1 7782 14344 18 16

2 8875 13017 18 28

4 10903 28309 18 52

8 15223 46861 36 100

Dedicated SPI Shared SPE

1 7234 14229 18 9

2 8009 18803 18 12

4 9167 27150 18 20

8 11460 48081 36 36

NO_ACCL (RV32IM) NA 5639 7975 0 4

NO_ACCL_(RV32EM) NA 4165 8120 0 4

NO_ACCL (RV32I) NA 5424 7674 0 0

NO_ACCL_ (RV32E) NA 3890 7414 0 0

RISCY NA 2527 7674 0 6

ZeroRiscy NA 1933 3275 0 1

ZeroRiscy (no RV32M) NA 1791 2832 0 0

MicroRiscy NA 1279 2434 0 0

79

Making the Comparison between Riscy, Zeroriscy cores and the T13 non accelerated cores. We

definitely see a larger area occupation in the T13 non accelerated cores. Thar is for the obvious reason

that in order for the T13 core to be an IMT architecture, we had to replicate the registerfile, the CSR

unit and the program counter. One thing to consider in order to decrease overhead that IMT

architectures have, is by disabling the performance counters in the CSR unit. Doing that saved us

approximately 1200 LUTs from the LUT count listed above. The other thing is to use the embedded

extension RV32E which halves the size of the registerfile. However, we saw how that terribly affected

the performance, and thus the tradeoff of the registerfile area with performance is a favorable step in

this case.

5.6.2. Dynamic Power Consumption and Energy Efficiency

The average dynamic power consumption is reported in figure 5.18 for running the convolutions on

each hardware scheme. Obviously, the power consumption increases as the area gets bigger, but the

curve rises up very sharply for the SIMD 8 configurations. Deep SIMD configurations proved to be

less power efficient in this manner (especially in FPGA synthesis) as they consume a lot of power

particularly in the hardware schemes exploiting the TLP. SIMD 2 configurations for all hardware

schemes showed only a slight increase in dynamic power consumption in one hand, and a greater

increase in performance on the other hand, making it desirable to be considered as a balanced

approach.

Other than the small area footprint of the Riscy cores, they also all consumed less dynamic power

than the T13 non accelerated cores. The RV32E extensions seemed to have larger drops in the

dynamic power consumption as well.

The static power was not mentioned, since for FPGAs the static power does not change based on the

area utilization of the FPGA, but rather it depends on the technology of the FPGA itself.

Figure.5.19. Dynamic Power Consumption of the T13 core running 32x32 convolutions

Sh
ar

ed
 S

P
M

U
 1

Sh
ar

ed
 S

P
M

U
 2

Sh
ar

ed
 S

P
M

U
 4

Sh
ar

ed
 S

P
M

U
 8

D
ed

ic
at

ed
 S

P
M

U
 1

D
ed

ic
at

ed
 S

P
M

U
 2

D
ed

ic
at

ed
 S

P
M

U
 4

D
ed

ic
at

ed
 S

P
M

U
 8

D
ed

ic
at

ed
 S

P
I S

h
ar

ed

D
ed

ic
at

ed
 S

P
I S

h
ar

ed
 S

P
E

D
ed

ic
at

ed
 S

P
I S

h
ar

ed

D
ed

ic
at

ed
 S

P
I S

h
ar

ed
 S

P
E

N
O

_A
C

C
L

(R
V

3
2

IM
)

N
O

_A
C

C
L

(R
V

3
2

EM
)

N
O

_A
C

C
L

(R
V

3
2

I)

N
O

_A
C

C
L

(R
V

3
2

E)

R
IS

C
Y

Ze
ro

R
is

cy

Ze
ro

R
is

cy
 (

N
o

 R
V

3
2

M
)

M
ic

ro
R

is
cy

0

50

100

150

200

250

P
o

w
er

 (
m

W
)

Dynamic Power (mW) @ Fmax

80

Figure 5.19 shows the total energy consumption for running the different convolutions. They were

again divided into two sides. The left sides for the accelerators, and the right side for the non-

accelerators. They were separated in since the non-accelerated had very high energy consumption

compared to the accelerated counterparts, and thus if placed together, the non-accelerated energy

results would have saturated the improvements between the different schemes in the accelerated

results.

Figure.5.20. Energy Consumption for running each implementation at the top frequency on the different

convolution sizes

81

Many conclusions can be made from these results. First, we show that not only using the SPMU

accelerator generates high speed results, but it is also more energy efficient, than not using the SPMU

accelerator.

Second, compare the SPMU accelerators, we can see that the Shared-SPMU has the worst results,

and that both the TLP exploiting approaches gave much better results than the Shared-SPMU.

Third, the results comparing the Dedicated-SPMU to the Dedicated-SPI_Shared-SPE approach

showed almost an overlap in the energy consumption just like the overlap they in the performance.

This is very good since we showed that very little trade-off in the performance and energy

consumption can be substituted with a large chunk of area and that is by sharing the SIMD functional

units.

Finally comparing the non-accelerated implementations together, we see that the T13 slightly less

energy efficient then both Riscy and Zeroriscy. Zeroriscy has a very low dynamic power count, while

Riscy has a low cycle count, both contributed heavily to the energy efficiency.

5.7. Further Evaluations (memory test, GCC optimizations)

A few additional tests were performed to see the consistency of the performance using GCC

optimization flag “-O2”. Figure 5.23 shows the cycle count to perform vector addition when

compiling the C tests without enabling any GCC optimizations. While figure 5.20 shows the same

results but with GCC optimizations enabled.

Figure.5.21. Vector addition C test performed with GCC optimizations disabled

133

622

1258

1744

2232

2721

3207

293 306 322 338 354 371 387

120

514

999

1484

1969

2454

2939

105

439

849

1259

1669

2079

2489

0

500

1000

1500

2000

2500

3000

3500

1 5 10 15 20 25 30

C
lo

ck
 C

yc
le

s

Vector Size

Vector Addition

Normal VADD8 KADDV8 Normal VADD16 KADDV16 Normal VADD32 KADDV32

82

Figure.5.22. Vector addition C test performed with GCC optimizations enabled

From the results above it shows that disabling the GCC optimizations affected performance in both

operations. However, for the operations using the accelerator, we have a cycle count increase that is

a constant offset, while in the non-accelerated vector addition operation, the cycle count increment

was a variable offset such that when the vector size, grows, the offset grows linearly as well.

Another evaluation was made to show the memory impact of doing two equal operations (table 5.5).

The first operation does not use the SPMU accelerator. The second performs the same operation, but

using the SPMU. In the operations using the SPMU, there are two memory tests that were made, the

first one does all the SPMU operations in a single function call, while the other one does the same

operations in a multi-function call.

Table.5.4. Size in Bytes of the program memory and data memory for different tests

Size (Bytes)

Vector

Size

Normal Addition Test SPMU Single Funct Call Test SPMU Multi Funct Call Test

With GCC

Optimization
Without GCC

Optimization
With GCC

Optimization
Without GCC

Optimization
With GCC

Optimization
Without GCC

Optimization

Program

mem size

Program

mem

size

Data mem

size

Program

mem

size

Data mem

size

Program

mem

size

Data mem

size

Program

mem

size

Data mem

size

Program

mem

size

Data mem

size

Program

mem

size

1 1326 3059 1300 3533 1378 3477 1352 3705 1378 3230 1352 3591

10 2730 3211 2704 3572 2782 3477 2756 3705 2782 3230 2756 3591

20 4290 3211 4264 3572 4342 3477 4316 3705 4342 3230 4316 3591

The results from the memory tests, shows that also using the SPMU does not impact the memory size,

the results are similar to the non-SPMU test. For the data memory, the only impact on the memory

size was from increasing the vector size, but regardless whether we use the SPMU or not.

26

137

237

359

772

928

1090

136 148 163 180 195 212 229

26
91

161
238

547

677

807

0

200

400

600

800

1000

1200

1 5 10 15 20 25 30

C
lo

ck
 C

yc
le

s

Vector Size

Vector Addition

Normal VADD8 KADDV8 Normal VADD16 KADDV16 Normal VADD32 KADDV32

83

Chapter 6 C Language Software Suite

This chapter shows the implementation of the software suite used in benchmarking the T13

microprocessor. All the tests were written in C and compiled by a patched RISCV-GCC compiler.

The first section shows the instruction level testing of the custom SPMU instructions. The second

section shows how the custom instructions were used to make convolutions. The third section

mentions the additional libraries needed in order to accelerate the convolution and fully-connected

layers of the VGG16 DCNN application.

6.1. Instruction level testing:

For every custom instruction in the SPMU, a C test has been made to detect whether the SPMU

executes its instructions correctly. All the tests check whether the SPMU outputs match the non-

SPMU, and benchmark the performance of the SPMU for all data types (8, 16, and 32).

The example test shown in the code below takes the number of elements inside each vector, and the

time variable, and tries to randomize the data with the rand function. The test sets the MVTYPE and

then calls a C function that uses all the harts in the core to load the vectors and compute the results.

The cycle count to perform the arithmetic operation is counted, and saved. The output results are

checked to be correct, and then performance is compared to the non-accelerated tests.

The code below shows how vector addition instruction KADDV is tested for 32-bit data types. Other

data types and instructions are not shown because of the repetitiveness of the code sequence. There

implementation can be inferred just by looking at this one.

/* -- KADDV Test --*/ 1
#define NumOfThreads 3 2
#define NumOfElements 50 3
#define TIME 10 4
 5
int32_t vect32_1[NumOfElements], vect32_2[NumOfElements]; 6
int32_t testres32[NumOfElements]; 7
int32_t *res32; 8
int32_t result32[NumOfElements]; 9
int size32=NumOfElements*sizeof(int); 10
int testperf, perf32[NumOfThreads]; 11
 12
int main() { 13
 srand(TIME); 14
 for (int i=0; i<NumOfElements; i++) { 15
 vect32_1[i] = rand() % (0x80000000 - 0x1) +1; 16
 vect32_2[i] = rand() % (0x80000000 - 0x1) +1; 17
 } 18
 int add_pass = 0; 19
 int perf = 0; 20
 int* ptr_perf = &perf; 21
 22
 /* 32-bit KADDV here */ 23
 VECT_ADD_32: 24
 sync_barrier(); 25
 // ENABLE COUNTING --- 26
 __asm__("csrrw zero, 0x7A0, 0x00000001"); 27
 //-- 28
 // SET MVTYPE --- 29
 __asm__("csrrw zero, mvtype, 0x00000002"); // set the data type to 32-bits 30
 //-- 31

84

 32
 // TEST KADDV(32)--- 33
 /* call the function that perfroms the KADDV operation 34
 res32=kless_vector_addition_mth((void*) result32, (void*) vect32_1, (void*) vect32_2, size32); 35
 //-- 36
 // DISABLE COUNTING AND SAVE MCYCLE OF EACH THREAD ------------ 37
 __asm__("csrrw zero, 0x7A0, 0x00000000;" 38
 "csrrw %[perf], mcycle, zero;" 39
 "sw %[perf], 0(%[ptr_perf]);" 40
 : 41
 :[perf] "r" (perf), [ptr_perf] "r" (ptr_perf) 42
); 43
 if (Klessydra_get_coreID()==0) perf32[0]=perf; // store the cycle count of thread 2 44
 if (Klessydra_get_coreID()==1) perf32[1]=perf; // store the cycle count of thread 1 45
 if (Klessydra_get_coreID()==2) perf32[2]=perf; // store the cycle count of thread 0 46
 //-- 47
 48
 // Test 32-bit addition result -- 49
 if (Klessydra_get_coreID()==1){ 50
 __asm__("csrrw zero, 0x7A0, 0x00000001;"); // enable counting 51
 for (int i=0; i<NumOfElements; i++){ 52
 testres32[i] = vect32_1[i]+vect32_2[i]; // perform the addition without acceleration 53
 } 54
 __asm__("csrrw zero, 0x7A0, 0x00000000;" // disable counting and save the cycle count 55
 "csrrw %[perf], mcycle, zero;" 56
 "sw %[perf], 0(%[ptr_perf]);" 57
 : 58
 :[perf] "r" (perf), [ptr_perf] "r" (ptr_perf) 59
); 60
 testperf = perf; 61
 for (int i=0; i<NumOfElements; i++){ 62
 if (res32[i]==testres32[i]) // check every element{ 63
 add_pass++; 64
 } 65
 else { 66
 goto FAIL_VECT_ADD_32; // if an error is encountered goto the error label 67
 } 68
 } 69
 if (add_pass==NumOfElements){ 70
 printf("\nPASSED KADDV32 32-bit vector addition"); // all outputs are correct print pass 71
 } 72
 } 73
 if (Klessydra_get_coreID()==1){ 74
 printf("\n\nNumber of Elements:%d\n",NumOfElements); 75
 for(int i=0;i<3;i++){ 76
 printf("Th%d KADDV32 Speed: %d Cycles\n",i, perf32[i]); // print cycle count of SPMU 77
 } 78
 printf("ADDV32 Speed: %d Cycles\n", testperf); // print the cycle count and end the program 79
 return 0; 80
 } 81
 __asm__("csrrw zero, mstatus, 8;" "wfi;"); // stall the harts that finish 82
 // ----- Fail Section --- 83
 FAIL_VECT_ADD_32: // error label 84
 printf("\nFAILED KADDV32 32-bit vector addition\n"); // print fail 85
 return 1;86

The function “kless_vector_addition_mth” performs the KADDV using all the harts in the T13

core, as seen in the code below. The first thread that enters does a vector load vs1 atomically, and

then exits the routine. The second hart atomically loads the second vector vs2 to the SPMs and exits

85

the function. The third hart performs the vector addition, stores the result back in main mem, then

exits the function.

void* kless_vector_addition_mth(void *result, void* src1, void* src2, int size){ 1
 int SPMADDRA = spmaddrA; // base address of spmA 2
 int SPMADDRB = spmaddrB; // base address of spmB 3
 int SPMADDRC = spmaddrC; // base address of spmC 4
 int key = 1; // the key locks some routines from being executed 5
 static int section1 = 0; 6
 static int section2 = 0; 7
 int* psection1 = §ion1; 8
 int* psection2 = §ion2; 9
 asm volatile(10
 "amoswap.w.aq %[key], %[key], (%[psection1]);" 11
 "bnez %[key], SCP_copyin_vect_2;" 12
 "SCP_copyin_vect_1:" 13
 " kmemld %[SPMADDRA], %[srcA], %[sz];" // load vector vs1 14
 " j END;" 15
 "SCP_copyin_vect_2:" 16
 " amoswap.w.aq %[key], %[key], (%[psection2]);" 17
 " bnez %[key], END;" 18
 " kmemld %[SPMADDRB], %[srcB], %[sz];" // load vector vs2 19
 " csrw 0xBF0, %[sz]; " // set the vector size 20
 " kaddv %[SPMADDRC], %[SPMADDRA], %[SPMADDRB];" // KADDV operation 21
 " kmemstr %[result], %[SPMADDRC], %[sz];" // store back the result in memory 22
 "END:" 23
 : 24
 :[key] "r" (key),[psection1] "r" (psection1), 25
 [psection2] "r" (psection2), [sz] "r" (size), 26
 [SPMADDRA] "r" (SPMADDRA), [srcA] "r" (src1), 27
 [SPMADDRB] "r" (SPMADDRB), [srcB] "r" (src2), 28
 [SPMADDRC] "r" (SPMADDRC), [result] "r" (result) 29
); 30
 return result; 31
}32

Another function that does the above routine with a single thread only is shown below.

1
void* kless_vector_addition_sth(void *result, void* src1, void* src2, int size){ 1
 int SPMADDRA = spmaddrA; // base address of spmA 2
 int SPMADDRB = spmaddrB; // base address of spmB 3
 int SPMADDRC = spmaddrC; // base address of spmC 4
 asm volatile(5
 " kmemld %[SPMADDRA], %[srcA], %[sz];" // load vector vs1 6
 " kmemld %[SPMADDRB], %[srcB], %[sz];" // load vector vs2 7
 " csrw 0xBF0, %[sz]; " // set the vector size 8
 " kaddv %[SPMADDRC], %[SPMADDRA], %[SPMADDRB];" // KADDV operation 9
 " kmemstr %[result], %[SPMADDRC], %[sz];" // store back the result in memory 10
 "END:" 11
 : 12
 :[key] "r" (key), [sz] "r" (size), 13
 [SPMADDRA] "r" (SPMADDRA), [srcA] "r" (src1), 14
 [SPMADDRB] "r" (SPMADDRB), [srcB] "r" (src2), 15
 [SPMADDRC] "r" (SPMADDRC), [result] "r" (result) 16
); 17
 return result; 18
}19

86

An additional function in the SPMU libraries was created to benchmark the speed of the hardware

loops, and that is by executing the SPMU instructions continuously inside a sw-loop (for loop), then

the output is compared. The body of that function is shown below.

void* kless_vector_addition_sth_sw_loop(void *result, void* src1, void* src2, int size, int SIMD_BYTES){ 1
 int SPMADDRA = spmaddrA; // base address of spmA 2
 int SPMADDRB = spmaddrB; // base address of spmB 3
 int SPMADDRC = spmaddrC; // base address of spmC 4
 int size_temp = size; 5
 asm volatile(6
 " kmemld %[SPMADDRA], %[srcA], %[size_temp];" // load vector vs1 7
 " kmemld %[SPMADDRB], %[srcB], %[size_temp];" // load vector vs2 8
 " csrw 0xBF0, %[SIMD_BYTES];" // set the vector size 9
 :[size_temp] "r" (size_temp), [SIMD_BYTES] "r" (SIMD_BYTES), 10
 [SPMADDRA] "r" (SPMADDRA), [srcA] "r" (src1), 11
 [SPMADDRB] "r" (SPMADDRB), [srcB] "r" (src2) 12
); 13
 for (int i=0; i<size; i=i+SIMD_BYTES){ // loop through the vector elements 14
 if (size-i >= SIMD_BYTES){ 15
 size = size-i; // decrement the vector size 16
 asm volatile(17
 " kaddv %[SPMADDRC], %[SPMADDRA], %[SPMADDRB];"// KADDV operation 18
 : [SPMADDRA] "r" (SPMADDRA), 19
 [SPMADDRB] "r" (SPMADDRB), 20
 [SPMADDRC] "r" (SPMADDRC) 21
); 22
 SPMADDRA+=SIMD_BYTES; // increment source A pointer 23
 SPMADDRB+=SIMD_BYTES; // increment source B pointer 24
 SPMADDRC+=SIMD_BYTES; // increment the destination pointer 25
 } 26
 else { 27

 /* if there is no need to loop anymore, then re-write the vector size and execute the last SPM line */ 28
 size = i; 29
 asm volatile(30
 " csrw 0xBF0, %[size];" 31
 " kaddv %[SPMADDRC], %[SPMADDRA], %[SPMADDRB];" 32
 : [SPMADDRA] "r" (SPMADDRA) , 33
 [SPMADDRB] "r" (SPMADDRB) , 34
 [SPMADDRC] "r" (SPMADDRC) , 35
 [size] "r" (size) 36
); 37
 } 38
 } 39
 SPMADDRC=spmaddrC; 40
 asm volatile(41
 " kmemstr %[result], %[SPMADDRC], %[size_temp];" 42
 :[size_temp] "r" (size_temp), [SIMD_BYTES] "r" (SIMD_BYTES), 43
 [SPMADDRC] "r" (SPMADDRC), [result] "r" (result) 44
); 45
 return result; 46
}47

6.2. Convolution tests:

The convolution test comes with a set of functions called convolution2D (conv2D for short). In order

to fully explain the algorithm of the conv2D functions we will demonstrate how a convolution is

performed the conventional way, and how the algorithm was transformed to fit on the SPMs.

87

6.2.1. Convolutions (traditional method)

The convolutions in neural networks are performed by sliding the kernel map from its central point

over the entire pixels of the feature map otherwise known as the input matrix. The kernel maps in our

convolutions have their dimensions set to 3x3 (i.e. like VGG16 filters). Consider the convolution of

this kernel with a 4x4 feature map as shown in figure 6.1.

Figure.6.1. Convolution of feature map on the left and kernel map on the right

When the kernel map starts sliding over the feature map starting from the top left corner. There will

be elements of the kernel map not overlapping any elements of the feature map. In order to overcome

this, feature map is padded with zeros around its entire parameter such that when the kernel map

slides, its elements will either be overlapping the feature map or the padded-zeros as seen in figure

6.2.

Figure.6.2. Convolution of feature map on the left and kernel map on the right

One convolution gives one output pixel result for the output map. When the kernel has passed over

the entire feature map and produced all the output pixels, the convolution2D would be considered at

this point done.

6.2.2. Convolutions (sub-kernel method):

One drawback of the traditional method of performing a matrix convolution was the augmentation of

zero-paddings to the whole parameter of the feature maps. It presented a few challenges for doing

that method, such as:

• High memory consumption, for example a 32x32 matrix of integers that will be zero-

padded cannot fit on a 4KB scratchpad memory, it needs an extra 528 Bytes of memory

space to fit, which is about 12.5% the size of the original matrix.

88

• We also have slower memory for ASIC implementations, since FPGAs have fixed size

BRAMs [44] so this might only affect the FF or LUT based memories. However, for ASIC

zero-padding will require an 8KB memory for a 4KB feature map, and a 4KB memory for

2KB feature map and etc. Bigger memories are usually slower than smaller memories, or

have higher latencies.

There was the need to re-write the conv2D function in order to avoid zero-padding. The key idea was

to divide the conv2D function into separate functions each would perform a set of convolutions with

sub-kernels on the different regions of the feature map as shown in figure 6.3. We will demonstrate

how the convolution with sub-kernel F was performed. Other sub-kernel implementations follow a

similar pattern and thus will not be elaborated.

Figure.6.3. Division of the sub-kernels. On the left shows the overlap with sub-kernel F

The sub-kernels include only the overlapping parts between the kernels and the feature maps. In the

above figure with the 4x4 matrix, we can see some regions. Each region has a different part of the

kernel map overlapping. Thus, performing a convolution would require calling nine functions each

performing the routine with a different sub-kernel.

The functions are divided into four groups. The first group is when the kernel centroid lands on the

edges, we perform the A-C-G-I routines. Sliding the centroid in between the corners on the first and

last row uses the B-H group. Likewise, sliding in between columns we use D-F groups. When the

sub-kernel is fully overlapping the feature map, the operations will belong to group E, and the

convolution will be the default case.

Considering the convolution with sub-kernel F, the output pixel is calculated as follows:

𝒐𝒖𝒕𝒑𝒖𝒕 𝒑𝒊𝒙𝒆𝒍 += [𝟎] ∗ 𝟏 + [𝟏] ∗ 𝟏 + [𝟑] ∗ 𝟏 + [𝟒] ∗ 𝟐 + [𝟔] ∗ 𝟐 + [𝟕] ∗ 𝟏

The presence of the “+= “sign is because the convolutions always accumulate the output pixel. In

addition, since our convolutions are performed with a fixed-point implementation, the outputs need

to be post scaled. Hence the equation would actually look like this.

𝒐𝒖𝒕𝒑𝒖𝒕 𝒑𝒊𝒙𝒆𝒍+= ([𝟎] ∗ 𝟏) ≫ 𝒑𝒔 + ([𝟏] ∗ 𝟏) ≫ 𝒑𝒔 + ([𝟑] ∗ 𝟏) ≫ 𝒑𝒔 + ([𝟒] ∗ 𝟐)
≫ 𝒑𝒔 + ([𝟔] ∗ 𝟐) ≫ 𝒑𝒔 + ([𝟕] ∗ 𝟏) ≫ 𝒑𝒔

89

The snippet of the code in figure 6.4 shows how to perform the convolution with sub-kernel F using

the SPMU instructions.

Figure.6.4. Sub-Kernel F executed in the SPMU

As figure 6.3 suggests, when the centroids overlap the element (1,3), three different rows of two

integers are highlighted, hence the vector length of 2.

6.2.3. Choosing the best convolutions algorithm:

Although the sub-kernel method had the memory advantage over the zero padded method. However,

it suffered in the cycle time as it did not actually exploit the SIMD nature of the SPMU very well.

While the zero-padded implementation while still consuming bigger memory, but nonetheless

exploited very well the SIMD implementation in the SPMU, but it suffered with the memory loads

as it was loading a bunch of zeros.

So instead of doing one burst load for the entire matrix with a “kmemld” instruction, we found that

the optimal solution was to use the zero-padded method with a set of burst loads that loads the discrete

data lines in the matrix without the padded zeros. This in turn will relieve the overhead of doing

unnecessary memory transfers of zeros. The data lines will be separated by the offset of zeros that

separate them. Figure 6.5 shows how it is done.

Figure.6.5. Discrete Kmemlds for zeropadded implementations

90

Figure 6.6 shows how the zero-padded convolutions are done using the SPMU instructions.

Figure.6.6. Zero-Padded Convolution method using the SPMU instructions

6.3. Supplementary VGG16 libraries

Having built libraries capable of doing the matrix convolutions, there was still the need to supplement

the VGG16 libraries with a few more functions in order to have it ready to accelerate the network.

First, AddBias and ReLu operations are functions were made Adding the bias to the output matrix is

done with the following function:

“ksvaddsc_v2 (dest, source1, source2, size);”

The function above sets the MVSIZE CSR to be equal to size, and calls the ksvaddsc SPMU

instruction which adds the vector source1 with the scalar source2, and stores the result in dest.

The operation is followed by calling a ReLu function that rectifies all the negative values.

 “krelu((void*)dest, (void*)source);”

91

The function above rectifies the source vector in source, and places the output vector in dest.

What remains after this is the fully connected layer which can be simply implemented by one

instruction called ‘kdotpps’.

Operations in VGG16 not handled by the SPMU are the following:

• Maxpool layer haves the sizes of its input matrices by pooling the maximum value in

2x2 filter that slides vertically and horizontally across the input matrix.

• As for the last part, layer_22 is implemented using the softmax() function, which

implements the non-linear function softmax for producing the probability distribution of

all the possible outcomes.

With this, the libraries have become complete and can be used to accelerate the VGG16. The

performance results were already reported in chapter 5.

92

Conclusions

In this thesis we introduce the Klessydra-T branch of the Klessydra family of microprocessors. The

Klessydra cores fully support RISC-V instruction set in 32-bit. The Klessydra-T cores support the

base integer instructions “I”, the atomic extensions “A”, the multiplication/division extension “M”.

The T1 sub-branch of the Klessydra-T further appends to the native RISC-V ISA a set custom

specialized instruction for accelerating convolutional neural networking applications. The motivation

behind forming the Klessydra-T branch was to exploit IoT embedded systems in order to obtain higher

energy efficiency and performance, and the motivation behind adding a hardware accelerator in the

T1 was in order to allow an easy migration of CNN towards embedded systems.

Our study started by determining the optimal pipeline organization in interleaved multithreaded

processors by performing and experimental assessment , and we showcased that pipelining the core

has consistently improved the performance, while interleaved multithreading maintained the core in

having zero delay slots, thus improving both the overall performance, and the energy efficiency

required to execute a single instruction.

We further described in an analytical assessment that deeper pipelines between registerfile read and

write ports are unfavorable (e.g. T04, T05, etc.), since the critical path would improve only slightly

in soft core implementations due to the growth of the net delay between FPGA elements. While the

area would still continue to grow linearly with every new hart. Also, we mentioned that the cycle

count would become worse when executing practical applications in these deeply pipelined IMT

architectures, such that overall performance will degrade in the sequential single hart applications, or

in parallel tightly coupled applications that require constant thread synchronizations.

Also, in another analytical assessment, we saw that introducing pipelines before the registerfile read

ports does not increase the performance, but rather degrades it, since it will require that the IMT core

implements instruction flushing logic in which it was not needed previously. Thus, re-introducing the

branch delay slots.

The spectrum of target applications covered in our earlier assessments, showed that the number of

applications that can be exploited by the IMT approach were only a small portion of the entire

spectrum. So, we attempted to develop an IMT processor coupled with a hardware accelerator that

can exploit more target applications. And since neural networks were becoming a hot topic in

embedded systems. This in hand drove us to develop a neural network accelerator called the SPMU.

In our basic evaluations of the SPMU, we saw the significance of the performance contributions in

cycle count of both the low latency scratchpad memories, and the hardware loops (zero overhead

loops) to the overall performance of the SPMU when executing different vector sizes. Further

evaluations continued to test the cycle count improvement in increasing the data level parallelism for

small and large vectors. We determined that data level parallelism can improve the cycle count greatly

in large vectors and only slightly in small vector because of the T13 core’s ability to hide the latency

of the SPMU instructions almost completely when the vectors are small, and only moderately if the

vectors were large.

Two more complex SPMU hardware schemes were employed. These two schemes exploited the

instruction level parallelism through increasing the thread level parallelism. The first scheme sets

dedicated memories subsystems (SPI) for every hart, and dedicated functional units (SPE) as well.

While the other scheme employs dedicated memories (SPI) for every hart, but a shared set of

functional units (SPE) to be used by all the harts. Both approaches decreased the cycle count even

93

further then the basic Shared-SPMU approach. The Dedicated-SPMU scheme got slower because of

the large area overhead and the increase in the net delay, while the scheme containing shared

functional units suffered in the top operating frequency because the crossbar connecting the SPI

memories to the shared SPE functional units was very large. The speed drop becomes highly more

obvious in higher level SIMD configurations. However, the Dedicated-SPI_Shared-SPE approach

showed an overlap in the overall performance with the Dedicated-SPMU which was a good sign that

a tiny performance trade-off was made with a large chunk of area.

The Dedicated-SPMU were further evaluated with a more practical test, and that is by executing the

layers of the VGG16 deep convolutional neural network algorithm. The first test showcased the

performance of the T13 IMT architecture when having one active hart only, and when having all the

harts active. We further evaluated the performance of the Dedicated-SPMU versus the Zero-riscy

cores showing the performance in executing the layers of the VGG16 test with both large vectors, and

small vectors, the Dedicated-SPMU continued to show performance superiority even in these real-

life applications.

Area evaluations were made and we showed how much the DLP impacts the area, versus the TLP,

Also, we saw how big the cross-bar was in the Dedicated-SPI_Shared-SPE scheme. Finally, we saw

how much overhead does the T13 IMT core have over the in-order Riscy and Zeroriscy cores.

Finally, the dynamic power consumption and the energy consumption were shown for all the SPMU

configurations. We saw that the dynamic power increased largely especially in SIMD 8

configurations. Also, that the SPMU schemes had a high power consumption. But when the time came

to showcase the energy consumption, we saw the Hybrid approach was the most energy efficient such

that Dedicated-SPMU SIMD-2 or the Dedicated-SPI_Shared-SPE SIMD-2 had the lowest energy

consumption among all the hardware schemes.

Our study of the T13 showed how to easily make a high performance and energy efficient hardware

accelerator for a very balanced IMT architecture, that interleaves a moderate number of harts. By

simply adding a hardware accelerator that writes to its own dedicated memory, we can allow

superscalar execution. This in hand will allow superscalar execution between the instructions that

write to different memories without having stalls due to data dependencies, while still maintaining

the same thread pool baseline, and not needing to interleave any additional harts to fence between the

memory accesses. The study can be generalized to any hardware accelerator for IMT architecture,

and not only convolution engines.

94

Appendix A

Klessydra Technical Manual

Chapter 1

Architecture overview

1.1 Features

The Klessydra processing core family is a set of processors featuring full
compliance with the RISC-V instruction set and intended to be placed within
the Pulpino microprocessor platform. To date, the Klessydra family includes

• a minimal gate count single-thread core, Klessydra S0. The S0 core is
not maintained as open-source;

• a class of multi-threaded cores, Klessydra T0, available in different im-
plementations called Klessydra T0ab;

• a class of extended versions of the T0 cores, named Klessydra T1
cores, featuring an SPMU hardware accelerator.

• A class of fault tolerant versions of the T0 cores, featuring fault-tolerant
mechanisms for harsh environment applications, named Klessydra
F0x.

The Klessydra core family features:

• Full compliance with the RISC-V architecture specification (instruction
set, control and status registers, interrupt handling mechanism and call-
ing convention);

• Compliance with the standard RISC-V compilation toolchain;

• Interleaved multi-threaded execution of RISC-V harts (hardware
threads);

• Easy and standardized multi-threading programming interface;

• Core synthesis on FPGA (presently, Xilinx Series 7 implementations
have been tested);

• Hardware compliance with the Pulpino microprocessor platform, as pin-
to-pin compatible alternative of the Pulpino RI5CY core;

• Software compliance with the Pulpino microprocessor platform, as
compatible I/O memory map, interrupt handler memory map, pro-
gram/data memory map;

• Extends the software test suite of Pulpino with custom tests designed
specifically for the klessydra cores.

1.2 Naming convention
The different cores available in the Klessydra family follow the naming
convention depicted in Fig. 1.1.

95

Fig. 1.1. Naming convention

1.3 Supported Instruction Set

To date, all the Klessydra cores implement the 32-bit integer RISC-V machine
mode instruction set, namely user-level RV32I base integer instruction set
version 2.1 and M-mode privileged instruction set version 1.1. T0 and T1 cores
support the RV32IME set.
The T0 and T1 cores support the atomic instruction AMOSWAP.W from the
RVA atomic instruction extension.
The T1 core extends the instruction set with non-native custom vector
instructions for memory to scratchpad transfers and vector arithmetic
operations. Vector instructions come in three different variants supporting
different data width “8-bit, 16-bit, 32-bits” e.g.
Only M-mode operation is supported, so that no operating system support is
implemented. Yet, the Klessydra family comes with a baseline runtime system
software layer that implements part of the interrupt handling features and part
of the multi-threaded programming model.

1.4 Multi-threading model
Klessydra S0 core supports single thread execution (RISC-V hart) only, with
the following features:

• The hart can be interrupted by a trap such as an external interrupt or
instruction exception. Software interrupts are supported, although their
use is expected to be impractical in a single-thread execution environ-
ment. When the trap handling routine ends the core resumes the origi-
nal execution thread (see Chapter “Exception and Interrupts” for de-
tails);

• The core can enter an idle state by means of the WFI instruction; when
an external interrupt arrives at the core, the core starts the execution of
the interrupt handling routine as the new hart of execution.

96

• The hart can be halted and resumed by means of the Fetch_en core
interface signal.

Klessydra T0x, T1x and F0x cores implement interleaved multi-threading. At
each clock cycle, a new instruction is fetched from a different hart (Fig. 1.2).

Fig. 1.2. Conceptual view of hardware thread (hart) interleaved execution

The execution has the following features:

• Each hart in the hardware thread pool can be either active or idle.

• An idle hart can be activated by an interrupt request directed to the
hart. The core executes the interrupt handling routine within the hart.
When the interrupt handling routine ends, the hart becomes idle again
(see Chapter “Exception and Interrupts” for details).

• An active hart can be interrupted by instruction exceptions or interrupt
requests. When the interrupt/exception handling routine ends and the
signal fetch_enable_i is high, the core resumes the interrupted exe-
cution hart. (see Chapter “Exception and Interrupts” for details);

• An active hart can become idle by executing the WFI instruction;

• The maximum number of active harts is an architecture characteristic
parameter called Thread Pool Size.

• Each hart is identified by an integer number ranging from 0 up to
Thread Pool Size – 1.

• There is also a minimum number of active harts, needed to avoid data
hazards between threads during the pipelined execution, called
Thread Pool Baseline. The Thread Pool Baseline value is an architec-
ture characteristic parameter related to the instruction pipeline organ-
ization implemented in the hardware microarchitecture of the core.

• When the number of active threads is less than the Thread Pool Base-
line, one or more idle hart runs in the pipeline as NOP instructions.

As a general note, a higher Thread Pool Baseline value corresponds to a
higher sustainable clock frequency and generally indicates a higher
performance when running at full thread pool. For example, a T03 core will
significantly outperform a T02 core when executing 4 harts.

1.5 Core Interfaces

instruction

INSTRUCTION
PROCESSING
PIPELINE

THREAD
POOL

h
art 2

h
art 3

h
art 0

h
art 1

h
art 4

active
id

le

97

The core interface is signal-to-signal compatible with the Pulpino microprocessor

platform, and as such it is the same as Pulpino RI5CY cores. The detailed description

follows.

Table.1.1 Clock, reset active low, test enable

Name Direction Width Notes
clk_i In 1 Core clock signal

clock_en_i In 1 Core clock enable
rst_ni In 1 Core reset signal, active low

test_en_i In 1 Core test enable (unused)

Table.1.2 Initialization signals

Name Direction Width Notes
boot_addr_i In 32 Boot address value

core_id_i In 4 Core id number
cluster_id_i In 6 Cluster id number

Table 1.3 Program memory interface

Name Direction Width Notes
instr_req_o Out 1 Request signal, must stay high until accepted
instr_gnt_i In 1 Request accepted, address may change in the next

cycle
instr_rvalid_i In 1 Instruction valid, stays high for exactly one cycle.
instr_addr_o Out 32 Address
instr_rdata_i In 32 Instruction read from memory

Table 1.4 Data Memory interface

Name Direction Width Notes
data_req_o Out 1 Request signal, must stay high until accepted

data_gnt_i In 1 Request accepted, address may change in the next
cycle

data_rvalid_i In 1 Data valid, stays high for exactly one cycle

data_we_o Out 1 Write enable, high = write, low = read

data_be_o Out 4 Byte selection

data_addr_o Out 32 Address

data_wdata_o Out 32 Data to be written to memory

data_rdata_i In 32 Data read from memory

data_err_i In 1 Memory error signal

Table 1.5 Interrupt request / acknowledge

Name Direction Width Notes
irq_i In 1 Interrupt request signal

irq_id_i in 5 Interrupt request vector value
irq_ack_o out 1 Interrupt acknowledge signal
irq_id_o in 5 Interrupt acknowledge vector value (unused)

Table 1.6 Debug interface

98

Name Direction Width Notes
debug_req_i In 1 Debug request
debug_gnt_o Out 1 Debug request granted
debug_rvalid_o Out 1 Debug data valid
debug_addr_i In 15 Debug location address
debug_we_i In 1 Debug write enable
debug_wdata_i In 32 Debug data to be written to core
debug_rdata_o Out 32 Debug data read from core
debug_halted_o Out 1 Debug halt acknowledge
debug_halt_i In 1 Debug halt request
debug_resume_i in 1 Debug resume signal

Table 1.7 Miscellaneous control signals

Name Direction Width Notes
fetch_enable_i In 1 Fetch enable, stops the core
core_busy_o Out 1 Core busy signal

ext_perf_counters_i In 1 External performance counter signal (unused)

99

Chapter 2
Memory model and protocol

2.1 Instruction Fetch

The instruction fetch stage of the core is called FSM_IF and is able to supply one

instruction to the instruction decode stage per cycle, if the program memory is able to

serve one instruction per cycle. Instructions are word aligned, meaning that the two

least significant bits in the PC are always set to 0, and the PC value is incremented by

4 units at each new fetch when no branch occurs. Compressed instruction format is not

supported. No prefetch logic is present.

2.2 Memory Access Protocol
The program and data memory access protocol is pin-to-pin compatible with the

Pulpino microprocessor platform, and as such it is the same as RI5CY / Zeroriscy

cores’. The protocol that used to access the data memory works as follows. The

program memory follows the same protocol except for the absence of write operation

support.

The core provides a valid address in data_addr_o and sets data_req_o high. The

memory then answers with data_gnt_i set high as soon as it is ready to serve the

request. This may happen in the same cycle as the request is sent or any number of

cycles later. After a grant is received, the address may be changed in the next cycle by

the core. In addition, the data_wdata_o, data_we_o and data_be_o signals may be

changed. After receiving a grant, the memory answers with data_rvalid_i set high if

data_rdata_i is valid. This may happen one or more cycles after the grant has been

received. The signal data_rvalid_i must also be set when a write operation is

performed, although the data_rdata_i has no meaning in this case. Figure 2.1, Figure

2.2 and Figure 2.3 shows examples of the protocol timing.

Figure 2.1 Basic Memory Transaction (reprinted from RI5CY manual, rel. Jan 2017)

100

Figure 2.2 Back-to-Back Memory Transaction (reprinted from RI5CY manual, rel. Jan 2017)

Figure 2.3 Slow Response Memory Transaction (reprinted from RI5CY manual, rel. Jan 2017)

2.3 Misaligned Accesses

The core hardware does not perform misaligned accesses natively (i.e. accesses that

are not aligned on natural word boundaries). If a misaligned memory access is

requested by an instruction, the core produces an exception. There is no necessary

hardware to realize the misaligned access by multiple aligned access. In compliance

with RISC-V specification, misaligned accesses are therefore not guaranteed to be

atomic.

2.4 Memory Address Map
Harts (i.e. hardware threads) running on a Klessydra core share the memory map

illustrated in Fig. 2.4, which is compliant with the Pulpino SoC platform specification.

The MIP CSR, one for each hart, are memory mapped starting at address 0x0000ff00

and allow for inter-thread interrupts, in compliance with the RISC-V specification.

(Other CSRs are not memory mapped).

Each hart has its own stack, and the stack size and starting address are customizable at

software level in the runtime system startup routine. The remaining memory space is

available for inter-thread data communication.

For information about the addresses from 0x00 to 0x90, see the vector table in chapter

5. Address 0x94 is reserved to MTVEC.

101

Fig. 2.4 Klessydra Memory Map (assuming 4 Threads, 2 KB stack per thread)

Chapter 3
Architecture Registers

3.1 Register File

Klessydra has 32x32-bit wide registers which form the registers x0 to x31. Register x0

is statically bound to 0 and can only be read. Write on register x0 has no side effect.

They can be modified to 16x32 registers if the RV32E embedded extension was

enabled.

3.2 Control and Status Registers
Klessydra cores implement a subset of the control and status registers specified in the

RISC-V privileged specification, limited to the registers needed for M-mode operation

and to the functionalities implemented in the core. Klessydra cores also implement

some additional CSRs specifically needed for the core operations and/or for

Program
memory

Boot memory

Mem. Mapped CSR

Data
memory

peripherals

0000 0000

0000 7FFF
0000 8000

0000 81FF

0000 FF00

0010 0000

0010 7FFF

1A10 0000

1A10 1000

1A10 2000

1A10 3000

1A10 4000

1A10 5000

1A10 6000

1A10 7000

32KB RAM

512B ROM

MIP regs

32KB RAM

UART regs

GPIO regs

SPI MASTER regs

TIMER regs

EVENT UNIT regs

I2C regs

FLL regs

SOC CONTROL regs

Hart 3 MIP reg 32b

Hart 2 MIP reg 32b

Hart 1 MIP reg 32b

Hart 0 MIP reg 32b

Hart 3 stack 2KB

Hart 2 stack 2KB

Hart 1 stack 2KB

Hart 0 stack 2KB

shared data 24 KB

Program

MTVEC point

Int. Vector Table

0000 0094

102

compliance with the Pulpino microprocessor platform. This extended CSR sub-set is

composed of the MIRQ, PCER, PCMR registers. The whole set of CSRs implemented

in the Klessydra cores is as follows:

Table 3.1 CSR Registers

Name CSR Address Reset Value R/W Description

MSTATUS 0x300 0x0000_18
08

R/W Machine Status

MEPC 0x341 0x0000_00
00

R/W Machine Exception
Program Counter

MCAUSE 0x342 0x0000_00
00

R/W Machine Trap Cause

PCER 0x7A0 0xFFFF_F
FFF

R/W Performance Counter
Enable

MHPMCOUNTE
R

0xB00,0xB02
0xB03,

0xB06-0xB0A

0x0000_00
00

R/W Machine Performance-
Monitoring Counter

MHPMEVENT 0x323,
0x326-0x32A

0x0000_00
00

R/W Machine Performance-
Monitoring Event Selector

MCPUID 0xF00 0x0000_01
00

R CPU Description

MIMPID 0xF01 0x0000_80
00

R Implementation ID

MHARTID 0xF10 - R Hardware Thread ID

MIP 0x344 - R/W Interrupt Pending

MTVEC 0x305 0x0000_00
94

R/W Trap-Handler Base Address

MBADADDR 0x343 0x0000_00
00

R/W Misaligned Address
Container

 MIRQ 0xFC0 - R Interrupt Request

MVSIZE 0xBF0 0x0000_00
01

R/W Set Vector Size unit (T1)

MVTYPE 0xBF8 0x0000_00
02

R/W Set the data type (T1)

MPSCLFAC 0xBE0 0x0000_00
00

R/W Set the post scaling factor
(T1)

• MSTATUS Register bit map
Table.3.1.1 MSTATUS bits

Bit # R/W Description

3 R/W Interrupt Enable: When an exception is encountered, Interrupt

Enable will be set to 1’b0, and it’s state will be stored in bit ‘7’.

When the mret instruction is executed, the original value of

Interrupt Enable will be restored from the 7th bit.

 If you want to enable interrupt handling in your exception

handler, set the Interrupt Enable to ‘1’ inside your handler code.

103

7 R/W Interrupt Previous Enable: Takes the state of the 3rd bit when

serving an interrupt, and when an mret is served it stays latched

to 1. And returns the 3rd bit back to it’s original value.

• MEPC Register
When an exception is encountered, the current program counter is saved in MEPC,

and the core jumps to the MTVEC address. When an MRET instruction is executed,

the value from MEPC replaces the current program counter, unless the return value

was a WFI instruction, in this case we return to the instruction in the address after the

WFI.

• MCAUSE Register bit map

Table.3.1.2 MCAUSE bits

Bit # R/W Description

31 R Interrupt: This bit is set when the exception was triggered by

an interrupt.

30 R WFI: This bit indicates that the last instruction before entering

the subroutine was a WFI

4:0 R Trap Cause: “0011” for SW IRQ, “0111” for Timer IRQ,

“1011” for External IRQ.

• PCER Register bit map
Each bit in the PCER register controls one performance counter. If the bit is 1, the

counter is enabled and starts counting events. If it is 0, the counter is disabled and its

value won’t change.
 Table.3.1.3 PCER bits

Bit # Description
9 Branch Taken Counter Enable

8 Branch Counter Enable

7 Jump Counter Enable

6 Store Counter Enable

5 Load Access Counter Enable

4 Instruction Miss Counter Enable

(currently not implemented)

3 Jump Access Stall Counter Enable

(currently not implemented)

2 Load/Store Access Stall Counter Enable

1 Instruction Counter Enable

0 Cycle Counter Enable

• MHPMCOUNTER Registers
Klessydra Core includes a MCYCLE counter, a MINSTRET counter and others 6

additional event counters, MHPMCOUNTER3, MHPMCOUNTER6-

MHPMCOUNTER10 of which only the first eight are used. The names of the registers

are compliant to RISC-V but the counters are not divided into 32 lower bits and 32

higher bits. Only MCYCLE and MINSTRET are extended to 64 bits by the registers

CYCLEH and MINSTRETH. The counter value is 32 bits unsigned integer.
Table.3.1.4 MHPMCOUNTER bits

104

Register Description
MCYCLE Counts the number of cycles the core was active (not

sleeping)

MINSTRET Counts the number of instructions executed

MHPMCOUNTER3 Number of load/store data hazards

MHPMCOUNTER4 currently not used

MHPMCOUNTER5 currently not used

MHPMCOUNTER6 Number of data memory loads executed

MHPMCOUNTER7 Number of data memory stores executed

MHPMCOUNTER8 Number of unconditional jumps

MHPMCOUNTER9 Number of branches. Counts taken and not taken

branches

MHPMCUNTER10 Number of taken branches

• MHPMEVENT Registers
In each MHPMEVENT register all the bits are statically bound to 0 except for the bit

related to the counter that must be enabled. If that bit is 1, the counter is active and

starts counting events. For instance, if the user wants to enable MHPMCOUNTER3

he will set the bit #2 (the 3th bit) of MHPMEVENT3 to 1. This procedure is equivalent

to set PCER (3) to 1. The core includes 6 registers, MHPMEVENT3,

MHPMEVENT6-MHPMEVENT10.
Table.3.1.5 MHPMEVENT bits

Register Not Bound Bit #
MHPMEVENT3 2

MHPMEVENT4 (currently not used) -

MHPMEVENT5 (currently not used) -

MHPMEVENT6 5

MHPMEVENT7 6

MHPMEVENT8 7

MHPMEVENT9 8

MHPMEVENT10 9

• MCPUID Register
The value of this register is fixed to 256 and cannot be changed. By using the CPUID

opcode, software can determinate processor type and the presence of features.

• MIMPID Register
The value of this register is fixed to 32768 and cannot be changed. MIMPID provides

a unique encoding of the version of the processor implementation.

• MHARTID Register
This register contains the integer ID of the hardware thread running the code. His value

depends on Cluster and Core external signals and can only be read.
 Table.3.1.6 MHARTID bits

Bit # Description
9:4 ID of the Cluster
3:0 ID of the core within the cluster

105

• MIP Register
The MIP register contains information about the type of pending interrupts. Bits #11

and #7 are enabled according to the external interrupt bits while bit #3 is settled to 1

to activate the SW interrupt routine.
 Table.3.1.7 MIP bits

Bit # R/W Interrupt Type
11 R External Interrupt

7 R Time Interrupt

3 R/W Software Interrupt

• MTVEC Register
When an exception or an interrupt occurs, PC is loaded with the value of this register.

MTVEC is the standard RISC-V base trap vector.

• MIRQ Register
This register saves which interrupt has been called. The value of this register is four

times the number of the interrupt’s bit enabled. For instance, if irq_i(3) is set, MIRQ

will be loaded with 12. If no interrupt is set, MIRQ value is 65535, that is just an

arbitrary number.

• BADADDR Register
When an instruction-fetch, load or store address-misaligned or access exception

occurs, MBADADDR is written with the faulting address.

• MVSIZE Register
Setting this register will set the vector size to be used by the mathematical unit.
The biggest size should not exceed the SPM size, since overflow bits will be
ignored.

• MPSCLFAC Register
Contains the post scaling factor that determines the shift amount in KDOTPPS
custom Klessydra instruction.

106

Chapter 4
Pipeline Organization

4.1 General concepts

Klessydra cores implement pipelined instruction processing. The number of pipeline

stages differs among the cores as reported below. In the following, F indicates

instruction fetch, D indicates operand read from register file and instruction decoding,

E indicates operation execution, W indicates result writeback to the register file.

In all cores, the F stage latency is equal to the latency of program memory access, and

variable latency program memory is supported (as for the case of instruction cache

memory). The F stage latency is 1 in case of single-cycle-access program memory.

For other pipeline stages, the latency may be fixed or depend on external events (e.g.

data memory latency, contention on CSR updating in case of interrupt requests). When

a stage latency takes more than 1 cycle, the hardware stalls the preceding stage by local

handshake signals. Similarly, each stage locally signals the succeeding stage when a

new item is ready.

The generic microarchitecture for T0 cores is depicted in Fig. 4.1.

Each thread is identified by a positive integer number harc (hardware context). The

harc counter changes the harc value at each new instruction fetch, and the harc value

associated to an instruction is passed through the pipeline stages. Most of the logic in

the pipeline control section is replicated on a per-thread basis, and the harc value is

used to properly index the logic units. Conversely, all the logic in the processing

pipeline is not per-thread replicated with the only exception of the data register file.

In the S0 core, per-thread replication and the harc-related logic are natively absent.

Fig. 4.1 – Generic pipeline microarchitecture scheme implemented in Klessydra T0

cores.

PC update
logic

CSR
logicCSR

logic

reg_file
(array)reg_file

(array)

CSR
set

CSR
setP

C

Program
memory

P
C

 v
al

u
e

CSR
logic

Data
reg. file

CS
Reg.
File

P
C

m
u

x

P
C

actual PC

h
ar

cINSTRUCTION
PROCESSING
PIPELINE

PIPELINE
CONTROL
SECTION

Pipeline
stage
logic

P
C

 v
al

u
e

h
ar

c

Pipeline
stage
logic

P
C

 v
al

u
e

h
ar

c

Pipeline
stage
logic

PC update
logicPC update

logic

Harc
counter

Data memory

107

The specialize microarchitecture of T1 cores is represented in Fig 4.2.

Fig. 4.2 – Datapath sketch of T1 cores.

T1 cores feature an execution stage that is split into a mathematical acceleration unit,

scratchpad memory unit and a regular execution unit.

4.2 S0 core pipeline
The Klessydra S0 core implements a 2-stage pipeline according to the model F / DEW.

The latency scheme is as follows:

 F DEW

Load and store instructions ≥ 1 ≥ 2

CSR instructions ≥ 1 ≥ 2

All other instructions ≥ 1 1

Branch instructions are predicted as not-taken and are executed with a delay slot of 1

cycle; in case of taken branch the hardware flushes any wrongly fetched instruction

from the pipeline.

Data hazards never occur.

4.3 T02x core pipeline
The Klessydra T0x cores implement a 3-stage pipeline according to the model F / D /

EW. The latency scheme is as follows:

 F D EW

Load and store instructions ≥ 1 1 ≥ 2

CSR instructions ≥ 1 1 ≥ 2

Atomic memory operations ≥ 1 1 ≥ 4

All other instructions ≥ 1 1 1

Branch instructions are predicted as not-taken and are executed with a delay slot of 2

cycles; in case of taken branch the hardware flushes any wrongly fetched instruction,

belonging to the branching thread, from the pipeline. No pipeline flush occurs if at

least 3 threads are interleaved in the pipeline.

Data hazards never occur, provided that at least 2 threads (Thread Pool Baseline) are

interleaved in the pipeline.

108

4.4 T03x / T13x / Fxxx core pipeline
The Klessydra T03x/T13x cores implement a 4-stage pipeline according to the model

F / D / E / W. The latency scheme is as follows:

 F D E W

Load and store instructions ≥ 1 1 ≥ 2 0

CSR instructions ≥ 1 1 ≥ 2 0

Atomic memory operations ≥ 1 1 ≥ 4 0

All other instructions ≥ 1 1 1 1

Specialized vector

instructions

≥ 1 1 ≥ 2 0

Branch instructions are predicted as not-taken and are executed with a delay slot of 3

cycles; in case of taken branch the hardware flushes any wrongly fetched instruction,

belonging to the branching thread, from the pipeline. No pipeline flush occurs if at

least 3 threads are interleaved in the pipeline.

Data hazards never occur, provided that at least 2 threads (Thread Pool Baseline) are

interleaved in the pipeline.

109

Chapter 5
Exceptions and Interrupts

Klessydra cores implement exceptions on illegal instructions, on load and store

instructions to invalid addresses, on misaligned memory accesses, and on ECALL

instruction execution.

Klessydra cores implement vectorized interrupts, specifically supporting 32 separate

interrupt service routines. There are three types of interrupt:

⎯ Software Interrupt

⎯ External Interrupt

⎯ Timer Interrupt

The interrupt/exception vector table supported by Klessydra cores is compliant with the

Pulpino platform interrupt vector table, as follows:
 Table.5.1 Interrupt Handler address map

0x00-0x7C Interrupts 0-31
0x80 Reset
0x84 Illegal Instruction
0x88 ECALL Instruction Executed
0x8C LSU Error (Invalid Memory Access)
0x90 Software Interrupt

Except Code Exception
0x0000_0002 ILLEGAL_INSN_EXCEPT_CODE
0x0000_0005 LOAD_ERROR_EXCEPT_CODE
0x0000_0007 STORE_ERROR_EXCEPT_CODE
0x0000_000B ECALL ECALL_EXCEPT_CODE
0x0000_0004 LOAD_MISALIGNED_EXCEPT_CODE
0x0000_0006 STORE_MISALIGNED_EXCEPT_CODE
0x0000_0100 ILLEGAL_VECTOR_SIZE_EXCEPT_CODE
0x0000_0101 ILLEGAL_ADDRESS_EXCEPT_CODE
0x0000_0102 SCRATCHPAD_OVERFLOW_EXCEPT_CODE

Interrupt handling is accomplished in the core hardware by jumping to the address

contained in MTVEC, in compliance with RISC-V specification; the pre-compiled

startup software routine located at MTVEC address implements the interrupt vector

table as it is shown above, jumping to the right handler routine address. The interrupt

handler are to be written by the final user according to the target application.

Interrupts can be enabled/disabled on a global basis through the MSTATUS register;

they cannot be individually enabled/disabled. Exceptions cannot be disabled.

When entering an interrupt routine, the core saves the current value of MIE (3rd-bit) to

the MPIE (7th-bit) in the MSTATUS register; the state of MIE will be restored after

returning from interrupt service routine.

If multiple interrupt requests arrive at the same cycle, the order of service is external

interrupt first, then software interrupt, timer interrupt and exceptions (compliance to

RISC-V specification).

In T0 cores, external interrupts are always re-directed to hart number 0.
Software interrupts can be directed from any active hart, to any active or idle hart.

Software interrupts allow inter-hart service requests.

110

In T0 cores and in T1 cores, as all status registers are replicated on a per-thread basis,

the interrupt/exception handling mechanism is implemented referring to the status

registers of the interrupted thread.

T1 cores introduce five more exceptions regarding the scratchpad handling.

Exceptions will be raised if the Math Accelerator unit operands are from non-

scratchpad addresses, or if writing or reading will result in a request from an overflown

scratchpad address, or if we have dual writes or dual reads from the same scratchpad

such as in the case of the LSU and Math Accelerator unit working simultaneously

111

Chapter 6
Scratchpads and mathematical unit
(T1 version only)

6.1 Scratchpad memory subsystem

Klessydra T1 cores include scratchpad memories, with configurable number of

scratchpads, banks, and scratchpad size and address mapping. The configurations can

be modified in the PKG file of the synthesizable Klessydra suite. Each scratchpad

memory (SPM) is composed of a set of memory banks; the number of banks available

in each SPM is defined by on the “SIMD” parameter value set in the PKG file.

Each bank address holds a 32-bit word. An SPM data line is composed of as many

words as the “SIMD” value. As addresses remain byte-aligned, the address distance

between SPM data lines is + SIMD*4. Each word on the line has its own address and

can be independently accessed (with 4-byte aligned address).

Any SPM bank can be read or written to. For read access, any bank that is not bank0

will cause the data read in SIMD fashion to be rotated as if it was coming from bank0

by a read rotator. While for write access, any write to a bank different from bank0 will

cause the data to be rotated to its correct destination bank by a write rotator.The rotators

were made to align the two input source operands

Each scratchpad has one read port, and one write port. Each port has size SIMD*32-

bits (e.g. for SIMD=4, we have 4*32 = 128 bits).

The SPMs can be accessed by the SPMU or the LSU. When a dual read (or dual write)

access is requested to the same SPM on the same port by two different units (SPMU

and LSU), priority will be given to the unit that requested the access first and the other

unit will be halted until the operation is finished. Due to the in-order single-issue

pipeline of the Klessydra cores it is not possible that the two units request access to the

SPM in the same cycle).

All transfers to/from the scratchpads go through an interface called SPI. Both SPM

read and writes happen through this SPI wrapper. The LSU and SPMU are the only

units that interact with the scratchpad memories, always through the SCI.

6.2 Mathematical accelerator unit
The Mathematical unit was designed to execute custom Klessydra instructions

targeting vector, DSP-like and CNN-inference-like operations.

The Mathematical unit interfaces to the SPI unit by means of two read ports for the

operands coming from the scratchpad memory interface, and one write port to the

scratchpad memory interface. The read and write port width are dependent on the

SIMD parameter value set in the PKG file.

The custom instruction set executed in the Mathematical unit are listed in table 7.1. It

executes different instructions many of which have different variants. Table.7.1 also

shows the SIMD capability of the Mathematical unit. A composition of partial

functional units has been adopted to enhance the SIMD execution and to optimize the

area consumption mathematical unit. Addition instructions use a combination of 8-bit

adders to make 8-bit, 16-bit, and 32-bit additions. Multiplication instructions use a

combination of 16-bit multipliers to perform 8-bit, 16-bit and 32-bit multiplications1.

1 16-bit multipliers were chosen over 8-bit multipliers since doing 32-bit multiplication using 8-bit multipliers would be

inefficient, and also 16-bit are the optimal choice needed for utilizing DSP blocks on presently available FPGAs

112

There are no 32-bit arithmetic units in the mathematical except for the 32-bit shifters,

that can be configured to do 8,16,32-bit right arithmetic or logical shifts, accumulators

(32-bit adders, and 16-bit adders for both 8, and 16-bit), and Rectify Linear Unit

(RELU).

When working on vectors, the Mathematical unit exploits built-in hardware loop (zero

overhead loops), executing the following steps in hardware:

a. Increment the source and destination vector pointers to fetch the next ele-

ment chunk;

b. Decrement the remaining number of elements to process;

c. Evaluate a conditional branch to check whether the number of remaining

elements reached zero.

The Mathematical unit can operate in parallel with respect to the other execution units.

Since the custom Klessydra instructions never have dependencies with the standard

RISCV instructions, the IE unit and LSU can work in parallel with the Mathematical

unit.

The Mathematical unit recovers its state when a halt occurs due to dual read/write

access.

113

Chapter 7
Fault Tolerance Support (F0x versions only)

Klessydra core versions F0x support several mechanisms of fault tolerance targeting

aerospace and safety critical application. Most of the mechanisms implemented address

tolerance to single event upset (SEU) in memory elements (registers and memories).

7.1 Basic mechanisms
Supported standard FT mechanisms are Dual Modular Redundancy (DMR) and Triple

Modular Redundancy (TMR), both based on repetition on functional modules and

comparison of outputs through a voting system.

DMR uses two replicas of combinational or sequential logic, it can only detect errors and

has a low area occupation and power consumption but high time of implementation.

Basic-TMR is a triple repetition of combinational or sequential logic and a majority voter;

it has the same time of implementation of DMR and also area and power consumption

increase.

Full-TMR adds a triple redundancy to both logic and registers at cost of area and power

consumption and it uses cross voters to guarantee high error correction capability.

Global-TMR is based on full-TMR but it can be automated through synthesis tools.

7.2 F03a: Fully TMR – Partial TMR Design
The protection of control and state registers is a priority because they contain vital

information about core operation and they are written only once at first run, so a TMR

must be used.

Counter registers are less critical because they are constantly refreshed. Each core has a

dedicated counter with many 32-bit registers, so it’s suggested to use alternative

techniques:

o MSB-TMR: triple redundancy only of N most significant bits, reducing area impact.

o DMR: detection of an error trigger a trap identified by a code and it’s managed by

the software.

o Software protection: no hardware protection, the software periodically reads and

compares counters.

Pipeline robustness is fundamental in TMR because redundancy does not protect registers

from loading wrong values that irredeemably corrupt code execution. So redundancy has

to be applied to all registers between pipeline stages and state registers of state machines.

Registers file are dedicated for each thread so a TMR has the highest impact in terms of

area.

The voting system also lengthens critical path that lowers the maximum clock frequency.

Program counter unit has a dedicated 32-bit register for each thread and some flip-flop to

store events and conditions that must be resolved from the unit. Flip-Flop corruption

doesn’t lead to loss of control because PC update is defined by signals coming from

pipeline.

An error on exception service Flip-Flop is more critical because it requires a response

from CSR.

Due to the small area occupation on few registers and Flip-Flop it’s suggested to protect

with TMR the PC unit.

7.3 F03b: Double Pipeline Design with Check&Restore

114

In this version, a protection technique is used that does not allow error correction, but the

area occupied by the TMR version is reduced by a third, without losing reliability.

This design implies a change of the internal architecture of the core. The structure is based

on a new Processing Unit composed of two Pipelines, the CRU and a new CSR unit

derived from the TMR version. In this architecture, a checkpoint is created before critical

portions of code or periodically. Checkpoint control is managed by the Check Restore

Unit (CRU) and the CSR.

The two pipelines are the same as the Klessydra T03 version. The input and output signals

of the pipelines are controlled by the CRU, which can drive them exclusively to start

checkpoint or restore procedures, not natively implemented in the Pipeline. To allow CRU

functioning and error check, there is an internal register, called CRSTATUS. This critical

register is protected by TMR redundancy and can be read (but not written via) CSR

instructions. The management of the check and restore system requires instructions for

management and control. These instructions are:

• Chepoint start instruction

• Instruction to activate thread dependency

• Instruction to restart the restore manually

• Instruction to deactivate protected mode

The double pipeline structure adds two operating modes to the system:

• the normal mode - it allows to deactivate the clock of the not used pipeline in order

to reduce the dynamic consumption of the core;

• the "single pipeline" mode - allows you to increase core’s life in critical environ-

ments. This mode is integrated and supported by the hardware but requires that the

code is written ad properly.

A portion of the software is used to check the correct functioning of the hardware: if a

pipeline is damaged, it can be disabled. The core is then used with a single unprotected

pipeline. The robustness of the processing must be granted to the software, which will be

executed in a redundant manner, sacrificing the processing speed.

The CRU is the heart of the DoublePipe architecture protection system. The system is

based on the comparison of the pipeline outputs. In case of output’s discrepancy, the CRU

activates a flag that indicates the presence of an error. In the next execution phase of the

thread with an active flag, the CRU takes control of the outputs, simulating an illegal

instruction with a specific cause code. At this point, a software routine takes care of

recovering the values of the register files previously saved in memory. At the end of the

illegal instruction routine, the PC unit loads the program counter with the value saved

during checkpoint creation. The return to a checkpoint does not deactivate the protected

mode or eliminate the checkpoint. The unit manages part of the dedicated instructions of

this architecture and the internal control register. The control register contains information

on the configuration of the CRU, on the execution status of the core and on any hanging

errors. This register can be read (but not written) by the user.

The DuoblePipe CSR, unlike the original version, includes a specific register which is

used to back up the PC. The register is not addressable, and its writing is managed by the

CSR during the execution of the pseudo instructions developed for this architecture. Other

registers are instead extended in use and functionality compared to the RISC-V standard:

the writing with particular values of some registers will be interpreted as an instruction.

The CSR, together with the CRU, takes care of serving the instructions for starting a

checkpoint and restoring it in the event of an error.

The DoublePipe program counter unit is substantially identical to the original version in

terms of functionality. Since the activation system of a checkpoint is based on the start of

a particular software interrupt, it is necessary to add a condition in the PC unit that allows

the service of this type of interrupt despite the interrupts being disabled.

115

7.4 F03c: Shadow Thread Double Pipe
The F03c architecture is based on the possibility to correct errors, by using a double

pipeline and a redundant execution of the thread instructions. To obtain corrections of the

errors, 3 copies of the same result are necessary:

• two contemporary copies obtained through pipeline redundancy;

• a third copy obtained through a temporally out of phase processing.

A Shadow control unit (SCU) handle the pipelines and the architecture synchronization.

During the shadow processing, the SCU handles two different instructions. These are

executed in the pipelines. To solve latency problem between instructions, the SCU can put

the pipeline on hold in order to complete the execute phase in a synchronized way. The

register file management is left to SRU unit, that constantly communicates with the SCU.

The SCU provides information about processing in the pipeline, indicating to the SRU

whether the instructions require access to the registers. In case of error, the SRU performs

a memory access and retrieves the value of the register. If the error is detected in

conjunction with an instruction that requires reading the same file, the SRU sends a signal

to the SCU which blocks the pipelines. Once received the data from the memory, a triple

comparison is made, and the correct data is sent to the pipelines. When this phase is

completed, the SCU unlocks the pipelines. The writing in memory is started in conjunction

with the WB phase. The copy of the regfile has priority over a possible access instruction

in memory, which is put on hold, locking the pipelines.

The CSR ST does not contain dedicated registers but is equipped with additional input

signals. The operation of the unit depends on:

• main processing: the CSR executes the commands received from the pipeline pro-

cessing, previously controlled by the SCU. It also reacts to any hardware routines

to serve exceptions and interrupts or following a return instruction.

• Shadow processing: the CSR simulates the execution of the access instructions by

supplying the values contained in the registers. The values contained in the regis-

ters are not modified unless explicitly commanded by the SCU. No interrupt or

exception affects the CSR at this step. An eventual interrupt event is served at the

next main processing.

Writing to the internal registers can be disabled at any time by the SCU, which keeps a

constant check on the CSR. This architectural difference allows the value sent to the

registers to be blocked at any time. Loading incorrect values (in the TMR registers) is

always prevented. The triple redundancy technique completely loses its effectiveness in

the event of an error in the logic that sends the data.

The architecture of the PC ST unit differs from the original version of the core as it must

guarantee the functioning of the shadow structure that requires up to two PCs

simultaneously. The portion that manages the PC during the fetching phase of the shadow

processing is located inside the SCU. The PC ST unit, in addition to supplying the correct

PC value to the SCU, must manage the correct updating of the internal PC registers.

This is done by receiving information on the location of the shadow thread within the

Pipeline. Thanks to this information the unit can execute or block the updating of the PC

registers. In the event of interrupts, exceptions or jumps during the execution phase of the

Shadow processing, the unit locks the PC update system waiting for the main processing

phase. If the conditions that triggered an interrupt, an exception or any request to change

the program flow remain, the PC will update and start the procedure. This allows to avoid

serving the same interrupt twice. In this unit there is an input signal that allows the SCU

to stop updating the PC at any time in case of error. In this case indeed, the TMR protection

of the inside registers is not able to correct the loading of an incorrect value.

116

Chapter 8

Debug Support

Klessydra core supports common baseline debug features: halting the program flow,

reading data register file, reading the PC value and enabling a single step execution.

Software breakpoints are implemented by the RISC-V instruction EBREAK.

The debug operations are intended at core level and not per-thread. When entering

debug mode, the whole core (i.e. with all its threads) enters debug mode. The internal

debug unit accesses information related to the thread whose instruction is in the

execution stage of the core pipeline in the current clock cycle.

The debug hardware interface is the same as the memory interface, but on separate

buses. Every access to debug facilities is done by an access to debug registers.

To halt the core, external debug unit has to set DBG_CTRL[0] bit. If DBG_CTRL[0]

is set, the core is in single step mode, so clearing the DGB_HIT[0] bit enable execution

of a single instruction.

Debug registers are always accessible. Program counter and register file are accessible

only when the core is halted. Which register of register file external debug unit requires

is specified in [6:2] bit of the address.

Table.8.1 Debug Registers

Address Name Description

0x00 DBG_CTRL Debug Control

0x04 DBG_HIT Debug Hit

0x2000 DBG_PPC Next PC

0x2004 DBG_NPC Previous PC

0x400-
0x47C

GPR(x0-
x31)

General Purpose Registers

Table.8.2 Debug Control register bit map

Bit # R/W Description

16 R/W HALT bit: When set to ‘1’, the core enters debug mode, when reset to ‘0’, the
core exits debug mode.

0 R/W SSTE bit: Single-step enable bit.

Table.8.3 Debug Hit register bit map

Bit # R/W Description

117

0 R/W SSTH: Single-step hit, sticky bit that must be cleared by external debugger in
order to execute next instruction.

Table.8.4 Debug Next Program Counter register bit map

Bit # R/W Description

31:0 R/W NPC: Next PC to be executed

Table.8.5 Debug Previous Program Counter register bit map

Bit # R/W Description

31:0 R/W

PPC: Previous PC, already executed

118

Chapter 9

Instruction Set

9.1 Integer Register-Immediate operations

Table.9.1 Register-Immediate operations

Name Binary format type Assembly syntax
ADDI – add immediate I ADDI rd, rs1, imm
SLTI - set if less immediate I SLTI rd, rs1, imm
SLTIU - set if less imm. uns. I SLTIU rd, rs1, imm
ANDI - and immediate I ANDI rd, rs1, imm
ORI - or immediate I ORI rd, rs1, imm
XORI – excl. or immediate I XORI rd, rs1, imm
SLLI – shift left logical imm. I SLLI rd, rs1, shamt
SRLI– shift right logical imm. I SRLI rd, rs1, shamt
SRAI – shift right arithm.

imm.
I SRAI rd, rs1, shamt

LUI - load upper immediate U LUI rd, imm
AUIPC - add upper imm. to

pc
I AUIPC rd, imm

• ADDI adds the sign-extended 12-bit immediate to register rs1. Arithmetic overflow

is ignored and the result is simply the low 32 bits of the result. ADDI rd, rs1, 0

can be used to implement a register move operation.

• SLTI places the value 1 in register rd if register rs1 is less than the sign-extended

immediate when both are treated as signed numbers, else 0 is written to rd. SLTIU

is similar but compares the values as unsigned numbers.

• ANDI, ORI, XORI are logical operations that perform bitwise AND, OR, and XOR

on register rs1 and the sign-extended 12-bit immediate and place the result in rd.

Notably, XORI rd, rs1, -1 performs a bitwise logical inversion of register rs1.

• SLLI is a logical left shift (zeros are shifted into the lower bits); SRLI is a logical

right shift (zeros are shifted into the upper bits); and SRAI is an arithmetic right

shift (the original sign bit is copied into the vacated upper bits). The operand to be

shifted is in rs1, and the shift amount is encoded in the lower 5 bits of the I-imme-

diate field.

• LUI is used to build 32-bit constants. LUI places the U-immediate value in the top

20 bits of the destination register rd, filling in the lowest 12 bits with zeros.

• AUIPC is used to build PC-relative addresses. AUIPC forms a 32-bit offset from

the 20-bit U-immediate, filling in the lowest 12 bits with zeros, adds this offset to

the PC, then places the result in register rd.

9.2 Integer Register-Register Operations
Table.9.2 Register-Register Operations

Name Binary format type Assembly syntax
ADD - add R ADD rd, rs1, rs2
SLT - set if less R SLT rd, rs1, rs2
SLTU – set if less unsigned R SLTU rd, rs1, rs2
AND - and R AND rd, rs1, rs2
OR - or R OR rd, rs1, rs2
XOR - exclusive or R XOR rd, rs1, rs2

119

SLL – shift left logical R SLL rd, rs1, rs2
SRL – shift right logical R SRL rd, rs1, rs2
SUB – subtract R SUB rd, rs1, rs2
SRA - shift right arithmetic R SRA rd, rs1, rs2

• ADD and SUB perform addition and subtraction respectively. Overflows are ig-

nored and the low 32 bits of results are written to the destination.

• SLT and SLTU perform signed and unsigned compares respectively, writing 1 to

rd if rs1 < rs2, 0 otherwise. Note, SLTU rd, x0, rs2 sets rd to 1 if rs2 is not equal

to zero, otherwise sets rd to zero (assembler pseudo-op SNEZ rd, rs).

• AND, OR, and XOR perform bitwise logical operations.

• SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts

on the value in register rs1 by the shift amount held in the lower 5 bits of register

rs2.

9.3 Unconditional Jumps
Table.9.3 Unconditional Jumps

 Name Binary format type Assembly syntax
JAL - jump and link UJ JAL rd, imm
JALR – jump to reg and

link
UJ JALR rd, rs1, imm

• The jump and link (JAL) instruction uses the J-immediate to encode a signed offset

in multiples of 2 bytes. The offset is sign-extended and added to the pc to form the

jump target address. Jumps can therefore target a ±1 MiB range. JAL stores the

address of the instruction following the jump (PC+4) into register rd. Plain uncon-

ditional jumps are encoded as a JAL with rd = x0.

• The indirect jump instruction JALR (jump and link register) obtains the target ad-

dress by adding the 12-bit signed I-immediate to the register rs1, then setting the

least-significant bit of the result to zero. The address of the instruction following

the jump (PC+4) is written to register rd. Register x0 can be used as the destination

if the result is not required.

• The JAL and JALR instructions will generate a misaligned instruction fetch ex-

ception if the target address is not aligned to a four-byte boundary.

9.4 Conditional Branches
Table.9.4 Branches

Name Binary format type Assembly syntax
BEQ – branch if equal SB BEQ rs1, rs2,imm
BNE - branch if not eq. SB BNE rs1, rs2,imm
BLT – branch if less SB BLT rs1, rs2,imm
BGE– branch if greater SB BGE rs1, rs2,imm
BLTU – branch if less SB BLTU rs1, rs2,imm
BGEU – branch if greater SB BGEU rs1, rs2,imm

• BEQ and BNE take the branch if registers rs1 and rs2 are equal or unequal respec-

tively.

• BLT and BLTU take the branch if rs1 is less than rs2, using signed and unsigned

comparison respectively.

• BGE and BGEU take the branch if rs1 is greater than or equal to rs2, using signed

and unsigned comparison respectively.

120

• All branch instructions use the 12-bit B-immediate to encode signed offsets in

multiples of 2, and add the offset to the current PC to give the target address. The

conditional branch range is ±4 KiB.

9.5 Memory access Instructions
Table.9.5 Load-Store Instructions

 Name Binary format type Assembly syntax
LB - load byte I LB rd, rs1, imm
LH - load half word I LH rd, rs1, imm
LW - load word I LW rd, rs1, imm
LBU - load byte unsigned I LBU rd, rs1, imm
LHU - load half word unsig. I LHU rd, rs1, imm
SB - store byte SB rs1,rs2,imm
SH - store half word SH rs1,rs2,imm
SW - store word SW rs1,rs2,imm

• Load and store instructions transfer a value between the registers and memory.

Loads are encoded in the I-type format and stores are S-type. The effective byte

address is obtained by adding register rs1 to the sign-extended 12-bit offset. Loads

copy a value from memory to register rd. Stores copy the value in register rs2 to

memory.

• The LW instruction loads a 32-bit value from memory into rd. LH loads a 16-bit

value from memory, then sign-extends to 32-bits before storing in rd. LHU loads

a 16-bit value from memory but then zero extends to 32-bits before storing in rd.

LB and LBU are defined analogously for 8-bit values. The SW, SH, and SB in-

structions store 32-bit, 16-bit, and 8-bit values from the low bits of register rs2 to

memory

9.6 CSR Instructions (Read-Set-Clear)
Table.9.6 CSR Instructions

Name Binary format type Assembly syntax
CSRRW - csr read/write CSRRW rd, csr, rs1
CSRRS - csr read & set CSRRS rd, csr, rs1
CRSSC - csr read & clear CSRRC rd, csr, rs1
CSRRWI - csr rd/wr. Imm. CSRRWI rd, csr, imm
CSRRSI - csr rd & set imm CSRRSI rd, csr, imm
CSRRCI - csr rd & clr imm CSRRCI rd, csr, imm

• The CSRRW instruction atomically swaps values in the CSRs and integer regis-

ters. CSRRW reads the old value of the CSR, zero-extends the value to 32 bits,

then writes it to integer register rd. The initial value in rs1 is written to the CSR. If

rd=x0, then the instruction shall not read the CSR and shall not cause any of the

side-effects that might occur on a CSR read.

• The CSRRS instruction reads the value of the CSR, zero-extends the value to 32

bits, and writes it to integer register rd. The initial value in integer register rs1 is

treated as a bit mask that specifies bit positions to be set in the CSR. Any bit that

is high in rs1 will cause the corresponding bit to be set in the CSR, if that CSR bit

is writable. Other bits in the CSR are unaffected (though CSRs might have side

effects when written).

• The CSRRC instruction reads the value of the CSR, zero-extends the value to 32

bits, and writes it to integer register rd. The initial value in integer register rs1 is

treated as a bit mask that specifies bit positions to be cleared in the CSR. Any bit

121

that is high in rs1 will cause the corresponding bit to be cleared in the CSR, if that

CSR bit is writable. Other bits in the CSR are unaffected.

• For both CSRRS and CSRRC, if rs1=x0, then the instruction will not write to the

CSR at all, and so shall not cause any of the side effects that might otherwise occur

on a CSR write, such as raising illegal instruction exceptions on accesses to read-

only CSRs. Note that if rs1 specifies a register holding a zero value other than x0,

the instruction will still attempt to write the unmodified value back to the CSR and

will cause any attendant side effects.

• The CSRRWI, CSRRSI, and CSRRCI variants are similar to CSRRW, CSRRS,

and CSRRC respectively, except they update the CSR using an 32-bit value ob-

tained by zero-extending a 5-bit unsigned immediate (uimm[4:0]) field encoded in

the rs1 field instead of a value from an integer register. For CSRRSI and CSRRCI,

if the uimm[4:0] field is zero, then these instructions will not write to the CSR, and

shall not cause any of the side effects that might otherwise occur on a CSR write.

For CSRRWI, if rd=x0, then the instruction shall not read the CSR and shall not

cause any of the side-effects that might occur on a CSR read.

9.7 CSR Privileged Instructions
Table.9.7 Privileged Instructions

 Name Binary format type Assembly syntax
ECALL – environment call ECALL
EBREAK – break to envir. EBREAK
WFI – wait for IRQ WFI
MRET – machine return MRET

• The ECALL instruction is used to make a request to the supporting execution en-

vironment, which is usually an operating system. The ABI for the system will de-

fine how parameters for the environment request are passed, but usually these will

be in defined locations in the integer register file.

• The EBREAK instruction is presently implemented in the S0 core only (future

update in T0 cores and T1 cores).

• The WFI is a wait for interrupt instruction, that latches the thread in an idle state

until an interrupt arrives.

• The MRET updates the program counter with the address of the instruction being

executed before entering the trap handling routine. Unless the instruction was a

WFI, we return to the address after it.

9.8 Atomic Instructions
Table.9.8 Atomic Instructions

 Name Binary format type Assembly syntax
AMOSWAP.W.AQ R AMOSWAP.W.AQ rd,rs1,rs2
AMOSWAP.W.RL R AMOSWAP.W.RL rd,rs1,rs2

• The atomic memory operations AMOSWAP.W atomically load a data value from

the address in rs1, place the value into register rd, apply a swap between the loaded

value and the original value in rs2, then store the swapped value to the address in

rs1.

The implementation follows “release consistency”. The AMOSWAP.W.AQ

instruction implements a read-modify-write operation suited to lock acquiring,

while the AMOSWAP.W.AQ instruction implements a read-modify-write

operation suited to lock releasing.

122

The S0 core does not support Atomic Instructions.

9.9 Klessydra Custom Extensions (T1 version only)
Table.9.9 Klessydra custom extensions

 Name Binary format type Assembly syntax
KMEMLD R kmemld rd, rs1, rs2
KMEMSTR R kmemstr rd, rs1, rs2
KADDV R kaddv rd, rs1, rs2
KSUBV R ksubv rd, rs1, rs2
KVMUL R kvmul rd, rs1, rs2
KVRED R kvred rd, rs1, rs2
KDOTP R kdotp rd, rs1, rs2
KSVADDSC R ksvaddsc rd, rs1, rs2
KSVADDRF R ksvaddrf rd, rs1, rs2
KSVMULSC R ksvmulsc rd, rs1, rs2
KSVMULRF R ksvmulrf rd, rs1, rs2
KDOTP R kdotp rd, rs1, rs2
KDOTPPS R kdotpps rd, rs1, rs2
KSRLV R ksrlv rd, rs1, rs2
KSRAV R ksrav rd, rs1, rs2
KRELU R krelu rd, rs1, rs2
KBCAST R kbcast rd, rs1
KVCP R kvcp rd, rs1

• KMEMLD: loads the number of bytes specified by ‘rs2’ in the scratchpad memory

at address ‘rd’, from the address ‘rs1’ in the main memory.

• KMEMSTR: loads the number of bytes specified by ‘rs2’ in the main memory at

address ‘rs1’, from the address ‘rd’ in the scratchpad memory.

• KADDV: adds the operands in the scratchpad at addresses in ‘rs1’ and in ‘rs2’ and

stores the result as a vector at the address ‘rd’ in the scratchpad memory.

• KSUBV: subtracts the operands in the scratchpad at addresses in ‘rs1’ and in ‘rs2’

and stores the result as a vector at the address ‘rd’ in the scratchpad memory.

• KVMUL: multiplies the vector elements of rs1 and rs2 and stores the result in rd.

• KVRED: performs vector reduction between the elements at addresses ‘rs1’ and

‘rs2’, and stores the scalar in ‘rd’.

• KDOTP: multiplies the operands at addresses in ‘rs1’ and in ‘rs2’, the multiply

intermediate results are accumulated, and the final results are stored as a scalar in

the address in ‘rd’.

• KDOTPPS: performs post scaling dot product on the elements at addresses in ‘rs1’

and ‘rs2’ and puts the result in ‘rd’. The multiplication result is shifted by the value

set the CSR register ‘MPSCLFAC’.

• KSVADDSC/RF: adds the scalar operand in the register file or scratchpad address

in ‘rs1’ with a scalar value that is in ‘rs2’. The result is stored as a vector at address

in ‘rd’. (A faster alternative to using KBCAST).

• KSVMULRF/SC multiplies the scalar operand in the register file / scratchpad in

‘rs1’ with a scalar value that is in ‘rs2’. The result is stored as a vector in the address

in ‘rd’. (A faster alternative to using KBCAST).

• KSRLV/KSRAV: does right logical/arithmetic shifts on the vector at the address

in ‘rs1’ by the shift amount in ‘rs2’ and stores the vector results at the address in

‘rd’.

• KRELU: does linear rectification on the negative values of the vector at the address

in ‘rs1’ and puts the rectified vector at the address in ‘rd’.

123

• KBCAST: does a vector broadcast of the scalar value contained in scalar register

‘rs1’ to the vector at the address in ‘rd’.

• KVCP: copies the vectors starting at the address in ‘rs1’ to the address in ‘rd’. Both

addresses are in scratchpad memory space.

All logical-arithmetic vector instructions should all be used in conjunction with the

CSR register ‘MVSIZE’ in order to specify the size of the vector to be processed by

the operation.

124

Appendix B

T13 VHDL Code

This appendix includes some of the main RTL files of the Klessydra T13, not all files have been

included in order to keep this thesis more compact. The language is VHDL_2008

Also, one important note, the term DSP refers to the SPMU. Earlier implementations of the unit

were designed to make a DSP, however, the term was later changed to SPMU

Another note: SC is the earlier abbreviation of scratchpad memory, which is now known as SPM.

The sources included are the package file, the SPE, SPI, and SPM entities, all sources can be found

at Github [31][32][33].

1. Package file Parameters

library ieee; 1
use ieee.math_real.all; 2
use ieee.std_logic_1164.all; 3
 4
package thread_parameters_klessydra is 5
 6
 type array_2d is array (integer range<>) of std_logic_vector; 7
 type array_3d is array (integer range<>) of array_2d; 8
 type array_2d_int is array (integer range<>) of integer; 9
 10
 constant THREAD_ID_SIZE : integer := 4; 11
 12
 constant THREAD_POOL_SIZE : integer := 3; -- Changing the TPS to less than "number of pipeline stages-1" is not allowed. And making it bigger 13
than "pipeline stages-1" is okay but not recommended 14
 constant NOP_POOL_SIZE : integer := 2; -- should be static and not touched, unless the number of pipeline stages changes; presently unused 15
 16
 constant BRANCHING_DELAY_SLOT : integer := 3; -- should be static and not touched, unless the number of pipeline stages change 17
 18
 constant HARC_SIZE : integer := THREAD_POOL_SIZE; -- for the moment we do not implement "nop" threads 19
 subtype harc_range is integer range THREAD_POOL_SIZE - 1 downto 0; -- will be used replicated units in the core 20
 21
 22
 -- 23
 -- ###### ##### ### ## ####### ##### ###### ###### -- 24
 -- ## # # ## # ## ## # ## ## -- 25
 -- ## # # ## # ## ##### # ## #### ##### -- 26
 -- ## # # ## # ## ## # ## ## ## -- 27
 -- ###### ##### ## ### ## ##### ###### ###### -- 28
 -- 29
 30
--31
------------------------ 32
 constant RF_SIZE : natural := 32; -- Regfile size, Can be set to 32 for RV32I or 16 for RV32E 33
 constant RV32M : natural := 0; -- Enable the M-extension of the risc-v instruction set 34
 constant accl_en : natural := 0; -- Enable the generation of the special purpose accelerator 35
 constant replicate_accl_en : natural := 0; -- Set to 1 to replicate the accelerator for every thread 36
 constant multithreaded_accl_en : natural := 0; -- Set to 1 to let the replicated accelerator share the functional units (note: replicate_accl_en must be 37
set to '1') 38
 constant SPM_NUM : natural := 4; -- The number of scratchpads available "Minimum allowed is two" 39
 constant Addr_Width : natural := 14; -- This address is for scratchpads. Setting this will make the size of the spm to be: "2^Addr_Width -1" 40
 constant SPM_STRT_ADDR : std_logic_vector(31 downto 0) := x"1000_0000"; -- This is starting address of the spms, it shouldn't be bigger 41
than 2^32, and shouldn't overlap any sections in the memory map 42
 constant SIMD : natural := 1; -- Changing the SIMD, would change the number of the functional units in the dsp, and the number of 43
banks in the spms (can be power of 2 only e.g. 1,2,4,8) 44
 constant MCYCLE_EN : natural := 0; -- Can be set to 1 or 0 only. Setting to zero will disable MCYCLE and MCYCLEH 45
 constant MINSTRET_EN : natural := 0; -- Can be set to 1 or 0 only. Setting to zero will disable MINSTRET and MINSTRETH 46

125

 constant MHPMCOUNTER_EN : natural := 0; -- Can be set to 1 or 0 only. Setting to zero will disable all program counters except 47
"MCYCLE/H" and "MINSTRET/H" 48
--49
------------------------ 50
 51
 constant RF_CEIL : natural := integer(ceil(log2(real(RF_SIZE)))); 52
 constant TPS_CEIL : natural := integer(ceil(log2(real(THREAD_POOL_SIZE)))); 53
 constant TPS_BUF_CEIL : natural := integer(ceil(log2(real(THREAD_POOL_SIZE-1)))); 54
 constant SPM_ADDR_WID : natural := integer(ceil(log2(real(SPM_NUM+1)))); 55
 constant SIMD_BITS : natural := integer(ceil(log2(real(SIMD)))); 56
 constant Data_Width : natural := 32; 57
 constant SIMD_Width : natural := SIMD*Data_Width; 58
 --constant XLEN : natural := 32; -- aaa use this instead of Data_Width, the name is shorter and more convenient 59
 60
 constant ACCL_NUM : natural := (THREAD_POOL_SIZE - (THREAD_POOL_SIZE-1)*(1-replicate_accl_en)); 61
 constant FU_NUM : natural := (ACCL_NUM - (ACCL_NUM-1)*(multithreaded_accl_en)); 62
 63
 subtype accl_range is integer range ACCL_NUM - 1 downto 0; -- will be used replicated accelerators in the core 64
 subtype fu_range is integer range FU_NUM - 1 downto 0; -- will be used replicated accelerators in the core 65
 66
 type fsm_IE_states is (sleep, reset, normal, csr_instr_wait_state, debug); 67
 type mul_states is (mult, accum); 68
 type div_states is (init, divide); 69
 type fsm_LS_states is (normal , data_valid_waiting); 70
 71
 constant dsp_init : std_logic_vector(1 downto 0) := "00"; 72
 constant dsp_halt_hart : std_logic_vector(1 downto 0) := "01"; 73
 constant dsp_exec : std_logic_vector(1 downto 0) := "10"; 74

2. SPE Unit

-- ieee packages ------------ 1
library ieee; 2
use ieee.std_logic_1164.all; 3
use ieee.std_logic_misc.all; 4
use ieee.numeric_std.all; 5
use std.textio.all; 6
 7
-- local packages ------------ 8
use work.riscv_klessydra.all; 9
use work.thread_parameters_klessydra.all; 10
 11
-- DSP pinout -------------------- 12
entity DSP_Unit is 13
 port (14
 -- Core Signals 15
 clk_i, rst_ni : in std_logic; 16
 -- Processing Pipeline Signals 17
 rs1_to_sc : in std_logic_vector(SPM_ADDR_WID-1 downto 0); 18
 rs2_to_sc : in std_logic_vector(SPM_ADDR_WID-1 downto 0); 19
 rd_to_sc : in std_logic_vector(SPM_ADDR_WID-1 downto 0); 20
 -- CSR Signals 21
 MVSIZE : in array_2d(harc_range)(Addr_Width downto 0); 22
 MVTYPE : in array_2d(harc_range)(3 downto 0); 23
 MPSCLFAC : in array_2d(harc_range)(4 downto 0); 24
 dsp_except_data : out array_2d(accl_range)(31 downto 0); 25
 -- Program Counter Signals 26
 dsp_taken_branch : out std_logic_vector(accl_range); 27
 dsp_except_condition : out std_logic_vector(accl_range); 28
 -- ID_Stage Signals 29
 decoded_instruction_DSP : in std_logic_vector(DSP_UNIT_INSTR_SET_SIZE-1 downto 0); 30
 harc_EXEC : in harc_range; 31
 pc_IE : in std_logic_vector(31 downto 0); 32
 RS1_Data_IE : in std_logic_vector(31 downto 0); 33
 RS2_Data_IE : in std_logic_vector(31 downto 0); 34
 RD_Data_IE : in std_logic_vector(Addr_Width -1 downto 0); 35
 dsp_instr_req : in std_logic_vector(accl_range); 36
 spm_rs1 : in std_logic; 37
 spm_rs2 : in std_logic; 38
 vec_read_rs1_ID : in std_logic; 39
 vec_read_rs2_ID : in std_logic; 40
 vec_write_rd_ID : in std_logic; 41
 busy_dsp : out std_logic_vector(accl_range); 42
 -- Scratchpad Interface Signals 43

126

 dsp_data_gnt_i : in std_logic_vector(accl_range); 44
 dsp_sci_wr_gnt : in std_logic_vector(accl_range); 45
 dsp_sc_data_read : in array_3d(accl_range)(1 downto 0)(SIMD_Width-1 downto 0); 46
 dsp_we_word : out array_2d(accl_range)(SIMD-1 downto 0); 47
 dsp_sc_read_addr : out array_3d(accl_range)(1 downto 0)(Addr_Width-1 downto 0); 48
 dsp_to_sc : out array_3d(accl_range)(SPM_NUM-1 downto 0)(1 downto 0); 49
 dsp_sc_data_write_wire : out array_2d(accl_range)(SIMD_Width-1 downto 0); 50
 dsp_sc_write_addr : out array_2d(accl_range)(Addr_Width-1 downto 0); 51
 dsp_sci_we : out array_2d(accl_range)(SPM_NUM-1 downto 0); 52
 dsp_sci_req : out array_2d(accl_range)(SPM_NUM-1 downto 0); 53
 -- tracer signals 54
 state_DSP : out array_2d(accl_range)(1 downto 0) 55
 56
); 57
end entity; -- 58
 59
 60
architecture DSP of DSP_Unit is 61
 62
 signal nextstate_DSP : array_2d(accl_range)(1 downto 0); 63
 64
 -- Virtual Parallelism Signals 65
 signal relu_en : std_logic_vector(accl_range); -- enables the use of the shifters 66
 signal shift_en : std_logic_vector(accl_range); -- enables the use of the shifters 67
 signal add_en : std_logic_vector(accl_range); -- enables the use of the adders 68
 signal mul_en : std_logic_vector(accl_range); -- enables the use of the multipliers 69
 signal accum_en : std_logic_vector(accl_range); -- enables the use of the accumulator 70
 signal relu_en_wire : std_logic_vector(accl_range); -- enables the use of the shifters 71
 signal shift_en_wire : std_logic_vector(accl_range); -- enables the use of the shifters 72
 signal add_en_wire : std_logic_vector(accl_range); -- enables the use of the adders 73
 signal mul_en_wire : std_logic_vector(accl_range); -- enables the use of the multipliers 74
 signal accum_en_wire : std_logic_vector(accl_range); -- enables the use of the accumulatorss 75
 signal add_en_pending_wire : std_logic_vector(accl_range); -- signal to preserve the request to access the adder "multhithreaded mode" only 76
 signal shift_en_pending_wire : std_logic_vector(accl_range); -- signal to preserve the request to access the shifter "multhithreaded mode" 77
only 78
 signal mul_en_pending_wire : std_logic_vector(accl_range); -- signal to preserve the request to access the multiplier "multhithreaded mode" 79
only 80
 signal accum_en_pending_wire : std_logic_vector(accl_range); -- signal to preserve the request to access the accumulator "multhithreaded 81
mode" only 82
 signal relu_en_pending_wire : std_logic_vector(accl_range); -- signal to preserve the request to access the ReLU "multhithreaded mode" 83
only 84
 signal add_en_pending : std_logic_vector(accl_range); -- signal to preserve the request to access the adder "multhithreaded mode" only 85
 signal shift_en_pending : std_logic_vector(accl_range); -- signal to preserve the request to access the shifter "multhithreaded mode" only 86
 signal mul_en_pending : std_logic_vector(accl_range); -- signal to preserve the request to access the multiplier "multhithreaded mode" 87
only 88
 signal accum_en_pending : std_logic_vector(accl_range); -- signal to preserve the request to access the accumulator "multhithreaded 89
mode" only 90
 signal relu_en_pending : std_logic_vector(accl_range); -- signal to preserve the request to access the ReLU "multhithreaded mode" only 91
 signal busy_add : std_logic; -- busy signal active only when the FU is shared and currently in use 92
 signal busy_mul : std_logic; -- busy signal active only when the FU is shared and currently in use 93
 signal busy_shf : std_logic; -- busy signal active only when the FU is shared and currently in use 94
 signal busy_acc : std_logic; -- busy signal active only when the FU is shared and currently in use 95
 signal busy_rel : std_logic; -- busy signal active only when the FU is shared and currently in use 96
 signal busy_add_wire : std_logic; -- busy signal active only when the FU is shared and currently in use 97
 signal busy_mul_wire : std_logic; -- busy signal active only when the FU is shared and currently in use 98
 signal busy_shf_wire : std_logic; -- busy signal active only when the FU is shared and currently in use 99
 signal busy_acc_wire : std_logic; -- busy signal active only when the FU is shared and currently in use 100
 signal busy_rel_wire : std_logic; -- busy signal active only when the FU is shared and currently in use 101
 signal halt_hart : std_logic_vector(accl_range); -- halts the thread when the requested functional unit is in use 102
 signal fu_req : array_2D(accl_range)(4 downto 0); -- Each threa has request bits equal to the total number of FUs 103
 signal fu_gnt : array_2D(accl_range)(4 downto 0); -- Each threa has grant bits equal to the total number of FUs 104
 signal fu_gnt_wire : array_2D(accl_range)(4 downto 0); -- Each threa has grant bits equal to the total number of FUs 105
 signal fu_gnt_en : array_2D(accl_range)(4 downto 0); -- Enable the giving of the grant to the thread pointed at by the issue buffer 106
 signal fu_rd_ptr : array_2D(4 downto 0)(TPS_BUF_CEIL-1 downto 0); -- five rd pointers each has a number of bits equal to 107
ceil(log2(THREAD_POOL_SIZE-1)) 108
 signal fu_wr_ptr : array_2D(4 downto 0)(TPS_BUF_CEIL-1 downto 0); -- five rd pointers each has a number of bits equal to 109
ceil(log2(THREAD_POOL_SIZE-1)) 110
 -- five buffers for each FU times the "TPS-1" and not "TPS" since there is always one thread active, and not needing a buffer. Each buffer hold the 111
thread_ID "TPS_CEIL" 112
 signal fu_issue_buffer : array_3D(4 downto 0)(THREAD_POOL_SIZE-2 downto 0)(TPS_CEIL-1 downto 0); 113
 114
 -- Functional Unit Ports --- 115
 --signal dsp_in_sign_bits : array_2d(accl_range)(4*SIMD-1 downto 0); -- vivado unsynthesizable, but more efficient alternative 116
 signal dsp_in_shifter_operand : array_2d(fu_range)(SIMD_Width -1 downto 0); 117
 signal dsp_in_shifter_operand_lat : array_2d(fu_range)(SIMD_Width -1 downto 0); -- 15 bits because i only want to latch the signed bits 118
 signal dsp_in_shifter_operand_lat_wire : array_2d(fu_range)(SIMD_Width -1 downto 0); 119
 signal dsp_int_shifter_operand : array_2d(fu_range)(SIMD_Width -1 downto 0); 120
 signal dsp_out_shifter_results : array_2d(fu_range)(SIMD_Width -1 downto 0); 121

127

 signal dsp_in_relu_operands : array_2d(fu_range)(SIMD_Width-1 downto 0); 122
 signal dsp_in_mul_operands : array_3d(fu_range)(1 downto 0)(SIMD_Width-1 downto 0); 123
 signal dsp_out_mul_results : array_2d(fu_range)(SIMD_Width-1 downto 0); 124
 signal dsp_out_relu_results : array_2d(fu_range)(SIMD_Width-1 downto 0); 125
 signal dsp_in_accum_operands : array_2d(fu_range)(SIMD_Width-1 downto 0); 126
 signal dsp_out_accum_results : array_2d(fu_range)(31 downto 0); 127
 signal dsp_in_adder_operands : array_3d(fu_range)(1 downto 0)(SIMD_Width-1 downto 0); 128
 signal dsp_in_adder_operands_lat : array_3d(fu_range)(1 downto 0)(SIMD_Width/2 -1 downto 0); -- data_Width devided by the number of 129
pipeline stages 130
 signal dsp_out_adder_results : array_2d(fu_range)(SIMD_Width-1 downto 0); 131
 132
 signal carry_8_wire : array_2d(fu_range)(SIMD-1 downto 0); -- carry-out bit of the "dsp_add_8_0" signal 133
 signal carry_16_wire : array_2d(fu_range)(SIMD-1 downto 0); -- carry-out bit of the "dsp_add_16_8" signal 134
 signal carry_16 : array_2d(fu_range)(SIMD-1 downto 0); -- carry-out bit of the "dsp_add_16_8" signal 135
 signal carry_24_wire : array_2d(fu_range)(SIMD-1 downto 0); -- carry-out bit of the "dsp_add_24_16" signal 136
 signal dsp_add_8_0 : array_3d(fu_range)(SIMD-1 downto 0)(8 downto 0); -- 9-bits, contains the results of 8-bit adders 137
 signal dsp_add_16_8 : array_3d(fu_range)(SIMD-1 downto 0)(8 downto 0); -- 9-bits contains the results of 8-bit adders 138
 signal dsp_add_8_0_wire : array_3d(fu_range)(SIMD-1 downto 0)(8 downto 0); -- 9-bits, contains the results of 8-bit adders 139
 signal dsp_add_16_8_wire : array_3d(fu_range)(SIMD-1 downto 0)(8 downto 0); -- 9-bits contains the results of 8-bit adders 140
 signal dsp_add_24_16_wire : array_3d(fu_range)(SIMD-1 downto 0)(8 downto 0); -- 9-bits contains the results of 8-bit adders 141
 signal dsp_add_32_24_wire : array_3d(fu_range)(SIMD-1 downto 0)(8 downto 0); -- 9-bits, this should be 8 if we choose to discard the 142
overflow of the addition of the upper byte 143
 signal mul_tmp_a : array_3d(fu_range)(SIMD-1 downto 0)(Data_Width-1 downto 0); 144
 signal mul_tmp_b : array_3d(fu_range)(SIMD-1 downto 0)(Data_Width-1 downto 0); 145
 signal mul_tmp_c : array_3d(fu_range)(SIMD-1 downto 0)(Data_Width-1 downto 0); 146
 signal mul_tmp_d : array_3d(fu_range)(SIMD-1 downto 0)(Data_Width-1 downto 0); 147
 signal dsp_mul_a : array_2d(fu_range)(SIMD_Width -1 downto 0); -- Contains the results of the 16-bit multipliers 148
 signal dsp_mul_b : array_2d(fu_range)(SIMD_Width -1 downto 0); -- Contains the results of the 16-bit multipliers 149
 signal dsp_mul_c : array_2d(fu_range)(SIMD_Width -1 downto 0); -- Contains the results of the 16-bit multipliers 150
 signal dsp_mul_d : array_2d(fu_range)(SIMD_Width -1 downto 0); -- Contains the results of the 16-bit multipliers 151
 152
 signal carry_pass : array_2d(accl_range)(2 downto 0); -- carry enable signal, depending on it's configuration, we can do KADDV8, 153
KADDV16, KADDV32 154
 signal FUNCT_SELECT_MASK : array_2d(accl_range)(31 downto 0); -- when the mask is set to "FFFFFFFF" we enable KDOTP32 155
execution using the 16-bit muls 156
 signal twos_complement : array_2d(accl_range)(31 downto 0); 157
 signal dsp_shift_enabler : array_2d(accl_range)(15 downto 0); 158
 signal dsp_in_shift_amount : array_2d(accl_range)(4 downto 0); 159
 160
 signal dsp_sc_data_write_wire_int : array_2d(accl_range)(SIMD_Width-1 downto 0); 161
 signal dsp_sc_data_write_int : array_2d(accl_range)(SIMD_Width-1 downto 0); 162
 163
 signal MVTYPE_DSP : array_2d(accl_range)(1 downto 0); 164
 signal vec_write_rd_DSP : std_logic_vector(accl_range); -- Indicates whether the result being written is a vector or a scalar 165
 signal vec_read_rs1_DSP : std_logic_vector(accl_range); -- Indicates whether the operand being read is a vector or a scalar 166
 signal vec_read_rs2_DSP : std_logic_vector(accl_range); -- Indicates whether the operand being read is a vector or a scalar 167
 signal dotp : std_logic_vector(accl_range); -- indicator used in the pipeline handler to switch functional units 168
 signal dotpps : std_logic_vector(accl_range); -- indicator used in the pipeline handler to switch functional units 169
 signal wb_ready : std_logic_vector(accl_range); 170
 signal halt_dsp : std_logic_vector(accl_range); 171
 signal halt_dsp_lat : std_logic_vector(accl_range); 172
 signal recover_state : std_logic_vector(accl_range); 173
 signal recover_state_wires : std_logic_vector(accl_range); 174
 signal dsp_data_gnt_i_lat : std_logic_vector(accl_range); 175
 signal shifter_stage_1_en : std_logic_vector(accl_range); 176
 signal shifter_stage_2_en : std_logic_vector(accl_range); 177
 signal shifter_stage_3_en : std_logic_vector(accl_range); 178
 signal adder_stage_1_en : std_logic_vector(accl_range); 179
 signal adder_stage_2_en : std_logic_vector(accl_range); 180
 signal adder_stage_3_en : std_logic_vector(accl_range); 181
 signal mul_stage_1_en : std_logic_vector(accl_range); 182
 signal mul_stage_2_en : std_logic_vector(accl_range); 183
 signal mul_stage_3_en : std_logic_vector(accl_range); 184
 signal relu_stage_1_en : std_logic_vector(accl_range); 185
 signal relu_stage_2_en : std_logic_vector(accl_range); 186
 signal accum_stage_1_en : std_logic_vector(accl_range); 187
 signal accum_stage_2_en : std_logic_vector(accl_range); 188
 signal accum_stage_3_en : std_logic_vector(accl_range); 189
 signal dsp_except_data_wire : array_2d(accl_range)(31 downto 0); 190
 191
 signal decoded_instruction_DSP_lat : array_2d(accl_range)(DSP_UNIT_INSTR_SET_SIZE -1 downto 0); 192
 signal overflow_rs1_sc : array_2d(accl_range)(Addr_Width downto 0); 193
 signal overflow_rs2_sc : array_2d(accl_range)(Addr_Width downto 0); 194
 signal overflow_rd_sc : array_2d(accl_range)(Addr_Width downto 0); 195
 signal dsp_rs1_to_sc : array_2d(accl_range)(SPM_ADDR_WID-1 downto 0); 196
 signal dsp_rs2_to_sc : array_2d(accl_range)(SPM_ADDR_WID-1 downto 0); 197
 signal dsp_rd_to_sc : array_2d(accl_range)(SPM_ADDR_WID-1 downto 0); 198
 signal dsp_sc_data_read_mask : array_2d(accl_range)(SIMD_Width-1 downto 0); 199

128

 signal RS1_Data_IE_lat : array_2d(accl_range)(31 downto 0); 200
 signal RS2_Data_IE_lat : array_2d(accl_range)(31 downto 0); 201
 signal RD_Data_IE_lat : array_2d(accl_range)(Addr_Width -1 downto 0); 202
 signal MVSIZE_READ : array_2d(accl_range)(Addr_Width downto 0); -- Bytes remaining to read 203
 signal MVSIZE_READ_MASK : array_2d(accl_range)(Addr_Width downto 0); -- Bytes remaining to read 204
 signal MVSIZE_WRITE : array_2d(accl_range)(Addr_Width downto 0); -- Bytes remaining to write 205
 signal MPSCLFAC_DSP : array_2d(accl_range)(4 downto 0); 206
 signal busy_dsp_internal : std_logic_vector(accl_range); 207
 signal busy_DSP_internal_lat : std_logic_vector(accl_range); 208
 signal rf_rs2 : std_logic_vector(accl_range); 209
 signal SIMD_RD_BYTES_wire : array_2d_int(accl_range); 210
 signal SIMD_RD_BYTES : array_2d_int(accl_range); 211
 212
 component ACCUMULATOR 213
 port(214
 clk_i : in std_logic; 215
 rst_ni : in std_logic; 216
 MVTYPE_DSP : in array_2d(accl_range)(1 downto 0); 217
 accum_stage_1_en : in std_logic_vector(accl_range); 218
 accum_stage_2_en : in std_logic_vector(accl_range); 219
 recover_state_wires : in std_logic_vector(accl_range); 220
 halt_dsp_lat : in std_logic_vector(accl_range); 221
 state_DSP : in array_2d(accl_range)(1 downto 0); 222
 decoded_instruction_DSP_lat : in array_2d(accl_range)(DSP_UNIT_INSTR_SET_SIZE -1 downto 0); 223
 dsp_in_accum_operands : in array_2d(fu_range)(SIMD_Width-1 downto 0); 224
 dsp_out_accum_results : out array_2d(fu_range)(31 downto 0) 225
); 226
 end component; 227
 228
-- 229
-------------------------------- DSP BEGIN --- 230
begin 231
 232
 233
 busy_dsp <= busy_dsp_internal; 234
 235
 DSP_replicated : for h in accl_range generate 236
 237
 238
 ------------ Sequential Stage of DSP Unit --- 239
 DSP_Exec_Unit : process(clk_i, rst_ni) -- single cycle unit, fully synchronous 240
 241
 begin 242
 if rst_ni = '0' then 243
 rf_rs2(h) <= '0'; 244
 dotpps(h) <= '0'; 245
 dotp(h) <= '0'; 246
 recover_state(h) <= '0'; 247
 elsif rising_edge(clk_i) then 248
 if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then 249
 250
 case state_DSP(h) is 251
 252
 when dsp_init => 253
 254
 --- 255
 -- ##### ### ## ##### ######## ###### ###### ####### -- 256
 -- # ## # ## # ## ## # ## ## # -- 257
 -- # ## # ## # ## ## # ##### ####### -- 258
 -- # ## # ## # ## ## # ## ## -- 259
 -- ##### ## ### ##### ## ###### ###### ## -- 260
 -- 261
 FUNCT_SELECT_MASK(h) <= (others => '0'); 262
 twos_complement(h) <= (others => '0'); 263
 rf_rs2(h) <= '0'; 264
 dotpps(h) <= '0'; 265
 dotp(h) <= '0'; 266
 -- Set signals to enable correct virtual parallelism operation 267
 if (decoded_instruction_DSP(KADDV_bit_position) = '1' or 268
 decoded_instruction_DSP(KSVADDSC_bit_position) = '1') and 269
 MVTYPE(h)(3 downto 2) = "10" then 270
 carry_pass(h) <= "111"; -- pass all carry_outs 271
 elsif decoded_instruction_DSP(KSVADDRF_bit_position) = '1' and 272
 MVTYPE(h)(3 downto 2) = "10" then 273
 carry_pass(h) <= "111"; -- pass all carry_outs 274
 rf_rs2(h) <= '1'; 275
 elsif (decoded_instruction_DSP(KADDV_bit_position) = '1' or 276
 decoded_instruction_DSP(KSVADDSC_bit_position) = '1') and 277

129

 MVTYPE(h)(3 downto 2) = "01" then 278
 carry_pass(h) <= "101"; -- pass carrries 9, and 25 279
 elsif decoded_instruction_DSP(KSVADDRF_bit_position) = '1' and 280
 MVTYPE(h)(3 downto 2) = "01" then 281
 carry_pass(h) <= "101"; -- pass carrries 9, and 25 282
 rf_rs2(h) <= '1'; 283
 elsif (decoded_instruction_DSP(KADDV_bit_position) = '1' or 284
 decoded_instruction_DSP(KSVADDSC_bit_position) = '1') and 285
 MVTYPE(h)(3 downto 2) = "00" then 286
 carry_pass(h) <= "000"; -- don't pass carry_outs and keep addition 8-bit 287
 elsif decoded_instruction_DSP(KSVADDRF_bit_position) = '1' and 288
 MVTYPE(h)(3 downto 2) = "00" then 289
 carry_pass(h) <= "000"; -- don't pass carry_outs and keep addition 8-bit 290
 rf_rs2(h) <= '1'; 291
 elsif decoded_instruction_DSP(KSUBV_bit_position) = '1' and 292
 MVTYPE(h)(3 downto 2) = "10" then 293
 carry_pass(h) <= "111"; -- pass all carry_outs 294
 twos_complement(h) <= "00010001000100010001000100010001"; 295
 elsif decoded_instruction_DSP(KSUBV_bit_position) = '1' and 296
 MVTYPE(h)(3 downto 2) = "01" then 297
 carry_pass(h) <= "101"; -- pass carrries 9, and 25 298
 twos_complement(h) <= "01010101010101010101010101010101"; 299
 elsif decoded_instruction_DSP(KSUBV_bit_position) = '1' and 300
 MVTYPE(h)(3 downto 2) = "00" then 301
 carry_pass(h) <= "000"; -- don't pass carry_outs and keep addition 8-bit 302
 twos_complement(h) <= "11111111111111111111111111111111"; 303
 elsif decoded_instruction_DSP(KDOTP_bit_position) = '1' and 304
 MVTYPE(h)(3 downto 2) = "10" then 305
 -- KDOTP32 does not use the adders of KADDV instructions but rather adds the mul_acc results using it's own adders 306
 FUNCT_SELECT_MASK(h) <= (others => '1'); -- This enables 32-bit multiplication with the 16-bit multipliers 307
 dotp(h) <= '1'; 308
 elsif decoded_instruction_DSP(KDOTP_bit_position) = '1' and 309
 MVTYPE(h)(3 downto 2) = "01" then 310
 dotp(h) <= '1'; 311
 elsif decoded_instruction_DSP(KDOTP_bit_position) = '1' and 312
 MVTYPE(h)(3 downto 2) = "00" then 313
 dotp(h) <= '1'; 314
 elsif decoded_instruction_DSP(KDOTPPS_bit_position) = '1' and 315
 MVTYPE(h)(3 downto 2) = "10" then 316
 FUNCT_SELECT_MASK(h) <= (others => '1'); -- This enables 32-bit multiplication with the 16-bit multipliers 317
 dotpps(h) <= '1'; 318
 elsif decoded_instruction_DSP(KDOTPPS_bit_position) = '1' and 319
 MVTYPE(h)(3 downto 2) = "01" then 320
 dotpps(h) <= '1'; 321
 elsif decoded_instruction_DSP(KDOTPPS_bit_position) = '1' and 322
 MVTYPE(h)(3 downto 2) = "00" then 323
 dotpps(h) <= '1'; 324
 elsif decoded_instruction_DSP(KSVMULRF_bit_position) = '1' and 325
 MVTYPE(h)(3 downto 2) = "10" then 326
 FUNCT_SELECT_MASK(h) <= (others => '1'); 327
 rf_rs2(h) <= '1'; 328
 elsif decoded_instruction_DSP(KSVMULRF_bit_position) = '1' and 329
 MVTYPE(h)(3 downto 2) = "01" then 330
 rf_rs2(h) <= '1'; 331
 elsif decoded_instruction_DSP(KSVMULRF_bit_position) = '1' and 332
 MVTYPE(h)(3 downto 2) = "00" then 333
 rf_rs2(h) <= '1'; 334
 elsif (decoded_instruction_DSP(KVMUL_bit_position) = '1' or 335
 decoded_instruction_DSP(KSVMULSC_bit_position) = '1') and 336
 MVTYPE(h)(3 downto 2) = "10" then 337
 FUNCT_SELECT_MASK(h) <= (others => '1'); 338
 end if; 339
 340
 -- We backup data from decode stage since they will get updated 341
 342
 MVSIZE_READ_MASK(h) <= MVSIZE(harc_EXEC); 343
 MVSIZE_WRITE(h) <= MVSIZE(harc_EXEC); 344
 MPSCLFAC_DSP(h) <= MPSCLFAC(harc_EXEC); 345
 MVTYPE_DSP(h) <= MVTYPE(harc_EXEC)(3 downto 2); 346
 decoded_instruction_DSP_lat(h) <= decoded_instruction_DSP; 347
 vec_write_rd_DSP(h) <= vec_write_rd_ID; 348
 vec_read_rs1_DSP(h) <= vec_read_rs1_ID; 349
 vec_read_rs2_DSP(h) <= vec_read_rs2_ID; 350
 dsp_rs1_to_sc(h) <= rs1_to_sc; 351
 dsp_rs2_to_sc(h) <= rs2_to_sc; 352
 dsp_rd_to_sc(h) <= rd_to_sc; 353
 RD_Data_IE_lat(h) <= RD_Data_IE; 354
 -- Increment the read addresses 355

130

 if dsp_data_gnt_i(h) = '1' then 356
 if vec_read_rs1_ID = '1' then 357
 RS1_Data_IE_lat(h) <= std_logic_vector(unsigned(RS1_Data_IE) + SIMD_RD_BYTES_wire(h)); -- source 1 address increment 358
 else 359
 RS1_Data_IE_lat(h) <= RS1_Data_IE; 360
 end if; 361
 if vec_read_rs2_ID = '1' then 362
 RS2_Data_IE_lat(h) <= std_logic_vector(unsigned(RS2_Data_IE) + SIMD_RD_BYTES_wire(h)); -- source 2 address increment 363
 else 364
 RS2_Data_IE_lat(h) <= RS2_Data_IE; 365
 end if; 366
 -- Decrement the vector elements that have already been operated on 367
 if unsigned(MVSIZE(harc_EXEC)) >= SIMD_RD_BYTES_wire(h) then 368
 MVSIZE_READ(h) <= std_logic_vector(unsigned(MVSIZE(harc_EXEC)) - SIMD_RD_BYTES_wire(h)); -- decrement by SIMD_BYTE 369
Execution Capability 370
 else 371
 MVSIZE_READ(h) <= (others => '0'); -- decrement the remaining bytes 372
 end if; 373
 else 374
 RS1_Data_IE_lat(h) <= RS1_Data_IE; 375
 RS2_Data_IE_lat(h) <= RS2_Data_IE; 376
 MVSIZE_READ(h) <= MVSIZE(harc_EXEC); 377
 end if; 378
 --- 379
 380
 when dsp_exec => 381
 recover_state(h) <= recover_state_wires(h); 382
 if halt_dsp(h) = '1' and halt_dsp_lat(h) = '0' then 383
 dsp_sc_data_write_int(h) <= dsp_sc_data_write_wire_int(h); 384
 end if; 385
 386
 if halt_dsp(h) = '0' then 387
 -- Increment the write address when we have a result as a vector 388
 if vec_write_rd_DSP(h) = '1' and wb_ready(h) = '1' then 389
 RD_Data_IE_lat(h) <= std_logic_vector(unsigned(RD_Data_IE_lat(h)) + SIMD_RD_BYTES(h)); -- destination address increment 390
 end if; 391
 if wb_ready(h) = '1' then 392
 if to_integer(unsigned(MVSIZE_WRITE(h))) >= SIMD_RD_BYTES(h) then 393
 MVSIZE_WRITE(h) <= std_logic_vector(unsigned(MVSIZE_WRITE(h)) - SIMD_RD_BYTES(h)); -- decrement by SIMD_BYTE 394
Execution Capability 395
 else 396
 MVSIZE_WRITE(h) <= (others => '0'); -- decrement the remaining bytes 397
 end if; 398
 end if; 399
 -- Increment the read addresses 400
 if to_integer(unsigned(MVSIZE_READ(h))) >= SIMD_RD_BYTES(h) and dsp_data_gnt_i(h) = '1' then -- Increment the addresses untill all 401
the vector elements are operated fetched 402
 if vec_read_rs1_DSP(h) = '1' then 403
 RS1_Data_IE_lat(h) <= std_logic_vector(unsigned(RS1_Data_IE_lat(h)) + SIMD_RD_BYTES(h)); -- source 1 address increment 404
 end if; 405
 if vec_read_rs2_DSP(h) = '1' then 406
 RS2_Data_IE_lat(h) <= std_logic_vector(unsigned(RS2_Data_IE_lat(h)) + SIMD_RD_BYTES(h)); -- source 2 address increment 407
 end if; 408
 end if; 409
 -- Decrement the vector elements that have already been operated on 410
 if dsp_data_gnt_i(h) = '1' then 411
 if to_integer(unsigned(MVSIZE_READ(h))) >= SIMD_RD_BYTES(h) then 412
 MVSIZE_READ(h) <= std_logic_vector(unsigned(MVSIZE_READ(h)) - SIMD_RD_BYTES(h)); -- decrement by SIMD_BYTE 413
Execution Capability 414
 else 415
 MVSIZE_READ(h) <= (others => '0'); -- decrement the remaining bytes 416
 end if; 417
 end if; 418
 dsp_sc_data_read_mask(h) <= (others => '0'); 419
 if dsp_data_gnt_i_lat(h) = '1' then 420
 if to_integer(unsigned(MVSIZE_READ_MASK(h))) >= SIMD_RD_BYTES(h) then 421
 dsp_sc_data_read_mask(h) <= (others => '1'); 422
 MVSIZE_READ_MASK(h) <= std_logic_vector(unsigned(MVSIZE_READ_MASK(h)) - SIMD_RD_BYTES(h)); -- decrement by 423
SIMD_BYTE Execution Capability 424
 else 425
 MVSIZE_READ_MASK(h) <= (others => '0'); 426
 dsp_sc_data_read_mask(h)(to_integer(unsigned(MVSIZE_READ_MASK(h)))*8 - 1 downto 0) <= (others => '1'); 427
 end if; 428
 end if; 429
 end if; 430
 431
 when others => 432
 null; 433

131

 end case; 434
 end if; 435
 end if; 436
 end process; 437
 438
 ------------ Combinational Stage of DSP Unit -- 439
 DSP_Excpt_Cntrl_Unit_comb : process(all) 440
 441
 variable busy_DSP_internal_wires : std_logic; 442
 variable dsp_except_condition_wires : replicated_bit; 443
 variable dsp_taken_branch_wires : replicated_bit; 444
 445
 begin 446
 447
 busy_DSP_internal_wires := '0'; 448
 dsp_except_condition_wires(h) := '0'; 449
 dsp_taken_branch_wires(h) := '0'; 450
 wb_ready(h) <= '0'; 451
 halt_dsp(h) <= '0'; 452
 nextstate_DSP(h) <= dsp_init; 453
 recover_state_wires(h) <= recover_state(h); 454
 dsp_except_data_wire(h) <= dsp_except_data(h); 455
 overflow_rs1_sc(h) <= (others => '0'); 456
 overflow_rs2_sc(h) <= (others => '0'); 457
 overflow_rd_sc(h) <= (others => '0'); 458
 dsp_we_word(h) <= (others => '0'); 459
 dsp_sci_req(h) <= (others => '0'); 460
 dsp_sci_we(h) <= (others => '0'); 461
 dsp_sc_write_addr(h) <= (others => '0'); 462
 dsp_sc_read_addr(h) <= (others => (others => '0')); 463
 dsp_to_sc(h) <= (others => (others => '0')); 464
 465
 if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then 466
 case state_DSP(h) is 467
 468
 when dsp_init => 469
 470
 overflow_rs1_sc(h) <= std_logic_vector('0' & unsigned(RS1_Data_IE(Addr_Width -1 downto 0)) + unsigned(MVSIZE(harc_EXEC)) -1); 471
 overflow_rs2_sc(h) <= std_logic_vector('0' & unsigned(RS2_Data_IE(Addr_Width -1 downto 0)) + unsigned(MVSIZE(harc_EXEC)) -1); 472
 overflow_rd_sc(h) <= std_logic_vector('0' & unsigned(RD_Data_IE(Addr_Width -1 downto 0)) + unsigned(MVSIZE(harc_EXEC)) -1); 473
 if MVSIZE(harc_EXEC) = (0 to Addr_Width => '0') then 474
 null; 475
 elsif MVSIZE(harc_EXEC)(1 downto 0) /= "00" and MVTYPE(harc_EXEC)(3 downto 2) = "10" then -- Set exception if the number of bytes 476
are not divisible by four 477
 dsp_except_condition_wires(h) := '1'; 478
 dsp_taken_branch_wires(h) := '1'; 479
 dsp_except_data_wire(h) <= ILLEGAL_VECTOR_SIZE_EXCEPT_CODE; 480
 elsif MVSIZE(harc_EXEC)(0) /= '0' and MVTYPE(harc_EXEC)(3 downto 2) = "01" then -- Set exception if the number of bytes are not 481
divisible by two 482
 dsp_except_condition_wires(h) := '1'; 483
 dsp_taken_branch_wires(h) := '1'; 484
 dsp_except_data_wire(h) <= ILLEGAL_VECTOR_SIZE_EXCEPT_CODE; 485
 elsif (rs1_to_sc = "100" and vec_read_rs1_ID = '1') or 486
 (rs2_to_sc = "100" and vec_read_rs2_ID = '1') or 487
 rd_to_sc = "100" then -- Set exception for non scratchpad access 488
 dsp_except_condition_wires(h) := '1'; 489
 dsp_taken_branch_wires(h) := '1'; 490
 dsp_except_data_wire(h) <= ILLEGAL_ADDRESS_EXCEPT_CODE; 491
 elsif rs1_to_sc = rs2_to_sc and vec_read_rs1_ID = '1' and vec_read_rs2_ID = '1' then -- Set exception for same read access 492
 dsp_except_condition_wires(h) := '1'; 493
 dsp_taken_branch_wires(h) := '1'; 494
 dsp_except_data_wire(h) <= READ_SAME_SCARTCHPAD_EXCEPT_CODE; 495
 elsif (overflow_rs1_sc(h)(Addr_Width) = '1' and vec_read_rs1_ID = '1') or (overflow_rs2_sc(h)(Addr_Width) = '1' and vec_read_rs2_ID = '1') 496
then -- Set exception if reading overflows the scratchpad's address 497
 dsp_except_condition_wires(h) := '1'; 498
 dsp_taken_branch_wires(h) := '1'; 499
 dsp_except_data_wire(h) <= SCRATCHPAD_OVERFLOW_EXCEPT_CODE; 500
 elsif overflow_rd_sc(h)(Addr_Width) = '1' and vec_write_rd_ID = '1' then -- Set exception if reading overflows the scratchpad's address, 501
scalar writes are excluded 502
 dsp_except_condition_wires(h) := '1'; 503
 dsp_taken_branch_wires(h) := '1'; 504
 dsp_except_data_wire(h) <= SCRATCHPAD_OVERFLOW_EXCEPT_CODE; 505
 else 506
 if halt_hart(h) = '0' then 507
 nextstate_DSP(h) <= dsp_exec; 508
 else 509
 nextstate_DSP(h) <= dsp_halt_hart; 510
 end if; 511

132

 busy_DSP_internal_wires := '1'; 512
 end if; 513
 514
 if rs1_to_sc /= "100" and spm_rs1 = '1' and halt_hart(h) = '0' then 515
 dsp_sci_req(h)(to_integer(unsigned(rs1_to_sc))) <= '1'; 516
 dsp_to_sc(h)(to_integer(unsigned(rs1_to_sc)))(0) <= '1'; 517
 dsp_sc_read_addr(h)(0) <= RS1_Data_IE(Addr_Width-1 downto 0); 518
 end if; 519
 if rs2_to_sc /= "100" and spm_rs2 = '1' and rs1_to_Sc /= rs2_to_sc and halt_hart(h) = '0' then -- Do not send a read request if the second 520
operand accesses the same spm as the first, 521
 dsp_sci_req(h)(to_integer(unsigned(rs2_to_sc))) <= '1'; 522
 dsp_to_sc(h)(to_integer(unsigned(rs2_to_sc)))(1) <= '1'; 523
 dsp_sc_read_addr(h)(1) <= RS2_Data_IE(Addr_Width-1 downto 0); 524
 end if; 525
 526
 when dsp_halt_hart => 527
 528
 if halt_hart(h) = '0' then 529
 nextstate_DSP(h) <= dsp_exec; 530
 else 531
 nextstate_DSP(h) <= dsp_halt_hart; 532
 end if; 533
 busy_DSP_internal_wires := '1'; 534
 535
 when dsp_exec => 536
 537
 if (dsp_sci_wr_gnt(h) = '0' and wb_ready(h) = '1') then 538
 halt_dsp(h) <= '1'; 539
 recover_state_wires(h) <= '1'; 540
 elsif unsigned(MVSIZE_WRITE(h)) <= SIMD_RD_BYTES(h) then 541
 recover_state_wires(h) <= '0'; 542
 end if; 543
 544
 if vec_write_rd_DSP(h) = '1' and dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) = '1' then 545
 if unsigned(MVSIZE_WRITE(h)) >= (SIMD)*4+1 then -- 546
 dsp_we_word(h) <= (others => '1'); 547
 elsif unsigned(MVSIZE_WRITE(h)) >= 1 then 548
 for i in 0 to SIMD-1 loop 549
 if i <= to_integer(unsigned(MVSIZE_WRITE(h))-1)/4 then -- Four because of the number of bytes per word 550
 if to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))/4 + i) < SIMD then 551
 dsp_we_word(h)(to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))/4 + i)) <= '1'; 552
 elsif to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))/4 + i) >= SIMD then 553
 dsp_we_word(h)(to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))/4 + i - SIMD)) <= '1'; 554
 end if; 555
 end if; 556
 end loop; 557
 end if; 558
 elsif vec_write_rd_DSP(h) = '0' and dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) = '1' then 559
 dsp_we_word(h)(to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))/4)) <= '1'; 560
 end if; 561
 562
 if decoded_instruction_DSP_lat(h)(KBCAST_bit_position) = '1' then 563
 -- KBCAST signals are handeled here 564
 if MVSIZE_WRITE(h) > (0 to Addr_Width => '0') then 565
 nextstate_DSP(h) <= dsp_exec; 566
 busy_DSP_internal_wires := '1'; 567
 end if; 568
 wb_ready(h) <= '1'; 569
 dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) <= '1'; 570
 dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 571
 end if; 572
 573
 if decoded_instruction_DSP_lat(h)(KVCP_bit_position) = '1' then 574
 -- KVCP signals are handeled here 575
 if adder_stage_3_en(h) = '1' then 576
 wb_ready(h) <= '1'; 577
 elsif recover_state(h) = '1' then 578
 wb_ready(h) <= '1'; 579
 end if; 580
 if MVSIZE_READ(h) > (0 to Addr_Width => '0') then 581
 dsp_to_sc(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))(0) <= '1'; 582
 dsp_sci_req(h)(to_integer(unsigned(dsp_rs1_to_sc(h)))) <= '1'; 583
 dsp_sc_read_addr(h)(0) <= RS1_Data_IE_lat(h)(Addr_Width - 1 downto 0); 584
 end if; 585
 if MVSIZE_WRITE(h) > (0 to Addr_Width => '0') then 586
 nextstate_DSP(h) <= dsp_exec; 587
 busy_DSP_internal_wires := '1'; 588
 end if; 589

133

 if wb_ready(h) = '1' then 590
 dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) <= '1'; 591
 dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 592
 end if; 593
 end if; 594
 595
 if decoded_instruction_DSP_lat(h)(KRELU_bit_position) = '1' then 596
 -- KRELU signals are handeled here 597
 if relu_stage_2_en(h) = '1' then 598
 wb_ready(h) <= '1'; 599
 elsif recover_state(h) = '1' then 600
 wb_ready(h) <= '1'; 601
 end if; 602
 if MVSIZE_READ(h) > (0 to Addr_Width => '0') then 603
 dsp_to_sc(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))(0) <= '1'; 604
 dsp_sci_req(h)(to_integer(unsigned(dsp_rs1_to_sc(h)))) <= '1'; 605
 dsp_sc_read_addr(h)(0) <= RS1_Data_IE_lat(h)(Addr_Width - 1 downto 0); 606
 end if; 607
 if MVSIZE_WRITE(h) > (0 to Addr_Width => '0') then 608
 nextstate_DSP(h) <= dsp_exec; 609
 busy_DSP_internal_wires := '1'; 610
 end if; 611
 if wb_ready(h) = '1' then 612
 dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) <= '1'; 613
 dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 614
 end if; 615
 end if; 616
 617
 if decoded_instruction_DSP_lat(h)(KSRAV_bit_position) = '1' or 618
 decoded_instruction_DSP_lat(h)(KSRLV_bit_position) = '1' then 619
 -- KSRAV signals are handeled here 620
 if shifter_stage_3_en(h) = '1' then 621
 wb_ready(h) <= '1'; 622
 elsif recover_state(h) = '1' then 623
 wb_ready(h) <= '1'; 624
 end if; 625
 if MVSIZE_READ(h) > (0 to Addr_Width => '0') then 626
 dsp_to_sc(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))(0) <= '1'; 627
 dsp_sci_req(h)(to_integer(unsigned(dsp_rs1_to_sc(h)))) <= '1'; 628
 dsp_sc_read_addr(h)(0) <= RS1_Data_IE_lat(h)(Addr_Width - 1 downto 0); 629
 end if; 630
 if MVSIZE_WRITE(h) > (0 to Addr_Width => '0') then 631
 nextstate_DSP(h) <= dsp_exec; 632
 busy_DSP_internal_wires := '1'; 633
 end if; 634
 if wb_ready(h) = '1' then 635
 dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) <= '1'; 636
 dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 637
 end if; 638
 end if; 639
 640
 if decoded_instruction_DSP_lat(h)(KADDV_bit_position) = '1' or 641
 decoded_instruction_DSP_lat(h)(KSUBV_bit_position) = '1' then 642
 -- KADDV and KSUBV signals are handeled here 643
 if adder_stage_3_en(h) = '1' then 644
 wb_ready(h) <= '1'; 645
 elsif recover_state(h) = '1' then 646
 wb_ready(h) <= '1'; 647
 end if; 648
 if MVSIZE_READ(h) > (0 to Addr_Width => '0') then 649
 dsp_to_sc(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))(0) <= '1'; 650
 dsp_to_sc(h)(to_integer(unsigned(dsp_rs2_to_sc(h))))(1) <= '1'; 651
 dsp_sci_req(h)(to_integer(unsigned(dsp_rs1_to_sc(h)))) <= '1'; 652
 dsp_sci_req(h)(to_integer(unsigned(dsp_rs2_to_sc(h)))) <= '1'; 653
 dsp_sc_read_addr(h)(0) <= RS1_Data_IE_lat(h)(Addr_Width - 1 downto 0); 654
 dsp_sc_read_addr(h)(1) <= RS2_Data_IE_lat(h)(Addr_Width - 1 downto 0); 655
 end if; 656
 if MVSIZE_WRITE(h) > (0 to Addr_Width => '0') then 657
 nextstate_DSP(h) <= dsp_exec; 658
 busy_DSP_internal_wires := '1'; 659
 end if; 660
 if wb_ready(h) = '1' then 661
 dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) <= '1'; 662
 dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 663
 end if; 664
 end if; 665
 666
 if decoded_instruction_DSP_lat(h)(KVRED_bit_position) = '1' or 667

134

 decoded_instruction_DSP_lat(h)(KDOTP_bit_position) = '1' or 668
 decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1' then 669
 -- KDOTP signals are handeled here 670
 if accum_stage_3_en(h) = '1' then 671
 wb_ready(h) <= '1'; 672
 elsif recover_state(h) = '1' then 673
 wb_ready(h) <= '1'; 674
 end if; 675
 if MVSIZE_READ(h) > (0 to Addr_Width => '0') then 676
 if vec_read_rs2_DSP(h) = '1' then 677
 dsp_sci_req(h)(to_integer(unsigned(dsp_rs2_to_sc(h)))) <= '1'; 678
 dsp_to_sc(h)(to_integer(unsigned(dsp_rs2_to_sc(h))))(1) <= '1'; 679
 dsp_sc_read_addr(h)(1) <= RS2_Data_IE_lat(h)(Addr_Width - 1 downto 0); 680
 end if; 681
 dsp_sci_req(h)(to_integer(unsigned(dsp_rs1_to_sc(h)))) <= '1'; 682
 dsp_to_sc(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))(0) <= '1'; 683
 dsp_sc_read_addr(h)(0) <= RS1_Data_IE_lat(h)(Addr_Width - 1 downto 0); 684
 nextstate_DSP(h) <= dsp_exec; 685
 busy_DSP_internal_wires := '1'; 686
 elsif MVSIZE_WRITE(h) = (0 to Addr_Width => '0') then 687
 nextstate_DSP(h) <= dsp_init; 688
 else 689
 nextstate_DSP(h) <= dsp_exec; 690
 busy_DSP_internal_wires := '1'; 691
 end if; 692
 if wb_ready(h) = '1' then 693
 dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) <= '1'; 694
 dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 695
 end if; 696
 end if; 697
 698
 if decoded_instruction_DSP_lat(h)(KVMUL_bit_position) = '1' or 699
 decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1' or 700
 decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1' or 701
 decoded_instruction_DSP_lat(h)(KSVADDSC_bit_position) = '1' or 702
 decoded_instruction_DSP_lat(h)(KSVADDRF_bit_position) = '1' then 703
 -- KMUL signals are handeled here 704
 if mul_stage_3_en(h) = '1' or adder_stage_3_en(h) = '1' then 705
 wb_ready(h) <= '1'; 706
 elsif recover_state(h) = '1' then 707
 wb_ready(h) <= '1'; 708
 end if; 709
 if MVSIZE_READ(h) > (0 to Addr_Width => '0') then 710
 dsp_sci_req(h)(to_integer(unsigned(dsp_rs1_to_sc(h)))) <= '1'; 711
 if rf_rs2(h) = '0' then -- if the scalar does not come from the regfile 712
 dsp_sci_req(h)(to_integer(unsigned(dsp_rs2_to_sc(h)))) <= '1'; 713
 dsp_to_sc(h)(to_integer(unsigned(dsp_rs2_to_sc(h))))(1) <= '1'; 714
 dsp_sc_read_addr(h)(1) <= RS2_Data_IE_lat(h)(Addr_Width - 1 downto 0); 715
 end if; 716
 dsp_to_sc(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))(0) <= '1'; 717
 dsp_sc_read_addr(h)(0) <= RS1_Data_IE_lat(h)(Addr_Width - 1 downto 0); 718
 nextstate_DSP(h) <= dsp_exec; 719
 busy_DSP_internal_wires := '1'; 720
 elsif MVSIZE_WRITE(h) = (0 to Addr_Width => '0') then 721
 nextstate_DSP(h) <= dsp_init; 722
 else 723
 nextstate_DSP(h) <= dsp_exec; 724
 busy_DSP_internal_wires := '1'; 725
 end if; 726
 if wb_ready(h) = '1' then 727
 dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) <= '1'; 728
 dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 729
 end if; 730
 end if; 731
 732
 when others => 733
 null; 734
 end case; 735
 end if; 736
 737
 busy_DSP_internal(h) <= busy_DSP_internal_wires; 738
 dsp_except_condition(h) <= dsp_except_condition_wires(h); 739
 dsp_taken_branch(h) <= dsp_taken_branch_wires(h); 740
 741
 end process; 742
 743
 fsm_DSP_pipeline_controller : process(clk_i, rst_ni) 744
 begin 745

135

 if rst_ni = '0' then 746
 dsp_data_gnt_i_lat(h) <= '0'; 747
 adder_stage_1_en(h) <= '0'; 748
 adder_stage_2_en(h) <= '0'; 749
 adder_stage_3_en(h) <= '0'; 750
 shifter_stage_1_en(h) <= '0'; 751
 shifter_stage_2_en(h) <= '0'; 752
 mul_stage_1_en(h) <= '0'; 753
 mul_stage_2_en(h) <= '0'; 754
 mul_stage_3_en(h) <= '0'; 755
 accum_stage_1_en(h) <= '0'; 756
 accum_stage_2_en(h) <= '0'; 757
 accum_stage_3_en(h) <= '0'; 758
 relu_stage_1_en(h) <= '0'; 759
 relu_stage_2_en(h) <= '0'; 760
 busy_DSP_internal_lat(h) <= '0'; 761
 state_DSP(h) <= dsp_init; 762
 elsif rising_edge(clk_i) then 763
 dsp_data_gnt_i_lat(h) <= dsp_data_gnt_i(h); 764
 adder_stage_1_en(h) <= dsp_data_gnt_i_lat(h) and add_en(h); 765
 adder_stage_2_en(h) <= adder_stage_1_en(h); 766
 adder_stage_3_en(h) <= adder_stage_2_en(h); 767
 mul_stage_1_en(h) <= dsp_data_gnt_i_lat(h) and mul_en(h); 768
 mul_stage_2_en(h) <= mul_stage_1_en(h); 769
 mul_stage_3_en(h) <= mul_stage_2_en(h); 770
 relu_stage_1_en(h) <= dsp_data_gnt_i_lat(h) and relu_en(h); 771
 relu_stage_2_en(h) <= relu_stage_1_en(h); 772
 accum_stage_2_en(h) <= accum_stage_1_en(h); 773
 accum_stage_3_en(h) <= accum_stage_2_en(h); 774
 if dotpps(h) = '1' then 775
 shifter_stage_1_en(h) <= mul_stage_2_en(h); 776
 shifter_stage_2_en(h) <= shifter_stage_1_en(h); 777
 accum_stage_1_en(h) <= shifter_stage_2_en(h); 778
 elsif dotp(h) = '1' then 779
 accum_stage_1_en(h) <= mul_stage_2_en(h); 780
 else 781
 shifter_stage_1_en(h) <= dsp_data_gnt_i_lat(h) and shift_en(h); 782
 shifter_stage_2_en(h) <= shifter_stage_1_en(h); 783
 shifter_stage_3_en(h) <= shifter_stage_2_en(h); 784
 accum_stage_1_en(h) <= dsp_data_gnt_i_lat(h) and accum_en(h); 785
 end if; 786
 halt_dsp_lat(h) <= halt_dsp(h); 787
 state_DSP(h) <= nextstate_DSP(h); 788
 busy_DSP_internal_lat(h) <= busy_DSP_internal(h); 789
 SIMD_RD_BYTES(h) <= SIMD_RD_BYTES_wire(h); 790
 dsp_except_data(h) <= dsp_except_data_wire(h); 791
 end if; 792
 end process; 793
 794
 DSP_FU_ENABLER_SYNC : process(clk_i, rst_ni) 795
 begin 796
 if rst_ni = '0' then 797
 shift_en(h) <= '0'; 798
 add_en(h) <= '0'; 799
 relu_en(h) <= '0'; 800
 accum_en(h) <= '0'; 801
 mul_en(h) <= '0'; 802
 add_en_pending(h) <= '0'; 803
 shift_en_pending(h) <= '0'; 804
 mul_en_pending(h) <= '0'; 805
 accum_en_pending(h) <= '0'; 806
 relu_en_pending(h) <= '0'; 807
 elsif rising_edge(clk_i) then 808
 shift_en(h) <= shift_en_wire(h); 809
 add_en(h) <= add_en_wire(h); 810
 relu_en(h) <= relu_en_wire(h); 811
 accum_en(h) <= accum_en_wire(h); 812
 mul_en(h) <= mul_en_wire(h); 813
 add_en_pending(h) <= add_en_pending_wire(h); 814
 shift_en_pending(h) <= shift_en_pending_wire(h); 815
 mul_en_pending(h) <= mul_en_pending_wire(h); 816
 accum_en_pending(h) <= accum_en_pending_wire(h); 817
 relu_en_pending(h) <= relu_en_pending_wire(h); 818
 end if; 819
 820
 end process; 821
 822
end generate DSP_replicated; 823

136

FU_HANDLER_MC : if multithreaded_accl_en = 0 generate 824
 DSP_FU_ENABLER_comb : process(all) 825
 begin 826
 for h in accl_range loop 827
 shift_en_wire(h) <= shift_en(h); 828
 add_en_wire(h) <= add_en(h); 829
 relu_en_wire(h) <= relu_en(h); 830
 accum_en_wire(h) <= accum_en(h); 831
 mul_en_wire(h) <= mul_en(h); 832
 halt_hart(h) <= '0'; 833
 834
 if add_en(h) = '1' and busy_DSP_internal(h) = '0' then 835
 add_en_wire(h) <= '0'; 836
 end if; 837
 if mul_en(h) = '1' and busy_DSP_internal(h) = '0' then 838
 mul_en_wire(h) <= '0'; 839
 end if; 840
 if shift_en(h) = '1' and busy_DSP_internal(h) = '0' then 841
 shift_en_wire(h) <= '0'; 842
 end if; 843
 if accum_en(h) = '1' and busy_DSP_internal(h) = '0' then 844
 accum_en_wire(h) <= '0'; 845
 end if; 846
 if relu_en(h) = '1' and busy_DSP_internal(h) = '0' then 847
 relu_en_wire(h) <= '0'; 848
 end if; 849
 850
 if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then 851
 852
 case state_DSP(h) is 853
 854
 when dsp_init => 855
 856
 -- Set signals to enable correct virtual parallelism operation 857
 if decoded_instruction_DSP(KADDV_bit_position) = '1' or 858
 decoded_instruction_DSP(KSVADDSC_bit_position) = '1' or 859
 decoded_instruction_DSP(KSVADDRF_bit_position) = '1' or 860
 decoded_instruction_DSP(KSUBV_bit_position) = '1' or 861
 decoded_instruction_DSP(KVCP_bit_position) = '1' then 862
 add_en_wire(h) <= '1'; 863
 elsif decoded_instruction_DSP(KDOTP_bit_position) = '1' then 864
 mul_en_wire(h) <= '1'; 865
 accum_en_wire(h) <= '1'; 866
 elsif decoded_instruction_DSP(KDOTPPS_bit_position) = '1' then 867
 mul_en_wire(h) <= '1'; 868
 shift_en_wire(h) <= '1'; 869
 accum_en_wire(h) <= '1'; 870
 elsif decoded_instruction_DSP(KVRED_bit_position) = '1' then 871
 accum_en_wire(h) <= '1'; 872
 elsif decoded_instruction_DSP(KSVMULRF_bit_position) = '1' or 873
 decoded_instruction_DSP(KSVMULSC_bit_position) = '1' or 874
 decoded_instruction_DSP(KVMUL_bit_position) = '1' then 875
 mul_en_wire(h) <= '1'; 876
 elsif decoded_instruction_DSP(KSRAV_bit_position) = '1' or 877
 decoded_instruction_DSP(KSRLV_bit_position) = '1' then 878
 shift_en_wire(h) <= '1'; 879
 elsif decoded_instruction_DSP(KRELU_bit_position) = '1' then 880
 relu_en_wire(h) <= '1'; 881
 end if; 882
 when others => 883
 null; 884
 end case; 885
 end if; 886
 end loop; 887
 end process; 888
end generate FU_HANDLER_MC; 889
 890
FU_HANDLER_MT : if multithreaded_accl_en = 1 generate 891
 DSP_FU_ENABLER_comb : process(all) 892
 begin 893
 894
 for h in accl_range loop 895
 896
 shift_en_wire(h) <= shift_en(h); 897
 add_en_wire(h) <= add_en(h); 898
 relu_en_wire(h) <= relu_en(h); 899
 accum_en_wire(h) <= accum_en(h); 900
 mul_en_wire(h) <= mul_en(h); 901

137

 add_en_pending_wire(h) <= add_en_pending(h); 902
 shift_en_pending_wire(h) <= shift_en_pending(h); 903
 mul_en_pending_wire(h) <= mul_en_pending(h); 904
 accum_en_pending_wire(h) <= accum_en_pending(h); 905
 relu_en_pending_wire(h) <= relu_en_pending(h); 906
 fu_req(h) <= (others => '0'); 907
 halt_hart(h) <= '0'; 908
 909
 910
 if add_en(h) = '1' and busy_DSP_internal(h) = '0' then 911
 add_en_wire(h) <= '0'; 912
 end if; 913
 if mul_en(h) = '1' and busy_DSP_internal(h) = '0' then 914
 mul_en_wire(h) <= '0'; 915
 end if; 916
 if shift_en(h) = '1' and busy_DSP_internal(h) = '0' then 917
 shift_en_wire(h) <= '0'; 918
 end if; 919
 if accum_en(h) = '1' and busy_DSP_internal(h) = '0' then 920
 accum_en_wire(h) <= '0'; 921
 end if; 922
 if relu_en(h) = '1' and busy_DSP_internal(h) = '0' then 923
 relu_en_wire(h) <= '0'; 924
 end if; 925
 926
 if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then 927
 928
 case state_DSP(h) is 929
 930
 when dsp_init => 931
 932
 -- Set signals to enable correct virtual parallelism operation 933
 if decoded_instruction_DSP(KADDV_bit_position) = '1' or 934
 decoded_instruction_DSP(KSVADDSC_bit_position) = '1' or 935
 decoded_instruction_DSP(KSVADDRF_bit_position) = '1' or 936
 decoded_instruction_DSP(KSUBV_bit_position) = '1' or 937
 decoded_instruction_DSP(KVCP_bit_position) = '1' then 938
 if busy_add = '0' and add_en_pending = (accl_range => '0') then 939
 add_en_wire(h) <= '1'; 940
 else 941
 add_en_pending_wire(h) <= '1'; 942
 halt_hart(h) <= '1'; 943
 fu_req(h)(0) <= '1'; 944
 end if; 945
 elsif decoded_instruction_DSP(KDOTP_bit_position) = '1' then 946
 if busy_mul = '0' and busy_acc = '0' and mul_en_pending = (accl_range => '0') and accum_en_pending = (accl_range => '0') then 947
 mul_en_wire(h) <= '1'; 948
 accum_en_wire(h) <= '1'; 949
 else 950
 mul_en_pending_wire(h) <= '1'; 951
 accum_en_pending_wire(h) <= '1'; 952
 halt_hart(h) <= '1'; 953
 fu_req(h)(2) <= '1'; 954
 fu_req(h)(3) <= '1'; 955
 end if; 956
 elsif decoded_instruction_DSP(KDOTPPS_bit_position) = '1' then 957
 if busy_mul = '0' and busy_acc = '0' and busy_shf = '0' and mul_en_pending = (accl_range => '0') and accum_en_pending = (accl_range => 958
'0') and shift_en_pending = (accl_range => '0') then 959
 mul_en_wire(h) <= '1'; 960
 shift_en_wire(h) <= '1'; 961
 accum_en_wire(h) <= '1'; 962
 else 963
 mul_en_pending_wire(h) <= '1'; 964
 shift_en_pending_wire(h) <= '1'; 965
 accum_en_pending_wire(h) <= '1'; 966
 halt_hart(h) <= '1'; 967
 fu_req(h)(2) <= '1'; 968
 fu_req(h)(1) <= '1'; 969
 fu_req(h)(3) <= '1'; 970
 end if; 971
 elsif decoded_instruction_DSP(KVRED_bit_position) = '1' then 972
 if busy_acc = '0' and accum_en_pending = (accl_range => '0') then 973
 accum_en_wire(h) <= '1'; 974
 else 975
 accum_en_pending_wire(h) <= '1'; 976
 halt_hart(h) <= '1'; 977
 fu_req(h)(3) <= '1'; 978
 end if; 979

138

 elsif decoded_instruction_DSP(KSVMULRF_bit_position) = '1' or 980
 decoded_instruction_DSP(KSVMULSC_bit_position) = '1' or 981
 decoded_instruction_DSP(KVMUL_bit_position) = '1' then 982
 if busy_mul = '0' and mul_en_pending = (accl_range => '0') then 983
 mul_en_wire(h) <= '1'; 984
 else 985
 mul_en_pending_wire(h) <= '1'; 986
 halt_hart(h) <= '1'; 987
 fu_req(h)(2) <= '1'; 988
 end if; 989
 elsif decoded_instruction_DSP(KSRAV_bit_position) = '1' or 990
 decoded_instruction_DSP(KSRLV_bit_position) = '1' then 991
 if busy_shf = '0' and shift_en_pending = (accl_range => '0') then 992
 shift_en_wire(h) <= '1'; 993
 else 994
 shift_en_pending_wire(h) <= '1'; 995
 halt_hart(h) <= '1'; 996
 fu_req(h)(1) <= '1'; 997
 end if; 998
 elsif decoded_instruction_DSP(KRELU_bit_position) = '1' then 999
 if busy_rel = '0' and relu_en_pending = (accl_range => '0') then 1000
 relu_en_wire(h) <= '1'; 1001
 else 1002
 relu_en_pending_wire(h) <= '1'; 1003
 halt_hart(h) <= '1'; 1004
 fu_req(h)(4) <= '1'; 1005
 end if; 1006
 end if; 1007
 1008
 when dsp_halt_hart => 1009
 1010
 if fu_gnt(h)(0) = '1' then 1011
 add_en_wire(h) <= '1'; 1012
 add_en_pending_wire(h) <= '0'; 1013
 elsif add_en_pending(h) = '1' and fu_gnt(h)(0) = '0' then 1014
 halt_hart(h) <= '1'; 1015
 end if; 1016
 1017
 if fu_gnt(h)(1) = '1' then 1018
 shift_en_wire(h) <= '1'; 1019
 shift_en_pending_wire(h) <= '0'; 1020
 elsif shift_en_pending(h) = '1' and fu_gnt(h)(1) = '0' then 1021
 halt_hart(h) <= '1'; 1022
 end if; 1023
 1024
 if fu_gnt(h)(2) = '1' then 1025
 mul_en_wire(h) <= '1'; 1026
 mul_en_pending_wire(h) <= '0'; 1027
 elsif mul_en_pending(h) = '1' and fu_gnt(h)(2) = '0' then 1028
 halt_hart(h) <= '1'; 1029
 end if; 1030
 1031
 if fu_gnt(h)(3) = '1' then 1032
 accum_en_wire(h) <= '1'; 1033
 accum_en_pending_wire(h) <= '0'; 1034
 elsif accum_en_pending(h) = '1' and fu_gnt(h)(3) = '0' then 1035
 halt_hart(h) <= '1'; 1036
 end if; 1037
 1038
 if fu_gnt(h)(4) = '1' then 1039
 relu_en_wire(h) <= '1'; 1040
 relu_en_pending_wire(h) <= '0'; 1041
 elsif relu_en_pending(h) = '1' and fu_gnt(h)(4) = '0' then 1042
 halt_hart(h) <= '1'; 1043
 end if; 1044
 1045
 when others => 1046
 null; 1047
 end case; 1048
 end if; 1049
 end loop; 1050
 end process; 1051
 1052
 FU_Issue_Buffer_sync : process(clk_i, rst_ni) 1053
 begin 1054
 if rst_ni = '0' then 1055
 fu_rd_ptr <= (others => (others => '0')); 1056
 fu_wr_ptr <= (others => (others => '0')); 1057

139

 fu_gnt <= (others => (others => '0')); 1058
 elsif rising_edge(clk_i) then 1059
 fu_gnt <= fu_gnt_wire; 1060
 for h in accl_range loop 1061
 for i in 0 to 4 loop -- Loop index 'i' is for the total number of different functional units (regardless what SIMD config is set) 1062
 if fu_req(h)(i) = '1' then -- if a reservation was made, to use a functional unit 1063
 --to_integer(unsigned(fu_issue_buffer(i)(to_integer(unsigned(fu_wr_ptr(i)))))) <= h; -- store the thread_ID in its corresponding buffer at the 1064
fu_wr_ptr position 1065
 --fu_issue_buffer(to_integer(unsigned(fu_wr_ptr(i))))(i) <= std_logic_vector(unsigned(h)); -- store the thread_ID in its corresponding buffer 1066
at the fu_wr_ptr position 1067
 fu_issue_buffer(i)(to_integer(unsigned(fu_wr_ptr(i)))) <= std_logic_vector(to_unsigned(h,TPS_CEIL)); 1068
 if unsigned(fu_wr_ptr(i)) = THREAD_POOL_SIZE - 2 then -- increment the pointer wr logic 1069
 fu_wr_ptr(i) <= (others => '0'); 1070
 else 1071
 fu_wr_ptr(i) <= std_logic_vector(unsigned(fu_wr_ptr(i)) + 1); 1072
 end if; 1073
 end if; 1074
 case state_DSP(h) is 1075
 when dsp_halt_hart => 1076
 if fu_gnt_en(h)(i) = '1' then 1077
 if unsigned(fu_rd_ptr(i)) = THREAD_POOL_SIZE - 2 then -- increment the read pointer 1078
 fu_rd_ptr(i) <= (others => '0'); 1079
 else 1080
 fu_rd_ptr(i) <= std_logic_vector(unsigned(fu_rd_ptr(i)) + 1); 1081
 end if; 1082
 end if; 1083
 when others => 1084
 null; 1085
 end case; 1086
 end loop; 1087
 end loop; 1088
 end if; 1089
 end process; 1090
 1091
 FU_Issue_Buffer_comb : process(all) 1092
 begin 1093
 for h in accl_range loop 1094
 fu_gnt_wire(h) <= (others => '0'); 1095
 fu_gnt_en(h) <= (others => '0'); 1096
 if add_en_pending_wire(h) = '1' and busy_add_wire = '0' then 1097
 fu_gnt_en(h)(0) <= '1'; 1098
 end if; 1099
 if shift_en_pending_wire(h) = '1' and busy_shf_wire = '0' then 1100
 fu_gnt_en(h)(1) <= '1'; 1101
 end if; 1102
 if mul_en_pending_wire(h) = '1' and busy_mul_wire = '0' then 1103
 fu_gnt_en(h)(2) <= '1'; 1104
 end if; 1105
 if accum_en_pending_wire(h) = '1' and busy_acc_wire = '0' then 1106
 fu_gnt_en(h)(3) <= '1'; 1107
 end if; 1108
 if relu_en_pending_wire(h) = '1' and busy_rel_wire = '0' then 1109
 fu_gnt_en(h)(4) <= '1'; 1110
 end if; 1111
 case state_DSP(h) is 1112
 when dsp_halt_hart => 1113
 for i in 0 to 4 loop 1114
 if fu_gnt_en(h)(i) = '1' then 1115
 fu_gnt_wire(to_integer(unsigned(fu_issue_buffer(i)(to_integer(unsigned(fu_rd_ptr(i)))))))(i) <= '1'; -- give a grant to fu_gnt(h)(i), such that 1116
the 'h' index points to the thread in "fu_issue_buffer" 1117
 end if; 1118
 end loop; 1119
 when others => 1120
 null; 1121
 end case; 1122
 end loop; 1123
 end process; 1124
 1125
 1126
 DSP_BUSY_FU_SYNC : process(clk_i, rst_ni) 1127
 begin 1128
 if rst_ni = '0' then 1129
 elsif rising_edge(clk_i) then 1130
 busy_add <= busy_add_wire; 1131
 busy_mul <= busy_mul_wire; 1132
 busy_shf <= busy_shf_wire; 1133
 busy_acc <= busy_acc_wire; 1134
 busy_rel <= busy_rel_wire; 1135

140

 end if; 1136
 end process; 1137
 1138
end generate FU_HANDLER_MT; 1139
 1140
busy_add_wire <= '1' when multithreaded_accl_en = 1 and add_en_wire /= (accl_range => '0') else '0'; 1141
busy_mul_wire <= '1' when multithreaded_accl_en = 1 and mul_en_wire /= (accl_range => '0') else '0'; 1142
busy_shf_wire <= '1' when multithreaded_accl_en = 1 and shift_en_wire /= (accl_range => '0') else '0'; 1143
busy_acc_wire <= '1' when multithreaded_accl_en = 1 and accum_en_wire /= (accl_range => '0') else '0'; 1144
busy_rel_wire <= '1' when multithreaded_accl_en = 1 and relu_en_wire /= (accl_range => '0') else '0'; 1145
 1146
MULTICORE_OUT_MAPPER : if multithreaded_accl_en = 0 generate 1147
MAPPER_replicated : for h in fu_range generate 1148
 1149
 MAPPING_OUT_UNIT_comb : process(all) 1150
 begin 1151
 dsp_sc_data_write_wire_int(h) <= (others => '0'); 1152
 dsp_sc_data_write_wire(h) <= dsp_sc_data_write_wire_int(h); 1153
 SIMD_RD_BYTES_wire(h) <= SIMD*(Data_Width/8); 1154
 1155
 if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then 1156
 case state_DSP(h) is 1157
 when dsp_init => 1158
 1159
 -- Set signals to enable correct virtual parallelism operation 1160
 if (decoded_instruction_DSP(KDOTP_bit_position) = '1' or 1161
 decoded_instruction_DSP(KDOTPPS_bit_position) = '1' or 1162
 decoded_instruction_DSP(KVRED_bit_position) = '1' or 1163
 decoded_instruction_DSP(KSVMULRF_bit_position) = '1' or 1164
 decoded_instruction_DSP(KVMUL_bit_position) = '1' or 1165
 decoded_instruction_DSP(KSVMULSC_bit_position) = '1') and 1166
 MVTYPE(h)(3 downto 2) = "00" then 1167
 SIMD_RD_BYTES_wire(h) <= SIMD*(Data_Width/8)/2; 1168
 end if; 1169
 1170
 when dsp_exec => 1171
 1172
 -- Set signals to enable correct virtual parallelism operation 1173
 if (decoded_instruction_DSP_lat(h)(KDOTP_bit_position) = '1' or 1174
 decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1' or 1175
 decoded_instruction_DSP_lat(h)(KVRED_bit_position) = '1' or 1176
 decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1' or 1177
 decoded_instruction_DSP_lat(h)(KVMUL_bit_position) = '1' or 1178
 decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1179
 (MVTYPE_DSP(h) = "00") then 1180
 SIMD_RD_BYTES_wire(h) <= SIMD*(Data_Width/8)/2; 1181
 end if; 1182
 1183
 if decoded_instruction_DSP_lat(h)(KDOTP_bit_position) = '1' or 1184
 decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1' or 1185
 decoded_instruction_DSP_lat(h)(KDOTP_bit_position) = '1' or 1186
 decoded_instruction_DSP_lat(h)(KVRED_bit_position) = '1' then 1187
 dsp_sc_data_write_wire_int(h)(31 downto 0) <= dsp_out_accum_results(h); -- AAA add a mask in order to store the lower half word when 1188
16-bit or entire word when 32-bit 1189
 end if; 1190
 1191
 if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position) = '1' or 1192
 decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1' or 1193
 decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1194
 MVTYPE_DSP(h) = "00" then 1195
 for i in 0 to 2*SIMD-1 loop 1196
 dsp_sc_data_write_wire_int(h)(7+8*(i) downto 8*(i)) <= dsp_out_mul_results(h)(7+8*(2*i) downto 8*(2*i)); 1197
 end loop; 1198
 end if; 1199
 1200
 if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position) = '1' or 1201
 decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1' or 1202
 decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1203
 (MVTYPE_DSP(h) = "01" or MVTYPE_DSP(h) = "10") then 1204
 dsp_sc_data_write_wire_int(h) <= dsp_out_mul_results(h); 1205
 end if; 1206
 1207
 if decoded_instruction_DSP_lat(h)(KSRAV_bit_position) = '1' or 1208
 decoded_instruction_DSP_lat(h)(KSRLV_bit_position) = '1' then 1209
 dsp_sc_data_write_wire_int(h) <= dsp_out_shifter_results(h); 1210
 end if; 1211
 1212
 if decoded_instruction_DSP_lat(h)(KSVADDSC_bit_position) = '1' or 1213

141

 decoded_instruction_DSP_lat(h)(KSVADDRF_bit_position) = '1' or 1214
 decoded_instruction_DSP_lat(h)(KADDV_bit_position) = '1' or 1215
 decoded_instruction_DSP_lat(h)(KSUBV_bit_position) = '1' or 1216
 decoded_instruction_DSP_lat(h)(KVCP_bit_position) = '1' then 1217
 dsp_sc_data_write_wire_int(h) <= dsp_out_adder_results(h); 1218
 end if; 1219
 1220
 1221
 if decoded_instruction_DSP_lat(h)(KRELU_bit_position) = '1' then 1222
 dsp_sc_data_write_wire_int(h) <= dsp_out_relu_results(h); 1223
 end if; 1224
 1225
 if decoded_instruction_DSP_lat(h)(KBCAST_bit_position) = '1' and MVTYPE_DSP(h) = "10" then 1226
 for i in 0 to SIMD-1 loop 1227
 dsp_sc_data_write_wire_int(h)(31+32*(i) downto 32*(i)) <= RS1_Data_IE_lat(h); 1228
 end loop; 1229
 elsif decoded_instruction_DSP_lat(h)(KBCAST_bit_position) = '1' and MVTYPE_DSP(h) = "01" then 1230
 for i in 0 to 2*SIMD-1 loop 1231
 dsp_sc_data_write_wire_int(h)(15+16*(i) downto 16*(i)) <= RS1_Data_IE_lat(h)(15 downto 0); 1232
 end loop; 1233
 elsif decoded_instruction_DSP_lat(h)(KBCAST_bit_position) = '1' and MVTYPE_DSP(h) = "00" then 1234
 for i in 0 to 4*SIMD-1 loop 1235
 dsp_sc_data_write_wire_int(h)(7+8*(i) downto 8*(i)) <= RS1_Data_IE_lat(h)(7 downto 0); 1236
 end loop; 1237
 end if; 1238
 1239
 if halt_dsp(h) = '0' and halt_dsp_lat(h) = '1' then 1240
 dsp_sc_data_write_wire(h) <= dsp_sc_data_write_int(h); 1241
 end if; 1242
 when others => 1243
 null; 1244
 end case; 1245
 end if; 1246
 end process; 1247
 1248
end generate; 1249
end generate; 1250
 1251
MULTITHREAD_OUT_MAPPER : if multithreaded_accl_en = 1 generate 1252
 MAPPING_OUT_UNIT_comb : process(all) 1253
 begin 1254
 for h in 0 to (ACCL_NUM - FU_NUM) loop 1255
 dsp_sc_data_write_wire_int(h) <= (others => '0'); 1256
 dsp_sc_data_write_wire(h) <= dsp_sc_data_write_wire_int(h); 1257
 SIMD_RD_BYTES_wire(h) <= SIMD*(Data_Width/8); 1258
 1259
 if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then 1260
 case state_DSP(h) is 1261
 when dsp_init => 1262
 1263
 -- Set signals to enable correct virtual parallelism operation 1264
 if (decoded_instruction_DSP(KDOTP_bit_position) = '1' or 1265
 decoded_instruction_DSP(KDOTPPS_bit_position) = '1' or 1266
 decoded_instruction_DSP(KVRED_bit_position) = '1' or 1267
 decoded_instruction_DSP(KSVMULRF_bit_position) = '1' or 1268
 decoded_instruction_DSP(KVMUL_bit_position) = '1' or 1269
 decoded_instruction_DSP(KSVMULSC_bit_position) = '1') and 1270
 MVTYPE(h)(3 downto 2) = "00" then 1271
 SIMD_RD_BYTES_wire(h) <= SIMD*(Data_Width/8)/2; 1272
 end if; 1273
 1274
 when dsp_exec => 1275
 1276
 -- Set signals to enable correct virtual parallelism operation 1277
 if (decoded_instruction_DSP_lat(h)(KDOTP_bit_position) = '1' or 1278
 decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1' or 1279
 decoded_instruction_DSP_lat(h)(KVRED_bit_position) = '1' or 1280
 decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1' or 1281
 decoded_instruction_DSP_lat(h)(KVMUL_bit_position) = '1' or 1282
 decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1283
 MVTYPE_DSP(h) = "00" then 1284
 SIMD_RD_BYTES_wire(h) <= SIMD*(Data_Width/8)/2; 1285
 end if; 1286
 1287
 if decoded_instruction_DSP_lat(h)(KDOTP_bit_position) = '1' or 1288
 decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1' or 1289
 decoded_instruction_DSP_lat(h)(KVRED_bit_position) = '1' then 1290

142

 dsp_sc_data_write_wire_int(h)(31 downto 0) <= dsp_out_accum_results(0); -- AAA add a mask in order to store the lower half word when 1291
16-bit or entire word when 32-bit 1292
 end if; 1293
 1294
 if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position) = '1' or 1295
 decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1' or 1296
 decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1297
 MVTYPE_DSP(h) = "00" then 1298
 for i in 0 to 2*SIMD-1 loop 1299
 dsp_sc_data_write_wire_int(h)(7+8*(i) downto 8*(i)) <= dsp_out_mul_results(0)(7+8*(2*i) downto 8*(2*i)); 1300
 end loop; 1301
 end if; 1302
 1303
 if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position) = '1' or 1304
 decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1' or 1305
 decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1306
 (MVTYPE_DSP(h) = "01" or MVTYPE_DSP(h) = "10") then 1307
 dsp_sc_data_write_wire_int(h) <= dsp_out_mul_results(0); 1308
 end if; 1309
 1310
 if decoded_instruction_DSP_lat(h)(KSRAV_bit_position) = '1' or 1311
 decoded_instruction_DSP_lat(h)(KSRLV_bit_position) = '1' then 1312
 dsp_sc_data_write_wire_int(h) <= dsp_out_shifter_results(0); 1313
 end if; 1314
 1315
 if decoded_instruction_DSP_lat(h)(KSVADDSC_bit_position) = '1' or 1316
 decoded_instruction_DSP_lat(h)(KSVADDRF_bit_position) = '1' or 1317
 decoded_instruction_DSP_lat(h)(KADDV_bit_position) = '1' or 1318
 decoded_instruction_DSP_lat(h)(KSUBV_bit_position) = '1' or 1319
 decoded_instruction_DSP_lat(h)(KVCP_bit_position) = '1' then 1320
 dsp_sc_data_write_wire_int(h) <= dsp_out_adder_results(0); 1321
 end if; 1322
 1323
 1324
 if decoded_instruction_DSP_lat(h)(KRELU_bit_position) = '1' then 1325
 dsp_sc_data_write_wire_int(h) <= dsp_out_relu_results(0); 1326
 end if; 1327
 1328
 if decoded_instruction_DSP_lat(h)(KBCAST_bit_position) = '1' and MVTYPE_DSP(h) = "10" then 1329
 for i in 0 to SIMD-1 loop 1330
 dsp_sc_data_write_wire_int(h)(31+32*(i) downto 32*(i)) <= RS1_Data_IE_lat(h); 1331
 end loop; 1332
 elsif decoded_instruction_DSP_lat(h)(KBCAST_bit_position) = '1' and MVTYPE_DSP(h) = "01" then 1333
 for i in 0 to 2*SIMD-1 loop 1334
 dsp_sc_data_write_wire_int(h)(15+16*(i) downto 16*(i)) <= RS1_Data_IE_lat(h)(15 downto 0); 1335
 end loop; 1336
 elsif decoded_instruction_DSP_lat(h)(KBCAST_bit_position) = '1' and MVTYPE_DSP(h) = "00" then 1337
 for i in 0 to 4*SIMD-1 loop 1338
 dsp_sc_data_write_wire_int(h)(7+8*(i) downto 8*(i)) <= RS1_Data_IE_lat(h)(7 downto 0); 1339
 end loop; 1340
 end if; 1341
 1342
 if halt_dsp(h) = '0' and halt_dsp_lat(h) = '1' then 1343
 dsp_sc_data_write_wire(h) <= dsp_sc_data_write_int(h); 1344
 end if; 1345
 when others => 1346
 null; 1347
 end case; 1348
 end if; 1349
 end loop; 1350
 end process; 1351
end generate; 1352
 1353
--FU_IN_MAPPER_replicated : for f in accl_range generate 1354
--FU_IN_MAPPER : if (multithreaded_accl_en = 0 or (multithreaded_accl_en = 1 and f = 0)) generate 1355
FU_replicated : for f in fu_range generate 1356
 1357
 DSP_MAPPING_IN_UNIT_comb : process(all) 1358
 variable h : integer; 1359
 begin 1360
 1361
 dsp_in_mul_operands(f) <= (others => (others => '0')); 1362
 dsp_in_adder_operands(f) <= (others => (others => '0')); 1363
 dsp_in_shift_amount(f) <= (others => '0'); 1364
 dsp_in_shifter_operand(f) <= (others => '0'); 1365
 dsp_in_relu_operands(f) <= (others => '0'); 1366
 dsp_in_accum_operands(f) <= (others => '0'); 1367
 1368

143

 for g in 0 to (ACCL_NUM - FU_NUM) loop 1369
 1370
 if multithreaded_accl_en = 1 then 1371
 h := g; -- set the spm rd/wr ports equal to the "for-loop" 1372
 elsif multithreaded_accl_en = 0 then 1373
 h := f; -- set the spm rd/wr ports equal to the "for-generate" 1374
 end if; 1375
 1376
 if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then 1377
 case state_DSP(h) is 1378
 1379
 when dsp_exec => 1380
 1381
 if (decoded_instruction_DSP_lat(h)(KDOTP_bit_position) = '1' or 1382
 decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1') and 1383
 MVTYPE_DSP(h) = "00" then 1384
 for i in 0 to 2*SIMD-1 loop 1385
 dsp_in_mul_operands(f)(0)(15+16*(i) downto 16*(i)) <= (x"00" & (dsp_sc_data_read(h)(0)(7+8*(i) downto 8*(i)) and 1386
dsp_sc_data_read_mask(h)(7+8*(i) downto 8*(i)))); 1387
 dsp_in_mul_operands(f)(1)(15+16*(i) downto 16*(i)) <= (x"00" & (dsp_sc_data_read(h)(1)(7+8*(i) downto 8*(i)) and 1388
dsp_sc_data_read_mask(h)(7+8*(i) downto 8*(i)))); 1389
 if dotp(h) = '1' then 1390
 dsp_in_accum_operands(f) <= dsp_out_mul_results(f); 1391
 elsif dotpps(h) = '1' then 1392
 dsp_in_shift_amount(f) <= MPSCLFAC_DSP(h); 1393
 dsp_in_shifter_operand(f) <= dsp_out_mul_results(f); 1394
 dsp_in_accum_operands(f) <= dsp_out_shifter_results(f); 1395
 end if; 1396
 end loop; 1397
 end if; 1398
 1399
 if (decoded_instruction_DSP_lat(h)(KDOTP_bit_position) = '1' or 1400
 decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1') and 1401
 (MVTYPE_DSP(h) = "01" or MVTYPE_DSP(h) = "10") then 1402
 dsp_in_mul_operands(f)(0) <= dsp_sc_data_read(h)(0) and dsp_sc_data_read_mask(h); 1403
 dsp_in_mul_operands(f)(1) <= dsp_sc_data_read(h)(1) and dsp_sc_data_read_mask(h); 1404
 if dotp(h) = '1' then 1405
 dsp_in_accum_operands(f) <= dsp_out_mul_results(f); 1406
 elsif dotpps(h) = '1' then 1407
 dsp_in_shift_amount(f) <= MPSCLFAC_DSP(h); 1408
 dsp_in_shifter_operand(f) <= dsp_out_mul_results(f); 1409
 dsp_in_accum_operands(f) <= dsp_out_shifter_results(f); 1410
 end if; 1411
 end if; 1412
 1413
 if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position) = '1' or 1414
 decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1' or 1415
 decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1416
 MVTYPE_DSP(h) = "00" then 1417
 for i in 0 to 2*SIMD-1 loop 1418
 if vec_read_rs2_DSP(h) = '0' then 1419
 if rf_rs2(h) = '1' then 1420
 dsp_in_mul_operands(f)(1)(15+16*(i) downto 16*(i)) <= x"00" & RS2_Data_IE_lat(h)(7 downto 0); -- map the scalar value 1421
 elsif rf_rs2(h) = '0' then 1422
 dsp_in_mul_operands(f)(1)(15+16*(i) downto 16*(i)) <= x"00" & dsp_sc_data_read(h)(1)(7 downto 0); -- map the scalar value 1423
 end if; 1424
 else 1425
 dsp_in_mul_operands(f)(1)(15+16*(i) downto 16*(i)) <= x"00" & dsp_sc_data_read(h)(1)(7+8*(i) downto 8*(i)); 1426
 end if; 1427
 dsp_in_mul_operands(f)(0)(15+16*(i) downto 16*(i)) <= x"00" & dsp_sc_data_read(h)(0)(7+8*(i) downto 8*(i)); 1428
 end loop; 1429
 end if; 1430
 1431
 if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position) = '1' or 1432
 decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1' or 1433
 decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1434
 MVTYPE_DSP(h) = "01" then 1435
 if vec_read_rs2_DSP(h) = '0' then 1436
 if rf_rs2(h) = '1' then 1437
 for i in 0 to 2*SIMD-1 loop 1438
 dsp_in_mul_operands(f)(1)(15+16*(i) downto 16*(i)) <= RS2_Data_IE_lat(h)(15 downto 0); -- map the scalar value 1439
 end loop; 1440
 elsif rf_rs2(h) = '0' then 1441
 for i in 0 to 2*SIMD-1 loop 1442
 dsp_in_mul_operands(f)(1)(15+16*(i) downto 16*(i)) <= dsp_sc_data_read(h)(1)(15 downto 0); -- map the scalar value 1443
 end loop; 1444
 end if; 1445
 else 1446

144

 dsp_in_mul_operands(f)(1) <= dsp_sc_data_read(h)(1); 1447
 end if; 1448
 dsp_in_mul_operands(f)(0) <= dsp_sc_data_read(h)(0); 1449
 end if; 1450
 1451
 if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position) = '1' or 1452
 decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1' or 1453
 decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1454
 MVTYPE_DSP(h) = "10" then 1455
 if vec_read_rs2_DSP(h) = '0' then 1456
 if rf_rs2(h) = '1' then 1457
 for i in 0 to SIMD-1 loop 1458
 dsp_in_mul_operands(f)(1)(31+32*(i) downto 32*(i)) <= RS2_Data_IE_lat(h)(31 downto 0); -- map the scalar value 1459
 end loop; 1460
 elsif rf_rs2(h) = '0' then 1461
 for i in 0 to SIMD-1 loop 1462
 dsp_in_mul_operands(f)(1)(31+32*(i) downto 32*(i)) <= dsp_sc_data_read(h)(1)(31 downto 0); -- map the scalar value 1463
 end loop; 1464
 end if; 1465
 else 1466
 dsp_in_mul_operands(f)(1) <= dsp_sc_data_read(h)(1); 1467
 end if; 1468
 dsp_in_mul_operands(f)(0) <= dsp_sc_data_read(h)(0); 1469
 end if; 1470
 1471
 if decoded_instruction_DSP_lat(h)(KADDV_bit_position) = '1' then 1472
 dsp_in_adder_operands(f)(0) <= dsp_sc_data_read(h)(0); 1473
 dsp_in_adder_operands(f)(1) <= dsp_sc_data_read(h)(1); 1474
 end if; 1475
 1476
 if decoded_instruction_DSP_lat(h)(KSRAV_bit_position) = '1' or 1477
 decoded_instruction_DSP_lat(h)(KSRLV_bit_position) = '1' then 1478
 dsp_in_shifter_operand(f) <= dsp_sc_data_read(h)(0); 1479
 dsp_in_shift_amount(f) <= RS2_Data_IE_lat(h)(4 downto 0); -- map the scalar value (shift amount) 1480
 end if; 1481
 1482
 if decoded_instruction_DSP_lat(h)(KSVADDSC_bit_position) = '1' and MVTYPE_DSP(h) = "10" then 1483
 dsp_in_adder_operands(f)(0) <= dsp_sc_data_read(h)(0); 1484
 for i in 0 to SIMD-1 loop 1485
 dsp_in_adder_operands(f)(1)(31+32*(i) downto 32*(i)) <= dsp_sc_data_read(h)(1)(31 downto 0); 1486
 end loop; 1487
 end if; 1488
 1489
 if decoded_instruction_DSP_lat(h)(KSVADDSC_bit_position) = '1' and MVTYPE_DSP(h) = "01" then 1490
 dsp_in_adder_operands(f)(0) <= dsp_sc_data_read(h)(0); 1491
 for i in 0 to 2*SIMD-1 loop 1492
 dsp_in_adder_operands(f)(1)(15+16*(i) downto 16*(i)) <= dsp_sc_data_read(h)(1)(15 downto 0); 1493
 end loop; 1494
 end if; 1495
 1496
 if decoded_instruction_DSP_lat(h)(KSVADDSC_bit_position) = '1' and MVTYPE_DSP(h) = "00" then 1497
 dsp_in_adder_operands(f)(0) <= dsp_sc_data_read(h)(0); 1498
 for i in 0 to 4*SIMD-1 loop 1499
 dsp_in_adder_operands(f)(1)(7+8*(i) downto 8*(i)) <= dsp_sc_data_read(h)(1)(7 downto 0); 1500
 end loop; 1501
 end if; 1502
 1503
 if decoded_instruction_DSP_lat(h)(KSVADDRF_bit_position) = '1' and MVTYPE_DSP(h) = "10" then 1504
 dsp_in_adder_operands(f)(0) <= dsp_sc_data_read(h)(0); 1505
 for i in 0 to SIMD-1 loop 1506
 dsp_in_adder_operands(f)(1)(31+32*(i) downto 32*(i)) <= RS2_Data_IE_lat(h)(31 downto 0); 1507
 end loop; 1508
 end if; 1509
 1510
 if decoded_instruction_DSP_lat(h)(KSVADDRF_bit_position) = '1' and MVTYPE_DSP(h) = "01" then 1511
 dsp_in_adder_operands(f)(0) <= dsp_sc_data_read(h)(0); 1512
 for i in 0 to 2*SIMD-1 loop 1513
 dsp_in_adder_operands(f)(1)(15+16*(i) downto 16*(i)) <= RS2_Data_IE_lat(h)(15 downto 0); 1514
 end loop; 1515
 end if; 1516
 1517
 if decoded_instruction_DSP_lat(h)(KSVADDRF_bit_position) = '1' and MVTYPE_DSP(h) = "00" then 1518
 dsp_in_adder_operands(f)(0) <= dsp_sc_data_read(h)(0); 1519
 for i in 0 to 4*SIMD-1 loop 1520
 dsp_in_adder_operands(f)(1)(7+8*(i) downto 8*(i)) <= RS2_Data_IE_lat(h)(7 downto 0); 1521
 end loop; 1522
 end if; 1523
 1524

145

 if decoded_instruction_DSP_lat(h)(KSUBV_bit_position) = '1' then 1525
 dsp_in_adder_operands(f)(0) <= dsp_sc_data_read(h)(0); 1526
 dsp_in_adder_operands(f)(1) <= (not dsp_sc_data_read(h)(1)); 1527
 end if; 1528
 1529
 if decoded_instruction_DSP_lat(h)(KVRED_bit_position) = '1' and MVTYPE_DSP(h) = "00" then 1530
 for i in 0 to 2*SIMD-1 loop 1531
 dsp_in_accum_operands(f)(15+16*(i) downto 16*(i)) <= x"00" & (dsp_sc_data_read(h)(0)(7+8*(i) downto 8*(i)) and 1532
dsp_sc_data_read_mask(h)(7+8*(i) downto 8*(i))); 1533
 end loop; 1534
 end if; 1535
 if decoded_instruction_DSP_lat(h)(KVRED_bit_position) = '1' and (MVTYPE_DSP(h) = "01" or MVTYPE_DSP(h) = "10") then 1536
 dsp_in_accum_operands(f) <= dsp_sc_data_read(h)(0) and dsp_sc_data_read_mask(h); 1537
 end if; 1538
 1539
 if decoded_instruction_DSP_lat(h)(KRELU_bit_position) = '1' then 1540
 dsp_in_relu_operands(f) <= dsp_sc_data_read(h)(0); 1541
 end if; 1542
 1543
 if decoded_instruction_DSP_lat(h)(KVCP_bit_position) = '1' then 1544
 dsp_in_adder_operands(f)(0) <= dsp_sc_data_read(h)(0); 1545
 end if; 1546
 1547
 1548
 when others => 1549
 null; 1550
 end case; 1551
 end if; 1552
 end loop; 1553
 end process; 1554
 1555
--end generate; 1556
--end generate; 1557
 1558
--FU_IN_MAPPER : if (multithreaded_accl_en = 0 or (multithreaded_accl_en = 1 and f = 0) generate 1559
 1560
 fsm_DSP_adder_stage_1 : process(all) 1561
 variable h : integer; 1562
 begin 1563
 dsp_add_8_0_wire(f) <= dsp_add_8_0(f); 1564
 dsp_add_16_8_wire(f) <= dsp_add_16_8(f); 1565
 for g in 0 to (ACCL_NUM - FU_NUM) loop 1566
 if multithreaded_accl_en = 1 then 1567
 h := g; -- set the spm rd/wr ports equal to the "for-loop" 1568
 elsif multithreaded_accl_en = 0 then 1569
 h := f; -- set the spm rd/wr ports equal to the "for-generate" 1570
 end if; 1571
 -- Addition in SIMD Virtual Parallelism is executed here, if the carries are blocked, we will have a chain of 8-bit or 16-bit adders, else we have 1572
32-bit adders 1573
 for i in 0 to SIMD-1 loop 1574
 if (adder_stage_1_en(h) = '1' or recover_state_wires(h) = '1') then 1575
 -- Unwinding the loop: 1576
 -- (1) the term "8*(4*i)" is used to jump between the 32-bit words, inside the 128-bit values read by the DSP 1577
 -- (2) Each addition results in an 8-bit value, and the 9th bit being the carry, depending on the instruction (KADDV32, KADDV16, KADDV8) 1578
we either pass the or block the carries. 1579
 -- (3) CARRIES: 1580
 -- (a) If we pass all the carries in the 32-bit word, we will have executed KADDV32 (4*32-bit parallel additions) 1581
 -- (b) If we pass the 9th and 25th carries we would have executed KADDV16 (8*16-bit parallel additions) 1582
 -- (c) If we pass none of the carries then we would have executed KADDV8 (16*8-bit parallel additions) 1583
 dsp_add_8_0_wire(f)(i) <= std_logic_vector('0' & unsigned(dsp_in_adder_operands(f)(0)(7+8*(4*i) downto 8*(4*i))) + 1584
unsigned(dsp_in_adder_operands(f)(1)(7+8*(4*i) downto 8*(4*i))) + twos_complement(h)(0+(4*i))); 1585
 dsp_add_16_8_wire(f)(i) <= std_logic_vector('0' & unsigned(dsp_in_adder_operands(f)(0)(15+8*(4*i) downto 8+8*(4*i))) + 1586
unsigned(dsp_in_adder_operands(f)(1)(15+8*(4*i) downto 8+8*(4*i))) + carry_8_wire(f)(i) + twos_complement(h)(1+(4*i))); 1587
 -- All the 8-bit adders are lumped into one output write signal that will write to the scratchpads 1588
 -- Carries are either passed or blocked for the 9-th, 17-th, and 25-th bits 1589
 carry_8_wire(f)(i) <= dsp_add_8_0_wire(f)(i)(8) and carry_pass(h)(0); 1590
 carry_16_wire(f)(i) <= dsp_add_16_8_wire(f)(i)(8) and carry_pass(h)(1); 1591
 end if; 1592
 end loop; 1593
 end loop; 1594
 end process; 1595
 1596
 fsm_DSP_adder_stage_2 : process(all) 1597
 variable h : integer; 1598
 begin 1599
 carry_24_wire(f) <= (others => '0'); 1600
 dsp_add_24_16_wire(f) <= (others => (others => '0')); 1601
 dsp_add_32_24_wire(f) <= (others => (others => '0')); 1602

146

 for g in 0 to (ACCL_NUM - FU_NUM) loop 1603
 if multithreaded_accl_en = 1 then 1604
 h := g; -- set the spm rd/wr ports equal to the "for-loop" 1605
 elsif multithreaded_accl_en = 0 then 1606
 h := f; -- set the spm rd/wr ports equal to the "for-generate" 1607
 end if; 1608
 -- Addition is here 1609
 if halt_dsp_lat(h) = '0' then 1610
 -- Addition in SIMD Virtual Parallelism is executed here, if the carries are blocked, we will have a chain of 8-bit or 16-bit adders, else we have 1611
32-bit adders 1612
 for i in 0 to SIMD-1 loop 1613
 if (adder_stage_2_en(h) = '1' or recover_state_wires(h) = '1') then 1614
 dsp_add_24_16_wire(f)(i) <= std_logic_vector('0' & unsigned(dsp_in_adder_operands_lat(f)(0)(7+8*(2*i) downto 8*(2*i))) + 1615
 unsigned(dsp_in_adder_operands_lat(f)(1)(7+8*(2*i) downto 8*(2*i))) + 1616
 carry_16(f)(i) + twos_complement(h)(2+(4*i))); 1617
 dsp_add_32_24_wire(f)(i) <= std_logic_vector('0' & unsigned(dsp_in_adder_operands_lat(f)(0)(15+8*(2*i) downto 8+8*(2*i))) + 1618
 unsigned(dsp_in_adder_operands_lat(f)(1)(15+8*(2*i) downto 8+8*(2*i))) + 1619
 carry_24_wire(f)(i) + twos_complement(h)(3+(4*i))); 1620
 -- All the 8-bit adders are lumped into one output write signal that will write to the scratchpads 1621
 -- Carries are either passed or blocked for the 9-th, 17-th, and 25-th bits 1622
 carry_24_wire(f)(i) <= dsp_add_24_16_wire(f)(i)(8) and carry_pass(h)(2); 1623
 end if; 1624
 end loop; 1625
 end if; 1626
 end loop; 1627
 end process; 1628
 1629
 fsm_DSP_adder : process(clk_i, rst_ni) 1630
 variable h : integer; 1631
 begin 1632
 if rst_ni = '0' then 1633
 elsif rising_edge(clk_i) then 1634
 for g in 0 to (ACCL_NUM - FU_NUM) loop 1635
 if multithreaded_accl_en = 1 then 1636
 h := g; -- set the spm rd/wr ports equal to the "for-loop" 1637
 elsif multithreaded_accl_en = 0 then 1638
 h := f; -- set the spm rd/wr ports equal to the "for-generate" 1639
 end if; 1640
 -- Addition is here 1641
 if add_en(h) = '1' and halt_dsp_lat(h) = '0' then 1642
 carry_16(f) <= carry_16_wire(f); 1643
 dsp_add_8_0(f) <= dsp_add_8_0_wire(f); 1644
 dsp_add_16_8(f) <= dsp_add_16_8_wire(f); 1645
 -- Addition in SIMD Virtual Parallelism is executed here, if the carries are blocked, we will have a chain of 8-bit or 16-bit adders, else we have 1646
normal 32-bit adders 1647
 for i in 0 to SIMD-1 loop 1648
 if (adder_stage_2_en(h) = '1' or recover_state_wires(h) = '1') then 1649
 -- All the 8-bit adders are lumped into one output signal that will write to the scratchpads 1650
 dsp_out_adder_results(f)(31+32*(i) downto 32*(i)) <= dsp_add_32_24_wire(f)(i)(7 downto 0) & dsp_add_24_16_wire(f)(i)(7 downto 0) & 1651
dsp_add_16_8(f)(i)(7 downto 0) & dsp_add_8_0(f)(i)(7 downto 0); 1652
 end if; 1653
 end loop; 1654
 end if; 1655
 for i in 0 to SIMD-1 loop 1656
 for j in 0 to 1 loop 1657
 dsp_in_adder_operands_lat(f)(j)(15 +16*(i) downto 16*(i)) <= dsp_in_adder_operands(f)(j)(31+32*(i) downto 16+32*(i)); 1658
 end loop; 1659
 end loop; 1660
 end loop; 1661
 end if; 1662
 end process; 1663
 1664
 fsm_DSP_shifter_stg_1 : process(clk_i, rst_ni) 1665
 variable h : integer; 1666
 begin 1667
 if rst_ni = '0' then 1668
 elsif rising_edge(clk_i) then 1669
 for g in 0 to (ACCL_NUM - FU_NUM) loop 1670
 if multithreaded_accl_en = 1 then 1671
 h := g; -- set the spm rd/wr ports equal to the "for-loop" 1672
 elsif multithreaded_accl_en = 0 then 1673
 h := f; -- set the spm rd/wr ports equal to the "for-generate" 1674
 end if; 1675
 if shift_en(h) = '1' and (shifter_stage_1_en(h) = '1' or recover_state_wires(h) = '1') and halt_dsp_lat(h) = '0' then 1676
 for i in 0 to SIMD-1 loop 1677
 dsp_int_shifter_operand(f)(31+32*(i) downto 32*(i)) <= to_stdlogicvector(to_bitvector(dsp_in_shifter_operand(f)(31+32*(i) downto 32*(i))) 1678
srl to_integer(unsigned(dsp_in_shift_amount(f)))); 1679
 end loop; 1680

147

 --for i in 0 to 4*SIMD-1 loop -- latch the sign bits 1681
 --dsp_in_sign_bits(f)(i) <= dsp_in_shifter_operand(f)(7+8*(i)); 1682
 --end loop; 1683
 if MVTYPE_DSP(h) = "00" then 1684
 for i in 0 to 4*SIMD-1 loop -- latch the sign bits 1685
 dsp_in_shifter_operand_lat(f)(7+8*i downto 8*i) <= (others => dsp_in_shifter_operand(f)(7+8*i)); 1686
 end loop; 1687
 elsif MVTYPE_DSP(h) = "01" then 1688
 for i in 0 to 2*SIMD-1 loop -- latch the sign bits 1689
 dsp_in_shifter_operand_lat(f)(15+16*i downto 16*i) <= (others => dsp_in_shifter_operand(f)(15+16*i)); 1690
 end loop; 1691
 elsif MVTYPE_DSP(h) = "10" then 1692
 for i in 0 to SIMD-1 loop -- latch the sign bits 1693
 dsp_in_shifter_operand_lat(f)(31+32*i downto 32*i) <= (others => dsp_in_shifter_operand(f)(31+32*i)); 1694
 end loop; 1695
 end if; 1696
 end if; 1697
 end loop; 1698
 end if; 1699
 end process; 1700
 1701
 fsm_DSP_shifter_stg_2 : process(clk_i, rst_ni) 1702
 variable h : integer; 1703
 begin 1704
 if rst_ni = '0' then 1705
 elsif rising_edge(clk_i) then 1706
 for g in 0 to (ACCL_NUM - FU_NUM) loop 1707
 if multithreaded_accl_en = 1 then 1708
 h := g; -- set the spm rd/wr ports equal to the "for-loop" 1709
 elsif multithreaded_accl_en = 0 then 1710
 h := f; -- set the spm rd/wr ports equal to the "for-generate" 1711
 end if; 1712
 if shift_en(h) = '1' and (shifter_stage_2_en(h) = '1' or recover_state_wires(h) = '1') and halt_dsp_lat(h) = '0' then 1713
 if MVTYPE_DSP(h) = "10" then 1714
 for i in 0 to SIMD-1 loop 1715
 dsp_out_shifter_results(f)(31+32*(i) downto 32*(i)) <= dsp_in_shifter_operand_lat_wire(f)(31 +32*(i) downto 32*(i)) or 1716
dsp_int_shifter_operand(f)(31+32*(i) downto 32*(i)); 1717
 end loop; 1718
 elsif MVTYPE_DSP(h) = "01" or (decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1' and MVTYPE_DSP(h) = "00") then -- 1719
KDOTPPS8 has been added here because the number of elements loaded for mul operations is equal for 8-bit and 16-bits instr 1720
 for i in 0 to 2*SIMD-1 loop 1721
 dsp_out_shifter_results(f)(15+16*(i) downto 16*(i)) <= dsp_in_shifter_operand_lat_wire(f)(15 +16*(i) downto 16*(i)) or 1722
(dsp_int_shifter_operand(f)(15+16*(i) downto 16*(i)) and dsp_shift_enabler(h)(15 downto 0)); 1723
 end loop; 1724
 elsif MVTYPE_DSP(h) = "00" then 1725
 for i in 0 to 4*SIMD-1 loop 1726
 dsp_out_shifter_results(f)(7+8*(i) downto 8*(i)) <= dsp_in_shifter_operand_lat_wire(f)(7 +8*(i) downto 8*(i)) or 1727
(dsp_int_shifter_operand(f)(7+8*(i) downto 8*(i)) and dsp_shift_enabler(h)(7 downto 0)); 1728
 end loop; 1729
 end if; 1730
 end if; 1731
 end loop; 1732
 end if; 1733
 end process; 1734
 1735
 fsm_DSP_shifter_comb : process(all) 1736
 variable h : integer; 1737
 begin 1738
 dsp_in_shifter_operand_lat_wire(f) <= (others => '0'); 1739
 for g in 0 to (ACCL_NUM - FU_NUM) loop 1740
 if multithreaded_accl_en = 1 then 1741
 h := g; -- set the spm rd/wr ports equal to the "for-loop" 1742
 elsif multithreaded_accl_en = 0 then 1743
 h := f; -- set the spm rd/wr ports equal to the "for-generate" 1744
 end if; 1745
 dsp_shift_enabler(h) <= (others => '0'); 1746
 if shift_en(h) = '1' and halt_dsp_lat(h) = '0' then 1747
 if MVTYPE_DSP(h) = "01" then 1748
 dsp_shift_enabler(h)(15 - to_integer(unsigned(dsp_in_shift_amount(h)(3 downto 0))) downto 0) <= (others => '1'); 1749
 elsif MVTYPE_DSP(h) = "00" then 1750
 dsp_shift_enabler(h)(7 - to_integer(unsigned(dsp_in_shift_amount(h)(2 downto 0))) downto 0) <= (others => '1'); 1751
 end if; 1752
 if (decoded_instruction_DSP_lat(h)(KSRAV_bit_position) = '1' or decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1') and 1753
 MVTYPE_DSP(h) = "10" then -- 32-bit sign extension for for srl in stage 1 1754
 for i in 0 to SIMD-1 loop 1755
 --dsp_in_shifter_operand_lat(f)(31+32*(i) downto 31 - to_integer(unsigned(dsp_in_shift_amount(h)(4 downto 0)))+32*(i)) <= (others => 1756
dsp_in_sign_bits(h)(3+4*(i))); 1757
 dsp_in_shifter_operand_lat_wire(f)(31+32*(i) downto 31 - to_integer(unsigned(dsp_in_shift_amount(f)(4 downto 0)))+32*(i)) <= 1758

148

 dsp_in_shifter_operand_lat(f)(31+32*(i) downto 31 - to_integer(unsigned(dsp_in_shift_amount(f)(4 downto 0)))+32*(i)); 1759
 end loop; 1760
 elsif (decoded_instruction_DSP_lat(h)(KSRAV_bit_position) = '1' or decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1') and 1761
 MVTYPE_DSP(h) = "01" then -- 16-bit sign extension for for srl in stage 1 1762
 for i in 0 to 2*SIMD-1 loop 1763
 --dsp_in_shifter_operand_lat(f)(15+16*(i) downto 15 - to_integer(unsigned(dsp_in_shift_amount(h)(3 downto 0)))+16*(i)) <= (others => 1764
dsp_in_sign_bits(h)(1+2*(i))); 1765
 dsp_in_shifter_operand_lat_wire(f)(15+16*(i) downto 15 - to_integer(unsigned(dsp_in_shift_amount(f)(3 downto 0)))+16*(i)) <= 1766
 dsp_in_shifter_operand_lat(f)(15+16*(i) downto 15 - to_integer(unsigned(dsp_in_shift_amount(f)(3 downto 0)))+16*(i)); 1767
 end loop; 1768
 elsif (decoded_instruction_DSP_lat(h)(KSRAV_bit_position) = '1' or decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1') and 1769
 MVTYPE_DSP(h) = "00" then -- 8-bit sign extension for for srl in stage 1 1770
 for i in 0 to 4*SIMD-1 loop 1771
 --dsp_in_shifter_operand_lat(f)(7+8*(i) downto 7 - to_integer(unsigned(dsp_in_shift_amount(h)(2 downto 0)))+8*(i)) <= (others => 1772
dsp_in_sign_bits(h)(i)); 1773
 dsp_in_shifter_operand_lat_wire(f)(7+8*(i) downto 7 - to_integer(unsigned(dsp_in_shift_amount(f)(2 downto 0)))+8*(i)) <= 1774
 dsp_in_shifter_operand_lat(f)(7+8*(i) downto 7 - to_integer(unsigned(dsp_in_shift_amount(f)(2 downto 0)))+8*(i)); 1775
 end loop; 1776
 end if; 1777
 end if; 1778
 end loop; 1779
 end process; 1780
 -- STAGE 1 -- 1781
 fsm_MUL_STAGE_1 : process(clk_i,rst_ni) 1782
 variable h : integer; 1783
 begin 1784
 if rst_ni = '0' then 1785
 elsif rising_edge(clk_i) then 1786
 for g in 0 to (ACCL_NUM - FU_NUM) loop 1787
 if multithreaded_accl_en = 1 then 1788
 h := g; -- set the spm rd/wr ports equal to the "for-loop" 1789
 elsif multithreaded_accl_en = 0 then 1790
 h := f; -- set the spm rd/wr ports equal to the "for-generate" 1791
 end if; 1792
 if halt_dsp_lat(h) = '0' then 1793
 if mul_en(h) = '1' and (mul_stage_1_en(h) = '1' or recover_state_wires(h) = '1') then 1794
 for i in 0 to SIMD-1 loop 1795
 -- Unwinding the loop: 1796
 -- (1) The impelemtation in the loop does multiplication for KDOTP32, and KDOTP16 using only 16-bit multipliers. "A*B" = 1797
[Ahigh*(2^16) + Alow]*[Bhigh*(2^16) + Blow] 1798
 -- (2) Expanding this equation "[Ahigh*(2^16) + Alow]*[Bhigh*(2^16) + Blow]" gives: "Ahigh*Bhigh*(2^32) + Ahigh*Blow*(2^16) + 1799
Alow*Bhigh*(2^16) + Alow*Blow" which are the terms being stored in dsp_out_mul_results 1800
 -- (3) Partial Multiplication 1801
 -- (a) "dsp_mul_a" <= Ahigh*Bhigh 1802
 -- (b) "dsp_mul_b" <= Ahigh*Blow 1803
 -- (c) "dsp_mul_c" <= Alow*Bhigh 1804
 -- (d) "dsp_mul_d" <= Alow*Blow 1805
 -- (4) "dsp_mul_a" is shifted by 32 bits to the left, "dsp_mul_b" and "dsp_mul_c" are shifted by 16-bits to the left, "dsp_mul_d" is not shifted 1806
 -- (5) For 16-bit and 8-bit muls, the FUNCT_SELECT_MASK is set to x"00000000" blocking the terms in "dsp_mul_b" and "dsp_mul_c". 1807
For executing 32-bit muls , we set the mask to x"FFFFFFFF" 1808
 dsp_mul_a(f)(31+32*(i) downto 32*(i)) <= std_logic_vector(unsigned(dsp_in_mul_operands(f)(0)(15+16*(2*i+1) downto 16*(2*i+1))) * 1809
unsigned(dsp_in_mul_operands(f)(1)(15+16*(2*i+1) downto 16*(2*i+1)))); 1810
 dsp_mul_b(f)(31+32*(i) downto 32*(i)) <= std_logic_vector((unsigned(dsp_in_mul_operands(f)(0)(16*(2*i+1) - 1 downto 16*(2*i))) * 1811
unsigned(dsp_in_mul_operands(f)(1)(15+16*(2*i+1) downto 16*(2*i+1)))) and unsigned(FUNCT_SELECT_MASK(h))); 1812
 dsp_mul_c(f)(31+32*(i) downto 32*(i)) <= std_logic_vector((unsigned(dsp_in_mul_operands(f)(0)(15+16*(2*i+1) downto 16*(2*i+1))) * 1813
unsigned(dsp_in_mul_operands(f)(1)(16*(2*i+1) - 1 downto 16*(2*i)))) and unsigned(FUNCT_SELECT_MASK(h))); 1814
 dsp_mul_d(f)(31+32*(i) downto 32*(i)) <= std_logic_vector(unsigned(dsp_in_mul_operands(f)(0)(16*(2*i+1) - 1 downto 16*(2*i))) * 1815
unsigned(dsp_in_mul_operands(f)(1)(16*(2*i+1) - 1 downto 16*(2*i)))); 1816
 end loop; 1817
 end if; 1818
 end if; 1819
 end loop; 1820
 end if; 1821
 end process; 1822
 1823
 fsm_MUL_STAGE_1_COMB : process(all) 1824
 variable h : integer; 1825
 begin 1826
 mul_tmp_a(f) <= (others => (others => '0')); 1827
 mul_tmp_b(f) <= (others => (others => '0')); 1828
 mul_tmp_c(f) <= (others => (others => '0')); 1829
 mul_tmp_d(f) <= (others => (others => '0')); 1830
 for g in 0 to (ACCL_NUM - FU_NUM) loop 1831
 if multithreaded_accl_en = 1 then 1832
 h := g; -- set the spm rd/wr ports equal to the "for-loop" 1833
 elsif multithreaded_accl_en = 0 then 1834
 h := f; -- set the spm rd/wr ports equal to the "for-generate" 1835
 end if; 1836

149

 -- KDOTP and KSVMUL instructions are handeled here 1837
 -- this part right here shifts the intermidiate resutls appropriately, and then accumulates them in order to get the final mul result 1838
 if mul_en(h) = '1' and (mul_stage_2_en(h) = '1' or recover_state_wires(h) = '1') then 1839
 for i in 0 to SIMD-1 loop 1840
 if MVTYPE_DSP(h) /= "10" then 1841
 -- 1842
 mul_tmp_a(f)(i) <= (dsp_mul_a(f)(15+16*(2*i) downto 16*(2*i)) & x"0000"); 1843
 mul_tmp_d(f)(i) <= (x"0000" & dsp_mul_d(f)(15+16*(2*i) downto 16*(2*i))); 1844
 -- 1845
 elsif MVTYPE_DSP(h) = "10" then 1846
 -- mul_tmp_a(f)(i) <= (dsp_mul_a(f)(31+32*(2*i) downto 31*(2*i)) & x"0000"); -- The upper 32-bit results of the multiplication are 1847
discarded (Ah*Bh) 1848
 mul_tmp_b(f)(i) <= (dsp_mul_b(f)(15+16*(2*i) downto 16*(2*i)) & x"0000"); -- Modified to only add the partail result to the lower 32-1849
bits (Ah*Bl) 1850
 mul_tmp_c(f)(i) <= (dsp_mul_c(f)(15+16*(2*i) downto 16*(2*i)) & x"0000"); -- Modified to only add the partail result to the lower 32-1851
bits (Al*Bh) 1852
 mul_tmp_d(f)(i) <= (dsp_mul_d(f)(31+32*(i) downto 32*(i))); -- This is the lower 32-bit result of the partial mmultiplication 1853
(Al*Bl) 1854
 end if; 1855
 end loop; 1856
 end if; 1857
 end loop; 1858
 end process; 1859
 1860
 -- STAGE 2 -- 1861
 fsm_MUL_STAGE_2 : process(clk_i, rst_ni) 1862
 variable h : integer; 1863
 begin 1864
 if rst_ni = '0' then 1865
 elsif rising_edge(clk_i) then 1866
 for g in 0 to (ACCL_NUM - FU_NUM) loop 1867
 if multithreaded_accl_en = 1 then 1868
 h := g; -- set the spm rd/wr ports equal to the "for-loop" 1869
 elsif multithreaded_accl_en = 0 then 1870
 h := f; -- set the spm rd/wr ports equal to the "for-generate" 1871
 end if; 1872
 -- Accumulate the partial multiplications to make up bigger multiplications 1873
 if mul_en(h) = '1' and (mul_stage_2_en(h) = '1' or recover_state_wires(h) = '1') and halt_dsp_lat(h) = '0' then 1874
 for i in 0 to SIMD-1 loop 1875
 dsp_out_mul_results(f)((Data_Width-1)+Data_Width*(i) downto Data_Width*(i)) <= (std_logic_vector(unsigned(mul_tmp_a(f)(i)) + 1876
unsigned(mul_tmp_b(f)(i)) + unsigned(mul_tmp_c(f)(i)) + unsigned(mul_tmp_d(f)(i)))); 1877
 end loop; 1878
 end if; 1879
 end loop; 1880
 end if; 1881
 end process; 1882
 1883
 fsm_RELU : process(clk_i, rst_ni) 1884
 variable h : integer; 1885
 begin 1886
 if rst_ni = '0' then 1887
 elsif rising_edge(clk_i) then 1888
 for g in 0 to (ACCL_NUM - FU_NUM) loop 1889
 if multithreaded_accl_en = 1 then 1890
 h := g; -- set the spm rd/wr ports equal to the "for-loop" 1891
 elsif multithreaded_accl_en = 0 then 1892
 h := f; -- set the spm rd/wr ports equal to the "for-generate" 1893
 end if; 1894
 if relu_en(h) = '1' then 1895
 if (relu_stage_1_en(h) = '1' or recover_state_wires(h) = '1') and halt_dsp_lat(h) = '0' then 1896
 if MVTYPE_DSP(h) = "10" then 1897
 for i in 0 to SIMD-1 loop 1898
 if dsp_in_relu_operands(f)(31+32*(i)) = '1' then 1899
 dsp_out_relu_results(f)(31+32*(i) downto 32*(i)) <= (others => '0'); 1900
 else 1901
 dsp_out_relu_results(f)(31+32*(i) downto 32*(i)) <= dsp_in_relu_operands(f)(31+32*(i) downto 32*(i)); 1902
 end if; 1903
 end loop; 1904
 elsif MVTYPE_DSP(h) = "01" then 1905
 for i in 0 to 2*SIMD-1 loop 1906
 if dsp_in_relu_operands(f)(15+16*(i)) = '1' then 1907
 dsp_out_relu_results(f)(15+16*(i) downto 16*(i)) <= (others => '0'); 1908
 else 1909
 dsp_out_relu_results(f)(15+16*(i) downto 16*(i)) <= dsp_in_relu_operands(f)(15+16*(i) downto 16*(i)); 1910
 end if; 1911
 end loop; 1912
 elsif MVTYPE_DSP(h) = "00" then 1913
 for i in 0 to 4*SIMD-1 loop 1914

150

 if dsp_in_relu_operands(f)(7+8*(i)) = '1' then 1915
 dsp_out_relu_results(f)(7+8*(i) downto 8*(i)) <= (others => '0'); 1916
 else 1917
 dsp_out_relu_results(f)(7+8*(i) downto 8*(i)) <= dsp_in_relu_operands(f)(7+8*(i) downto 8*(i)); 1918
 end if; 1919
 end loop; 1920
 end if; 1921
 end if; 1922
 end if; 1923
 end loop; 1924
 end if; 1925
 end process; 1926
 1927
end generate FU_replicated; 1928
 1929
 ACCUM_STG : ACCUMULATOR 1930
 port map(1931
 clk_i => clk_i, 1932
 rst_ni => rst_ni, 1933
 MVTYPE_DSP => MVTYPE_DSP, 1934
 accum_stage_1_en => accum_stage_1_en, 1935
 accum_stage_2_en => accum_stage_2_en, 1936
 recover_state_wires => recover_state_wires, 1937
 halt_dsp_lat => halt_dsp_lat, 1938
 state_DSP => state_DSP, 1939
 decoded_instruction_DSP_lat => decoded_instruction_DSP_lat, 1940
 dsp_in_accum_operands => dsp_in_accum_operands, 1941
 dsp_out_accum_results => dsp_out_accum_results 1942
); 1943
 1944
end DSP; 1945
-- 1946
-- END of DSP architecture -- 1947
--1948

3. Scratchpad Memory Interface (SPI)

-- SCI pinout -------------------- 1
entity Scratchpad_memory_interface is 2
 port (3
 clk_i, rst_ni : in std_logic; 4
 data_rvalid_i : in std_logic; 5
 state_LS : in fsm_LS_states; 6
 sc_word_count_wire : in integer; 7
 spm_bcast : in std_logic; 8
 harc_LS_wire : in accl_range; 9
 dsp_we_word : in array_2d(accl_range)(SIMD-1 downto 0); 10
 ls_sc_data_write_wire : in std_logic_vector(Data_Width-1 downto 0); 11
 dsp_sc_data_write_wire : in array_2d(accl_range)(SIMD_Width-1 downto 0); 12
 ls_sc_read_addr : in std_logic_vector(Addr_Width-(SIMD_BITS+3) downto 0); 13
 ls_sc_write_addr : in std_logic_vector(Addr_Width-(SIMD_BITS+3) downto 0); 14
 dsp_sc_write_addr : in array_2d(accl_range)(Addr_Width-1 downto 0); 15
 ls_sci_req : in std_logic_vector(SPM_NUM-1 downto 0); 16
 ls_sci_we : in std_logic_vector(SPM_NUM-1 downto 0); 17
 dsp_sci_req : in array_2d(accl_range)(SPM_NUM-1 downto 0); 18
 dsp_sci_we : in array_2d(accl_range)(SPM_NUM-1 downto 0); 19
 kmemld_inflight : in std_logic_vector(SPM_NUM-1 downto 0); 20
 kmemstr_inflight : in std_logic_vector(SPM_NUM-1 downto 0); 21
 dsp_to_sc : in array_3d(accl_range)(SPM_NUM-1 downto 0)(1 downto 0); 22
 dsp_sc_read_addr : in array_3d(accl_range)(1 downto 0)(Addr_Width-1 downto 0); 23
 dsp_sc_data_read : out array_3d(accl_range)(1 downto 0)(SIMD_Width-1 downto 0); 24
 ls_sc_data_read_wire : out std_logic_vector(Data_Width-1 downto 0); 25
 ls_sci_wr_gnt : out std_logic; 26
 dsp_sci_wr_gnt : out std_logic_vector(accl_range); 27
 ls_data_gnt_i : out std_logic_vector(SPM_NUM-1 downto 0); 28
 dsp_data_gnt_i : out std_logic_vector(accl_range) 29
); 30
end entity; -- 31
 32
 33
architecture SCI of Scratchpad_memory_interface is 34
 35
signal dsp_sc_data_write_int_wire : array_2d(accl_range)(SIMD_Width-1 downto 0); 36
signal ls_sc_data_read_int_wire : array_2d(accl_range)(Data_Width-1 downto 0); 37
signal rd_offset : array_3d(accl_range)(1 downto 0)(SIMD-1 downto 0); 38

151

signal wr_offset : array_2d(accl_range)(SIMD-1 downto 0); 39
signal dsp_sc_data_read_int_wire : array_3d(accl_range)(1 downto 0)(SIMD_Width-1 downto 0); 40
signal dsp_sc_read_addr_lat : array_3d(accl_range)(1 downto 0)(SIMD_BITS+1 downto 0); -- Only need the lower part to check for the word 41
access 42
signal dsp_sci_req_lat : array_2d(accl_range)(SPM_NUM-1 downto 0); 43
signal dsp_to_sc_lat : array_3d(accl_range)(SPM_NUM-1 downto 0)(1 downto 0); 44
signal dsp_sc_data_read_wire : array_3d(accl_range)(1 downto 0)(SIMD_Width-1 downto 0); 45
signal ls_sc_data_read_replicated : array_2d(accl_range)(Data_Width-1 downto 0); 46
signal ls_sc_data_read_wire_replicated : array_2d(accl_range)(Data_Width-1 downto 0); 47
signal dsp_sci_wr_gnt_lat : std_logic_vector(accl_range); 48
signal ls_sci_wr_gnt_replicated : std_logic_vector(accl_range); 49
signal ls_sci_wr_gnt_lat_replicated : std_logic_vector(accl_range); 50
signal halt_dsp : std_logic_vector(accl_range); 51
signal sc_word_count : array_2d_int(accl_range); 52
signal sc_we : array_2d(accl_range)(SIMD*SPM_NUM-1 downto 0); 53
signal sc_addr_wr : array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Addr_Width-(SIMD_BITS+3) downto 0); 54
signal sc_addr_rd : array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Addr_Width-(SIMD_BITS+3) downto 0); 55
signal sc_data_wr : array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Data_Width-1 downto 0); 56
signal sc_data_rd : array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Data_Width-1 downto 0); 57
 58
component Scratchpad_memory 59
 port(60
 clk_i : in std_logic; 61
 sc_we : in array_2d(accl_range)(SIMD*SPM_NUM-1 downto 0); 62
 sc_addr_wr : in array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Addr_Width-(SIMD_BITS+3) downto 0); 63
 sc_addr_rd : in array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Addr_Width-(SIMD_BITS+3) downto 0); 64
 sc_data_wr : in array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Data_Width-1 downto 0); 65
 sc_data_rd : out array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Data_Width-1 downto 0) 66
); 67
end component; 68
-- 69
-------------------------------- SCI BEGIN --- 70
begin 71
 72
 73
 SC : Scratchpad_memory 74
 port map(75
 sc_we => sc_we, 76
 clk_i => clk_i, 77
 sc_addr_rd => sc_addr_rd, 78
 sc_addr_wr => sc_addr_wr, 79
 sc_data_wr => sc_data_wr, 80
 sc_data_rd => sc_data_rd 81
); 82
 83
 SPM_replicated : for h in accl_range generate 84
 85
 SCI_Exec_Unit : process(clk_i, rst_ni) -- single cycle unit, fully synchronous 86
 begin 87
 if rst_ni = '0' then 88
 dsp_sc_read_addr_lat(h) <= (others => (others => '0')); 89
 dsp_to_sc_lat(h) <= (others => (others => '0')); 90
 ls_data_gnt_i <= (others => '0'); 91
 dsp_sci_req_lat(h) <= (others => '0'); 92
 sc_word_count(h) <= 0; 93
 elsif rising_edge(clk_i) then 94
 halt_dsp(h) <= '0'; 95
 dsp_sci_wr_gnt_lat(h) <= dsp_sci_wr_gnt(h); 96
 ls_sci_wr_gnt_lat_replicated(h) <= ls_sci_wr_gnt_replicated(h); 97
 dsp_sci_req_lat(h) <= dsp_sci_req(h); 98
 dsp_to_sc_lat(h) <= dsp_to_sc(h); 99
 if harc_LS_wire = h or spm_bcast = '1' then 100
 sc_word_count(h) <= sc_word_count_wire; 101
 end if; 102
 if unsigned(ls_data_gnt_i) /= 0 then 103
 ls_sc_data_read_replicated(h) <= ls_sc_data_read_wire_replicated(h); 104
 end if; 105
 if (dsp_sci_wr_gnt(h) = '0' and dsp_sci_we(h) /= (0 to SPM_NUM-1 => '0')) then 106
 halt_dsp(h) <= '1'; 107
 end if; 108
 if halt_dsp(h) = '0' then 109
 dsp_sc_data_read(h) <= dsp_sc_data_read_wire(h); 110
 end if; 111
 112
 for i in 0 to SPM_NUM-1 loop 113
 if ls_sci_req(i) = '1' then -- AAA most probably useless 114
 ls_data_gnt_i(i) <= '1'; 115
 elsif ls_sci_req(i) = '0' then 116

152

 ls_data_gnt_i(i) <= '0'; 117
 end if; 118
 if dsp_sci_req(h)(i) = '1' then 119
 for k in 0 to 1 loop 120
 dsp_sc_read_addr_lat(h)(k) <= dsp_sc_read_addr(h)(k)(SIMD_BITS+1 downto 0); 121
 end loop; 122
 end if; 123
 end loop; 124
 end if; 125
 end process; 126
 127
 ls_sc_data_read_wire <= ls_sc_data_read_wire_replicated(harc_LS_wire); 128
 ls_sci_wr_gnt <= ls_sci_wr_gnt_replicated(harc_LS_wire); 129
 130
 SCI_Exec_Unit_comb : process(all) 131
 132
 begin 133
 dsp_data_gnt_i(h) <= '0'; 134
 for l in 0 to (SIMD*SPM_NUM)-1 loop 135
 sc_we(h)(l) <= '0'; 136
 sc_addr_rd(h)(l) <= (others => '0'); 137
 sc_addr_wr(h)(l) <= (others => '0'); 138
 sc_data_wr(h)(l) <= (others => '0'); 139
 end loop; 140
 rd_offset(h) <= (others => (others => '0')); 141
 dsp_sc_data_read_int_wire(h) <= (others => (others => '0')); 142
 wr_offset(h) <= (others => '0'); 143
 ls_sci_wr_gnt_replicated(h) <= ls_sci_wr_gnt_lat_replicated(h); 144
 dsp_sci_wr_gnt(h) <= dsp_sci_wr_gnt_lat(h); 145
 ls_sc_data_read_wire_replicated(h) <= ls_sc_data_read_replicated(h); 146
 dsp_sc_data_write_int_wire(h) <= (others => '0'); 147
 dsp_sc_data_read_wire(h) <= dsp_sc_data_read(h); 148
 for i in 0 to SPM_NUM-1 loop -- Loop through scratchpads A,B,C,D 149
 150
 if data_rvalid_i = '1' then -- LS write port 151
 if ls_sci_req(i) = '1' and ls_sci_we(i) = '1' and ls_sci_wr_gnt = '1' then 152
 if harc_LS_wire = h or spm_bcast = '1' then 153
 sc_we(h)((SIMD)*i + sc_word_count(h)) <= '1'; 154
 sc_data_wr(h)(sc_word_count(h) + (SIMD)*i) <= ls_sc_data_write_wire(31 downto 0); 155
 sc_addr_wr(h)(sc_word_count(h) + (SIMD)*i) <= ls_sc_write_addr; 156
 end if; 157
 end if; 158
 end if; 159
 160
 if ls_data_gnt_i(i) = '1' then 161
 if harc_LS_wire = h then 162
 ls_sc_data_read_wire_replicated(h) <= sc_data_rd(h)((SIMD)*i + sc_word_count(h)); -- sc_word_count because data being read is delayed 163
one cycle after the request 164
 end if; 165
 end if; 166
 167
 if ls_sci_req(i) = '1' then -- LS read port 168
 if harc_LS_wire = h then 169
 sc_addr_rd(h)(sc_word_count_wire + (SIMD)*i) <= ls_sc_read_addr; 170
 end if; 171
 end if; 172
 173
 if dsp_sci_we(h)(i) = '1' and dsp_sci_wr_gnt(h) = '1' then -- DSP write port; 174
 for j in 0 to SIMD-1 loop -- Loop through the sub-scratchpads 175
 sc_we(h)((SIMD)*i+j) <= dsp_we_word(h)(j); 176
 sc_addr_wr(h)((SIMD)*i+j) <= std_logic_vector(unsigned(dsp_sc_write_addr(h)(Addr_Width - 1 downto SIMD_BITS+2)) + wr_offset(h)(j)); 177
 sc_data_wr(h)((SIMD)*i+j) <= dsp_sc_data_write_int_wire(h)(31+32*j downto 32*j); 178
 end loop; 179
 end if; 180
 181
 if dsp_sci_req(h)(i) = '1' and dsp_to_sc(h)(i)(0) = '1' and dsp_data_gnt_i(h) = '1' then -- DSP read port 1 182
 for j in 0 to SIMD-1 loop -- Loop through the sub-scratchpads 183
 sc_addr_rd(h)((SIMD)*i+j) <= std_logic_vector(unsigned(dsp_sc_read_addr(h)(0)(Addr_Width - 1 downto SIMD_BITS+2)) + 184
rd_offset(h)(0)(j)); 185
 end loop; 186
 end if; 187
 for j in 0 to SIMD-1 loop -- Loop through the sub-scratchpads 188
 if dsp_sci_req_lat(h)(i) = '1' and dsp_to_sc_lat(h)(i)(0) = '1' then -- DSP read port 1 189
 dsp_sc_data_read_int_wire(h)(0)(31+32*j downto 32*j) <= sc_data_rd(h)((SIMD)*i+j); 190
 end if; 191
 end loop; 192
 193
 if dsp_sci_req(h)(i) = '1' and dsp_to_sc(h)(i)(1) = '1' and dsp_data_gnt_i(h) = '1' then -- DSP read port 2 194

153

 for j in 0 to SIMD-1 loop -- Loop through the sub-scratchpads 195
 sc_addr_rd(h)((SIMD)*i+j) <= std_logic_vector(unsigned(dsp_sc_read_addr(h)(1)(Addr_Width - 1 downto SIMD_BITS+2)) + 196
rd_offset(h)(1)(j)); 197
 end loop; 198
 end if; 199
 for j in 0 to SIMD-1 loop -- Loop through the sub-scratchpads 200
 if dsp_sci_req_lat(h)(i) = '1' and dsp_to_sc_lat(h)(i)(1) = '1' then -- DSP read port 2 201
 dsp_sc_data_read_int_wire(h)(1)(31+32*j downto 32*j) <= sc_data_rd(h)((SIMD)*i+j); 202
 end if; 203
 end loop; 204
 205
 -- Allow a DSP read only if the SPM(i) being loaded belongs to another thread and the instruction is not a broadcast load (data hazard) 206
 if kmemld_inflight(i) = '1' and dsp_sci_req(h)(i) = '1' and h /= harc_LS_wire and spm_bcast = '0' then 207
 dsp_data_gnt_i(h) <= '1'; 208
 -- Allow a dsp read only when it is not currently being read by a kmemstr becuase we only have one read port (structural hazard) 209
 elsif kmemstr_inflight(i) = '1' and dsp_sci_req(h)(i) = '1' and h /= harc_LS_wire then 210
 dsp_data_gnt_i(h) <= '1'; 211
 -- Allow a DSP read if there are no current LSU accesses to SPM(i) 212
 elsif kmemld_inflight(i) = '0' and kmemstr_inflight(i) = '0' and dsp_sci_req(h)(i) = '1' then 213
 dsp_data_gnt_i(h) <= '1'; 214
 end if; 215
 216
 if dsp_sci_we(h) = (0 to SPM_NUM-1 => '0') then 217
 dsp_sci_wr_gnt(h) <= '0'; 218
 -- Allow the DSP to write only if the kmemld is filling the SPM(i) of another thread 219
 elsif kmemld_inflight(i) = '1' and dsp_sci_we(h)(i) = '1' and h /= harc_LS_wire and spm_bcast = '0' then 220
 dsp_sci_wr_gnt(h) <= '1'; 221
 -- Allow the DSP to write only when the kmemstr is reading SPM(i) of another thread 222
 elsif kmemstr_inflight(i) = '1' and dsp_sci_we(h)(i) = '1' and h /= harc_LS_wire then 223
 dsp_sci_wr_gnt(h) <= '1'; 224
 -- Allow the DSP to write if there are no current LSU accesses to SPM(i) 225
 elsif kmemld_inflight(i) = '0' and kmemstr_inflight(i) = '0' and dsp_sci_we(h)(i) = '1' then 226
 dsp_sci_wr_gnt(h) <= '1'; 227
 end if; 228
 229
 if kmemld_inflight(i) = '1' and dsp_sci_we(h)(i) = '0' then -- One LSU write enable request will put the ls_sci_wr_gnt to '1' if there are no ongoing 230
DSP writes to the same scratchpad 231
 ls_sci_wr_gnt_replicated(h) <= '1'; 232
 elsif kmemld_inflight(i) = '1' and dsp_sci_we(h)(i) = '1' and (h /= harc_LS_wire) and spm_bcast = '0' then 233
 ls_sci_wr_gnt_replicated(h) <= '1'; 234
 elsif unsigned(kmemld_inflight) = 0 then -- All the ls_sci_we must be zero in-order to switch the ls_sci_wr_gnt back to '0' 235
 ls_sci_wr_gnt_replicated(h) <= '0'; 236
 end if; 237
 end loop; 238
 239
 -- 240
 -- ###### ### ######## ### ####### ####### ####### ####### ###### ####### ####### -- 241
 -- ## # # # ## # # ## # ## ## ## ## # ## # ## ## # -- 242
 -- ## # ##### ## ##### ####### ####### ### ## ## ###### ## # ####### ####### -- 243
 -- ## # ## ## ## ## ## ## ## ## ## ## ## ## ## # ## ## ## -- 244
 -- ###### ## ## ## ## ## ## ## ####### ####### ## ## ###### ####### ## ## -- 245
 -- 246
 247
 for i in 0 to SIMD-1 loop 248
 if (to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))) = 4*i) and (i /= 0) then 249
 wr_offset(h)(i-1 downto 0) <= (others => '1'); 250
 end if; 251
 end loop; 252
 for i in 0 to SIMD-1 loop 253
 if (to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))) = 4*i) then 254
 for j in 0 to SIMD-1 loop 255
 if j <= (SIMD-1)-i then 256
 dsp_sc_data_write_int_wire(h)(31+32*(j+i) downto 32*(j+i)) <= dsp_sc_data_write_wire(h)(31+32*j downto 32*j); 257
 elsif j > (SIMD-1)-i then 258
 dsp_sc_data_write_int_wire(h)(31+32*(j-(SIMD-1)+(i-1)) downto 32*(j-(SIMD-1)+(i-1))) <= dsp_sc_data_write_wire(h)(31+32*j downto 259
32*j); 260
 end if; 261
 end loop; 262
 end if; 263
 end loop; 264
 265
 for k in 0 to 1 loop 266
 for i in 0 to SIMD-1 loop 267
 if (to_integer(unsigned(dsp_sc_read_addr(h)(k)(SIMD_BITS+1 downto 0))) = 4*i) and (i /= 0) then 268
 rd_offset(h)(k)(i-1 downto 0) <= (others => '1'); 269
 end if; 270
 end loop; 271
 for i in 0 to SIMD-1 loop 272

154

 if (to_integer(unsigned(dsp_sc_read_addr_lat(h)(k))) = 4*i) then 273
 for j in 0 to SIMD-1 loop 274
 if j >= i then 275
 dsp_sc_data_read_wire(h)(k)(31+32*(j-i) downto 32*(j-i)) <= dsp_sc_data_read_int_wire(h)(k)(31+32*j downto 32*j); 276
 elsif j < i then 277
 dsp_sc_data_read_wire(h)(k)(31+32*((SIMD-1)-i+(j+1)) downto 32*((SIMD-1)-i+(j+1))) <= dsp_sc_data_read_int_wire(h)(k)(31+32*j 278
downto 32*j); 279
 end if; 280
 end loop; 281
 end if; 282
 end loop; 283
 end loop; 284
 285
 end process; 286
 287
 end generate SPM_replicated; 288
 289
end SCI; 290
-- 291
-- END of SCI architecture --- 292
--293

4. Scratchpad Memories

--- 1
entity Scratchpad_memory is 2
 port(3
 clk_i : in std_logic; 4
 sc_we : in array_2d(accl_range)(SIMD*SPM_NUM-1 downto 0); 5
 sc_addr_wr : in array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Addr_Width-(SIMD_BITS+3) downto 0); 6
 sc_addr_rd : in array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Addr_Width-(SIMD_BITS+3) downto 0); 7
 sc_data_wr : in array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Data_Width-1 downto 0); 8
 sc_data_rd : out array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Data_Width-1 downto 0) 9
); 10
end Scratchpad_memory; 11
 12
--- 13
architecture SC of Scratchpad_memory is 14
 15
signal mem : array_3d(ACCL_NUM*SIMD*SPM_NUM-1 downto 0)(2**(Addr_Width-(SIMD_BITS+2))-1 downto 0)(Data_Width-1 downto 0); 16
signal h : std_logic_vector(ACCL_NUM*SIMD*SPM_NUM downto 0); 17
attribute ram_style : string; 18
attribute ram_style of mem : signal is "block"; 19
 20
begin 21
 22
 --------- replicate logic three times -------------------------------- 23
 spm_replicas : for g in accl_range generate 24
 spm_banks : for h in 0 to SIMD*SPM_NUM -1 generate 25
 26
 write_logic: process(clk_i) -- 27
 begin 28
 if(clk_i'event and clk_i='1') then 29
 sc_data_rd(g)(h) <= mem(g*SIMD*SPM_NUM + h)(to_integer(unsigned(sc_addr_rd(g)(h)))); 30
 if sc_we(g)(h) = '1' then --write mode 31
 mem(g*SIMD*SPM_NUM + h)(to_integer(unsigned(sc_addr_wr(g)(h)))) <= sc_data_wr(g)(h); 32
 end if; -- we 33
 end if; -- clk 34
 end process; 35
 36
 end generate spm_banks; 37
 end generate spm_replicas; 38
 -- end of replicated logic -- 39
 40
end SC; 41

155

Glossary

ANN: Artificial Neural Networks

CNN: Convolutional Neural Networks

CSR: Control and Status Registers

DCNN: Deep Convolutional Neural Networks

DLP: Data Level Parallelism

FPGA: Field Programmable Gate Array

FU: Functional unit (general name for any arithmetic or logic unit)

F0x: Fault tolerant version of the T0 cores designed to make the Klessydra cores reliable in space

environments prone to faults

Harc: (hardware context) a positive integer number identifying a hardware thread in the processing

core.

Hart: hardware thread

IMT: Interleaved Multithreading.

IoT: Internet of Things.

ILP: Instruction Level Parallelism.

IPC: Instructions per Cycle.

IRQ: interrupt request.

ISA: Instruction Set Architecture.

Klessydra: the name of the family of processing cores reported in this manual.

MIPS: Millions of Instructions Per Second.

NT: Number of Active harts in the core

Modelsim: RTL Simulator.

OOO: Out-of-order architecture.

PULP: an open-source multi-core processor architecture.

PULPino: an open-source System-on-Chip single-core microcontroller architecture.

ReLu: Rectified Linear Unit, it rectifies negative values to zero.

RI5CY: Generic four-stage pipeline Riscy core from Pulpino

RISC: Reduced Instruction Set Computing

RISC-V: Open RISC instruction set architecture.

S0: a core belonging to the Klessydra family featuring single-thread execution at minimum hardware

cost

156

SIMD: Single Instruction Multiple Data

SPE: Special Purpose Engine, the engine the executes the SPMU instruction

SPI: Scratchpad Memory Interface, that is the interface that manages the communications between

the SPE, LSU, and SPMs.

SPM: Scratchpad memory, which is a local memory accesses by the LSU and SPE

SPMU: Special Purpose Mathematical Unit, this is the hardware accelerator of the T13, that has two

integrated entities. The SPE and SPI.

T0: an IMT implementation in the Klessydra family, supporting interleaved multiple thread execution

T1: upgraded version of the T0 core designed to widen the target applications of Klessydra through

hardware acceleration

TLP: Thread Level Parallelism

TPS: Thread Pool Size, is the number of hardware threads in the core

TPB: Thread Pool Baseline, is the minimum baseline required to not have any pipeline stalls

Vivado: Software Suite for Synthesizing RTL on XILINX FPGAs

VGG16: A deep fully connected convolutional neural networking algorithm, used for image

recognition

Zero-Riscy: Generic two-stage pipeline Riscy core from Pulpino

157

Bibliography

 [1] Shilov, Anton. "Samsung Completes Development of 5nm EUV Process Technology".

www.anandtech.com.

[2] Shilov, Anton. "TSMC: First 7nm EUV Chips Taped Out, 5nm Risk Production in Q2 2019"

[3] Moore, Gordon E. (1965-04-19). "Cramming more components onto integrated circuits".

Electronics.

[4] Omura, Yasuhisa, Abhijit Mallik, and Naoto Matsuo. MOS Devices for Low-voltage and Low-

energy Applications. John Wiley & Sons, 2017.

[5] Ge, Fen, Ning Wu, Hao Xiao, Yuanyuan Zhang, and Fang Zhou. "Compact Convolutional

Neural Network Accelerator for IoT Endpoint SoC." Electronics 8, no. 5 (2019): 497.

[6] Samie, F.; Bauer, L.; Henkel, J. “From Cloud Down to Things: An Overview of Machine Learn-

ing in Internet of Things”. IEEE Internet Things J. 2019, 4662, 1.

[7]. A. Waterman, K. Asanovic, Ed., The RISC-V Instruction Set Manual - Volume I: User-Level

ISA - Document Ver-sion 2.2, May 2017. [Online] https://riscv.org/specifications/

[8]. A. Waterman, K. Asanovic, Ed., The RISC-V Instruction Set Manual - Volume II: Privileged

ISA - Document Ver-sion 1.10, May 2017. [Online] https://riscv.org/specifications/

[9] RISC-V Cores and SoC Overview". RISC-V. 25 September 2019. Retrieved 5 October 2019.

[10] Rossi, Davide, Francesco Conti, Andrea Marongiu, Antonio Pullini, Igor Loi, Michael

Gautschi, Giuseppe Tagliavini, Alessandro Capotondi, Philippe Flatresse, and Luca Benini. "PULP:

A parallel ultra low power platform for next generation IoT applications." In 2015 IEEE Hot Chips

27 Symposium (HCS), pp. 1-39. IEEE, 2015.

[11] Cheikh, A., Cerutti, G., Mastrandrea, A., Menichelli, F., Olivieri, M., “The microarchitecture

of a multi-threaded RISC-V compliant processing core family for IoT end-nodes”, Proc. of AP-

PLEPIES 2017, Lecture Notes in Electrical Engineering, 2018, Springer.

[12] Abbas, Z.; Mastrandrea, A.; Olivieri, M., A Voltage-Based Leakage Current Calculation

Scheme and its Application to Nanoscale MOSFET and FinFET Standard-Cell Designs, IEEE

Trans. on Very Large Scale Integration (VLSI) Systems, 22(12), pp. 2549-2560, Dec. 2014.

[13] M. Makni, M. Baklouti, S. Niar, M. W. Jmal and M. Abid, "A comparison and performance

evaluation of FPGA soft-cores for embedded multi-core systems," 11th Int. Design & Test Sympo-

sium (IDT), Hammamet, 2016, pp. 154-159.

[14] Trevor Martin, Ed., Designer's Guide to the Cortex-M Processor Family;2nd Edition;

2016. Elsevier.

[15] Olivieri, M., Cheikh, A., Cerutti, G., Mastrandrea, A., & Menichelli, F.,Investigation on the op-

timal pipeline organi-zation in RISC-V multi-threaded soft processor cores. In Proc. of 2017 New

Generation of CAS (NGCAS),(pp. 45-48). IEEE.

https://www.anandtech.com/show/14231/samsung-completes-development-of-5-nm-euv-process-technology
http://www.anandtech.com/
https://www.anandtech.com/show/13445/tsmc-first-7nm-euv-chips-taped-out-5nm-risk-in-q2
https://drive.google.com/file/d/0By83v5TWkGjvQkpBcXJKT1I1TTA/view?usp=sharing
https://www.mdpi.com/2079-9292/8/5/497
https://www.mdpi.com/2079-9292/8/5/497
https://ieeexplore.ieee.org/document/8616889
https://ieeexplore.ieee.org/document/8616889
https://riscv.org/specifications/
https://github.com/riscv/riscv-cores-list

158

[16] Bechara, C., Berhault, A., Ventroux, N., Chevobbe, S., Lhuillier, Y., David, R. and Etiemble,

D., 2011, December. A small footprint interleaved multithreaded processor for embedded systems.

In 2011 18th IEEE International Confer-ence on Electronics, Circuits, and Systems(pp. 685-690).

IEEE.

[17] Traber, A., Zaruba, F., Stucki, S., Pullini, A., Haugou, G., Flamand, E., Gurkaynak, F.K. and

Benini, L., 2016, Janu-ary. PULPino: A small single-core RISC-V SoC. In 3rd RISCV Workshop.

[18] Conti, F. “An open-source microcontroller system based on RISC-V Pulpino free open source

GitHub repository”

[19] Pulpino custom RI5CY toolchain “ri5cy_gnu_toolchain on GitHub featuring patches for

zero_riscy and riscy cores”

[20] Blasi, L., Vigli, F., Cheikh, A., Mastrandrea, A., Menichelli, F., Olivieri, M., A RISC-V Fault-

Tolerant Microcon-troller Core Architecture Based on a Hardware Thread Full-Weak protection and

a Thread-Controlled Watch-Dog Timer, In: Applications in Electronics Pervading Industry, Envi-

ronment and Society. ApplePies. 2019.

[21] S. Gupta, N. Gala, G.S.Madhusudan e V.Kamakoti, «SHAKTI-F: A Fault Tolerant Micropro-

cessor Architecture,» in 2015 IEEE 24th Asian Test Symposium, 2015.

[22] F. Menichelli and M. Olivieri, "Static Minimization of Total Energy Consumption in Memory

Subsystem for Scratchpad-Based Systems-on-Chips," in IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 17, no. 2, pp. 161-171, Feb. 2009

[23] Olivieri, M., Menichelli, F., Mastrandrea, A., Optimal pipeline stage balancing in the presence

of large isolated interconnect delay (2017) Electronics Letters, 53 (4), pp. 229-231.

[24]. Malavenda, C.S., Menichelli, F., Olivieri, M., “Delay-tolerant, low-power protocols for large

security-critical wireless sensor networks”, (2012) Journal of Computer Networks and Communica-

tions.

[25] Malavenda, C.S., Menichelli, F., Olivieri, M., “A regulation-based security evaluation method

for data link in wireless sensor network”, (2014) Journal of Computer Networks and Communica-

tions.

[26]. Malavenda, C.S., Menichelli, F., Olivieri, M., “Wireless and Ad Hoc sensor networks: An in-

dustrial example using delay tolerant, low power protocols for security-critical applications”, (2014)

Lecture Notes in Electrical Engineering, 289, pp. 153-162.

[27] Jim Duffy, “8 Internet things that are not IoT” https://www.networkworld.com/ . June, 26,

2014

[28] Sun, Yi, Ding Liang, Xiaogang Wang, and Xiaoou Tang. "Deepid3: Face recognition with very

deep neural networks." arXiv preprint arXiv:1502.00873 (2015).

[29] Genesys 2 Reference Manual by Digilent, [Online] https://reference.digilentinc.com/refer-

ence/programmable-logic/genesys-2/reference-manual

https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/ri5cy_gnu_toolchain
https://github.com/pulp-platform/ri5cy_gnu_toolchain
https://www.networkworld.com/article/2378581/8-internet-things-that-are-not-iot.html
https://www.networkworld.com/
https://reference.digilentinc.com/reference/programmable-logic/genesys-2/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/genesys-2/reference-manual

159

[30] XILINX 7-Series User Guide and reference manual https://www.xilinx.com/video/fpga/7-se-

ries-fpga-overview.html

[31]Cheikh.A, Klessydra-T02, “A multi-threaded microprocessor interleaving as minimum two

harts, which is pin-to-pin compatible with pulpino riscy cores”

[32] Cheikh.A, Klessydra-T03, “A multi-threaded microprocessor interleaving as minimum three

harts, which is pin-to-pin compatible with pulpino riscy cores”

[33] Cheikh.A Klessydra-T13, “An Extended Version of the T0x multithreaded cores, with custom

vector instructions, and superscalar execution. The core is pin-to-pin compatible with the pulpinor-

iscy cores”

[34] Blasi.L,Vigli,F Klessydra-F03, “A fault tolerant version of the T03x core, using triple

redundancy approach to ensure fault tolerance”

[35] RISC-V GNU Toolchain “ https://github.com/riscv/riscv-gnu-toolchain”

[36] Steinke, Stefan; Lars Wehmeyer; Bo-Sik Lee; Peter Marwedel (2002). "Assigning Program and

Data Objects to Scratchpad for Energy Reduction" (PDF). University of Dortmund. Retrieved 3 Oc-

tober 2013.: "3.2 Scratchpad model .. The scratchpad memory uses software to control the location

assignment of data."

[37] Rajeshwari Banakar, Scratchpad Memory : A Design Alternative for Cache. On-chip memory

in Embedded Systems // CODES'02. May 6–8, 2002

[38] Huthmann, Jens, Julian Oppermann, and Andreas Koch. "Automatic high-level synthesis of

multi-threaded hardware accelerators." In 2014 24th International Conference on Field Program-

mable Logic and Applications (FPL), pp. 1-4. IEEE, 2014.

[39] Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. "NVIDIA Tesla: A

unified graphics and computing architecture." IEEE micro 28, no. 2 (2008): 39-55.

[40] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale

image recognition." arXiv preprint arXiv:1409.1556 (2014).

[41] Tindall, Lucas, Cuong Luong, and Andrew Saad. "Plankton classification using vgg16

network." (2015).

[42] Liu, Bin, Xiaoyun Zhang, Zhiyong Gao, and Li Chen. "Weld Defect Images Classification with

VGG16-Based Neural Network." In International Forum on Digital TV and Wireless Multimedia

Communications, pp. 215-223. Springer, Singapore, 2017.

[43] Rezende, Edmar, Guilherme Ruppert, Tiago Carvalho, Antonio Theophilo, Fabio Ramos, and

Paulo de Geus. "Malicious software classification using VGG16 deep neural network’s bottleneck

features." In Information Technology-New Generations, pp. 51-59. Springer, Cham, 2018.

[44] 7 Series FPGAs Memory Resources User Guide Xilinx

https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pd

f

[45] UltraScale Architecture DSP Slice User Guide - Xilinx

https://www.xilinx.com/video/fpga/7-series-fpga-overview.html
https://www.xilinx.com/video/fpga/7-series-fpga-overview.html
file:///C:/Users/abdal/Documents/T02x
file:///C:/Users/abdal/Documents/T02x
https://github.com/klessydra/T03x
https://github.com/klessydra/T03x
https://github.com/klessydra/T13x
https://github.com/klessydra/T13x
https://github.com/klessydra/T13x
https://github.com/klessydra/F03x
https://github.com/klessydra/F03x
https://github.com/riscv/riscv-gnu-toolchain
http://dent.cecs.uci.edu/~papers/date08/PAPERS/2002/DATE02/PDFFILES/04E_3.PDF
http://dent.cecs.uci.edu/~papers/date08/PAPERS/2002/DATE02/PDFFILES/04E_3.PDF
http://robertdick.org/aeos/reading/banakar-scratchpad.pdf
http://robertdick.org/aeos/reading/banakar-scratchpad.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf

160

“https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf”

[46] SIMD Instructions Considered Harmful “https://www.sigarch.org/simd-instructions-consid-

ered-harmful”

[47] Vector vs SIMD: Dynamic Power Efficiency “https://massivebottleneck.com/2019/02/17/vec-

tor-vs-simd-dynamic-power-efficiency/”

[48] Vivado Design Suite User Guide: Using Constraints “https://www.xilinx.com/support/docu-

mentation/sw_manuals/xilinx2018_1/ug903-vivado-using-constraints.pdf”

[49] R. M. Tomasulo “An Efficient Algorithm for Exploiting Multiple Arithmetic Units” IBM Jour-

nal of Research and Development

[50] J.A. Farrell ; T.C. Fischer “Issue logic for a 600-MHz out-of-order execution microprocessor”

EEE Journal of Solid-State Circuits (Volume: 33 , Issue: 5 , May 1998)

[51] B.A. Gieseke ; R.L. Allmon ; D.W. Bailey ; B.J. Benschneider ; S.M. Britton ; J.D. Clouser ;

H.R. Fair “A 600 MHz superscalar RISC microprocessor with out-of-order execution” 1997 IEEE

International Solids-State Circuits Conference. Digest of Technical Papers

[52] Gautschi, Michael, Pasquale Davide Schiavone, Andreas Traber, Igor Loi, Antonio Pullini, Da-

vide Rossi, Eric Flamand, Frank K. Gürkaynak, and Luca Benini. "Near-threshold RISC-V core

with DSP extensions for scalable IoT endpoint devices." IEEE Transactions on Very Large Scale In-

tegration (VLSI) Systems 25, no. 10 (2017): 2700-2713.

[53] Garofalo, Angelo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca Benini. "PULP-

NN: accelerating quantized neural networks on parallel ultra-low-power RISC-V processors."

Philosophical Transactions of the Royal Society A 378, no. 2164 (2020): 20190155.

https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.sigarch.org/simd-instructions-considered-harmful
https://www.sigarch.org/simd-instructions-considered-harmful
https://massivebottleneck.com/2019/02/17/vector-vs-simd-dynamic-power-efficiency/
https://massivebottleneck.com/2019/02/17/vector-vs-simd-dynamic-power-efficiency/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug903-vivado-using-constraints.pdf
https://ieeexplore.ieee.org/document/5392028/authors
https://ieeexplore.ieee.org/abstract/document/668985
https://ieeexplore.ieee.org/abstract/document/585323
https://ieeexplore.ieee.org/abstract/document/7864441
https://ieeexplore.ieee.org/abstract/document/7864441
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0155
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0155

