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Abstract 
 

The number of IoT devices has greatly increased over the years, so that they have invaded the 

electronic market. IoT describe a device-to-device communication without human interface. A large 

class of these devices are battery powered, and the energy consumption inside them is considered 

critical.  

 

Today’s embedded IoT systems interface multiple peripherals such as sensors that perform continuous 

monitoring of the environment around it, and actuators that are controlled by the embedded systems. 

Also, they interface wireless devices for data transmissions. A part of their job includes some basic 

pre-processing of the data before transmitting it over those wireless networks. Such pre-processing 

“on the edge of the network” minimizes the data to be transmitted over the wireless channels, and 

only transmits the desired outputs.  

 

In front of the increase demand to support pre-processing, such as computer vision and voice 

recognition, on small embedded systems on the edge of the network, they cannot completely satisfy 

those demands due to their little performance 

 

In this study we demonstrate the performance and energy efficiency of interleaved multithreaded 

architectures, which can be used in an embedded system on the edge of the IoT interfacing multiple 

sensors and peripherals, each serviced by a different hardware thread. We show the optimal pipeline 

organization to use in such architectures, and we finally demonstrate how these architectures can be 

exploited to easily improve instruction level parallelism by integrating a convolutional neural 

networking accelerator that can perform very fast vector arithmetic operations, and finally 

benchmarking this accelerator by running a custom implementation of the VGG16 convolutional 

neural network. 

 

The microprocessors presented are a part of a family of processing cores called Klessydra. The 

Klessydra microprocessors were written such that they have a pinout that are 100 percent identical 

with Riscy cores from PULPino SoC. The subset of the Klessydra cores presented in this thesis is 

called the Klessydra-T. The letter ‘T’ indicating that the cores are multithreaded, the Klessydra-T 

subset has two main implementations used throughout this thesis, they are Klessydra-T03 and 

Klessydra-T13. T03 and T13 for short. 

 

The processor cores have been tested with the Modelsim / Questasim simulators. The cores have been 

synthesized on the 7-series FPGAs from Xilinx with the Vivado Synthesis tool. Synthesis and Post-

synthesis simulations have been made. Dynamic Power estimations were calculated by Vivado from 

the power report generated by Modelsim after having simulated a post-synthesis Vivado netlist. FPGA 

synthesis was chosen as our target implementation, as they provide high reconfigurability, which 

allows the user to easily customize their own accelerator and make it adapt accordingly to their 

specific applications. 

 

In our assessment throughout this thesis we nominated the T03 interleaved multithreaded processor 

as our optimal and most balanced pipeline organization. The T03 core had many advantages over 

other architectures, however it was only suitable to be used in control applications. T13 solves this 

problem by implementing superscalar hardware accelerators. A hybrid implementation of the 

hardware accelerator targeting thread level parallelism and slight data level parallelism was the 

approach yielding the highest performance and still maintaining a relatively low energy consumption 

for energy critical environments.  
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Organization of the Dissertation: 
 

Chapter 1 This dissertation starts with the preface that provides a brief literature review 

of IoT devices, and the convergence between cloud computing and embedded systems.  

 

Chapter 2 The second chapter gives an overview of the RISC-V ISA focusing on the 

implemented instruction sets in Klessydra-T, and the custom instructions appended to the 

native RISC-V ISA.  

 

Chapter 3 The third chapter provides an overview of the PULPino SoC, and describes the 

modifications made to the Pulpino environment that made it possible for Klessydra to be 

integrated. 

 

Chapter 4 The fourth chapter introduces the Klessydra-T0. In this chapter we investigate 

the optimal pipeline organization to adopt through a series of experimental and analytical 

studies. Then the building blocks of the Klessydra-T0 will be illustrated, and then we show 

some basic libraries written to compliment the hardware side with some software code. 

 

Chapter 5 The fifth chapter introduces the Klessydra-T1, and shows the hardware 

accelerator added to the T1 core. Then the accelerator is benchmarked when implemented 

in three different approaches, and we deduce which approach is the most ideal to use. The 

accelerator is benchmarked with VGG16 DCNN test, and it is shown how it was 

benchmarked 

 

Chapter 6 The sixth chapter just shows the software suite of the tests that were used to 

benchmark the accelerator in chapter 5. They demonstrate how the convolutions were 

implemented on the accelerator, and a brief display of how the different structures in the 

VGG16 test were written. 

 

Conclusion     We conclude by summarizing the results presented in chapters four and five. 

 

Appendix A Contains the Klessydra technical manual detailing the implementation, the ISA 

support, the architecture, and the CSR instructions in the Klessydra-T cores. 

 

Appendix B This RTL of the Klessydra-T is here. The T1 and the T0 implementations can 

be generated from the PKG file, as well as all the configurations detailed in chapter 5.
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Chapter 1 Preface 
 

This chapter is a preface to the work being detailed in this study. In the first section we provide a brief 

introduction on IoT devices and their growth in the current electronic market. In the next section we 

discuss the artificial neural networks, focusing on the sector of computer vision and convolutional 

neural networks. In the last section we show the convergence of AI applications from cloud computing 

to embedded low power IoT devices. Then we discuss the energy efficient digital system developed 

in this study that target the IoT market, and facilitates the execution of CNNs that are being steadily 

embedded in IoT devices. 

 

1.1. Internet of things 
 

The MOSFET was the main driver for the rise of the Internet of things. The scaling of the MOSFET 

down to the nanoscale was also followed by the scaling down of the power consumption as well. As 

of 2019, the smallest MOSFETs in production are 5nm FinFETs manufactured by Samsung and 

TSMC [1][2]. Gordon Moore observed the shrinking of the transistor and predicted that the number 

of transistors on an integrated circuit would approximately double every two years (figure 1.1) with 

the speed doubling every 18 months without increasing the power [3].  

 

 
Figure.1.1,  Graph depicting Moore’s Law that predicted the doubling of the transistors per die every two years 

 

However, the world was still farfetched from becoming fully connected. Two main inventions 

provided the next milestone that facilitated the convergence towards an IoT world, the first was the 

development of high-performance multi-core processors, and the second was the emergence of high 

bandwidth wireless technologies. 

 

The nanoscale scale parallel microprocessors were capable computing large chunks of data for a very 

slight energy consumption. This in turn encouraged the incorporation of these smart technologies into 

all types of electronic devices especially inside battery powered devices (figure 1.2). One main 
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example for the use of these smart devices other than home automation domains as shown in the 

figure above was the deployment of smart devices for sensing and monitoring tasks, such as office 

monitoring, agricultural monitoring, traffic monitoring, defense monitoring, space monitoring, and 

not to mention even human monitoring through medical devices and wearable technologies. These 

areas were situated with a handful of sensing instrumentation for temperature, humidity, fire, air 

pollution, traffic jam, rain wind, storms, etc.) [4].  

 

 

Figure.1.2. Typical IoT devices in homes 

 

However, these smart devices needed to be accessed over long distances. and this is where the 

emergence of wireless technologies played a key role in which they were capable of providing a 

connection between two nodes over large distances. But one main drawback to wireless transmission 

was that; the larger the distance got between the two nodes; the more transmission power was needed 

to maintain the nodes connected. Another challenge was the exorbitant increase in the bandwidth over 

the years, required by certain streaming applications, and in order to provide these large bandwidths, 

the wireless technologies needed to transmit over higher frequencies in the spectrum as shown in 

figure 1.3. 

 

 

 
Figure.1.3. The bandwidth growth with the frequency growth 

 

However, the power consumption required to transmit a certain packet of data over a certain distance 

‘X’ is much higher than the power consumption required to transmit the same packet over a lower 

frequency, and figure 1.3 showed that larger bandwidths broadcasted at higher frequencies. The 

tradeoff between coverage area and frequency when transmitting over the same frequency is shown 

in figure 1.4.  
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Figure.1.4. Coverage area for a set of transmission frequencies 

 

Figure 1.4 shows that coverage area for transmitting over the same power (dBm), but different 

frequency ranges was very different. Such that transmitting over 700MHz covered the 3.5 times the 

distance for transmitting over 2.5GHz. 

 

The challenge was to accommodate the demand to transmit high bandwidth of data over very large 

distances, while still maintaining low power consumption. Thus, came the third milestone which was 

connecting these smart devices to local gateways either through a wire or wirelessly, and the gateways 

are connected to a global system of interconnected nodes communicating with an open protocol; 

called TCP/IP otherwise known as the internet.  

 

Providing internet connectivity to smart devices made them capable of transmitting very high data 

bandwidths over high frequencies to local wireless nodes that are only a few meters away from the 

transmitter. These communicating nodes are otherwise known as wireless local area networks 

(WLAN). The WLANs are then connected to the internet and provide access to these smart devices 

globally. This connection of the various smart devices from over the internet is what is now known 

as the Internet of Things (IoT).  

 

However, not every device that has IP connectivity is considered IoT. For example, desktops, laptops, 

cellphones, tablets, game consoles are not considered to be IoT [27]. An IoT device is a network of 

devices that can communicate without human interactions. In other words, it is a network of things. 

Figure 1.5 shows the number of IoT devices available till date, and their projected growth over the 

next five to six years.  

 

IoT encompasses only device-to-device interactions and connectivity. Although human interaction 

can be present at some endpoint of the IoT network, but all the intermediate device communications 

are considered IoT. For example, a wearable smart watch interacts with the cellphones over wireless 

personal area networks (WPAN), and cellular mobile stations through LTE, and connect to GPS 

systems to provide continuous tracking. All these communications are part of the IoT network, and 

the final presentation to the human interface would be the non-IoT human factor in this network [27]. 
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Figure.1.5. Number of IoT devices to non-IoT and their project growth 

 

1.2. Energy efficient IoT devices: 
 

Gradual increase in the integration of convolutional neural networks in low power embedded IoT 

devices by applying image recognition and classification was prevalent in the recent years [5]. IoT 

devices were able to move AI algorithms from cloud computing down to the edge computing [6]. IoT 

endpoint SoC refer to a large number of microcontrollers interfacing a various class of sensors on one 

end, and a wireless device on the other end. The IoT end-nodes might contain specialized units for 

fast memory access such as scratchpad units [22]. The IoT end-node design demands low-power 

specialized processors [24][25][26], in which they will be used to collect and pre-processes 

information from the peripheral devices, and sends the data over the wireless channel (figure 1.6). 

Preprocessing might include in many cases speech and/or image recognition. This is why we 

developed a RISC-V processor that can exploit IoT applications which interface multiple peripheral 

devices, and also, can pre-process images quickly with high performance and energy efficient CNN 

accelerators. 

 

 

 
Figure.1.6.Typical depiction of an IoT Embedded System 
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1.3. Artificial neural networks 
 

1.2.1. Background: 

  

The human brain is a collection of billions of neurons connected to each other through synapses and 

can pass the signal from one neuron to the next either electrically or chemically.  Artificial neural 

networks although not identical to biological neural networks, however, they were inspired by them. 

They aimed to loosely imitate the behavior of the brain in order to solve some of the problems the 

brain does through emulating its learning ability. 

 

 ANNs are a collection of artificial neurons that connect to one another to form a large system of 

artificial neurons. These systems are an aggregate of layers that are connected to each other, they are 

capable of learning through continuous feedback loop connections, or through algorithms in single-

forward pass networks that modify the weights after the whole operation is done (such as the case in 

feed-forward networks like convolutional neural networks). During the learning process, the system 

adjusts the weights which can either strengthen or weaken the connection between the two neurons. 

Figure 1.7 shows the basic organization of an ANN. 

 

The first layer takes the external data that is known as the input layer, and performs a transformation 

of these data and sends its output to the next layer. The final layer of the networks is the output layer 

that infers the final result from all the transformations of the previous layers. Between the input and 

the output layers, there might exist some intermediate layers also known as hidden layers (figure 1.7). 

 

Figure.1.7. Layers in an artificial neural network 

 

The  layers can be fully-connected by having every neuron in layer[i] connect to every other neuron 

of layer[i+1], or the connections can be pooling by connecting a set of neurons in layer[i] to a single 

neuron in layer[i+1] thereby reducing the number of neurons in layer[i+1]. 

 

1.2.2. Learning in ANN 

 

Learning is a continuous process of adjusting connections between the neurons by modifying the 

weights, so that the output results will converge towards the correct output after running the network 

in each iteration. The learning can be considered complete if the error rate ideally becomes zero, or 

that if each iteration of running the network does not reduce the error rate. In order to try and avoid 

oscillations of weights inside the neural network during learning, adaptive learning must be 

implemented to in order to maintain a gradient ascent or descent of the weights. 
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Final results of the network are mapped into a probability distribution of predicted outputs by using 

normalizing functions such as softmax. However, the actual output might not be the desired output. 

 

The error rate in ANN does not typically reach zero, even after the learning is done. A cost function 

maps the desired real results to the actual results, and if the error rate determined by the cost function 

is deemed too high, then the network is basically is not designed very well, and re-designing it must 

be put into consideration.  

 

1.2.3. Deep Convolutional Neural Networks and Deep Learning 

 

A deep neural network (DNN) is a subset of ANN where there exists a large number of layers between 

the input the and the output layers. The extra layers in DNN enable the extraction of features from 

the previous layers. DNN are feedforward in nature. They do not provided feedback to the previous 

layers, and the adjusting of the weights is done at the end of network after the probability distribution 

has been calculated.  

 

One of the main fields of DNN is convolutional or deep convolutional neural networks (CNN / 

DCNN), they are used in computer vision [28], or speech recognition. CNNs are fully-connected 

networks in which each neuron in one layer connects to all the neurons in the next. CNN employ 

mathematical convolutions in order to transform the input data into the output. There are a large class 

of CNN that were developed over the years. Figure 1.8 arranges them in accuracy versus number of 

operations in a single forward pass. One single forward pass indicates how many operations (G-OPS) 

are required in order to transform the input data of the network to the output result. The size of the 

circles indicates the memory footprint of each network. 

 

 
Figure.1.8.  Accuracy versus number of operations single forward pass for a certain class of CNN 
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Chapter 2 RISC-V and the Klessydra Processor Family 

 

 
 

2.1. Motivation behind adopting RISC-V 
 

The first step in building Klessydra a majorly open source family of processing cores, was through 

choosing an instruction set. Our choice in that matter considering we are a group of researchers with 

limited funding was to adopt an open instruction set free from royalties.  

 

Our motivation for adopting the RISC-V instruction set, was basically similar to the motivation of 

the team from University of California, Berkley when they developed the RISC-V ISA. Which was 

to make instruction sets free. Another reason encouraged us was that RISC-V was designed to tailor 

and exploit all types of architectures. In-order, out-of-order, embedded low-power, supercomputers 

and etc. The third reason was that, RISC-V providing encoding space for custom instructions, helped 

flourish the research community by allowing students, researchers and industries to test, and 

experiment their own non-native instruction sets. 

 

Also, comparing both RISC-V and OpenRISC, RISC-V being a more revised and well-studied ISA 

made the case that they were a better option to adopt than OpenRISC for several reasons, most 

importantly is that openRISC supports condition codes and branch delay slots which complicate 

higher performance implementations. Also, OpenRISC supporting fixed sized 16-bit immediates 

made little encoding space to let the ISA grow. 

 

2.2. Background  
 

RISC-V is an open instruction set architecture, the project was started in 2010 at the University of 

California, and it still continues to expand the ISA specification till the present day. 

 

The ISA is based on reduced instruction set computing, and it provides two reference manuals. The 

first being the user-level ISA, and the second being the privileged architecture [7]. The main 

motivation behind having an open source instruction set, was the availability of the open source Linux 

operating system, and the open networking protocols TCP/IP [8]. The question came as to why 

instruction sets cannot be free as well. This motivated the engineers at Berkley to create an ISA being 

open and royalty free. Commercial ISAs from Intel, ARM, and IBM being proprietary limited the 

research in computer architectures to those companies themselves. And in order to adopt the 

standards, one must undergo a rigorous process of negotiations in order to arrive at an agreeable price 

for adopting the proprietary standards, and the process is reported to take about six to twenty-four 

months. 

 

RISC-V till date supported the computer architecture research and education consortium in 

developing their own proprietary or open-source processors. Currently there are tens of RISC-V 

implementations, like Rocket, RI5CY, Ariane, Klessydra, BOOM, Taiga, and many more [9]. One of 

their main future goals is to have the instruction set adopted also in industry implementations. 
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In the next sections in this chapter we will make a brief summary or the RISC-V instruction sets, then 

we will discuss one huge advantage provided by RISC-V that enabled researches to innovate even 

more in the computer architecture domain, by giving more implementation freedom to the user. 

Finally, we will discuss which architecture and ISA extensions were adopted in the Klessydra-T cores 

presented in this thesis. 

 

2.3. Instruction set architecture briefing 
 

The RISC-V ISA is the base integer ISA, which must be defined in any implementation. The base 

integer ISA is the backbone of the entire standard that delivers a minimal set of instructions sufficient 

to be provided to compilers, linkers, assemblers, and operating systems. The base integer ISA can be 

implemented for both 32-bit and 64-bit architectures. 

 

The base integer ISA is labeled “I” and is preceded by either one of the following labels. “RV32” or 

“RV64”. It supports 32 general purpose registers from “x0-x31” with “x0” being a read only register 

hardwired to 0.  Table 2.1, shows the application binary interface (ABI) of the integer and floating 

point registerfiles.  

 
Table.2.1. RISC-V mnemonics for RISC-V integer and floating point registers 

 
 

The return address register “x1” is not hardwired automatically in function calls, but rather jump 

instruction branching to call environments use register “x1” by default to hold the return address. The 

stack pointer “x2” is identical to each hardware thread or core, and in RISC-V it always points to the 

beginning of the stack, and the loads and stores to the stack are relative to the base address (i.e. stack 

pointer in this case).  

 

The base ISA has four instruction formats, as shown in figure 2.1. All instructions have a fixed length 

and must be aligned 32-bit aligned. 
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Figure.2.1. Base Instruction Formats 

 

The source rs1, rs2 and destination rd operands always fixed in their positions in order to keep the 

decoding simple. The immediates are always sign extended except for CSR immediates.  

 

The base ISA is divided into five categories of instructions: 

• The integer computational instructions have a subset of arithmetic, logic, and shifting 

operations. That either in majority the I-type or R-type format. LUI/AUIPC use the U-

type. 

• The control transfer instructions have a subset of conditional and unconditional jumps. 

Conditional jumps are relative to the program counter, and do not link any registers. 

Unconditional jumps can behave like a goto statement if there are no pushes to the return 

address stack (RAS), or they could behave like function calls, or function returns by 

pushing and popping to the RAS (Table 2.2). 

 
Table.2.2. RAS stack prediction hints 

 
 

• The load and store instructions get the memory address by adding the base address 

stored in rs1 to the Immediate in the instruction. Load instructions have the I-

immediate, and Store use the S-Immediate. They can fetch/write bytes, half-words, 

and words. 

• The memory fence instructions insure that one hart performs its memory access before 

the other hart by fencing the memory accesses.  

• The control and status instructions access the CSR registers, and modify the ones 

that are not read only. A large subset of these are registers used for performance 

counting. 

• The last are environment call and break points which transfer the execution to a 

more privileged environment or to a debugger. 

 

RISC-V supports more extensions that include operations being ubiquitous in the computing world. 

They include the M-extension for Multiply/Divide, A-extension for Atomic operations that help 

ensure thread synchronization, and memory region locks, F/D-extension for single and double 

floating-point instructions, and many more that are still being drafted. 
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2.4. Custom instruction set extensions 
 
RISC-V has been designed to support extensive customization by providing encoding space for 

custom-instructions as shown in table 2.3. Any custom implementation is considered to be a part of 

the non-standard extensions. The following table shows the map of the base 7-bit opcode and the 

spaces reserved for each opcode.  

 
Table.2.3. RISC-V based opcode map, inst[1:0] = 11 i.e. compressed instructions are not included in the table 

 
 

As seen from table 2.3 the are four base opcode spaces reserved for custom instruction extensions: 

custom-0, custom-1, custom-2, and custom-3. 

 

2.5. RISC-V support in Klessydra 
 
All Klessydra implementations till date support the “I” base integer instruction set in 32-bit. The 

introduction of the later multithreaded Klessydra-T0 required at least minimal support of the atomic 

extensions, by implementing the AMOSWAP instruction from the A-extension. The Klessydra-Fx 

implementation continued to support multithreading thus maintaining the atomic support. Also. the 

M-extension has been augmented in later releases to provide fast multiplication, especially in the 

Klessydra-T1 to help execute small vectors quickly in convolutional neural networks. 

 

As for the custom instruction set augmentation, they were included only in the Klessydra-T1, they 

base opcode encoded for the custom instruction was as follows: 

 

• Custom memory instructions encode the opcode space reserved for “custom-0”, the 

opcode[6:0] being “7b’0001011 ”  

• Custom vector arithmetic instructions encode the opcode space for “custom-1”, the 

opcode[6:0] being “7b’0101011”. 

 

Table 2.4 shows the augmented instructions in Klessydra-T1, and their description will be found in 

appendix A. 

 

Table.2.4. Klessydra K custom instruction set extensions 

               Name Binary format Assembly syntax Opcode 
KMEMLD R kmemld rd, rs1, rs2 custom-0 

KMEMSTR R kmemstr rd, rs1, rs2 custom-0 

KBCASTLD R kaddv rd, rs1, rs2 custom-0 

KADDV R kaddv rd, rs1, rs2 custom-1 

KSUBV R ksubv rd, rs1, rs2 custom-1 

KVMUL R kvmul rd, rs1, rs2 custom-1 

KVRED R kvred rd, rs1, rs2 custom-1 

KSVADDSC R ksvaddsc rd, rs1, rs2 custom-1 
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KSVADDRF R ksvaddrf rd, rs1, rs2 custom-1 

KSVMULSC R ksvmulsc rd, rs1, rs2 custom-1 

KSVMULRF R ksvmulrf rd, rs1, rs2 custom-1 

KDOTP R kdotp rd, rs1, rs2 custom-1 

KDOTPPS R kdotpps rd, rs1, rs2 custom-1 

KSRLV R ksrlv rd, rs1, rs2 custom-1 

KSRAV R ksrav rd, rs1, rs2 custom-1 

KRELU R krelu rd, rs1, rs2 custom-1 

KBCAST R kbcast rd, rs1 custom-1 

KVCP R kvcp rd, rs1 custom-1 
 

In addition to instructions, also custom CSR registers were added, table 2.5 lists the custom CSR 

registers. 

Table.2.5. Klessydra K custom CSR extensions 

Name CSR_Addr TYPE Reg_Size Description 
MVSIZE 0xBF0 R/W Log2(SPM_Size) Contains the vector size the 

maximum being 

the SPM size 

MVTYPE 0xBF8 R/W 2-bits Contains the type of data the vector 

has (8-bit, 16-bit. 32-bit) 

MPSCLFAC 0xBE0 R/W 5-bits Post scaling factor for right shifts 

(used by kdotpps instruction) 

 

2.6. Patches to the riscv-gnu-toolchain: 
 

Two simple modifications were to be made, to the sources in the RISC-V GCC toolchain [35], the 

first was to “riscv-opc.c”, where it had all the structures of the RISC-V instruction listings. As seen 

below: 

 
/* Vector Extensions */ 1 
{"kmemld",     "I",   "d,s,t", MATCH_K_MEMLD , MASK_K_MEM , match_opcode, 0 }, 2 
{"kmemstr",    "I",   "d,s,t", MATCH_K_MEMSTR, MASK_K_MEM, match_opcode, 0 }, 3 
{"kbcastld",   "I",   "d,s,t", MATCH_K_BCASTLD , MASK_K_MEM , match_opcode, 0 }, 4 
{"kaddv",      "I",   "d,s,t", MATCH_K_ADDV, MASK_K_ARITH, match_opcode, 0 }, 5 
{"ksubv",      "I",   "d,s,t", MATCH_K_SUBV, MASK_K_ARITH, match_opcode, 0 }, 6 
{"kvmul",      "I",   "d,s,t", MATCH_K_VMUL, MASK_K_ARITH, match_opcode, 0 }, 7 
{"kvred",      "I",   "d,s", MATCH_K_VRED, MASK_K_ARITH | MASK_RS2, match_opcode, 0 }, 8 
{"kdotp",      "I",   "d,s,t", MATCH_K_DOTP , MASK_K_ARITH, match_opcode, 0 }, 9 
{"ksvaddsc",   "I",   "d,s,t", MATCH_K_SVADDSC, MASK_K_ARITH, match_opcode, 0 }, 10 
{"ksvaddrf",   "I",   "d,s,t", MATCH_K_SVADDRF, MASK_K_ARITH, match_opcode, 0 }, 11 
{"ksvmulsc",   "I",   "d,s,t", MATCH_K_SVMULSC, MASK_K_ARITH, match_opcode, 0 }, 12 
{"ksvmulrf",   "I",   "d,s,t", MATCH_K_SVMULRF, MASK_K_ARITH, match_opcode, 0 }, 13 
{"ksrav",      "I",   "d,s,t", MATCH_K_SRAV, MASK_K_ARITH, match_opcode, 0 }, 14 
{"ksrlv",      "I",   "d,s,t", MATCH_K_SRLV, MASK_K_ARITH, match_opcode, 0 }, 15 
{"kbcast",     "I",   "d,s", MATCH_K_BCAST, MASK_K_ARITH | MASK_RS2, match_opcode, 0 }, 16 
{"krelu",      "I",   "d,s",  MATCH_K_RELU, MASK_K_ARITH | MASK_RS2, match_opcode, 0 }, 17 
{"kdotpps",    "I",   "d,s,t", MATCH_K_DOTPPS, MASK_K_ARITH, match_opcode, 0 }, 18 
{"kvcp",       "I",   "d,s",  MATCH_K_VCP, MASK_K_ARITH | MASK_RS2, match_opcode, 0 },19 
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The second modification was made to the “riscv-opc.h”, where all the defines were made that 

include the instruction mask and instruction opcode, as well as the CSR defines. 

 
/* Klessydra Extensions */ 1 
 2 
/* CSR Extensions */ 3 
#define CSR_MVSIZE 0xbf0 4 
#define CSR_MVTYPE 0xbf8 5 
#define CSR_MPSCLFAC 0xbe0 6 
 7 
/* Vector Instructions Extensions */ 8 
#define MASK_K_MEM      0xfe00707f 9 
#define MATCH_K_MEMLD   0xb 10 
#define MATCH_K_MEMSTR  0x200000b 11 
#define MATCH_K_BCASTLD 0x400000b 12 
#define MASK_K_ARITH    0xfe00707f 13 
#define MATCH_K_ADDV    0x200202b 14 
#define MATCH_K_SUBV    0x400202b 15 
#define MATCH_K_VMUL    0x800202b 16 
#define MATCH_K_VRED    0xC00202b 17 
#define MATCH_K_DOTP    0x1000202b 18 
#define MATCH_K_SVADDSC 0x1800202b 19 
#define MATCH_K_SVADDRF 0x1a00202b 20 
#define MATCH_K_SVMULSC 0x1c00202b 21 
#define MATCH_K_SVMULRF 0x1e00202b 22 
#define MATCH_K_SRAV    0x2000202b 23 
#define MATCH_K_SRLV    0x2200202b 24 
#define MATCH_K_RELU    0x3000202b 25 
#define MATCH_K_DOTPPS  0x3200202b 26 
#define MATCH_K_BCAST   0x3c00202b 27 
#define MATCH_K_VCP     0x3e00002b28 
 

 
DECLARE_CSR(mvsize , CSR_MVSIZE) 1 
DECLARE_CSR(mvtype, CSR_MVTYPE) 2 
DECLARE_CSR(mpsclfac , CSR_MPSCLFAC) 3 
 4 
DECLARE_INSN(kmemld, MATCH_K_MEMLD, MASK_K_MEM) 5 
DECLARE_INSN(kmemstr, MATCH_K_MEMSTR, MASK_K_MEM) 6 
DECLARE_INSN(kbcastld, MATCH_K_BCASTLD, MASK_K_MEM) 7 
DECLARE_INSN(kaddv, MATCH_K_ADDV, MASK_K_ARITH) 8 
DECLARE_INSN(ksubv, MATCH_K_SUBV, MASK_K_ARITH) 9 
DECLARE_INSN(kvmul, MATCH_K_VMUL, MASK_K_ARITH) 10 
DECLARE_INSN(kvred, MATCH_K_VRED, MASK_K_ARITH) 11 
DECLARE_INSN(kdotp, MATCH_K_DOTP, MASK_K_ARITH) 12 
DECLARE_INSN(ksvaddsc, MATCH_K_SVADDSC, MASK_K_ARITH) 13 
DECLARE_INSN(ksvaddrf, MATCH_K_SVADDRF, MASK_K_ARITH) 14 
DECLARE_INSN(ksvmulsc, MATCH_K_SVMULSC, MASK_K_ARITH) 15 
DECLARE_INSN(ksvmulrf, MATCH_K_SVMULRF, MASK_K_ARITH) 16 
DECLARE_INSN(ksrav, MATCH_K_SRAV, MASK_K_ARITH) 17 
DECLARE_INSN(ksrlv, MATCH_K_SRLV, MASK_K_ARITH) 18 
DECLARE_INSN(krelu, MATCH_K_RELU, MASK_K_ARITH) 19 
DECLARE_INSN(kdotpps, MATCH_K_DOTPPS, MASK_K_ARITH) 20 
DECLARE_INSN(kbcast, MATCH_K_BCAST, MASK_K_ARITH) 21 
DECLARE_INSN(kvcp, MATCH_K_VCP , MASK_K_ARITH)22 
 

 

 

2.7. Concluding remarks 
 



22 
 

In the end RISC-V is not only an open source ISA available for simulations, it is a real ISA suitable 

for inherent hardware implementations. The standards were provided to be balanced to be exploited 

by all types of architectures. It supports 32 and 64-bit address space and IEEE standard floating-point 

standards, it provides custom instruction encoding space to allow researchers to explore native non-

standard custom extensions, or companies to integrate their own specialized instructions and finally 

it still has a great potential to become even more pervasive throughout the industry. 
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Chapter 3 The PULPino Microcontroller Platform 
 

 
 

3.1. Motivation behind choosing PULPino 
 

Having already chosen to build a RISC-V processor required also choosing a SoC. Designing our 

own SoC from scratch was not feasible since our group of researchers were limited. RISC-V being 

an emerging technology, the choices among the open SoCs available were not many. Pulpino being 

part of the ultra-low power projects also was a good reason to adopt the Systen. Finally, having close 

relations and collaborations with the University of Bologna, provided an ongoing communication 

channel in order to get continuous support from their side. For the above reasons, we can say that 

Pulpino was our choice. 

 

Pulpino is an open-source System-on-Chip embedding a 32-bit RISC-V based microprocessor. 

Pulpino targets embedded systems and embeds ultra-low power designs. The Pulpino SoC was 

adopted by a large group of researchers globally either for research or commercial purposes.  

 

3.2. Background  
 

PULPino is a smaller version of PULP which stands for Parallel Ultra Low Power processor. The idea 

behind starting the PULP project, was that in order to achieve low dynamic power consumption, the 

processors needed to be operated at near threshold voltage levels [10]. The speed will drop rapidly 

when operating at near threshold voltages since the delay follows a quadratic curve (figure 3.1). Their 

solution was to re-ramp up the speed by embedding several processors in PULP to work in parallel. 

 

 
Figure.3.1. Propagation delay versus power supply voltage 
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PULP is a large project with a very wide scope of work, it incorporates a large group of engineers, 

and specialized experts. The project includes open source processors, peripherals, communication 

buses, an integrated all-in-one environment to build and test the embedded cores with Modelsim and 

Vivado and the entire SoC, also adds a custom RISC-V toolchain. 

 

PULPino is a miniaturized version of PULP which embeds only one core. PULPino is completely 

open source[17][18], and can be found on GitHub. Figure 3.2 shows the building blocks of PULPino.   

 

 
Figure.3.2 Architecture of PULPino 

 

Pulpino targets RTL simulations, FPGAs, and ASICs. It has by default a 32KB program memory, and 

a 32KB data memory. The boot ROM is 512B. Peripherals are mapped in the upper region of the core 

and are dedicated 4KB each. The peripherals in Pulpino communicate through sending interrupts. All 

the interrupts are saved in an interrupt vector table (IVT). When servicing the interrupt, the core will 

check the IVT in order to jump to the appropriate interrupt handling routine. 

 

Other than the Peripherals, it features an SPI Slave port that can be used to pre-load programs into 

the memories without the help of the core. It is connected on the AXI as an AXI master which allows 

external access to all memories and peripherals. Also, Pulpino has a JTAG debugging interface that 

accesses all peripherals and memories, and can halt and single step the core. 

 

3.3. PULPino native processor cores 
 

Pulpino integrates two RISC-V processors. They are RI5CY and Zero-Riscy. RI5CY is an in order 

four pipeline stage processors. It supports the base integer instruction set RV32I, compressed 

instructions RV32C, multiplication extension RV32M, and single precision floating point extensions 

RV32F. RI5CY also implements other extensions to the ISA such as hardware loops, bit manipulation 

instructions, MAC operations, packed SIMD instructions and many more [52][53]. 

 

Zero-Riscy is an in-order, single-issue processor with only two pipeline stages. It supports the base 

integer instruction set RV32I, the compressed instructions RV32C, and the multiplication extension 

RV32M. The core can be configured to support the embedded extension RV32E, and thus reducing 

the registerfile to half its size. A tiny version of zero-riscy can be implemented by enabling the 
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embedded extension (RV32E), and disabling the multipliers and dividers (RV32M). This 

implementation is called Micro-Riscy which is the smallest version supported. 

 

 

3.4. Embedding non-native Klessydra processing cores in PULPino 
 

Figure 3.3 shows the Klessydra and Pulpino Roadmap. Klessydra targeting FPGA implementations, 

while Riscy cores targeting ASIC implementations.  

 

 
Figure.3.3 Klessydra family roadmap 

 

In order to correctly embed Klessydra core and software libraries inside Pulpino, changes had to be 

made to the Pulpino environment on many levels: 

 

• Modifying the Klessydra RTL:  The pinout of the Klessydra was made one hundred percent 

compatible with the riscy cores from Pulpino.  Also, the interrupt handling, and exception, 

and event handling had to be modified so that it passes the generic tests. 

• Modifying the Pulpino RTL:  The systemverilog of the Pulpino RTL and testbench were 

modified to add the instances of Klessydra cores, and pass the added generic parameter. 

• Modifying the Software Environment:  The CMake files were modified to include the 

generic Klessydra tests and software libraries. Also, they were modified along with a shell 

script in order to pass the arguments to the Tcl simulate scripts. 

• Modifying the Modelsim compile and Simulate scripts: In addition to the software 

environment and RTL, compile scripts were also modified to compile the different versions 

of Klessydra among the compiled Pulpino libraries, and similarly the simulate scripts.
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Chapter-4 Klessydra T0 Architecture 

 

4.1. The Klessydra-T family 
 
Klessydra is a processing core family that features full compliance with the RISC-V instruction set. 

Klessydra cores were designed in order to be fitted inside the PULPino SoC. The Klessydra family is 

composed of a single in-order two pipeline-stage core named Klessydra-S0 [11], a set of 

multithreaded cores named Klessydra-Tx, and a set of fault tolerant cores named Klessydra-Fx 

[20][21]. This thesus will cover the Klessydra-Tx family and its different variants. All the Tx cores 

have been synthesized and tested for FPGAs from XILINX. FPGA synthesis being our main target, 

was because soft-cores are wildly available on embedded systems [11]. A customizable embedded 

core is favorable since it can be reconfigured to adapt easily to the user’s target applications. 

 

Klessydra cores support RISC-V ISA, all versions support the base integer instruction set in 32-bit 

|”RV32I” in bare metal, the Tx and Fx versions extend the ISA with the atomic instruction extension, 

some Tx variants further extend the ISA with multiplication and division extension from RISC-V, and 

some augment a set of specialized custom instructions augmented to the RISC-V ISA  designed to 

accelerate convolutional neural networking applications. The ports of the Klessydra cores are pin-to-

pin compatible with the RISCY cores inside PULPino. The Tx versions of Klessydra support a 

multithreading paradigm called interleaved multithreading (IMT) also known as barrel processing. 

This chapter illustrates the early version of the Tx cores known as the T0 cores, and the different 

variants of the T0 cores. Chapter 5 upgrades the optimal T0 implementation adopted in this chapter 

and adds a specialized neural network accelerator that is specifically designed to exploit the IMT 

architectures. The upgraded version is known as the T1 core. 

 

4.2. Motivation for choosing interleaved multithreading 
 

A good guideline to follow in order to increase the energy consumption per instruction of an 

embedded processor, is through decreasing the idle time of the embedded systems by eliminating the 

pipeline stalls. 

 

In-order architectures stall the processor’s pipeline to fence between same-operand read and write 

access. These stalls are unfavorable as they degrade the performance of the processor, as well as 

decrease the energy efficiency by continuously accumulating the total idle time of the processor. 

 

Out-of-order architectures can easily eliminate the pipeline stalls [49][50][51], however in order to 

do that, they employ highly complex dynamic scheduling logic to resolve the data dependency 

hazards. These data dependency eliminating schemes give rise to anti-dependency hazards, and again 

out-of-order architectures employ register renaming approaches to remove those anti-dependencies. 

In addition, these architectures being highly pipelined must integrate a well-advanced branch 

predicting logic, since branch miss prediction will greatly impact the overall performance. This type 

of architecture succeeded in greatly mitigating the pipeline stalls and improves the overall 

performance. However, these designs being very complex greatly increased the area and the power 
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consumption of those architectures. In other words, the performance was actually a tradeoff with the 

power and area. 

 

One existing approach named barrel processing or interleaved multithreading (IMT) [16] aimed at 

replacing the out-of-order processor’s highly complex approach to mitigate the pipeline stalls with 

another relaxed approach. That is by employing hardware threads to utilize the idle time of the core 

and fence between the registerfile read and write accesses.  

 
An IMT architecture interleaves a hardware thread (hart) to fill the bubbles in the instruction pipeline 

in order to avoid Read-after-Write (RAW) data hazards. Doing so, it does not introduce a new class 

of anti-dependency hazards such as Write-after-Read (WAR) and Write-after-Write (WAW) as in the 

case of OOO architectures. 

 

A basic IMT processors emulates a single-core single-issue processor with zero pipeline stalls. IMT 

processors with their ability to continuously issues instructions without data dependency stalls can 

converge easily towards 1 IPC in single issue processors, bit for a certain class of applications. The 

first class being decoupled sequential applications, and the second being balanced parallel 

applications. Regarding sequential applications, if the IMT processor was running in a way such that 

the programs are executing only on one hart and the other harts are idle, the overall performance will 

surely suffer from the overhead of the interleaving the other harts in the core, and the bigger the 

number of harts an IMT core has, the worse it performs when executing sequential code. A good 

practice that exploits the nature of such cores is to have every hart run its own sequential program. 

Such that the inputs data of one hart are completely independent from the output results of another 

hart. Such applications might include for example a microcontroller interfacing multiple sensors, and 

monitoring the changes, then transmitting the data over a wireless channel in order to be interacted 

by a human interface. 

 

As for the second class of applications easily exploitable by IMT processors, one might quickly 

deduce that an IMT architecture can perform well in applications with parallel workloads. Although 

that is partly true, however, the evaluation of how an IMT core performs when running a parallel 

application is mainly dependent on how balanced the divided workload is between the harts.A 

balanced workload in a parallel program can have inter-thread dependencies that require thread 

synchronization; however, the nature of the workload being balanced makes the overhead of thread 

synchronization unnoticeable. If the parallel applications are balanced and loosely coupled, they will 

perform better than a balanced workload with tightly coupled applications. Such application classes 

are very much suitable for IMT architectures since they utilize all the interleaving harts very 

efficiently. There are many examples of such applications like; data sorting, searching algorithms, 

Monte-Carlo simulations, computational fluid dynamics (CFD) simulations, molecular modeling and 

simulations. 

 

4.3. Klessydra-T0 introduction and background information 
 
The Klessydra-T0 core is a basic IMT microprocessor which supports the RV32IMA instruction set 

extensions of RISC-V in bare metal. The ‘T’ symbol indicates that the core architecture is 

multithreaded. The multithreading paradigm supported is Interleaved Multithreading or IMT. The 

Klessydra-T0 can be parametrized to run without the M-extension, and also the registerfiles can also 

be parametrized to support the Embedded E-extension instead for area critical environments. 

Throughout this chapter, I will refer to the core as “T0” as an abbreviation to the name Klessydra-T0. 
 

The T0 IMT is a single-issue in-order processor which is available in different variants, and the 

variants each of which has a different instruction pipeline organization, and they are designated by 
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the following abbreviation: “T0ab”. Where the letter ‘a’ following the zero is the identifier for the 

minimum number of hardware threads needed to be interleaved in a core in order to avoid inserting 

any bubbles in the pipeline and this is known as the thread pool baseline. The ‘b’ identifier is to 

indicate the number of harts present in the current version of the core or otherwise known as thread 

pool size. 

 

In order to build an IMT architecture, the following entities must be replicated for each hart: 

• Registerfile  

• Program Counter 

• CSR Unit 

 

After having replicated the above units, a hardware context counter “harc” must be built. The harc 

interleaves between the harts in the IMT core, such that on every instruction grant, we send to the 

program memory a request from another hart. 

 

 
Figure.4.1. Conceptual view of hardware context counter (harc) interleaved execution 

 

Klessydra-Tx cores have a parameterizable number of harts to interleave where the hart count is 

identified in the package file by a parameter called “THREAD_POOL_SIZE”. The recommended 

number of harts to put in a core should be less than or equal to the thread pool baseline. In other 

words, T0ab is recommended to be configured such that ‘b’ is less than or equal to ‘a’. 
 

Configuring ‘b’ to be greater than ‘a’ is allowed, however, it will not give any performance boosts, 

rather it will significantly slow down the performance when running sequential applications. And 

running parallel applications as well degrade the performance by augmenting bigger stall overheads 

from idle harts, that will remain idle until all the other harts would have arrived at a thread 

synchronization barrier. Not to mention the area of the architecture will grow bigger, and as the 

layouts grow bigger, the elements in the FPGA selected during place and route will be placed ever so 

farther away from each other, which in turn will yield slower layouts resulted from larger net-delays 

between the FPGA element slices. 
 

In order to know the minimum thread baseline needed so that no data hazards arise, we have to know 

how many pipeline stages exist from the read port of the registerfile till the write port of the 

registerfile. For every pipeline stage separating the read and write ports, a hart must be interleaved, 

else the user can choose to configure the core to have a hart count less than the minimum baseline 

and NOP operations will be introduced in the pipeline to fence between instructions belonging to the 

same hart.  
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4.4. Choosing the optimal IMT pipeline organization: 
 

In this section, we will demonstrate the framework that followed in choosing the optimal pipeline 

organization to use in interleaved multithreaded processors [15]. In the end of the section we will 

show which T0ab organization was chosen as the most ideal processor to use in our research. This 

section is oriented around three main keywords: 

• TPS or Thread pool size, which indicates the total number hardware threads in the core. 

• TPB or Thread pool baseline that indicates the minimum number of harts needed to avoid 

data dependency stalls. 

• NT or Number of active threads, which indicates the number of active harts M, in a core 

with a TPS equal to N, such that always:  . 

  

The exploration parameters of IMT architectures was first studied by implementing a set of pipeline 

organizations ranging from two stages to four stage [14]. each being run with a different set of thread 

pool sizes. The pipeline implementations studied were as follows: 

 

a. F / RDEW (two pipeline stages) 

b. F / R / DEW (three pipeline stages) 

c. F / RD / EW (three pipeline stages) 

d. F / RD / E / W (four pipeline stages) 

e. F / R / DE / W (four pipeline stages) 

 

In the pipeline schemes listed above, F designates the instruction fetch stage, R is the registerfile 

reading, D is decoding, E is executing, and W is registerfile writeback. Early T0 versions included a 

fetch stage, and flushing logic to discard instruction of the same hart in the fetch when a branch is 

taken. However, later releases ignored the stage and the incoming instruction goes directly to the 

decode unit. The requested instruction goes directly to the stage after the F. These pipeline structures 

were designed to study the optimal pipeline organization to use in an interleaved multithreaded bare 

metal RISC-V processor.  Synthesis runs were done on XILINX 7 Series FPGAs [3]. The synthesis 

timing constraints were set low to make the Vivado compiler generate fast netlists. 

 

The FPGA element utilization from the synthesis runs of the set of configurations is shown in table 

4.1. As well as the minimum cycle time of each layout. For instance, T012 architecture has a TPS of 

2 and thread pool baseline of 1.  

 
Table.4.1. Resource Utilization, and Minimum cycle time [ns] 

Architecture TPS Codename LUT FF Tck  

F / RDEW 

2 T012 3264 2410 12.7 

3 T013 4018 3577 13.9 

4 T014 4351 4744 15.9 

F / R / DEW 

2 T022 3211 2544 8.9 

3 T023 3892 3711 9.7 

4 T024 4217 4882 9.5 

F / RD / EW 

2 T022_v2 3583 2653 9.6 

3 T023_v2 4461 3853 9.6 

4 T024_v2 4608 5052 9.4 

F / R / DE / W 

2 T032 3242 2679 8.6 

3 T033 4011 3914 8.9 

4 T034 4187 5144 8.6 

F / RD / E / W 2 T032_v2 3635 2725 7.1 
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3 T033_v2 4520 3958 7.3 

4 T034_v2 4825 5189 7.4 

 

It is evident from table 4.1 that every increment of a hart (TPS) in the core, increased the number of 

flip-flops count by more than 1024 (32*32) registers. And every pipeline stage introduced increased 

the flip-flop count by 100~200 or 5% to 7%. For example, going from the pipeline organization T012 

to T022 revealed only a 5% increase in the total flip-flop count and a slight decrease in the total LUT 

count, and going from the T023_v2 organization to T033_v2 increased the flip-flop count by 6% and 

the LUT count by 1%.  

 

The cycle time of each organization is also shown in table 4.1. One concern we had was that the 

overhead of the interleaving new harts would increase the area utilization in the FPGA such that 

during the post-synthesis place and route phase, Vivado would place the elements very far away from 

each other, making the net delay of the critical path a lot bigger. However, the Vivado timing reports 

[48] only showed evidence to that situation happening in the F/RDEW pipeline organization where 

the cycle time increased from 12.7ns in the T012 to 13.9ns in the T013, and up to 15.9ns in the T014. 

However, we don’t care about these implementations, since they were only control configurations 

used for comparative purposes to the other T0 pipeline organizations. 

 

Looking at the other implementations shows only little cycle time increase due to interleaving more 

harts, and more significant cycle time decrease due to pipelining which is good. Hence, we conclude 

from the timing report that the increase overhead of adding a new hart to resolve the data dependency 

problems does not really impact the cycle time, and that with every pipeline the maximum frequency 

of the core keeps on increasing, such that the cycle time demonstrated a sharp drop from 12.7ns in 

the T012 down to 7.4ns in the T034_v2. 

 

The throughput of an IMT processor running an integer arithmetic application at maximum frequency 

is shown in table 4.2. The table shows the number of MIPS for each TPS configuration in every 

pipeline organization, when the active number of threads NT is less than or equal to the TPS. 

 

• When , the number of MIPS suffers from data dependencies and pipeline flushes. 

• When , the number of MIPS will suffer only due to pipeline flushes. 

• When , the number of MIPS will not suffer from any pipeline flushes, and data dependency 

stalls. However, the MIPS will also not increase with the further increase of NT. 

 
Table.4.2. Throughput at Maximum Frequency [MIPS] (N.A. = NOT APPLICABLE) 

Architecture TPS TPB Codename 
Number of Active threads NT 

NT=1 NT=2 NT=3 NT=4 

F / RDEW 

2 

1 

T012 67.9 78.8 n.a. n.a. 

3 T013 61.9 71.8 71.8 n.a. 

4 T014 54.4 63.1 63.1 63.1 

F / R / DEW 

2 

2 

T022 69 96.4 n.a. n.a. 

3 T023 63.6 88.8 103 n.a. 

4 T024 65 90.8 105.3 105.3 

F / RD / EW 

2 

2 

T022_v2 64.6 90.2 n.a. n.a. 

3 T023_v2 64.2 89.6 104 n.a. 

4 T024_v2 65.6 91.6 106.2 106.2 

F / R / DE / W 

2 

3 

T032 50.8 74.6 n.a. n.a. 

3 T033 49.1 72.2 100.8 n.a. 

4 T034 50.6 74.3 103.8 120.4 
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F / RD / E / W 

2 

3 

T032_v2 58.8 86.4 n.a. n.a. 

3 T033_v2 57.4 84.3 117.7 n.a. 

4 T034_v2 56.6 83.1 116 134.6 

 

Not applicable are set in cases where NT is greater than TPS (NT >TPS), which is impossible. 

 

Let’s study one example from the table above. Take a look at the T023_v2 implementation, this 

implementation has a TPB of 2. When NT is equal to 1, the number of MIPS reported shows the 

throughput of the core that is affected by data dependencies and pipeline flushing, while setting NT 

to be equal to TPB which is 2, shows the throughput with stalls only due to pipeline flushing, and as 

NT becomes greater than TPB (i.e. NT=TPS=3), the pipelines in the core will only have one 

instruction per hart at a given time, thus making pipeline flushing unnecessary, and so the 

throughput maximizes to the top attainable values. 

 

Table 4.3 and table 4.4 report the average dynamic power consumption when running at the maximum 

frequency for each implementation an integer arithmetic application, and the average energy 

efficiency of the processor to execute one instruction. Static power consumption was not reported, 

since FPGAs consume a constant static power independent of the parameters or test, they are running. 

Also, the designs do not provide any ad-hoc mechanisms to reduce the leakage currents [11][12].  

 

Table.4.3. Average Dynamic Power at Maximum Clock Frequency [mW] (N.A. = NOT APPLICABLE) 

Architecture TPS TPB 
Code-

name 

Number of Active threads NT 

NT=1 NT=2 NT=3 NT=4 

F / RDEW 

2 

1 

T012 43.57 45.67 n.a. n.a. 

3 T013 38.44 40.29 40.29 n.a. 

4 T014 37.2 38.99 38.99 38.99 

F / R / DEW 

2 

2 

T022 53.43 58.43 n.a. n.a. 

3 T023 46.77 51.14 53.61 n.a. 

4 T024 44.08 48.2 50.53 50.53 

F / RD / EW 

2 

2 

T022_v2 45.72 50 n.a. n.a. 

3 T023_v2 45.44 49.69 52.08 n.a. 

4 T024_v2 38.98 42.63 44.68 44.68 

F / R / DE / W 

2 

3 

T032 60.16 65.06 n.a. n.a. 

3 T033 49.16 53.17 58.14 n.a. 

4 T034 52.49 56.76 62.07 65.06 

F / RD / E / W 

2 

3 

T032_v2 67.72 73.24 n.a. n.a. 

3 T033_v2 57.92 62.64 68.49 n.a. 

4 T034_v2 61.05 66.02 72.2 75.68 

 

Table.4.4 Average Energy Efficiency [nj/instr] (N.A. = NOT APPLICABLE) 

Architecture TPS TPB Codename 
Number of Active threads NT 

NT=1 NT=2 NT=3 NT=4 

F / RDEW 

2 

1 

T012 1.63 1.43 n.a. n.a. 

3 T013 1.7 1.49 1.49 n.a. 

4 T014 1.92 1.68 1.68 1.68 

F / R / DEW 

2 

2 

T022 1.75 1.3 n.a. n.a. 

3 T023 1.79 1.33 1.17 n.a. 

4 T024 1.71 1.27 1.12 1.12 

F / RD / EW 2 2 T022_v2 1.74 1.3 n.a. n.a. 
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3 T023_v2 1.75 1.3 1.15 n.a. 

4 T024_v2 1.62 1.2 1.05 1.05 

F / R / DE / W 

2 

3 

T032 2.5 1.77 n.a. n.a. 

3 T033 2.37 1.66 1.24 n.a. 

4 T034 2.36 1.67 1.24 1.1 

F / RD / E / W 

2 

3 

T032_v2 2.29 1.62 n.a. n.a. 

3 T033_v2 2.18 1.54 1.15 n.a. 

4 T034_v2 2.26 1.6 1.2 1.06 

 

It is obvious from table 4.3 that implementations with a smaller NT consume less dynamic power 

than implementations with bugger NT. However, that does not mean they are more energy efficient, 

since within the same implementation, the tests that were utilizing  achieved the highest throughput 

as shown previously from table 4.2. This is evident, were the implementation running at higher NT, 

have the highest energy efficiency. Also, take note that pipelining boosted the top frequency of the 

core such that the throughput increase was larger than the dynamic power consumption increase, thus 

we can say, and as seen from table 4.4 that the pipelined architectures were not only faster, but also 

more energy efficient than their non-pipelined counterparts. 

 

The reported results in the preceding tables show that the most energy efficient implementations were 

the T024_v2, and the T034_v2. That is due to the T024_v2 having a very low dynamic power 

consumption, and the T034_v2 having the highest throughput. However, our choice as the optimal 

IMT implementation to be used in our research was the T033_v2, which is slightly less energy 

efficient than T034_v2. One might argue why was our choice not following directly the results in the 

tables. That is because of the following reasons: 

  

a) As we suggested at the beginning of this chapter, the recommended number of TPS in an IMT 

architecture should be set equal to the TPB. So, the best choice in each pipeline organization 

should be as follows, T011, T022, and T033. 

 

b) Fetch buffers were present in the reported results in order to demonstrate the impact of pipeline 

flushing on the performance and energy efficiency. They will be removed in the chosen 

T033_v2 implementations. In the upgraded implementations of the T033_v2, the fetched 

instruction will directly go to the decode stage, and no flushing will be needed. 

 

c) Removing the fetch from the T033_v2 will increase its throughput to match that of the 

T034_v2, thus making the T033_v2 to have the highest energy efficiency.  

 

d) T033_v2 is a better choice than T034_v2 in parallel applications, since thread synchronization 

overheads will be smaller in the T033_v2. 

 

e) The bigger area increase in the T034_v2 over the T033_v2 tell us that if the two 

implementations will be attaining the same throughput at best, then the area increase in the 

former does not justify its usage as an efficient processor over the latter.  

 

f) Finally, although not very evident in the pipelined organizations, but the cycle time actually 

does slightly increase due to interleaving more harts. 

 

For all the reasons above, they justify that the best option is to use the most pipelined version in which 

TPS is set equal to TPB (TPS=TPB). Having chosen the T033_v2 as our ideal implementation for a 

fast, and energy efficient processor, in the next section we will see why deeper pipelines like T04 and 

T05 were not explored. 
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4.5. Deeper pipeline organizations 
 

4.5.1. Pipelines stages after registerfile read access: 

Following the trend from the above tables, it was evident that deeper pipelines provided higher 

operating frequencies for the core, and interleaving sufficient threads utilized the wasted energy in 

the core by allowing another hart to execute instead of having a delay slot. Figure 4.2, shows the 

datapath of the T0 in two different pipeline organizations. The first having the memory accessed from 

the execute stage, the second included the memory access from a dedicated memory stage where the 

memory address was calculated in the previous pipeline stage. 

 

Although deeper pipelines yielded better results as shown from the previous section. One evident 

problem was saturation in the cycle time decrease as the pipelining got deeper, and implementations 

such as T044 from figure 4.2b, might not really have higher operating frequencies, since the area 

overhead of supplementing additional threads will start to decrease the top frequency by increasing 

the net delay more than the increase in the top frequency gained by decreasing the logic delay. 

 

Also, there will be a definite bigger overhead of stalls when synchronizing the hardware threads, or 

when there are idle harts in the more pipelined implementations (T044).  For example, a program 

running on a single hart in the T033 will execute one instruction on the first hart followed by two 

wait-for-interrupt (WFI) instructions that act like a NOP. While running an application with a single 

hart on the T044 will execute one instruction on the first hart followed by three WFI instructions. 

This additional augmented overhead will make deeper pipeline implementations perform worse on 

single threaded sequential applications, and unbalanced parallel applications. While for balanced 

parallel applications they will maybe not perform much better due to the saturation in the top 

frequency increase due to pipelining. 
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Figure.4.2. (a) Klessydra T033 datapath, three harts interleave from RF to WB,  
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(b) T044 datapath interleaves four harts between RF and WB   

 

So, in-order to have a balanced IMT architecture that is fast enough and does not burden the other 

harts with a big overhead, T033 remained as our best choice, and post registerfile stage pipelining 

was ignored. 

 

4.5.2. Pipelines stages before registerfile read access: 

 

However, there are pipeline implementations that can be made before the registerfile read access, that 

do not require the IMT to increase the thread pool baseline as shown in figure 4.3. That is because 

the registerfile read and write accesses will still be fenced by the interleaving harts. The first is 

separating the decode and the registerfile into separate stages, by placing the decode before the regfile 

access as seen in figure 4.3a. The second can be to install a pre-fetch buffer as seen from figure 4.3b. 

 

T033 pipeline was written such that the registerfile access is completely independent of the decode 

access, meaning that both entities will work in parallel. Hence separating the decode and the 

registerfile stages does not give any performance boosts. Second of all, introducing pre-fetch buffers 

will increase the number of instructions per hart in the core such that each hart will have two 

instructions in the pipeline, and any branch taken requires the implementation of flushing logic in 

order to flush the instruction of the same hart that is present in the pre-fetch buffer. Re-introducing 

flushing is completely avoidable, and as demonstrated from the previous section that it has a 

significant impact on the throughput of the core thus making it unfavorable as well. 
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Figure.4.3. (a) Klessydra T044 datapath five pipeline stage but still works by interleaving only four harts  

(b) Klessydra T044 eight pipeline stage still interleaves four harts, and needs flushing logic for branch miss 

prediction 

 

For the reasons mentioned earlier, pre-registerfile pipelining is avoided as well since it is either 

unnecessary or affects the processor’s throughput by introducing branch delay slots, so we stick again 

with the T033 implementation. 



35 
 

 

4.5.3. Conclusion: 

  

Choosing to maintain T033 as the optimal version of the core. In the remaining part of this chapter 

we will elaborate more about the building blocks of the T033, and the software developed to facilitate 

it. Also, one final note; from here on out, any references to T033_v2 and T022_v2 will be made as 

‘T03’ and ‘T02’ respectively since our aim from the beginning was to use IMT cores to have a TPS 

equal to the TPB (TPS=TPB). 

 

4.6. The T03 core 
 

In figure 4.4, we show the basic block organization of the T03 core. It is a balanced [23] four-pipeline 

stage in order interleaved multithreaded processor. The pipeline stages are Decode/Regfile, Execute, 

and Writeback. The Fetch stage does not have any buffers to hold the incoming instructions, hence 

incoming instructions directly pass to the Decode stage, but since the fetch has a one cycle latency, 

then the fetching is still considered a pipeline stage. And the Registerfile is read in the first stage and 

written back in the last stage. 

 

Registerfile reading and instruction decoding is insured to be done in parallel, and all dependencies 

between the two processes are eliminated. Since a dependency between instruction decoding and 

regfile reading will result in a high logic path delay in that pipeline stage, making the critical path to 

become present in that particular pipeline.  
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Figure.4.4. Klessydra T033 block organization, interleaves three harts in the instruction pipeline 
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The principle of operation of each module in figure 4.4 will be illustrated over the next the few pages. 

First, we will start with the datapath in the instruction pipeline, and then moving on to the remaining 

modules in the core. 

  

• Fetch: the fetch unit is a simple finite state machine that sends a fetch request packet 

containing the program counter of the current active hart whenever the pipeline is not busy. 

The received instruction is sent to the decode stage. The RTL description of such a process 

is shown in the following code. 

 
  fsm_IF_nextstate : process(all)  -- acts as the control unit of the synchronous program memory 1 
  begin 2 
    if busy_ID = '0' then  – checks for a stall from the decode stage 3 
      instr_req_o <= '1';  -- request next instruction 4 
    else 5 
      instr_req_o <= '0'; -- stall the instruction requests 6 
    end if; 7 
  end process; 8 
 9 
  process(clk_i, rst_ni) 10 
  begin 11 
    if rising_edge(clk_i) then 12 
      if instr_gnt_i = '1' then – grant from the program memory 13 
        -- pc propagation 14 
        pc_ID   <= pc_IF; -- push the program counter of the incoming instruction to the decode stage 15 
        -- harc propagation 16 
        harc_ID <= harc_IF; -- push the hart identifier to the decode stage 17 
      end if; 18 
    end if; 19 
  end process;20 
 

 

• Decoder: Fetched instructions directly go into the decoder. The time to fully decode an 

instruction is one clock cycle only. The decoded instruction can be issued to the IE_unit or 

Instruction Execute unit, in which all the instructions are executed. Both execution units 

receive the type of the decoded instruction in a form of one hot decoding in which the 

instruction to be executed corresponds to one bit only of the entire bit-vector.  This decoding 

scheme passed to the execute stage might generate big vectors as the instruction set supported 

grows larger, however, it will relieve the execution stage by making it perform the simplest 

re-decoding of the instruction, and limit its parts to only do the execution. The pipeline is 

halted whenever the decoder receives a busy_IE signal, from execution stage for each 

instruction that requires more than one cycle to execute. The pseudo code below shows the 

one hot decoding of the RISC-V instructions, and demonstrates how this one hot pattern are 

encoded in the decode stage to be passed to the IE-stage. 

 

 
  -- EXEC UNIT INSTR SET ------------------------------------------------------------------------------------------------------------ 1 
  constant ADDI_pattern    std_logic_vector(INSTR_SET_SIZE-1 downto 0) := "0000000000000000000000000000000000000000000000000001"; 2 
  constant SLTI_pattern      std_logic_vector(INSTR_SET_SIZE-1 downto 0) := "0000000000000000000000000000000000000000000000000010"; 3 
  constant SLTIU_pattern   std_logic_vector(INSTR_SET_SIZE-1 downto 0) := "0000000000000000000000000000000000000000000000000100"; 4 
 

 
  fsm_ID_sync : process(clk_i, rst_ni, instr_word_ID_lat)  -- synch single state process 1 
  begin  2 
    if rst_ni = '0' then 3 
      …….. 4 
    elsif rising_edge(clk_i) then 5 
      if busy_IE = '1'  then   --  halt the decodeif the IE-unit is busy 6 
        ……. 7 
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      elsif instr_rvalid_ID = '0' then  -- halt if there is no incoming valid instruction 8 
        ……. 9 
      else      -- else decode the incoming instruction 10 
        -- Decode OF INSTRUCTION (BEGIN) ----------------------- 11 
 12 
        ie_instr_req <= '1';   -- enable the IE stage  13 
        case OPCODE_wires is 14 
          when OP_IMM => 15 
            if(rd(instr_word_ID_lat) /= 0) then  -- instructions referencing rd=x0 instructions are executed as NOPs 16 
              case FUNCT3_wires is 17 
                when ADDI =>            -- ADDI instruction 18 
                  decoded_instruction_IE <= ADDI_pattern;  -- assign the correct one hot pattern to the ADDI instruction 19 
                when SLTI =>            -- SLTI instruction 20 
                  decoded_instruction_IE <= SLTI_pattern;  -- assign the correct one hot pattern to the SLTI instruction 21 
                  … 22 
                  … 23 
        when LUI =>                 -- LUI instruction 24 
            if (rd(instr_word_ID_lat) /= 0) then 25 
              decoded_instruction_IE <= LUI_pattern; -- assign the correct one hot pattern to the LUI instruction 26 
            else                        -- R0_INSTRUCTION 27 
              decoded_instruction_IE <= NOP_pattern; -- assign the NOP pattern to the LUI instruction 28 
            end if;    29 
          when AUIPC =>      -- AUIPC Instruction 30 
            … 31 
            … 32 
          when others =>        -- ILLEGAL_INSTRUCTION  33 
            decoded_instruction_IE <= ILL_pattern;  -- assign illegal pattern to instructions with unrecognized opcode 34 
        end case;  -- OPCODE_wires cases 35 
 36 
        -- Decode OF INSTRUCTION (END) -------------------------- 37 
      end if;  -- instr. conditions 38 
    end if;  -- clk 39 
  end process;40 

 

 

• Registerfile: The T03 has a 2Rd/1Wr operand registerfile with register ‘x0’  being statically 

bounded to 0. The registerfile can be configured to be 32x32 regfile following the RV32I 

instruction set, or it can be configured to be a 16x32 registerfile thus following the RV32E 

extension. While the instructions get decoded, it’s operands are read in parallel by the 

registerfile.  

 

• Comparators: are used to make branch decisions. Three comparators are needed to 

determine whether the operands satisfy a BEQ, BNE, BLT, BLTU, BGE, BGEU. The 

comparators will send a signal to the execute stage to indicate whether the branches will be 

taken or not. The separation of the comparators from the execute stage was in order to 

balance the decode and the execute stages. 

 
-- COMPARATORS -------------------------------------------------------------------------------------- 1 
        if (signed(regfile(harc_ID)(rs1(instr_word_ID_lat))(31 downto 0)) = 2 
signed(regfile(harc_ID)(rs2(instr_word_ID_lat))(31 downto 0))) then 3 
          pass_BEQ_ID <= '1'; 4 
        else 5 
          pass_BNE_ID <= '1'; 6 
        end if; 7 
        if (signed(regfile(harc_ID)(rs1(instr_word_ID_lat))(31 downto 0)) < 8 
signed(regfile(harc_ID)(rs2(instr_word_ID_lat))(31 downto 0))) then 9 
          pass_BLT_ID <= '1'; 10 
        else 11 
          pass_BGE_ID <= '1'; 12 
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        end if; 13 
        if (unsigned(regfile(harc_ID)(rs1(instr_word_ID_lat))(31 downto 0)) < 14 
unsigned(regfile(harc_ID)(rs2(instr_word_ID_lat))(31 downto 0))) then 15 
          pass_BLTU_ID <= '1'; 16 
        else 17 
          pass_BGEU_ID <= '1'; 18 
        end if; 19 
---------------------------------------------------------------------------------------------------------------  20 

 

 

• Execute: The execute has a four state fsm machine:  

◦ Reset State: initial state before the core begins executing instructions. 

◦ Sleep State: Idle state in which the core waits for a fetch_en_i signal or an interrupt. 

◦ Debug State: Indicates that the core is currently in debug mode. 

◦ Data Valid Waiting State: Core is waiting for data to be loaded or stored into the mem. 

◦ CSR Instruction Wait State: Indicates that the core is handling CSR instructions. 

 

The execute stage encapsulates all the functional units required to execute the RISC-V 

instructions. The functional units are shared by the instructions, and a mapper is included in 

order to correctly map the instruction operands to their corresponding FUs: 

 

◦ ADDI, ADD, SUB, AUIPC, JAL, and JALR share the same adder. 

◦ SLLI, and SLL instructions share the same left shifter. 

◦ SRLI, SRAI, SRL, SRA share the right shifter. 

◦ AND, ANDI, OR, ORI, XOR, XORI each share their corresponding logical units. 

◦ MUL. MULH, MULHU, MULHSU share the same multiplier. 

◦ DIV, DIVU, REM, REMU share the same divider. 

◦ LOAD, STORE, instructions have their own adder for address creation. 

 

Branch instructions update the program counter of the corresponding hart if the branch is 

taken. T03 implementations of the core do not need any flushing logic, since each hart is only 

one instruction in the pipeline at a time. The execute stage also handles CSR instructions, it 

puts the registerfile data on the CSR write bus and the CSR data on the read bus.  

 

In addition, pending interrupts are served in the IE stage, more details about interrupt handling 

will be elaborated on later in this chapter. 

 
------------------------------------------------------------------------------------------------------------------------  1 
  fsm_IE_sync : process(clk_i, rst_ni) 2 
 3 
    -- pragma translate_off 4 
    variable row : line;  -- local variable for instruction tracing, not synthesizable 5 
    -- pragma translate_on 6 
 7 
  begin 8 
    if rst_ni = '0' then 9 
      … 10 
    elsif rising_edge(clk_i) then 11 
      case state_IE is                  -- stage state 12 
        when normal => 13 
          -- check if there is a valid instruction and the thread it belongs to is not in a delay slot:  14 
          if instr_rvalid_IE = '0' then 15 
            instr_rvalid_WB <= '0'; -- do nothing and wait for valid instruction and finished delay slot 16 
          elsif irq_pending(harc_IE) = '1' then 17 
            instr_rvalid_WB <= '0'; -- in the sync process we don't need to do anything here 18 
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          else -- process the instruction 19 
            -- EXECUTE OF INSTRUCTION (BEGIN) ------------------------------------------- 20 
 21 
            if decoded_instruction_IE(ADDI_bit_position)  = '1' or 22 
               decoded_instruction_IE(ADD7_bit_position)  = '1' or 23 
               decoded_instruction_IE(SUB7_bit_position)  = '1' or 24 
               decoded_instruction_IE(AUIPC_bit_position) = '1' or 25 
               decoded_instruction_IE(JAL_bit_position)   = '1' or  26 
               decoded_instruction_IE(JALR_bit_position)  = '1' then 27 
              if (rd(instr_word_IE) /= 0) then  -- condition for JAL and JALR ops which execute when "rd = x0" 28 
                IE_WB_EN <= '1'; 29 
              end if; 30 
              IE_WB <= std_logic_vector(signed(add_op_A)+signed(add_op_B));  -- ADDER 31 
            end if; 32 
 33 
            if decoded_instruction_IE(SLLI_bit_position) = '1' or 34 
               decoded_instruction_IE(SLLL_bit_position) = '1' then 35 
             WB_EN <= '1'; 36 
             WB <= to_stdlogicvector(to_bitvector(sl_op_A) sll to_integer(unsigned(sl_op_B)));-- LEFT SHIFTER 37 
            end if; 38 
            … 39 
            … 40 
            if decoded_instruction_IE(SW_MIP_bit_position) = '1' then 41 
              if sw_mip = '1' and halt_IE = '0' then 42 
                core_busy_IE_wires := '1';  -- halt the core since the instruction takes more than one cycle 43 
                nextstate_IE_wires := csr_instr_wait_state;-- software ints write to the MIP registers of the target 44 
hart 45 
              end if; 46 
            end if; 47 
            … 48 
            … 49 
            -- EXECUTE OF INSTRUCTION (END) --------------------------------------------------- 50 
          end if;  -- instr_rvalid_IE values  51 
        when csr_instr_wait_state => 52 
          … 53 
        when others => 54 
          … 55 
      end case;  -- fsm_IE state cases 56 
    end if;  -- refers to reset signal 57 
  end process; 58 
;-------------------------------------------------------------------end of IE stage ----------------- 59 
--------------------------------------------------------------------------------------------------------60 
 

• Writeback: The writeback writes the result from the IE stage back to the registerfile when it 

receives a “WB_EN” from the IE stage. Since all the execution units are encapsulated in one 

entity, we will get up to one result per cycle only. Certainly, a hart can only write to its own 

regfile, so each registerfile needs only one write port since only one result will be ready at a 

time. 

 

• Program Counter: A pc_updater fsm updates the program counter of each hart, to fetch the 

next instruction by incrementing the current pc address. A program counter may be updated 

by events coming from various signals: 

 

o set_branch_condition: event happens in case of unconditional jumps or taken 

branches. 

o set_except_condition: event happens due to executing an illegal instruction, or 

misaligned memory access or due to executing an Environment Call ECALL 

instruction, and the program counter will be updated to jump to the exception 

handling routine. 
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o irq_pending: event occurs due to incoming external or timer interrupts, or inter-

thread software interrupts. the program counter will be updated to jump to the 

interrupt handling routine. 

o rst_ni: event occurs only once at the startup time of execution, and updates the 

program counter with the boot_pc that contains the boot pointer. 

 

The program counter has the hart interleaving unit also known as the hardware context 

counter (harc). The harc updates the program counters of each hart in an interleaved fashion. 

 

• CSR Unit: The control and status register unit handle the execution of the CSR instructions, the 

automatic update of some registers due to certain events such as exceptions or interrupts (also 

maps the inter-thread software interrupts to the appropriate CSR unit), and handles the MRET 

instructions. A subset of the CSR registers is supported in Klessydra and they are listed in table 

4,5 Each CSR unit has a unique identification number in the read only MHARTID register. 

More details about the implementation of the CSR registers can be found in appendix A. 

 
Table.4.4. Control and status registers supported by Klessydra cores 

Name  R/W  Description  

MSTATUS  R/W  status register  

MEPC  R/W  exception program counter  

MCAUSE  R/W  trap cause  

PCER  R/W  performance counter enabler 

MESTATUS  R/W  exception status register backup  

MHPMCOUNTER  R/W  performance-monitoring counter  

MHPMEVENT  R/W  performance-event selector  

MCPUID  R  cpu description  

MIMPID  R  implementation description  

MHARTID  R  hardware thread integer id  

MIP  R/W  interrupt pending type  

MTVEC  R/W  trap-handler base address  

MIRQ  R  ext. interrupt request number  

MBADADDR  R/W  misaligned address value  

 

• Debug Unit: The core also augments a basic debug unit which can halt the execution through a 

debug request or an EBREAK instruction. In debug mode the core can be in two states halt state 

in which the cores halts execution after the last fetched instruction, and single step mode in which 

the core steps through every instruction in the core. In debug mode, the debug unit can read the 

registerfile contents of the hart in the execute stage, to read the contents of the other harts, the 

debug unit must single step through the instructions until the desired hart arrives to the execute 

stage. 
 

 

4.7. Trap handling 
 
4.7.1. Trap Handling through hardware 

 

When a trap occurs, the IE stage automatically sends a signal to the program counter so that it updates 

the pc value of the hart in the IE stage to jump to the machine trap vector address MTVEC. The CSR 

unit updates the corresponding CSR registers: 

• MCAUSE is updated with the type of exception if the trap was due to an exception. 

• MIP is updated with the type of interrupt if the trap cause was an interrupt request. 

• MEPC is updated with the pc value of the executing instruction when the trap occurred. 

• MSTATUS indicates trap handling in progress, and disables nested traps handling. 

• MESTATUS is backed with the pre-trap MSTATUS value. 
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• MBADADDR holds the misaligned address if the trap was due to a misaligned access. 

 

Interrupts: Klessydra cores support three types of interrupts, external, timer, and software interrupts. 

Hart 0 handles timer and external interrupts, and is done as shown from the code below. 
 

        -- synchronous assignment to MIP_internal bits: 1 
        -- this is Pulpino-specific assignment, i.e. the timer-related IRQ vector value 2 
        – the h index refers to the hart, in this case hart 0 only enters the condition 3 
        if h = 0 and unsigned(irq_id_i) >= 28 and irq_i = '1' then  -- the irq is a timer interrupt 4 
          MIP_internal(h)(7) <= '1'; 5 
        else 6 
          MIP(h)(7) <= '0'; 7 
        end if; 8 
        -- this detects the other IRQ vector values in Pulpino 9 
        if h = 0 and unsigned(irq_id_i) < 28 and irq_i = '1' then  -- the irq is an external interrupt 10 
          MIP(h)(11) <= '1'; 11 
        else 12 
          MIP(h)(11) <= '0';        13 
        end if;     -- the MIP(h)(3), software interrupt bit is handled by all the harts14 

 

All the harts on the other hand can send and receive software interrupts through a store word 

instruction to a specific address in the memory map. The address tag (upper bits of the SW address) 

is checked in the ID stage, and if the tag maps to the software interrupt’s address tag, the store 

instruction will instead act as a CSR instruction that writes to the MIP register of the other harts as 

shown in the VHDL code below. 

 
            if decoded_instruction_IE(SW_MIP_bit_position) = '1' then – a store word that writes to the MIP of a hart 1 
              if sw_mip = '1' then  -- the upper bits of  the address are decoded in the ID stage to know if the SW is a SW_MIP 2 
                csr_op_i           <= CSRRW;  -- set the type of CSR instruction 3 
                csr_instr_req    <= '1';   -- enable the CSR unit 4 
                ie_csr_wdata_i <= RS2_Data_IE; -- put the data on the CSR bus 5 
                csr_wdata_en   <= '1';  -- enable csr write 6 
                csr_addr_i        <= MIP_ADDR;  -- the csr address is the MIP register 7 
                 -- the lower address bits of the SW instruction are decoded to know which hart receives the software interrupt 8 
   for i in harc_range loop 9 
                  if data_addr_internal_IE(3 downto 0) = std_logic_vector(to_unsigned((4*i),4)) then 10 
                   harc_to_csr <= i;  -- harc_to_csr enables the target CSR unit 11 
                  end if; 12 
   end loop; 13 
              end if; 14 
            end if; 15 

 

When a hart receives an interrupt of any type, it will be directly serviced as soon as the hart arrives 

at the IE stage in the pipeline, and the instruction that is currently in the IE stage will not be executed. 

The hart will jump to the interrupt servicing routine, and will return at the end of the routine with an 

MRET instruction to the same address in order to execute the instruction that was discarded before. 

If the instruction discarded happened to be a WFI, this case will be registered when the trap occurs in 

the MSTATUS(h)(30) register of the hart indexed in h, and the return from the interrupt routine during 

the MRET execution will be to the “WFI_ptr + 4” instead. This is essential in order to break the core 

from being stuck in an infinite loop. The following code briefly shows how the CSR units updates 

the CSR registers for each type of event Interrupt/exception and how the MSTATUS recovers after 

servicing the interrupt routine. 

 
       --  Interrupt-cause CSR updating  --------------------------------- 1 
        -- note: PC just udpdated, MIP_internals can't have been cleared yet. 2 
        if served_irq(h) = '1' and MIP_internal(h)(11) = '1' then 3 
          -- it is the MEIP bit, ext. irq 4 
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          MCAUSE_internal(h) <= "1" & std_logic_vector(to_unsigned(11, 31));  -- ext. irq 5 
          MESTATUS(h)(2 downto 1)    <= MSTATUS_internal(h); -- push the MSTATUS to back MESTATUS register 6 
          if WFI_Instr = '1' then   -- Indicates to the MEPC that the return address contains a WFI instruction 7 
            MCAUSE_internal(h)(30) <= '1'; 8 
          else 9 
            MCAUSE_internal(h)(30) <= '0'; 10 
          end if; 11 
          MSTATUS_internal(h)(0) <= '0';  -- interrupt handling temporarily disabled, 12 
          MSTATUS_internal(h)(1) <= MSTATUS_internal(h)(0);  -- trap handling pending in progress 13 
        elsif served_irq(h) = '1' and MIP_internal(h)(3) = '1' then 14 
          -- it is the MSIP bit, sw interrupt req 15 
          MCAUSE_internal(h) <= "1" & std_logic_vector(to_unsigned(3, 31));  -- sw interrupt 16 
          MIP_internal(h)(3) <= '0'; -- we reset the sw int. request just being served 17 
          …  -- similar assignments as the ext irq 18 
          … 19 
        elsif served_irq(h) = '1' and MIP_internal(h)(7) = '1' then 20 
          -- it is the MTIP bit, timer interrupt req 21 
          MCAUSE_internal(h) <= "1" & std_logic_vector(to_unsigned(7, 31));  -- timer interrupt 22 
          …-- similar assignments as the ext irq 23 
          … 24 
        --  Exception-cause CSR updating ---------------------------------- 25 
        elsif served_except_condition(h) = '1' then 26 
          if served_ie_except_condition(h) = '1' then 27 
            MCAUSE_internal(h)     <= ie_except_data;  -- exception cause passed from IE Stage 28 
          end if; 29 
          MESTATUS(h)(2 downto 1)  <= MSTATUS_internal(h); -- push the MSTATUS to backup register MESTATUS 30 
          MEPC_internal(h)   <= pc_except_value_wire(h); 31 
          MSTATUS_internal(h)(0) <= '0';  -- interrupt handling temporarily disabled,  32 
          MSTATUS_internal(h)(1) <= '1';  -- trap handling pending in progress 33 
          if misaligned_err = '1' then 34 
            MBADADDR(h) <= data_addr_internal; -- store the misaligned address that caused the trap 35 
          end if; 36 
 37 
        -- MRET-cause CSR updating ---------------------------------------- 38 
        elsif served_mret_condition(h) = '1' then 39 
          MSTATUS_internal(h)(1) <= '1';  -- re-enable the trap handling 40 
          MSTATUS_internal(h)(0) <= MSTATUS_internal(h)(1); -- indicate the core is no longer handling traps 41 
        end if; 42 

 

 

4.7.2. Trap handling through software 

 

In the startup code there is a an MTVEC label indicating the start of the routine to execute during a 

trap.  The routine will simply compare the MCASUE value to the table of trap handlers to know 

which trap handling to execute, and once the MCAUSE matches the value in the trap table, it will 

jump to the trap handling routine defined by PULPino, and then returns back to the execution 

environment. Below is a partial assembly snippet of the trap handling routine from the 

klessydra_startup.S file. 

 

mtvec_routine:      1 
 addi sp,sp,-KLESSYDRA_EXC_STACK_SIZE;  // decrement the stack pointer 2 
 sw t4,0x00(sp);  // save the register to be modified on the stack 3 
 sw t5,0x04(sp); 4 
 sw t6,0x08(sp); 5 
 csrrs t5, k_mcause, x0;  // load the casue of the trap 6 
 csrr t4, k_mirq;  // load the the interrupt id 7 
 li t6, EXT_INTERRUPT_CODE; 8 
 bne t5, t6, no_ext_interrupt;  // Check whether the trap was due to an external interrupt 9 
 lw t5, 0x04(sp); 10 
 lw t6, 0x08(sp); 11 
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 jr t4; 12 
 13 
no_ext_interrupt: 14 
 li t6, SW_INTERRUPT_CODE_WFI;   //In klessydra, if we have a WFI, we write a "1" to the bit mcause(30), 15 
to return to the instruction following the WFI                           16 
 beq t5, t6, sofware_insn_handler; 17 
 li t6, SW_INTERRUPT_CODE_NO_WFI; // Check whether the trap was due to a software interrupt 18 
 beq t5, t6, sofware_insn_handler; // They jump to the same routine the since mepc is incrememnted in hardware, 19 
when the mepc return value is a WFI instruction 20 
 li t6, TIMER_INTERRUPT_CODE; // Check whether the trap was due to a timer interrupt  21 
 bne t5, t6, exception_trap; 22 
 lw t5, 0x04(sp); 23 
 lw t6, 0x08(sp); 24 
 jr t4; 25 
 26 
exception_trap: 27 
 li t6, ECALL_EXCEPT_CODE;  // Check whether the trap was due to an ECALL instruction 28 
 beq t5, t6, ecall_insn_handler;    29 
 li t6, ILLEGAL_INSN_EXCEPT_CODE;   // Check whether the trap was due to executing an illegal instruction 30 
 beq t5, t6, illegal_insn_handler;                                         31 
 li t6, LOAD_ERROR_EXCEPT_CODE;  // Check whether the trap was due to a load error 32 
 beq t5, t6, invalid_addr_handler;  33 
 li t6, STORE_ERROR_EXCEPT_CODE;  // Check whether the trap was due to a store error 34 
 beq t5, t6, invalid_addr_handler; 35 
 li t6,LOAD_MISALIGNED_EXCEPT_CODE;  // Check whether the trap was due to a misaligned access 36 
 beq t5, t6, invalid_addr_handler; 37 
       38 
 lw t4,0x00(sp);  // recover the stack 39 
 lw t5, 0x04(sp);  40 
 lw t6, 0x08(sp); 41 
 addi sp,sp, KLESSYDRA_EXC_STACK_SIZE;  // recover the stack pointer 42 
 mret;  // return to the execution environment 43 

 

 

Klessydra specific C functions that have been integrated to the libraries inside Pulpino to be used to 

quickly send software interrupts. The following is the body of the C function that sends a software 

interrupt to a target hart. The function takes one argument which is the hart_id. From the hart_id it 

will generate the MIP address and send a store word to that MIP value. 

 
int send_sw_irq(int targethart){  1 
 int mip_data_send = 8; 2 
 int store_addr = 0xff00;  // Base address of the software interrupt memory section 3 
 if(targethart >= THREAD_POOL_SIZE) return 0;  // the thread in which the interrupt was sent doesn't exist 4 
 else { store_addr = store_addr + (4*targethart);  // MIP address generation 5 
  store_mem(mip_data_send, store_addr); // Send a store word with address with the MIP address 6 
  return 1;}} 7 
 8 
void store_mem(int data_send, int store_addr) { 9 
 __asm__("sw %0, (%1);" 10 
  :/*no output register*/ 11 
  :"r"(data_send), "r"(store_addr) 12 
  :/*no clobbered register*/);}  13 
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4.8. Thread synchronization. 
 
4.7.3. Atomic Instruction Support: 

 

The atomic extensions were augmented to the instruction set supported by Klessydra-T cores in order 

to support thread synchronization of the harts. However, only a minimal integration of the atomic 

extension was done such that the only atomic instruction implemented was the ‘amoswap’. 

Implementing the amoswap instruction is sufficient enough in order to have thread synchronization, 

and implement region locks (acquire, and release) on a memory location. Briefly an amoswap 

instruction loads a key value from a memory and swaps the loaded value with a lock. In order for the 

amoswap to work correctly, the pointers of the instruction must be addressing the regions in the 

shared .data section of the data memory by assigning them as global variables, and not the 

dedicated .stack section, since each hart has its own dedicated stack region in the memory. The 

following are the body of the functions which do lock acquire, and lock release to memory regions. 

Both functions take an argument which is a pointer to the lock that is a global variable. 

 
void klessydra_lock_acquire(int *lock){ 1 
 int temp0 = 1;  2 
 __asm__( 3 
  "loop: " 4 
  "amoswap.w.aq %1, %1, (%0);" // Set the lock by swapping the key ‘0’ with ‘1’. 5 
  "bnez %1,loop;"  // loop until the lock is released. 6 
  ://no output register 7 
  :"r" (lock), "r" (temp0) 8 
  :/*no clobbered registers*/);} 9 
 10 
void klessydra_lock_release(int *lock) 11 
{ 12 
 __asm__( 13 
  "amoswap.w.rl x0, x0, (%0);" // Release lock by storing 0. 14 
  ://no output 15 
  :"r" (lock) 16 
  ://no clobbered register);} 17 

 

 

4.7.4. Barrier Functions: 

 

The previous functions can ensure the safe access to shared memory regions by blocking the access 

of all the other harts. However, in order to have thread synchronization, the Klessydra libraries include 

an additional set of sync_barrier functions to synchronize the threads. 

 

• sync_barrier_reset is used once at the beginning of the code and when the harts are in sync. 

The function does a csrw to the MSTATUS register in order to enable the handling of 

interrupts (i.e. software interrupts in our case). And initializes all the variables to be read in 

the following functions. 

 

• sync_barrier_thread_registration is used when the harts are in sync, and it registers every 

hart that calls this function. This registration process is essential to know the total number of 

harts interleaving in the IMT core. 

 

• sync_barrier function synchronizes the harts. The harts to be synchronized call the function 

in chronological order, all the harts except the last one that enter the function register 

themselves in array to indicate they arrived at the barrier. A conditional structure will compare 

the number of harts registered versus the number of harts that arrived at the barrier function, 
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and if the number of harts arrived is less than the number of harts registered, then the hart that 

entered the barrier function will go to a WFI state. Once the last hart enters the functions and 

registers itself, the if condition will check that all the harts arrived, and this hart will go to 

‘else’ state and starts sending software interrupts to every sleeping hart in the core. The harts 

will return from this function synchronized. One important note about the barrier function is 

that the routine for the barrier-arrival-registration of the harts, and the following code to check 

the number of the harts arrived is done atomically. Performing this routine without atomicity 

might in some cases confuse the hart reading the global variables, and will thus send all the 

harts to a WFI state. 

 

The sync_barrier function bodies are shown below. 

 
void sync_barrier_reset(){  1 

int i; 2 
 int key = 1; 3 
 static int section = 0; 4 
 int* ptr_section = &section; 5 
 asm volatile 6 
 ( "csrrw zero, mstatus, 8;"   // enable the interrupt handling 7 
  "amoswap.w.aq %[key], %[key], (%[ptr_section]);"  8 
  :[key] "r" (key), [ptr_section] "r" (ptr_section):); 9 
 if (section == 0){ 10 
     for (i=0;i<THREAD_POOL_SIZE; i++)  { 11 
      sync_barrier_register[i] = 0;  }}} 12 
 13 
void sync_barrier_thread_registration(){ 14 
   int my_hart; 15 
   my_hart = Klessydra_get_coreID(); 16 
   arrived_at_barrier[my_hart] =  0;  17 
   sync_barrier_register[my_hart] = 1;} 18 
 19 
void sync_barrier(){  20 

int my_hart, i; 21 
int *ptr_key = &key_barr; 22 

  my_hart = Klessydra_get_coreID(); 23 
              if(syc_barrier_register[my_hart] == 1) {  // checks if the hart entering was registered 24 
                        klessydra_lock_acquire(ptr_key);   // the following routine must be done atomically 25 

          barrier_completed[my_hart] = 1; // set to 1 to indicate that all harts arrived, else it will be set to zero 26 
          arrived_at_barrier[my_hart] = 1;   // notifies the core that the hart with the hart_id in "my_hart" has arrived 27 

           for (i=0;i<THREAD_POOL_SIZE; i++)  { 28 
  if (arrived_at_barrier[i] == 0 && sync_barrier_register[i] == 1) { 29 
                     barrier_completed[my_hart] = 0;}} // reset to zero, since not all the harts arrived at the barrier 30 
           if (barrier_completed[my_hart] == 0){  // send the waiting threads to a WFI state 31 
  klessydra_lock_release(ptr_key);  // release lock acquired previously 32 
  __asm__("WFI;");}  // put the hart to sleep with a WFI 33 
          else{ 34 
  klessydra_lock_release(ptr_key);  // release lock acquired previously 35 
  for (i=0;i<THREAD_POOL_SIZE; i++){ 36 
   if (my_hart != i  &&  sync_barrier_register[i] == 1) { 37 
       send_sw_irq(i);} 38 
       sync_barrier_register[i]=0; } // unregister all of the registered harts 39 
       barrier_completed[my_hart] = 0;}}} 40 
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4.9. Conclusion 
 

Throughout this chapter we studied the IMT processors, and we made an an experimental and 

analytical assessment in order to determine the optimal pipeline organization to be adopted. Having 

chosen T03 as our optimal IMT implementation, we integrated the T03 inside Pulpino, and we 

adjusted the support of the exceptions, and interrupts in order to be compatible with the SoC. Also, 

we added a set of libraries to Klessydra that can be utilized to exploit the architecture, In the next 

chapter we will see how we can further improve the T03 IMT core.
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Chapter 5 Klessydra-T1 Architectures 
 

5.1. Background 
 

In the previous chapter we have shown how an IMT processor, can be easily exploited in two classes 

of applications. Decoupled applications, each of which runs on a dedicated hart, and balanced parallel 

applications that allocate equal or semi-equal workloads to every hart, and the nature of the workloads 

being balanced among the harts gives only a tiny overhead during thread synchronization. A good 

example of threads running dedicated applications is for instance when using the SoC in an 

environment in which each hart interfaces its own peripheral device for instance; I/O devices or 

sensors or wireless devices and etc. The previous study from chapter 4 showcased the performance 

of the T03 when executing some basic control, or integer arithmetic applications.  The advantages of 

using the T0 cores covered only small portions of the entire spectrum of applications. However, this 

chapter shows that IMT cores can be utilized in broader areas, in which harts can work together to 

run specialized applications that are easily exploited with superscalar hardware accelerators coupled 

with dedicated low latency local energy efficient scratchpad memories [36][37]. In this chapter, our 

aim is to exploit IMT processors to perform well in a broader set of the computing application 

spectrum and that is through the augmentation of specialized hardware accelerators. The T03 version 

supporting specialized hardware acceleration is called the T13 core.  

 

As mentioned in the previous chapter that T03 is a short hand for T033, and also in this chapter, the 

T13 is a short hand for T133. The T13 is part of the Klessydra open source project. [31][32][33][[34] 

and it expands the instruction set of T03 with two extensions; the first being the “M” (multiply/divide) 

extension which is handled in the IE block, and the second is the “K” custom instruction set extension, 

specifically designed to facilitate vector calculations, that is managed by the SPMU. So, the ISA 

supported by the T13 core is RV32IMAK. The T13 core was designed to allow superscalar execution, 

and yet still interleave only three harts in the core.  The superscalar execution of the T13 is done 

without creating any highly multi-ported registerfiles as those available in Out-of-Order architectures. 

It parallelizes the execution in IMT processors while still maintaining the pipeline stages, and the 

thread pool baseline of the T03. It demonstrates how simple it is to augment a hardware accelerator, 

and shows how to design the accelerators in order exploit thread level parallelism. Different hardware 

accelerator schemes have been implemented in order to see which approach yields the best 

performance, area, and energy efficiency.  

 

This chapter starts by demonstrating the motivation for augmenting a hardware accelerator to the T03 

architecture in section 5.2. Then it would describe the microarchitecture of the augmented hardware 

accelerator in 5.3. Section 5.4 shows how our accelerator can be built in different implementations 

Then in section 5.5 a set of different hardware accelerator schemes are provided in order to study the 

optimal choice to use for exploiting an IMT processor. Followed by a performance benchmark of the 

different hardware accelerator schemes from section 5.4. In section 5.6 the FPGA synthesis results 

are reported when synthesizing the T13 core with the different accelerator schemes shown in section 

5.3. In section 5.7, supplementary tests are made to further test the T13 hardware accelerator 

 

5.2. Motivation for augmenting the T03 core with a hardware accelerator 
 

The IMT core presented in this chapter is called the Klessydra-T13 (T13 for short). The T13 block 

organization is shown in figure 5.1, it maintains the same hart count of its predecessor the T03. 

However, unlike the T03, the T13 introduces superscalar execution giving rise to the possibility of 

having instructions from different harts in the execute stage as seen below. 
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Figure.5.1. Klessydra T133 block organization, interleaves three harts and has three execution units working in 

parallel 

 

A good practice to make a superscalar processor is to let each augmented execution unit write into its 

own memory. Take a look at figure 5.1 for example; The Load-Store Unit (LSU) only allows 

superscalar execution with the other units is when the instruction its handling is a store. Since stores 

write to the external memory, and not the registerfile. Following the same concept, we have created 

a hardware accelerator called the Special Purpose Mathematical Unit (SPMU) that has its own 

execution units and its own dedicated local Scratchpad Memories. The SPMU has its own custom 

instructions that can read from the SPMs or the registerfile, however, it only writes to the scratchpads 

and never to the registerfile. Working in this fashion, the SPMU can automatically be said to work in 

parallel with the other execution units, since it does not perform any concurrent writes to shared 

memories. 

 

Following this practice, hardware accelerators can be easily augmented to IMT architectures, to 

increase their capabilities in targeting a large portion of the spectrum of computing applications. 

 

5.3. Special Purpose Mathematical Unit Microarchitecture 
 
The SPMU is the hardware accelerator. It was given the name “Special Purpose” because it performs 

a certain subset of mathematical operations specifically designed to accelerate the execution of 

Convolutional Neural Networking Applications (CNN). The SPMU is comprised of two main sub-

systems as seen in figure 5.2. The Special Purpose Engine (SPE) which maps, controls, and executes 

the SPMU instructions, and the Scratchpad Memory Interface (SPI) that manages the SPE and LSU 

access to the scratchpad memories (not to be confused with SPI “serial peripheral interface”). 
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The SPMU can be compared to a vector processor rather than a packed SIMD [46][47] processor 

since it executes on sets of data of variable vector length, unlike SIMD instructions that have a fixed 

vector length. However, throughout the rest of this chapter and the next, the word “SIMD will be used 

to refer to the nature of the execution of the instructions and not the type of the instructions. The 

instructions are of type vector, and not SIMD. 

 

In the T13, the length of the vector to execute in each instruction is set in a custom CSR called 

Machine Vector Size “MVSIZE”. Also, similarly the SPMU compares to a vector processor by 

allowing the configuration of different data types, the data types supported in the SPMU are integer 

8-bit, 16-bit, and 32-bit. 
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Figure.5.2. SPMU Block Diagram 

 

5.3.1. Special Purpose Engine 

 

The execution of the T13 custom K instruction set extensions is done in the SPE. The SPE is 

composed of many integral sub-systems, which handle the configuring, fetching, mapping, executing, 

and writing of the instruction. At any point in time the SPMU can be in any of the following two 

states: 

 

• SPE_INIT: The default state of the SPE, and also the initial state for every instruction, this 

state handles the configuring of the functional units, and the exception control checking, 

fetching of the first data elements, and buffer the signals coming from the Decode, and CSR 

units. 

• SPE_Exec:  The SPE transfers to this state if there are no exceptions, and in the SPE_Exec 

state, we handle the hardware-loops, mapping, fetching the next elements, executing 

operations, and writing the results. After the results have been written successfully the SPE 

returns back to the SPE_INIT state. 

 

Each of the SPMU’s sub-systems will be described in the following paragraphs detailing their 

functions, and also showcasing VHDL snippets of how they were implemented.  

 

The exception handler is a part of the initialization phase which checks for any current exceptions, 

and predicts for any future exceptions right at the very first cycle of the execution of a custom 

instruction from the “K” extension. All the exceptions are regarding the SPM access.  

 

The main reason for controlling exceptions in the first cycle is that after the first cycle, the core 

enables the dispatch of the instructions of the other harts, and the state of the registerfile. So, in the 



50 
 

case of encountering an exception in the first cycle, the core will recover the state of the processor 

precisely to the time before the exception occurred without having the registerfile being modified. 

Detecting exceptions after the first cycle requires a history file to recover the processor’s state 

precisely for when the program counter returns from the trap handling routine, which is an efficient 

procedure seeing that the nature of an exception happening is quite exceptional. 

 

The following are a list of what might be exception triggers in the SPMU: 

1. Out of bound SPM access; in this case, one of the pointers to a data element is pointing to 

an address not belonging to any of the SPM memories. 

2. Dual SPM read access; a SPM has one read port, and when the two instruction operands 

point to the same SPM, we encounter an exception. 

3. Overflow data read and write; this happens when the SPM pointer plus the vector size will 

overflow the address of the SPM being indexed. This overflow exception only traps when the 

operand being indexed is used as a vector, and not scalar. 

4. Misaligned access; SPMs are 32-bit word aligned and any misaligned access will trigger this 

exception. 

 

Below is the RTL description of the exception handler in the SPMU. 

 
  ------------ Exception handler of SPE Unit ---------------------------------------------------------------------- 1 
  SPE_Excpt_Cntrl_Unit_comb : process(all) 2 
  begin 3 
  … 4 
  … 5 
    if spe_instr_req = '1' or busy_SPE_internal_lat = '1' then 6 
      case state_SPE is 7 
        when SPE_init => 8 
          overflow_rs1_spm <= std_logic_vector('0' & unsigned(RS1_Data_IE(Addr_Width -1 downto 0)) +  9 
                                                                                unsigned(MVSIZE(harc_EXEC)) -1); 10 
          overflow_rs2_spm <= std_logic_vector('0' & unsigned(RS2_Data_IE(Addr_Width -1 downto 0)) +  11 
                                                                                unsigned(MVSIZE(harc_EXEC)) -1); 12 
          overflow_rd_spm  <= std_logic_vector('0' & unsigned(RD_Data_IE(Addr_Width  -1 downto 0)) +  13 
                                                                               unsigned(MVSIZE(harc_EXEC)) -1); 14 
          if MVSIZE(harc_EXEC) = (0 to Addr_Width => '0') then  -- don’t execute instructions with zero vector elements 15 
            null; 16 
          elsif MVSIZE(harc_EXEC)(1 downto 0) /= "00" and MVTYPE(harc_EXEC)(3 downto 2) = "10" then   17 
            except_condition_wires := '1'; -- Set exception if the number of bytes are not divisible by four 18 
            except_data_wire           <= ILLEGAL_VECTOR_SIZE_EXCEPT_CODE;  19 
          elsif MVSIZE(harc_EXEC)(0) /= '0' and MVTYPE(harc_EXEC)(3 downto 2) = "01" then             20 
            except_condition_wires := '1'; -- Set exception if the number of bytes are not divisible by two 21 
            except_data_wire           <= ILLEGAL_VECTOR_SIZE_EXCEPT_CODE; 22 
          elsif (rs1_to_spm  = "100" and vec_read_rs1_ID = '1') or 23 
                  (rs2_to_spm  = "100" and vec_read_rs2_ID = '1') o 24 
                   rd_to_spm   = "100" then     25 
            except_condition_wires := '1'; -- Set exception for non-scratchpad access 26 
            except_data_wire           <= ILLEGAL_ADDRESS_EXCEPT_CODE; 27 
          elsif rs1_to_spm = rs2_to_spm and vec_read_rs1_ID = '1'  28 
                                                            and vec_read_rs2_ID = '1' then 29 
            except_condition_wires := '1'; -- Set exception for same read access 30 
            except_data_wire           <= READ_SAME_SCARTCHPAD_EXCEPT_CODE;    31 
          elsif (overflow_rs1_spm(Addr_Width) = '1' and vec_read_rs1_ID = '1') or  32 
                  (overflow_rs2_spm(Addr_Width) = '1' and  vec_read_rs2_ID = '1') then  33 
            except_condition_wires := '1';  -- Set exception if reading overflows the scratchpad's address 34 
            except_data_wire           <= SCRATCHPAD_OVERFLOW_EXCEPT_CODE; 35 
          elsif overflow_rd_spm(Addr_Width) = '1'  and vec_write_rd_ID = '1' then 36 
            except_condition_wires := '1'; -- Set exception if reading overflows the scratchpad's address 37 
            except_data_wire <= SCRATCHPAD_OVERFLOW_EXCEPT_CODE; 38 
          else  -- else we process the instruction 39 
            if halt_hart = '0' then 40 
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              nextstate_SPE <= spe_exec; 41 
            else 42 
              nextstate_SPE <= spe_halt_hart; 43 
            end if; 44 
            busy_SPE_internal_wires := '1'; 45 
          end if; 46 
        when others => 47 
          null; 48 
         … 49 

 

The initialization block configures the functional units correctly in order to execute the instructions 

in flight. An example of some configurations might be; Setting the FU controls to execute the data 

type to be computed on, such as; chars, shorts or ints. Other configurations might also be to transform 

the input operands into their two’s complement or they might be to configure outputs to either become 

sign extended or zero extended. 

 
-------- FU Inittialiazion phase ----------------------------------------------------------------------------------------------------   1 
          -- Set signals to enable correct virtual parallelism operation 2 
            if (decoded_instruction_SPE(KADDV_bit_position)    = '1'      or 3 
                 decoded_instruction_SPE(KSVADDSC_bit_position) = '1') and 4 
              MVTYPE(3 downto 2) = "10" then 5 
              carry_pass <= "111";  -- pass all carry_outs 6 
            elsif decoded_instruction_SPE(KSVADDRF_bit_position) = '1' and  7 
              MVTYPE(3 downto 2) = "10" then 8 
              carry_pass <= "111";  -- pass all carry_outs 9 
              rf_rs2 <= '1'; 10 
              … 11 
            elsif decoded_instruction_SPE(KSUBV_bit_position) = '1' and 12 
              MVTYPE(3 downto 2) = "10" then 13 
              carry_pass <= "111";  -- pass all carry_outs 14 
              twos_complement <= "00010001000100010001000100010001"; 15 
            elsif decoded_instruction_SPE(KSUBV_bit_position) = '1' and  16 
              MVTYPE(3 downto 2) = "01" then 17 
              carry_pass <= "101";  -- pass carrries 9, and 25 18 
              twos_complement <= "01010101010101010101010101010101"; 19 
            elsif decoded_instruction_SPE(KSUBV_bit_position)  = '1' and  20 
              MVTYPE(3 downto 2) = "00" then 21 
              carry_pass <= "000";  -- don't pass carry_outs and keep addition 8-bit 22 
              twos_complement <= "11111111111111111111111111111111"; 23 
              … 24 
            elsif decoded_instruction_SPE(KDOTP_bit_position) = '1' and 25 
              MVTYPE(3 downto 2) = "10" then 26 
              FUNCT_SELECT_MASK <= (others => '1');  -- This enables 32-bit multiplication with the 16-bit multipliers 27 
              dotp <= '1'; 28 
            elsif decoded_instruction_SPE(KDOTP_bit_position) = '1' and  29 
              MVTYPE(3 downto 2) = "01" then 30 
              dotp <= '1';  31 
              MVTYPE(3 downto 2) = "00" then 32 
              dotpps <= '1'; 33 
            elsif decoded_instruction_SPE(KSVMULRF_bit_position) = '1' and 34 
              MVTYPE(3 downto 2) = "10" then 35 
              FUNCT_SELECT_MASK <= (others => '1'); 36 
              rf_rs2 <= '1'; 37 
            elsif (decoded_instruction_SPE(KVMUL_bit_position)        = '1'  or 38 
        decoded_instruction_SPE(KSVMULSC_bit_position) = '1') and 39 
              MVTYPE(3 downto 2) = "10" then 40 
              FUNCT_SELECT_MASK <= (others => '1'); 41 
           end if 42 
----------------------------------------------------------------------------------------------------------------------------- ------------43 
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In the execute state of the SPE, the hardware-controlled loops or shortly hardware loops (hw-loops) 

eliminate the overhead required for looping operations. It increments the source operand pointers to 

fetch the next element of each operand only when the instruction operands are defined as vector 

sources and not scalar sources. The same applies for the writing of the resutls. The hw-loops also 

handles decrementing the vector length continuously. When the vector size becomes zero, the hw-

loops stop, and the instruction is considered done.  A masking vector is created depending on the 

number of elements left, such that if the number of elements is less than the number of bytes processed 

in one cycle, the mask will disable the upper bytes of the fetched elements. This is essential when 

elements fetched get accumulated. In this case, we need to avoid accumulating data not belonging to 

the instruction in order to get correct accumulation results. 

 

A hardware loop saves the following software overhead: 
◦ SIMD_LOOP: 

◦ VADD *dest, *opA, *opB; 

◦ ADDI *opA,  *opA, SIMD_SIZE 

◦ ADDI *opB,  *opB, SIMD_SIZE 

◦ ADDI *dest,  *dest, SIMD_SIZE 

◦ SUB     VEC_SIZE , VEC_SIZE, SIMD_SIZE 

◦ BEQZ  VEC_SIZE, SIMD_LOOP 

 

 

 
            if halt_spe = '0' then  -- the hardware loops work only when there is no halt from the SPI 1 
              -- Increment the write address when we have a result as a vector 2 
              if vec_write_rd_lat = '1' and wb_ready = '1' then  -- destination address increment 3 
                  RD_Data_IE_lat  <= std_logic_vector(unsigned(RD_Data_IE_lat)  + SIMD_RD_BYTES);  4 
              end if; 5 
              if wb_ready = '1' then -- decrement by SIMD_BYTE Execution Capability 6 
                if to_integer(unsigned(MVSIZE_WRITE)) >= SIMD_RD_BYTES then 7 
                  MVSIZE_WRITE <= std_logic_vector(unsigned(MVSIZE_WRITE) - SIMD_RD_BYTES);        8 
                else  -- decrement the remaining bytes 9 
                  MVSIZE_WRITE <= (others => '0');  10 
                end if; 11 
              end if; 12 
              -- Increment the read addresses 13 
              if to_integer(unsigned(MVSIZE_READ)) >= SIMD_RD_BYTES and data_gnt_i = '1' then  14 
                if vec_read_rs1_lat = '1' then -- source 1 address increment 15 
                  RS1_Data_IE_lat <= std_logic_vector(unsigned(RS1_Data_IE_lat) + SIMD_RD_BYTES);    16 
                end if; 17 
                if vec_read_rs2_lat = '1' then  -- source 2 address increment 18 
                  RS2_Data_IE_lat <= std_logic_vector(unsigned(RS2_Data_IE_lat) + SIMD_RD_BYTES);  19 
                end if; 20 
              end if; 21 
              -- Decrement the vector elements that have already been operated on 22 
              if data_gnt_i = '1' then -- decrement by SIMD_BYTE Execution Capability 23 
                if to_integer(unsigned(MVSIZE_READ)) >= SIMD_RD_BYTES then 24 
                  MVSIZE_READ <= std_logic_vector(unsigned(MVSIZE_READ) - SIMD_RD_BYTES);   25 
                else -- decrement the remaining bytes 26 
                  MVSIZE_READ <= (others => '0');  27 
                end if; 28 
              end if; 29 
              spm_data_read_mask <= (others => '0'); 30 
              if data_gnt_i_lat = '1' then 31 
                if to_integer(unsigned(MVSIZE_READ_MASK)) >= SIMD_RD_BYTES then 32 
                  spi_data_read_mask <= (others => '1'); 33 
                  MVSIZE_READ_MASK<=std_logic_vector(unsigned(MVSIZE_READ_MASK) -  34 
                                                                                                                 SIMD_RD_BYTES);  35 
                else 36 
                  MVSIZE_READ_MASK <= (others => '0'); 37 

Increment Vector A address 

Increment Vector B address 

Decrement Vector Elements 

Branch If the vector elements are zero 

Increment Destination address 
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                  spi_data_read_mask(to_integer(unsigned(MVSIZE_READ_MASK))*8-1 downto 0)<=(others => '1'); 38 
                end if; 39 
              end if; 40 
            end if;41 
 

 

The fetched input operands go into the mapping unit, that maps the fetched input data to their 

corresponding functional units. Some instructions use multiple functional units and so the outputs of 

the first functional unit re-route to the next one. The operands can be either scalar or vector, and they 

can be fetched from the SPM or the registerfile. The final outputs of the functional units will connect 

again to the mapping unit, in which they will be written back to the SPMs. Below is a brief snippet 

from the RTL of the input operand mapper, as for the output mapping, the assignments would be 

similar but reversed. 
 

------ INPUT OPERAND MAPPING   -----------------------------------------------------------------------  1 
          if (decoded_instruction_SPE_lat(KDOTP_bit_position)   = '1'  or   -- dot product instruction 2 
                decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1') and – dot product instruction with post scaling 3 
               (MVTYPE_SPE = "01" or MVTYPE_SPE = "10") then 4 
              mul_operands(0) <= spi_data_read(0) and spi_data_read_mask; 5 
              mul_operands(1) <= spi_data_read(1) and spi_data_read_mask; 6 
              if dotp = '1' then 7 
                accum_operands  <= out_mul_results; 8 
              elsif dotpps = '1' then 9 
                shift_amount    <= MPSCLFAC_SPE; 10 
                shifter_operand <= out_mul_results; 11 
                accum_operands  <= out_shifter_results; 12 
              end if; 13 
            end if; 14 
            … 15 
            if decoded_instruction_SPE_lat(KADDV_bit_position) = '1' then – vector-vector add instr 16 
              adder_operands(0)   <= spi_data_read(0); 17 
              adder_operands(1)   <= spi_data_read(1); 18 
            end if; 19 
 20 
            if decoded_instruction_SPE_lat(KSVADDSC_bit_position)  = '1' and  -- vector-scalar add instruction 21 
                MVTYPE_SPE = "10" then 22 
              adder_operands(0)   <= spi_data_read(0); 23 
              for i in 0 to SIMD-1 loop 24 
                adder_operands(1)(31+32*(i) downto 32*(i))   <= spi_data_read(1)(31 downto 0); 25 
              end loop; 26 
            end if; 27 
 28 
            if decoded_instruction_SPE_lat(KSRAV_bit_position) = '1' or – right arithmetic shift instruction 29 
               decoded_instruction_SPE_lat(KSRLV_bit_position) = '1' then  -- right logic shift instruction 30 
              shifter_operand     <= spi_data_read(0); 31 
              shift_amount         <= RS2_Data_IE_lat(4 downto 0); -- map the scalar value (shift amount) 32 
            end if; 33 
            … 34 
            if decoded_instruction_SPE_lat(KRELU_bit_position)  = '1' then – relu instruction 35 
              relu_operands <= spi_data_read(0); 36 
            end if;37 

 

The control unit controls the requests to fetch the input operands and write the output results. It also 

halts the vector processor in case the source SPMs are being accessed by the load-store unit. When 

the SPE gets a halt signal, all the data in the pipes will maintain their state, and the hardware loops 

will stop counting until the SPM accessed becomes free. The Control for KADDV and KDOTP is 

shown below. Other instructions have a similar control. 

 
           if decoded_instruction_SPE_lat(KADDV_bit_position)  = '1' or  -- control for KADDV and KSUBV instructions 1 
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              decoded_instruction_SPE_lat(KSUBV_bit_position)  = '1' then 2 
             if adder_stage_3_en = '1' then 3 
               wb_ready <= '1';  -- the results of the final stage are ready to be written back 4 
             elsif recover_state = '1' then 5 
               wb_ready <= '1';  -- latch the writeback ready signal for as soon as the write is granted 6 
             end if; 7 
             if MVSIZE_READ > (0 to Addr_Width => '0') then – keep on reading until all the data has been fetched 8 
               spe_to_spm(to_integer(unsigned(rs1_to_spi_lat)))(0) <= '1';  -- assign vs1 to the first SPI read port 9 
               spe_to_spm(to_integer(unsigned(rs2_to_spi_lat)))(1) <= '1';  -- assign vs2 to the second SPI read port 10 
               spi_req(to_integer(unsigned(rs1_to_spi_lat)))  <= '1';  -- request vs1 11 
               spi_req(to_integer(unsigned(rs2_to_spi_lat)))  <= '1';  -- request vs2 12 
               spi_read_addr(0)  <= RS1_Data_IE_lat(Addr_Width - 1 downto 0);  -- send the address of  vs1 13 
               spi_read_addr(1)  <= RS2_Data_IE_lat(Addr_Width - 1 downto 0);  -- send the operand of vs2 14 
             end if; 15 
             if MVSIZE_WRITE > (0 to Addr_Width => '0') then  16 
               nextstate_SPE <= spe_exec; -- latch the execute state of the SPE 17 
               busy_SPE_internal_wires := '1'; – the SPE is considered busy until all the outputs are written 18 
             end if; 19 
             if wb_ready = '1' then – first batch of the vector results becomes ready 20 
               spi_we(to_integer(unsigned(rd_to_spi_lat)))    <= '1'; -- enable the writeback 21 
               spi_write_addr <= RD_Data_IE_lat; -- send the write address which is incremented by the hw_loops 22 
             end if; 23 
           end if; 24 
           …  25 
           if decoded_instruction_SPE_lat(KVRED_bit_position)    = '1' or --Control of the accumulator using instructions 26 
              decoded_instruction_SPE_lat(KDOTP_bit_position)     = '1' or 27 
              decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1' then 28 
             if accum_stage_3_en = '1' then 29 
               wb_ready <= '1'; 30 
             elsif recover_state = '1' then 31 
               wb_ready <= '1';  32 
             end if; 33 
             if MVSIZE_READ > (0 to Addr_Width => '0') then – keep on reading until all the data has been fetched 34 
               if vec_read_rs2_SPE = '1' then 35 
                 spi_req(to_integer(unsigned(rs2_to_spi_lat))) <= '1'; -- request vs2 36 
                 spe_to_spi(to_integer(unsigned(rs2_to_spi_lat)))(1) <= '1'; -- assign vs2 to the second SPI read port  37 
                 spi_read_addr(1)  <= RS2_Data_IE_lat(Addr_Width - 1 downto 0); -- send the address of  vs2 38 
               end if; 39 
               spi_req(to_integer(unsigned(rs1_to_spi_lat))) <= '1'; -- request vs1 40 
               spe_to_spm(to_integer(unsigned(rs1_to_spi_lat)))(0) <= '1'; -- assign vs1 to the first SPI read port 41 
               spi_read_addr(0)  <= RS1_Data_IE_lat(Addr_Width - 1 downto 0); -- send the address of  vs1 42 
               nextstate_SPE <= spe_exec; 43 
               busy_SPE_internal_wires := '1'; 44 
             elsif MVSIZE_WRITE = (0 to Addr_Width => '0') then 45 
               nextstate_SPE <= spe_init; -- return to the init state when the accumulation is done 46 
             else 47 
               nextstate_SPE <= spe_exec;  -- latch the execute state until all the elements have accumulated 48 
               busy_SPE_internal_wires := '1';  -- the SPE is considered busy until all the values have been accumulated 49 
             end if; 50 
             if wb_ready = '1' then  -- final scalar result is ready 51 
               spi_we(to_integer(unsigned(rd_to_spi_lat)))    <= '1'; -- enable the writeback 52 
               spi_write_addr <= RD_Data_IE_lat; -- send the write address of the scalar value 53 
             end if; 54 
           end if55 

 

The SPE has five different functional units (FUs). All the units work with different data types (8-bit, 

16-bits, 32-bit) both signed and unsigned. Three of the FUs work in partial mode; the adder, shifter, 

and the multiplier. The partial FUs increase the parallelism for smaller data width elements while 

maintaining a small area occupation. Table 1.1 shows how many operations we do in one cycle in 

every FU and for each data type when the SIMD parameter is configured to be 1. Bigger SIMD 

configurations will double the number of parallelisms on all the functional units. 
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Table.5. 1 Type, and parallelism of the functional units in the SPE 

Instruction FU Type Data Type Parallelism 

Adder Partial 32 1*SIMD 

16 2*SIMD 

8 4*SIMD 

Shifter Partial 32 1*SIMD 

16 2*SIMD 

8 4*SIMD 

Multiplier Partial 32 1*SIMD 

16 2*SIMD 

8 2*SIMD 

Accumulator Normal 32 1*SIMD 

16 2*SIMD 

8 2*SIMD 

ReLu Normal 32 1*SIMD 

16 2*SIMD 

8 4*SIMD 

 
We can see the partial adder from figure 5.3, there are a set of four 8-bit adders cascaded together. 

To produce 8-bit sums, the initialization block will configure the adders to block the carries 

propagated from the partial sums giving four 8-bit sums as outputs. For 16-bit additions, only the first 

and the third adders are allowed to propagate their carries, giving two 16-bit outputs. While for the 

32-bit sums all the carries are allowed to be propagated giving one 32-bit output.The adders as seen 

from figure 5.3 are split into two pipe stages, the carry from the lower 16 bits, goes to the upper 

sixteen bits through a register and not a wire. 
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Figure.5.3. Partial Adder Circuit in SIMD=4 
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The RTL describing the behavior of the SIMD pipelined partial adders is shown below.  
 

      for i in 0 to SIMD-1 loop 1 
        if (adder_stage_1_en = '1' or recover_state_wires = '1') then 2 
          add_8_0_wire(i)   <= std_logic_vector('0' & unsigned(adder_ops(0)(7+8*(4*i)  downto 8*(4*i))) + 3 
                                                                                  unsigned(adder_ops(1)(7+8*(4*i)  downto 8*(4*i)))  + 4 
                                                                                  twos_complement(0+(4*i))); 5 
          add_16_8_wire(i)  <= std_logic_vector('0' & unsigned(adder_ops(0)(15+8*(4*i) downto 8+8*(4*i)))  + 6 
                                                                                   unsigned(adder_ops(1)(15+8*(4*i) downto 8+8*(4*i))) + 7 
                                                                                   carry_8_wire(i) + 8 
                                                                                   twos_complement(1+(4*i))); -- 9 
          -- Carries are either passed or blocked for the 9-th, 17-th, and 25-th bits 10 
          carry_8_wire(i)  <= add_8_0_wire(i)(8)   and carry_pass(0); -- carry_pass is configured in the init stage 11 
          carry_16_wire(i) <= add_16_8_wire(i)(8)  and carry_pass(1); -- carry_pass is configured in the init stage 12 
        end if;13 
 

      

      for i in 0 to SIMD-1 loop – index ‘i’ is for the SIMD depth of the SPMU 1 
        if (adder_stage_2_en = '1' or recover_state_wires = '1') then 2 
          add_24_16_wire(i) <= std_logic_vector('0' & unsigned(adder_ops_lat(0)(7+8*(2*i) downto 8*(2*i)))+ 3 
                                                                                    unsigned(adder_ops_lat(1)(7+8*(2*i) downto 8*(2*i))) +  4 
                                                                                    carry_16(i) + twos_complement(2+(4*i))); 5 
          add_32_24_wire(i) <= std_logic_vector('0' & unsigned(adder_ops_lat(0)(15+8*(2*i) downto 8+8*(2*i))) +  6 
                                                                                    unsigned(adder_ops_lat(1)(15+8*(2*i) downto 8+8*(2*i))) +  7 
                                                                                     carry_24_wire(i) + twos_complement(3+(4*i))); 8 
            -- All the 8-bit adders are lumped into one output write signal that will write to the scratchpads 9 
            -- Carries are either passed or blocked for the 9-th, 17-th, and 25-th bits 10 
            carry_24_wire(i) <= add_24_16_wire(i)(8) and carry_pass(2); -- carry_pass is configured in the init stage 11 
          end if; 12 
        end loop;13 

 
 

       if add_en = '1' and halt_spe_lat = '0' then 1 
          carry_16           <= carry_16_wire; -- latch the wires 2 
          add_8_0    <= add_8_0_wire; 3 
          add_16_8  <= add_16_8_wire; 4 
          for i in 0 to SIMD-1 loop  – index ‘i’ is for the SIMD depth of the SPMU 5 
            if (adder_stage_2_en = '1' or recover_state_wires = '1') then 6 
                -- All the 8-bit adders are lumped into one output signal that will write to the scratchpads 7 
              out_adder_results(31+32*(i) downto 32*(i)) <= add_32_24_wire(i)(7 downto 0) & -- form the output result 8 
                                                                                            add_24_16_wire(i)(7 downto 0) & 9 
                                                                                            add_16_8(i)(7 downto 0) & 10 
                                                                                            add_8_0(i)(7 downto 0); 11 
            end if; 12 
          end loop; 13 
        end if; 14 
        for i in 0 to SIMD-1 loop – index ‘i’ is for the SIMD depth of the SPMU 15 
          for j in 0 to 1 loop  -- index ‘j’ loops through the upper two 8-bit adders 16 
            adder_ops_lat(j)(15 +16*(i) downto 16*(i)) <= adder_ops(f)(j)(31+32*(i) downto 16+32*(i)); -- latch the ops 17 
          end loop; 18 
        end loop;19 
 

 

For the 32-bit multiplier the partial multiplication structure is based on four 16-bit multipliers, 

according to the following implementation: 

 

A31-0*B31-0 = [(A31-16 << 16) + A15-0] * [(B31-16 << 16) + B15-0] 
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This method can generate two 8-bit, or two 16-bit MULs per cycle, or one 32-bit MUL per cycle. The 

circuit describing the multiplier is shown in figure 5.4. If the data type is set to 8-bit, or 16-bit, then 

the middle multiplications (AL*BH and AH*BL) will be masked with zeros to block the accumulation 

of the partial multiplications into making a 32-bit output. The actual multiplier does not use right 

shifters to give this 16-bit offset of zeros, instead it just concatenates a 16-bit zero vector to the upper 

portions of the partial multiplications. 

 

The reason this operation was not divided to use 8-bit multipliers instead, was because one DSP [45] 

slice is utilized in the FPGA whether an 8-bit or a 16-bit multiplication is done. So, for our current 

implementations of the multipliers, we will only get twice the speed-up for 8-bits of data and not four 

times as in the case of the partial adders. One note also, the multipliers upper 32-bit outputs are 

ignored so we do not emulate any ‘MULH’ operation, because they are not required in our 

applications. 
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Figure.5.4. Partial Multiplier Circuit in SIMD=4 

 

 ------ Synchronous Partial Multiplication Stage 1 --------------------------------------------------------------------------   1 
if halt_spe_lat = '0' then  – index ‘i’ is for the SIMD depth of the SPMU 2 
  if mul_en = '1' and (mul_stage_1_en = '1' or recover_state_wires = '1') then 3 
    for i in 0 to SIMD-1 loop 4 
      mul_a(31+32*(i)  downto 32*(i)) <= std_logic_vector(unsigned(mul_ops(0)(15+16*(2*i+1) downto 16*(2*i+1)))* 5 
                                                                                              unsigned(mul_ops(1)(15+16*(2*i+1) downto 6*(2*i+1)))); 6 
      mul_b(31+32*(i)  downto 32*(i)) <= std_logic_vector((unsigned(mul_ops(0)(16*(2*i+1) - 1  downto 16*(2*i)))* 7 
                                                                                                unsigned(mul_ops(1)(15+16*(2*i+1) downto 16*(2*i+1))))  8 
                                                                                         and unsigned(FUNCT_SELECT_MASK)); 9 
      mul_c(31+32*(i)  downto 32*(i)) <= std_logic_vector((unsigned(mul_ops(0)(15+16*(2*i+1) downto 16*(2*i+1)))* 10 
                                                                                                unsigned(mul_ops(1)(16*(2*i+1) - 1 downto 16*(2*i)))) 11 
                                                                                         and unsigned(FUNCT_SELECT_MASK)); 12 
      mul_d(31+32*(i)  downto 32*(i)) <= std_logic_vector(unsigned(mul_ops(0)(16*(2*i+1)  - 1 downto 16*(2*i)))* 13 
                                                                                              unsigned(mul_ops(1)(16*(2*i+1) - 1  downto 16*(2*i)))); 14 
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    end loop; 15 
  end if; 16 
end if; 17 
---------------------------------------------------------------------------------------------------------------------------------------18 

 
      

------ Synchronous Partial Multiplication Stage 2 --------------------------------------------------------------------------   1 
  if mul_en = '1' and (mul_stage_2_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 2 
    for i in 0 to SIMD-1 loop 3 
      out_mul_results((Data_Width-1)+Data_Width*(i) downto Data_Width*(i))  <=  4 
                                    (std_logic_vector(unsigned(mul_tmp_a(i)) +  5 
                                                                 unsigned(mul_tmp_b(i)) +  6 
                                                                 unsigned(mul_tmp_c(i)) +  7 
                                                                 unsigned(mul_tmp_d(i)))); 8 
    end loop; 9 
  end if; 10 
----------------------------------------------------------------------------------------------------------------------------- ---------11 

------ Combinational Partial Multiplication  --------------------------------------------------------------------------------- 1 
      if mul_en = '1' and (mul_stage_2_en = '1' or recover_state_wires = '1') then 2 
        for i in 0 to SIMD-1 loop 3 
          if MVTYPE_SPE /= "10" then 4 
            ------------------------------------------------------------------------------------ 5 
            mul_tmp_a(i) <= (mul_a(15+16*(2*i)  downto 16*(2*i)) & x"0000"); 6 
            mul_tmp_d(i) <= (x"0000" & mul_d(15+16*(2*i)  downto 16*(2*i))); 7 
            ------------------------------------------------------------------------------------ 8 
          elsif MVTYPE_SPE = "10" then 9 
           -- The upper 32-bit results of the multiplication are discarded in the SPMU (Ah*Bh) 10 
            mul_tmp_b(i) <= (mul_b(15+16*(2*i) downto 16*(2*i)) & x"0000");               --  (Ah*Bl) 11 
            mul_tmp_c(i) <= (mul_c(15+16*(2*i) downto 16*(2*i)) & x"0000");        -- (Al*Bh) 12 
            mul_tmp_d(i) <= (mul_d(31+32*(i)   downto 32*(i)));                                -- (Al*Bl) 13 
          end if; 14 
        end loop; 15 
      end if; 16 
----------------------------------------------------------------------------------------------------------------------------- ----------17 

 

The partial right shifter in the SPE works in the opposite manner (Figure 5.5). One 32-bit right logic 

shifter slides the input operands and computes one 32-bit shifted output. If the data width was 16-

bits, the init config will configure the data to mask the data sliding form one data value to the other. 

It will execute as follows: The two 16 bits data will go into the right shifter, the output of the shifter 

will be sent to the next stage where the lower bits of the upper 16-bit input that were slided into the 

upper bits of the lower 16-bit input will be masked with a bit a zero if the shift was logical, and sign 

extended if the shift was arithmetic. A similar approach is applied for 8-bit data types.  

 

The SPMU does not include a left shifter, instead the partial multipliers can be used for left shifting. 

As for the implementation of the right shifter, it was implemented to be used for pre-scaling and post-

scaling of the input and output data to be used in convolutions. 
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Figure.5.5. Partial Right Shifter Circuit in SIMD=4 

 

 
------ Synchronous Partial Shifter Stage 1 -------------------------------------------------------------------------------------- 1 
  if shift_en = '1' and (shifter_stage_1_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 2 
    for i in 0 to SIMD-1 loop 3 
      shifter_op(31+32*(i) downto 32*(i)) <= to_stdlogicvector(to_bitvector(shifter_op(31+32*(i) downto 32*(i))) srl  4 
                                                                       to_integer(unsigned(shift_amount)));  -- shift as if it was a 32-bit value 5 
    end loop; 6 
    if MVTYPE_SPE = "00" then 7 
      for i in 0 to 4*SIMD-1 loop -- latch the sign bits 8 
        shifter_op_lat(7+8*i downto 8*i) <= (others => shifter_op(7+8*i)); -- latch 8-bit data sign bit for arith shifts 9 
      end loop; 10 
    elsif MVTYPE_SPE = "01" then 11 
      for i in 0 to 2*SIMD-1 loop -- latch the sign bits 12 
        shifter_op_lat(15+16*i downto 16*i) <= (others => shifter_op(15+16*i)); -- latch 16-bit data sign bit for arith shifts 13 
      end loop; 14 
    elsif MVTYPE_SPE = "10" then 15 
      for i in 0 to SIMD-1 loop -- latch the sign bits 16 
        shifter_op_lat(31+32*i downto 32*i) <= (others => shifter_op(31+32*i)); -- latch 32-bit data sign bit 17 
      end loop; 18 
    end if; 19 
  end if; 20 
----------------------------------------------------------------------------------------------------------------------------- ----------21 

 
 

------ Synchronous Partial Shifter Stage 2 --------------------------------------------------------------------------------------  1 
   if shift_en = '1' and (shifter_stage_2_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 2 
      if    MVTYPE_SPE = "10" then 3 
        for i in 0 to SIMD-1 loop 4 
          out_shifter_results(31+32*(i) downto 32*(i)) <= shifter_op_lat_wire(31 +32*(i) downto 32*(i))  or 5 
                                                                                         shifter_op(31+32*(i) downto 32*(i)); 6 
        end loop; 7 
      elsif MVTYPE_SPE = "01" or (decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1' and  8 
              MVTYPE_SPE = "00") then  9 
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     -- KDOTPPS8 is added here because the element number loaded per cycle for mul ops is the sane for 8, and 16 types 10 
        for i in 0 to 2*SIMD-1 loop 11 
          out_shifter_results(15+16*(i) downto 16*(i)) <= shifter_op_lat_wire(15 +16*(i) downto 16*(i)) or  12 
                                                                                        (shifter_operand(15+16*(i) downto 16*(i)) and  13 
                                                                                         shift_enabler(15 downto 0)); 14 
        end loop; 15 
      elsif MVTYPE_SPE = "00" then 16 
        for i in 0 to 4*SIMD-1 loop 17 
          out_shifter_results(7+8*(i) downto 8*(i)) <=  shifter_operand_lat_wire(7 +8*(i) downto 8*(i)) or   18 
                                                                                   (shifter_operand(7+8*(i) downto 8*(i))  and 19 
                                                                                    shift_enabler(7 downto 0)); 20 
        end loop; 21 
      end if; 22 
    end if; 23 
---------------------------------------------------------------------------------------------------------------------------------------24 
 

 

------ Combinational Partial Shifter ---------------------------------------------------------------------------------------------- 1 
  if shift_en = '1' and halt_spe_lat = '0' then 2 
    if MVTYPE_SPE = "01" then 3 
      shift_enabler(15 - to_integer(unsigned(shift_amount(3 downto 0))) downto 0) <= (others => '1'); 4 
    elsif MVTYPE_SPE = "00" then 5 
      shift_enabler(7 -  to_integer(unsigned(shift_amount(2 downto 0))) downto 0) <= (others => '1'); 6 
    end if; 7 
    if (decoded_instruction_SPE_lat(KSRAV_bit_position) = '1' or  8 
         decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1') and 9 
         MVTYPE_SPE = "10" then    -- 32-bit sign extension for srl in stage 1 10 
      for i in 0 to SIMD-1 loop 11 
        shifter_op_lat_wire(31+32*(i) downto 31 - to_integer(unsigned(shift_amount(f)(4 downto 0)))+32*(i)) <=  12 
        shifter_operand_lat(31+32*(i) downto 31 -  to_integer(unsigned(shift_amount(f)(4 downto 0)))+32*(i)); 13 
      end loop; 14 
    elsif (decoded_instruction_SPE_lat(KSRAV_bit_position) = '1' or  15 
             decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1') and 16 
             MVTYPE_SPE = "01" then -- 16-bit sign extension for srl in stage 1 17 
      for i in 0 to 2*SIMD-1 loop 18 
        shifter_operand_lat_wire(15+16*(i) downto 15 - to_integer(unsigned(shift_amount(3 downto 0)))+16*(i)) <=  19 
        shifter_operand_lat(         15+16*(i) downto 15 - to_integer(unsigned(shift_amount(3 downto 0)))+16*(i)); 20 
      end loop; 21 
    elsif (decoded_instruction_SPE_lat(KSRAV_bit_position) = '1'  or  22 
             decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1') and 23 
             MVTYPE_SPE = "00" then  -- 8-bit  sign extension for srl in stage 1 24 
      for i in 0 to 4*SIMD-1 loop 25 
        shifter_operand_lat_wire(7+8*(i) downto 7 - to_integer(unsigned(shift_amount(2 downto 0)))+8*(i)) <=  26 
        shifter_operand_lat(         7+8*(i) downto 7 - to_integer(unsigned(shift_amount(2 downto 0)))+8*(i)); 27 
      end loop; 28 
    end if; 29 
  end if; 30 
----------------------------------------------------------------------------------------------------------------------------- ---------31 

 

The remaining two functional units are a 2-stage accumulator, which accumulates an input vector 

source into a scalar output, and a ReLu unit that rectifies all negative vector elements to zero. 

 
   

------ Two Stage Accumulator SIMD 2------------------------------------------------------------------------------------------- 1 
   if (decoded_instruction_SPE_lat(KDOTP_bit_position)   = '1'  or  2 
           decoded_instruction_SPE_lat(KDOTPPS_bit_position) = '1'  or 3 
           decoded_instruction_SPE_lat(KVRED_bit_position)   = '1') and 4 
           MVTYPE_SPE = "10" then 5 
        if (accum_stage_1_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 6 
          accum_partial_results_stg_1(31 downto 0)  <= std_logic_vector(unsigned(accum_op(31 downto 0))  +  7 
                                                                                                                  unsigned(accum_op(63  downto 32))); 8 
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        end if; 9 
        if (accum_stage_2_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 10 
                  out_accum_results(f) <= std_logic_vector(unsigned(accum_partial_results_stg_1(31 downto 0)) + 11 
                                                                                       unsigned(out_accum_results)); 12 
        end if; 13 
      elsif (decoded_instruction_SPE_lat(KDOTP_bit_position)    = '1'  or 14 
               decoded_instruction_SPE_lat(KDOTPPS_bit_position)  = '1'  or  15 
               decoded_instruction_SPE_lat(KVRED_bit_position)    = '1') and 16 
             (MVTYPE_SPE = "01" or MVTYPE_SPE = "00") then 17 
        if (accum_stage_1_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 18 
          accum_partial_results_stg_1(15 downto 0)   <= std_logic_vector(unsigned(accum_op(15 downto 0))   + 19 
                                                                                                                   unsigned(accum_op(31  downto 16))); 20 
          accum_partial_results_stg_1(31 downto 16) <= std_logic_vector(unsigned(accum_op(47 downto 32))  +  21 
                                                                                                                   unsigned(accum_op(63 downto 48))); 22 
        end if; 23 
        if (accum_stage_2_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 24 
          spe_out_accum_results <= std_logic_vector(unsigned(accum_partial_results_stg_1(15 downto 0))  +  25 
                                                                                  unsigned(accum_partial_results_stg_1(31 downto 16)) + 26 
                                                                                  unsigned(out_accum_results));                 27 
        end if; 28 
      end if; 29 
------------------------------------------------------------------------------------------------- -------------------------------------30 
 

 
 

------ Synchronous Single Stage ReLu -------------------------------------------------------------------------------------  1 
  if (relu_stage_1_en = '1' or recover_state_wires = '1') and halt_spe_lat = '0' then 2 
    if    MVTYPE_SPE = "10" then – ReLu for 32-bit data type 3 
      for i in 0 to SIMD-1 loop 4 
        if spe_in_relu_operands(31+32*(i)) = '1' then 5 
          spe_out_relu_results(31+32*(i) downto 32*(i)) <= (others => '0'); 6 
        else 7 
          spe_out_relu_results(31+32*(i) downto 32*(i)) <= spe_in_relu_operands(31+32*(i) downto 32*(i)); 8 
        end if; 9 
      end loop; 10 
    elsif MVTYPE_SPE = "01" then – ReLu for 16-bit data type 11 
      … 12 
    end if; 13 
  end if;14 
 

 

5.3.2. Scratchpad Memory Interface 

 

The engine is interfaced with a set of SPMs through the Scratchpad Memory Interface. Each SPM in 

the SPI has a read and write port, and every SPM-line has a set of banks that hold a 32-bit word. The 

number of banks in an SPM is dependent on the SIMD configuration chosen. For example, a config-

uration with SIMD 4 has four banks. Each of the banks has a read and write port, and the total width 

of the ports in the SPM will be 128-bits (i.e. 32-bits*4). When a fetch request is granted the data will 

be read on the next cycle. The RTL below illustrates the implementation of the SPMs in the T13. 

 

 
------ Scratchpad Memory Generation ------------------------------------------------------------------------------------------ -------- 1 
-- 3D array, of memory, the 1st dimension defines the size of each word, the 2nd is number of words in a bank, and the 3rd 2 
is the number of banks. 3 
signal mem : array_3d(SIMD*SPM_NUM-1 downto 0)(2**(Addr_Width-(SIMD_BITS+2))-1 downto 0)(Data_Width-1 4 
downto 0); 5 
attribute ram_style : string; 6 
attribute ram_style of mem : signal is "block"; 7 
 8 
  spm_banks    : for h in 0 to SIMD*SPM_NUM -1 generate  9 
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    spm_logic: process(clk_i) --  10 
    begin 11 
      if(clk_i'event and clk_i='1') then  12 
         sc_data_rd(h) <= mem(SIMD*SPM_NUM + h)(to_integer(unsigned(sc_addr_rd(h)))); 13 
        if sc_we(h) = '1' then         --write mode 14 
          mem(SIMD*SPM_NUM + h)(to_integer(unsigned(sc_addr_wr(h)))) <= sc_data_wr(h); 15 
        end if; -- we 16 
      end if; -- clk 17 
    end process; 18 
  end generate spm_banks; 19 
----------------------------------------------------------------------------------------------------------------------------- -------------------20 

 

An SPM read or write access will fetch or write an entire line in one cycle.  If the fetch pointer was 

not pointing to the beginning of the line, the data fetched will be from the line being indexed, and the 

next line as well, therefore maintaining the fetching of one complete line per cycle.  

 

Misaligned fetches go into a read-rotator circuit to make it appear as if the fetching is from the begin-

ning of the line. The rotator gives a one extra cycle of latency to execute the instruction. In this manner 

operand_a[i] will always be aligned with operand_b[i] and go the same functional unit. Without ro-

tation, misaligned accesses might send operand_a[i] and operand_b[i+2] to go to the same functional 

unit, and that produces erroneous outputs. During the result write, the result will be rotated back with 

a write rotator to go to the correct bank indexed in the write address. 

 

 
------ Synchronous Write Rotator ------------------------------------------------------------------------------------------------- ------- 1 
    for i in 0 to SIMD-1 loop -- index i loops the words inside each SPM 2 
      if (to_integer(unsigned(spm_write_addr(SIMD_BITS+1 downto 0))) = 4*i) and (i /= 0) then 3 
        wr_offset(i-1 downto 0) <= (others => '1'); 4 
      end if; 5 
    end loop; 6 
    for i in 0 to SIMD-1 loop -- index i loops the words inside each SPM    7 
      if (to_integer(unsigned(spm_write_addr(SIMD_BITS+1 downto 0))) = 4*i) then 8 
        for j in 0 to SIMD-1 loop 9 
          if j <= (SIMD-1)-i then 10 
           spm_data_write_int_wire(31+32*(j+i) downto 32*(j+i)) <= spm_data_write_wire(31+32*j downto 32*j); 11 
          elsif j > (SIMD-1)-i then 12 
            spm_data_write_int_wire(31+32*(j-(SIMD-1)+(i-1)) downto 32*(j-(SIMD-1)+(i-1))) <=  13 
                                                                                                            spn_data_write_wire(31+32*j downto 32*j); 14 
          end if; 15 
        end loop; 16 
      end if; 17 
    end loop; 18 
----------------------------------------------------------------------------------------------------------------------------- -------------------19 
 

    

------ Synchronous Read Rotator --------------------------------------------------------------------------------------------------------- 1 
    for k in 0 to 1 loop – index k loops between the two read data operands of the SPI 2 
      for i in 0 to SIMD-1 loop  -- index i loops the words inside each SPM 3 
        if (to_integer(unsigned(spm_read_addr(k)(SIMD_BITS+1 downto 0))) = 4*i) and (i /= 0) then 4 
          rd_offset(k)(i-1 downto 0) <= (others => '1'); 5 
        end if; 6 
      end loop; 7 
      for i in 0 to SIMD-1 loop -- index i loops the words inside each SPM 8 
        if (to_integer(unsigned(spm_read_addr_lat(k))) = 4*i) then 9 
          for j in 0 to SIMD-1 loop 10 
            if j >= i then 11 
              spm_data_read_wire(k)(31+32*(j-i) downto 32*(j-i))  12 
                                                                                  <= spm_data_read_int_wire(k)(31+32*j downto 32*j); 13 
            elsif j < i then 14 
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              spm_data_read_wire(k)(31+32*((SIMD-1)-i+(j+1)) downto 32*((SIMD-1)-i+(j+1))) 15 
                                                                          <= spm_data_read_int_wire(k)(31+32*j downto 32*j); 16 
            end if; 17 
          end loop; 18 
        end if; 19 
      end loop; 20 
    end loop; 21 
----------------------------------------------------------------------------------------------------------------------------- -------------------22 
 

 

The SPI has a serialized access grant unit, in which the instruction that comes first in program order 

will either lock the read and write access of a certain scratchpad. And since T13 is an in-order 

processor, there will never be data hazards with the serialized access grant. 

 

LSU accesses to SPI read or write one bank at a time instead of writing the entire SPM line at once. 

A bank interleaver will loop consecutively between each bank in the SPM, and once it reaches the 

last line of the bank it increments the read or write address, and loops back to bank 0 of the SPM. The 

RTL describing the implementation of the bank interleaver is shown below. 

 

 
--- Synchronous bank counter -------------------------------------------------------------------------------  1 
-- Increments the bank count inside each spm memory 2 
    if data_rvalid_i = '1' then 3 
      if spm_word_count = SIMD-1 then 4 
        spm_word_count <= 0; 5 
      else 6 
        spm_word_count <= spm_word_count + 1; 7 
      end if; 8 
    end if; 9 
-----------------------------------------------------------------------------------------------------------------------10 

 
---  LSU read port --------------------------------------------------------------------------------------------  1 
   if ls_data_gnt_i(i) = '1' then     -- LSU read port 2 
      if harc_LS_wire = h then  -- data reads the register from the bank counter to index 3 
        ls_sc_data_read_wire_replicated(h) <= sc_data_rd(h)((SIMD)*i + sc_word_count(h)); 4 
      end if; 5 
    end if; 6 
 7 
    if ls_spi_req(i) = '1' then         -- LSU read port 8 
      if harc_LS_wire = h then -- address reads the wire from the bank counter to index 9 
        spm_addr_rd(h)(spm_word_count_wire + (SIMD)*i) <= ls_spm_read_addr;  10 
      end if; 11 
    end if; 12 
------------------------------------------------------------------------------------------------------------------13 
 

 

5.4. SPMU Implementations 
 

This section explores a set of hardware accelerator schemes whose architecture was described in 

section 5.3, and describes how each one can be used in exploiting the T13 core.  

 

5.4.1. Shared-SPMU (Shared-SPI, Shared-SPE): 

 

The first approach used when augmenting a hardware accelerator to the IMT architecture was having 

a Shared SPMU being accessed by all the harts in the core. Figure 5.6 shows a block diagram of this 

scheme. The schematic is very identical to that one showed in figure 5.2. In order to access the Shared-
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SPMU, a request signal is sent from the decode stage. If the Shared-SPMU is busy, the pipeline will 

be halted until it becomes free again.  

 

In order to minimize the halts to the pipeline, functional units can be set to execute in SIMD. 

Increasing the SIMD multiplies the functional units in the core, and the number of banks in each 

SPM. The core could be configured to process data in parallel of up to 256-bits per cycle (SIMD 8 

max). Smaller data types perform even faster when boosting the data level parallelism. Since most of 

the functional units work in partial mode, and can compute of up to four results per unit as seen from 

table 5.1. In the scheme in figure 5.6, all the harts share the same memory space, and the same 

execution units. The SPMU can work in superscalar with other non-SPMU instructions, however, 

when an SPMU instruction is decoded, and SPMU unit is busy, then the instruction pipeline will be 

halted in this scheme. 

 

The RTL describing the implementation of the Shared-SPMU is the same code that was shown in 

section 5.3.  
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Figure.5.6. Diagram of the Shared-SPMU, all accesses to the SPMU are shared by all the harts 

 

5.4.2. Dedicated-SPI Shared-SPE 

 

The second hardware accelerator scheme is called the Dedicated-SPI Shared-SPE. The diagram 

showing its implementation is shown in figure 5.7. In this hardware scheme, every hart in the T13 

core has its own dedicated memory space, but they all share the same functional units. It can be 

compared to a multi-threaded hardware accelerator, in which the threads share the access to the logical 

elements [38]. In the Dedicated-SPI Shared-SPE, any contention to a functional unit is processed by 

a contention handler to determine which hart requested the access first. Since the hart instructions are 

issued in order, then there will never be simultaneous requests, and no race conditions. An SPMU 
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busy signal in this hardware scheme will only block SPMU instructions belonging to the same hart 

thus minimizing the pipeline halts in the SPMU a lot. Note that there is a buffer to hold the instruction 

data for each hart. This gives a great speed advantage over the Shared-SPMU approach as it exploits 

thread level parallelism, and still maintains minimal architectural complexity, as no instruction issue 

logic is needed to issue out of order. 

 

Every hart can load data to its own SPI, and not to any other SPI. In this manner, the SPMs of each 

hart can have overlapping memory addresses. For example, hart 2 can perform burst loads ‘kmemlds’ 

from the main memory to the SPI(2) only, and hart 1 using the same pointers used in kmemld 

instruction from hart 2 can do the same. The decoding of the entire SPM address space becomes much 

easier to handle, and makes it also easier for the programmer that will be managing the SPMU address 

space. In a similar manner, all SPMU arithmetic instructions read and write from and to their own 

SPIs only. 
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Figure.5.7. Diagram of dedicated SPI shared SPE model. Each hart has a dedicated set of scratchpads, busy 

signals will only block the hart belonging to the same SPMU 

 

If the user needs to broadcast some input data to all the SPIs, they can execute another type of load 

instruction called broadcast load “kbcastld”. When using kbcastld, if the user wants to send some 

input data to SPM(i), then the kbcastld will broadcast the data to the SPM(i) of each SPI. This 

broadcasting operation relives the core from having to fill three memories sequentially. 

 

Changes to the RTL required to handle this are minimal. First every SPI is replicated with a “for 

generate” structure is needed and a signal to distinguish the load is a broadcast as shown below,  

 
SPM_replicated : for h in accl_range generate  1 
 -- The index ‘h’ now refers to each SPI 2 
SPI_Unit_comb : process(all))  3 
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begin 4 
… 5 
… 6 
      if data_rvalid_i = '1' then        -- LS write port 7 
        if ls_spi_req(i) = '1' and ls_spi_we(i) = '1' and ls_spi_wr_gnt = '1' then  8 
          if harc_LSU_wire = h or spm_bcast = '1' then – spm_bcast indicates we have kbcastld, and we always enter the ‘if ’ 9 
            spm_we(h)((SIMD)*i + spm_word_count(h)) <= '1';  10 
            spm_data_wr(h)(spm_word_count(h) + (SIMD)*i) <= lsu_data_write_wire(31 downto 0); 11 
            spm_addr_wr(h)(spm_word_count(h) + (SIMD)*i) <= lsu_write_addr; 12 
          end if; 13 
        end if;    14 
      end if; 15 
… 16 
… 17 
end process; 18 
 19 
end generate SPM_replicated;20 
 

In addition to the SPI, the SPE must have a new mapping unit, each hart must have its own hardware 

loops, and there must be a functional unit contention access handler.  

 

The RTL below describes, a brief implementation of how the new mapping unit should be. One 

disadvantage from the implementation of the mapping unit below, is that all these input SPI operands 

mapping to these different functional units requires a huge set of multiplexers to map inputs and 

outputs appropriately. 

 
------ Input Mapping ------------------------------------------------------------------------------------------ 1 
            -- The index ‘h’ refers the dedicated SPI in the core, and maps them to the adder 2 
            if decoded_instruction_SPE_lat(h)(KADDV_bit_position) = '1' then  3 
              adder_ops(0)   <= spi_data_read(h)(0); 4 
              adder_ops(1)   <= spi_data_read(h)(1); 5 
            end if; 6 
 7 
------ Output Mapping ---------------------------------------------------------------------------------------- 8 
           -- The output results of the adder are again mapped to the appropriate SPI indexed in ‘h’ 9 
            if decoded_instruction_SPE_lat(h)(KADDV_bit_position) = '1' then 10 
              spe_sc_data_write_wire_int(h) <= out_adder_results; 11 
            end if; 12 
----------------------------------------------------------------------------------------------- --------------------13 

 

The FU contention handler on the other hand is a bit more complex to implement. The RTL below 

shows logic behind the functional unit grant handler. As seen in the RTL below, every functional unit 

has its own handler, and any reservation on a busy functional unit stores the ID of the hart requesting 

the access inside a buffer, the buffer write-pointer gets incremented as soon as the request becomes 

registered, and another hart can reserve access to the busy functional unit at the new write-pointer 

value. As soon as the functional unit becomes free. The buffer is read, the read-pointer is incremented, 

and the grant will be given to the hart ID stored in the buffer. 

 

------ Synchronous FU access handler --------------------------------------------------------------------- 1 
     for h in accl_range loop 2 
        for i in 0 to 4 loop  – loops through the five functional units (add, shift. mul, acc, relu) 3 
          if fu_req(h)(i) = '1' then  -- if a reservation was made, to use a functional unit, store the hart_ID 4 
            fu_issue_buffer(i)(to_integer(unsigned(fu_wr_ptr(i))))  <= std_logic_vector(to_unsigned(h,TPS_CEIL)); 5 
            if unsigned(fu_wr_ptr(i)) = THREAD_POOL_SIZE - 2 then 6 
              fu_wr_ptr(i) <= (others => '0'); 7 
            else 8 
              fu_wr_ptr(i) <= std_logic_vector(unsigned(fu_wr_ptr(i)) + 1); -- increment the write pointer 9 
            end if; 10 
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            if fu_gnt_en(h)(i) = '1' then 11 
              if unsigned(fu_rd_ptr(i)) = THREAD_POOL_SIZE - 2 then   12 
                fu_rd_ptr(i) <= (others => '0'); 13 
              else 14 
                fu_rd_ptr(i) <= std_logic_vector(unsigned(fu_rd_ptr(i)) + 1); -- increment the read pointer 15 
              end if; 16 
            end if; 17 
          end if; 18 
        end loop; 19 
      end loop; 20 
----------------------------------------------------------------------------------------------------------------------------- -------------21 
 

 

------ Combinational FU access handler ------------------------------------------------------------------ 1 
    for h in accl_range loop 2 
      fu_gnt_wire(h) <= (others => '0'); 3 
      fu_gnt_en(h)    <= (others => '0'); 4 
      if add_en_pending_wire(h) = '1' and busy_add_wire = '0' then 5 
        fu_gnt_en(h)(0) <= '1'; 6 
      end if; 7 
      if shift_en_pending_wire(h) = '1' and busy_shf_wire = '0' then 8 
        fu_gnt_en(h)(1) <= '1'; 9 
      end if; 10 
      … 11 
          for i in 0 to 4 loop – loops through the five functional units (add, shift. mul, acc, relu) 12 
            if fu_gnt_en(h)(i) = '1' then 13 
              -- give a grant to fu_gnt(h)(i), such that the 'h' index points to the thread in "fu_issue_buffer" 14 
              fu_gnt_wire(to_integer(unsigned(fu_issue_buffer(i)(to_integer(unsigned(fu_rd_ptr(i)))))))(i) <= '1';  15 
            end if; 16 
          end loop; 17 
       … 18 
      end loop; 19 
------------------------------------------------------------------------------------------------------------------------------------------20 
 

 

Note that the Dedicated-SPI Shared-SPE approach which already exploits thread level parallelism of 

the T13 core, can still be configured to exploit the data level parallelism of the T13 by configuring 

the SPMU to execute with larger SIMD settings. 

 

5.4.3. Dedicated-SPMU (Dedicated SPI, Dedicated-SPE) 

 

The Dedicated-SPMU approach, as the name implies assigns a dedicated hardware accelerator to each 

hart. Just like the previous implementation was compared to a multi-threaded accelerator, this 

implementation can be compared to a multi-core accelerator. The term multicore can be compared to 

the CUDA cores in NVIDIA Tesla [39]. Each SPMU has its own SPI and SPE, there is no contention 

handler needed at all, since each hart will have its own set of functional units. Figure 5.8 shows the 

implementation of such an approach. The advantage to this approach over the Dedicated SPI Shared-

SPE approach is that this approach further decreases the stalls to the instruction pipeline since there 

will never be contention over functional units. Also, the mapping unit of this approach is also much 

less complex since it does not need that huge crossbar to map the operands to the functional units, 

and its implementation will follow that Shared-SPMU. 

 

Like the Dedicated SPI Shared-SPE approach, this unit has one instruction buffer for each hart. A 

pipeline stall will only happen when the decode stage has an SPMU instruction going to the same hart 

of a busy SPMU.  Also, similarly the SPI implementation of the Dedicated-SPMU approach is exactly 

the same to that of the previous approach, and it still maintains the support for the broadcast load 
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instruction, However, a disadvantage for this approach is that this approach might utilize a big area 

since all the pipelined functional units are replicated. 
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Figure.5.8. Diagram of Dedicated-SPMU, each hart has a dedicated SPE and SPI, a busy signal will only block 

the hart belonging to the same SPMU 

 

The brief RTL below illustrates how all the signals in the SPMU must be changed relative to the 

Shared-SPMU approach, in which all the signals now have a new dimension which is called 

<accl_tange>, that ranges through number of hardware accelerators in the core. If the SPMU is 

replicated as in this case, the accl_range is equal to the THREAD_POOL_SIZE. While if the 

replication was disabled, accl_range would become zero. Also as seen in the RTL that a “for-

generate” must be added to replicate the assignments in the SPE just like the SPI assignments were 

replicated in the previous approach. This way, each process assigns to its own dimension indexed 

in ’h’. 
  

signal wb_ready                          : std_logic_vector(accl_range);   1 
signal SIMD_RD_BYTES          : array_2d_int(accl_range);   2 
signal MVSIZE_WRITE             : array_2d(accl_range)(Addr_Width downto 0);  3 
 4 
  SPE_replicated : for h in accl_range generate  -- The h index loops through the acc_range above 5 
  … 6 
              if wb_ready(h) = '1' then 7 
                if to_integer(unsigned(MVSIZE_WRITE(h))) >= SIMD_RD_BYTES(h) then 8 
                  MVSIZE_WRITE(h) <= std_logic_vector(unsigned(MVSIZE_WRITE(h)) - SIMD_RD_BYTES(h)); 9 
                else 10 
                  MVSIZE_WRITE(h) <= (others => '0');                -- decrement the remaining bytes 11 
                end if; 12 
              end if;    13 
  … 14 
  end generate15 
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5.5. Performance evaluation of the SPMU implementations. 
 

In order to benchmark the performance of the T13 core when executing vector operations, various 

tests have been developed. The first batch is a basic series of instruction level testing. These tests 

benchmark the performance contribution of different approaches provided in the SPMU, that helped 

boost the execution of arithmetic-vector operations. The second batch of tests, is a set of matrix 

convolution being executed with the SPMU, in order to show the how the hardware schemes 

introduced in section 5.4 performed. Lastly, we show results of running entire layers of DCNN on the 

SPMU, and we compare its performance to the T03, and Riscy cores from Pulpino. Details about the 

implementation of the tests are laid out in the chapter 6. 
 

5.5.1. Instruction Level Testing: 

 

In order to benchmark some implementations in the SPMU, a set of basic arithmetic tests were 

performed to see which implementations provided the largest performance boost. Figure 5.9 shows 

the number of clock cycles took to perform an arithmetic operation in the T13 without using any 

hardware accelerator, but still utilizing all the harts in the core. 

 

In figure 5.10, the same vector-arithmetic operations were performed with the SPMU with the 

different data types (8,16,32). However, they were performed using software loops instead of zero-

overhead loops (hardware loops). The convolutions were run on the Shared-SPMU scheme 
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Figure.5.9. Number of cycles taken to perform an arithmetic vector operation without the SPMU 

Figure.5.10. Cycle time using the SPMU with SIMD=1 and hardware loops disabled 
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configured with no data level parallelism (SIMD=1). Figure 5.10, shows the advantage of using the 

low latency local scratchpad memories. 

 

Comparing figures 5.9 and 5.10 for small vector sizes, the boost was not very evident. However, as 

the vector sizes grew, the tests that were running on the SPMU using sw-loops and SIMD equal to 

zero, showed that the cycle time grew with a smaller slope then that of the non-accelerated test.  This 

test clearly outlines the advantage of using low latency scratchpad memories to using the registerfiles. 

Such that the total number of cycles dropped by more than 40% for vectors of sixty elements. 

 

The reason for the speedup is obvious, since the non-accelerated operations writing to the registerfile 

will have to push the old data to the stack memory to make way for the new computed results, and 

then load back the data from the stack when it needs to be read. While when using the SPMU will 

load the input data once from the main memory with a burst load instruction. Then, stores the final 

results at the end of the operation with a burst store back to the main memory.  

 

Smaller data width such as 16, and 8-bit performed even better since they are more parallel than the 

32-bit operations even though the SIMD of the SPMU is set to one. The nature of SPMU using partial 

functional units and replicating the non-partial ones will show this very good performance with the 

tiny slope relative to the 32-bit operations. 

 

Figure 5.11 shows the advantage of using the zero-overhead loops or hardware loops in the SPMU. 

The hardware loops relieve the core from augmenting the following overhead of instructions: 

 

• Incrementing the address of source operand 1. 

• Incrementing the address of source operand 2. 

• Decrementing the number of elements left to execute. 

• Branching to the beginning of the loop if the number elements is not zero. 

 

 

Enabling the hardware loops in the SPMU, boosted the performance for all vector sizes, such that the 

speed boost was over 170% for large vectors, and almost 100% for small vectors comparing to the 
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sw-loop approach. While comparing to the non-accelerated from figure 5.9 approach we can see the 

speed boost to go over 350% for large vectors. 

 

 

Finally, figure 5.12 reports the cycle time when executing the same test, however with increasing the 

data level parallelism by setting the SIMD equal to four. 

 

Boosting the data level parallelism was the least contributor out of all the implementations to the 

performance boosts. Such that the speed boost was barely visible for small vectors, and for large 

vectors, the speed boost was about 15% over the previous approach.  Not only that, but the area 

increases from replicating the functional units, and the registers that hold the data in the pipelines of 

functional units, and the read and write SPM rotators size increase can be regarded as considerably 

large for such small performance contributions. 

 

More reports regarding the area utilization will be discussed in the section 5.6. 
 

5.5.2. Routine Level Testing 

 

Libraries have been made using the SPMU instructions in order to perform matrix convolutions. 

Details about the implementation of the convolutions are included in chapter 6. The matrix 

convolutions included different square matrix sizes, typically 4x4, 8x8, 16x16, and 32x32. The data 

types used were only 32-bit integers. That is because the neural network test used, uses these data 

types as well. The convolution tests have been run on the hardware schemes introduced in section 

5.4. Each hardware scheme was configured with different SIMD configurations (1, 2, 4 and 8) to 

show the contribution of the data level parallelism in each. Table 5.2 reports the cycle time for each 

matrix convolution on each SPMU hardware scheme as well as the non-accelerated versions of the 

T13 and the native PULPino Riscy cores. 

 

Now as we delve in the evaluation of the different hardware schemes from section 5.4. I will be using 

some terminology to refer to the schemes in order to be brief: 

 

• DLP approach: means increasing the data level parallelism in the Shared-SPMU such that we 

go from SIMD-1 to SIMD-8. 
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• TLP approach: means that we go from the Shared-SPMU SIMD-1 scheme to the Dedicated-

SPMU SIMD-1 or Dedicated-SPI_Shared-SPE SIMD-1 schemes that exploit thread level 

parallelism. 

 

• Hybrid Approach: means that we go from the Shared-SPMU SIMD-1 scheme to the 

Dedicated-SPMU SIMD-8 or Dedicated-SPI_Shared-SPE SIMD-8 schemes that exploit both 

data level parallelism and thread level parallelism. 

 

The evaluation begins as follows starting from small matrix convolutions. Looking at table 5.2, small 

matrix convolutions  (4x4) performed by the different SPMU configurations gave approximately 2-3 

times the speed-up relative to performing the convolutions on the non-accelerated T13 core 

(No_ACCL_RV32IM), and more than 2 times the speed-up when being compared to the Riscy core 

itself and 4-7 times comparing it to the Zeroriscy core. Riscy achieves a low cycle count as it exploits 

the hardware loops and custom DSP extensions, thus there instruction count decreases as much of the 

software overhead is performed in hardware. 

 
Table.5.2. Cycle number to execute a set of convolutions  

for different SPMU configurations 

Core SIMD 
Cycle Count 

4x4 8x8 16x16 32x32 

Klessydra T13 

Shared SPMU 

1 1105 3060 9727 34201 

2 895 2245 6261 20374 

4 824 1768 4607 13444 

8 824 1613 3692 10069 

Dedicated SPMU 

1 626 1493 3887 13536 

2 629 1190 3123 8681 

4 560 1190 2543 7148 

8 560 1152 2543 6006 

Dedicated SPI Shared SPE 

1 663 1521 4153 13565 

2 638 1274 3280 9167 

4 573 1213 2688 7473 

8 573 1079 2580 6285 

NO_ACCL  (RV32IM) NA 1819 5737 20714 79230 

NO_ACCL_(RV32EM) NA 2355 7821 28927 111891 

NO_ACCL  (RV32I) NA 4883 17877 69087 272394 

NO_ACCL_ (RV32E) NA 5568 20707 80478 318084 

RISCY NA 1377 4247 15088 57020 

ZeroRiscy NA 2510 8111 29583 113793 

ZeroRiscy (no RV32M) NA 6406 23601 91233 360081 

MicroRiscy NA 7380 27385 106271 419618 

 

Comparing the SPMU schemes to the T13 cores that did not use the accelerator, acceleration became 

more evident with bigger convolutions such that 32x32 convolutions achieved up to 5-7 times the 

speed-up using the DLP or TLP approach alone. Hybrid approaches exploiting both DLP and TLP 

gained up to 16 times the speed-up. While comparing the results to the PULPino Riscy cores we have 

even a larger speed-up on bigger convolutions such that hybrid SPMU approaches had up to 12 times 

the speed-up relative to the Riscy core, and 10 times the speedup comparing to Zeroriscy. 

 

Moving on to comparing the SPMU schemes with themselves in the bigger matrix convolutions, 

using the DLP approach alone we saw more than 3.4 times the speed-up, while using the TLP 

approach alone gave approximately 2.5 times the speed-up. Exploiting both DLP and TLP we saw 

5.7 times the speed-boost. In bigger matrix convolutions not only did the TLP and DLP approaches 
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gave higher speed-ups than the smaller matrix convolutions, however the rate of the improvement of 

the DLP was faster than the rate of the improvement in the TLP such that in bigger matrix it appeared 

better to use the DLP approach of the TLP approach. 

 

Many other important notes can also be taken from table 2. First, the Dedicated-SPI_Shared-SPE 

approach when being compared to the Dedicated-SPMU approach has achieved from a minimum of 

94% to a maximum of 99% the speed boost when compared to the Dedicated-SPMU. This showed 

that in fact sharing the resources impacts the speed only a tiny bit as far as matrix convolutions are 

concerned. 

 

Second, the speed-up in both approaches exploiting TLP (Dedicated-SPMU, and Dedicated-

SPI_Shared-SPE) can show how much pipeline stalls had an effect on the speed when comparing to 

the Shared-SPMU.  

 

Third, the embedded approaches (RV32E implementations) that were aimed at decreasing the 

registerfile footprint in the IMT architectures had somewhat discouraging performance results. such 

that comparing the NO_ACCL_RV32EM to NO_ACCL_RV32IM showed a speed degradation of 

30% in small matrix convolutions and the degradation went up to 41% in the large convolutions, this 

nonlinear degradation obtained from bigger convolutions is mostly due to the increase in the memory 

transfers to the stack section of the data memory since the registerfile in the RV32E extension has 

very little space allocated for saved registers as opposed to the normal registerfile in the RV32I. 

 

Figure 5.13 shows the contribution of the boost from exploiting the DLP, TLP, and the Hybrid 

approach were both DLP and TLP are exploited. Obviously, the Hybrid had the biggest boost in the 

cycle time, however, comparing the DLP and TLP alone. We saw that for small vectors TLP was 

better at giving higher performances and the matrices grew larger (i.e. beyond 16x16) we saw that 

TLP boost remained the same, and the DLP boost then became better than the boost from the TLP. 

 

Figure.5.13. Speed boost from exploiting the DLP, TLP, and both together (Hybrid) 

 

The reason behind not seeing much speed-ups due to DLP in small vectors is that: 

 

• The nature of the SPMU being already superscalar with the other non-SPMU execution 

units does well in hiding the latencies of its instructions. 
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• The size of the vectors is small such that doubling the functional units can save only a few 

cycles and not much more.  
 

Table 5.3 shows the top frequency of the T13, and the PULPino Riscy cores after a post-synthesis 

implementation. The timing constraint used in the synthesis was 1ns, which is a tight constraint that 

compels Vivado to synthesize the fastest layouts possible. 

 

Core SIMD 
Top Frequency 

(MHz) 

Klessydra T13 

Shared SPMU 

1 165.29 

2 151.17 

4 141.16 

8 129.99 

Dedicated SPMU 

1 156.35 

2 130.58 

4 111.51 

8 108.35 

Dedicated SPI Shared SPE 

1 140.06 

2 131.04 

4 116.80 

8 102.31 

NO_ACCL  (RV32IM) NA 206.31 

NO_ACCL_(RV32EM) NA 209.60 

NO_ACCL  (RV32I) NA 185.53 

NO_ACCL_ (RV32E) NA 216.64 

RISCY NA 91.36 

ZeroRiscy NA 117.23 

ZeroRiscy (no RV32M) NA 133.08 

MicroRiscy NA 146.11 

 

Vivado was able to generate fast layouts for all the hardware schemes for SIMD configurations 1 and 

2. However, the top speed witnessed a sharper drop as the DLP grew larger (SIMD 4 and SIMD 8) 

especially for the hybrid schemes exploiting both TLP and DLP. For the dedicated SPMU approach, 

the area overhead became large enough so that the FPGA slices were being placed farther away from 

each other, thus increasing the net delay between the FPGA slices themselves.  

 

While the Dedicated-SPI-Shared-SPE approach witnessed even a larger drop in the top frequency for 

large SIMD configurations. Looking at the timing report from Vivado, we saw that the crossbar that 

maps the Dedicated-SPI input data buses to the shared SPE functional units became the critical path 

in the SPMU for both SIMD 4 and 8 implementations. One approach to make this scheme faster is to 

pipeline the crossbar, and divide the critical path. However, we will see in the next why this is not a 

very favorable approach. 

 

Figure 5.14 shows the execution time it takes to run the convolutions on all the schemes from table 

5.3 when operating at the maximum frequency. The figure was separated into two margins left side 

being the SPMU hardware schemes while the right side being the non-accelerated implementations 

of T13 and Riscy cores. The reason they were separated was so that very high cycle count on the right 

side does not saturate the improvements of the TLP and DLP in the SPMU schemes on the left side. 

 

Beginning with our evaluations, increasing the DLP in bigger convolutions such as 16x16 and 32x32 

did actually provide a decrease in the cycle time for all the SPMU schemes. Smaller convolutions 

actually got slower when increasing the DLP, that is because of the sharp drop in the top frequency 

seen from table 5.3 when increasing the DLP was bigger than the boost in the cycle time.  

 

Table.5.14. Top frequency for each T13 configuration and Riscy Cores 
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One conclusion can be made here, that although increasing the DLP does multiply the processor’s 

ability to process data in parallel and thus decrease the cycle count, however, your processor might 

in turn perform slightly worse especially when the vectors being worked on are smaller (figure 5.14 

convolution 4x4). Comparing the T13 non accelerated schemes to the Riscy cores.  

 

 
Figure.5.15. Total execution time to perform convolutions when running at the maximum attainable frequency 

for accelerated and non-accelerated implementations 
 

The T13 cores highly outperformed the Riscy cores since not only do they have a good cycle count, 

but also attain a very high top frequency in comparison with the other cores.  
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• The higher cycle count comes as a result of T13 cores having zero data dependency pipeline 

stalls, and zero pipeline flushing, and low latency multiplication instruction.  

 

• The high frequency is attained from pipelining and hardware simplicity.  

 

Showing how the non-accelerated implementations of T13 outperformed the PULPino Riscy cores 

makes us certain that as far as CNN accelerators are concerned, it is better to use an IMT architecture 

over and in-order execution processor. 

 

One final note is that also again, implementations using the embedded extension RV32E had 

somewhat discouraging results, which did not convince us that migrating towards an IMT architecture 

with a smaller set of registerfiles is better than using the normal registerfile size as defined in the 

RV32I ISA. 

 

 

5.5.3. VGG16 Deep Convolutional Neural Networking Application 
 

In order to further evaluate our SPMU accelerator when executing neural networking applications, 

we had to make the SPMU execute an entire CNN. For that, we have chosen the famous VGG16 

DCNN [40]. The VGG16 test is a very successful DCNN that can achieve accuracies of up to 92.7%. 

It is used in many classifications [41][42][43]. The layers of the VGG16 test are showed in figure 

5.15. In order to fully support the convolution layers of the VGG16, the matrix convolutions from the 

previous sections were combined with other libraries that performed: pre-scaling, post-scaling, add-

bias, and ReLu, as well as a set of libraries for the fully-connected layers. The remaining parts of the 

network did not undergo acceleration (e.g. softmax, maxpool). After having built a unique VGG16 

test to run for the various implementations of the SPMU. We have run a particular set of tests to 

evaluate the performance of the T13 IMT architecture. The layers in the network are shown in the 

image below. 

 

Two tests are shown in figures 5.16 and 5.17. The first shows the difference in performance when 

running the VGG16 using one hart only, and when dividing the workload over all the harts in the 

core. The other compares the IMT full active harts Dedicated-SPMU versus an in-order architecture 

“Zeroriscy”. 

 

The difference between the single-thread test (1 hart active), and the multi-thread test (all harts active) 

outlines one very important aspects in IMT architectures. First of all, both implementations interleave 

three harts in the core. However, the single-thread implementation shows how poorly an IMT core 

performs when the other harts are Idle. When all the harts become active, and the workload becomes 

divided among the harts, we will see a large drop in the cycle count that is evident in figure 5.16. 

 

From the results back in the previous sub-section we chose the Dedicated-SPMU SIMD-2 as a very 

fast and yet most balanced option to be compared with an in-order architecture such as Zeroriscy. A 

few layers were developed to execute on that version of the SPMU, and they were compared with the 

Zeroriscy cores as show in figure 5.17. 
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Figure.5.16. Layers of the VGG16 deep convolutional neural network 

 

From figure 5.16 we can still affirm that when running real life applications as the VGG16 the SPMU 

accelerator indeed maintains it’s fast trend results that were displayed back in figure 5.13.  

 

 
Figure.5.17. KlessydraT13 Shared-SPMU, Single Thread Vs Multithread cycle count per layer for VGG16 

 

 

 
Figure.5.18. KlessydraT13 Dedicated-SPMU SIMD-2, vs Zeroriscy cycle count per layer for VGG16 execution 
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As a conclusion for the performance evaluation we saw the difference between an IMT core and an 

in-order processor. An IMT processor certainly performed better when the applications were 

decoupled. Synthesis results showed that IMT processors had very high top frequencies. Attaching 

the different SPMU schemes showed the contribution of each SPMU to the performance, and showed 

how DLP and TLP differently exploit the processor with small and big vector computations. Not to 

mention a layer of the VGG neural network were run, and they showed how the SPMU accelerator 

faired in real life applications. 

 

5.6. Area, Power, and Energy Reports 
 
5.6.1. Area Utilization 

 

Table 5.4 reports the area utilization on the FPGA when synthesizing on the Genesys2 board [29]. We 

can see clearly that the area increase due to the DLP was really impacting especially in the Hybrid 

approaches exploiting both DLP and TLP. One small conclusion can be made here, that the speed-

boost from the DLP showed in the previous section was on average smaller than the TLP speed boost, 

and yet the DLP exploiting schemes (Shared-SPMU SIMD-8) consumed a higher area than the TLP 

exploiting schemes (Dedicated-SPMU SIMD-1 and Dedicated-SPI_Shared-SPE). 

 

An additional important note to take from these results as well is that the crossbar in the Dedicated-

SPI-Shared-SPE version is large enough, such that the number of LUT utilization is very similar to 

that in the Dedicated-SPMU version, and that the reduction in element utilization was only in the FFs 

and the DSP slice count. Pipelining the crossbar to get a higher top frequency is possible, however it 

will increase the FF utilization in the Dedicated-SPI-Shared-SPE, and hence the FF count saved from 

sharing FUs will be utilized in pipelining the crossbar rendering this approach to be somewhat useless, 

relative to the Dedicated-SPMU approach. But still this approach can be considered as seen from the 

results, we save a huge number in the DSP slice count when sharing the functional units in the 

Dedicated-SPI-Shared-SPE approach. 

 
Table.5.3. T13 Area Utilization on FPGA for all SPMU Configurations 

Core SIMD 
Element Utilization 

FF LUT BRAM DSP 

Klessydra T13 

Shared SPMU 

1 6552 10655 6 8 

2 6907 12835 6 12 

4 7587 15807 6 20 

8 9064 21423 12 36 

Dedicated SPMU 

1 7782 14344 18 16 

2 8875 13017 18 28 

4 10903 28309 18 52 

8 15223 46861 36 100 

Dedicated SPI Shared SPE 

1 7234 14229 18 9 

2 8009 18803 18 12 

4 9167 27150 18 20 

8 11460 48081 36 36 

NO_ACCL  (RV32IM) NA 5639 7975 0 4 

NO_ACCL_(RV32EM) NA 4165 8120 0 4 

NO_ACCL  (RV32I) NA 5424 7674 0 0 

NO_ACCL_ (RV32E) NA 3890 7414 0 0 

RISCY NA 2527 7674 0 6 

ZeroRiscy NA 1933 3275 0 1 

ZeroRiscy (no RV32M) NA 1791 2832 0 0 

MicroRiscy NA 1279 2434 0 0 
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Making the Comparison between Riscy, Zeroriscy cores and the T13 non accelerated cores. We 

definitely see a larger area occupation in the T13 non accelerated cores. Thar is for the obvious reason 

that in order for the T13 core to be an IMT architecture, we had to replicate the registerfile, the CSR 

unit and the program counter. One thing to consider in order to decrease overhead that IMT 

architectures have, is by disabling the performance counters in the CSR unit. Doing that saved us 

approximately 1200 LUTs from the LUT count listed above. The other thing is to use the embedded 

extension RV32E which halves the size of the registerfile. However, we saw how that terribly affected 

the performance, and thus the tradeoff of the registerfile area with performance is a favorable step in 

this case. 

 

5.6.2. Dynamic Power Consumption and Energy Efficiency 
 

The average dynamic power consumption is reported in figure 5.18 for running the convolutions on 

each hardware scheme. Obviously, the power consumption increases as the area gets bigger, but the 

curve rises up very sharply for the SIMD 8 configurations. Deep SIMD configurations proved to be 

less power efficient in this manner (especially in FPGA synthesis) as they consume a lot of power 

particularly in the hardware schemes exploiting the TLP. SIMD 2 configurations for all hardware 

schemes showed only a slight increase in dynamic power consumption in one hand, and a greater 

increase in performance on the other hand, making it desirable to be considered as a balanced 

approach.  

 

Other than the small area footprint of the Riscy cores, they also all consumed less dynamic power 

than the T13 non accelerated cores. The RV32E extensions seemed to have larger drops in the 

dynamic power consumption as well. 

 

The static power was not mentioned, since for FPGAs the static power does not change based on the 

area utilization of the FPGA, but rather it depends on the technology of the FPGA itself. 

 

 
 

 

 
Figure.5.19. Dynamic Power Consumption of the T13 core running 32x32 convolutions 
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Figure 5.19 shows the total energy consumption for running the different convolutions. They were 

again divided into two sides. The left sides for the accelerators, and the right side for the non-

accelerators. They were separated in since the non-accelerated had very high energy consumption 

compared to the accelerated counterparts, and thus if placed together, the non-accelerated energy 

results would have saturated the improvements between the different schemes in the accelerated 

results. 

 
Figure.5.20. Energy Consumption for running each implementation at the top frequency on the different 

convolution sizes 
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Many conclusions can be made from these results. First, we show that not only using the SPMU 

accelerator generates high speed results, but it is also more energy efficient, than not using the SPMU 

accelerator.  

Second, compare the SPMU accelerators, we can see that the Shared-SPMU has the worst results, 

and that both the TLP exploiting approaches gave much better results than the Shared-SPMU.  

Third, the results comparing the Dedicated-SPMU to the Dedicated-SPI_Shared-SPE approach 

showed almost an overlap in the energy consumption just like the overlap they in the performance. 

This is very good since we showed that very little trade-off in the performance and energy 

consumption can be substituted with a large chunk of area and that is by sharing the SIMD functional 

units. 

Finally comparing the non-accelerated implementations together, we see that the T13 slightly less 

energy efficient then both Riscy and Zeroriscy. Zeroriscy has a very low dynamic power count, while 

Riscy has a low cycle count, both contributed heavily to the energy efficiency. 

 

5.7. Further Evaluations (memory test, GCC optimizations) 
 

A few additional tests were performed to see the consistency of the performance using GCC 

optimization flag “-O2”. Figure 5.23 shows the cycle count to perform vector addition when 

compiling the C tests without enabling any GCC optimizations. While figure 5.20 shows the same 

results but with GCC optimizations enabled. 

 

 
Figure.5.21. Vector addition C test performed with GCC optimizations disabled 
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Figure.5.22. Vector addition C test performed with GCC optimizations enabled 

 

From the results above it shows that disabling the GCC optimizations affected performance in both 

operations. However, for the operations using the accelerator, we have a cycle count increase that is 

a constant offset, while in the non-accelerated vector addition operation, the cycle count increment 

was a variable offset such that when the vector size, grows, the offset grows linearly as well.  

 

Another evaluation was made to show the memory impact of doing two equal operations (table 5.5). 

The first operation does not use the SPMU accelerator. The second performs the same operation, but 

using the SPMU. In the operations using the SPMU, there are two memory tests that were made, the 

first one does all the SPMU operations in a single function call, while the other one does the same 

operations in a multi-function call. 

 

Table.5.4. Size in Bytes of the program memory and data memory for different tests 

Size (Bytes) 

Vector 

Size 

Normal Addition Test SPMU Single Funct Call Test SPMU Multi Funct Call Test 

With GCC 

Optimization 
Without GCC 

Optimization 
With GCC 

Optimization 
Without GCC 

Optimization 
With GCC 

Optimization 
Without GCC 

Optimization 

Program 

mem size 

Program 

mem 

size 

Data mem 

size 

Program 

mem 

size 

Data mem 

size 

Program 

mem 

size 

Data mem 

size 

Program 

mem 

size 

Data mem 

size 

Program 

mem 

size 

Data mem 

size 

Program 

mem 

size 

1 1326 3059 1300 3533 1378 3477 1352 3705 1378 3230 1352 3591 

10 2730 3211 2704 3572 2782 3477 2756 3705 2782 3230 2756 3591 

20 4290 3211 4264 3572 4342 3477 4316 3705 4342 3230 4316 3591 

 

The results from the memory tests, shows that also using the SPMU does not impact the memory size, 

the results are similar to the non-SPMU test. For the data memory, the only impact on the memory 

size was from increasing the vector size, but regardless whether we use the SPMU or not.
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Chapter 6  C Language Software Suite 
 

This chapter shows the implementation of the software suite used in benchmarking the T13 

microprocessor. All the tests were written in C and compiled by a patched RISCV-GCC compiler. 

The first section shows the instruction level testing of the custom SPMU instructions. The second 

section shows how the custom instructions were used to make convolutions. The third section 

mentions the additional libraries needed in order to accelerate the convolution and fully-connected 

layers of the VGG16 DCNN application. 
 

6.1. Instruction level testing: 
 

For every custom instruction in the SPMU, a C test has been made to detect whether the SPMU 

executes its instructions correctly. All the tests check whether the SPMU outputs match the non-

SPMU, and benchmark the performance of the SPMU for all data types (8, 16, and 32). 

 

The example test shown in the code below takes the number of elements inside each vector, and the 

time variable, and tries to randomize the data with the rand function. The test sets the MVTYPE and 

then calls a C function that uses all the harts in the core to load the vectors and compute the results. 

The cycle count to perform the arithmetic operation is counted, and saved. The output results are 

checked to be correct, and then performance is compared to the non-accelerated tests. 

 

The code below shows how vector addition instruction KADDV is tested for 32-bit data types. Other 

data types and instructions are not shown because of the repetitiveness of the code sequence. There 

implementation can be inferred just by looking at this one. 
 

/* ---------------------------------------------------------------- KADDV Test ----------------------------------------------------------*/ 1 
#define NumOfThreads 3 2 
#define NumOfElements 50 3 
#define TIME 10 4 
 5 
int32_t vect32_1[NumOfElements], vect32_2[NumOfElements]; 6 
int32_t testres32[NumOfElements]; 7 
int32_t *res32; 8 
int32_t result32[NumOfElements]; 9 
int   size32=NumOfElements*sizeof(int); 10 
int   testperf, perf32[NumOfThreads]; 11 
 12 
int main() {  13 
 srand(TIME); 14 
 for (int i=0; i<NumOfElements; i++) {  15 
  vect32_1[i] = rand()  % (0x80000000 - 0x1) +1; 16 
  vect32_2[i] = rand()  % (0x80000000 - 0x1) +1; 17 
 } 18 
 int add_pass = 0; 19 
 int perf = 0; 20 
 int* ptr_perf = &perf; 21 
 22 
 /* 32-bit KADDV here */ 23 
 VECT_ADD_32: 24 
 sync_barrier(); 25 
 // ENABLE COUNTING ------------------------------------------------------------------------- 26 
 __asm__("csrrw zero, 0x7A0, 0x00000001"); 27 
 //------------------------------------------------------------------------------------------  28 
 // SET MVTYPE -------------------------------------------------------------------------  29 
 __asm__("csrrw zero, mvtype, 0x00000002"); // set the data type to 32-bits 30 
 //------------------------------------------------------------------------------------------  31 
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  32 
 // TEST KADDV(32)------------------------------------------------------------------- 33 
 /* call the function that perfroms the KADDV operation 34 
 res32=kless_vector_addition_mth((void*) result32, (void*) vect32_1, (void*) vect32_2, size32); 35 
 //------------------------------------------------------------------------------------------  36 
 // DISABLE COUNTING AND SAVE MCYCLE OF EACH THREAD ------------ 37 
 __asm__("csrrw zero, 0x7A0, 0x00000000;" 38 
   "csrrw %[perf], mcycle, zero;" 39 
   "sw %[perf], 0(%[ptr_perf]);" 40 
   : 41 
   :[perf] "r" (perf), [ptr_perf] "r" (ptr_perf) 42 
   ); 43 
 if (Klessydra_get_coreID()==0) perf32[0]=perf;  // store the cycle count of thread 2 44 
 if (Klessydra_get_coreID()==1) perf32[1]=perf;  // store the cycle count of thread 1 45 
 if (Klessydra_get_coreID()==2) perf32[2]=perf;  // store the cycle count of thread 0 46 
 //---------------------------------------------------------------------------------------------- 47 
 48 
 // Test 32-bit addition result -------------------------------------------------------------- 49 
 if (Klessydra_get_coreID()==1){ 50 
  __asm__( "csrrw zero, 0x7A0, 0x00000001;");  // enable counting 51 
  for (int i=0; i<NumOfElements; i++){ 52 
   testres32[i] = vect32_1[i]+vect32_2[i]; // perform the addition without acceleration 53 
  } 54 
  __asm__("csrrw zero, 0x7A0, 0x00000000;"  // disable counting and save the cycle count 55 
   "csrrw %[perf], mcycle, zero;" 56 
   "sw %[perf], 0(%[ptr_perf]);" 57 
   : 58 
   :[perf] "r" (perf), [ptr_perf] "r" (ptr_perf) 59 
   ); 60 
  testperf = perf; 61 
  for (int i=0; i<NumOfElements; i++){ 62 
   if (res32[i]==testres32[i]) // check every element{ 63 
    add_pass++; 64 
   } 65 
   else { 66 
    goto FAIL_VECT_ADD_32; // if an error is encountered goto the error label 67 
   } 68 
  } 69 
  if (add_pass==NumOfElements){ 70 
   printf("\nPASSED KADDV32 32-bit vector addition"); // all outputs are correct print pass 71 
  } 72 
 } 73 
 if (Klessydra_get_coreID()==1){   74 
  printf("\n\nNumber of Elements:%d\n",NumOfElements); 75 
  for(int i=0;i<3;i++){ 76 
   printf("Th%d KADDV32 Speed: %d Cycles\n",i, perf32[i]);  // print cycle count of SPMU 77 
  } 78 
  printf("ADDV32 Speed: %d Cycles\n", testperf);  // print the cycle count and end the program 79 
  return 0; 80 
 }  81 
 __asm__("csrrw zero, mstatus, 8;" "wfi;");  // stall the harts that finish 82 
 // ----- Fail Section --------------------------------------------------------------- 83 
 FAIL_VECT_ADD_32:  // error label 84 
 printf("\nFAILED KADDV32 32-bit vector addition\n"); // print fail  85 
 return 1;86 
 

 

 

The function “kless_vector_addition_mth” performs the KADDV using all the harts in the T13 

core, as seen in the code below. The first thread that enters does a vector load vs1 atomically, and 

then exits the routine. The second hart atomically loads the second vector vs2 to the SPMs and exits 
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the function. The third hart performs the vector addition, stores the result back in main mem, then 

exits the function.  

 
void* kless_vector_addition_mth(void *result, void* src1, void* src2, int size){ 1 
 int SPMADDRA = spmaddrA; // base address of spmA 2 
 int SPMADDRB = spmaddrB; // base address of spmB 3 
 int SPMADDRC = spmaddrC; // base address of spmC 4 
 int key = 1; // the key locks some routines from being executed 5 
 static int section1 = 0;  6 
 static int section2 = 0; 7 
 int* psection1 = &section1; 8 
 int* psection2 = &section2; 9 
 asm volatile( 10 
  "amoswap.w.aq %[key], %[key], (%[psection1]);" 11 
  "bnez %[key], SCP_copyin_vect_2;" 12 
  "SCP_copyin_vect_1:" 13 
  " kmemld %[SPMADDRA], %[srcA], %[sz];" // load vector vs1 14 
  " j END;" 15 
  "SCP_copyin_vect_2:" 16 
  " amoswap.w.aq %[key], %[key], (%[psection2]);" 17 
  " bnez %[key], END;" 18 
  " kmemld %[SPMADDRB], %[srcB], %[sz];" // load vector vs2 19 
  " csrw 0xBF0, %[sz]; " // set the vector size 20 
  " kaddv %[SPMADDRC], %[SPMADDRA], %[SPMADDRB];" // KADDV operation 21 
  " kmemstr %[result], %[SPMADDRC], %[sz];" // store back the result in memory 22 
  "END:" 23 
  : 24 
  :[key] "r" (key),[psection1] "r" (psection1), 25 
           [psection2] "r" (psection2),  [sz] "r" (size), 26 
  [SPMADDRA] "r" (SPMADDRA), [srcA] "r" (src1), 27 
  [SPMADDRB] "r" (SPMADDRB), [srcB] "r" (src2), 28 
          [SPMADDRC] "r" (SPMADDRC), [result] "r" (result) 29 
 ); 30 
 return result; 31 
}32 

 

Another function that does the above routine with a single thread only is shown below. 
 

1 
void* kless_vector_addition_sth(void *result, void* src1, void* src2, int size){ 1 
 int SPMADDRA = spmaddrA; // base address of spmA 2 
 int SPMADDRB = spmaddrB; // base address of spmB 3 
 int SPMADDRC = spmaddrC; // base address of spmC 4 
 asm volatile( 5 
  " kmemld %[SPMADDRA], %[srcA], %[sz];" // load vector vs1 6 
  " kmemld %[SPMADDRB], %[srcB], %[sz];" // load vector vs2 7 
  " csrw 0xBF0, %[sz]; " // set the vector size 8 
  " kaddv %[SPMADDRC], %[SPMADDRA], %[SPMADDRB];" // KADDV operation 9 
  " kmemstr %[result], %[SPMADDRC], %[sz];" // store back the result in memory 10 
  "END:" 11 
  : 12 
  :[key] "r" (key), [sz] "r" (size), 13 
   [SPMADDRA] "r" (SPMADDRA), [srcA] "r" (src1), 14 
   [SPMADDRB] "r" (SPMADDRB), [srcB] "r" (src2), 15 
            [SPMADDRC] "r" (SPMADDRC), [result] "r" (result) 16 
 ); 17 
 return result; 18 
}19 
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An additional function in the SPMU libraries was created to benchmark the speed of the hardware 

loops, and that is by executing the SPMU instructions continuously inside a sw-loop (for loop), then 

the output is compared. The body of that function is shown below. 

 
void* kless_vector_addition_sth_sw_loop(void *result, void* src1, void* src2, int size, int SIMD_BYTES){ 1 
 int SPMADDRA = spmaddrA; // base address of spmA 2 
 int SPMADDRB = spmaddrB; // base address of spmB 3 
 int SPMADDRC = spmaddrC; // base address of spmC 4 
 int size_temp = size; 5 
 asm volatile( 6 
  " kmemld %[SPMADDRA], %[srcA], %[size_temp];"   // load vector vs1 7 
  " kmemld %[SPMADDRB], %[srcB], %[size_temp];"   //  load vector vs2 8 
  " csrw 0xBF0, %[SIMD_BYTES];"  // set the vector size 9 
  :[size_temp] "r" (size_temp), [SIMD_BYTES] "r" (SIMD_BYTES), 10 
   [SPMADDRA] "r" (SPMADDRA), [srcA] "r" (src1), 11 
   [SPMADDRB] "r" (SPMADDRB), [srcB] "r" (src2) 12 
 ); 13 
 for (int i=0; i<size; i=i+SIMD_BYTES){ // loop through the vector elements 14 
  if (size-i >= SIMD_BYTES){ 15 
   size = size-i;  // decrement the vector size  16 
   asm volatile( 17 
       " kaddv %[SPMADDRC], %[SPMADDRA], %[SPMADDRB];"// KADDV operation 18 
       : [SPMADDRA] "r" (SPMADDRA), 19 
         [SPMADDRB] "r" (SPMADDRB), 20 
                [SPMADDRC] "r" (SPMADDRC) 21 
   ); 22 
   SPMADDRA+=SIMD_BYTES;  // increment source A pointer 23 
   SPMADDRB+=SIMD_BYTES;  // increment source B pointer  24 
   SPMADDRC+=SIMD_BYTES;  // increment the destination pointer 25 
  } 26 
  else {      27 

              /* if there is no need to loop anymore, then re-write the vector size and execute the last SPM line */ 28 
   size = i; 29 
   asm volatile( 30 
    " csrw 0xBF0, %[size];" 31 
    " kaddv %[SPMADDRC], %[SPMADDRA], %[SPMADDRB];" 32 
    : [SPMADDRA] "r" (SPMADDRA) , 33 
      [SPMADDRB] "r" (SPMADDRB) , 34 
             [SPMADDRC] "r" (SPMADDRC) , 35 
             [size] "r" (size) 36 
   ); 37 
  } 38 
 } 39 
 SPMADDRC=spmaddrC; 40 
 asm volatile( 41 
  " kmemstr %[result], %[SPMADDRC], %[size_temp];" 42 
  :[size_temp] "r" (size_temp), [SIMD_BYTES] "r" (SIMD_BYTES), 43 
           [SPMADDRC] "r" (SPMADDRC), [result] "r" (result) 44 
 ); 45 
 return result; 46 
}47 

 

6.2. Convolution tests: 
 

The convolution test comes with a set of functions called convolution2D (conv2D for short). In order 

to fully explain the algorithm of the conv2D functions we will demonstrate how a convolution is 

performed the conventional way, and how the algorithm was transformed to fit on the SPMs. 
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6.2.1. Convolutions (traditional method) 

 

The convolutions in neural networks are performed by sliding the kernel map from its central point 

over the entire pixels of the feature map otherwise known as the input matrix. The kernel maps in our 

convolutions have their dimensions set to 3x3 (i.e. like VGG16 filters). Consider the convolution of 

this kernel with a 4x4 feature map as shown in figure 6.1.  

 

 
Figure.6.1. Convolution of feature map on the left and kernel map on the right 

 

When the kernel map starts sliding over the feature map starting from the top left corner. There will 

be elements of the kernel map not overlapping any elements of the feature map. In order to overcome 

this, feature map is padded with zeros around its entire parameter such that when the kernel map 

slides, its elements will either be overlapping the feature map or the padded-zeros as seen in figure 

6.2. 

 

 

 
Figure.6.2. Convolution of feature map on the left and kernel map on the right 

 

One convolution gives one output pixel result for the output map. When the kernel has passed over 

the entire feature map and produced all the output pixels, the convolution2D would be considered at 

this point done. 

 

6.2.2. Convolutions (sub-kernel method): 

One drawback of the traditional method of performing a matrix convolution was the augmentation of 

zero-paddings to the whole parameter of the feature maps. It presented a few challenges for doing 

that method, such as: 

• High memory consumption, for example a 32x32 matrix of integers that will be zero-

padded cannot fit on a 4KB scratchpad memory, it needs an extra 528 Bytes of memory 

space to fit, which is about 12.5% the size of the original matrix. 
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• We also have slower memory for ASIC implementations, since FPGAs have fixed size 

BRAMs [44] so this might only affect the FF or LUT based memories. However, for ASIC 

zero-padding will require an 8KB memory for a 4KB feature map, and a 4KB memory for 

2KB feature map and etc. Bigger memories are usually slower than smaller memories, or 

have higher latencies. 

 

There was the need to re-write the conv2D function in order to avoid zero-padding. The key idea was 

to divide the conv2D function into separate functions each would perform a set of convolutions with 

sub-kernels on the different regions of the feature map as shown in figure 6.3. We will demonstrate 

how the convolution with sub-kernel F was performed. Other sub-kernel implementations follow a 

similar pattern and thus will not be elaborated. 

 

 
Figure.6.3. Division of the sub-kernels. On the left shows the overlap with sub-kernel F 

 

The sub-kernels include only the overlapping parts between the kernels and the feature maps. In the 

above figure with the 4x4 matrix, we can see some regions. Each region has a different part of the 

kernel map overlapping. Thus, performing a convolution would require calling nine functions each 

performing the routine with a different sub-kernel. 

 

The functions are divided into four groups. The first group is when the kernel centroid lands on the 

edges, we perform the A-C-G-I routines. Sliding the centroid in between the corners on the first and 

last row uses the B-H group. Likewise, sliding in between columns we use D-F groups. When the 

sub-kernel is fully overlapping the feature map, the operations will belong to group E, and the 

convolution will be the default case. 

 

Considering the convolution with sub-kernel F, the output pixel is calculated as follows: 

 

𝒐𝒖𝒕𝒑𝒖𝒕 𝒑𝒊𝒙𝒆𝒍 += [𝟎] ∗ 𝟏 + [𝟏] ∗ 𝟏 + [𝟑] ∗ 𝟏 + [𝟒] ∗ 𝟐 + [𝟔] ∗ 𝟐 + [𝟕] ∗ 𝟏 

 

The presence of the “+= “sign is because the convolutions always accumulate the output pixel. In 

addition, since our convolutions are performed with a fixed-point implementation, the outputs need 

to be post scaled. Hence the equation would actually look like this. 

 

𝒐𝒖𝒕𝒑𝒖𝒕 𝒑𝒊𝒙𝒆𝒍+= ([𝟎] ∗ 𝟏) ≫ 𝒑𝒔 + ([𝟏] ∗ 𝟏) ≫ 𝒑𝒔 + ([𝟑] ∗ 𝟏) ≫ 𝒑𝒔 + ([𝟒] ∗ 𝟐)
≫ 𝒑𝒔 + ([𝟔] ∗ 𝟐) ≫ 𝒑𝒔 + ([𝟕] ∗ 𝟏) ≫ 𝒑𝒔 
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The snippet of the code in figure 6.4 shows how to perform the convolution with sub-kernel F using 

the SPMU instructions. 

 

 
Figure.6.4. Sub-Kernel F executed in the SPMU 

 

As figure 6.3 suggests, when the centroids overlap the element (1,3), three different rows of two 

integers are highlighted, hence the vector length of 2. 

 

6.2.3. Choosing the best convolutions algorithm: 

 

Although the sub-kernel method had the memory advantage over the zero padded method. However, 

it suffered in the cycle time as it did not actually exploit the SIMD nature of the SPMU very well. 

While the zero-padded implementation while still consuming bigger memory, but nonetheless 

exploited very well the SIMD implementation in the SPMU, but it suffered with the memory loads 

as it was loading a bunch of zeros.  

 

So instead of doing one burst load for the entire matrix with a “kmemld” instruction, we found that 

the optimal solution was to use the zero-padded method with a set of burst loads that loads the discrete 

data lines in the matrix without the padded zeros. This in turn will relieve the overhead of doing 

unnecessary memory transfers of zeros. The data lines will be separated by the offset of zeros that 

separate them. Figure 6.5 shows how it is done. 

 

 

Figure.6.5. Discrete Kmemlds for zeropadded implementations 
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Figure 6.6 shows how the zero-padded convolutions are done using the SPMU instructions. 

 

 

Figure.6.6. Zero-Padded Convolution method using the SPMU instructions  

 

6.3. Supplementary VGG16 libraries 
 

Having built libraries capable of doing the matrix convolutions, there was still the need to supplement 

the VGG16 libraries with a few more functions in order to have it ready to accelerate the network.  

 

First, AddBias and ReLu operations are functions were made Adding the bias to the output matrix is 

done with the following function: 

 

“ksvaddsc_v2 (dest, source1, source2, size);” 

 

The function above sets the MVSIZE CSR to be equal to size, and calls the ksvaddsc SPMU 

instruction which adds the vector source1 with the scalar source2, and stores the result in dest. 

 

The operation is followed by calling a ReLu function that rectifies all the negative values. 

 

 “krelu((void*)dest, (void*)source);” 
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The function above rectifies the source vector in source, and places the output vector in dest. 

 

What remains after this is the fully connected layer which can be simply implemented by one 

instruction called ‘kdotpps’. 

 

Operations in VGG16 not handled by the SPMU are the following: 

• Maxpool layer haves the sizes of its input matrices by pooling the maximum value in 

2x2 filter that slides vertically and horizontally across the input matrix. 

 

•  As for the last part, layer_22 is implemented using the softmax() function, which 

implements the non-linear function softmax for producing the probability distribution of 

all the possible outcomes. 

 

With this, the libraries have become complete and can be used to accelerate the VGG16. The 

performance results were already reported in chapter 5. 
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Conclusions 
 

In this thesis we introduce the Klessydra-T branch of the Klessydra family of microprocessors. The 

Klessydra cores fully support RISC-V instruction set in 32-bit. The Klessydra-T cores support the 

base integer instructions “I”, the atomic extensions “A”, the multiplication/division extension “M”. 

The T1 sub-branch of the Klessydra-T further appends to the native RISC-V ISA a set custom 

specialized instruction for accelerating convolutional neural networking applications. The motivation 

behind forming the Klessydra-T branch was to exploit IoT embedded systems in order to obtain higher 

energy efficiency and performance, and the motivation behind adding a hardware accelerator in the 

T1 was in order to allow an easy migration of CNN towards embedded systems. 

 

Our study started by determining the optimal pipeline organization in interleaved multithreaded 

processors by performing and experimental assessment , and we showcased that pipelining the core 

has consistently improved the performance, while interleaved multithreading maintained the core in 

having zero delay slots, thus improving both the overall performance, and the energy efficiency 

required to execute a single instruction. 

 

We further described in an analytical assessment that deeper pipelines between registerfile read and 

write ports are unfavorable (e.g. T04, T05, etc.), since the critical path would improve only slightly 

in soft core implementations due to the growth of the net delay between FPGA elements. While the 

area would still continue to grow linearly with every new hart. Also, we mentioned that the cycle 

count would become worse when executing practical applications in these deeply pipelined IMT 

architectures, such that overall performance will degrade in the sequential single hart applications, or 

in parallel tightly coupled applications that require constant thread synchronizations.  

 

Also, in another analytical assessment, we saw that introducing pipelines before the registerfile read 

ports does not increase the performance, but rather degrades it, since it will require that the IMT core 

implements instruction flushing logic in which it was not needed previously. Thus, re-introducing the 

branch delay slots. 

 

The spectrum of target applications covered in our earlier assessments, showed that the number of 

applications that can be exploited by the IMT approach were only a small portion of the entire 

spectrum. So, we attempted to develop an IMT processor coupled with a hardware accelerator that 

can exploit more target applications. And since neural networks were becoming a hot topic in 

embedded systems. This in hand drove us to develop a neural network accelerator called the SPMU. 

 

In our basic evaluations of the SPMU, we saw the significance of the performance contributions in 

cycle count of both the low latency scratchpad memories, and the hardware loops (zero overhead 

loops) to the overall performance of the SPMU when executing different vector sizes. Further 

evaluations continued to test the cycle count improvement in increasing the data level parallelism for 

small and large vectors. We determined that data level parallelism can improve the cycle count greatly 

in large vectors and only slightly in small vector because of the T13 core’s ability to hide the latency 

of the SPMU instructions almost completely when the vectors are small, and only moderately if the 

vectors were large. 

 

Two more complex SPMU hardware schemes were employed. These two schemes exploited the 

instruction level parallelism through increasing the thread level parallelism. The first scheme sets 

dedicated memories subsystems (SPI) for every hart, and dedicated functional units (SPE) as well. 

While the other scheme employs dedicated memories (SPI) for every hart, but a shared set of 

functional units (SPE) to be used by all the harts. Both approaches decreased the cycle count even 
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further then the basic Shared-SPMU approach. The Dedicated-SPMU scheme got slower because of 

the large area overhead and the increase in the net delay, while the scheme containing shared 

functional units suffered in the top operating frequency because the crossbar connecting the SPI 

memories to the shared SPE functional units was very large. The speed drop becomes highly more 

obvious in higher level SIMD configurations. However, the Dedicated-SPI_Shared-SPE approach 

showed an overlap in the overall performance with the Dedicated-SPMU which was a good sign that 

a tiny performance trade-off was made with a large chunk of area. 

 

The Dedicated-SPMU were further evaluated with a more practical test, and that is by executing the 

layers of the VGG16 deep convolutional neural network algorithm. The first test showcased the 

performance of the T13 IMT architecture when having one active hart only, and when having all the 

harts active. We further evaluated the performance of the Dedicated-SPMU versus the Zero-riscy 

cores showing the performance in executing the layers of the VGG16 test with both large vectors, and 

small vectors, the Dedicated-SPMU continued to show performance superiority even in these real-

life applications. 

 

Area evaluations were made and we showed how much the DLP impacts the area, versus the TLP, 

Also, we saw how big the cross-bar was in the Dedicated-SPI_Shared-SPE scheme. Finally, we saw 

how much overhead does the T13 IMT core have over the in-order Riscy and Zeroriscy cores. 

 

Finally, the dynamic power consumption and the energy consumption were shown for all the SPMU 

configurations. We saw that the dynamic power increased largely especially in SIMD 8 

configurations. Also, that the SPMU schemes had a high power consumption. But when the time came 

to showcase the energy consumption, we saw the Hybrid approach was the most energy efficient such 

that Dedicated-SPMU SIMD-2 or the Dedicated-SPI_Shared-SPE SIMD-2 had the lowest energy 

consumption among all the hardware schemes. 

 

Our study of the T13 showed how to easily make a high performance and energy efficient hardware 

accelerator for a very balanced IMT architecture, that interleaves a moderate number of harts. By 

simply adding a hardware accelerator that writes to its own dedicated memory, we can allow 

superscalar execution. This in hand will allow superscalar execution between the instructions that 

write to different memories without having stalls due to data dependencies, while still maintaining 

the same thread pool baseline, and not needing to interleave any additional harts to fence between the 

memory accesses.  The study can be generalized to any hardware accelerator for IMT architecture, 

and not only convolution engines.
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Appendix A 
 

Klessydra Technical Manual 

 

Chapter 1 

Architecture overview 
 
1.1 Features 

The Klessydra processing core family is a set of processors featuring full 
compliance with the RISC-V instruction set and intended to be placed within 
the Pulpino microprocessor platform. To date, the Klessydra family includes  

• a minimal gate count single-thread core, Klessydra S0. The S0 core is 
not maintained as open-source; 

• a class of multi-threaded cores, Klessydra T0, available in different im-
plementations called Klessydra T0ab;  

• a class of extended versions of the T0 cores, named Klessydra T1 
cores, featuring an SPMU hardware accelerator. 

• A class of fault tolerant versions of the T0 cores, featuring fault-tolerant 
mechanisms for harsh environment applications, named Klessydra 
F0x. 

The Klessydra core family features: 

• Full compliance with the RISC-V architecture specification (instruction 
set, control and status registers, interrupt handling mechanism and call-
ing convention); 

• Compliance with the standard RISC-V compilation toolchain; 

• Interleaved multi-threaded execution of RISC-V harts (hardware 
threads); 

• Easy and standardized multi-threading programming interface; 

• Core synthesis on FPGA (presently, Xilinx Series 7 implementations 
have been tested); 

• Hardware compliance with the Pulpino microprocessor platform, as pin-
to-pin compatible alternative of the Pulpino RI5CY core; 

• Software compliance with the Pulpino microprocessor platform, as 
compatible I/O memory map, interrupt handler memory map, pro-
gram/data memory map; 

• Extends the software test suite of Pulpino with custom tests designed 
specifically for the klessydra cores. 

 

1.2 Naming convention  
The different cores available in the Klessydra family follow the naming 
convention depicted in Fig. 1.1. 
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Fig. 1.1. Naming convention 

 
 
1.3 Supported Instruction Set 

To date, all the Klessydra cores implement the 32-bit integer RISC-V machine 
mode instruction set, namely user-level RV32I base integer instruction set 
version 2.1 and M-mode privileged instruction set version 1.1. T0 and T1 cores 
support the RV32IME set. 
The T0 and T1 cores support the atomic instruction AMOSWAP.W from the 
RVA atomic instruction extension. 
The T1 core extends the instruction set with non-native custom vector 
instructions for memory to scratchpad transfers and vector arithmetic 
operations. Vector instructions come in three different variants supporting 
different data width “8-bit, 16-bit, 32-bits” e.g. 
Only M-mode operation is supported, so that no operating system support is 
implemented. Yet, the Klessydra family comes with a baseline runtime system 
software layer that implements part of the interrupt handling features and part 
of the multi-threaded programming model. 
 

1.4 Multi-threading model 
Klessydra S0 core supports single thread execution (RISC-V hart) only, with 
the following features: 

• The hart can be interrupted by a trap such as an external interrupt or 
instruction exception. Software interrupts are supported, although their 
use is expected to be impractical in a single-thread execution environ-
ment. When the trap handling routine ends the core resumes the origi-
nal execution thread (see Chapter “Exception and Interrupts” for de-
tails);  

• The core can enter an idle state by means of the WFI instruction; when 
an external interrupt arrives at the core, the core starts the execution of 
the interrupt handling routine as the new hart of execution. 
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• The hart can be halted and resumed by means of the Fetch_en core 
interface signal.  

 
Klessydra T0x, T1x and F0x cores implement interleaved multi-threading. At 
each clock cycle, a new instruction is fetched from a different hart (Fig. 1.2).  
 

 
Fig. 1.2. Conceptual view of hardware thread (hart) interleaved execution 

 
The execution has the following features: 

• Each hart in the hardware thread pool can be either active or idle.  

• An idle hart can be activated by an interrupt request directed to the 
hart. The core executes the interrupt handling routine within the hart. 
When the interrupt handling routine ends, the hart becomes idle again 
(see Chapter “Exception and Interrupts” for details). 

• An active hart can be interrupted by instruction exceptions or interrupt 
requests. When the interrupt/exception handling routine ends and the 
signal fetch_enable_i is high, the core resumes the interrupted exe-
cution hart. (see Chapter “Exception and Interrupts” for details); 

• An active hart can become idle by executing the WFI instruction;  

• The maximum number of active harts is an architecture characteristic 
parameter called Thread Pool Size.  

• Each hart is identified by an integer number ranging from 0 up to 
Thread Pool Size – 1.  

• There is also a minimum number of active harts, needed to avoid data 
hazards between threads during the pipelined execution, called 
Thread Pool Baseline. The Thread Pool Baseline value is an architec-
ture characteristic parameter related to the instruction pipeline organ-
ization implemented in the hardware microarchitecture of the core. 

• When the number of active threads is less than the Thread Pool Base-
line, one or more idle hart runs in the pipeline as NOP instructions. 

As a general note, a higher Thread Pool Baseline value corresponds to a 
higher sustainable clock frequency and generally indicates a higher 
performance when running at full thread pool. For example, a T03 core will 
significantly outperform a T02 core when executing 4 harts.  

 
 
1.5 Core Interfaces  

instruction

INSTRUCTION 
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The core interface is signal-to-signal compatible with the Pulpino microprocessor 

platform, and as such it is the same as Pulpino RI5CY cores. The detailed description 

follows.  
 

Table.1.1 Clock, reset active low, test enable 

 

Name Direction Width Notes 
clk_i In 1 Core clock signal 

clock_en_i In 1 Core clock enable  
rst_ni In 1 Core reset signal, active low 

test_en_i In 1 Core test enable (unused) 
                       

 
Table.1.2 Initialization signals 

Name Direction Width Notes 
boot_addr_i In 32 Boot address value 

core_id_i In 4 Core id number 
cluster_id_i In 6 Cluster id number 

 
Table 1.3 Program memory interface 

Name Direction Width Notes 
instr_req_o Out 1 Request signal, must stay high until accepted 
instr_gnt_i In 1 Request accepted, address may change in the next 

cycle 
instr_rvalid_i In 1 Instruction valid, stays high for exactly one cycle. 
instr_addr_o Out 32 Address 
instr_rdata_i In 32 Instruction read from memory 

 
Table 1.4 Data Memory interface 

Name Direction Width Notes 
data_req_o Out 1 Request signal, must stay high until accepted 

data_gnt_i In 1 Request accepted, address may change in the next 
cycle 

data_rvalid_i In 1 Data valid, stays high for exactly one cycle 

data_we_o Out 1 Write enable, high = write, low = read  

data_be_o Out 4 Byte selection 

data_addr_o Out 32 Address  

data_wdata_o Out 32 Data to be written to memory 

data_rdata_i In 32 Data read from memory 

data_err_i In 1 Memory error signal  

 
Table 1.5 Interrupt request / acknowledge 

Name Direction Width Notes 
irq_i In 1 Interrupt request signal  

irq_id_i in 5 Interrupt request vector value 
irq_ack_o out 1 Interrupt acknowledge signal 
irq_id_o in 5 Interrupt acknowledge vector value (unused) 

 

Table 1.6 Debug interface 
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Name Direction Width Notes 
debug_req_i In 1 Debug request 
debug_gnt_o Out 1 Debug request granted 
debug_rvalid_o Out 1 Debug data valid 
debug_addr_i In 15 Debug location address 
debug_we_i In 1 Debug write enable 
debug_wdata_i In 32 Debug data to be written to core 
debug_rdata_o Out 32 Debug data read from core 
debug_halted_o Out 1 Debug halt acknowledge 
debug_halt_i In 1 Debug halt request 
debug_resume_i in 1 Debug resume signal 

 
Table 1.7 Miscellaneous control signals 

Name Direction Width Notes 
fetch_enable_i In 1 Fetch enable, stops the core 
core_busy_o Out 1 Core busy signal  

ext_perf_counters_i In 1 External performance counter signal (unused) 
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Chapter 2 
Memory model and protocol 
 
 
2.1 Instruction Fetch 

The instruction fetch stage of the core is called FSM_IF and is able to supply one 

instruction to the instruction decode stage per cycle, if the program memory is able to 

serve one instruction per cycle. Instructions are word aligned, meaning that the two 

least significant bits in the PC are always set to 0, and the PC value is incremented by 

4 units at each new fetch when no branch occurs. Compressed instruction format is not 

supported. No prefetch logic is present. 
 
 

2.2 Memory Access Protocol 
The program and data memory access protocol is pin-to-pin compatible with the 

Pulpino microprocessor platform, and as such it is the same as RI5CY / Zeroriscy 

cores’. The protocol that used to access the data memory works as follows. The 

program memory follows the same protocol except for the absence of write operation 

support. 

The core provides a valid address in data_addr_o and sets data_req_o high. The 

memory then answers with data_gnt_i set high as soon as it is ready to serve the 

request. This may happen in the same cycle as the request is sent or any number of 

cycles later. After a grant is received, the address may be changed in the next cycle by 

the core. In addition, the data_wdata_o, data_we_o and data_be_o signals may be 

changed. After receiving a grant, the memory answers with data_rvalid_i set high if 

data_rdata_i is valid. This may happen one or more cycles after the grant has been 

received. The signal data_rvalid_i must also be set when a write operation is 

performed, although the data_rdata_i has no meaning in this case. Figure 2.1, Figure 

2.2 and Figure 2.3 shows examples of the protocol timing. 

 

 
Figure 2.1 Basic Memory Transaction (reprinted from RI5CY manual, rel. Jan 2017) 
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Figure 2.2 Back-to-Back Memory Transaction (reprinted from RI5CY manual, rel. Jan 2017) 

 

 

 
 

Figure 2.3 Slow Response Memory Transaction (reprinted from RI5CY manual, rel. Jan 2017) 

 

 
2.3 Misaligned Accesses 

The core hardware does not perform misaligned accesses natively (i.e. accesses that 

are not aligned on natural word boundaries). If a misaligned memory access is 

requested by an instruction, the core produces an exception. There is no necessary 

hardware to realize the misaligned access by multiple aligned access. In compliance 

with RISC-V specification, misaligned accesses are therefore not guaranteed to be 

atomic. 
 

2.4 Memory Address Map 
Harts (i.e. hardware threads) running on a Klessydra core share the memory map 

illustrated in Fig. 2.4, which is compliant with the Pulpino SoC platform specification.  

The MIP CSR, one for each hart, are memory mapped starting at address 0x0000ff00 

and allow for inter-thread interrupts, in compliance with the RISC-V specification. 

(Other CSRs are not memory mapped).  

Each hart has its own stack, and the stack size and starting address are customizable at 

software level in the runtime system startup routine. The remaining memory space is 

available for inter-thread data communication.  

For information about the addresses from 0x00 to 0x90, see the vector table in chapter 

5.  Address 0x94 is reserved to MTVEC. 
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Fig. 2.4        Klessydra Memory Map (assuming 4 Threads, 2 KB stack per thread) 

 
Chapter 3 
Architecture Registers 
 
 
3.1 Register File 
 

Klessydra has 32x32-bit wide registers which form the registers x0 to x31. Register x0 

is statically bound to 0 and can only be read. Write on register x0 has no side effect. 

They can be modified to 16x32 registers if the RV32E embedded extension was 

enabled. 
 

3.2 Control and Status Registers 
Klessydra cores implement a subset of the control and status registers specified in the 

RISC-V privileged specification, limited to the registers needed for M-mode operation 

and to the functionalities implemented in the core. Klessydra cores also implement 

some additional CSRs specifically needed for the core operations and/or for 

Program 
memory 

Boot memory
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peripherals

0000 0000

0000 7FFF
0000 8000

0000 81FF

0000 FF00

0010 0000

0010 7FFF
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1A10 2000
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1A10 4000
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MIP regs

32KB RAM

UART regs
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SPI MASTER regs

TIMER regs

EVENT UNIT regs

I2C regs

FLL regs

SOC CONTROL regs

Hart 3 MIP reg 32b

Hart 2 MIP reg 32b

Hart 1 MIP reg 32b

Hart 0 MIP reg 32b

Hart 3 stack 2KB

Hart 2 stack 2KB

Hart 1 stack 2KB

Hart 0 stack 2KB

shared data 24 KB

Program 

MTVEC point

Int. Vector Table

0000 0094
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compliance with the Pulpino microprocessor platform.  This extended CSR sub-set is 

composed of the MIRQ, PCER, PCMR registers. The whole set of CSRs implemented 

in the Klessydra cores is as follows: 

 
Table 3.1 CSR Registers 

Name CSR Address Reset Value R/W Description 

MSTATUS 0x300 0x0000_18
08 

R/W Machine Status 

MEPC 0x341 0x0000_00
00 

R/W Machine Exception 
Program Counter 

MCAUSE 0x342 0x0000_00
00 

R/W Machine Trap Cause 

PCER 0x7A0 0xFFFF_F
FFF 

R/W Performance Counter 
Enable 

MHPMCOUNTE
R 

0xB00,0xB02 
0xB03, 

0xB06-0xB0A 

0x0000_00
00 

R/W Machine Performance-
Monitoring Counter 

MHPMEVENT 0x323, 
0x326-0x32A 

0x0000_00
00 

R/W Machine Performance-
Monitoring Event Selector 

MCPUID 0xF00 0x0000_01
00 

R CPU Description 

MIMPID 0xF01 0x0000_80
00 

R Implementation ID 

MHARTID 0xF10 - R Hardware Thread ID 

MIP 0x344 - R/W Interrupt Pending 

MTVEC 0x305 0x0000_00
94 

R/W Trap-Handler Base Address 

MBADADDR   0x343 0x0000_00
00 

R/W Misaligned Address 
Container 

 MIRQ 0xFC0 - R Interrupt Request 

MVSIZE 0xBF0 0x0000_00
01 

R/W Set Vector Size unit (T1) 

MVTYPE 0xBF8 0x0000_00
02 

R/W Set the data type (T1) 

MPSCLFAC 0xBE0 0x0000_00
00 

R/W Set the post scaling factor 
(T1) 

 
 

• MSTATUS Register bit map 
Table.3.1.1 MSTATUS bits 

Bit #  R/W  Description  

3 R/W  Interrupt Enable: When an exception is encountered, Interrupt 

Enable will be set to 1’b0, and it’s state will be stored in bit ‘7’.  

When the mret instruction is executed, the original value of 

Interrupt Enable will be restored from the 7th bit. 

 If you want to enable interrupt handling in your exception 

handler, set the Interrupt Enable to ‘1’ inside your handler code.  
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7 R/W Interrupt Previous Enable: Takes the state of the 3rd bit when 

serving an interrupt, and when an mret is served it stays latched 

to 1. And returns the 3rd bit back to it’s original value. 

 
 

• MEPC Register 
When an exception is encountered, the current program counter is saved in MEPC, 

and the core jumps to the MTVEC address. When an MRET instruction is executed, 

the value from MEPC replaces the current program counter, unless the return value 

was a WFI instruction, in this case we return to the instruction in the address after the 

WFI. 
 

 

• MCAUSE Register bit map 

Table.3.1.2 MCAUSE bits 

Bit #  R/W  Description  

31  R  Interrupt: This bit is set when the exception was triggered by 

an interrupt.  

30 R WFI: This bit indicates that the last instruction before entering 

the subroutine was a WFI 

4:0  R  Trap Cause: “0011” for SW IRQ, “0111” for Timer IRQ, 

“1011” for External IRQ. 
 
 

• PCER Register bit map 
Each bit in the PCER register controls one performance counter. If the bit is 1, the 

counter is enabled and starts counting events. If it is 0, the counter is disabled and its 

value won’t change. 
  Table.3.1.3 PCER bits 

Bit # Description 
9 Branch Taken Counter Enable 

8 Branch Counter Enable 

7 Jump Counter Enable 

6 Store Counter Enable 

5 Load Access Counter Enable 

4 Instruction Miss Counter Enable 

(currently not implemented) 

3 Jump Access Stall Counter Enable  

(currently not implemented) 

2 Load/Store Access Stall Counter Enable  

1 Instruction Counter Enable 

0 Cycle Counter Enable 

 

 

• MHPMCOUNTER Registers 
Klessydra Core includes a MCYCLE counter, a MINSTRET counter and others 6 

additional event counters, MHPMCOUNTER3, MHPMCOUNTER6-

MHPMCOUNTER10 of which only the first eight are used. The names of the registers 

are compliant to RISC-V but the counters are not divided into 32 lower bits and 32 

higher bits. Only MCYCLE and MINSTRET are extended to 64 bits by the registers 

CYCLEH and MINSTRETH. The counter value is 32 bits unsigned integer. 
Table.3.1.4 MHPMCOUNTER bits 
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Register Description 
MCYCLE Counts the number of cycles the core was active (not 

sleeping) 

MINSTRET Counts the number of instructions executed 

MHPMCOUNTER3 Number of load/store data hazards 

MHPMCOUNTER4 currently not used 

MHPMCOUNTER5 currently not used 

MHPMCOUNTER6 Number of data memory loads executed 

MHPMCOUNTER7 Number of data memory stores executed 

MHPMCOUNTER8 Number of unconditional jumps 

MHPMCOUNTER9 Number of branches. Counts taken and not taken 

branches 

MHPMCUNTER10 Number of taken branches 

 

 

 

• MHPMEVENT Registers 
In each MHPMEVENT register all the bits are statically bound to 0 except for the bit 

related to the counter that must be enabled. If that bit is 1, the counter is active and 

starts counting events. For instance, if the user wants to enable MHPMCOUNTER3 

he will set the bit #2 (the 3th bit) of MHPMEVENT3 to 1. This procedure is equivalent 

to set PCER (3) to 1. The core includes 6 registers, MHPMEVENT3, 

MHPMEVENT6-MHPMEVENT10.  
Table.3.1.5 MHPMEVENT bits 

Register Not Bound Bit # 
MHPMEVENT3 2 

MHPMEVENT4 (currently not used) - 

MHPMEVENT5 (currently not used) - 

MHPMEVENT6 5 

MHPMEVENT7 6 

MHPMEVENT8 7 

MHPMEVENT9 8 

MHPMEVENT10 9 

 

 

• MCPUID Register 
The value of this register is fixed to 256 and cannot be changed. By using the CPUID 

opcode, software can determinate processor type and the presence of features. 

 

• MIMPID Register 
The value of this register is fixed to 32768 and cannot be changed. MIMPID provides 

a unique encoding of the version of the processor implementation. 

 

• MHARTID Register 
This register contains the integer ID of the hardware thread running the code. His value 

depends on Cluster and Core external signals and can only be read. 
         Table.3.1.6 MHARTID bits 

Bit # Description 
9:4 ID of the Cluster 
3:0 ID of the core within the cluster 
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• MIP Register 
The MIP register contains information about the type of pending interrupts. Bits #11 

and #7 are enabled according to the external interrupt bits while bit #3 is settled to 1 

to activate the SW interrupt routine. 
  Table.3.1.7 MIP bits 

Bit # R/W Interrupt Type  
11 R External Interrupt 

7 R Time Interrupt 

3 R/W Software Interrupt 

 

 

• MTVEC Register 
When an exception or an interrupt occurs, PC is loaded with the value of this register. 

MTVEC is the standard RISC-V base trap vector. 

 

• MIRQ Register 
This register saves which interrupt has been called. The value of this register is four 

times the number of the interrupt’s bit enabled. For instance, if irq_i(3) is set, MIRQ 

will be loaded with 12. If no interrupt is set, MIRQ value is 65535, that is just an 

arbitrary number. 

 

• BADADDR Register 
When an instruction-fetch, load or store address-misaligned or access exception 

occurs, MBADADDR is written with the faulting address. 

 

• MVSIZE Register 
Setting this register will set the vector size to be used by the mathematical unit. 
The biggest size should not exceed the SPM size, since overflow bits will be 
ignored.  
 

• MPSCLFAC Register 
Contains the post scaling factor that determines the shift amount in KDOTPPS 
custom Klessydra instruction. 
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Chapter 4 
Pipeline Organization 
 
 
4.1 General concepts  

Klessydra cores implement pipelined instruction processing. The number of pipeline 

stages differs among the cores as reported below. In the following, F indicates 

instruction fetch, D indicates operand read from register file and instruction decoding, 

E indicates operation execution, W indicates result writeback to the register file.  

In all cores, the F stage latency is equal to the latency of program memory access, and 

variable latency program memory is supported (as for the case of instruction cache 

memory). The F stage latency is 1 in case of single-cycle-access program memory. 

For other pipeline stages, the latency may be fixed or depend on external events (e.g. 

data memory latency, contention on CSR updating in case of interrupt requests). When 

a stage latency takes more than 1 cycle, the hardware stalls the preceding stage by local 

handshake signals. Similarly, each stage locally signals the succeeding stage when a 

new item is ready. 

The generic microarchitecture for T0 cores is depicted in Fig. 4.1. 

Each thread is identified by a positive integer number harc (hardware context). The 

harc counter changes the harc value at each new instruction fetch, and the harc value 

associated to an instruction is passed through the pipeline stages. Most of the logic in 

the pipeline control section is replicated on a per-thread basis, and the harc value is 

used to properly index the logic units. Conversely, all the logic in the processing 

pipeline is not per-thread replicated with the only exception of the data register file. 

In the S0 core, per-thread replication and the harc-related logic are natively absent. 

 
Fig. 4.1 – Generic pipeline microarchitecture scheme implemented in Klessydra T0 

cores. 
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The specialize microarchitecture of T1 cores is represented in Fig 4.2. 

 
Fig. 4.2 – Datapath sketch of T1 cores. 

 

T1 cores feature an execution stage that is split into a mathematical acceleration unit, 

scratchpad memory unit and a regular execution unit. 

 

4.2 S0 core pipeline  
The Klessydra S0 core implements a 2-stage pipeline according to the model F / DEW. 

The latency scheme is as follows:  

 F DEW 

Load and store instructions ≥ 1 ≥ 2 

CSR instructions ≥ 1 ≥ 2 

All other instructions ≥ 1 1 

 

Branch instructions are predicted as not-taken and are executed with a delay slot of 1 

cycle; in case of taken branch the hardware flushes any wrongly fetched instruction 

from the pipeline.  

Data hazards never occur. 

 

 

4.3 T02x core pipeline  
The Klessydra T0x cores implement a 3-stage pipeline according to the model F / D / 

EW. The latency scheme is as follows:  

 F D EW 

Load and store instructions ≥ 1 1 ≥ 2 

CSR instructions ≥ 1 1 ≥ 2 

Atomic memory operations ≥ 1 1 ≥ 4 

All other instructions ≥ 1 1 1 

 

Branch instructions are predicted as not-taken and are executed with a delay slot of 2 

cycles; in case of taken branch the hardware flushes any wrongly fetched instruction, 

belonging to the branching thread, from the pipeline. No pipeline flush occurs if at 

least 3 threads are interleaved in the pipeline. 

Data hazards never occur, provided that at least 2 threads (Thread Pool Baseline) are 

interleaved in the pipeline. 
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4.4 T03x / T13x / Fxxx core pipeline  
The Klessydra T03x/T13x cores implement a 4-stage pipeline according to the model 

F / D / E / W. The latency scheme is as follows:  

 F D E W 

Load and store instructions ≥ 1 1 ≥ 2 0 

CSR instructions ≥ 1 1 ≥ 2 0 

Atomic memory operations ≥ 1 1 ≥ 4 0 

All other instructions ≥ 1 1 1 1 

Specialized vector 

instructions 

≥ 1 1 ≥ 2 0 

 

Branch instructions are predicted as not-taken and are executed with a delay slot of 3 

cycles; in case of taken branch the hardware flushes any wrongly fetched instruction, 

belonging to the branching thread, from the pipeline. No pipeline flush occurs if at 

least 3 threads are interleaved in the pipeline. 

Data hazards never occur, provided that at least 2 threads (Thread Pool Baseline) are 

interleaved in the pipeline. 
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Chapter 5 
Exceptions and Interrupts 
 
 

Klessydra cores implement exceptions on illegal instructions, on load and store 

instructions to invalid addresses, on misaligned memory accesses, and on ECALL 

instruction execution.  

Klessydra cores implement vectorized interrupts, specifically supporting 32 separate 

interrupt service routines. There are three types of interrupt: 

⎯ Software Interrupt 

⎯ External Interrupt 

⎯ Timer Interrupt 

The interrupt/exception vector table supported by Klessydra cores is compliant with the 

Pulpino platform interrupt vector table, as follows: 
   Table.5.1 Interrupt Handler address map 

0x00-0x7C Interrupts 0-31 
0x80 Reset 
0x84 Illegal Instruction 
0x88 ECALL Instruction Executed 
0x8C LSU Error (Invalid Memory Access) 
0x90 Software Interrupt 

 
Except Code Exception 
0x0000_0002 ILLEGAL_INSN_EXCEPT_CODE 
0x0000_0005 LOAD_ERROR_EXCEPT_CODE 
0x0000_0007 STORE_ERROR_EXCEPT_CODE 
0x0000_000B ECALL ECALL_EXCEPT_CODE 
0x0000_0004 LOAD_MISALIGNED_EXCEPT_CODE 
0x0000_0006 STORE_MISALIGNED_EXCEPT_CODE 
0x0000_0100 ILLEGAL_VECTOR_SIZE_EXCEPT_CODE 
0x0000_0101 ILLEGAL_ADDRESS_EXCEPT_CODE 
0x0000_0102 SCRATCHPAD_OVERFLOW_EXCEPT_CODE 

 
Interrupt handling is accomplished in the core hardware by jumping to the address 

contained in MTVEC, in compliance with RISC-V specification; the pre-compiled 

startup software routine located at MTVEC address implements the interrupt vector 

table as it is shown above, jumping to the right handler routine address. The interrupt 

handler are to be written by the final user according to the target application. 

Interrupts can be enabled/disabled on a global basis through the MSTATUS register; 

they cannot be individually enabled/disabled. Exceptions cannot be disabled.  

When entering an interrupt routine, the core saves the current value of MIE (3rd-bit) to 

the MPIE (7th-bit) in the MSTATUS register; the state of MIE will be restored after 

returning from interrupt service routine. 

If multiple interrupt requests arrive at the same cycle, the order of service is external 

interrupt first, then software interrupt, timer interrupt and exceptions (compliance to 

RISC-V specification). 

In T0 cores, external interrupts are always re-directed to hart number 0. 
Software interrupts can be directed from any active hart, to any active or idle hart. 

Software interrupts allow inter-hart service requests.  
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In T0 cores and in T1 cores, as all status registers are replicated on a per-thread basis, 

the interrupt/exception handling mechanism is implemented referring to the status 

registers of the interrupted thread. 

T1 cores introduce five more exceptions regarding the scratchpad handling. 

Exceptions will be raised if the Math Accelerator unit operands are from non-

scratchpad addresses, or if writing or reading will result in a request from an overflown 

scratchpad address, or if we have dual writes or dual reads from the same scratchpad 

such as in the case of the LSU and Math Accelerator unit working simultaneously 
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Chapter 6 
Scratchpads and mathematical unit  
(T1 version only) 
 
 
6.1 Scratchpad memory subsystem  

Klessydra T1 cores include scratchpad memories, with configurable number of 

scratchpads, banks, and scratchpad size and address mapping. The configurations can 

be modified in the PKG file of the synthesizable Klessydra suite. Each scratchpad 

memory (SPM) is composed of a set of memory banks; the number of banks available 

in each SPM is defined by on the “SIMD” parameter value set in the PKG file. 

Each bank address holds a 32-bit word. An SPM data line is composed of as many 

words as the “SIMD” value. As addresses remain byte-aligned, the address distance 

between SPM data lines is + SIMD*4. Each word on the line has its own address and 

can be independently accessed (with 4-byte aligned address). 

Any SPM bank can be read or written to. For read access, any bank that is not bank0 

will cause the data read in SIMD fashion to be rotated as if it was coming from bank0 

by a read rotator. While for write access, any write to a bank different from bank0 will 

cause the data to be rotated to its correct destination bank by a write rotator.The rotators 

were made to align the two input source operands 

Each scratchpad has one read port, and one write port. Each port has size SIMD*32-

bits (e.g. for SIMD=4, we have 4*32 = 128 bits).  

The SPMs can be accessed by the SPMU or the LSU. When a dual read (or dual write) 

access is requested to the same SPM on the same port by two different units (SPMU 

and LSU), priority will be given to the unit that requested the access first and the other 

unit will be halted until the operation is finished. Due to the in-order single-issue 

pipeline of the Klessydra cores it is not possible that the two units request access to the 

SPM in the same cycle). 

All transfers to/from the scratchpads go through an interface called SPI. Both SPM 

read and writes happen through this SPI wrapper. The LSU and SPMU are the only 

units that interact with the scratchpad memories, always through the SCI. 

 

6.2 Mathematical accelerator unit 
The Mathematical unit was designed to execute custom Klessydra instructions 

targeting vector, DSP-like and CNN-inference-like operations.  

The Mathematical unit interfaces to the SPI unit by means of two read ports for the 

operands coming from the scratchpad memory interface, and one write port to the 

scratchpad memory interface. The read and write port width are dependent on the 

SIMD parameter value set in the PKG file. 

The custom instruction set executed in the Mathematical unit are listed in table 7.1. It 

executes different instructions many of which have different variants. Table.7.1 also 

shows the SIMD capability of the Mathematical unit. A composition of partial 

functional units has been adopted to enhance the SIMD execution and to optimize the 

area consumption mathematical unit. Addition instructions use a combination of 8-bit 

adders to make 8-bit, 16-bit, and 32-bit additions. Multiplication instructions use a 

combination of 16-bit multipliers to perform 8-bit, 16-bit and 32-bit multiplications1. 

 
1 16-bit multipliers were chosen over 8-bit multipliers since doing 32-bit multiplication using 8-bit multipliers would be 

inefficient, and also 16-bit are the optimal choice needed for utilizing DSP blocks on presently available FPGAs 
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There are no 32-bit arithmetic units in the mathematical except for the 32-bit shifters, 

that can be configured to do 8,16,32-bit right arithmetic or logical shifts, accumulators 

(32-bit adders, and 16-bit adders for both 8, and 16-bit), and Rectify Linear Unit 

(RELU). 

When working on vectors, the Mathematical unit exploits built-in hardware loop (zero 

overhead loops), executing the following steps in hardware: 

a. Increment the source and destination vector pointers to fetch the next ele-

ment chunk; 

b. Decrement the remaining number of elements to process; 

c. Evaluate a conditional branch to check whether the number of remaining 

elements reached zero. 

The Mathematical unit can operate in parallel with respect to the other execution units. 

Since the custom Klessydra instructions never have dependencies with the standard 

RISCV instructions, the IE unit and LSU can work in parallel with the Mathematical 

unit. 

The Mathematical unit recovers its state when a halt occurs due to dual read/write 

access. 
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Chapter 7 
Fault Tolerance Support (F0x versions only) 
  
 

Klessydra core versions F0x support several mechanisms of fault tolerance targeting 

aerospace and safety critical application. Most of the mechanisms implemented address 

tolerance to single event upset (SEU) in memory elements (registers and memories).  

7.1  Basic mechanisms  
Supported standard FT mechanisms are Dual Modular Redundancy (DMR) and Triple 

Modular Redundancy (TMR), both based on repetition on functional modules and 

comparison of outputs through a voting system.  

DMR uses two replicas of combinational or sequential logic, it can only detect errors and 

has a low area occupation and power consumption but high time of implementation.  

Basic-TMR is a triple repetition of combinational or sequential logic and a majority voter; 

it has the same time of implementation of DMR and also area and power consumption 

increase. 

Full-TMR adds a triple redundancy to both logic and registers at cost of area and power 

consumption and it uses cross voters to guarantee high error correction capability. 

Global-TMR is based on full-TMR but it can be automated through synthesis tools. 

 

7.2  F03a: Fully TMR – Partial TMR Design 
The protection of control and state registers is a priority because they contain vital 

information about core operation and they are written only once at first run, so a TMR 

must be used.  

Counter registers are less critical because they are constantly refreshed. Each core has a 

dedicated counter with many 32-bit registers, so it’s suggested to use alternative 

techniques: 

o MSB-TMR: triple redundancy only of N most significant bits, reducing area impact. 

o DMR: detection of an error trigger a trap identified by a code and it’s managed by 

the software. 

o Software protection: no hardware protection, the software periodically reads and 

compares counters.  

Pipeline robustness is fundamental in TMR because redundancy does not protect registers 

from loading wrong values that irredeemably corrupt code execution. So redundancy has 

to be applied to all registers between pipeline stages and state registers of state machines. 

Registers file are dedicated for each thread so a TMR has the highest impact in terms of 

area. 

The voting system also lengthens critical path that lowers the maximum clock frequency.  

Program counter unit has a dedicated 32-bit register for each thread and some flip-flop to 

store events and conditions that must be resolved from the unit. Flip-Flop corruption 

doesn’t lead to loss of control because PC update is defined by signals coming from 

pipeline. 

An error on exception service Flip-Flop is more critical because it requires a response 

from CSR. 

Due to the small area occupation on few registers and Flip-Flop it’s suggested to protect 

with TMR the PC unit. 

 

7.3  F03b: Double Pipeline Design with Check&Restore 
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In this version, a protection technique is used that does not allow error correction, but the 

area occupied by the TMR version is reduced by a third, without losing reliability.  

This design implies a change of the internal architecture of the core. The structure is based 

on a new Processing Unit composed of two Pipelines, the CRU and a new CSR unit 

derived from the TMR version. In this architecture, a checkpoint is created before critical 

portions of code or periodically.  Checkpoint control is managed by the Check Restore 

Unit (CRU) and the CSR.  

The two pipelines are the same as the Klessydra T03 version. The input and output signals 

of the pipelines are controlled by the CRU, which can drive them exclusively to start 

checkpoint or restore procedures, not natively implemented in the Pipeline. To allow CRU 

functioning and error check, there is an internal register, called CRSTATUS. This critical 

register is protected by TMR redundancy and can be read (but not written via) CSR 

instructions. The management of the check and restore system requires instructions for 

management and control. These instructions are: 

• Chepoint start instruction 

• Instruction to activate thread dependency 

• Instruction to restart the restore manually 

• Instruction to deactivate protected mode 

The double pipeline structure adds two operating modes to the system: 

• the normal mode - it allows to deactivate the clock of the not used pipeline in order 

to reduce the dynamic consumption of the core; 

• the "single pipeline" mode - allows you to increase core’s life in critical environ-

ments. This mode is integrated and supported by the hardware but requires that the 

code is written ad properly. 

A portion of the software is used to check the correct functioning of the hardware: if a 

pipeline is damaged, it can be disabled. The core is then used with a single unprotected 

pipeline. The robustness of the processing must be granted to the software, which will be 

executed in a redundant manner, sacrificing the processing speed.  

The CRU is the heart of the DoublePipe architecture protection system. The system is 

based on the comparison of the pipeline outputs. In case of output’s discrepancy, the CRU 

activates a flag that indicates the presence of an error. In the next execution phase of the 

thread with an active flag, the CRU takes control of the outputs, simulating an illegal 

instruction with a specific cause code. At this point, a software routine takes care of 

recovering the values of the register files previously saved in memory. At the end of the 

illegal instruction routine, the PC unit loads the program counter with the value saved 

during checkpoint creation. The return to a checkpoint does not deactivate the protected 

mode or eliminate the checkpoint. The unit manages part of the dedicated instructions of 

this architecture and the internal control register. The control register contains information 

on the configuration of the CRU, on the execution status of the core and on any hanging 

errors. This register can be read (but not written) by the user. 

The DuoblePipe CSR, unlike the original version, includes a specific register which is 

used to back up the PC. The register is not addressable, and its writing is managed by the 

CSR during the execution of the pseudo instructions developed for this architecture. Other 

registers are instead extended in use and functionality compared to the RISC-V standard: 

the writing with particular values of some registers will be interpreted as an instruction. 

The CSR, together with the CRU, takes care of serving the instructions for starting a 

checkpoint and restoring it in the event of an error. 

The DoublePipe program counter unit is substantially identical to the original version in 

terms of functionality. Since the activation system of a checkpoint is based on the start of 

a particular software interrupt, it is necessary to add a condition in the PC unit that allows 

the service of this type of interrupt despite the interrupts being disabled. 
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7.4  F03c: Shadow Thread Double Pipe 
The F03c architecture is based on the possibility to correct errors, by using a double 

pipeline and a redundant execution of the thread instructions. To obtain corrections of the 

errors, 3 copies of the same result are necessary:  

• two contemporary copies obtained through pipeline redundancy; 

• a third copy obtained through a temporally out of phase processing. 

A Shadow control unit (SCU) handle the pipelines and the architecture synchronization. 

During the shadow processing, the SCU handles two different instructions. These are 

executed in the pipelines. To solve latency problem between instructions, the SCU can put 

the pipeline on hold in order to complete the execute phase in a synchronized way. The 

register file management is left to SRU unit, that constantly communicates with the SCU. 

The SCU provides information about processing in the pipeline, indicating to the SRU 

whether the instructions require access to the registers. In case of error, the SRU performs 

a memory access and retrieves the value of the register. If the error is detected in 

conjunction with an instruction that requires reading the same file, the SRU sends a signal 

to the SCU which blocks the pipelines. Once received the data from the memory, a triple 

comparison is made, and the correct data is sent to the pipelines. When this phase is 

completed, the SCU unlocks the pipelines. The writing in memory is started in conjunction 

with the WB phase. The copy of the regfile has priority over a possible access instruction 

in memory, which is put on hold, locking the pipelines. 

 

The CSR ST does not contain dedicated registers but is equipped with additional input 

signals. The operation of the unit depends on: 

• main processing: the CSR executes the commands received from the pipeline pro-

cessing, previously controlled by the SCU. It also reacts to any hardware routines 

to serve exceptions and interrupts or following a return instruction. 

• Shadow processing: the CSR simulates the execution of the access instructions by 

supplying the values contained in the registers. The values contained in the regis-

ters are not modified unless explicitly commanded by the SCU. No interrupt or 

exception affects the CSR at this step. An eventual interrupt event is served at the 

next main processing. 

Writing to the internal registers can be disabled at any time by the SCU, which keeps a 

constant check on the CSR. This architectural difference allows the value sent to the 

registers to be blocked at any time. Loading incorrect values (in the TMR registers) is 

always prevented. The triple redundancy technique completely loses its effectiveness in 

the event of an error in the logic that sends the data. 

The architecture of the PC ST unit differs from the original version of the core as it must 

guarantee the functioning of the shadow structure that requires up to two PCs 

simultaneously. The portion that manages the PC during the fetching phase of the shadow 

processing is located inside the SCU. The PC ST unit, in addition to supplying the correct 

PC value to the SCU, must manage the correct updating of the internal PC registers.  

This is done by receiving information on the location of the shadow thread within the 

Pipeline. Thanks to this information the unit can execute or block the updating of the PC 

registers. In the event of interrupts, exceptions or jumps during the execution phase of the 

Shadow processing, the unit locks the PC update system waiting for the main processing 

phase. If the conditions that triggered an interrupt, an exception or any request to change 

the program flow remain, the PC will update and start the procedure. This allows to avoid 

serving the same interrupt twice. In this unit there is an input signal that allows the SCU 

to stop updating the PC at any time in case of error. In this case indeed, the TMR protection 

of the inside registers is not able to correct the loading of an incorrect value. 
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Chapter 8 

Debug Support 
  
 

Klessydra core supports common baseline debug features: halting the program flow, 

reading data register file, reading the PC value and enabling a single step execution. 

Software breakpoints are implemented by the RISC-V instruction EBREAK.  

The debug operations are intended at core level and not per-thread. When entering 

debug mode, the whole core (i.e. with all its threads) enters debug mode. The internal 

debug unit accesses information related to the thread whose instruction is in the 

execution stage of the core pipeline in the current clock cycle.  

The debug hardware interface is the same as the memory interface, but on separate 

buses. Every access to debug facilities is done by an access to debug registers. 

To halt the core, external debug unit has to set DBG_CTRL[0] bit. If DBG_CTRL[0] 

is set, the core is in single step mode, so clearing the DGB_HIT[0] bit enable execution 

of a single instruction.  

Debug registers are always accessible. Program counter and register file are accessible 

only when the core is halted. Which register of register file external debug unit requires 

is specified in [6:2] bit of the address. 

 

 
Table.8.1 Debug Registers 

Address  Name  Description  

0x00 DBG_CTRL  Debug Control 

0x04 DBG_HIT Debug Hit 

0x2000 DBG_PPC Next PC 

0x2004 DBG_NPC Previous PC 

0x400-
0x47C 

GPR(x0-
x31) 

General Purpose Registers  

 

 
Table.8.2 Debug Control register bit map 

Bit #  R/W  Description  

16 R/W HALT bit: When set to ‘1’, the core enters debug mode, when reset to ‘0’, the 
core exits debug mode. 

0 R/W SSTE bit: Single-step enable bit. 

 
Table.8.3 Debug Hit register bit map 

Bit #  R/W  Description  
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0 R/W SSTH: Single-step hit, sticky bit that must be cleared by external debugger in 
order to execute next instruction.  

 
Table.8.4 Debug Next Program Counter register bit map 

Bit #  R/W  Description  

31:0 R/W NPC: Next PC to be executed 

 
Table.8.5 Debug Previous Program Counter register bit map 

Bit #  R/W  Description  

31:0 R/W  
 

PPC: Previous PC, already executed 
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Chapter 9 

Instruction Set 
 
 
9.1 Integer Register-Immediate operations 

Table.9.1 Register-Immediate operations 

Name Binary format type Assembly syntax 
ADDI – add immediate I ADDI    rd, rs1, imm 
SLTI  - set if less immediate I SLTI     rd, rs1, imm 
SLTIU - set if less imm. uns. I SLTIU   rd, rs1, imm 
ANDI -  and immediate I ANDI    rd, rs1, imm 
ORI  - or immediate I ORI      rd, rs1, imm 
XORI – excl. or immediate I XORI    rd, rs1, imm 
SLLI – shift left logical imm. I SLLI     rd, rs1, shamt 
SRLI– shift right logical imm. I SRLI     rd, rs1, shamt 
SRAI – shift right arithm. 

imm. 
I SRAI     rd, rs1, shamt 

LUI  - load upper immediate U LUI        rd, imm 
AUIPC - add upper imm. to 

pc 
I AUIPC   rd, imm 

 

• ADDI adds the sign-extended 12-bit immediate to register rs1. Arithmetic overflow 

is ignored and the result is simply the low 32 bits of the result. ADDI rd,  rs1,  0 

can be used to implement a register move operation. 

• SLTI places the value 1 in register rd if register rs1 is less than the sign-extended 

immediate when both are treated as signed numbers, else 0 is written to rd. SLTIU 

is similar but compares the values as unsigned numbers. 

• ANDI, ORI, XORI are logical operations that perform bitwise AND, OR, and XOR 

on register rs1 and the sign-extended 12-bit immediate and place the result in rd. 

Notably, XORI rd,  rs1,  -1 performs a bitwise logical inversion of register rs1. 

• SLLI is a logical left shift (zeros are shifted into the lower bits); SRLI is a logical 

right shift (zeros are shifted into the upper bits); and SRAI is an arithmetic right 

shift (the original sign bit is copied into the vacated upper bits). The operand to be 

shifted is in rs1,  and the shift amount is encoded in the lower 5 bits of the I-imme-

diate field. 

• LUI is used to build 32-bit constants. LUI places the U-immediate value in the top 

20 bits of the destination register rd, filling in the lowest 12 bits with zeros. 

• AUIPC is used to build PC-relative addresses. AUIPC forms a 32-bit offset from 

the 20-bit U-immediate, filling in the lowest 12 bits with zeros, adds this offset to 

the PC, then places the result in register rd. 

 

9.2 Integer Register-Register Operations   
Table.9.2 Register-Register Operations  

Name Binary format type Assembly syntax 
ADD  - add R ADD    rd, rs1, rs2 
SLT  - set if less  R SLT     rd, rs1, rs2 
SLTU – set if less unsigned R SLTU  rd, rs1, rs2 
AND  - and R AND    rd, rs1, rs2 
OR - or R OR      rd, rs1, rs2 
XOR  - exclusive or R XOR    rd, rs1, rs2 
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SLL – shift left logical R SLL     rd, rs1, rs2 
SRL – shift right logical  R SRL    rd, rs1, rs2 
SUB – subtract R SUB    rd, rs1, rs2 
SRA -  shift right arithmetic R SRA    rd, rs1, rs2 

 

• ADD and SUB perform addition and subtraction respectively. Overflows are ig-

nored and the low 32 bits of results are written to the destination. 

• SLT and SLTU perform signed and unsigned compares respectively, writing 1 to 

rd if rs1 < rs2, 0 otherwise. Note, SLTU rd,  x0, rs2 sets rd to 1 if rs2 is not equal 

to zero, otherwise sets rd to zero (assembler pseudo-op SNEZ rd,  rs). 

• AND, OR, and XOR perform bitwise logical operations. 

• SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts 

on the value in register rs1 by the shift amount held in the lower 5 bits of register 

rs2. 

 

9.3 Unconditional Jumps 
Table.9.3 Unconditional Jumps 

  Name Binary format type Assembly syntax 
JAL  - jump and link UJ JAL       rd, imm 
JALR – jump to reg and 

link 
UJ JALR     rd, rs1, imm 

  

• The jump and link (JAL) instruction uses the J-immediate to encode a signed offset 

in multiples of 2 bytes. The offset is sign-extended and added to the pc to form the 

jump target address. Jumps can therefore target a ±1 MiB range. JAL stores the 

address of the instruction following the jump (PC+4) into register rd. Plain uncon-

ditional jumps are encoded as a JAL with rd = x0. 

• The indirect jump instruction JALR (jump and link register) obtains the target ad-

dress by adding the 12-bit signed I-immediate to the register rs1, then setting the 

least-significant bit of the result to zero. The address of the instruction following 

the jump (PC+4) is written to register rd. Register x0 can be used as the destination 

if the result is not required. 

• The JAL and JALR instructions will generate a misaligned instruction fetch ex-

ception if the target address is not aligned to a four-byte boundary. 

 

9.4 Conditional Branches 
Table.9.4 Branches 

Name Binary format type Assembly syntax 
BEQ – branch if equal SB BEQ         rs1, rs2,imm 
BNE  - branch if not eq. SB BNE         rs1, rs2,imm 
BLT – branch if less SB BLT    rs1, rs2,imm 
BGE– branch if greater SB BGE    rs1, rs2,imm 
BLTU – branch if less SB BLTU     rs1, rs2,imm 
BGEU – branch if greater SB BGEU    rs1, rs2,imm 

 

• BEQ and BNE take the branch if registers rs1 and rs2 are equal or unequal respec-

tively.  

• BLT and BLTU take the branch if rs1 is less than rs2, using signed and unsigned 

comparison respectively.  

• BGE and BGEU take the branch if rs1 is greater than or equal to rs2, using signed 

and unsigned comparison respectively.  
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• All branch instructions use the 12-bit B-immediate to encode signed offsets in 

multiples of 2, and add the offset to the current PC to give the target address. The 

conditional branch range is ±4 KiB.  

 

9.5 Memory access Instructions 
Table.9.5 Load-Store Instructions 

           Name Binary format type Assembly syntax 
LB  - load byte I LB       rd, rs1, imm 
LH  - load half word I LH       rd, rs1, imm 
LW   - load word I LW      rd, rs1, imm 
LBU - load byte unsigned I LBU     rd, rs1, imm 
LHU - load half word unsig. I LHU     rd, rs1, imm 
SB  - store byte  SB       rs1,rs2,imm 
SH  - store half word  SH       rs1,rs2,imm 
SW  - store word  SW      rs1,rs2,imm 

 

• Load and store instructions transfer a value between the registers and memory. 

Loads are encoded in the I-type format and stores are S-type. The effective byte 

address is obtained by adding register rs1 to the sign-extended 12-bit offset. Loads 

copy a value from memory to register rd. Stores copy the value in register rs2 to 

memory. 

• The LW instruction loads a 32-bit value from memory into rd. LH loads a 16-bit 

value from memory, then sign-extends to 32-bits before storing in rd. LHU loads 

a 16-bit value from memory but then zero extends to 32-bits before storing in rd. 

LB and LBU are defined analogously for 8-bit values. The SW, SH, and SB in-

structions store 32-bit, 16-bit, and 8-bit values from the low bits of register rs2 to 

memory 

          

9.6 CSR Instructions (Read-Set-Clear) 
Table.9.6 CSR Instructions 

Name Binary format type Assembly syntax 
CSRRW  - csr read/write   CSRRW    rd, csr, rs1 
CSRRS  - csr read & set   CSRRS     rd, csr, rs1 
CRSSC  - csr read & clear  CSRRC     rd, csr, rs1 
CSRRWI - csr rd/wr. Imm.  CSRRWI   rd, csr, imm 
CSRRSI  - csr rd & set imm  CSRRSI    rd, csr, imm 
CSRRCI - csr rd & clr imm  CSRRCI    rd, csr, imm 

           

• The CSRRW instruction atomically swaps values in the CSRs and integer regis-

ters. CSRRW reads the old value of the CSR, zero-extends the value to 32 bits, 

then writes it to integer register rd. The initial value in rs1 is written to the CSR. If 

rd=x0, then the instruction shall not read the CSR and shall not cause any of the 

side-effects that might occur on a CSR read. 

• The CSRRS instruction reads the value of the CSR, zero-extends the value to 32 

bits, and writes it to integer register rd. The initial value in integer register rs1 is 

treated as a bit mask that specifies bit positions to be set in the CSR. Any bit that 

is high in rs1 will cause the corresponding bit to be set in the CSR, if that CSR bit 

is writable. Other bits in the CSR are unaffected (though CSRs might have side 

effects when written). 

• The CSRRC instruction reads the value of the CSR, zero-extends the value to 32 

bits, and writes it to integer register rd. The initial value in integer register rs1 is 

treated as a bit mask that specifies bit positions to be cleared in the CSR. Any bit 
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that is high in rs1 will cause the corresponding bit to be cleared in the CSR, if that 

CSR bit is writable. Other bits in the CSR are unaffected.  

• For both CSRRS and CSRRC, if rs1=x0, then the instruction will not write to the 

CSR at all, and so shall not cause any of the side effects that might otherwise occur 

on a CSR write, such as raising illegal instruction exceptions on accesses to read-

only CSRs. Note that if rs1 specifies a register holding a zero value other than x0, 

the instruction will still attempt to write the unmodified value back to the CSR and 

will cause any attendant side effects. 

• The CSRRWI, CSRRSI, and CSRRCI variants are similar to CSRRW, CSRRS, 

and CSRRC respectively, except they update the CSR using an 32-bit value ob-

tained by zero-extending a 5-bit unsigned immediate (uimm[4:0]) field encoded in 

the rs1 field instead of a value from an integer register. For CSRRSI and CSRRCI, 

if the uimm[4:0] field is zero, then these instructions will not write to the CSR, and 

shall not cause any of the side effects that might otherwise occur on a CSR write. 

For CSRRWI, if rd=x0, then the instruction shall not read the CSR and shall not 

cause any of the side-effects that might occur on a CSR read. 

 

 

9.7 CSR Privileged Instructions  
Table.9.7 Privileged Instructions 

               Name Binary format type Assembly syntax 
ECALL – environment call  ECALL 
EBREAK – break to envir.  EBREAK 
WFI – wait for IRQ  WFI 
MRET – machine return  MRET 

                   

• The ECALL instruction is used to make a request to the supporting execution en-

vironment, which is usually an operating system. The ABI for the system will de-

fine how parameters for the environment request are passed, but usually these will 

be in defined locations in the integer register file.  

• The EBREAK instruction is presently implemented in the S0 core only (future 

update in T0 cores and T1 cores). 

• The WFI is a wait for interrupt instruction, that latches the thread in an idle state 

until an interrupt arrives. 

• The MRET updates the program counter with the address of the instruction being 

executed before entering the trap handling routine. Unless the instruction was a 

WFI, we return to the address after it. 

 

9.8 Atomic Instructions 
Table.9.8 Atomic Instructions 

               Name Binary format type Assembly syntax 
AMOSWAP.W.AQ R AMOSWAP.W.AQ   rd,rs1,rs2 
AMOSWAP.W.RL R AMOSWAP.W.RL    rd,rs1,rs2 

                   

• The atomic memory operations AMOSWAP.W atomically load a data value from 

the address in rs1, place the value into register rd, apply a swap between the loaded 

value and the original value in rs2, then store the swapped value to the address in 

rs1. 

The implementation follows “release consistency”. The AMOSWAP.W.AQ 

instruction implements a read-modify-write operation suited to lock acquiring, 

while the AMOSWAP.W.AQ instruction implements a read-modify-write 

operation suited to lock releasing. 
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The S0 core does not support Atomic Instructions. 

 

9.9 Klessydra Custom Extensions (T1 version only) 
Table.9.9 Klessydra custom extensions 

               Name Binary format type Assembly syntax 
KMEMLD R kmemld rd, rs1, rs2 
KMEMSTR R kmemstr rd, rs1, rs2 
KADDV R kaddv rd, rs1, rs2 
KSUBV R ksubv rd, rs1, rs2 
KVMUL R kvmul rd, rs1, rs2 
KVRED R kvred rd, rs1, rs2 
KDOTP R kdotp rd, rs1, rs2 
KSVADDSC R ksvaddsc rd, rs1, rs2 
KSVADDRF R ksvaddrf rd, rs1, rs2 
KSVMULSC R ksvmulsc rd, rs1, rs2 
KSVMULRF R ksvmulrf rd, rs1, rs2 
KDOTP R kdotp rd, rs1, rs2 
KDOTPPS R kdotpps rd, rs1, rs2 
KSRLV R ksrlv rd, rs1, rs2 
KSRAV R ksrav rd, rs1, rs2 
KRELU R krelu rd, rs1, rs2 
KBCAST R kbcast rd, rs1 
KVCP R kvcp rd, rs1 

 

• KMEMLD: loads the number of bytes specified by ‘rs2’ in the scratchpad memory 

at address ‘rd’, from the address ‘rs1’ in the main memory.  

• KMEMSTR: loads the number of bytes specified by ‘rs2’ in the main memory at 

address ‘rs1’, from the address ‘rd’ in the scratchpad memory. 

• KADDV: adds the operands in the scratchpad at addresses in ‘rs1’ and in ‘rs2’ and 

stores the result as a vector at the address ‘rd’ in the scratchpad memory. 

• KSUBV: subtracts the operands in the scratchpad at addresses in ‘rs1’ and in ‘rs2’ 

and stores the result as a vector at the address ‘rd’ in the scratchpad memory. 

• KVMUL: multiplies the vector elements of rs1 and rs2 and stores the result in rd. 

• KVRED: performs vector reduction between the elements at addresses ‘rs1’ and 

‘rs2’, and stores the scalar in ‘rd’. 

• KDOTP: multiplies the operands at addresses in ‘rs1’ and in ‘rs2’, the multiply 

intermediate results are accumulated, and the final results are stored as a scalar in 

the address in ‘rd’. 

• KDOTPPS: performs post scaling dot product on the elements at addresses in ‘rs1’ 

and ‘rs2’ and puts the result in ‘rd’. The multiplication result is shifted by the value 

set the CSR register ‘MPSCLFAC’. 

• KSVADDSC/RF: adds the scalar operand in the register file or scratchpad address 

in ‘rs1’ with a scalar value that is in ‘rs2’. The result is stored as a vector at address 

in ‘rd’. (A faster alternative to using KBCAST). 

• KSVMULRF/SC multiplies the scalar operand in the register file / scratchpad in 

‘rs1’ with a scalar value that is in ‘rs2’. The result is stored as a vector in the address 

in ‘rd’. (A faster alternative to using KBCAST). 

• KSRLV/KSRAV: does right logical/arithmetic shifts on the vector at the address 

in ‘rs1’ by the shift amount in ‘rs2’ and stores the vector results at the address in 

‘rd’. 

• KRELU: does linear rectification on the negative values of the vector at the address 

in ‘rs1’ and puts the rectified vector at the address in ‘rd’. 
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• KBCAST: does a vector broadcast of the scalar value contained in scalar register 

‘rs1’ to the vector at the address in ‘rd’. 

• KVCP: copies the vectors starting at the address in ‘rs1’ to the address in ‘rd’. Both 

addresses are in scratchpad memory space. 

All logical-arithmetic vector instructions should all be used in conjunction with the 

CSR register ‘MVSIZE’ in order to specify the size of the vector to be processed by 

the operation. 
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Appendix B 

 

T13 VHDL Code 
 

This appendix includes some of the main RTL files of the Klessydra T13, not all files have been 

included in order to keep this thesis more compact. The language is VHDL_2008 

 

Also, one important note, the term DSP refers to the SPMU. Earlier implementations of the unit 

were designed to make a DSP, however, the term was later changed to SPMU 

 

Another note: SC is the earlier abbreviation of scratchpad memory, which is now known as SPM. 

 

The sources included are the package file, the SPE, SPI, and SPM entities, all sources can be found 

at Github [31][32][33]. 

 

1. Package file Parameters 

 
library ieee; 1 
use ieee.math_real.all; 2 
use ieee.std_logic_1164.all; 3 
 4 
package thread_parameters_klessydra is 5 
 6 
  type array_2d     is array (integer range<>) of std_logic_vector; 7 
  type array_3d     is array (integer range<>) of array_2d; 8 
  type array_2d_int is array (integer range<>) of integer; 9 
 10 
  constant THREAD_ID_SIZE   : integer := 4; 11 
   12 
  constant THREAD_POOL_SIZE : integer := 3;  -- Changing the TPS to less than "number of pipeline stages-1" is not allowed. And making it bigger 13 
than "pipeline stages-1" is okay but not recommended 14 
  constant NOP_POOL_SIZE    : integer := 2;  -- should be static and not touched, unless the number of pipeline stages changes; presently unused 15 
 16 
  constant BRANCHING_DELAY_SLOT    : integer := 3;  -- should be static and not touched, unless the number of pipeline stages change 17 
 18 
  constant HARC_SIZE : integer := THREAD_POOL_SIZE; -- for the moment we do not implement "nop" threads  19 
  subtype harc_range is integer range THREAD_POOL_SIZE - 1 downto 0;  -- will be used replicated units in the core 20 
 21 
          22 
  ------------------------------------------------------------------------------------ 23 
  --    ######   #####   ###    ##  #######  #####   ######    ######  -- 24 
  --   ##           #        #  ## #   ##  ##               #     ##             ##            -- 25 
  --   ##           #        #  ##  #  ##  #####         #     ##  ####    #####     -- 26 
  --   ##           #        #  ##   # ##  ##               #     ##       ##           ##   -- 27 
  --    ######   #####   ##    ###  ##           #####   ######   ######    -- 28 
  ------------------------------------------------------------------------------------ 29 
 30 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------31 
------------------------ 32 
  constant RF_SIZE               : natural := 32;  -- Regfile size, Can be set to 32 for RV32I or 16 for RV32E 33 
  constant RV32M                 : natural := 0;   -- Enable the M-extension of the risc-v instruction set 34 
  constant accl_en               : natural := 0;   -- Enable the generation of the special purpose accelerator 35 
  constant replicate_accl_en     : natural := 0;   -- Set to 1 to replicate the accelerator for every thread 36 
  constant multithreaded_accl_en : natural := 0;   -- Set to 1 to let the replicated accelerator share the functional units (note: replicate_accl_en must be 37 
set to '1') 38 
  constant SPM_NUM           : natural := 4;   -- The number of scratchpads available "Minimum allowed is two" 39 
  constant Addr_Width            : natural := 14;  -- This address is for scratchpads. Setting this will make the size of the spm to be: "2^Addr_Width -1" 40 
  constant SPM_STRT_ADDR         : std_logic_vector(31 downto 0) := x"1000_0000";  -- This is starting address of the spms, it shouldn't be bigger 41 
than 2^32, and shouldn't overlap any sections in the memory map 42 
  constant SIMD                  : natural := 1;   -- Changing the SIMD, would change the number of the functional units in the dsp, and the number of 43 
banks in the spms (can be power of 2 only e.g. 1,2,4,8) 44 
  constant MCYCLE_EN             : natural := 0;   -- Can be set to 1 or 0 only. Setting to zero will disable MCYCLE and MCYCLEH 45 
  constant MINSTRET_EN           : natural := 0;   -- Can be set to 1 or 0 only. Setting to zero will disable MINSTRET and MINSTRETH 46 
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  constant MHPMCOUNTER_EN        : natural := 0;   -- Can be set to 1 or 0 only. Setting to zero will disable all program counters except 47 
"MCYCLE/H" and "MINSTRET/H" 48 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------49 
------------------------ 50 
 51 
  constant RF_CEIL           : natural := integer(ceil(log2(real(RF_SIZE)))); 52 
  constant TPS_CEIL          : natural := integer(ceil(log2(real(THREAD_POOL_SIZE)))); 53 
  constant TPS_BUF_CEIL      : natural := integer(ceil(log2(real(THREAD_POOL_SIZE-1)))); 54 
  constant SPM_ADDR_WID      : natural := integer(ceil(log2(real(SPM_NUM+1))));  55 
  constant SIMD_BITS         : natural := integer(ceil(log2(real(SIMD)))); 56 
  constant Data_Width        : natural := 32; 57 
  constant SIMD_Width        : natural := SIMD*Data_Width; 58 
  --constant XLEN    : natural := 32;  -- aaa use this instead of Data_Width, the name is shorter and more convenient 59 
 60 
  constant ACCL_NUM : natural := (THREAD_POOL_SIZE - (THREAD_POOL_SIZE-1)*(1-replicate_accl_en)); 61 
  constant FU_NUM   : natural := (ACCL_NUM - (ACCL_NUM-1)*(multithreaded_accl_en)); 62 
 63 
  subtype accl_range is integer range ACCL_NUM - 1 downto 0;  -- will be used replicated accelerators in the core  64 
  subtype fu_range   is integer range FU_NUM - 1 downto 0; -- will be used replicated accelerators in the core  65 
        66 
  type fsm_IE_states is (sleep, reset, normal, csr_instr_wait_state, debug); 67 
  type mul_states is (mult, accum); 68 
  type div_states is (init, divide); 69 
  type fsm_LS_states is (normal , data_valid_waiting); 70 
 71 
  constant dsp_init         : std_logic_vector(1 downto 0) := "00"; 72 
  constant dsp_halt_hart    : std_logic_vector(1 downto 0) := "01"; 73 
  constant dsp_exec         : std_logic_vector(1 downto 0) := "10"; 74 
 

 

2. SPE Unit 

 
-- ieee packages ------------ 1 
library ieee; 2 
use ieee.std_logic_1164.all; 3 
use ieee.std_logic_misc.all; 4 
use ieee.numeric_std.all; 5 
use std.textio.all; 6 
 7 
-- local packages ------------ 8 
use work.riscv_klessydra.all; 9 
use work.thread_parameters_klessydra.all; 10 
 11 
-- DSP  pinout -------------------- 12 
entity DSP_Unit is 13 
  port ( 14 
 -- Core Signals 15 
    clk_i, rst_ni                    : in std_logic; 16 
    -- Processing Pipeline Signals 17 
    rs1_to_sc                          : in  std_logic_vector(SPM_ADDR_WID-1 downto 0); 18 
    rs2_to_sc                          : in  std_logic_vector(SPM_ADDR_WID-1 downto 0); 19 
    rd_to_sc                            : in  std_logic_vector(SPM_ADDR_WID-1 downto 0); 20 
 -- CSR Signals 21 
    MVSIZE                           : in  array_2d(harc_range)(Addr_Width downto 0); 22 
    MVTYPE                          : in  array_2d(harc_range)(3 downto 0); 23 
    MPSCLFAC                      : in  array_2d(harc_range)(4 downto 0); 24 
    dsp_except_data                : out array_2d(accl_range)(31 downto 0); 25 
     -- Program Counter Signals 26 
     dsp_taken_branch             : out std_logic_vector(accl_range); 27 
     dsp_except_condition       : out std_logic_vector(accl_range); 28 
    -- ID_Stage Signals 29 
    decoded_instruction_DSP    : in  std_logic_vector(DSP_UNIT_INSTR_SET_SIZE-1 downto 0); 30 
    harc_EXEC                          : in  harc_range; 31 
    pc_IE                                    : in  std_logic_vector(31 downto 0); 32 
    RS1_Data_IE                       : in  std_logic_vector(31 downto 0); 33 
    RS2_Data_IE                       : in  std_logic_vector(31 downto 0); 34 
    RD_Data_IE                        : in  std_logic_vector(Addr_Width -1 downto 0); 35 
    dsp_instr_req                       : in  std_logic_vector(accl_range); 36 
    spm_rs1                               : in  std_logic; 37 
    spm_rs2                               : in  std_logic; 38 
    vec_read_rs1_ID                 : in  std_logic; 39 
    vec_read_rs2_ID                 : in  std_logic; 40 
    vec_write_rd_ID                 : in  std_logic; 41 
    busy_dsp                             : out std_logic_vector(accl_range); 42 
    -- Scratchpad Interface Signals 43 
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    dsp_data_gnt_i                   : in  std_logic_vector(accl_range); 44 
    dsp_sci_wr_gnt                  : in  std_logic_vector(accl_range); 45 
    dsp_sc_data_read              : in  array_3d(accl_range)(1 downto 0)(SIMD_Width-1 downto 0); 46 
    dsp_we_word                    : out array_2d(accl_range)(SIMD-1 downto 0); 47 
    dsp_sc_read_addr             : out array_3d(accl_range)(1 downto 0)(Addr_Width-1 downto 0); 48 
    dsp_to_sc                          : out array_3d(accl_range)(SPM_NUM-1 downto 0)(1 downto 0); 49 
    dsp_sc_data_write_wire   : out array_2d(accl_range)(SIMD_Width-1 downto 0); 50 
    dsp_sc_write_addr            : out array_2d(accl_range)(Addr_Width-1 downto 0); 51 
    dsp_sci_we                       : out array_2d(accl_range)(SPM_NUM-1 downto 0); 52 
    dsp_sci_req                : out array_2d(accl_range)(SPM_NUM-1 downto 0); 53 
    -- tracer signals 54 
    state_DSP                  : out array_2d(accl_range)(1 downto 0) 55 
 56 
 ); 57 
end entity;  ------------------------------------------ 58 
 59 
 60 
architecture DSP of DSP_Unit is 61 
 62 
  signal nextstate_DSP : array_2d(accl_range)(1 downto 0); 63 
 64 
  -- Virtual Parallelism Signals 65 
  signal relu_en                         : std_logic_vector(accl_range);  -- enables the use of the shifters 66 
  signal shift_en                        : std_logic_vector(accl_range);  -- enables the use of the shifters 67 
  signal add_en                          : std_logic_vector(accl_range);  -- enables the use of the adders 68 
  signal mul_en                          : std_logic_vector(accl_range);  -- enables the use of the multipliers 69 
  signal accum_en                        : std_logic_vector(accl_range);  -- enables the use of the accumulator 70 
  signal relu_en_wire                    : std_logic_vector(accl_range);  -- enables the use of the shifters 71 
  signal shift_en_wire                   : std_logic_vector(accl_range);  -- enables the use of the shifters 72 
  signal add_en_wire                     : std_logic_vector(accl_range);  -- enables the use of the adders 73 
  signal mul_en_wire                     : std_logic_vector(accl_range);  -- enables the use of the multipliers 74 
  signal accum_en_wire                   : std_logic_vector(accl_range);  -- enables the use of the accumulatorss 75 
  signal add_en_pending_wire             : std_logic_vector(accl_range);  -- signal to preserve the request to access the adder "multhithreaded mode" only 76 
  signal shift_en_pending_wire           : std_logic_vector(accl_range);  -- signal to preserve the request to access the shifter "multhithreaded mode" 77 
only 78 
  signal mul_en_pending_wire             : std_logic_vector(accl_range);  -- signal to preserve the request to access the multiplier "multhithreaded mode" 79 
only 80 
  signal accum_en_pending_wire           : std_logic_vector(accl_range);  -- signal to preserve the request to access the accumulator "multhithreaded 81 
mode" only 82 
  signal relu_en_pending_wire            : std_logic_vector(accl_range);  -- signal to preserve the request to access the ReLU "multhithreaded mode" 83 
only 84 
  signal add_en_pending                  : std_logic_vector(accl_range);  -- signal to preserve the request to access the adder "multhithreaded mode" only 85 
  signal shift_en_pending                : std_logic_vector(accl_range);  -- signal to preserve the request to access the shifter "multhithreaded mode" only 86 
  signal mul_en_pending                  : std_logic_vector(accl_range);  -- signal to preserve the request to access the multiplier "multhithreaded mode" 87 
only 88 
  signal accum_en_pending                : std_logic_vector(accl_range);  -- signal to preserve the request to access the accumulator "multhithreaded 89 
mode" only 90 
  signal relu_en_pending                 : std_logic_vector(accl_range);  -- signal to preserve the request to access the ReLU "multhithreaded mode" only 91 
  signal busy_add                        : std_logic;  -- busy signal active only when the FU is shared and currently in use  92 
  signal busy_mul                        : std_logic;  -- busy signal active only when the FU is shared and currently in use  93 
  signal busy_shf                        : std_logic;  -- busy signal active only when the FU is shared and currently in use  94 
  signal busy_acc                        : std_logic;  -- busy signal active only when the FU is shared and currently in use  95 
  signal busy_rel                        : std_logic;  -- busy signal active only when the FU is shared and currently in use  96 
  signal busy_add_wire                   : std_logic;  -- busy signal active only when the FU is shared and currently in use  97 
  signal busy_mul_wire                   : std_logic;  -- busy signal active only when the FU is shared and currently in use  98 
  signal busy_shf_wire                   : std_logic;  -- busy signal active only when the FU is shared and currently in use  99 
  signal busy_acc_wire                   : std_logic;  -- busy signal active only when the FU is shared and currently in use  100 
  signal busy_rel_wire                   : std_logic;  -- busy signal active only when the FU is shared and currently in use  101 
  signal halt_hart                       : std_logic_vector(accl_range); -- halts the thread when the requested functional unit is in use 102 
  signal fu_req                          : array_2D(accl_range)(4 downto 0); -- Each threa has request bits equal to the total number of FUs 103 
  signal fu_gnt                          : array_2D(accl_range)(4 downto 0); -- Each threa has grant bits equal to the total number of FUs 104 
  signal fu_gnt_wire                     : array_2D(accl_range)(4 downto 0); -- Each threa has grant bits equal to the total number of FUs 105 
  signal fu_gnt_en                       : array_2D(accl_range)(4 downto 0); -- Enable the giving of the grant to the thread pointed at by the issue buffer 106 
  signal fu_rd_ptr                       : array_2D(4 downto 0)(TPS_BUF_CEIL-1 downto 0); -- five rd pointers each has a number of bits equal to 107 
ceil(log2(THREAD_POOL_SIZE-1)) 108 
  signal fu_wr_ptr                       : array_2D(4 downto 0)(TPS_BUF_CEIL-1 downto 0); -- five rd pointers each has a number of bits equal to 109 
ceil(log2(THREAD_POOL_SIZE-1)) 110 
  -- five buffers for each FU times the "TPS-1" and not "TPS" since there is always one thread active, and not needing a buffer. Each buffer hold the 111 
thread_ID "TPS_CEIL" 112 
  signal fu_issue_buffer                 : array_3D(4 downto 0)(THREAD_POOL_SIZE-2 downto 0)(TPS_CEIL-1 downto 0); 113 
 114 
  -- Functional Unit Ports --- 115 
  --signal dsp_in_sign_bits               : array_2d(accl_range)(4*SIMD-1 downto 0);               -- vivado unsynthesizable, but more efficient alternative 116 
  signal dsp_in_shifter_operand          : array_2d(fu_range)(SIMD_Width -1 downto 0); 117 
  signal dsp_in_shifter_operand_lat      : array_2d(fu_range)(SIMD_Width -1 downto 0);            -- 15 bits because i only want to latch the signed bits 118 
  signal dsp_in_shifter_operand_lat_wire : array_2d(fu_range)(SIMD_Width -1 downto 0); 119 
  signal dsp_int_shifter_operand         : array_2d(fu_range)(SIMD_Width -1 downto 0); 120 
  signal dsp_out_shifter_results         : array_2d(fu_range)(SIMD_Width -1 downto 0); 121 



127 
 

  signal dsp_in_relu_operands            : array_2d(fu_range)(SIMD_Width-1 downto 0); 122 
  signal dsp_in_mul_operands             : array_3d(fu_range)(1 downto 0)(SIMD_Width-1 downto 0); 123 
  signal dsp_out_mul_results             : array_2d(fu_range)(SIMD_Width-1 downto 0); 124 
  signal dsp_out_relu_results            : array_2d(fu_range)(SIMD_Width-1 downto 0); 125 
  signal dsp_in_accum_operands           : array_2d(fu_range)(SIMD_Width-1 downto 0); 126 
  signal dsp_out_accum_results           : array_2d(fu_range)(31 downto 0); 127 
  signal dsp_in_adder_operands           : array_3d(fu_range)(1 downto 0)(SIMD_Width-1 downto 0); 128 
  signal dsp_in_adder_operands_lat       : array_3d(fu_range)(1 downto 0)(SIMD_Width/2 -1 downto 0); -- data_Width devided by the number of 129 
pipeline stages 130 
  signal dsp_out_adder_results           : array_2d(fu_range)(SIMD_Width-1 downto 0); 131 
 132 
  signal carry_8_wire                    : array_2d(fu_range)(SIMD-1 downto 0);  -- carry-out bit of the "dsp_add_8_0" signal 133 
  signal carry_16_wire                   : array_2d(fu_range)(SIMD-1 downto 0);  -- carry-out bit of the "dsp_add_16_8" signal 134 
  signal carry_16                        : array_2d(fu_range)(SIMD-1 downto 0);  -- carry-out bit of the "dsp_add_16_8" signal 135 
  signal carry_24_wire                   : array_2d(fu_range)(SIMD-1 downto 0);  -- carry-out bit of the "dsp_add_24_16" signal 136 
  signal dsp_add_8_0                     : array_3d(fu_range)(SIMD-1 downto 0)(8 downto 0); -- 9-bits, contains the results of 8-bit adders 137 
  signal dsp_add_16_8                    : array_3d(fu_range)(SIMD-1 downto 0)(8 downto 0); -- 9-bits  contains the results of 8-bit adders 138 
  signal dsp_add_8_0_wire                : array_3d(fu_range)(SIMD-1 downto 0)(8 downto 0); -- 9-bits, contains the results of 8-bit adders 139 
  signal dsp_add_16_8_wire               : array_3d(fu_range)(SIMD-1 downto 0)(8 downto 0); -- 9-bits  contains the results of 8-bit adders 140 
  signal dsp_add_24_16_wire              : array_3d(fu_range)(SIMD-1 downto 0)(8 downto 0); -- 9-bits  contains the results of 8-bit adders 141 
  signal dsp_add_32_24_wire              : array_3d(fu_range)(SIMD-1 downto 0)(8 downto 0); -- 9-bits, this should be 8 if we choose to discard the 142 
overflow of the addition of the upper byte 143 
  signal mul_tmp_a                       : array_3d(fu_range)(SIMD-1 downto 0)(Data_Width-1 downto 0); 144 
  signal mul_tmp_b                       : array_3d(fu_range)(SIMD-1 downto 0)(Data_Width-1 downto 0); 145 
  signal mul_tmp_c                       : array_3d(fu_range)(SIMD-1 downto 0)(Data_Width-1 downto 0); 146 
  signal mul_tmp_d                       : array_3d(fu_range)(SIMD-1 downto 0)(Data_Width-1 downto 0); 147 
  signal dsp_mul_a                       : array_2d(fu_range)(SIMD_Width -1 downto 0); --  Contains the results of the 16-bit multipliers 148 
  signal dsp_mul_b                       : array_2d(fu_range)(SIMD_Width -1 downto 0); --  Contains the results of the 16-bit multipliers 149 
  signal dsp_mul_c                       : array_2d(fu_range)(SIMD_Width -1 downto 0); --  Contains the results of the 16-bit multipliers 150 
  signal dsp_mul_d                       : array_2d(fu_range)(SIMD_Width -1 downto 0); --  Contains the results of the 16-bit multipliers 151 
 152 
  signal carry_pass                      : array_2d(accl_range)(2 downto 0);  -- carry enable signal, depending on it's configuration, we can do KADDV8, 153 
KADDV16, KADDV32 154 
  signal FUNCT_SELECT_MASK               : array_2d(accl_range)(31 downto 0); -- when the mask is set to "FFFFFFFF" we enable KDOTP32 155 
execution using the 16-bit muls 156 
  signal twos_complement              : array_2d(accl_range)(31 downto 0); 157 
  signal dsp_shift_enabler               : array_2d(accl_range)(15 downto 0); 158 
  signal dsp_in_shift_amount             : array_2d(accl_range)(4 downto 0); 159 
 160 
  signal dsp_sc_data_write_wire_int      : array_2d(accl_range)(SIMD_Width-1 downto 0); 161 
  signal dsp_sc_data_write_int           : array_2d(accl_range)(SIMD_Width-1 downto 0); 162 
 163 
  signal MVTYPE_DSP                      : array_2d(accl_range)(1 downto 0); 164 
  signal vec_write_rd_DSP                : std_logic_vector(accl_range);  -- Indicates whether the result being written is a vector or a scalar 165 
  signal vec_read_rs1_DSP                : std_logic_vector(accl_range);  -- Indicates whether the operand being read is a vector or a scalar 166 
  signal vec_read_rs2_DSP                : std_logic_vector(accl_range);  -- Indicates whether the operand being read is a vector or a scalar 167 
  signal dotp                            : std_logic_vector(accl_range);  -- indicator used in the pipeline handler to switch functional units 168 
  signal dotpps                          : std_logic_vector(accl_range);  -- indicator used in the pipeline handler to switch functional units 169 
  signal wb_ready                        : std_logic_vector(accl_range); 170 
  signal halt_dsp                        : std_logic_vector(accl_range); 171 
  signal halt_dsp_lat                    : std_logic_vector(accl_range); 172 
  signal recover_state                   : std_logic_vector(accl_range); 173 
  signal recover_state_wires             : std_logic_vector(accl_range); 174 
  signal dsp_data_gnt_i_lat              : std_logic_vector(accl_range); 175 
  signal shifter_stage_1_en              : std_logic_vector(accl_range); 176 
  signal shifter_stage_2_en              : std_logic_vector(accl_range); 177 
  signal shifter_stage_3_en              : std_logic_vector(accl_range); 178 
  signal adder_stage_1_en                : std_logic_vector(accl_range); 179 
  signal adder_stage_2_en                : std_logic_vector(accl_range); 180 
  signal adder_stage_3_en                : std_logic_vector(accl_range); 181 
  signal mul_stage_1_en                  : std_logic_vector(accl_range); 182 
  signal mul_stage_2_en                  : std_logic_vector(accl_range); 183 
  signal mul_stage_3_en                  : std_logic_vector(accl_range); 184 
  signal relu_stage_1_en                 : std_logic_vector(accl_range); 185 
  signal relu_stage_2_en                 : std_logic_vector(accl_range); 186 
  signal accum_stage_1_en                : std_logic_vector(accl_range); 187 
  signal accum_stage_2_en                : std_logic_vector(accl_range); 188 
  signal accum_stage_3_en                : std_logic_vector(accl_range); 189 
  signal dsp_except_data_wire            : array_2d(accl_range)(31 downto 0); 190 
 191 
  signal decoded_instruction_DSP_lat     : array_2d(accl_range)(DSP_UNIT_INSTR_SET_SIZE -1 downto 0); 192 
  signal overflow_rs1_sc                 : array_2d(accl_range)(Addr_Width downto 0); 193 
  signal overflow_rs2_sc                 : array_2d(accl_range)(Addr_Width downto 0); 194 
  signal overflow_rd_sc                  : array_2d(accl_range)(Addr_Width downto 0); 195 
  signal dsp_rs1_to_sc                   : array_2d(accl_range)(SPM_ADDR_WID-1 downto 0); 196 
  signal dsp_rs2_to_sc                   : array_2d(accl_range)(SPM_ADDR_WID-1 downto 0); 197 
  signal dsp_rd_to_sc                    : array_2d(accl_range)(SPM_ADDR_WID-1 downto 0); 198 
  signal dsp_sc_data_read_mask           : array_2d(accl_range)(SIMD_Width-1 downto 0); 199 
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  signal RS1_Data_IE_lat                 : array_2d(accl_range)(31 downto 0); 200 
  signal RS2_Data_IE_lat                 : array_2d(accl_range)(31 downto 0); 201 
  signal RD_Data_IE_lat                  : array_2d(accl_range)(Addr_Width -1 downto 0); 202 
  signal MVSIZE_READ                     : array_2d(accl_range)(Addr_Width downto 0);  -- Bytes remaining to read 203 
  signal MVSIZE_READ_MASK                : array_2d(accl_range)(Addr_Width downto 0);  -- Bytes remaining to read 204 
  signal MVSIZE_WRITE                    : array_2d(accl_range)(Addr_Width downto 0);  -- Bytes remaining to write 205 
  signal MPSCLFAC_DSP                    : array_2d(accl_range)(4 downto 0); 206 
  signal busy_dsp_internal               : std_logic_vector(accl_range); 207 
  signal busy_DSP_internal_lat           : std_logic_vector(accl_range); 208 
  signal rf_rs2                          : std_logic_vector(accl_range); 209 
  signal SIMD_RD_BYTES_wire              : array_2d_int(accl_range); 210 
  signal SIMD_RD_BYTES                   : array_2d_int(accl_range); 211 
 212 
  component ACCUMULATOR 213 
  port( 214 
      clk_i                             : in  std_logic; 215 
      rst_ni                            : in  std_logic; 216 
      MVTYPE_DSP                        : in  array_2d(accl_range)(1 downto 0); 217 
      accum_stage_1_en                  : in  std_logic_vector(accl_range); 218 
      accum_stage_2_en                  : in  std_logic_vector(accl_range); 219 
      recover_state_wires               : in  std_logic_vector(accl_range); 220 
      halt_dsp_lat                      : in  std_logic_vector(accl_range); 221 
      state_DSP                         : in  array_2d(accl_range)(1 downto 0); 222 
      decoded_instruction_DSP_lat       : in  array_2d(accl_range)(DSP_UNIT_INSTR_SET_SIZE -1 downto 0); 223 
      dsp_in_accum_operands             : in  array_2d(fu_range)(SIMD_Width-1 downto 0); 224 
      dsp_out_accum_results             : out array_2d(fu_range)(31 downto 0) 225 
 ); 226 
  end component; 227 
 228 
-------------------------------------------------------------------------------------------------- 229 
-------------------------------- DSP BEGIN ------------------------------------------------- 230 
begin 231 
 232 
 233 
  busy_dsp           <= busy_dsp_internal; 234 
 235 
  DSP_replicated : for h in accl_range generate 236 
 237 
 238 
  ------------ Sequential Stage of DSP Unit ------------------------------------------------------------------------- 239 
  DSP_Exec_Unit : process(clk_i, rst_ni)  -- single cycle unit, fully synchronous  240 
 241 
  begin 242 
    if rst_ni = '0' then 243 
      rf_rs2(h)   <= '0'; 244 
      dotpps(h)   <= '0'; 245 
      dotp(h)     <= '0'; 246 
      recover_state(h) <= '0'; 247 
    elsif rising_edge(clk_i) then 248 
      if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then   249 
 250 
        case state_DSP(h) is 251 
 252 
          when dsp_init => 253 
 254 
            ----------------------------------------------------------------------------------------- 255 
            -- #####  ###    ##  #####  ########     ######    ######     #######   -- 256 
            --     #      ## #   ##      #            ##           ##       #  ##              ##         #  -- 257 
            --     #      ##  #  ##      #            ##           ##       #   #####       #######   -- 258 
            --     #      ##   # ##      #            ##           ##       #            ##    ##             -- 259 
            -- #####  ##    ###  #####        ##           ######    ######     ##             --  260 
            ---------------------------------------------------------------------------------------- 261 
            FUNCT_SELECT_MASK(h) <= (others => '0'); 262 
            twos_complement(h)   <= (others => '0'); 263 
            rf_rs2(h)   <= '0'; 264 
            dotpps(h)   <= '0'; 265 
            dotp(h)     <= '0'; 266 
            -- Set signals to enable correct virtual parallelism operation 267 
            if (decoded_instruction_DSP(KADDV_bit_position)    = '1'  or  268 
                decoded_instruction_DSP(KSVADDSC_bit_position) = '1') and 269 
                MVTYPE(h)(3 downto 2) = "10" then 270 
              carry_pass(h) <= "111";  -- pass all carry_outs 271 
            elsif decoded_instruction_DSP(KSVADDRF_bit_position) = '1' and  272 
                   MVTYPE(h)(3 downto 2) = "10" then 273 
              carry_pass(h) <= "111";  -- pass all carry_outs 274 
              rf_rs2(h) <= '1'; 275 
            elsif (decoded_instruction_DSP(KADDV_bit_position)    = '1'  or 276 
                   decoded_instruction_DSP(KSVADDSC_bit_position) = '1') and 277 
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                   MVTYPE(h)(3 downto 2) = "01" then 278 
              carry_pass(h) <= "101";  -- pass carrries 9, and 25 279 
            elsif decoded_instruction_DSP(KSVADDRF_bit_position) = '1' and 280 
                  MVTYPE(h)(3 downto 2) = "01" then 281 
              carry_pass(h) <= "101";  -- pass carrries 9, and 25 282 
              rf_rs2(h) <= '1'; 283 
            elsif (decoded_instruction_DSP(KADDV_bit_position)     = '1'  or 284 
                   decoded_instruction_DSP(KSVADDSC_bit_position)  = '1') and 285 
                   MVTYPE(h)(3 downto 2) = "00" then 286 
              carry_pass(h) <= "000";  -- don't pass carry_outs and keep addition 8-bit 287 
            elsif decoded_instruction_DSP(KSVADDRF_bit_position)  = '1' and  288 
                  MVTYPE(h)(3 downto 2) = "00" then 289 
              carry_pass(h) <= "000";  -- don't pass carry_outs and keep addition 8-bit 290 
              rf_rs2(h) <= '1'; 291 
            elsif decoded_instruction_DSP(KSUBV_bit_position) = '1' and 292 
                  MVTYPE(h)(3 downto 2) = "10" then 293 
              carry_pass(h) <= "111";  -- pass all carry_outs 294 
              twos_complement(h) <= "00010001000100010001000100010001"; 295 
            elsif decoded_instruction_DSP(KSUBV_bit_position) = '1' and  296 
                  MVTYPE(h)(3 downto 2) = "01" then 297 
              carry_pass(h) <= "101";  -- pass carrries 9, and 25 298 
              twos_complement(h) <= "01010101010101010101010101010101"; 299 
            elsif decoded_instruction_DSP(KSUBV_bit_position)  = '1' and  300 
                  MVTYPE(h)(3 downto 2) = "00" then 301 
              carry_pass(h) <= "000";  -- don't pass carry_outs and keep addition 8-bit 302 
              twos_complement(h) <= "11111111111111111111111111111111"; 303 
            elsif decoded_instruction_DSP(KDOTP_bit_position) = '1' and 304 
                  MVTYPE(h)(3 downto 2) = "10" then 305 
              -- KDOTP32 does not use the adders of KADDV instructions but rather adds the mul_acc results using it's own adders 306 
              FUNCT_SELECT_MASK(h) <= (others => '1');  -- This enables 32-bit multiplication with the 16-bit multipliers 307 
              dotp(h) <= '1'; 308 
            elsif decoded_instruction_DSP(KDOTP_bit_position) = '1' and  309 
                  MVTYPE(h)(3 downto 2) = "01" then 310 
              dotp(h) <= '1'; 311 
            elsif decoded_instruction_DSP(KDOTP_bit_position) = '1' and 312 
                  MVTYPE(h)(3 downto 2) = "00" then 313 
              dotp(h) <= '1'; 314 
            elsif decoded_instruction_DSP(KDOTPPS_bit_position) = '1' and 315 
                  MVTYPE(h)(3 downto 2) = "10" then 316 
              FUNCT_SELECT_MASK(h) <= (others => '1');  -- This enables 32-bit multiplication with the 16-bit multipliers 317 
              dotpps(h) <= '1'; 318 
            elsif decoded_instruction_DSP(KDOTPPS_bit_position) = '1' and 319 
                  MVTYPE(h)(3 downto 2) = "01" then 320 
              dotpps(h) <= '1'; 321 
            elsif decoded_instruction_DSP(KDOTPPS_bit_position)  = '1' and  322 
                  MVTYPE(h)(3 downto 2) = "00" then 323 
              dotpps(h) <= '1'; 324 
            elsif decoded_instruction_DSP(KSVMULRF_bit_position) = '1' and 325 
                  MVTYPE(h)(3 downto 2) = "10" then 326 
              FUNCT_SELECT_MASK(h) <= (others => '1'); 327 
              rf_rs2(h) <= '1'; 328 
            elsif decoded_instruction_DSP(KSVMULRF_bit_position) = '1' and 329 
                  MVTYPE(h)(3 downto 2) = "01" then 330 
              rf_rs2(h) <= '1'; 331 
            elsif decoded_instruction_DSP(KSVMULRF_bit_position)  = '1' and 332 
                  MVTYPE(h)(3 downto 2) = "00" then 333 
              rf_rs2(h)  <= '1'; 334 
            elsif (decoded_instruction_DSP(KVMUL_bit_position)    = '1'  or 335 
       decoded_instruction_DSP(KSVMULSC_bit_position) = '1') and 336 
                   MVTYPE(h)(3 downto 2) = "10" then 337 
              FUNCT_SELECT_MASK(h) <= (others => '1'); 338 
            end if; 339 
 340 
           -- We backup data from decode stage since they will get updated 341 
 342 
            MVSIZE_READ_MASK(h) <= MVSIZE(harc_EXEC); 343 
            MVSIZE_WRITE(h) <= MVSIZE(harc_EXEC); 344 
            MPSCLFAC_DSP(h) <= MPSCLFAC(harc_EXEC); 345 
            MVTYPE_DSP(h) <= MVTYPE(harc_EXEC)(3 downto 2); 346 
            decoded_instruction_DSP_lat(h)  <= decoded_instruction_DSP; 347 
            vec_write_rd_DSP(h) <= vec_write_rd_ID; 348 
            vec_read_rs1_DSP(h) <= vec_read_rs1_ID; 349 
            vec_read_rs2_DSP(h) <= vec_read_rs2_ID; 350 
            dsp_rs1_to_sc(h) <= rs1_to_sc; 351 
            dsp_rs2_to_sc(h) <= rs2_to_sc; 352 
         dsp_rd_to_sc(h)  <= rd_to_sc; 353 
            RD_Data_IE_lat(h) <= RD_Data_IE; 354 
            -- Increment the read addresses 355 
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            if dsp_data_gnt_i(h) = '1' then 356 
              if vec_read_rs1_ID = '1' then 357 
                RS1_Data_IE_lat(h) <= std_logic_vector(unsigned(RS1_Data_IE) + SIMD_RD_BYTES_wire(h));   -- source 1 address increment 358 
              else 359 
                RS1_Data_IE_lat(h) <= RS1_Data_IE; 360 
              end if; 361 
              if vec_read_rs2_ID = '1' then 362 
                RS2_Data_IE_lat(h) <= std_logic_vector(unsigned(RS2_Data_IE) + SIMD_RD_BYTES_wire(h)); -- source 2 address increment 363 
              else 364 
                RS2_Data_IE_lat(h) <= RS2_Data_IE; 365 
              end if; 366 
              -- Decrement the vector elements that have already been operated on 367 
              if unsigned(MVSIZE(harc_EXEC)) >= SIMD_RD_BYTES_wire(h) then 368 
                MVSIZE_READ(h) <= std_logic_vector(unsigned(MVSIZE(harc_EXEC)) - SIMD_RD_BYTES_wire(h));  -- decrement by SIMD_BYTE 369 
Execution Capability 370 
              else 371 
                MVSIZE_READ(h) <= (others => '0');                                                     -- decrement the remaining bytes 372 
              end if; 373 
            else 374 
              RS1_Data_IE_lat(h) <= RS1_Data_IE; 375 
              RS2_Data_IE_lat(h) <= RS2_Data_IE; 376 
              MVSIZE_READ(h) <= MVSIZE(harc_EXEC); 377 
            end if; 378 
            ------------------------------------------------------------------------------- 379 
 380 
          when dsp_exec => 381 
            recover_state(h) <= recover_state_wires(h); 382 
            if halt_dsp(h) = '1' and halt_dsp_lat(h) = '0' then 383 
              dsp_sc_data_write_int(h) <= dsp_sc_data_write_wire_int(h); 384 
            end if; 385 
 386 
            if halt_dsp(h) = '0' then 387 
              -- Increment the write address when we have a result as a vector 388 
     if vec_write_rd_DSP(h) = '1' and wb_ready(h) = '1' then 389 
                  RD_Data_IE_lat(h)  <= std_logic_vector(unsigned(RD_Data_IE_lat(h))  + SIMD_RD_BYTES(h)); -- destination address increment 390 
     end if; 391 
              if wb_ready(h) = '1' then 392 
                if to_integer(unsigned(MVSIZE_WRITE(h))) >= SIMD_RD_BYTES(h) then 393 
                  MVSIZE_WRITE(h) <= std_logic_vector(unsigned(MVSIZE_WRITE(h)) - SIMD_RD_BYTES(h));       -- decrement by SIMD_BYTE 394 
Execution Capability  395 
                else 396 
                  MVSIZE_WRITE(h) <= (others => '0');                                                -- decrement the remaining bytes 397 
                end if; 398 
              end if; 399 
              -- Increment the read addresses 400 
              if to_integer(unsigned(MVSIZE_READ(h))) >= SIMD_RD_BYTES(h) and dsp_data_gnt_i(h) = '1' then -- Increment the addresses untill all 401 
the vector elements are operated fetched 402 
                if vec_read_rs1_DSP(h) = '1' then 403 
                  RS1_Data_IE_lat(h) <= std_logic_vector(unsigned(RS1_Data_IE_lat(h)) + SIMD_RD_BYTES(h));   -- source 1 address increment 404 
                end if; 405 
                if vec_read_rs2_DSP(h) = '1' then 406 
                  RS2_Data_IE_lat(h) <= std_logic_vector(unsigned(RS2_Data_IE_lat(h)) + SIMD_RD_BYTES(h)); -- source 2 address increment 407 
                end if; 408 
              end if; 409 
              -- Decrement the vector elements that have already been operated on 410 
              if dsp_data_gnt_i(h) = '1' then 411 
                if to_integer(unsigned(MVSIZE_READ(h))) >= SIMD_RD_BYTES(h) then 412 
                  MVSIZE_READ(h) <= std_logic_vector(unsigned(MVSIZE_READ(h)) - SIMD_RD_BYTES(h));         -- decrement by SIMD_BYTE 413 
Execution Capability 414 
                else 415 
                  MVSIZE_READ(h) <= (others => '0');                                                 -- decrement the remaining bytes 416 
                end if; 417 
              end if; 418 
              dsp_sc_data_read_mask(h) <= (others => '0'); 419 
              if dsp_data_gnt_i_lat(h) = '1' then 420 
                if to_integer(unsigned(MVSIZE_READ_MASK(h))) >= SIMD_RD_BYTES(h) then 421 
                  dsp_sc_data_read_mask(h) <= (others => '1'); 422 
                  MVSIZE_READ_MASK(h) <= std_logic_vector(unsigned(MVSIZE_READ_MASK(h)) - SIMD_RD_BYTES(h));       -- decrement by 423 
SIMD_BYTE Execution Capability  424 
                else 425 
                  MVSIZE_READ_MASK(h) <= (others => '0'); 426 
                  dsp_sc_data_read_mask(h)(to_integer(unsigned(MVSIZE_READ_MASK(h)))*8 - 1 downto 0) <= (others => '1'); 427 
                end if; 428 
              end if; 429 
            end if; 430 
 431 
          when others => 432 
            null; 433 
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        end case; 434 
      end if; 435 
    end if; 436 
  end process; 437 
 438 
  ------------ Combinational Stage of DSP Unit ---------------------------------------------------------------------- 439 
  DSP_Excpt_Cntrl_Unit_comb : process(all) 440 
   441 
  variable busy_DSP_internal_wires : std_logic; 442 
  variable dsp_except_condition_wires : replicated_bit; 443 
  variable dsp_taken_branch_wires : replicated_bit;   444 
     445 
  begin 446 
 447 
    busy_DSP_internal_wires        := '0'; 448 
    dsp_except_condition_wires(h)  := '0'; 449 
    dsp_taken_branch_wires(h)      := '0'; 450 
    wb_ready(h)                    <= '0'; 451 
    halt_dsp(h)                    <= '0'; 452 
    nextstate_DSP(h)               <= dsp_init; 453 
    recover_state_wires(h)         <= recover_state(h); 454 
    dsp_except_data_wire(h)        <= dsp_except_data(h); 455 
    overflow_rs1_sc(h)             <= (others => '0'); 456 
    overflow_rs2_sc(h)             <= (others => '0'); 457 
    overflow_rd_sc(h)              <= (others => '0'); 458 
    dsp_we_word(h)                 <= (others => '0'); 459 
    dsp_sci_req(h)                 <= (others => '0'); 460 
    dsp_sci_we(h)                  <= (others => '0'); 461 
    dsp_sc_write_addr(h)           <= (others => '0'); 462 
    dsp_sc_read_addr(h)            <= (others => (others => '0')); 463 
    dsp_to_sc(h)                   <= (others => (others => '0')); 464 
 465 
    if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then 466 
      case state_DSP(h) is 467 
 468 
        when dsp_init => 469 
 470 
          overflow_rs1_sc(h) <= std_logic_vector('0' & unsigned(RS1_Data_IE(Addr_Width -1 downto 0)) + unsigned(MVSIZE(harc_EXEC)) -1); 471 
          overflow_rs2_sc(h) <= std_logic_vector('0' & unsigned(RS2_Data_IE(Addr_Width -1 downto 0)) + unsigned(MVSIZE(harc_EXEC)) -1); 472 
          overflow_rd_sc(h)  <= std_logic_vector('0' & unsigned(RD_Data_IE(Addr_Width  -1 downto 0)) + unsigned(MVSIZE(harc_EXEC)) -1); 473 
          if MVSIZE(harc_EXEC) = (0 to Addr_Width => '0') then 474 
            null; 475 
          elsif MVSIZE(harc_EXEC)(1 downto 0) /= "00" and MVTYPE(harc_EXEC)(3 downto 2) = "10" then  -- Set exception if the number of bytes 476 
are not divisible by four 477 
            dsp_except_condition_wires(h) := '1'; 478 
            dsp_taken_branch_wires(h)     := '1';     479 
            dsp_except_data_wire(h) <= ILLEGAL_VECTOR_SIZE_EXCEPT_CODE; 480 
          elsif MVSIZE(harc_EXEC)(0) /= '0' and MVTYPE(harc_EXEC)(3 downto 2) = "01" then            -- Set exception if the number of bytes are not 481 
divisible by two 482 
            dsp_except_condition_wires(h) := '1'; 483 
            dsp_taken_branch_wires(h)     := '1'; 484 
            dsp_except_data_wire(h) <= ILLEGAL_VECTOR_SIZE_EXCEPT_CODE; 485 
          elsif (rs1_to_sc  = "100" and vec_read_rs1_ID = '1') or 486 
          (rs2_to_sc  = "100" and vec_read_rs2_ID = '1') or 487 
           rd_to_sc   = "100" then     -- Set exception for non scratchpad access 488 
            dsp_except_condition_wires(h) := '1'; 489 
            dsp_taken_branch_wires(h)     := '1';     490 
            dsp_except_data_wire(h) <= ILLEGAL_ADDRESS_EXCEPT_CODE; 491 
          elsif rs1_to_sc = rs2_to_sc and vec_read_rs1_ID = '1' and vec_read_rs2_ID = '1' then               -- Set exception for same read access 492 
            dsp_except_condition_wires(h) := '1'; 493 
            dsp_taken_branch_wires(h)     := '1';     494 
            dsp_except_data_wire(h) <= READ_SAME_SCARTCHPAD_EXCEPT_CODE;    495 
          elsif (overflow_rs1_sc(h)(Addr_Width) = '1' and vec_read_rs1_ID = '1') or (overflow_rs2_sc(h)(Addr_Width) = '1' and  vec_read_rs2_ID = '1') 496 
then -- Set exception if reading overflows the scratchpad's address 497 
            dsp_except_condition_wires(h) := '1'; 498 
            dsp_taken_branch_wires(h)     := '1';     499 
            dsp_except_data_wire(h) <= SCRATCHPAD_OVERFLOW_EXCEPT_CODE; 500 
          elsif overflow_rd_sc(h)(Addr_Width) = '1'  and vec_write_rd_ID = '1' then           -- Set exception if reading overflows the scratchpad's address, 501 
scalar writes are excluded 502 
            dsp_except_condition_wires(h) := '1'; 503 
            dsp_taken_branch_wires(h)     := '1';     504 
            dsp_except_data_wire(h) <= SCRATCHPAD_OVERFLOW_EXCEPT_CODE; 505 
          else 506 
            if halt_hart(h) = '0' then 507 
              nextstate_DSP(h) <= dsp_exec; 508 
            else 509 
              nextstate_DSP(h) <= dsp_halt_hart; 510 
            end if; 511 
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            busy_DSP_internal_wires := '1'; 512 
          end if; 513 
 514 
          if rs1_to_sc /= "100" and spm_rs1 = '1' and halt_hart(h) = '0' then 515 
            dsp_sci_req(h)(to_integer(unsigned(rs1_to_sc))) <= '1'; 516 
            dsp_to_sc(h)(to_integer(unsigned(rs1_to_sc)))(0) <= '1'; 517 
            dsp_sc_read_addr(h)(0) <= RS1_Data_IE(Addr_Width-1 downto 0); 518 
          end if; 519 
          if rs2_to_sc /= "100" and spm_rs2 = '1' and rs1_to_Sc /= rs2_to_sc and halt_hart(h) = '0' then   -- Do not send a read request if the second 520 
operand accesses the same spm as the first,  521 
            dsp_sci_req(h)(to_integer(unsigned(rs2_to_sc))) <= '1'; 522 
            dsp_to_sc(h)(to_integer(unsigned(rs2_to_sc)))(1) <= '1'; 523 
            dsp_sc_read_addr(h)(1) <= RS2_Data_IE(Addr_Width-1 downto 0); 524 
          end if; 525 
         526 
         when dsp_halt_hart => 527 
 528 
           if halt_hart(h) = '0' then 529 
             nextstate_DSP(h) <= dsp_exec; 530 
           else 531 
             nextstate_DSP(h) <= dsp_halt_hart; 532 
           end if; 533 
           busy_DSP_internal_wires := '1'; 534 
 535 
         when dsp_exec => 536 
 537 
           if (dsp_sci_wr_gnt(h) = '0' and wb_ready(h) = '1') then 538 
             halt_dsp(h) <= '1'; 539 
             recover_state_wires(h) <= '1'; 540 
           elsif unsigned(MVSIZE_WRITE(h)) <= SIMD_RD_BYTES(h) then 541 
             recover_state_wires(h) <= '0'; 542 
           end if; 543 
 544 
           if vec_write_rd_DSP(h) = '1' and  dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) = '1' then 545 
             if unsigned(MVSIZE_WRITE(h)) >= (SIMD)*4+1 then  --  546 
               dsp_we_word(h) <= (others => '1'); 547 
             elsif  unsigned(MVSIZE_WRITE(h)) >= 1 then 548 
               for i in 0 to SIMD-1 loop 549 
                 if i <= to_integer(unsigned(MVSIZE_WRITE(h))-1)/4 then -- Four because of the number of bytes per word 550 
                   if to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))/4 + i) < SIMD then 551 
                     dsp_we_word(h)(to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))/4 + i)) <= '1'; 552 
                   elsif to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))/4 + i) >= SIMD then 553 
                     dsp_we_word(h)(to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))/4 + i - SIMD)) <= '1'; 554 
                   end if; 555 
                 end if; 556 
               end loop; 557 
             end if; 558 
           elsif vec_write_rd_DSP(h) = '0' and  dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) = '1' then 559 
             dsp_we_word(h)(to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))/4)) <= '1'; 560 
           end if; 561 
 562 
           if decoded_instruction_DSP_lat(h)(KBCAST_bit_position)  = '1' then 563 
             -- KBCAST signals are handeled here 564 
             if MVSIZE_WRITE(h) > (0 to Addr_Width => '0') then 565 
               nextstate_DSP(h) <= dsp_exec; 566 
               busy_DSP_internal_wires := '1'; 567 
             end if; 568 
             wb_ready(h) <= '1'; 569 
             dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) <= '1'; 570 
             dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 571 
           end if; 572 
 573 
           if decoded_instruction_DSP_lat(h)(KVCP_bit_position)  = '1' then 574 
             -- KVCP signals are handeled here 575 
             if adder_stage_3_en(h) = '1' then 576 
               wb_ready(h) <= '1'; 577 
             elsif recover_state(h) = '1' then 578 
               wb_ready(h) <= '1';  579 
             end if; 580 
             if MVSIZE_READ(h) > (0 to Addr_Width => '0') then 581 
               dsp_to_sc(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))(0) <= '1'; 582 
               dsp_sci_req(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))  <= '1'; 583 
               dsp_sc_read_addr(h)(0) <= RS1_Data_IE_lat(h)(Addr_Width - 1 downto 0); 584 
             end if; 585 
             if MVSIZE_WRITE(h) > (0 to Addr_Width => '0') then 586 
               nextstate_DSP(h) <= dsp_exec; 587 
               busy_DSP_internal_wires := '1'; 588 
             end if; 589 
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             if wb_ready(h) = '1' then 590 
               dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) <= '1'; 591 
               dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 592 
             end if; 593 
           end if; 594 
 595 
           if decoded_instruction_DSP_lat(h)(KRELU_bit_position) = '1' then 596 
             -- KRELU signals are handeled here 597 
             if relu_stage_2_en(h) = '1' then 598 
               wb_ready(h) <= '1'; 599 
             elsif recover_state(h) = '1' then 600 
               wb_ready(h) <= '1';  601 
             end if; 602 
             if MVSIZE_READ(h) > (0 to Addr_Width => '0') then 603 
               dsp_to_sc(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))(0) <= '1'; 604 
               dsp_sci_req(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))  <= '1'; 605 
               dsp_sc_read_addr(h)(0) <= RS1_Data_IE_lat(h)(Addr_Width - 1 downto 0); 606 
             end if; 607 
             if MVSIZE_WRITE(h) > (0 to Addr_Width => '0') then 608 
               nextstate_DSP(h) <= dsp_exec; 609 
               busy_DSP_internal_wires := '1'; 610 
             end if; 611 
             if wb_ready(h) = '1' then 612 
               dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) <= '1'; 613 
               dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 614 
             end if; 615 
           end if; 616 
 617 
           if decoded_instruction_DSP_lat(h)(KSRAV_bit_position)  = '1' or 618 
              decoded_instruction_DSP_lat(h)(KSRLV_bit_position)  = '1' then 619 
             -- KSRAV signals are handeled here 620 
             if shifter_stage_3_en(h) = '1' then 621 
               wb_ready(h) <= '1'; 622 
             elsif recover_state(h) = '1' then 623 
               wb_ready(h) <= '1';  624 
             end if; 625 
             if MVSIZE_READ(h) > (0 to Addr_Width => '0') then 626 
               dsp_to_sc(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))(0) <= '1'; 627 
               dsp_sci_req(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))  <= '1'; 628 
               dsp_sc_read_addr(h)(0)  <= RS1_Data_IE_lat(h)(Addr_Width - 1 downto 0); 629 
             end if; 630 
             if MVSIZE_WRITE(h) > (0 to Addr_Width => '0') then 631 
               nextstate_DSP(h) <= dsp_exec; 632 
               busy_DSP_internal_wires := '1'; 633 
             end if; 634 
             if wb_ready(h) = '1' then 635 
               dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) <= '1'; 636 
               dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 637 
             end if; 638 
           end if; 639 
 640 
           if decoded_instruction_DSP_lat(h)(KADDV_bit_position)  = '1' or 641 
              decoded_instruction_DSP_lat(h)(KSUBV_bit_position)  = '1' then 642 
             -- KADDV and KSUBV signals are handeled here 643 
             if adder_stage_3_en(h) = '1' then 644 
               wb_ready(h) <= '1'; 645 
             elsif recover_state(h) = '1' then 646 
               wb_ready(h) <= '1';  647 
             end if; 648 
             if MVSIZE_READ(h) > (0 to Addr_Width => '0') then 649 
               dsp_to_sc(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))(0) <= '1'; 650 
               dsp_to_sc(h)(to_integer(unsigned(dsp_rs2_to_sc(h))))(1) <= '1'; 651 
               dsp_sci_req(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))  <= '1'; 652 
               dsp_sci_req(h)(to_integer(unsigned(dsp_rs2_to_sc(h))))  <= '1'; 653 
               dsp_sc_read_addr(h)(0)  <= RS1_Data_IE_lat(h)(Addr_Width - 1 downto 0); 654 
               dsp_sc_read_addr(h)(1)  <= RS2_Data_IE_lat(h)(Addr_Width - 1 downto 0); 655 
             end if; 656 
             if MVSIZE_WRITE(h) > (0 to Addr_Width => '0') then 657 
               nextstate_DSP(h) <= dsp_exec; 658 
               busy_DSP_internal_wires := '1'; 659 
             end if; 660 
             if wb_ready(h) = '1' then 661 
               dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h))))    <= '1'; 662 
               dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 663 
             end if; 664 
           end if; 665 
    666 
           if decoded_instruction_DSP_lat(h)(KVRED_bit_position)   = '1' or 667 



134 
 

              decoded_instruction_DSP_lat(h)(KDOTP_bit_position)   = '1' or 668 
              decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1' then 669 
             -- KDOTP signals are handeled here 670 
             if accum_stage_3_en(h) = '1' then 671 
               wb_ready(h) <= '1'; 672 
             elsif recover_state(h) = '1' then 673 
               wb_ready(h) <= '1';  674 
             end if; 675 
             if MVSIZE_READ(h) > (0 to Addr_Width => '0') then 676 
               if vec_read_rs2_DSP(h) = '1' then 677 
                 dsp_sci_req(h)(to_integer(unsigned(dsp_rs2_to_sc(h)))) <= '1'; 678 
                 dsp_to_sc(h)(to_integer(unsigned(dsp_rs2_to_sc(h))))(1) <= '1'; 679 
                 dsp_sc_read_addr(h)(1)  <= RS2_Data_IE_lat(h)(Addr_Width - 1 downto 0); 680 
               end if; 681 
               dsp_sci_req(h)(to_integer(unsigned(dsp_rs1_to_sc(h)))) <= '1'; 682 
               dsp_to_sc(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))(0) <= '1'; 683 
               dsp_sc_read_addr(h)(0)  <= RS1_Data_IE_lat(h)(Addr_Width - 1 downto 0); 684 
               nextstate_DSP(h) <= dsp_exec; 685 
               busy_DSP_internal_wires := '1'; 686 
             elsif MVSIZE_WRITE(h) = (0 to Addr_Width => '0') then 687 
               nextstate_DSP(h) <= dsp_init; 688 
             else 689 
               nextstate_DSP(h) <= dsp_exec; 690 
               busy_DSP_internal_wires := '1'; 691 
             end if; 692 
             if wb_ready(h) = '1' then 693 
               dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h))))    <= '1'; 694 
               dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 695 
             end if; 696 
           end if; 697 
 698 
           if decoded_instruction_DSP_lat(h)(KVMUL_bit_position)    = '1' or  699 
              decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1' or  700 
              decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1' or  701 
              decoded_instruction_DSP_lat(h)(KSVADDSC_bit_position) = '1' or  702 
              decoded_instruction_DSP_lat(h)(KSVADDRF_bit_position) = '1' then 703 
             -- KMUL signals are handeled here 704 
             if mul_stage_3_en(h) = '1' or  adder_stage_3_en(h) = '1' then  705 
               wb_ready(h) <= '1'; 706 
             elsif recover_state(h) = '1' then 707 
               wb_ready(h) <= '1';      708 
             end if; 709 
             if MVSIZE_READ(h) > (0 to Addr_Width => '0') then 710 
               dsp_sci_req(h)(to_integer(unsigned(dsp_rs1_to_sc(h)))) <= '1'; 711 
               if rf_rs2(h) = '0' then -- if the scalar does not come from the regfile 712 
                 dsp_sci_req(h)(to_integer(unsigned(dsp_rs2_to_sc(h)))) <= '1'; 713 
                 dsp_to_sc(h)(to_integer(unsigned(dsp_rs2_to_sc(h))))(1) <= '1'; 714 
                 dsp_sc_read_addr(h)(1)  <= RS2_Data_IE_lat(h)(Addr_Width - 1 downto 0); 715 
               end if; 716 
               dsp_to_sc(h)(to_integer(unsigned(dsp_rs1_to_sc(h))))(0) <= '1'; 717 
               dsp_sc_read_addr(h)(0)  <= RS1_Data_IE_lat(h)(Addr_Width - 1 downto 0); 718 
               nextstate_DSP(h) <= dsp_exec; 719 
               busy_DSP_internal_wires := '1'; 720 
             elsif MVSIZE_WRITE(h) = (0 to Addr_Width => '0') then 721 
               nextstate_DSP(h) <= dsp_init; 722 
             else 723 
               nextstate_DSP(h) <= dsp_exec; 724 
               busy_DSP_internal_wires := '1'; 725 
             end if; 726 
             if wb_ready(h) = '1' then 727 
               dsp_sci_we(h)(to_integer(unsigned(dsp_rd_to_sc(h)))) <= '1'; 728 
               dsp_sc_write_addr(h) <= RD_Data_IE_lat(h); 729 
             end if; 730 
           end if; 731 
 732 
         when others => 733 
           null; 734 
       end case; 735 
     end if; 736 
     737 
    busy_DSP_internal(h)    <= busy_DSP_internal_wires; 738 
    dsp_except_condition(h) <= dsp_except_condition_wires(h); 739 
    dsp_taken_branch(h)     <= dsp_taken_branch_wires(h); 740 
     741 
  end process; 742 
 743 
  fsm_DSP_pipeline_controller : process(clk_i, rst_ni) 744 
  begin 745 
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    if rst_ni = '0' then 746 
      dsp_data_gnt_i_lat(h)    <= '0'; 747 
      adder_stage_1_en(h)      <= '0'; 748 
      adder_stage_2_en(h)      <= '0'; 749 
      adder_stage_3_en(h)      <= '0'; 750 
      shifter_stage_1_en(h)    <= '0'; 751 
      shifter_stage_2_en(h)    <= '0'; 752 
      mul_stage_1_en(h)        <= '0'; 753 
      mul_stage_2_en(h)        <= '0'; 754 
      mul_stage_3_en(h)        <= '0'; 755 
      accum_stage_1_en(h)      <= '0'; 756 
      accum_stage_2_en(h)      <= '0'; 757 
      accum_stage_3_en(h)      <= '0'; 758 
      relu_stage_1_en(h)       <= '0'; 759 
      relu_stage_2_en(h)       <= '0'; 760 
   busy_DSP_internal_lat(h) <= '0'; 761 
      state_DSP(h)             <= dsp_init; 762 
    elsif rising_edge(clk_i) then 763 
      dsp_data_gnt_i_lat(h) <= dsp_data_gnt_i(h); 764 
      adder_stage_1_en(h)   <= dsp_data_gnt_i_lat(h) and add_en(h); 765 
      adder_stage_2_en(h)   <= adder_stage_1_en(h); 766 
      adder_stage_3_en(h)   <= adder_stage_2_en(h); 767 
      mul_stage_1_en(h)     <= dsp_data_gnt_i_lat(h) and mul_en(h); 768 
      mul_stage_2_en(h)     <= mul_stage_1_en(h); 769 
      mul_stage_3_en(h)     <= mul_stage_2_en(h); 770 
      relu_stage_1_en(h)    <= dsp_data_gnt_i_lat(h) and relu_en(h); 771 
      relu_stage_2_en(h)    <= relu_stage_1_en(h); 772 
      accum_stage_2_en(h)   <= accum_stage_1_en(h); 773 
      accum_stage_3_en(h)   <= accum_stage_2_en(h); 774 
      if dotpps(h) = '1' then 775 
        shifter_stage_1_en(h) <= mul_stage_2_en(h); 776 
        shifter_stage_2_en(h) <= shifter_stage_1_en(h); 777 
        accum_stage_1_en(h)   <= shifter_stage_2_en(h); 778 
      elsif dotp(h) = '1' then 779 
        accum_stage_1_en(h)   <= mul_stage_2_en(h); 780 
      else 781 
        shifter_stage_1_en(h) <= dsp_data_gnt_i_lat(h) and shift_en(h); 782 
        shifter_stage_2_en(h) <= shifter_stage_1_en(h); 783 
        shifter_stage_3_en(h) <= shifter_stage_2_en(h); 784 
        accum_stage_1_en(h)   <= dsp_data_gnt_i_lat(h) and accum_en(h); 785 
      end if; 786 
      halt_dsp_lat(h)          <= halt_dsp(h); 787 
      state_DSP(h)             <= nextstate_DSP(h); 788 
      busy_DSP_internal_lat(h) <= busy_DSP_internal(h); 789 
      SIMD_RD_BYTES(h)         <= SIMD_RD_BYTES_wire(h); 790 
      dsp_except_data(h)       <= dsp_except_data_wire(h); 791 
    end if; 792 
  end process; 793 
 794 
  DSP_FU_ENABLER_SYNC : process(clk_i, rst_ni) 795 
  begin 796 
    if rst_ni = '0' then 797 
      shift_en(h)         <= '0';  798 
      add_en(h)           <= '0';  799 
      relu_en(h)          <= '0'; 800 
      accum_en(h)         <= '0';  801 
      mul_en(h)           <= '0'; 802 
      add_en_pending(h)   <= '0'; 803 
      shift_en_pending(h) <= '0'; 804 
      mul_en_pending(h)   <= '0'; 805 
      accum_en_pending(h) <= '0'; 806 
      relu_en_pending(h)  <= '0'; 807 
    elsif rising_edge(clk_i) then 808 
      shift_en(h)         <= shift_en_wire(h);  809 
      add_en(h)           <= add_en_wire(h);  810 
      relu_en(h)          <= relu_en_wire(h);  811 
      accum_en(h)         <= accum_en_wire(h);  812 
      mul_en(h)           <= mul_en_wire(h);  813 
      add_en_pending(h)   <= add_en_pending_wire(h); 814 
      shift_en_pending(h) <= shift_en_pending_wire(h); 815 
      mul_en_pending(h)   <= mul_en_pending_wire(h); 816 
      accum_en_pending(h) <= accum_en_pending_wire(h); 817 
      relu_en_pending(h)  <= relu_en_pending_wire(h); 818 
    end if; 819 
 820 
  end process; 821 
 822 
end generate DSP_replicated; 823 
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FU_HANDLER_MC : if multithreaded_accl_en = 0 generate 824 
  DSP_FU_ENABLER_comb : process(all) 825 
  begin 826 
    for h in accl_range loop 827 
      shift_en_wire(h) <= shift_en(h);  828 
      add_en_wire(h)   <= add_en(h);  829 
      relu_en_wire(h)  <= relu_en(h);  830 
      accum_en_wire(h) <= accum_en(h);  831 
      mul_en_wire(h)   <= mul_en(h);  832 
      halt_hart(h)     <= '0'; 833 
 834 
      if add_en(h) = '1' and busy_DSP_internal(h) = '0' then 835 
        add_en_wire(h) <= '0'; 836 
      end if; 837 
      if mul_en(h) = '1' and busy_DSP_internal(h) = '0' then 838 
        mul_en_wire(h) <= '0'; 839 
      end if; 840 
      if shift_en(h) = '1' and busy_DSP_internal(h) = '0' then 841 
        shift_en_wire(h) <= '0'; 842 
      end if; 843 
      if accum_en(h) = '1' and busy_DSP_internal(h) = '0' then 844 
        accum_en_wire(h) <= '0'; 845 
      end if; 846 
      if relu_en(h) = '1' and busy_DSP_internal(h) = '0' then 847 
        relu_en_wire(h) <= '0'; 848 
      end if; 849 
 850 
      if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then 851 
 852 
        case state_DSP(h) is 853 
 854 
          when dsp_init => 855 
 856 
            -- Set signals to enable correct virtual parallelism operation 857 
            if decoded_instruction_DSP(KADDV_bit_position)    = '1' or  858 
               decoded_instruction_DSP(KSVADDSC_bit_position) = '1' or 859 
               decoded_instruction_DSP(KSVADDRF_bit_position) = '1' or 860 
               decoded_instruction_DSP(KSUBV_bit_position)    = '1' or 861 
               decoded_instruction_DSP(KVCP_bit_position)     = '1' then 862 
              add_en_wire(h) <= '1'; 863 
            elsif decoded_instruction_DSP(KDOTP_bit_position) = '1' then 864 
              mul_en_wire(h)   <= '1'; 865 
              accum_en_wire(h) <= '1'; 866 
            elsif decoded_instruction_DSP(KDOTPPS_bit_position) = '1' then 867 
              mul_en_wire(h)   <= '1'; 868 
              shift_en_wire(h) <= '1'; 869 
              accum_en_wire(h) <= '1'; 870 
            elsif decoded_instruction_DSP(KVRED_bit_position) = '1' then 871 
              accum_en_wire(h) <= '1'; 872 
            elsif decoded_instruction_DSP(KSVMULRF_bit_position) = '1' or 873 
                  decoded_instruction_DSP(KSVMULSC_bit_position) = '1' or 874 
                  decoded_instruction_DSP(KVMUL_bit_position)    = '1' then 875 
              mul_en_wire(h) <= '1'; 876 
            elsif decoded_instruction_DSP(KSRAV_bit_position) = '1' or 877 
                  decoded_instruction_DSP(KSRLV_bit_position) = '1' then 878 
              shift_en_wire(h) <= '1'; 879 
            elsif decoded_instruction_DSP(KRELU_bit_position) = '1' then 880 
              relu_en_wire(h) <= '1'; 881 
            end if; 882 
          when others => 883 
            null; 884 
        end case; 885 
      end if; 886 
    end loop; 887 
  end process; 888 
end generate FU_HANDLER_MC; 889 
 890 
FU_HANDLER_MT : if multithreaded_accl_en = 1 generate 891 
  DSP_FU_ENABLER_comb : process(all) 892 
  begin 893 
 894 
    for h in accl_range loop 895 
 896 
      shift_en_wire(h)               <= shift_en(h);  897 
      add_en_wire(h)                 <= add_en(h);  898 
      relu_en_wire(h)                <= relu_en(h);  899 
      accum_en_wire(h)               <= accum_en(h);  900 
      mul_en_wire(h)                 <= mul_en(h);  901 
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      add_en_pending_wire(h)         <= add_en_pending(h); 902 
      shift_en_pending_wire(h)       <= shift_en_pending(h); 903 
      mul_en_pending_wire(h)         <= mul_en_pending(h); 904 
      accum_en_pending_wire(h)       <= accum_en_pending(h); 905 
      relu_en_pending_wire(h)        <= relu_en_pending(h); 906 
      fu_req(h)                      <= (others => '0'); 907 
      halt_hart(h)                   <= '0'; 908 
 909 
 910 
      if add_en(h) = '1' and busy_DSP_internal(h) = '0' then 911 
        add_en_wire(h) <= '0'; 912 
      end if; 913 
      if mul_en(h) = '1' and busy_DSP_internal(h) = '0' then 914 
        mul_en_wire(h) <= '0'; 915 
      end if; 916 
      if shift_en(h) = '1' and busy_DSP_internal(h) = '0' then 917 
        shift_en_wire(h) <= '0'; 918 
      end if; 919 
      if accum_en(h) = '1' and busy_DSP_internal(h) = '0' then 920 
        accum_en_wire(h) <= '0'; 921 
      end if; 922 
      if relu_en(h) = '1' and busy_DSP_internal(h) = '0' then 923 
        relu_en_wire(h) <= '0'; 924 
      end if; 925 
 926 
      if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then 927 
 928 
        case state_DSP(h) is 929 
 930 
          when dsp_init => 931 
 932 
            -- Set signals to enable correct virtual parallelism operation 933 
            if decoded_instruction_DSP(KADDV_bit_position)    = '1' or  934 
               decoded_instruction_DSP(KSVADDSC_bit_position) = '1' or 935 
               decoded_instruction_DSP(KSVADDRF_bit_position) = '1' or 936 
               decoded_instruction_DSP(KSUBV_bit_position)    = '1' or 937 
               decoded_instruction_DSP(KVCP_bit_position)     = '1' then 938 
              if busy_add = '0' and add_en_pending = (accl_range => '0') then  939 
                add_en_wire(h) <= '1'; 940 
              else 941 
                add_en_pending_wire(h) <= '1'; 942 
                halt_hart(h) <= '1'; 943 
                fu_req(h)(0) <= '1'; 944 
              end if; 945 
            elsif decoded_instruction_DSP(KDOTP_bit_position) = '1' then 946 
              if busy_mul = '0' and busy_acc = '0' and mul_en_pending = (accl_range => '0') and accum_en_pending = (accl_range => '0') then  947 
                mul_en_wire(h)   <= '1'; 948 
                accum_en_wire(h) <= '1'; 949 
              else 950 
                mul_en_pending_wire(h)   <= '1'; 951 
                accum_en_pending_wire(h) <= '1'; 952 
                halt_hart(h) <= '1'; 953 
                fu_req(h)(2) <= '1'; 954 
                fu_req(h)(3) <= '1'; 955 
              end if; 956 
            elsif decoded_instruction_DSP(KDOTPPS_bit_position) = '1' then 957 
              if busy_mul = '0' and busy_acc = '0' and busy_shf = '0'  and mul_en_pending = (accl_range => '0') and accum_en_pending = (accl_range => 958 
'0') and shift_en_pending = (accl_range => '0') then  959 
                mul_en_wire(h)   <= '1'; 960 
                shift_en_wire(h) <= '1'; 961 
                accum_en_wire(h) <= '1'; 962 
              else 963 
                mul_en_pending_wire(h)   <= '1'; 964 
                shift_en_pending_wire(h) <= '1'; 965 
                accum_en_pending_wire(h) <= '1'; 966 
                halt_hart(h) <= '1'; 967 
                fu_req(h)(2) <= '1'; 968 
                fu_req(h)(1) <= '1'; 969 
                fu_req(h)(3) <= '1'; 970 
              end if; 971 
            elsif decoded_instruction_DSP(KVRED_bit_position) = '1' then 972 
              if busy_acc = '0' and accum_en_pending = (accl_range => '0') then  973 
                accum_en_wire(h) <= '1'; 974 
              else 975 
                accum_en_pending_wire(h) <= '1'; 976 
                halt_hart(h) <= '1'; 977 
                fu_req(h)(3) <= '1'; 978 
              end if; 979 
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            elsif decoded_instruction_DSP(KSVMULRF_bit_position) = '1' or 980 
                  decoded_instruction_DSP(KSVMULSC_bit_position) = '1' or 981 
                  decoded_instruction_DSP(KVMUL_bit_position)    = '1' then 982 
              if busy_mul = '0' and mul_en_pending = (accl_range => '0') then  983 
                mul_en_wire(h) <= '1'; 984 
              else 985 
                mul_en_pending_wire(h) <= '1'; 986 
                halt_hart(h) <= '1'; 987 
                fu_req(h)(2) <= '1'; 988 
              end if; 989 
            elsif decoded_instruction_DSP(KSRAV_bit_position) = '1' or 990 
                  decoded_instruction_DSP(KSRLV_bit_position) = '1' then 991 
              if busy_shf = '0' and shift_en_pending = (accl_range => '0') then  992 
                shift_en_wire(h) <= '1'; 993 
              else 994 
                shift_en_pending_wire(h) <= '1'; 995 
                halt_hart(h) <= '1'; 996 
                fu_req(h)(1) <= '1'; 997 
              end if; 998 
            elsif decoded_instruction_DSP(KRELU_bit_position) = '1' then 999 
              if busy_rel = '0' and relu_en_pending = (accl_range => '0') then  1000 
                relu_en_wire(h) <= '1'; 1001 
              else 1002 
                relu_en_pending_wire(h) <= '1'; 1003 
                halt_hart(h) <= '1'; 1004 
                fu_req(h)(4) <= '1'; 1005 
              end if; 1006 
            end if; 1007 
 1008 
          when dsp_halt_hart => 1009 
   1010 
            if fu_gnt(h)(0) = '1' then 1011 
              add_en_wire(h) <= '1'; 1012 
              add_en_pending_wire(h) <= '0'; 1013 
            elsif add_en_pending(h) = '1' and fu_gnt(h)(0) = '0'  then 1014 
              halt_hart(h) <= '1'; 1015 
            end if; 1016 
 1017 
            if fu_gnt(h)(1) = '1' then 1018 
              shift_en_wire(h) <= '1'; 1019 
              shift_en_pending_wire(h) <= '0'; 1020 
            elsif shift_en_pending(h) = '1' and fu_gnt(h)(1) = '0' then 1021 
              halt_hart(h) <= '1'; 1022 
            end if; 1023 
 1024 
            if fu_gnt(h)(2) = '1' then 1025 
              mul_en_wire(h) <= '1'; 1026 
              mul_en_pending_wire(h) <= '0'; 1027 
            elsif mul_en_pending(h) = '1' and fu_gnt(h)(2) = '0'  then 1028 
              halt_hart(h) <= '1'; 1029 
            end if; 1030 
 1031 
            if fu_gnt(h)(3) = '1' then 1032 
              accum_en_wire(h) <= '1'; 1033 
              accum_en_pending_wire(h) <= '0'; 1034 
            elsif accum_en_pending(h) = '1' and fu_gnt(h)(3) = '0'  then 1035 
              halt_hart(h) <= '1'; 1036 
            end if; 1037 
 1038 
            if fu_gnt(h)(4) = '1' then 1039 
              relu_en_wire(h) <= '1'; 1040 
              relu_en_pending_wire(h) <= '0'; 1041 
            elsif relu_en_pending(h) = '1' and fu_gnt(h)(4) = '0'  then 1042 
              halt_hart(h) <= '1'; 1043 
            end if; 1044 
 1045 
          when others => 1046 
            null; 1047 
        end case; 1048 
      end if; 1049 
    end loop; 1050 
  end process; 1051 
 1052 
  FU_Issue_Buffer_sync : process(clk_i, rst_ni) 1053 
  begin 1054 
    if rst_ni = '0' then 1055 
      fu_rd_ptr  <= (others => (others => '0')); 1056 
      fu_wr_ptr  <= (others => (others => '0')); 1057 
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      fu_gnt     <= (others => (others => '0')); 1058 
    elsif rising_edge(clk_i) then 1059 
      fu_gnt <= fu_gnt_wire; 1060 
      for h in accl_range loop 1061 
        for i in 0 to 4 loop  -- Loop index 'i' is for the total number of different functional units (regardless what SIMD config is set) 1062 
          if fu_req(h)(i) = '1' then  -- if a reservation was made, to use a functional unit 1063 
            --to_integer(unsigned(fu_issue_buffer(i)(to_integer(unsigned(fu_wr_ptr(i)))))) <= h;  -- store the thread_ID in its corresponding buffer at the 1064 
fu_wr_ptr position 1065 
            --fu_issue_buffer(to_integer(unsigned(fu_wr_ptr(i))))(i) <= std_logic_vector(unsigned(h));  -- store the thread_ID in its corresponding buffer 1066 
at the fu_wr_ptr position 1067 
            fu_issue_buffer(i)(to_integer(unsigned(fu_wr_ptr(i))))  <= std_logic_vector(to_unsigned(h,TPS_CEIL)); 1068 
            if unsigned(fu_wr_ptr(i)) = THREAD_POOL_SIZE - 2 then -- increment the pointer wr logic 1069 
              fu_wr_ptr(i) <= (others => '0'); 1070 
            else 1071 
              fu_wr_ptr(i) <= std_logic_vector(unsigned(fu_wr_ptr(i)) + 1); 1072 
            end if; 1073 
          end if; 1074 
          case state_DSP(h) is 1075 
            when dsp_halt_hart => 1076 
              if fu_gnt_en(h)(i) = '1' then 1077 
                if unsigned(fu_rd_ptr(i)) = THREAD_POOL_SIZE - 2 then  -- increment the read pointer 1078 
                  fu_rd_ptr(i) <= (others => '0'); 1079 
                else 1080 
                  fu_rd_ptr(i) <= std_logic_vector(unsigned(fu_rd_ptr(i)) + 1); 1081 
                end if; 1082 
              end if; 1083 
            when others => 1084 
             null; 1085 
          end case; 1086 
        end loop; 1087 
      end loop; 1088 
    end if; 1089 
  end process; 1090 
 1091 
  FU_Issue_Buffer_comb : process(all) 1092 
  begin 1093 
    for h in accl_range loop 1094 
      fu_gnt_wire(h) <= (others => '0'); 1095 
      fu_gnt_en(h)   <= (others => '0'); 1096 
      if add_en_pending_wire(h) = '1' and busy_add_wire = '0' then 1097 
        fu_gnt_en(h)(0) <= '1'; 1098 
      end if; 1099 
      if shift_en_pending_wire(h) = '1' and busy_shf_wire = '0' then 1100 
        fu_gnt_en(h)(1) <= '1'; 1101 
      end if; 1102 
      if mul_en_pending_wire(h) = '1' and busy_mul_wire = '0' then 1103 
        fu_gnt_en(h)(2) <= '1'; 1104 
      end if; 1105 
      if accum_en_pending_wire(h) = '1' and busy_acc_wire = '0' then 1106 
        fu_gnt_en(h)(3) <= '1'; 1107 
      end if; 1108 
      if relu_en_pending_wire(h) = '1' and busy_rel_wire = '0' then 1109 
        fu_gnt_en(h)(4) <= '1'; 1110 
      end if; 1111 
      case state_DSP(h) is 1112 
        when dsp_halt_hart => 1113 
          for i in 0 to 4 loop  1114 
            if fu_gnt_en(h)(i) = '1' then 1115 
              fu_gnt_wire(to_integer(unsigned(fu_issue_buffer(i)(to_integer(unsigned(fu_rd_ptr(i)))))))(i) <= '1'; -- give a grant to fu_gnt(h)(i), such that 1116 
the 'h' index points to the thread in "fu_issue_buffer" 1117 
            end if; 1118 
          end loop; 1119 
        when others => 1120 
          null; 1121 
      end case; 1122 
    end loop; 1123 
  end process; 1124 
 1125 
 1126 
  DSP_BUSY_FU_SYNC : process(clk_i, rst_ni) 1127 
  begin 1128 
    if rst_ni = '0' then 1129 
    elsif rising_edge(clk_i) then 1130 
      busy_add    <= busy_add_wire; 1131 
      busy_mul    <= busy_mul_wire; 1132 
      busy_shf    <= busy_shf_wire; 1133 
      busy_acc    <= busy_acc_wire; 1134 
      busy_rel    <= busy_rel_wire; 1135 
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    end if; 1136 
  end process; 1137 
 1138 
end generate FU_HANDLER_MT; 1139 
 1140 
busy_add_wire <= '1' when multithreaded_accl_en = 1 and add_en_wire   /= (accl_range => '0') else '0'; 1141 
busy_mul_wire <= '1' when multithreaded_accl_en = 1 and mul_en_wire   /= (accl_range => '0') else '0'; 1142 
busy_shf_wire <= '1' when multithreaded_accl_en = 1 and shift_en_wire /= (accl_range => '0') else '0'; 1143 
busy_acc_wire <= '1' when multithreaded_accl_en = 1 and accum_en_wire /= (accl_range => '0') else '0'; 1144 
busy_rel_wire <= '1' when multithreaded_accl_en = 1 and relu_en_wire  /= (accl_range => '0') else '0'; 1145 
 1146 
MULTICORE_OUT_MAPPER : if multithreaded_accl_en = 0 generate 1147 
MAPPER_replicated : for h in fu_range generate 1148 
 1149 
  MAPPING_OUT_UNIT_comb : process(all) 1150 
  begin 1151 
      dsp_sc_data_write_wire_int(h)  <= (others => '0'); 1152 
      dsp_sc_data_write_wire(h)      <= dsp_sc_data_write_wire_int(h); 1153 
      SIMD_RD_BYTES_wire(h)          <= SIMD*(Data_Width/8); 1154 
 1155 
      if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then 1156 
        case state_DSP(h) is 1157 
          when dsp_init => 1158 
 1159 
            -- Set signals to enable correct virtual parallelism operation 1160 
            if (decoded_instruction_DSP(KDOTP_bit_position)    = '1'  or 1161 
                decoded_instruction_DSP(KDOTPPS_bit_position)  = '1'  or 1162 
                decoded_instruction_DSP(KVRED_bit_position)    = '1'  or 1163 
                decoded_instruction_DSP(KSVMULRF_bit_position) = '1'  or 1164 
                decoded_instruction_DSP(KVMUL_bit_position)    = '1'  or 1165 
                decoded_instruction_DSP(KSVMULSC_bit_position) = '1') and  1166 
                MVTYPE(h)(3 downto 2) = "00" then 1167 
              SIMD_RD_BYTES_wire(h) <= SIMD*(Data_Width/8)/2; 1168 
            end if;  1169 
 1170 
          when dsp_exec => 1171 
 1172 
           -- Set signals to enable correct virtual parallelism operation 1173 
            if (decoded_instruction_DSP_lat(h)(KDOTP_bit_position)    = '1'  or 1174 
                decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position)  = '1'  or 1175 
                decoded_instruction_DSP_lat(h)(KVRED_bit_position)    = '1'  or 1176 
                decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1'  or 1177 
                decoded_instruction_DSP_lat(h)(KVMUL_bit_position)    = '1'  or 1178 
                decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1179 
                (MVTYPE_DSP(h) = "00") then 1180 
              SIMD_RD_BYTES_wire(h) <= SIMD*(Data_Width/8)/2; 1181 
            end if;  1182 
 1183 
            if decoded_instruction_DSP_lat(h)(KDOTP_bit_position)   = '1' or  1184 
               decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1' or 1185 
               decoded_instruction_DSP_lat(h)(KDOTP_bit_position)   = '1' or 1186 
               decoded_instruction_DSP_lat(h)(KVRED_bit_position)   = '1' then 1187 
              dsp_sc_data_write_wire_int(h)(31 downto 0) <= dsp_out_accum_results(h);  -- AAA add a mask in order to store the lower half word when 1188 
16-bit or entire word when 32-bit 1189 
            end if; 1190 
 1191 
            if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position)     = '1'  or   1192 
                decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1'  or   1193 
                decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1194 
               MVTYPE_DSP(h) = "00" then 1195 
              for i in 0 to 2*SIMD-1 loop 1196 
                dsp_sc_data_write_wire_int(h)(7+8*(i) downto 8*(i)) <= dsp_out_mul_results(h)(7+8*(2*i) downto 8*(2*i)); 1197 
              end loop; 1198 
            end if; 1199 
 1200 
            if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position)    = '1'  or   1201 
                decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1'  or   1202 
                decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1203 
               (MVTYPE_DSP(h) = "01" or  MVTYPE_DSP(h) = "10") then 1204 
              dsp_sc_data_write_wire_int(h) <= dsp_out_mul_results(h); 1205 
            end if; 1206 
 1207 
            if decoded_instruction_DSP_lat(h)(KSRAV_bit_position)   = '1' or 1208 
               decoded_instruction_DSP_lat(h)(KSRLV_bit_position)   = '1' then 1209 
              dsp_sc_data_write_wire_int(h)  <= dsp_out_shifter_results(h); 1210 
            end if; 1211 
 1212 
            if decoded_instruction_DSP_lat(h)(KSVADDSC_bit_position)   = '1' or 1213 
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               decoded_instruction_DSP_lat(h)(KSVADDRF_bit_position)   = '1' or 1214 
               decoded_instruction_DSP_lat(h)(KADDV_bit_position)      = '1' or 1215 
               decoded_instruction_DSP_lat(h)(KSUBV_bit_position)      = '1' or 1216 
               decoded_instruction_DSP_lat(h)(KVCP_bit_position)        = '1' then 1217 
              dsp_sc_data_write_wire_int(h) <= dsp_out_adder_results(h); 1218 
            end if; 1219 
 1220 
 1221 
            if decoded_instruction_DSP_lat(h)(KRELU_bit_position)  = '1' then 1222 
              dsp_sc_data_write_wire_int(h)   <= dsp_out_relu_results(h); 1223 
            end if; 1224 
 1225 
            if    decoded_instruction_DSP_lat(h)(KBCAST_bit_position) = '1'  and MVTYPE_DSP(h) = "10" then 1226 
              for i in 0 to SIMD-1 loop 1227 
                dsp_sc_data_write_wire_int(h)(31+32*(i) downto 32*(i)) <= RS1_Data_IE_lat(h); 1228 
              end loop; 1229 
            elsif decoded_instruction_DSP_lat(h)(KBCAST_bit_position) = '1'  and MVTYPE_DSP(h) = "01" then 1230 
              for i in 0 to 2*SIMD-1 loop 1231 
                dsp_sc_data_write_wire_int(h)(15+16*(i) downto 16*(i)) <= RS1_Data_IE_lat(h)(15 downto 0); 1232 
              end loop; 1233 
            elsif decoded_instruction_DSP_lat(h)(KBCAST_bit_position)  = '1'  and MVTYPE_DSP(h) = "00" then 1234 
              for i in 0 to 4*SIMD-1 loop 1235 
                dsp_sc_data_write_wire_int(h)(7+8*(i)   downto 8*(i))  <= RS1_Data_IE_lat(h)(7 downto 0); 1236 
              end loop; 1237 
            end if; 1238 
 1239 
            if halt_dsp(h) = '0' and halt_dsp_lat(h) = '1' then 1240 
              dsp_sc_data_write_wire(h) <= dsp_sc_data_write_int(h); 1241 
            end if; 1242 
          when others => 1243 
            null; 1244 
        end case; 1245 
      end if; 1246 
  end process; 1247 
 1248 
end generate; 1249 
end generate; 1250 
 1251 
MULTITHREAD_OUT_MAPPER : if multithreaded_accl_en = 1 generate 1252 
  MAPPING_OUT_UNIT_comb : process(all) 1253 
  begin 1254 
    for h in 0 to (ACCL_NUM - FU_NUM) loop 1255 
      dsp_sc_data_write_wire_int(h)  <= (others => '0'); 1256 
      dsp_sc_data_write_wire(h)      <= dsp_sc_data_write_wire_int(h); 1257 
      SIMD_RD_BYTES_wire(h) <= SIMD*(Data_Width/8); 1258 
 1259 
      if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then 1260 
        case state_DSP(h) is 1261 
          when dsp_init => 1262 
 1263 
            -- Set signals to enable correct virtual parallelism operation 1264 
            if (decoded_instruction_DSP(KDOTP_bit_position)    = '1'  or 1265 
                decoded_instruction_DSP(KDOTPPS_bit_position)  = '1'  or 1266 
                decoded_instruction_DSP(KVRED_bit_position)    = '1'  or 1267 
                decoded_instruction_DSP(KSVMULRF_bit_position) = '1'  or 1268 
                decoded_instruction_DSP(KVMUL_bit_position)    = '1'  or 1269 
                decoded_instruction_DSP(KSVMULSC_bit_position) = '1') and 1270 
                MVTYPE(h)(3 downto 2) = "00" then 1271 
              SIMD_RD_BYTES_wire(h) <= SIMD*(Data_Width/8)/2; 1272 
            end if;  1273 
 1274 
          when dsp_exec => 1275 
 1276 
           -- Set signals to enable correct virtual parallelism operation 1277 
            if (decoded_instruction_DSP_lat(h)(KDOTP_bit_position)    = '1'  or 1278 
                decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position)  = '1'  or 1279 
                decoded_instruction_DSP_lat(h)(KVRED_bit_position)    = '1'  or 1280 
                decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1'  or 1281 
                decoded_instruction_DSP_lat(h)(KVMUL_bit_position)    = '1'  or 1282 
                decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1283 
                MVTYPE_DSP(h) = "00" then 1284 
              SIMD_RD_BYTES_wire(h) <= SIMD*(Data_Width/8)/2; 1285 
            end if;  1286 
 1287 
            if decoded_instruction_DSP_lat(h)(KDOTP_bit_position)   = '1' or  1288 
               decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1' or 1289 
               decoded_instruction_DSP_lat(h)(KVRED_bit_position)   = '1' then 1290 
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              dsp_sc_data_write_wire_int(h)(31 downto 0) <= dsp_out_accum_results(0);  -- AAA add a mask in order to store the lower half word when 1291 
16-bit or entire word when 32-bit 1292 
            end if; 1293 
 1294 
            if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position)    = '1'  or   1295 
                decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1'  or   1296 
                decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1297 
                MVTYPE_DSP(h) = "00" then 1298 
              for i in 0 to 2*SIMD-1 loop 1299 
                dsp_sc_data_write_wire_int(h)(7+8*(i) downto 8*(i)) <= dsp_out_mul_results(0)(7+8*(2*i) downto 8*(2*i)); 1300 
              end loop; 1301 
            end if; 1302 
 1303 
            if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position)    = '1'  or   1304 
                decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1'  or   1305 
                decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1306 
               (MVTYPE_DSP(h) = "01" or MVTYPE_DSP(h) = "10") then 1307 
              dsp_sc_data_write_wire_int(h) <= dsp_out_mul_results(0); 1308 
            end if; 1309 
 1310 
            if decoded_instruction_DSP_lat(h)(KSRAV_bit_position)   = '1' or 1311 
               decoded_instruction_DSP_lat(h)(KSRLV_bit_position)   = '1' then 1312 
              dsp_sc_data_write_wire_int(h)  <= dsp_out_shifter_results(0); 1313 
            end if; 1314 
 1315 
            if decoded_instruction_DSP_lat(h)(KSVADDSC_bit_position)   = '1' or 1316 
               decoded_instruction_DSP_lat(h)(KSVADDRF_bit_position)   = '1' or 1317 
               decoded_instruction_DSP_lat(h)(KADDV_bit_position)      = '1' or 1318 
               decoded_instruction_DSP_lat(h)(KSUBV_bit_position)      = '1' or 1319 
               decoded_instruction_DSP_lat(h)(KVCP_bit_position)        = '1' then 1320 
              dsp_sc_data_write_wire_int(h) <= dsp_out_adder_results(0); 1321 
            end if; 1322 
 1323 
 1324 
            if decoded_instruction_DSP_lat(h)(KRELU_bit_position)  = '1' then 1325 
              dsp_sc_data_write_wire_int(h) <= dsp_out_relu_results(0); 1326 
            end if; 1327 
 1328 
            if decoded_instruction_DSP_lat(h)(KBCAST_bit_position) = '1' and MVTYPE_DSP(h) = "10" then 1329 
              for i in 0 to SIMD-1 loop 1330 
                dsp_sc_data_write_wire_int(h)(31+32*(i) downto 32*(i)) <= RS1_Data_IE_lat(h); 1331 
              end loop; 1332 
            elsif decoded_instruction_DSP_lat(h)(KBCAST_bit_position) = '1' and MVTYPE_DSP(h) = "01" then 1333 
              for i in 0 to 2*SIMD-1 loop 1334 
                dsp_sc_data_write_wire_int(h)(15+16*(i) downto 16*(i)) <= RS1_Data_IE_lat(h)(15 downto 0); 1335 
              end loop; 1336 
            elsif decoded_instruction_DSP_lat(h)(KBCAST_bit_position)  = '1' and MVTYPE_DSP(h) = "00" then 1337 
              for i in 0 to 4*SIMD-1 loop 1338 
                dsp_sc_data_write_wire_int(h)(7+8*(i)   downto 8*(i))  <= RS1_Data_IE_lat(h)(7 downto 0); 1339 
              end loop; 1340 
            end if; 1341 
 1342 
            if halt_dsp(h) = '0' and halt_dsp_lat(h) = '1' then 1343 
              dsp_sc_data_write_wire(h) <= dsp_sc_data_write_int(h); 1344 
            end if; 1345 
          when others => 1346 
            null; 1347 
        end case; 1348 
      end if; 1349 
    end loop; 1350 
  end process; 1351 
end generate; 1352 
 1353 
--FU_IN_MAPPER_replicated : for f in accl_range generate 1354 
--FU_IN_MAPPER  : if (multithreaded_accl_en = 0 or (multithreaded_accl_en = 1 and f = 0)) generate 1355 
FU_replicated : for f in fu_range generate 1356 
 1357 
  DSP_MAPPING_IN_UNIT_comb : process(all) 1358 
  variable h : integer; 1359 
  begin 1360 
 1361 
    dsp_in_mul_operands(f)         <= (others => (others => '0')); 1362 
    dsp_in_adder_operands(f)       <= (others => (others => '0')); 1363 
    dsp_in_shift_amount(f)         <= (others => '0'); 1364 
    dsp_in_shifter_operand(f)      <= (others => '0'); 1365 
    dsp_in_relu_operands(f)        <= (others => '0'); 1366 
    dsp_in_accum_operands(f)       <= (others => '0'); 1367 
 1368 
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    for g in 0 to (ACCL_NUM - FU_NUM) loop 1369 
 1370 
      if multithreaded_accl_en = 1 then 1371 
        h := g;  -- set the spm rd/wr ports equal to the "for-loop" 1372 
      elsif multithreaded_accl_en = 0 then 1373 
        h := f;  -- set the spm rd/wr ports equal to the "for-generate"  1374 
      end if; 1375 
 1376 
      if dsp_instr_req(h) = '1' or busy_DSP_internal_lat(h) = '1' then 1377 
        case state_DSP(h) is 1378 
 1379 
          when dsp_exec => 1380 
   1381 
            if (decoded_instruction_DSP_lat(h)(KDOTP_bit_position)   = '1' or  1382 
                decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1') and 1383 
                MVTYPE_DSP(h) = "00" then 1384 
              for i in 0 to 2*SIMD-1 loop 1385 
                  dsp_in_mul_operands(f)(0)(15+16*(i) downto 16*(i)) <= (x"00" & (dsp_sc_data_read(h)(0)(7+8*(i) downto 8*(i)) and 1386 
dsp_sc_data_read_mask(h)(7+8*(i) downto 8*(i)))); 1387 
                  dsp_in_mul_operands(f)(1)(15+16*(i) downto 16*(i)) <= (x"00" & (dsp_sc_data_read(h)(1)(7+8*(i) downto 8*(i)) and 1388 
dsp_sc_data_read_mask(h)(7+8*(i) downto 8*(i)))); 1389 
                if dotp(h) = '1' then 1390 
                  dsp_in_accum_operands(f) <= dsp_out_mul_results(f); 1391 
                elsif dotpps(h) = '1' then 1392 
                  dsp_in_shift_amount(f)    <= MPSCLFAC_DSP(h); 1393 
                  dsp_in_shifter_operand(f) <= dsp_out_mul_results(f); 1394 
                  dsp_in_accum_operands(f)  <= dsp_out_shifter_results(f); 1395 
                end if; 1396 
              end loop; 1397 
            end if; 1398 
 1399 
            if (decoded_instruction_DSP_lat(h)(KDOTP_bit_position)   = '1'  or 1400 
                decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1') and 1401 
               (MVTYPE_DSP(h) = "01" or MVTYPE_DSP(h) = "10") then 1402 
              dsp_in_mul_operands(f)(0) <= dsp_sc_data_read(h)(0) and dsp_sc_data_read_mask(h); 1403 
              dsp_in_mul_operands(f)(1) <= dsp_sc_data_read(h)(1) and dsp_sc_data_read_mask(h); 1404 
              if dotp(h) = '1' then 1405 
                dsp_in_accum_operands(f)  <= dsp_out_mul_results(f); 1406 
              elsif dotpps(h) = '1' then 1407 
                dsp_in_shift_amount(f)    <= MPSCLFAC_DSP(h); 1408 
                dsp_in_shifter_operand(f) <= dsp_out_mul_results(f); 1409 
                dsp_in_accum_operands(f)  <= dsp_out_shifter_results(f); 1410 
              end if; 1411 
            end if; 1412 
 1413 
            if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position)    = '1'  or   1414 
                decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1'  or   1415 
                decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1416 
                MVTYPE_DSP(h) = "00" then 1417 
              for i in 0 to 2*SIMD-1 loop 1418 
                if vec_read_rs2_DSP(h) = '0' then 1419 
                  if rf_rs2(h) = '1' then 1420 
                    dsp_in_mul_operands(f)(1)(15+16*(i) downto 16*(i)) <= x"00" & RS2_Data_IE_lat(h)(7 downto 0); -- map the scalar value 1421 
                  elsif rf_rs2(h) = '0' then 1422 
                    dsp_in_mul_operands(f)(1)(15+16*(i) downto 16*(i)) <= x"00" & dsp_sc_data_read(h)(1)(7 downto 0); -- map the scalar value 1423 
                  end if; 1424 
                else 1425 
                  dsp_in_mul_operands(f)(1)(15+16*(i) downto 16*(i)) <= x"00" & dsp_sc_data_read(h)(1)(7+8*(i) downto 8*(i)); 1426 
                end if; 1427 
                dsp_in_mul_operands(f)(0)(15+16*(i) downto 16*(i))  <= x"00" & dsp_sc_data_read(h)(0)(7+8*(i) downto 8*(i)); 1428 
              end loop; 1429 
            end if; 1430 
 1431 
            if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position)    = '1'  or   1432 
                decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1'  or   1433 
                decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1434 
                MVTYPE_DSP(h) = "01" then 1435 
              if vec_read_rs2_DSP(h) = '0' then 1436 
                if rf_rs2(h) = '1' then 1437 
                  for i in 0 to 2*SIMD-1 loop 1438 
                    dsp_in_mul_operands(f)(1)(15+16*(i) downto 16*(i)) <= RS2_Data_IE_lat(h)(15 downto 0); -- map the scalar value 1439 
                  end loop; 1440 
                elsif rf_rs2(h) = '0' then 1441 
                  for i in 0 to 2*SIMD-1 loop 1442 
                    dsp_in_mul_operands(f)(1)(15+16*(i) downto 16*(i)) <= dsp_sc_data_read(h)(1)(15 downto 0); -- map the scalar value 1443 
                  end loop;       1444 
                end if; 1445 
              else 1446 
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                dsp_in_mul_operands(f)(1) <= dsp_sc_data_read(h)(1); 1447 
              end if; 1448 
              dsp_in_mul_operands(f)(0)     <= dsp_sc_data_read(h)(0); 1449 
            end if; 1450 
 1451 
            if (decoded_instruction_DSP_lat(h)(KVMUL_bit_position)    = '1'  or   1452 
                decoded_instruction_DSP_lat(h)(KSVMULRF_bit_position) = '1'  or   1453 
                decoded_instruction_DSP_lat(h)(KSVMULSC_bit_position) = '1') and 1454 
               MVTYPE_DSP(h) = "10" then 1455 
              if vec_read_rs2_DSP(h) = '0' then 1456 
                if rf_rs2(h) = '1' then 1457 
                  for i in 0 to SIMD-1 loop 1458 
                    dsp_in_mul_operands(f)(1)(31+32*(i) downto 32*(i)) <= RS2_Data_IE_lat(h)(31 downto 0); -- map the scalar value 1459 
                  end loop; 1460 
                elsif rf_rs2(h) = '0' then 1461 
                  for i in 0 to SIMD-1 loop 1462 
                    dsp_in_mul_operands(f)(1)(31+32*(i) downto 32*(i)) <= dsp_sc_data_read(h)(1)(31 downto 0); -- map the scalar value 1463 
                  end loop; 1464 
                end if; 1465 
              else 1466 
                dsp_in_mul_operands(f)(1) <= dsp_sc_data_read(h)(1); 1467 
              end if; 1468 
              dsp_in_mul_operands(f)(0) <= dsp_sc_data_read(h)(0); 1469 
            end if; 1470 
 1471 
            if decoded_instruction_DSP_lat(h)(KADDV_bit_position) = '1' then  1472 
              dsp_in_adder_operands(f)(0)   <= dsp_sc_data_read(h)(0); 1473 
              dsp_in_adder_operands(f)(1)   <= dsp_sc_data_read(h)(1); 1474 
            end if; 1475 
 1476 
            if decoded_instruction_DSP_lat(h)(KSRAV_bit_position) = '1' or 1477 
               decoded_instruction_DSP_lat(h)(KSRLV_bit_position) = '1' then  1478 
              dsp_in_shifter_operand(f)      <= dsp_sc_data_read(h)(0); 1479 
              dsp_in_shift_amount(f)         <= RS2_Data_IE_lat(h)(4 downto 0); -- map the scalar value (shift amount) 1480 
            end if; 1481 
 1482 
            if decoded_instruction_DSP_lat(h)(KSVADDSC_bit_position)  = '1' and MVTYPE_DSP(h) = "10" then 1483 
              dsp_in_adder_operands(f)(0)   <= dsp_sc_data_read(h)(0); 1484 
              for i in 0 to SIMD-1 loop 1485 
                dsp_in_adder_operands(f)(1)(31+32*(i) downto 32*(i))   <= dsp_sc_data_read(h)(1)(31 downto 0); 1486 
              end loop; 1487 
            end if; 1488 
 1489 
            if decoded_instruction_DSP_lat(h)(KSVADDSC_bit_position)  = '1' and MVTYPE_DSP(h) = "01" then 1490 
              dsp_in_adder_operands(f)(0)   <= dsp_sc_data_read(h)(0); 1491 
              for i in 0 to 2*SIMD-1 loop 1492 
                dsp_in_adder_operands(f)(1)(15+16*(i) downto 16*(i))   <= dsp_sc_data_read(h)(1)(15 downto 0); 1493 
              end loop; 1494 
            end if; 1495 
 1496 
            if decoded_instruction_DSP_lat(h)(KSVADDSC_bit_position)  = '1' and MVTYPE_DSP(h) = "00" then 1497 
              dsp_in_adder_operands(f)(0) <= dsp_sc_data_read(h)(0); 1498 
              for i in 0 to 4*SIMD-1 loop 1499 
                dsp_in_adder_operands(f)(1)(7+8*(i) downto 8*(i)) <= dsp_sc_data_read(h)(1)(7 downto 0); 1500 
              end loop; 1501 
            end if; 1502 
 1503 
            if decoded_instruction_DSP_lat(h)(KSVADDRF_bit_position) = '1' and MVTYPE_DSP(h) = "10" then 1504 
              dsp_in_adder_operands(f)(0)   <= dsp_sc_data_read(h)(0); 1505 
              for i in 0 to SIMD-1 loop 1506 
                dsp_in_adder_operands(f)(1)(31+32*(i) downto 32*(i))   <= RS2_Data_IE_lat(h)(31 downto 0); 1507 
              end loop; 1508 
            end if; 1509 
 1510 
            if decoded_instruction_DSP_lat(h)(KSVADDRF_bit_position) = '1' and MVTYPE_DSP(h) = "01" then 1511 
              dsp_in_adder_operands(f)(0)   <= dsp_sc_data_read(h)(0); 1512 
              for i in 0 to 2*SIMD-1 loop 1513 
                dsp_in_adder_operands(f)(1)(15+16*(i) downto 16*(i))   <= RS2_Data_IE_lat(h)(15 downto 0); 1514 
              end loop; 1515 
            end if; 1516 
 1517 
            if decoded_instruction_DSP_lat(h)(KSVADDRF_bit_position) = '1' and MVTYPE_DSP(h) = "00" then 1518 
              dsp_in_adder_operands(f)(0)   <= dsp_sc_data_read(h)(0); 1519 
              for i in 0 to 4*SIMD-1 loop 1520 
                dsp_in_adder_operands(f)(1)(7+8*(i) downto 8*(i))   <= RS2_Data_IE_lat(h)(7 downto 0); 1521 
              end loop; 1522 
            end if; 1523 
 1524 
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            if decoded_instruction_DSP_lat(h)(KSUBV_bit_position)  = '1' then 1525 
              dsp_in_adder_operands(f)(0)     <= dsp_sc_data_read(h)(0); 1526 
              dsp_in_adder_operands(f)(1)     <= (not dsp_sc_data_read(h)(1)); 1527 
            end if; 1528 
 1529 
            if decoded_instruction_DSP_lat(h)(KVRED_bit_position)  = '1' and MVTYPE_DSP(h) = "00" then 1530 
              for i in 0 to 2*SIMD-1 loop 1531 
                dsp_in_accum_operands(f)(15+16*(i) downto 16*(i)) <= x"00" & (dsp_sc_data_read(h)(0)(7+8*(i) downto 8*(i)) and 1532 
dsp_sc_data_read_mask(h)(7+8*(i) downto 8*(i))); 1533 
              end loop; 1534 
            end if; 1535 
            if decoded_instruction_DSP_lat(h)(KVRED_bit_position) = '1' and (MVTYPE_DSP(h) = "01" or MVTYPE_DSP(h) = "10") then 1536 
              dsp_in_accum_operands(f) <= dsp_sc_data_read(h)(0) and dsp_sc_data_read_mask(h); 1537 
            end if; 1538 
 1539 
            if decoded_instruction_DSP_lat(h)(KRELU_bit_position)  = '1' then 1540 
              dsp_in_relu_operands(f) <= dsp_sc_data_read(h)(0); 1541 
            end if; 1542 
 1543 
            if decoded_instruction_DSP_lat(h)(KVCP_bit_position) = '1' then 1544 
              dsp_in_adder_operands(f)(0) <= dsp_sc_data_read(h)(0); 1545 
            end if; 1546 
 1547 
 1548 
          when others => 1549 
            null; 1550 
        end case; 1551 
      end if; 1552 
    end loop; 1553 
  end process; 1554 
 1555 
--end generate; 1556 
--end generate; 1557 
 1558 
--FU_IN_MAPPER  : if (multithreaded_accl_en = 0 or (multithreaded_accl_en = 1 and f = 0) generate 1559 
   1560 
  fsm_DSP_adder_stage_1 : process(all) 1561 
  variable h : integer; 1562 
  begin 1563 
    dsp_add_8_0_wire(f)  <= dsp_add_8_0(f); 1564 
    dsp_add_16_8_wire(f) <= dsp_add_16_8(f); 1565 
    for g in 0 to (ACCL_NUM - FU_NUM) loop 1566 
      if multithreaded_accl_en = 1 then 1567 
        h := g;  -- set the spm rd/wr ports equal to the "for-loop" 1568 
      elsif multithreaded_accl_en = 0 then 1569 
        h := f;  -- set the spm rd/wr ports equal to the "for-generate"  1570 
      end if; 1571 
      --  Addition in SIMD Virtual Parallelism is executed here, if the carries are blocked, we will have a chain of 8-bit or 16-bit adders, else we have 1572 
32-bit adders 1573 
      for i in 0 to SIMD-1 loop 1574 
        if (adder_stage_1_en(h) = '1' or recover_state_wires(h) = '1') then 1575 
          -- Unwinding the loop:  1576 
          -- (1) the term "8*(4*i)" is used to jump between the 32-bit words, inside the 128-bit values read by the DSP 1577 
          -- (2) Each addition results in an 8-bit value, and the 9th bit being the carry, depending on the instruction (KADDV32, KADDV16, KADDV8) 1578 
we either pass the or block the carries. 1579 
          -- (3) CARRIES: 1580 
           -- (a) If we pass all the carries in the 32-bit word, we will have executed KADDV32 (4*32-bit parallel additions) 1581 
           -- (b) If we pass the 9th and 25th carries we would have executed KADDV16 (8*16-bit parallel additions) 1582 
           -- (c) If we pass none of the carries then we would have executed KADDV8 (16*8-bit parallel additions) 1583 
          dsp_add_8_0_wire(f)(i)   <= std_logic_vector('0' & unsigned(dsp_in_adder_operands(f)(0)(7+8*(4*i)  downto 8*(4*i)))    + 1584 
unsigned(dsp_in_adder_operands(f)(1)(7+8*(4*i)  downto 8*(4*i))) + twos_complement(h)(0+(4*i))); 1585 
          dsp_add_16_8_wire(f)(i)  <= std_logic_vector('0' & unsigned(dsp_in_adder_operands(f)(0)(15+8*(4*i) downto 8+8*(4*i)))  + 1586 
unsigned(dsp_in_adder_operands(f)(1)(15+8*(4*i) downto 8+8*(4*i))) + carry_8_wire(f)(i) + twos_complement(h)(1+(4*i))); 1587 
          -- All the 8-bit adders are lumped into one output write signal that will write to the scratchpads 1588 
          -- Carries are either passed or blocked for the 9-th, 17-th, and 25-th bits 1589 
          carry_8_wire(f)(i)  <= dsp_add_8_0_wire(f)(i)(8)   and carry_pass(h)(0); 1590 
          carry_16_wire(f)(i) <= dsp_add_16_8_wire(f)(i)(8)  and carry_pass(h)(1); 1591 
        end if; 1592 
      end loop; 1593 
    end loop; 1594 
  end process; 1595 
 1596 
  fsm_DSP_adder_stage_2 : process(all) 1597 
  variable h : integer; 1598 
  begin 1599 
    carry_24_wire(f)               <= (others => '0'); 1600 
    dsp_add_24_16_wire(f)          <= (others => (others => '0')); 1601 
    dsp_add_32_24_wire(f)          <= (others => (others => '0')); 1602 
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    for g in 0 to (ACCL_NUM - FU_NUM) loop 1603 
      if multithreaded_accl_en = 1 then 1604 
        h := g;  -- set the spm rd/wr ports equal to the "for-loop" 1605 
      elsif multithreaded_accl_en = 0 then 1606 
        h := f;  -- set the spm rd/wr ports equal to the "for-generate"  1607 
      end if; 1608 
      -- Addition is here 1609 
      if halt_dsp_lat(h) = '0' then 1610 
      --  Addition in SIMD Virtual Parallelism is executed here, if the carries are blocked, we will have a chain of 8-bit or 16-bit adders, else we have 1611 
32-bit adders 1612 
        for i in 0 to SIMD-1 loop 1613 
          if (adder_stage_2_en(h) = '1' or recover_state_wires(h) = '1') then 1614 
            dsp_add_24_16_wire(f)(i) <= std_logic_vector('0' & unsigned(dsp_in_adder_operands_lat(f)(0)(7+8*(2*i) downto 8*(2*i))) +  1615 
                                                               unsigned(dsp_in_adder_operands_lat(f)(1)(7+8*(2*i) downto 8*(2*i))) +  1616 
                                                                        carry_16(f)(i) + twos_complement(h)(2+(4*i))); 1617 
            dsp_add_32_24_wire(f)(i) <= std_logic_vector('0' & unsigned(dsp_in_adder_operands_lat(f)(0)(15+8*(2*i) downto 8+8*(2*i))) +  1618 
                                                               unsigned(dsp_in_adder_operands_lat(f)(1)(15+8*(2*i) downto 8+8*(2*i))) +  1619 
                                                                        carry_24_wire(f)(i) + twos_complement(h)(3+(4*i))); 1620 
            -- All the 8-bit adders are lumped into one output write signal that will write to the scratchpads 1621 
            -- Carries are either passed or blocked for the 9-th, 17-th, and 25-th bits 1622 
            carry_24_wire(f)(i) <= dsp_add_24_16_wire(f)(i)(8) and carry_pass(h)(2); 1623 
          end if; 1624 
        end loop; 1625 
      end if; 1626 
    end loop; 1627 
  end process; 1628 
 1629 
  fsm_DSP_adder : process(clk_i, rst_ni) 1630 
  variable h : integer; 1631 
  begin 1632 
    if rst_ni = '0' then 1633 
    elsif rising_edge(clk_i) then 1634 
      for g in 0 to (ACCL_NUM - FU_NUM) loop 1635 
        if multithreaded_accl_en = 1 then 1636 
          h := g;  -- set the spm rd/wr ports equal to the "for-loop" 1637 
        elsif multithreaded_accl_en = 0 then 1638 
          h := f;  -- set the spm rd/wr ports equal to the "for-generate"  1639 
        end if; 1640 
        -- Addition is here 1641 
        if add_en(h) = '1' and halt_dsp_lat(h) = '0' then 1642 
          carry_16(f) <= carry_16_wire(f); 1643 
          dsp_add_8_0(f)  <= dsp_add_8_0_wire(f); 1644 
          dsp_add_16_8(f) <= dsp_add_16_8_wire(f); 1645 
          --  Addition in SIMD Virtual Parallelism is executed here, if the carries are blocked, we will have a chain of 8-bit or 16-bit adders, else we have 1646 
normal 32-bit adders 1647 
          for i in 0 to SIMD-1 loop 1648 
            if (adder_stage_2_en(h) = '1' or recover_state_wires(h) = '1') then 1649 
                -- All the 8-bit adders are lumped into one output signal that will write to the scratchpads 1650 
              dsp_out_adder_results(f)(31+32*(i) downto 32*(i)) <= dsp_add_32_24_wire(f)(i)(7 downto 0) & dsp_add_24_16_wire(f)(i)(7 downto 0) & 1651 
dsp_add_16_8(f)(i)(7 downto 0) & dsp_add_8_0(f)(i)(7 downto 0); 1652 
            end if; 1653 
          end loop; 1654 
        end if; 1655 
        for i in 0 to SIMD-1 loop 1656 
          for j in 0 to 1 loop 1657 
            dsp_in_adder_operands_lat(f)(j)(15 +16*(i) downto 16*(i)) <= dsp_in_adder_operands(f)(j)(31+32*(i) downto 16+32*(i)); 1658 
          end loop; 1659 
        end loop; 1660 
      end loop; 1661 
    end if; 1662 
  end process; 1663 
 1664 
  fsm_DSP_shifter_stg_1 : process(clk_i, rst_ni) 1665 
  variable h : integer; 1666 
  begin 1667 
    if rst_ni = '0' then 1668 
    elsif rising_edge(clk_i) then 1669 
      for g in 0 to (ACCL_NUM - FU_NUM) loop 1670 
        if multithreaded_accl_en = 1 then 1671 
          h := g;  -- set the spm rd/wr ports equal to the "for-loop" 1672 
        elsif multithreaded_accl_en = 0 then 1673 
          h := f;  -- set the spm rd/wr ports equal to the "for-generate"  1674 
        end if; 1675 
        if shift_en(h) = '1' and (shifter_stage_1_en(h) = '1' or recover_state_wires(h) = '1') and halt_dsp_lat(h) = '0' then 1676 
          for i in 0 to SIMD-1 loop 1677 
            dsp_int_shifter_operand(f)(31+32*(i) downto 32*(i)) <= to_stdlogicvector(to_bitvector(dsp_in_shifter_operand(f)(31+32*(i) downto 32*(i))) 1678 
srl to_integer(unsigned(dsp_in_shift_amount(f)))); 1679 
          end loop; 1680 
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          --for i in 0 to 4*SIMD-1 loop -- latch the sign bits 1681 
            --dsp_in_sign_bits(f)(i) <= dsp_in_shifter_operand(f)(7+8*(i)); 1682 
          --end loop; 1683 
          if MVTYPE_DSP(h) = "00" then 1684 
            for i in 0 to 4*SIMD-1 loop -- latch the sign bits 1685 
              dsp_in_shifter_operand_lat(f)(7+8*i downto 8*i) <= (others => dsp_in_shifter_operand(f)(7+8*i)); 1686 
            end loop; 1687 
          elsif MVTYPE_DSP(h) = "01" then 1688 
            for i in 0 to 2*SIMD-1 loop -- latch the sign bits 1689 
              dsp_in_shifter_operand_lat(f)(15+16*i downto 16*i) <= (others => dsp_in_shifter_operand(f)(15+16*i)); 1690 
            end loop; 1691 
          elsif MVTYPE_DSP(h) = "10" then 1692 
            for i in 0 to SIMD-1 loop -- latch the sign bits 1693 
              dsp_in_shifter_operand_lat(f)(31+32*i downto 32*i) <= (others => dsp_in_shifter_operand(f)(31+32*i)); 1694 
            end loop; 1695 
          end if; 1696 
        end if; 1697 
      end loop; 1698 
    end if; 1699 
  end process; 1700 
 1701 
  fsm_DSP_shifter_stg_2 : process(clk_i, rst_ni) 1702 
  variable h : integer; 1703 
  begin 1704 
    if rst_ni = '0' then 1705 
    elsif rising_edge(clk_i) then 1706 
      for g in 0 to (ACCL_NUM - FU_NUM) loop 1707 
        if multithreaded_accl_en = 1 then 1708 
          h := g;  -- set the spm rd/wr ports equal to the "for-loop" 1709 
        elsif multithreaded_accl_en = 0 then 1710 
          h := f;  -- set the spm rd/wr ports equal to the "for-generate"  1711 
        end if; 1712 
        if shift_en(h) = '1' and (shifter_stage_2_en(h) = '1' or recover_state_wires(h) = '1') and halt_dsp_lat(h) = '0' then 1713 
          if    MVTYPE_DSP(h) = "10" then 1714 
            for i in 0 to SIMD-1 loop 1715 
              dsp_out_shifter_results(f)(31+32*(i) downto 32*(i)) <= dsp_in_shifter_operand_lat_wire(f)(31 +32*(i) downto 32*(i)) or 1716 
dsp_int_shifter_operand(f)(31+32*(i) downto 32*(i)); 1717 
            end loop; 1718 
          elsif MVTYPE_DSP(h) = "01" or (decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1' and MVTYPE_DSP(h) = "00") then -- 1719 
KDOTPPS8 has been added here because the number of elements loaded for mul operations is equal for 8-bit and 16-bits instr 1720 
            for i in 0 to 2*SIMD-1 loop 1721 
              dsp_out_shifter_results(f)(15+16*(i) downto 16*(i)) <=  dsp_in_shifter_operand_lat_wire(f)(15 +16*(i) downto 16*(i)) or 1722 
(dsp_int_shifter_operand(f)(15+16*(i) downto 16*(i)) and dsp_shift_enabler(h)(15 downto 0)); 1723 
            end loop; 1724 
          elsif MVTYPE_DSP(h) = "00" then 1725 
            for i in 0 to 4*SIMD-1 loop 1726 
              dsp_out_shifter_results(f)(7+8*(i) downto 8*(i)) <=  dsp_in_shifter_operand_lat_wire(f)(7 +8*(i) downto 8*(i)) or  1727 
(dsp_int_shifter_operand(f)(7+8*(i) downto 8*(i)) and dsp_shift_enabler(h)(7 downto 0)); 1728 
            end loop; 1729 
          end if; 1730 
        end if; 1731 
      end loop; 1732 
    end if; 1733 
  end process; 1734 
 1735 
  fsm_DSP_shifter_comb : process(all) 1736 
  variable h : integer; 1737 
  begin 1738 
    dsp_in_shifter_operand_lat_wire(f) <= (others => '0'); 1739 
    for g in 0 to (ACCL_NUM - FU_NUM) loop 1740 
      if multithreaded_accl_en = 1 then 1741 
        h := g;  -- set the spm rd/wr ports equal to the "for-loop" 1742 
      elsif multithreaded_accl_en = 0 then 1743 
        h := f;  -- set the spm rd/wr ports equal to the "for-generate"  1744 
      end if; 1745 
      dsp_shift_enabler(h) <= (others => '0'); 1746 
      if shift_en(h) = '1' and halt_dsp_lat(h) = '0' then 1747 
        if MVTYPE_DSP(h) = "01" then 1748 
          dsp_shift_enabler(h)(15 - to_integer(unsigned(dsp_in_shift_amount(h)(3 downto 0))) downto 0) <= (others => '1'); 1749 
        elsif MVTYPE_DSP(h) = "00" then 1750 
          dsp_shift_enabler(h)(7 -  to_integer(unsigned(dsp_in_shift_amount(h)(2 downto 0))) downto 0) <= (others => '1'); 1751 
        end if; 1752 
        if (decoded_instruction_DSP_lat(h)(KSRAV_bit_position) = '1' or decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1') and 1753 
            MVTYPE_DSP(h) = "10" then    -- 32-bit sign extension for for srl in stage 1 1754 
          for i in 0 to SIMD-1 loop 1755 
            --dsp_in_shifter_operand_lat(f)(31+32*(i) downto 31 - to_integer(unsigned(dsp_in_shift_amount(h)(4 downto 0)))+32*(i))   <= (others => 1756 
dsp_in_sign_bits(h)(3+4*(i))); 1757 
            dsp_in_shifter_operand_lat_wire(f)(31+32*(i) downto 31 - to_integer(unsigned(dsp_in_shift_amount(f)(4 downto 0)))+32*(i)) <=  1758 
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            dsp_in_shifter_operand_lat(f)(     31+32*(i) downto 31 - to_integer(unsigned(dsp_in_shift_amount(f)(4 downto 0)))+32*(i)); 1759 
          end loop; 1760 
        elsif (decoded_instruction_DSP_lat(h)(KSRAV_bit_position) = '1' or decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1') and 1761 
               MVTYPE_DSP(h) = "01" then -- 16-bit sign extension for for srl in stage 1 1762 
          for i in 0 to 2*SIMD-1 loop 1763 
            --dsp_in_shifter_operand_lat(f)(15+16*(i) downto 15 - to_integer(unsigned(dsp_in_shift_amount(h)(3 downto 0)))+16*(i))   <= (others => 1764 
dsp_in_sign_bits(h)(1+2*(i))); 1765 
            dsp_in_shifter_operand_lat_wire(f)(15+16*(i) downto 15 - to_integer(unsigned(dsp_in_shift_amount(f)(3 downto 0)))+16*(i)) <=  1766 
            dsp_in_shifter_operand_lat(f)(     15+16*(i) downto 15 - to_integer(unsigned(dsp_in_shift_amount(f)(3 downto 0)))+16*(i)); 1767 
          end loop; 1768 
        elsif (decoded_instruction_DSP_lat(h)(KSRAV_bit_position) = '1'  or decoded_instruction_DSP_lat(h)(KDOTPPS_bit_position) = '1') and 1769 
               MVTYPE_DSP(h) = "00" then  -- 8-bit  sign extension for for srl in stage 1 1770 
          for i in 0 to 4*SIMD-1 loop 1771 
            --dsp_in_shifter_operand_lat(f)(7+8*(i) downto 7 - to_integer(unsigned(dsp_in_shift_amount(h)(2 downto 0)))+8*(i))    <= (others => 1772 
dsp_in_sign_bits(h)(i)); 1773 
            dsp_in_shifter_operand_lat_wire(f)(7+8*(i) downto 7 - to_integer(unsigned(dsp_in_shift_amount(f)(2 downto 0)))+8*(i)) <=  1774 
            dsp_in_shifter_operand_lat(f)(     7+8*(i) downto 7 - to_integer(unsigned(dsp_in_shift_amount(f)(2 downto 0)))+8*(i)); 1775 
          end loop; 1776 
        end if; 1777 
      end if; 1778 
    end loop; 1779 
  end process;  1780 
  -- STAGE 1 -- 1781 
  fsm_MUL_STAGE_1 : process(clk_i,rst_ni) 1782 
  variable h : integer; 1783 
  begin 1784 
    if rst_ni = '0' then 1785 
    elsif rising_edge(clk_i) then 1786 
      for g in 0 to (ACCL_NUM - FU_NUM) loop 1787 
        if multithreaded_accl_en = 1 then 1788 
          h := g;  -- set the spm rd/wr ports equal to the "for-loop" 1789 
        elsif multithreaded_accl_en = 0 then 1790 
          h := f;  -- set the spm rd/wr ports equal to the "for-generate"  1791 
        end if; 1792 
        if halt_dsp_lat(h) = '0' then 1793 
          if mul_en(h) = '1' and (mul_stage_1_en(h) = '1' or recover_state_wires(h) = '1') then 1794 
         for i in 0 to SIMD-1 loop 1795 
              -- Unwinding the loop:  1796 
              -- (1) The impelemtation in the loop does multiplication for KDOTP32, and KDOTP16 using only 16-bit multipliers. "A*B" = 1797 
[Ahigh*(2^16) + Alow]*[Bhigh*(2^16) + Blow] 1798 
              -- (2) Expanding this equation "[Ahigh*(2^16) + Alow]*[Bhigh*(2^16) + Blow]"  gives: "Ahigh*Bhigh*(2^32) + Ahigh*Blow*(2^16) + 1799 
Alow*Bhigh*(2^16) + Alow*Blow" which are the terms being stored in dsp_out_mul_results 1800 
              -- (3) Partial Multiplication  1801 
                  -- (a) "dsp_mul_a" <= Ahigh*Bhigh  1802 
                  -- (b) "dsp_mul_b" <= Ahigh*Blow 1803 
                  -- (c) "dsp_mul_c" <= Alow*Bhigh 1804 
                  -- (d) "dsp_mul_d" <= Alow*Blow 1805 
              -- (4) "dsp_mul_a" is shifted by 32 bits to the left, "dsp_mul_b" and "dsp_mul_c" are shifted by 16-bits to the left, "dsp_mul_d" is not shifted 1806 
              -- (5) For 16-bit and 8-bit muls, the FUNCT_SELECT_MASK is set to x"00000000" blocking the terms in "dsp_mul_b" and "dsp_mul_c". 1807 
For executing 32-bit muls , we set the mask to x"FFFFFFFF" 1808 
              dsp_mul_a(f)(31+32*(i)  downto 32*(i)) <= std_logic_vector(unsigned(dsp_in_mul_operands(f)(0)(15+16*(2*i+1)    downto 16*(2*i+1))) * 1809 
unsigned(dsp_in_mul_operands(f)(1)(15+16*(2*i+1)  downto 16*(2*i+1)))); 1810 
              dsp_mul_b(f)(31+32*(i)  downto 32*(i)) <= std_logic_vector((unsigned(dsp_in_mul_operands(f)(0)(16*(2*i+1) - 1  downto 16*(2*i)))   * 1811 
unsigned(dsp_in_mul_operands(f)(1)(15+16*(2*i+1)  downto 16*(2*i+1)))) and unsigned(FUNCT_SELECT_MASK(h))); 1812 
              dsp_mul_c(f)(31+32*(i)  downto 32*(i)) <= std_logic_vector((unsigned(dsp_in_mul_operands(f)(0)(15+16*(2*i+1)   downto 16*(2*i+1))) * 1813 
unsigned(dsp_in_mul_operands(f)(1)(16*(2*i+1) - 1 downto 16*(2*i))))   and unsigned(FUNCT_SELECT_MASK(h))); 1814 
              dsp_mul_d(f)(31+32*(i)  downto 32*(i)) <= std_logic_vector(unsigned(dsp_in_mul_operands(f)(0)(16*(2*i+1)  - 1  downto 16*(2*i)))   * 1815 
unsigned(dsp_in_mul_operands(f)(1)(16*(2*i+1) - 1 downto 16*(2*i)))); 1816 
            end loop; 1817 
          end if; 1818 
        end if; 1819 
      end loop; 1820 
    end if; 1821 
  end process; 1822 
 1823 
  fsm_MUL_STAGE_1_COMB : process(all) 1824 
  variable h : integer; 1825 
  begin 1826 
    mul_tmp_a(f) <= (others => (others => '0')); 1827 
    mul_tmp_b(f) <= (others => (others => '0')); 1828 
    mul_tmp_c(f) <= (others => (others => '0')); 1829 
    mul_tmp_d(f) <= (others => (others => '0')); 1830 
    for g in 0 to (ACCL_NUM - FU_NUM) loop 1831 
      if multithreaded_accl_en = 1 then 1832 
        h := g;  -- set the spm rd/wr ports equal to the "for-loop" 1833 
      elsif multithreaded_accl_en = 0 then 1834 
        h := f;  -- set the spm rd/wr ports equal to the "for-generate"  1835 
      end if; 1836 
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      -- KDOTP and KSVMUL instructions are handeled here 1837 
      -- this part right here shifts the intermidiate resutls appropriately, and then accumulates them in order to get the final mul result 1838 
      if mul_en(h) = '1' and (mul_stage_2_en(h) = '1' or recover_state_wires(h) = '1') then 1839 
        for i in 0 to SIMD-1 loop 1840 
          if MVTYPE_DSP(h) /= "10" then 1841 
            ------------------------------------------------------------------------------------ 1842 
            mul_tmp_a(f)(i) <= (dsp_mul_a(f)(15+16*(2*i)  downto 16*(2*i)) & x"0000"); 1843 
            mul_tmp_d(f)(i) <= (x"0000" & dsp_mul_d(f)(15+16*(2*i)  downto 16*(2*i))); 1844 
            ------------------------------------------------------------------------------------ 1845 
          elsif MVTYPE_DSP(h) = "10" then 1846 
            -- mul_tmp_a(f)(i) <= (dsp_mul_a(f)(31+32*(2*i)  downto 31*(2*i)) & x"0000");     -- The upper 32-bit results of the multiplication are 1847 
discarded   (Ah*Bh) 1848 
            mul_tmp_b(f)(i) <= (dsp_mul_b(f)(15+16*(2*i) downto 16*(2*i)) & x"0000");         -- Modified to only add the partail result to the lower 32-1849 
bits   (Ah*Bl) 1850 
            mul_tmp_c(f)(i) <= (dsp_mul_c(f)(15+16*(2*i) downto 16*(2*i)) & x"0000");         -- Modified to only add the partail result to the lower 32-1851 
bits   (Al*Bh) 1852 
            mul_tmp_d(f)(i) <= (dsp_mul_d(f)(31+32*(i)   downto 32*(i)));                     -- This is the lower 32-bit result of the partial mmultiplication 1853 
(Al*Bl) 1854 
          end if; 1855 
        end loop; 1856 
      end if; 1857 
    end loop; 1858 
  end process; 1859 
 1860 
  -- STAGE 2 -- 1861 
  fsm_MUL_STAGE_2 : process(clk_i, rst_ni) 1862 
  variable h : integer; 1863 
  begin 1864 
 if rst_ni = '0' then 1865 
    elsif rising_edge(clk_i) then 1866 
      for g in 0 to (ACCL_NUM - FU_NUM) loop 1867 
        if multithreaded_accl_en = 1 then 1868 
          h := g;  -- set the spm rd/wr ports equal to the "for-loop" 1869 
        elsif multithreaded_accl_en = 0 then 1870 
          h := f;  -- set the spm rd/wr ports equal to the "for-generate"  1871 
        end if; 1872 
        -- Accumulate the partial multiplications to make up bigger multiplications 1873 
        if mul_en(h) = '1' and (mul_stage_2_en(h) = '1' or recover_state_wires(h) = '1') and halt_dsp_lat(h) = '0' then 1874 
          for i in 0 to SIMD-1 loop 1875 
            dsp_out_mul_results(f)((Data_Width-1)+Data_Width*(i) downto Data_Width*(i))  <= (std_logic_vector(unsigned(mul_tmp_a(f)(i)) + 1876 
unsigned(mul_tmp_b(f)(i)) + unsigned(mul_tmp_c(f)(i)) + unsigned(mul_tmp_d(f)(i)))); 1877 
          end loop; 1878 
        end if; 1879 
      end loop; 1880 
    end if; 1881 
  end process; 1882 
 1883 
  fsm_RELU : process(clk_i, rst_ni) 1884 
  variable h : integer; 1885 
  begin 1886 
    if rst_ni = '0' then 1887 
    elsif rising_edge(clk_i) then 1888 
      for g in 0 to (ACCL_NUM - FU_NUM) loop 1889 
        if multithreaded_accl_en = 1 then 1890 
          h := g;  -- set the spm rd/wr ports equal to the "for-loop" 1891 
        elsif multithreaded_accl_en = 0 then 1892 
          h := f;  -- set the spm rd/wr ports equal to the "for-generate"  1893 
        end if; 1894 
        if relu_en(h) = '1' then 1895 
          if (relu_stage_1_en(h) = '1' or recover_state_wires(h) = '1') and halt_dsp_lat(h) = '0' then 1896 
            if    MVTYPE_DSP(h) = "10" then 1897 
              for i in 0 to SIMD-1 loop 1898 
                if dsp_in_relu_operands(f)(31+32*(i)) = '1' then 1899 
                  dsp_out_relu_results(f)(31+32*(i) downto 32*(i)) <= (others => '0'); 1900 
                else 1901 
                  dsp_out_relu_results(f)(31+32*(i) downto 32*(i)) <= dsp_in_relu_operands(f)(31+32*(i) downto 32*(i)); 1902 
                end if; 1903 
              end loop; 1904 
            elsif MVTYPE_DSP(h) = "01" then 1905 
              for i in 0 to 2*SIMD-1 loop 1906 
                if dsp_in_relu_operands(f)(15+16*(i)) = '1' then 1907 
                  dsp_out_relu_results(f)(15+16*(i) downto 16*(i)) <= (others => '0'); 1908 
                else 1909 
                  dsp_out_relu_results(f)(15+16*(i) downto 16*(i)) <= dsp_in_relu_operands(f)(15+16*(i) downto 16*(i)); 1910 
                end if; 1911 
              end loop; 1912 
            elsif MVTYPE_DSP(h) = "00" then 1913 
              for i in 0 to 4*SIMD-1 loop 1914 
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                if dsp_in_relu_operands(f)(7+8*(i)) = '1' then 1915 
                  dsp_out_relu_results(f)(7+8*(i) downto 8*(i)) <= (others => '0'); 1916 
                else 1917 
                  dsp_out_relu_results(f)(7+8*(i) downto 8*(i)) <= dsp_in_relu_operands(f)(7+8*(i) downto 8*(i)); 1918 
                end if; 1919 
              end loop; 1920 
            end if; 1921 
          end if; 1922 
        end if; 1923 
      end loop; 1924 
    end if; 1925 
  end process; 1926 
 1927 
end generate FU_replicated; 1928 
 1929 
 ACCUM_STG : ACCUMULATOR 1930 
 port map( 1931 
      clk_i                             => clk_i, 1932 
      rst_ni                            => rst_ni, 1933 
      MVTYPE_DSP                        => MVTYPE_DSP, 1934 
      accum_stage_1_en                  => accum_stage_1_en, 1935 
      accum_stage_2_en                  => accum_stage_2_en, 1936 
      recover_state_wires               => recover_state_wires, 1937 
      halt_dsp_lat                      => halt_dsp_lat, 1938 
      state_DSP                         => state_DSP, 1939 
      decoded_instruction_DSP_lat       => decoded_instruction_DSP_lat, 1940 
      dsp_in_accum_operands             => dsp_in_accum_operands, 1941 
      dsp_out_accum_results             => dsp_out_accum_results 1942 
 ); 1943 
 1944 
end DSP; 1945 
-------------------------------------------------------------------------------------------------- 1946 
-- END of DSP architecture ---------------------------------------------------------------- 1947 
--------------------------------------------------------------------------------------------------1948 
 

 

3. Scratchpad Memory Interface (SPI) 

 
-- SCI  pinout -------------------- 1 
entity Scratchpad_memory_interface is 2 
  port ( 3 
    clk_i, rst_ni              : in  std_logic; 4 
    data_rvalid_i              : in  std_logic; 5 
    state_LS                   : in  fsm_LS_states; 6 
    sc_word_count_wire         : in  integer; 7 
    spm_bcast                  : in  std_logic; 8 
    harc_LS_wire               : in  accl_range; 9 
    dsp_we_word                : in  array_2d(accl_range)(SIMD-1 downto 0); 10 
    ls_sc_data_write_wire      : in  std_logic_vector(Data_Width-1 downto 0); 11 
    dsp_sc_data_write_wire     : in  array_2d(accl_range)(SIMD_Width-1 downto 0); 12 
    ls_sc_read_addr            : in  std_logic_vector(Addr_Width-(SIMD_BITS+3) downto 0); 13 
    ls_sc_write_addr           : in  std_logic_vector(Addr_Width-(SIMD_BITS+3) downto 0); 14 
    dsp_sc_write_addr          : in  array_2d(accl_range)(Addr_Width-1 downto 0); 15 
    ls_sci_req                 : in  std_logic_vector(SPM_NUM-1 downto 0); 16 
    ls_sci_we                  : in  std_logic_vector(SPM_NUM-1 downto 0); 17 
    dsp_sci_req                : in  array_2d(accl_range)(SPM_NUM-1 downto 0); 18 
    dsp_sci_we                 : in  array_2d(accl_range)(SPM_NUM-1 downto 0); 19 
    kmemld_inflight            : in  std_logic_vector(SPM_NUM-1 downto 0); 20 
    kmemstr_inflight           : in std_logic_vector(SPM_NUM-1 downto 0); 21 
    dsp_to_sc                  : in  array_3d(accl_range)(SPM_NUM-1 downto 0)(1 downto 0); 22 
    dsp_sc_read_addr           : in  array_3d(accl_range)(1 downto 0)(Addr_Width-1 downto 0); 23 
    dsp_sc_data_read           : out array_3d(accl_range)(1 downto 0)(SIMD_Width-1 downto 0); 24 
    ls_sc_data_read_wire       : out std_logic_vector(Data_Width-1 downto 0); 25 
    ls_sci_wr_gnt              : out std_logic; 26 
    dsp_sci_wr_gnt             : out std_logic_vector(accl_range); 27 
    ls_data_gnt_i              : out std_logic_vector(SPM_NUM-1 downto 0); 28 
    dsp_data_gnt_i             : out std_logic_vector(accl_range) 29 
 ); 30 
end entity;  ------------------------------------------ 31 
 32 
 33 
architecture SCI of Scratchpad_memory_interface is 34 
 35 
signal dsp_sc_data_write_int_wire      : array_2d(accl_range)(SIMD_Width-1 downto 0); 36 
signal ls_sc_data_read_int_wire        : array_2d(accl_range)(Data_Width-1 downto 0); 37 
signal rd_offset                       : array_3d(accl_range)(1 downto 0)(SIMD-1 downto 0); 38 



151 
 

signal wr_offset                       : array_2d(accl_range)(SIMD-1 downto 0); 39 
signal dsp_sc_data_read_int_wire       : array_3d(accl_range)(1 downto 0)(SIMD_Width-1 downto 0); 40 
signal dsp_sc_read_addr_lat            : array_3d(accl_range)(1 downto 0)(SIMD_BITS+1 downto 0);  --  Only need the lower part to check for the word 41 
access 42 
signal dsp_sci_req_lat                 : array_2d(accl_range)(SPM_NUM-1 downto 0); 43 
signal dsp_to_sc_lat                   : array_3d(accl_range)(SPM_NUM-1 downto 0)(1 downto 0); 44 
signal dsp_sc_data_read_wire           : array_3d(accl_range)(1 downto 0)(SIMD_Width-1 downto 0); 45 
signal ls_sc_data_read_replicated      : array_2d(accl_range)(Data_Width-1 downto 0); 46 
signal ls_sc_data_read_wire_replicated : array_2d(accl_range)(Data_Width-1 downto 0); 47 
signal dsp_sci_wr_gnt_lat              : std_logic_vector(accl_range); 48 
signal ls_sci_wr_gnt_replicated        : std_logic_vector(accl_range); 49 
signal ls_sci_wr_gnt_lat_replicated    : std_logic_vector(accl_range); 50 
signal halt_dsp                        : std_logic_vector(accl_range); 51 
signal sc_word_count                   : array_2d_int(accl_range); 52 
signal sc_we                           : array_2d(accl_range)(SIMD*SPM_NUM-1  downto 0); 53 
signal sc_addr_wr                      : array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Addr_Width-(SIMD_BITS+3) downto 0); 54 
signal sc_addr_rd                      : array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Addr_Width-(SIMD_BITS+3) downto 0); 55 
signal sc_data_wr                      : array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Data_Width-1 downto 0); 56 
signal sc_data_rd                      : array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Data_Width-1 downto 0); 57 
 58 
component Scratchpad_memory 59 
  port( 60 
       clk_i                         : in  std_logic; 61 
       sc_we                         : in  array_2d(accl_range)(SIMD*SPM_NUM-1 downto 0); 62 
       sc_addr_wr                    : in  array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Addr_Width-(SIMD_BITS+3) downto 0); 63 
       sc_addr_rd                    : in  array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Addr_Width-(SIMD_BITS+3) downto 0); 64 
       sc_data_wr                    : in  array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Data_Width-1 downto 0); 65 
       sc_data_rd                    : out array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Data_Width-1 downto 0) 66 
    ); 67 
end component; 68 
-------------------------------------------------------------------------------------------------- 69 
-------------------------------- SCI BEGIN ------------------------------------------------------- 70 
begin 71 
 72 
 73 
  SC : Scratchpad_memory 74 
    port map( 75 
       sc_we            => sc_we, 76 
       clk_i            => clk_i, 77 
       sc_addr_rd       => sc_addr_rd, 78 
       sc_addr_wr       => sc_addr_wr, 79 
       sc_data_wr       => sc_data_wr, 80 
       sc_data_rd       => sc_data_rd 81 
      ); 82 
 83 
  SPM_replicated : for h in accl_range generate 84 
   85 
  SCI_Exec_Unit : process(clk_i, rst_ni)  -- single cycle unit, fully synchronous  86 
  begin 87 
    if rst_ni = '0' then 88 
      dsp_sc_read_addr_lat(h) <= (others => (others => '0')); 89 
      dsp_to_sc_lat(h)        <= (others => (others => '0')); 90 
      ls_data_gnt_i           <= (others => '0'); 91 
      dsp_sci_req_lat(h)      <= (others => '0'); 92 
      sc_word_count(h)        <= 0; 93 
      elsif rising_edge(clk_i) then 94 
      halt_dsp(h)                     <= '0'; 95 
      dsp_sci_wr_gnt_lat(h)           <= dsp_sci_wr_gnt(h); 96 
      ls_sci_wr_gnt_lat_replicated(h) <= ls_sci_wr_gnt_replicated(h); 97 
      dsp_sci_req_lat(h)              <= dsp_sci_req(h); 98 
      dsp_to_sc_lat(h)                <= dsp_to_sc(h); 99 
      if harc_LS_wire = h or spm_bcast = '1' then 100 
        sc_word_count(h)            <= sc_word_count_wire; 101 
      end if; 102 
      if unsigned(ls_data_gnt_i) /= 0 then 103 
        ls_sc_data_read_replicated(h)  <= ls_sc_data_read_wire_replicated(h); 104 
      end if; 105 
      if (dsp_sci_wr_gnt(h) = '0' and dsp_sci_we(h) /= (0 to SPM_NUM-1 => '0')) then 106 
        halt_dsp(h) <= '1'; 107 
      end if; 108 
      if halt_dsp(h) = '0' then 109 
        dsp_sc_data_read(h) <= dsp_sc_data_read_wire(h); 110 
      end if; 111 
 112 
      for i in 0 to SPM_NUM-1 loop 113 
        if ls_sci_req(i) = '1' then  -- AAA most probably useless 114 
          ls_data_gnt_i(i) <= '1'; 115 
        elsif ls_sci_req(i) = '0' then 116 
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          ls_data_gnt_i(i) <= '0'; 117 
        end if; 118 
     if dsp_sci_req(h)(i) = '1' then  119 
          for k in 0 to 1 loop 120 
            dsp_sc_read_addr_lat(h)(k) <= dsp_sc_read_addr(h)(k)(SIMD_BITS+1 downto 0); 121 
          end loop; 122 
        end if; 123 
      end loop; 124 
    end if; 125 
  end process; 126 
 127 
  ls_sc_data_read_wire <= ls_sc_data_read_wire_replicated(harc_LS_wire); 128 
  ls_sci_wr_gnt        <= ls_sci_wr_gnt_replicated(harc_LS_wire); 129 
 130 
  SCI_Exec_Unit_comb : process(all) 131 
 132 
  begin 133 
    dsp_data_gnt_i(h)             <= '0'; 134 
    for l in 0 to (SIMD*SPM_NUM)-1 loop 135 
      sc_we(h)(l)      <= '0'; 136 
      sc_addr_rd(h)(l) <= (others => '0'); 137 
      sc_addr_wr(h)(l) <= (others => '0'); 138 
      sc_data_wr(h)(l) <= (others => '0'); 139 
    end loop; 140 
    rd_offset(h)                       <= (others => (others => '0')); 141 
    dsp_sc_data_read_int_wire(h)       <= (others => (others => '0')); 142 
    wr_offset(h)                       <= (others => '0'); 143 
 ls_sci_wr_gnt_replicated(h)        <= ls_sci_wr_gnt_lat_replicated(h); 144 
 dsp_sci_wr_gnt(h)                  <= dsp_sci_wr_gnt_lat(h); 145 
    ls_sc_data_read_wire_replicated(h) <= ls_sc_data_read_replicated(h); 146 
 dsp_sc_data_write_int_wire(h)      <= (others => '0'); 147 
    dsp_sc_data_read_wire(h)           <= dsp_sc_data_read(h); 148 
    for i in 0 to SPM_NUM-1 loop -- Loop through scratchpads A,B,C,D 149 
 150 
      if data_rvalid_i = '1' then        -- LS write port 151 
        if ls_sci_req(i) = '1' and ls_sci_we(i) = '1' and ls_sci_wr_gnt = '1' then 152 
    if harc_LS_wire = h or spm_bcast = '1' then 153 
            sc_we(h)((SIMD)*i + sc_word_count(h)) <= '1'; 154 
            sc_data_wr(h)(sc_word_count(h) + (SIMD)*i) <= ls_sc_data_write_wire(31 downto 0); 155 
            sc_addr_wr(h)(sc_word_count(h) + (SIMD)*i) <= ls_sc_write_addr; 156 
          end if; 157 
        end if;    158 
      end if; 159 
 160 
      if ls_data_gnt_i(i) = '1' then 161 
  if harc_LS_wire = h then 162 
          ls_sc_data_read_wire_replicated(h) <= sc_data_rd(h)((SIMD)*i + sc_word_count(h));  -- sc_word_count because data being read is delayed 163 
one cycle after the request 164 
        end if; 165 
      end if; 166 
 167 
      if ls_sci_req(i) = '1' then         -- LS read port 168 
  if harc_LS_wire = h then 169 
          sc_addr_rd(h)(sc_word_count_wire + (SIMD)*i) <= ls_sc_read_addr; 170 
        end if; 171 
      end if; 172 
 173 
      if dsp_sci_we(h)(i) = '1' and dsp_sci_wr_gnt(h) = '1' then         -- DSP write port; 174 
        for j in 0 to SIMD-1 loop        -- Loop through the sub-scratchpads 175 
          sc_we(h)((SIMD)*i+j)    <= dsp_we_word(h)(j); 176 
          sc_addr_wr(h)((SIMD)*i+j) <= std_logic_vector(unsigned(dsp_sc_write_addr(h)(Addr_Width - 1 downto SIMD_BITS+2)) + wr_offset(h)(j)); 177 
          sc_data_wr(h)((SIMD)*i+j) <= dsp_sc_data_write_int_wire(h)(31+32*j downto 32*j); 178 
        end loop; 179 
      end if;    180 
 181 
      if dsp_sci_req(h)(i) = '1' and dsp_to_sc(h)(i)(0) = '1' and dsp_data_gnt_i(h) = '1' then         -- DSP read port 1 182 
        for j in 0 to SIMD-1 loop      -- Loop through the sub-scratchpads 183 
          sc_addr_rd(h)((SIMD)*i+j) <= std_logic_vector(unsigned(dsp_sc_read_addr(h)(0)(Addr_Width - 1 downto SIMD_BITS+2)) + 184 
rd_offset(h)(0)(j)); 185 
        end loop; 186 
      end if; 187 
      for j in 0 to SIMD-1 loop        -- Loop through the sub-scratchpads 188 
        if dsp_sci_req_lat(h)(i) = '1' and dsp_to_sc_lat(h)(i)(0) = '1' then         -- DSP read port 1 189 
          dsp_sc_data_read_int_wire(h)(0)(31+32*j downto 32*j) <= sc_data_rd(h)((SIMD)*i+j); 190 
        end if; 191 
      end loop; 192 
   193 
      if dsp_sci_req(h)(i) = '1' and dsp_to_sc(h)(i)(1) = '1' and dsp_data_gnt_i(h) = '1' then       -- DSP read port 2 194 
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        for j in 0 to SIMD-1 loop        -- Loop through the sub-scratchpads 195 
          sc_addr_rd(h)((SIMD)*i+j) <= std_logic_vector(unsigned(dsp_sc_read_addr(h)(1)(Addr_Width - 1 downto SIMD_BITS+2)) + 196 
rd_offset(h)(1)(j)); 197 
        end loop; 198 
      end if; 199 
      for j in 0 to SIMD-1 loop        -- Loop through the sub-scratchpads 200 
        if dsp_sci_req_lat(h)(i) = '1' and dsp_to_sc_lat(h)(i)(1) = '1' then         -- DSP read port 2 201 
          dsp_sc_data_read_int_wire(h)(1)(31+32*j downto 32*j) <= sc_data_rd(h)((SIMD)*i+j); 202 
        end if; 203 
      end loop; 204 
 205 
      -- Allow a DSP read only if the SPM(i) being loaded belongs to another thread and the instruction is not a broadcast load (data hazard) 206 
      if kmemld_inflight(i) = '1' and dsp_sci_req(h)(i) = '1' and h /= harc_LS_wire and spm_bcast = '0' then 207 
        dsp_data_gnt_i(h) <= '1'; 208 
      -- Allow a dsp read only when it is not currently being read by a kmemstr becuase we only have one read port (structural hazard) 209 
      elsif kmemstr_inflight(i) = '1' and dsp_sci_req(h)(i) = '1' and h /= harc_LS_wire then 210 
        dsp_data_gnt_i(h) <= '1'; 211 
      -- Allow a DSP read if there are no current LSU accesses to SPM(i) 212 
      elsif kmemld_inflight(i) = '0' and kmemstr_inflight(i) = '0' and dsp_sci_req(h)(i) = '1' then 213 
        dsp_data_gnt_i(h) <= '1'; 214 
      end if; 215 
 216 
      if dsp_sci_we(h) = (0 to SPM_NUM-1 => '0') then 217 
        dsp_sci_wr_gnt(h) <= '0'; 218 
      -- Allow the DSP to write only if the kmemld is filling the SPM(i) of another thread 219 
      elsif kmemld_inflight(i) = '1' and dsp_sci_we(h)(i) = '1' and h /= harc_LS_wire and spm_bcast = '0' then 220 
        dsp_sci_wr_gnt(h) <= '1'; 221 
      -- Allow the DSP to write only when the kmemstr is reading SPM(i) of another thread 222 
      elsif kmemstr_inflight(i) = '1' and dsp_sci_we(h)(i) = '1' and  h /= harc_LS_wire then 223 
        dsp_sci_wr_gnt(h) <= '1'; 224 
      -- Allow the DSP to write if there are no current LSU accesses to SPM(i) 225 
      elsif kmemld_inflight(i) = '0' and kmemstr_inflight(i) = '0' and dsp_sci_we(h)(i) = '1' then 226 
        dsp_sci_wr_gnt(h) <= '1'; 227 
      end if; 228 
 229 
      if kmemld_inflight(i) = '1' and dsp_sci_we(h)(i) = '0' then -- One LSU write enable request will put the ls_sci_wr_gnt to '1' if there are no ongoing 230 
DSP writes to the same scratchpad 231 
        ls_sci_wr_gnt_replicated(h) <= '1'; 232 
      elsif kmemld_inflight(i) = '1' and dsp_sci_we(h)(i) = '1' and (h /= harc_LS_wire) and spm_bcast = '0' then 233 
        ls_sci_wr_gnt_replicated(h) <= '1'; 234 
      elsif unsigned(kmemld_inflight) = 0 then   -- All the ls_sci_we must be zero in-order to switch the ls_sci_wr_gnt back to '0' 235 
        ls_sci_wr_gnt_replicated(h) <= '0'; 236 
      end if; 237 
    end loop; 238 
 239 
      ---------------------------------------------------------------------------------------------------------------------------------------------------------- 240 
      --  ######         ###      ########      ###           #######    #######           #######   #######  ######   #######   #######   -- 241 
      --  ##       #       #   #            ##           #   #           ##         #   ##                   ##         ##  ##        #  ##       #  ##             ##         #  -- 242 
      --  ##       #      #####          ##         #####          #######    #######  ### ##         ##  ######    ##       #  #######   #######   -- 243 
      --  ##       #     ##     ##        ##        ##     ##        ##  ##        ##                   ##         ##  ##  ##      ##       #  ##             ##  ##       --  244 
      --  ######     ##       ##       ##       ##       ##       ##    ##      #######          #######    ##    ##    ######   #######   ##    ##     --   245 
      ---------------------------------------------------------------------------------------------------------------------------------------------------------- 246 
 247 
    for i in 0 to SIMD-1 loop 248 
      if (to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))) = 4*i) and (i /= 0) then 249 
        wr_offset(h)(i-1 downto 0) <= (others => '1'); 250 
      end if; 251 
    end loop; 252 
    for i in 0 to SIMD-1 loop     253 
      if (to_integer(unsigned(dsp_sc_write_addr(h)(SIMD_BITS+1 downto 0))) = 4*i) then 254 
        for j in 0 to SIMD-1 loop 255 
          if j <= (SIMD-1)-i then 256 
            dsp_sc_data_write_int_wire(h)(31+32*(j+i) downto 32*(j+i)) <= dsp_sc_data_write_wire(h)(31+32*j downto 32*j); 257 
          elsif j > (SIMD-1)-i then 258 
            dsp_sc_data_write_int_wire(h)(31+32*(j-(SIMD-1)+(i-1)) downto 32*(j-(SIMD-1)+(i-1))) <= dsp_sc_data_write_wire(h)(31+32*j downto 259 
32*j); 260 
          end if; 261 
        end loop; 262 
      end if; 263 
    end loop; 264 
    265 
    for k in 0 to 1 loop 266 
      for i in 0 to SIMD-1 loop 267 
        if (to_integer(unsigned(dsp_sc_read_addr(h)(k)(SIMD_BITS+1 downto 0))) = 4*i) and (i /= 0) then 268 
          rd_offset(h)(k)(i-1 downto 0) <= (others => '1'); 269 
        end if; 270 
      end loop; 271 
      for i in 0 to SIMD-1 loop 272 
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        if (to_integer(unsigned(dsp_sc_read_addr_lat(h)(k))) = 4*i) then 273 
          for j in 0 to SIMD-1 loop 274 
            if j >= i then 275 
              dsp_sc_data_read_wire(h)(k)(31+32*(j-i) downto 32*(j-i)) <= dsp_sc_data_read_int_wire(h)(k)(31+32*j downto 32*j); 276 
   elsif j < i then 277 
              dsp_sc_data_read_wire(h)(k)(31+32*((SIMD-1)-i+(j+1)) downto 32*((SIMD-1)-i+(j+1))) <= dsp_sc_data_read_int_wire(h)(k)(31+32*j 278 
downto 32*j); 279 
            end if; 280 
          end loop; 281 
        end if; 282 
      end loop; 283 
    end loop; 284 
 285 
  end process; 286 
 287 
  end generate SPM_replicated; 288 
     289 
end SCI; 290 
-------------------------------------------------------------------------------------------------- 291 
-- END of SCI architecture ----------------------------------------------------------------- 292 
--------------------------------------------------------------------------------------------------293 
 

 

 

4. Scratchpad Memories 

 
--------------------------------------------------------------------------------------------------- 1 
entity Scratchpad_memory is 2 
  port( 3 
       clk_i                         : in  std_logic; 4 
       sc_we                         : in  array_2d(accl_range)(SIMD*SPM_NUM-1 downto 0); 5 
       sc_addr_wr                    : in  array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Addr_Width-(SIMD_BITS+3) downto 0); 6 
       sc_addr_rd                    : in  array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Addr_Width-(SIMD_BITS+3) downto 0); 7 
       sc_data_wr                    : in  array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Data_Width-1 downto 0); 8 
       sc_data_rd                    : out array_3d(accl_range)(SIMD*SPM_NUM-1 downto 0)(Data_Width-1 downto 0) 9 
       ); 10 
end Scratchpad_memory; 11 
 12 
--------------------------------------------------------------------------------------------------- 13 
architecture SC of Scratchpad_memory is 14 
 15 
signal mem : array_3d(ACCL_NUM*SIMD*SPM_NUM-1 downto 0)(2**(Addr_Width-(SIMD_BITS+2))-1 downto 0)(Data_Width-1 downto 0); 16 
signal h   : std_logic_vector(ACCL_NUM*SIMD*SPM_NUM downto 0); 17 
attribute ram_style : string; 18 
attribute ram_style of mem : signal is "block"; 19 
 20 
begin 21 
 22 
 --------- replicate logic three times -------------------------------- 23 
  spm_replicas : for g in accl_range generate  24 
  spm_banks    : for h in 0 to SIMD*SPM_NUM -1 generate  25 
     26 
    write_logic: process(clk_i) --  27 
    begin 28 
      if(clk_i'event and clk_i='1') then 29 
         sc_data_rd(g)(h) <= mem(g*SIMD*SPM_NUM + h)(to_integer(unsigned(sc_addr_rd(g)(h)))); 30 
        if sc_we(g)(h) = '1' then         --write mode 31 
          mem(g*SIMD*SPM_NUM + h)(to_integer(unsigned(sc_addr_wr(g)(h)))) <= sc_data_wr(g)(h); 32 
        end if; -- we 33 
      end if; -- clk 34 
    end process; 35 
 36 
  end generate spm_banks; 37 
  end generate spm_replicas; 38 
  -- end of replicated logic -------------------------------------------- 39 
 40 
end SC; 41 
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Glossary 

 
ANN: Artificial Neural Networks 

CNN: Convolutional Neural Networks 

CSR: Control and Status Registers 

DCNN: Deep Convolutional Neural Networks 

DLP: Data Level Parallelism 

FPGA: Field Programmable Gate Array 

FU: Functional unit (general name for any arithmetic or logic unit) 

F0x:  Fault tolerant version of the T0 cores designed to make the Klessydra cores reliable in space 

environments prone to faults 

Harc:  (hardware context) a positive integer number identifying a hardware thread in the processing 

core. 

Hart: hardware thread  

IMT: Interleaved Multithreading. 

IoT: Internet of Things. 

ILP: Instruction Level Parallelism. 

IPC: Instructions per Cycle. 

IRQ:  interrupt request. 

ISA: Instruction Set Architecture. 

Klessydra:  the name of the family of processing cores reported in this manual. 

MIPS: Millions of Instructions Per Second. 

NT: Number of Active harts in the core 

Modelsim: RTL Simulator. 

OOO: Out-of-order architecture. 

PULP:  an open-source multi-core processor architecture. 

PULPino:  an open-source System-on-Chip single-core microcontroller architecture. 

ReLu: Rectified Linear Unit, it rectifies negative values to zero. 

RI5CY: Generic four-stage pipeline Riscy core from Pulpino 

RISC: Reduced Instruction Set Computing 

RISC-V: Open RISC instruction set architecture. 

S0:  a core belonging to the Klessydra family featuring single-thread execution at minimum hardware 

cost 
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SIMD: Single Instruction Multiple Data 

SPE:  Special Purpose Engine, the engine the executes the SPMU instruction 

SPI:  Scratchpad Memory Interface, that is the interface that manages the communications between 

the SPE, LSU, and SPMs. 

SPM:  Scratchpad memory, which is a local memory accesses by the LSU and SPE 

SPMU:  Special Purpose Mathematical Unit, this is the hardware accelerator of the T13, that has two 

integrated entities. The SPE and SPI. 

 

T0: an IMT implementation in the Klessydra family, supporting interleaved multiple thread execution 

T1:  upgraded version of the T0 core designed to widen the target applications of Klessydra through 

hardware acceleration 

TLP: Thread Level Parallelism 

TPS: Thread Pool Size, is the number of hardware threads in the core 

TPB: Thread Pool Baseline, is the minimum baseline required to not have any pipeline stalls 

Vivado: Software Suite for Synthesizing RTL on XILINX FPGAs 

VGG16: A deep fully connected convolutional neural networking algorithm, used for image 

recognition 

Zero-Riscy: Generic two-stage pipeline Riscy core from Pulpino
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