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Abstract

Upper limb amputation is a traumatic event with a dramatic impact on the everyday
life of a person. The available solutions to restore the functionality of the missing
hand via myoelectric prostheses have become ever more advanced in terms of
hardware, but they are still inadequate in providing natural and robust control. One
of the main difficulties is the variability and degradation of the electromyographic
signals, which are also affected by amputation-related factors. To overcome this
problem, it has been posited to combine surface electromyography with other sources
of information that are less affected by the amputation.

Some recent studies have proposed to improve the control by integrating gaze,
as visual attention is often predictive for future actions in humans. For instance,
in manipulation tasks the eyes tend to fixate an object of interest even before the
reach-to-grasp is initiated. However, the initial investigations reported in literature
that combine vision with surface electromyography do so in an unnatural manner,
meaning that the users need to alter their behavior to accommodate the system.
The successful exploitation of gaze envisioned in this work is the opposite, namely
that the prosthetic system would interpret the subject’s natural behavior. This
requires a detailed understanding of the visuomotor coordination of amputated
people to determine when and for how long gaze may provide helpful information for
an upcoming grasp. Moreover, while some studies have investigated the disruption
of gaze behavior when using a prosthesis, no study has considered whether there is
any disruption in visuomotor coordination due to the amputation itself.

In this work, we verify and quantify the gaze and motor behavior of 14 transradial
amputees who were asked to grasp and manipulate common household objects with
their missing limb. For comparison, we also include data from 30 able-bodied
subjects who executed the same protocol with their right arm. The dataset contains
gaze, first person video, angular velocities of the head, and electromyography and
accelerometry of the forearm. To analyze the large amount of video, we developed
a procedure based on recent deep learning methods to automatically detect and
segment all objects of interest. This allowed us to accurately determine the pixel
distances between the gaze point, the target object, and the limb in each individual
frame. Our analysis shows a clear coordination between the eyes and the limb in the
reach-to-grasp phase, confirming that both intact and amputated subjects precede
the grasp with their eyes by more than 500 ms. Furthermore, we note that the gaze
behavior of amputees was remarkably similar to that of the able-bodied control
group, despite their inability to physically manipulate the objects.

Based on this knowledge, we show in a proof of concept that the combination of
gaze and surface electromyography improves grasp recognition, both for intact and
amputated subjects, compared to when only the latter modality is used. To make
the integration natural for the user, we devised a method that allows a simultaneous
combination of these modalities and weights the visual features based on their
relevance. This evaluation is addressed as a proof of concept since the experiments
were executed in a standard laboratory environment. We conclude the work therefore
with a study to highlight the difficulty that machine learning based approaches need
to overcome to become practically relevant also in daily living conditions.
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Chapter 1
Introduction

Hands are an indispensable tool that allow humans to interact with the environment.
The loss of a limb is therefore a traumatic event with a severe impact on the private,
working, and social life of a patient. After the amputation the level of autonomy
diminishes dramatically, for instance people struggle to perform even simple self-care
activities (Niedernhuber et al. 2018). This factor has an important impact also
in the working life and as a result many amputees remain unemployed or have to
change their occupation (Burger 2009). For these reasons a big sense of frustration
is often experienced after amputation. This may also be increased by the low
acceptance of many prosthetic devices that the users do not feel as part of their own
body (Niedernhuber et al. 2018).

Non invasive upper-limb prostheses that aim to substitute the missing arm can
be divided in passive and active variants. Cosmetic hands, belonging to the first
group, can either be static or adjustable (Maat et al. 2018). In the first case, the
purpose of the prosthesis is purely aesthetic since no movement is possible, whereas
in the second case it can manually be adjusted in a few configurations. Active
prostheses, as the name suggests, can be actuated voluntarily by the user rather than
by external factors (Castellini and Smagt 2009). This group includes body-powered
and myoelectric devices (Carey et al. 2015). The first type is mechanically driven by
shoulder movements that allow to open and close a hook. Myoelectric prostheses, on
the other hand, are actuated by the muscles in the forearm. In this case, electrodes
placed on the upper limb record changes in electric current from the skin after a
neurological activation of the muscles. This recording of myoelectric signals from
the skin in a non-invasive manner is known as surface electromyography (sEMG).
These muscular signals are then converted into control commands for the prosthesis,
which may range from simple opening and closing to more advanced commands.
The three described types of prostheses are reported in Figure 1.1.

Though the myoelectric devices may seem the most sophisticated, a review
by Carey et al. (2015) highlights that body-powered prostheses are perceived as
more durable and practical, and require shorter training time. Moreover the cost
of myoelectric prostheses is substantially higher than other options (Resnik et al.
2012; Huang et al. 2001). Furthermore, they typically use “direct control”, in which
sEMG is collected from a pair of antagonist residual muscles to just open and close



18 CHAPTER 1. INTRODUCTION

Cosmetic Body-Powered Myoelectric

Figure 1.1. Examples of cosmetic, body-powered, and myoelectric prostheses.

the hand (Ison and Artemiadis 2014). Only recent developments in commercial
multi-articulated hands have allowed multiple grasp configurations from which a user
can manually or semi-manually select one (Belter et al. 2013). The main problem of
these devices is posed by the control, which is difficult and time consuming (Atkins
et al. 1996; Castellini et al. 2014). Due to this and other problems, the mean rejection
rate of these devices is high (Biddiss and Chau 2007b; Biddiss et al. 2007). A telling
example of all these issues is given by the experience at the last Cybathlon 2016,
which is a competition where people with physical disabilities use state of the art
assistive devices to complete everyday life activities. The upper limb competition
was won by a user wearing a body-powered prosthesis, which was far less advanced
and much more economical than the myoelectric options worn by his competitors.

In literature several studies have attempted to interpret the intention of amputees
by analyzing sEMG collected from the residual limb by means of Pattern Recognition
(PR) (Herberts et al. 1973; Graupe et al. 1977; Wirta et al. 1978; Zecca et al. 2002;
Roche et al. 2014; Hakonen et al. 2015, among others). However, the majority of
these findings did not lead to an effective improvement in the clinical setting or real
life (Farina et al. 2014; Roche et al. 2014; Resnik et al. 2018; Simon et al. 2019).
The primary obstacle of these studies is related to the difficulty of decoding sEMG
reliably in a realistic setting. Myoelectric signals are user-dependent and this holds
in particular for amputees, as the amputation and subsequent muscular (dis)use have
a considerable impact on the nature of these signals (Farina et al. 2002). Moreover,
their quality changes in time due to fatigue, displacement of the electrodes, and
sweat (Young et al. 2011; Castellini et al. 2014; Stango et al. 2014). To improve the
control of myoelectric prostheses a number of strategies have been proposed (see
Castellini et al. 2014; Farina et al. 2014; Madusanka et al. 2015; Herrera-Luna et al.
2019, and references therein). The idea behind many of these methods is to improve
movement recognition by integrating or replacing sEMG with other modalities that
are less influenced or deteriorated by amputation.

1.1 Visual Integration in Prostheses

The strong relationship between visual perception and manipulation makes the
subject’s gaze an appealing choice as supportive modality for myoelectric prosthe-
ses (Markovic et al. 2014; Hao et al. 2013). Vision plays an important role during
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activities of daily living (ADLs), not only to guide the activity itself but also in
the initial planning phase. Gaze is thus said to be anticipatory and can be used to
understand an individual’s intentions even before they manifest themselves in the
motor domain (Land et al. 1999; Johansson et al. 2001, among others). Moreover, a
careful observation of the eyes’ activity not only informs on the intention to grasp,
but can also help in identifying which object to grasp or, at the very least, its size and
shape. Not surprisingly, several studies have attempted to use this information to
help disabled people. For instance, in a robot assistant scenario the understanding of
gaze fixations may be used to interpret the user’s intentions (Admoni and Srinivasa
2016; Saran et al. 2018) or to aid tetraplegic patients who operate an exoskeleton in
grasping activities (McMullen et al. 2013; Corbett et al. 2014).

In the prosthetic context, Castellini and Sandini (2006) proposed to use gaze to
determine which object a user intends to grasp. The integration of gaze and vision as
contextual information could be helpful especially during the initial transient phase
of a movement, when the hand is preshaping its configuration to match the desired
grasp. Due to its ambiguous nature, this reaching phase is the most challenging
part of a movement to obtain a correct grasp classification from sEMG (Hargrove
et al. 2007a). Since gaze is said to precede a manipulation, it seems a promising
candidate to support the grasp recognition in a natural way. Leveraging over natural
behavior of the user would make the recognition process faster and more intuitive,
contributing to lower the cognitive burden. Since fatigue is one of the causes of
variability in sEMG data, reducing it may also help to stabilize control.

The idea of using gaze besides sEMG to improve grasp recognition in myoelectric
prosthesis has barely been explored in literature (Hao et al. 2013; Markovic et al.
2014; Markovic et al. 2015). In these studies, the subject is often equipped with
customized glasses with a scene camera or eye tracking devices. Once the object
has been successfully detected the user can proceed with the grasp, which is often
selected based purely on the visual recognition of the object itself without considering
sEMG. In these approaches, the visual behavior is imposed by the experimental
requirements (i.e., to fixate an object until its recognition); a clear understanding
of the natural visual planning was therefore unnecessary. A few unrelated studies
have started to investigate the visuomotor coordination of prosthetic users while
performing grasping or manipulation activities with their prosthesis (Bouwsema et al.
2012; Sobuh et al. 2014; Hebert et al. 2019; Aronson and Admoni 2018). The idea
behind these studies is that the visual behavior can be used to evaluate the confidence
that the users have with their prosthetic hands. These investigations highlighted
indeed that prosthetic users spend more time looking the grasp related areas rather
than planning forthcoming actions, contrary to what would be expected from intact
users. A preliminary research, involving two amputated subjects with different skills
in using a prosthesis, has hypothesized that the gaze behavior may “normalize” with
an increasing confidence in the control response of the device (Chadwell et al. 2016).
This research topic is however in its initial stages and a clear understanding of the
visuomotor coordination of amputated people requires more investigation.
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1.2 Research Questions and Contributions

In this thesis we explore the idea to fuse sEMG and gaze in a natural manner, rather
than asking the users to accommodate the system by changing their visual behavior.
Successfully exploiting the user’s gaze behavior requires a precise understanding of
natural eye-hand coordination. The primary contribution of this thesis is therefore
a quantitative and qualitative investigation on the visuomotor coordination of
amputees during reaching and grasping. A specific aim of this investigation is to
determine the window of opportunity in which gaze can provide useful information
for intent recognition before the realization of the grasp. Contrary to prior work,
in this thesis we study the so-called “movements without movement” (Raffin et al.
2012b) to understand whether the eye-hand coordination has changed as a result
of the amputation, rather than due to difficulties controlling a prosthesis. In other
words, the participants were required to perform the movements as naturally as
possible with their missing limb. This “ideal” setting does not imply that the
results are not relevant for the prosthetic setting; the disruption of gaze strategies is
actually characterized by a markedly longer reaching phase, while still maintaining
the majority of the fixations on the target object (Sobuh et al. 2014; Hebert et al.
2019). The window of opportunity for gaze integration in the prosthetic setting is
therefore expected to be considerably longer than the one we identify here.

More specifically, the main contributions of this work are the following.

Data Acquisition: We established an acquisition protocol to collect sEMG and
gaze data from 30 intact and 15 amputated subjects engaged in multiple
grasp and manipulation activities. Although all the tasks were performed
in a laboratory environment, these were designed to include several levels
of variability from the point of view of the manipulated objects, the limb
position, and the complexity level of the grasp. The intact subjects executed
the experiment with their right hand, the amputees were instead instructed to
attempt to execute the action as naturally as possible “as if their missing limb
were still there”.

Estimate Feasibility Window: We precisely studied the gaze, head, and hand
coordination in the reach-to-grasp phase both for intact and amputated subjects
to estimate the time elapsed from the first fixation on the target object to the
grasp. This evaluation is meant to quantify the temporal window in which the
gaze information are useful to guide the grasp. To perform this analysis, we
developed an automatic framework that employs state-of-the-art deep learning
techniques to automatically detect and segment all objects of interest from the
videos collected by the eye tracking glasses worn during the acquisitions.

Visuomotor Comparison: We investigated the visuomotor coordination of am-
putees quantitatively and qualitatively during several functional tasks and
compared the obtained results with those of intact subject involved in the same
activities. The aim of this study was to understand whether the amputation
has influenced the manipulation and visual strategies in the absence of external
factors, like the presence of a prosthesis, that could bias the outcome.
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Proof of Concept: We devised a method to integrate sEMG and gaze data at
the kernel level of a classifier to discriminate eleven hand configurations. The
contribution of the gaze modality is weighted based on the distance of the eyes
from the objects: the closer the gaze is to a known object, the more importance
the information has in the grasp evaluation. The proposed method was used in
a proof of concept to evaluate whether the inclusion of the visual information
improves the recognition of the grasps performed by amputated subjects.

Analysis of Grasp Recognition during ADLs: We performed several analyses
at the hand of a dedicated data acquisition composed of a typical laboratory
training session in the first phase and a set of activities of daily living in a
home setting afterwards. The objective was to provide a best-case analysis on
whether grasps can be recognized if they are part of a composite, goal-oriented
manipulation action such as an ADL.

1.3 Outline

The thesis starts in Chapter 2 with a general introduction on the relevant topics
on which the work is based. The chapter opens with a description of surface
electromyography and its use in myoelectric prostheses, subsequently it presents
the machine learning methods used for the analysis of such data. The second part
of the same chapter is dedicated to gaze and eye tracking techniques. Chapter 3
provides an overview of state of the art methods to improve prosthetic control via
auxiliary modalities. A specific emphasis is given to the recent studies that proposed
to integrate visual information with sEMG. We also report relevant findings on the
visuomotor coordination of intact and amputated subjects. The dataset used in
the majority of the studies presented in this work is described in Chapter 4, which
includes also the preliminary tests on the acquisition protocol and the final technical
validation on the acquired data. In Chapter 5 we introduce the automatic framework
that was developed to analyze the huge amount of visual data collected in the dataset;
specific attention is given to the deep learning methods on which this approach was
built. The results obtained using this method on the visuomotor coordination of
intact and amputated subjects are presented and examined in Chapter 6, which
includes a comparison between the two groups of subjects and a discussion on the
potential application in the prosthetic context. Based on these results, Chapter 7
contains a proof of concept approach on integrating sEMG and gaze data. It describes
the approach and analyzes in detail the improvements gained from this integration.
In Chapter 8, we extend some of the previous analyses evaluating specifically the
realistic activities of daily living. This chapter begins with a description of the
collected dataset and follows with the performed analysis and a thoughtful discussion
on the differences between experiments conducted in controlled and unconstrained
environments. Finally, the conclusions and directions for future work are presented
in Chapter 9.
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Chapter 2
Background

The work of this thesis is multi-disciplinary by nature, touching on topics related to
machine learning, the biophysics of sEMG of the forearm’s muscles, and the gaze
behavior in response to external stimuli. This chapter is meant to give a general
overview of the main principles and concepts behind the topics treated in the rest of
the work. In Section 2.1 we introduce the techniques generally adopted to collect
signals from the muscles during a movement and we explain how this information
is used to control a myoelectric prosthesis. In the academic setting, many pattern
recognition or machine learning approaches have been proposed to control advanced
multi-channel and poly-articulated prostheses. For this reason, in Section 2.2 we
introduce the general concepts of machine learning with an emphasis on the methods
that are used in the following chapters to analyze sEMG data. Since in this thesis we
investigate the benefit of integrating sEMG with gaze, in Section 2.3 we detail the
main eye tracking techniques that are used to collect visual information. Moreover,
we explain how the data collected with such methods are processed to obtain the
information that describes the gaze behavior of a person.

2.1 Surface Electromyography for Myoelectric Prosthe-

ses

The motor system is a complex structure that is organized in central and peripheral
units, which when activated in coordination allows humans to move (Rizzolatti and
Luppino 2001; Augustine 2008). Motor programming takes place in specific parts
of the cerebral cortex, the bioelectric signal is then transmitted to the spinal cord,
and finally reaches the skeletal muscle of the limb leading to its contraction and
therefore a movement. The electrical activity observed in the skeletal muscles is
composed of a train of so-called motor unit action potentials (MUAPs), which are
considered the basic elements of the signal. This muscular activity can be recorded
via invasive or non invasive EMG (Merletti et al. 2004), as illustrated in Figure 2.1.

Intramuscular EMG is a method that allows to detect MUAPs in a small volume
by means of intramuscular needles (Adrian and Bronk 1929; Farina and Negro 2012;
LeFever and De Luca 1982). This approach is highly invasive but provides localized
information concerning superficial or deep muscles, depending on where the needle
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(a) intramuscular EMG (b) surface EMG

Figure 2.1. Schematic example of the techniques used to acquire EMG signals. In (a) EMG
is recorded using an invasive method, with needles that record localized information
within the muscles. In (b) the global muscle activity is recorded via surface electrodes
placed on the skin.

is inserted. In many situations it may be difficult or unfeasible to perform invasive
recordings; for instance, invasive measurements poses large difficulties when intended
to be used daily as a control modality of a prosthesis. In such applications, the
collection of EMG from the surface of the skin is therefore often preferred. This
non-invasive superficial technique has however its limitations, as the acquired signal
is not localized and it is nearly impossible to isolate the sEMG recorded from a single
muscle. More generally, the so-called “cross-talk” effect is when some components
of the signal from a muscle interfere with the signals of another muscle (De Luca
and Merletti 1988; Winter et al. 1994; Dimitrova et al. 2002). Some studies have
proposed an atlas of electrode placement to standardize their positioning based on
the specificity of the information that may be collected in each area (Basmajian
and Blumenstein 1980; Criswell 2010), but these guides have not become a widely
accepted standard.

Most amputees still have some volitional control over their residual muscles
and EMG can therefore be measured by surface electrodes on their stump. These
signals have been used to control active, myoelectric prostheses in a non invasive
manner (Geethanjali 2016). In the most common myoelectric prostheses, two channels
of sEMG activity are collected from a pair of agonist-antagonist muscles (Zecca et al.
2002). This allows to open and close the hand via a solution known as direct control,
as already introduced in Chapter 1. More articulated prostheses can extend this by
allowing the user to switch among a set of possible grasps via a special activation
pattern (Belter et al. 2013; Van Der Riet et al. 2013). For instance, the Michelangelo
hand1 has 7 available grips and the Bebionic hand allows 14 grasps2 (Van Der Riet
et al. 2013). A co-contraction or another predefined movement allows to iterate
through the set of available grasps; once the desired grasp has been selected, the
hand can be opened or closed with a direct control (Mastinu et al. 2018). To make
the grasp selection faster, the i-Limb3 hand allows to select a grasp also via a
phone application or using special adhesive stickers that indicate the proximity of

1https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/

michelangelo-prosthetic-hand/
2https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/

bebionic-hand/
3https://www.ossur.com/prosthetic-solutions/products/touch-solutions/

i-limb-quantum
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grasp-labeled objects via the near-field communication protocol.

The previous manner to control prostheses is not intuitive and users often need
a lot of practice to become confident with this mechanism (Peerdeman et al. 2011).
In other words, the increased dexterity of recent advanced prosthesis comes at the
cost of increased control difficulty. One of the limiting factors is the use of only two
electrodes to collect the sEMG from the stump, which impedes control methods
based on PR or machine learning. Such methods promise to allow both natural
and more advanced control than the traditional direct control. In the academic
environment, the first PR approaches date back to the 1960s - 1970s (Herberts et al.
1973; Graupe et al. 1977; Wirta et al. 1978). Machine learning applied to rich,
multi-channel sEMG allows in essence the direct recognition of multiple grasps, thus
bypassing the sequential grasp selection. However, despite decades of research the
majority of these approaches have not led to an effective improvement in the quality
of life of the patients. In fact, only one PR-based approach has recently been released
commercially (Coapt, LLC 2015). As already explained in Chapter 1, the challenge
consists in recognizing the amputee’s grasp intent in a reliable manner from sEMG,
which depends on factors as age, muscular use, and level of amputation (Farina et al.
2002; Criswell 2010; Young et al. 2011; Stango et al. 2014).

2.2 Machine Learning

Machine learning algorithms construct a mathematical model to solve a problem
without being explicitly programmed to solve that problem (Mitchell 1997; Shalev-
Shwartz and Ben-David 2014; Mohri et al. 2018). Such algorithms are said to be
“data-driven”, since they learn from examples and, based on this knowledge, construct
a model to make decisions about future unknown data. The input to the algorithm
is a set of training data, which is composed of observations concerning the problem
to solve, and the responses that correspond to these observations, usually referred
to as their labels. In a classification problem, which is the type of problem treated
in this work, the label for an example is one of a discrete set of classes. The goal is
then to create a general model that is able to predict the correct output class for
unseen samples. These unknown samples are called test data and serve to estimate
the performance of the model, which is measured by comparing the predicted labels
with the ground-truth of the test set. In the context of myoelectric prostheses, the
inputs are the sEMG signals and the labels are the movements chosen from a set
of possible hand configurations. Based on the relevant features of the signals, a
classification model is trained to distinguish between these grasps. Then in the test
phase, the model assigns to each unknown sEMG sample one of the possible classes.

More specifically, let us define with X ⊆ R
d and Y ⊆ R the input and the

output spaces. We indicate an input datum as xi ∈ X and the associated label
as yi ∈ Y. In particular, we focus on supervised classification problems where the
output space is known and represented by a set of G possible classes Y = {1, . . . , G}.

The training set is represented by a set of N input-output pairs D =
{
(xi, yi)

}N

i=1
drawn from an unknown probability distribution P (x, y). To guarantee that this
training set is representative also for future samples, it is assumed that the training
data are independent and identically distributed. Similarly, the test set is indicated
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as D′ = {xi, yi}
M
i=1 and, in standard machine learning approaches, it is assumed that

train and test data come from the same joint distribution P (x, y).
The goal of a machine learning algorithm is to find a function

h ∈ F s.t. h : X 7→ Y (2.1)

that for a future input vector x determines the corresponding output y. A measure
of quality for this hypothesis function h is given by the loss function L : Y × Y 7→ R+

defined as L(y, h(x)). The optimal choice of h corresponds then to the function that
minimizes the loss over the joint distribution P (x, y) of the input and output space.
This quantity is referred to as the expected risk

Rexp(h) =

∫

X ×Y
L(y, h(x))dP (x, y) . (2.2)

In practice, it is impossible to calculate this quantity since the distribution P (x, y)
is unknown. Therefore the minimization of the loss is calculated over the training
samples to obtain the empirical risk

Remp(h) =
1

N

N∑

i=1

L(yi, h(xi)) . (2.3)

The model obtained when optimizing the empirical risk is however not necessarily
able to generalize to unseen samples. For instance, the model may simply memorize
all the training samples, such that it would perform optimally on the training data
but it would not be able to predict anything meaningful about new samples. This is
the well-known overfitting problem. To avoid this issue, we optimize instead

λΩ(h) +
1

N

N∑

i=1

L(yi, h(xi)) . (2.4)

In this equation, Ω(h) is a regularizer that avoids overfitting by penalizing the
complexity of function h; λ is instead a parameter that balances the tradeoff between
the two terms of the equation.

2.2.1 Linear Classifiers

The easiest group of problems approached in machine learning can be addressed
with linear classifiers. Let us suppose for simplicity that the classification problem is
binary, so that Y = {−1, +1}. In this case, the samples belonging to the two classes
can be separated by a linear function in the space

F =
{

x 7→ sign(w · x + b) : w ∈ R
d, b ∈ R

}
. (2.5)

The hypothesis function h(x) = sign(w ·x+b) assigns a positive label to the samples
falling on one side of the hyperplane w · x + b = 0 and a negative label to the others.

A multiclass classification problem can be tackled by reducing it to multiple
binary classification tasks following the one versus all or one versus one approach.
In the first case, we solve G independent binary classification problems where in
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turn each of the classes is discriminated from the G − 1 remaining classes. For
each subproblem, a function fg(x) = w · x + b is learned and the final multiclass
hypothesis function is rewritten as

h(x) = argmax
g∈Y

fg(x) . (2.6)

In the latter case, a classifier is instead learned for each pair of classes (g, g′) with
the resulting hypothesis function hgg′. The multiclass hypothesis function is then
derived via majority vote

h(x) = argmax
g′∈Y

∣∣∣
{
g : hgg′(x) = 1

}∣∣∣ . (2.7)

Regularized Least Squares One possible way to choose the linear function h

is to select the hyperplane w that separates the classes of the training data with
the maximum margin. Let us ignore the bias b in Equation 2.5 for convenience,
as it can trivially be embedded in the weight vector w by adding a unitary last
element to each input sample. With this simplification, the hypothesis function
becomes h(x) = sign(〈w, x〉). It can mathematically be shown that the L2 norm of
the weight vector is proportional to the inverse of the margin between both classes.
So choosing this norm as the regularization term and combining it with the common
squared loss function, Equation 2.4 can be rewritten as

J(w, λ) =
λ

2
‖w‖2 +

1

2

N∑

i=1

(yi − h(xi))
2 =

λ

2
‖w‖2 +

1

2
‖y − Xw‖2 . (2.8)

In the second equation we use matrix notation, therefore X = [x1, . . . , xN ]T is
an N × d matrix of all the training samples and, similarly, y = [y1, . . . , yN ] is the
vector of the labels of the training data. The factor 1

2 was added for mathematical
convenience, but it is not relevant for the calculation. By minimizing the previous
equation with respect to w we can determine the hyperplane that minimizes the
prediction errors while maximizing the margin between both classes as

∂J(w, λ)

∂w
= 0 ⇒ w⋆ = (λI + XT X)−1XT y , (2.9)

where I is an identity matrix of dimension d × d.

Linear Discriminant Analysis In the previous method we calculated a linear
function that minimizes the error between the predicted and true labels of a set
of training data. Linear Discriminant Analysis (LDA) instead aims to find the
best data projection that maximizes the class separation while contemporaneously
minimizing the samples intra-class variance (Bishop 2006). Let us consider a binary
problem with N1 samples belonging to the first class and N2 to the second. The
mean and variance for each group are respectively (m1, s1) and (m2, s2). The
objective function to maximize is then the ratio

J(w) =
wT SBw

wT SW w
(2.10)
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Figure 2.2. Overview of the kernel trick. In the input space the samples are non linearly
separable, but by mapping them in an higher dimensional feature space using the feature
mapping function Φ a linear classification problem is obtained.

of the between-class covariance matrix

SB = (m2 − m1)(m2 − m1)T (2.11)

divided by the within-class covariance matrix

SW =
N1∑

i=1

(xi − m1)(xi − m1)T +
N2∑

i=1

(xi − m2)(xi − m2)T . (2.12)

The optimization of the objective function leads to the separation hyperplane

w ∝ S−1
W (m2 − m1) . (2.13)

Due to its simplicity LDA has been popular in the context of prosthetic control (En-
glehart and Hudgins 2003).

2.2.2 Non Linear Classifiers

Linear classifiers are simple and computationally lightweight, but often not sufficiently
representative for the majority of practical problems. An approach to define non
linear decision boundaries while in essence still solving a linear method is given by
the so-called kernel trick. Instead of working with the original data x, we map them
in a higher, possibly even infinite dimensional feature space using the mapping

Φ : X 7→ H , (2.14)

where H is the Hilbert space. With this mapping we can apply the same linear
algorithms, but in a more “powerful” high dimensional space, as shown in Figure 2.2.

Since Φ(x) is a mapping into an high dimensional space, its computation may
not be efficient or even impossible in case of an infinite dimensionality. However, for
many algorithms it is not necessary to explicitly map the samples into H; instead, it
is sufficient to be able to calculate the inner product

K(x, x′) = 〈Φ(x), Φ(x′)〉 ∀ x, x′ ∈ X (2.15)



2.2. MACHINE LEARNING 29

between any two samples, where K : X × X 7→ R is the so-called kernel function.
The computational advantage is then given by the specific set of kernels that can
calculate this inner product directly from the original samples in the input space X ,
without explicitly mapping them into H. Some popular examples of such kernels
are:

• Polynomial kernel:

K(x, x′) = (x · x′ + c)d with c > 0 , (2.16)

where d is the degree of the polynomial. Note that the linear kernel is a special
case of the polynomial kernel with c = 0 and d = 1.

• Gaussian or Radial Basis Function (RBF) kernel:

K(x, x′) = exp
(

− γ
∥∥∥x′ − x

∥∥∥
2 )

with γ > 0 . (2.17)

• Exponential χ2 kernel:

K(x, x′) = exp

(
− γ

d∑

i=1

2(xi − x′
i)

2

(xi + x′
i)

)
with γ > 0 . (2.18)

Since the kernel has been defined as an inner product, it can also be interpreted
as a measure of similarity between two samples (x, x′) in the feature space. However,
a kernel function corresponds to an inner product in some feature space H only
under certain conditions. These are specified by Mercer’s condition (Mercer 1909),
which requires the kernel to be symmetric positive semi-definite. If this condition is
satisfied, then it can also be demonstrated that kernels can be combined to create
other kernels. More specifically, (1) the sum of two kernels is a kernel, (2) the
product of kernels is a kernel, and (3) the product of kernel with a constant factor is
a kernel (Shawe-Taylor and Cristianini 2004).

Kernel Regularized Least Squares Using the kernel approach the Regularized
Least Squares (RLS) method can be extended to the non linear case using a family
of hypothesis functions h(x) = sign(〈w, Φ(x)〉). Equation 2.9 can be rewritten as

w⋆ = (λI + ΦΦT )−1ΦT y = ΦT α =
N∑

i=1

αiΦ(xi) , (2.19)

where Φ = [Φ(x1), . . . , Φ(xN )]T and α = (K + λI)−1y with K = ΦΦT . The
optimal hypothesis function is then obtained as

h⋆(x) = sign(〈ΦT α, Φ(x)〉) = sign




N∑

i=1

αi〈Φ(xi), Φ(x)〉


 = sign(〈α, k〉) , (2.20)

where k = [k(x, x1), . . . , k(x, xN )]T is the vector of the kernel similarity between a
new sample x and the training set.
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2.2.3 Classification Scheme and Features

In the previous section, we indicated the sEMG data with the vector x, however
this is not entirely accurate. Raw sEMG measures trains of MUAPs, so rather
than looking at the electrical current at one point of time one should consider
a window of historic data to get meaningful information on the level of muscle
activation. This slicing of the entire sEMG signal in overlapping windows is shown
in Figure 2.3. The final grasp decision is then made for each window individually.
This processing scheme was proposed by Englehart and Hudgins (2003) and later
followed by the majority of the studies in the field. Furthermore, rather than using
the entire sequence of raw sEMG as input, a more compact representation of this
sequence is used, which should encode the relevant information of the muscle activity.
This process is known as feature extraction and it is performed for each window of
data (Hudgins et al. 1993; Zecca et al. 2002; Englehart and Hudgins 2003).

A wide variety of features has been proposed in literature (Zardoshti-Kermani
et al. 1995; Englehart et al. 1999; Micera et al. 2010). The time domain features,
based on the evaluation of sEMG amplitude, are the easiest to extract since the
signal does not require additional preprocessing steps. Moreover it has been shown
that there is a quasi linear relationship between the muscle force and the Root Mean
Square (RMS) amplitude of the signal (De Luca 1997a). With the aim to capture
this relation, a simple data aggregation like RMS or Mean Absolute Value (MAV) is
often used (Phinyomark et al. 2012). The frequency domain features instead rely on
the spectral characteristics of the signal, which seem to be related to the velocity
of muscle fibers (Farina et al. 2004). Other more advanced features, such as the
short-time Fourier transform (STFT) and marginal Discrete Wavelet Transform
(mDWT), capture information in both the time and the frequency domains, aiming
to preserve as much information as possible from the original signal. An extensive
list of the main features is provided by Zecca et al. (2002) and Micera et al. (2010).

The ideal window length of historic data is a tradeoff between the minimum
number of samples that allows to obtain a correct classification of the movement
and the lowest possible delay. It is clear that a large window length may capture
more statistical properties of the performed grasp. On the other hand, to wait for
the acquisition of such information increases the delay between data collection and
movement execution. The idea of overlapping windows of historic data is meant to
reduce as much as possible the time delay from the signal reception to the grasp
prediction, rather than waiting the entire window length before processing another
segment. In literature various window lengths have been analyzed, the ideal size was
found to be between 150 ms to 250 ms (Smith et al. 2010), but also shorter windows
provide a good classification accuracy (Englehart and Hudgins 2003).

2.3 Eye Tracking

While the first part of this chapter focused on the hand, this second part is dedicated
to the eyes. An overview of the eye’s anatomy is presented in Figure 2.4. The
visible part of the eye is composed of the sclera (i.e., the white part), the iris (i.e.,
the colored part), and the pupil, which is located at the center of the iris and
regulates the amount of light in the eyes by changing its diameter (Snell and Lemp
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Figure 2.3. Overlapping windows of historic sEMG data. Figure credit: Englehart and
Hudgins (2003).

Figure 2.4. Anatomy of the eye.

2013; Duchowski 2017). The iris is protected by the cornea, a transparent external
membrane. Internally, behind the iris, a biconvex lens converges the light rays on
the retina, an inner photosensitive layer. A particular region of the retina, known as
the fovea, is the part of the eye that has the sharpest vision and that is responsible
for most of color perception.

Eye- and pupil-related information is generally collected for clinical and scientific
purposes. Over the last decades, considerable efforts have been spent on the
development of new eye tracking devices that allow to estimate where a person is
looking. Among the traditional eye tracking techniques, Morimoto and Mimica
(2005) distinguish between intrusive and non-intrusive methods. In the first case,
the recording device is placed in direct contact with the user, such as for instance
contact lenses, electrodes, or head-mounted devices. The method is non-intrusive
when remote cameras are used to capture images of the eyes. Some camera based
devices can be considered as semi-intrusive if they are head mounted. Intrusive eye
tracking techniques are generally more accurate than the non-intrusive techniques.
One of the most precise and invasive tracking is obtained with special contact
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Figure 2.5. Procedure to place the contact lenses for eye tracking. Figure credit: Duchowski
2017.

Figure 2.6. Overview of the EOG setup. Figure credit: Duchowski 2017.

lenses that remain tightly attached over the cornea and the sclera so that the lenses
move with the eyes (Yarbus 2013; Duchowski 2017). Such contact lenses, shown
in Figure 2.5, estimate the movements of the eyes using embedded mirrors (Matin
and Pearce 1964) or coils to measure their position via magnetic fields (Robinson
1963). Electrooculography (EOG), introduced by Mowrer et al. (1935), is another
invasive method that measures the changes of the corneoretinal potential with skin
electrodes placed around the eyes (Duchowski 2017). As shown in Figure 2.6, pairs
of electrodes are placed above and below, and to the left and right side of the eyes.
When the eyes move, also the cornea-retina dipole moves and the electrode pairs
record a difference in potential, which indicates the eye’s position.

In contrast to the previous methods, the so-called camera based eye tracking
techniques do not require direct contact with the eyes or the skin (Morimoto and
Mimica 2005). Videooculography methods make use of one or more cameras to
determine the movement of the eyes by analyzing certain features captured in the
recordings (Duchowski 2017). The general features used for tracking are in this
case the pupil and the limbus, which is the boundary between the iris and the
sclera. However, the pupil is often difficult to detect due to the low contrast with
the iris, which is why methods have been explored over the years to accentuate this
difference. One of the first methods consisted in illuminating the eyes with visible
light to produce the so-called corneal reflection, which is a glint on the cornea of the
eyes (see Thomas and Stasiak 1964; Young and Sheena 1975 and references therein).
More recent techniques use instead infrared or near-infrared light to enhance the
contrast between pupil and iris. The advantage with respect to visible light is that
the user is not distracted by the beam. Also in this case the light generates a corneal
reflection in the iris, but with this method also the pupil can be “segmented”. There
are two infrared eye tracking techniques that are commonly used: bright-pupil and
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Figure 2.7. Infrared camera based eye tracking techniques with dark (top) and bright
(bottom) pupils. In both cases the glint of the corneal reflection is observed in the top
part of the eye. Figure credit: www.tobiipro.com.

Figure 2.8. Remote (left) and head mounted (rigth) infrared camera based eye tracking
systems. In the first case the device is placed under the display monitor, in the second
case it is embedded in the glasses worn by the user. Figure credit: Lohmeyer et al. 2013.

dark-pupil (Morimoto et al. 2000; Morimoto and Mimica 2005). In the first case the
illumination source is (almost) coaxial with respect to the optical axis of the camera
and thanks to the reflection the pupil appears bright—this is the same phenomenon
that makes eyes appear red in pictures. When the illumination source is offset from
the optical path, the pupil becomes darker than the iris. A representation of both
methods is shown in Figure 2.7. These camera based methods exist both in invasive
and non-invasive variants, depending on whether the device is head mounted or
remote as shown in Figure 2.8. However, while in the first case the user can freely
move around, in the second case the space in which the experiment can be performed
is strictly bounded around the monitor under which the eye tracker device is placed.

2.3.1 Gaze Coordinates

The abovementioned methods obtain the rotation of the eyes using different tech-
niques, namely the estimation of the movement of lenses, the electric potential of
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the skin, or optical characteristics of the pupils. Modern eye tracking devices are
typically based on infrared corneal reflection, as this technique is more practical
and less invasive. In this case, the center of the pupil is estimated via the pupil’s
reflection and combined with the corneal glint to obtain the gaze direction (Poole
and Ball 2006). Subsequently, combining the gaze direction d and pupil center p

of each eye it is possible to approximate the gaze point g in 3-dimensional world
coordinates. These vectors are shown in Figure 2.9, where we decided to represent
a head mounted system since it is the device that is used in the remainder of this
work. To calculate the 3-dimensional coordinates, the left and right gaze directions
are expressed in their parametric form as lines passing through the pupil centers:

vl = pl + tldl ,

vr = pr + trdr .
(2.21)

Contrary to the representation in Figure 2.9, these two lines generally do not strictly
intersect when working in finite resolution and due to measurement errors. This
situation is shown in Figure 2.10. Therefore instead of the intersection point, we
calculate the points where the distance between two skew lines is shortest. This
distance lies along a line that is perpendicular to both vl and vr; the unit vector of
this normal line is given by

n =
dl × dr

|dl × dr|
. (2.22)

Let us define the vector ∆p = (pl − pr) that goes from the left to the right pupil
center. The minimum distance between the lines is then the projection of this
difference on the unit vector of Equation 2.22 perpendicular to the lines

|∆p · n| . (2.23)

The intersection of vl with the plane formed by the translations of vr along n, which
is identified by its normal vector nr = dr × n, gives the point on vl nearest to vr.
Performing the same calculation for vr, the nearest points lying respectively on the
left and right lines are

gl = pl +
(pr − pl) · nr

dl · nr

dl

gr = pr +
(pl − pr) · nl

dr · nl

dr .

(2.24)

Finally, the 3-dimensional gaze g = (gx, gy, gz) = 1
2gl + 1

2gr is right in the middle
between the left and right points calculated in Equation 2.24.

Many eye trackers also record a first person video using a scene camera. In this
case it is relevant to project the 3-dimensional gaze point in the frame coordinate
system to match the recorded video with the subject’s gaze, as shown in Figure 2.11.
If the horizontal and vertical field of view of the camera α = (αx, αy) and the video
resolution (w, h) are known, then the coordinates of the 2-dimensional gaze point,
g′, are

g′
x =

wgx

2gz tan
αx

2

g′
y =

hgy

2gz tan
αy

2

.

(2.25)
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Figure 2.9. Overview of the gaze quantities calculated by an head mounted eye tracking
system. Figure credit Tobii AB 2017.

Although this equation captures the essence of the mapping in terms of eccentricity
and distance, in practice the calculation is not as straightforward. Additional factors
play a role, such as camera distortion, possible rotation or translation of the camera
with respect its expected position, and the calibration procedure of the device.

2.3.2 Fixations and Saccades

Eye tracking has gained popularity in many fields, as it allows to easily study human
gaze behavior in a wide range of situations. The primary categorization of eye
movements is in terms of fixations and saccades (Duchowski 2017; Holland and
Komogortsev 2013). Fixations occur when the eyes are maintained in a specific
position, namely the fovea remains centered on an object of interest. A natural
fixation generally lasts about 500 ms (Johansson et al. 2001; Hessels et al. 2017).
Even though the eyes are commonly assumed to be steady during a fixation, they
may in fact perform small movements, such as tremor, microsaccades, or drift that
serve to maintain visibility (Pritchard 1961; Martinez-Conde et al. 2004). Movements
smaller than 5° are generally ignored in the fixation analysis and considered simply
as random noise around the fixation area (Carpenter 1988). Saccades on the other
hand are rapid, ballistic eye movements that reposition the fovea from one location
to another. Small saccades with a size between 2.5° to 20° typically deal with near
objects, whereas larger ones indicate a search of further objects (Land et al. 1999).
Saccade events happen fast and generally have a duration ranging from just 10 ms
to 100 ms (Baloh et al. 1975; Duchowski 2017).

Several mathematical models have been proposed to classify fixations and sac-
cades. Komogortsev et al. (2010) presented two groups of eye movement classification
algorithms: velocity and position based methods. The first group takes advantage of
the fact that during fixations the eye velocity is lower than during saccades (Salvucci
and Goldberg 2000). The Identification Velocity Threshold (IVT) method, belong-
ing to this group, computes the point-to-point angular velocity for each couple of
consecutive gaze coordinates and compares it with a threshold. If the velocity is
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Figure 2.10. A schematic overview of non intersecting lines passing through the pupil
centers and oriented in the left and right gaze directions. The points gl and gr represent
the points on each of the two lines where their distance is minimal. They also lie on the
vector that is normal to both vl and vr identified by the unit vector n.
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Figure 2.11. Projection of the 3-dimensional gaze point on the camera frame. The angles
αx and αy represent the horizontal and vertical field of view of the camera.
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lower than this threshold it is classified as a fixation, otherwise as a saccade. A more
complicated approach is Identification Hidden Markov Model (IHMM) (Salvucci
and R. Anderson 1998), which is a probabilistic method that models fixations and
saccades as two states, each represented by a velocity distribution. The transition
probability from one state to another is the likelihood that a new gaze sample is
of the same type as the previous sample or that it changes instead from fixation
to saccade or vice-versa. Position based algorithms differ in that they analyze the
spatial dispersion of gaze points. These algorithms are based on the assumptions
that (1) points belonging to the same fixation will be close to each other and (2)
an increasing distance among successive data indicates a saccade (Salvucci and
Goldberg 2000). For instance, Identification Dispersion Threshold (IDT) considers
sliding windows over the gaze position signal (Nyström and Holmqvist 2010). If the
spatial dispersion calculated in each window is lower than a predefined threshold,
then the samples are classified as fixations, otherwise as the window moves the
new incoming samples are recognized as saccades. The Identification Minimum
Spanning Tree (IMST) algorithm (Goldberg and Schryver 1995) builds instead a
tree to connect 2-dimensional gaze coordinates with segments. The idea behind this
approach is that short line segments connects fixation points and, instead, longer
segments represent a saccade.

2.3.3 Gaze Velocity

As mentioned, velocity based algorithms take into account the angular velocity of
the gaze (Salvucci and Goldberg 2000). Given two consecutive 3-dimensional gaze
vectors gi−1 and gi, the angular difference between them can easily be calculated by
means of their dot product (Duchowski 2017)

αi = arccos

(
gi · gi−1

‖gi‖‖gi−1‖

)
, ∀i ∈ {2, ..., N} . (2.26)

An approximation of the instantaneous gaze velocity at time ti then follows as

vi =
αi

ti − ti−1
, ∀i ∈ {2, ..., N} . (2.27)

Although the Tobii glasses used in the remainder of this thesis provide a unit gaze
direction vector for both eyes (see Figure 2.9), we instead use the gaze point in world
coordinates to estimate the common angle of the eyes. These world coordinates had
fewer missing data and were slightly cleaner in practice due to onboard processing.
They are however relative to the position of the scene camera rather than the eyes,
as highlighted by the reference system reported in Figure 2.9. Since this camera is
located on top of the frame of the glasses, this may lead to some inaccuracy at small
gaze distances. The gaze point can therefore be mapped in a coordinate system that
is centered between the left and right pupils

ĝi = gi − p̄i, ∀i ∈ {1, ..., N} , (2.28)

where p̄i is the average of the left and right pupil locations relative to the scene
camera.
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Chapter 3
Related Work

In the previous chapters we highlighted that the limitations of myoelectric prostheses
are primary related to the difficulty of interpreting and using sEMG as a control
modality. The signals depend strongly on the anatomical characteristics of the
user, the positioning and the contact of the electrodes on the skin, changes in arm
positions, and fatigue (Farina et al. 2002). Moreover, the training procedure to learn
to use the prosthesis with satisfactory performance is often perceived as painful
and long (Peerdeman et al. 2011). Various studies have proposed to overcome the
controllability problems by integrating or replacing sEMG with modalities that
are more stable or less affected by amputation-related factors. In Section 3.1, we
present an overview of studies that proposed to improve prosthetic control via
multimodal integration techniques. Since this thesis investigates the use of the gaze
as support modality, we first summarize the main findings in the field of visuomotor
coordination in Section 3.2. This is followed by an overview of the studies that
integrated gaze or visual information for prosthetic control. Finally, we report
the main findings in literature regarding visuomotor coordination of upper limb
amputees while manipulating objects with a prosthesis.

3.1 Multimodal Control of Prostheses

To improve the controllability of myoelectric prostheses, both muscular and “con-
textual” modalities have been considered in literature as alternative or additional
information to sEMG to understand the intended grasp (Herrera-Luna et al. 2019;
Madusanka et al. 2015). In the following we report how both approaches have been
used in previous studies.

3.1.1 Muscular Information

Medical ultrasound imaging allows to observe the interior of the arm and therefore
the contractions of the hand and wrist muscles in the forearm. An example of an
ultrasound device is shown in Figure 3.1. This technique was initially applied to
recognize the flexion of the fingers and the adduction of the thumb (Castellini and
Passig 2011), movements of flexion/extension of the elbow and knee, rotation of
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Figure 3.1. Ultrasound device used to observe muscle movements. Figure credit: Zhou
and Zheng (2012).

wrist and ankle (Zhou and Zheng 2012), and wrist angles (Guo et al. 2013). In these
cases, commercially available ultrasound equipment was used to record a stream
of images that were then analyzed with common vision processing methods, which
provided results comparable to similar studies using sEMG. Moreover, while the
sEMG electrodes should be placed on a muscle belly to minimize the noise, the
positioning of the ultrasound device on the arm does not seem to alter the output
performance, as reported by McIntosh et al. (2017). While previous studies focused
on position control, Sierra González and Castellini (2013) investigated the prediction
of the finger forces and demonstrated the existence of a linear relationship between
ultrasound image features acquired from the forearm and fingertip forces. Despite
the obtained results are surprisingly good in term of movement recognition, in terms
of wearability the equipment required to record ultrasound is considerable more
cumbersome than sEMG electrodes (Castellini et al. 2014).

While performing a movement or a grasp with the upper limb, the muscles
contract inside the body. These contractions propagate externally in terms of change
of the forearm’s volume and this can be recorded via forcemyography (FMG) with
force-sensitive resistors. Among the first studies that introduced this idea in the
prosthetic context were Curcie et al. (2001) and Phillips and Craelius (2005), who
discriminated specific finger flexion and finger taps from FMG acquired from the
residual limb of amputated users. This technique was also employed to predict
the grip force during grasps (Wininger et al. 2008) and to classify eight hand and
wrist movements (Radmand et al. 2016) obtaining a level of performance that was
comparable with sEMG-based methods. Instead of using only FMG for movement
recognition, recent studies have also started to combine this modality with standard
sEMG. Nissler et al. (2017) presented a preliminary work in which tactile-myography
and sEMG were independently acquired from six intact subjects and one amputee
while performing wrist and hand movements. The comparison between the two
modalities showed that FMG generally outperforms sEMG in terms of number of
successful concluded tasks and completion time. This result was confirmed by a
similar experiment in a follow-up (Jaquier et al. 2017). In this case, a combination
of tactile-myography and sEMG was shown to improve movement recognition.

In addition to changing the arm’s volume, a muscle contraction also elicits me-
chanical vibrations in the range of 5 Hz to 100 Hz that can be captured. This measure
is called mechanomyography (MMG) and it is recorded either by means of micro-
phones (Goldenberg et al. 1991; Courteville et al. 1998) or by accelerometers (Silva
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et al. 2003b). Advantages of MMG in the prosthetic context are that, contrary
to sEMG, it is not affected by factors like skin impedance, moisture level, and
interference (Islam et al. 2013). This modality has been used to move a prosthetic
wrist (Silva et al. 2003a) and to recognize four hand postures (Zeng et al. 2009).
Recently, Wilson and Vaidyanathan (2017) proposed to fuse inertial measurement
and MMG in a custom hardware design to control a commercial prosthetic hand.
This setup allowed to distinguish several hand movements both in online and offline
situations. The integration of MMG and sEMG was instead successfully executed
by Xiloyannis et al. (2015) to predict finger movements.

3.1.2 Contextual Information

So far we have described modalities that complement or substitute sEMG by gather-
ing different information from the muscles. There are other approaches that instead
consider external or contextual factors, which have the advantage of not depending
on the condition of the residual limb. For instance, accelerometry can be used
to map the arm’s orientation and movements in the inertial reference frame. The
acquisition of this information is cost-effective, because accelerometers are cheap
and some research-oriented electrodes already come with a three-axial accelerom-
eter embedded. Several studies have shown that the combination of sEMG and
accelerometry outperforms the use of the solely former modality for hand gestures
recognition (Chen et al. 2007; Fougner et al. 2011; Gijsberts et al. 2014; Georgi
et al. 2015). Bennett and Goldfarb (2017) proposed instead a sequential approach in
which the inertial measurement is used to rotate the wrist of a myoelectric prosthesis,
whereas sEMG is subsequently employed to control the hand. Similarly, Fougner
et al. (2011) presented a “two-stage classifier” to first detect the limb position by
means of the accelerometer and then to decide the hand movement by means of
sEMG.

Also vision has been used to gather contextual information from the surroundings
to facilitate a grasp. By simply embedding a camera in the prosthesis, as shown in
Figure 3.2, images can be collected while the hand approaches the object for the
grasp. Modern techniques of image processing can then be used to analyze this
data and provide information on the object. For instance, several studies trained
Convolutional Neural Networks (CNNs) or other deep neural networks to associate
an RGB or RGB-D image to a predefined grasp, rather than the standard object
label (DeGol et al. 2016; Taverne et al. 2019). In these cases the only information
that determines the grasp is the correct recognition of the object. Lenz et al.
(2015) proposed a grasp selection process based on two-step cascade deep learning
algorithms. At the first stage, a network extracted the grasping points for the
object, later another network used this information to estimate the best grasp. This
approach was improved by Ghazaei et al. (2017), who in their method selected the
grasp type according to an abstract representation of the objects, by associating
the same grasp label to multiple objects with the same visual appearance . As
shown in Figure 3.3, a wrist movement triggered a signal to take a picture of the
object and after the grasp was proposed by the system the prosthesis was controlled
proportionally via sEMG. Similarly Fajardo et al. (2018) proposed a multi step
approach in which multiple grasps were associated to an object via visual recognition
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Figure 3.2. Example of a camera integrated in a hand prosthesis. Figure credit: Fajardo
et al. (2018)

Figure 3.3. Overview of the experimental structure proposed by Ghazaei et al. (2017) to
use sEMG and visual information from a camera embedded in the prosthesis. Figure
credit: Ghazaei et al. (2017).

methods. Among the proposed grasps, the user could semi-manually select the right
one via muscular contractions decoded by the Myo armband. In all these cases, the
hand configuration is determined exclusively by the grasp-label(s) assigned to each
object. However, vision can also be used to estimate higher level information, such
as position, size, and shape of the objects (Klisić et al. 2009). For instance, Došen
and Popović (2011) used vision-based techniques to estimate the object’s size and
orientation, and an ultrasound distance sensor to establish the distance from the
target. The grasp is then selected by taking into account all these characteristics.
Gardner et al. (2014) combined instead MMG, to recognize the intention to open and
close the hand, with a camera for grasp selection (see Figure 3.4). Similarly, Došen
et al. (2010) used sEMG to open, close, and orientate the hand during grasping and
manipulation, while a system based on visual information selects the grasp type
and the aperture size by estimating object properties. Along the same lines, Hays
et al. (2019) integrated both visual and tactile data to improve the performance
of a prosthetic hand based on sEMG recognition. When the tactile sensors detect
slip, the prosthesis adjust the grip force. Visual feedback is instead used at the
beginning to set the grasp type and wrist rotation, if the grasp is mistaken the user
can make use of classical pattern recognition system based on sEMG. The main
drawback of these studies is that if an object can be grasped with more than one
hand configuration (DeGol et al. 2016), then just using visual information is not
sufficient to resolve this ambiguity.
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Figure 3.4. Overview of the experimental structure proposed by Gardner et al. (2014) to
use MMG and visual information from a camera embedded in the prosthesis. Figure
credit: Gardner et al. (2014).

3.2 Visuomotor Coordination

Eye tracking is the practice of measuring eye movements to understand the human
visual behavior and where the focus of the people falls during an activity (Poole and
Ball 2006). Early studies on gaze behavior typically involved constrained settings,
for instance by fixating the chin to avoid head movements or by limiting the field
of view to a monitor. Generally, the goal of these studies was to understand visual
saliency, or in other words the features that capture visual attention while observing
a static scene (see Tatler et al. 2011, and references therein). This approach however
has several limitations, as highlighted in the reviews by Tatler (2014) and Tatler
et al. (2011). For instance, the subject’s behavior may be biased by time and space
constraints: the visual stimulus is shown often for a short period of time in a field of
view that is confined to a screen. Moreover, with such an experimental setup one
misses out on the natural movements done while interacting with the environment
as well as all the dynamism of the real world.

Unconstrained experiments became possible with the introduction of wearable
eye-tracking devices that allowed the user to move freely in the environment (Land
2006). This advancement also made it possible to analyze the natural coordination of
eye, head, and hand while executing more complex tasks. A typical activity studied
in literature consists of a block copying task, in which the subjects are asked to pick
blocks from a “resource” area and place them in a “workspace” area as to replicate
a configuration demonstrated in a “model” area. This task was analyzed also when
different instructions were given to the participants to capture multiple coordination
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strategies. The first movement of the head generally follows the first saccade toward
the target object by about 10 ms to 50 ms (Pelz et al. 2001; Smeets et al. 1996).
However, depending on the exact instruction the head may also anticipate saccadic
activity by about 200 ms (Pelz et al. 2001). The reported times elapsed from the
first saccade to the beginning of the reaching phase are 300 ms (Pelz et al. 2001) and
170 ms to 240 ms (Smeets et al. 1996). The visuomotor coordination was also studied
in similar displacement activities, where the participants were required to grasp an
object and move it in a target location. When interacting with household items (i.e.,
a bottle, a cup, and a can) the average lag between the beginning of the first fixation
on the target object and the onset of the hand motion was 253 ms (Belardinelli et al.
2016).

Within the scope of this thesis, the time that passes from the first fixation until
the actual grasp of the object is of primary interest. Johansson et al. (2001), who
studied the pick and place task of a bar with and without obstacles along the path,
reported a delay of about 1 s. In the same task the eyes also preceded the arrival of
the bar at the destination by about 800 ms. Similar eye-hand delays ranging between
0.53 s to 1 s were found while displacing a cup and a box of pasta (Lavoie et al. 2018),
and while drinking from or passing a cup, a bottle, and a can (Belardinelli et al. 2016).
Lastly, it is important to underline that the amount of anticipation of gaze decreases
when the user observes a task done by someone else (Flanagan and Johansson 2003;
Sciutti et al. 2013). Although all studies confirm the anticipatory nature of gaze,
they do not always agree on the exact timing of the motor execution after the first
visual fixation, for instance when the hand reaches the object. These discrepancies
can probably be explained by differences in experimental setting (Smeets et al. 1996;
Pelz et al. 2001), variability due to a small number of subjects, or difficulty in
accurately analyzing a large number of trials.

Similar goal-oriented gaze strategies were also reported during ADLs. In a
tea-making task Land and Hayhoe (2001) observed that the activation of the arm
follows the first saccade on the target object on average 0.56 s later. During walking
(Patla and Vickers 2003) or driving (Land and Lee 1994), on the other hand, the eyes
were found to fixate the forthcoming location about 0.5 s to 1 s in advance, while in
some sports the eyes precede the final position of the ball by about 100 ms (Land
and McLeod 2000; Hayhoe et al. 2012).

3.3 Integration of Vision in Prosthetics

The previous studies provided solid evidence that the grasp of an object is often
preceded by a visual fixation on the same object. In an early work, Castellini and
Sandini (2006) hypothesized that this proactivity of gaze could be used to improve
the control of a prosthetic device or in a teleoperation scenario. To the best of
our knowledge, since then only a few studies have actually explored this potential
integration to improve intent recognition for upper limb prostheses. Hao et al. (2013)
proposed a system based on EOG, which, as explained in Section 2.3, tracks the eyes
via electrodes places on the face. The users scanned the object they intend to grasp
with their gaze and, based on the estimated size, one of four possible grasps was
selected. This mechanism essentially allowed the user to preshape the prosthesis,
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which was then activated with a wrist movement to perform the desired action.
Although the subjects were able to easily select the grasp, the overall method is
impractical due to the electrodes that must be placed on the face and the two phase
control strategy. A conceptually similar approach was subsequently proposed by
Markovic et al. (2014), who substituted the electrodes with a more practical pair of
augmented reality glasses, which were also used to provide the user with artificial
proprioceptive feedback. As before, the user was required to fixate the target object,
which was visually segmented by the glasses when recognized. The augmented reality
interface provided a visualization of the grasp that was selected on the basis of
the visual information. The user could then decide to initiate the grasp via sEMG
control. An overview of the entire process is reported in Figure 3.5. A similar
approach was proposed by the same group in a follow-up work (Markovic et al.
2015) in which the augmented reality was substituted with custom-designed glasses
with an embedded camera. The object closest to the center of the camera image
was segmented to estimate its shape, size, and orientation. This information was
then used to predict the grasp, which could again be triggered by the user via the
myoelectric interface. Even if not directly used for the grasp selection, also Clemente
et al. (2016) proposed a simple form of augmented reality feedback by visually
providing the user information on the grip closure and force during a displacement
action.

Even if all studies report positive results, we note several disadvantages in the
proposed approaches. The methods impose an unnatural form of control, since the
user is required to fixate or scan an object until the employed visual system has
managed to recognize it. This means that the time elapsed from the first fixation to
the grasp is long and this time increases when recognition errors occurs. Moreover,
following this approach the control modalities, such as vision and sEMG, are used
sequentially rather than simultaneously, so a mistake in one of these steps also affects
subsequent stages.

3.4 Application of Gaze Tracking in Robotics

The study of the visual behavior has also relevant applications in the field of assistive
robotics to improve the indirect control of a robotic arm. For instance, the gaze
position has been used to operate an exoskeleton in virtual (Novak and Riener
2013) and real (Bergamasco et al. 2011) environments to grasp some objects. In
both cases, the participants used their gaze to “indicate” the object they intend
to grasp; this information was then employed to assist the user in the grasping
movement. A similar strategy was also adopted by McMullen et al. 2013, who
developed a system for tetraplegic patients implanted with electrocorticographic
electrodes. Also in this case the object of interest was identified via eye tracking
and computer vision, and a prosthetic limb was activated via brain-control using
intracranial electroencephalography. In a stroke rehabilitation context, a similar
approach based on the fusion of visual information and electroencephalography was
used to control an exoskeleton (Frisoli et al. 2012). For tetraplegic patients it has
also been proposed to combine object localization via gaze with sEMG collected from
the shoulder. The latter input modality was then used to control the trajectories of
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Figure 3.5. Overview of the experimental structure proposed by Markovic et al. (2014) to
use augmented reality, visual information, and sEMG to improve the prosthetic control.
The control loop (left) is a state machine with the transition triggered by the sEMG.
During the control cycle (right) the augmented reality glasses segment the object and
propose the grasp to take it. Figure credit: Markovic et al. (2014).

a robotic arm (Corbett et al. 2012; Corbett et al. 2014).

Aside from controlling robots, gaze and visual information has also been used
to collaborate with them in the context of human robot interaction. Aronson et al.
(2018) noted that during robot teleoperation and shared manipulation tasks, the
gaze of the users follows similar patterns that can be exploit to improve the human
robot collaboration. Similarly, Palinko et al. (2016) compared an eye tracking and
head tracking approach via quantitative and subjective evaluations in a human robot
collaborative task, concluding that in the former case the human robot interaction
results smoother. In a teleoperation scenario, Latif et al. (2009) demonstrated that
the gaze can be used to operate a robot, allowing to free the hand of the people from
the control-joystick. Moreover, the eye patterns are also predictive of teleoperation
failure and can be used as a signal to prevent errors (Aronson and Admoni 2018).

3.5 Visuomotor Coordination with Prostheses

A few studies have started to investigate the gaze behavior of amputated subjects
while performing activities with their prosthesis. These studies aimed to understand
whether the presence of this device affects the visuomotor coordination of the
users, in terms of a deviation from the reference behavior described in studies with
unimpaired subjects (see Section 3.2). In a small case study, Sobuh et al. (2014)
compared the behavior of upper limb amputees using their own prostheses and
intact subjects using a prosthesis simulator while pouring water into a glass. Both
groups did not use gaze to proactively plan subsequent actions in a task, instead
they appeared more concentrated on the ongoing manipulation. Other studies have
also found that, during manipulation activities, amputees tend to switch their gaze
between the object and the prosthetic hand more often than intact subjects would
do using their own hand (Bouwsema et al. 2012; Hebert et al. 2019). This behavior
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is probably meant to monitor the proper functioning of the prosthesis to compensate
for uncertainty in the grasp security due to the lack of tactile and proprioceptive
feedback. The disruption of gaze strategies is also characterized by a markedly longer
reaching phase, while still maintaining the majority of the fixations on the target
object (Sobuh et al. 2014; Hebert et al. 2019). Similar finding were also reported
when able-bodied subjects are engaged in manipulation tasks using a prosthetic
simulator (Blank et al. 2010; Sobuh et al. 2014; Parr et al. 2018; Parr et al. 2019).
Almost all of these studies investigated this disruption in eye-hand coordination
precisely for this reason, namely to measure the subject’s proficiency in controlling
the prosthesis. Indeed, Chadwell et al. (2016) noted that one participant who used
a prosthesis daily showed more natural gaze behavior than another less experienced
participant, while Sobuh et al. (2014) observed a shorter fixation on the hand area
with increasing practice.
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Chapter 4
Building and Validating a Dataset for

Visual Integration

Some of the studies presented in the previous chapter integrated visual informa-
tion for prosthetic control. However, contrary to the objectives of the present
work they required the subjects to adapt their gaze behavior to accommodate the
system. Moreover previous approaches were only tested on few subjects. The
Myo-Electricity, Gaze And Artificial-intelligence for Neurocognitive Examination
& Prosthetics (MeganePro) project aimed to overcome these limitations and to
provide the community with a public dataset of myoelectric and gaze data. A total
of 15 upper-limb amputees and 30 intact subjects were engaged in several static
and functional activities to evaluate both the reach-to-grasp and the manipulation
actions on multiple household items. The specific tasks, objects, and grasp types
were chosen after preliminary evaluations to capture in the acquisition protocol as
much variability as possible. These tasks were followed by other behavioral and
clinical tests unrelated to the scope of this thesis.

Although the improvement of prosthetic control is the primary motivation for
the acquisition of this dataset, we strongly believe that it can also be employed in
other fields, as for instance neuroscience and rehabilitation. These data allow to
study the visuomotor strategy of intact and amputated subjects in a wide range
of situations (see Chapter 6). This is not only an interesting psychometric study,
indeed the clear understanding of coordination parameters represents a prerequisite
for the prosthetic applications. Moreover, since the control group of intact subjects
was chosen to match in terms of age and gender with the recruited amputees, also
comparative studies among the two groups would be possible. In the end, since the
dataset is publicly released, scientists can use it to test new algorithms in the field
of offline prosthetic control without the need to acquire data.

We will open the chapter by introducing the devices involved in data collection,
since these have been used in all the acquisitions we made. In Section 4.2, we present
a preliminary version of the dataset and the analyses done to establish the final
acquisition protocol. In Section 4.3, we give a detailed description of the final dataset,
including the involved subjects, the protocol and the data processing routine. We
then provide in Section 4.4 several technical validations to ensure the soundness of
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the data.

4.1 Acquisition Setup

We designed an acquisition setup suited to the collection of gaze and visual data, and
sEMG from the forearm. It is composed of electrodes to acquire the electromyographic
signals, eye tracking glasses to record the gaze activity and head movements, and
a laptop to store the recorded data. The devices are shown in Figure 4.1. For
the experiments we took care to position them so as to not interfere with natural
movements during the tasks.

The Delsys Trigno Wireless sEMG System (Delsys Inc., USA)1 is composed
of sEMG electrodes (see Figure 4.1a) used to collect the muscle’s activity from
the forearm of the participants. The sEMG signal is sampled at 1926 Hz with a
baseline noise of less than 750 nV RMS and an inter-sensor latency lower than 500 µs.
Each electrode has an embedded three-axial accelerometer that collects data with
a sampling rate of 148 Hz. The electrodes communicate via wireless with a base
station that is connected to the laptop.

The Tobii Pro Glasses 2 (Tobii AB, Sweden)2 (see Figure 4.1b) were used to
gather gaze and visual information. These lightweight (45 g) and wearable glasses
are equipped with four eye cameras to track the eyes, a frontal camera to record
the scene, an inertial measurement unit (IMU) for the head movements, and a
microphone. The eyes are tracked using corneal reflection and dark pupil methods
(see Section 2.3) with automatic parallax and slippage compensation. Gaze and
gaze-related information are sampled at 100 Hz, while the video is recorded with
a (1920 px × 1080 px) resolution at 25 frames per second. The theoretical accuracy
and precision for eye tracking data is 0.5° and 0.3° RMS, the horizontal and vertical
field of view of the camera is approximately 82° and 52°. The glasses are connected
via a cable to a portable recording unit that locally stores the data and transmits
them via wireless to the laptop. The recording unit also contains battery that
allows a maximum recording time of approximately 120 min. The system can quickly
and easily be calibrated with a standard single point calibration procedure. As
supplementary feature, the glasses are equipped with corrective lenses, which can be
applied in case of visual deficit, and several nose pads, which regulate the position
of the device to ensure good tracking and comfort.

4.2 Preliminary Data

To define the final protocol we acquired a preliminary dataset in which similar
grasping activities were performed in different conditions from a small group of
subjects. The aim was to evaluate whether the recorded sEMG is influenced by
the constraints posed for a task (Fougner et al. 2011; Geng et al. 2012; Peng et al.
2013; Khushaba et al. 2014) to eventually include these factors in the final dataset.
After the description of the acquisition protocol (Gigli et al. 2018) we briefly explain
the processing routine of the raw data and introduce the features and classification

1http://www.delsys.com/
2http://www.tobiipro.com/
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(a) Trigno electrodes (b) Tobii glasses

Figure 4.1. Acquisition setup. In (a) the Delsys Trigno electrodes used to acquire the
activity of the forearm are shown. In (b) the Tobii Pro Glasses 2 to collect visual data
are presented.

algorithms used to analyze sEMG and accelerometer. Later we will present the
analyses performed on these data and the obtained results.

4.2.1 Dataset

Five intact subjects (4M, 1F) were engaged in the acquisition. For our exercises we
selected ten grasps from hand taxonomy literature (Cutkosky 1989; Sebelius et al.
2005; Crawford et al. 2005; Feix et al. 2009; Feix et al. 2015) on the base of their
relevance in ADLs (Bullock et al. 2013). We also combined with each of them three
objects that can be naturally manipulated using the respective grasp. The objects
were chosen with the aim to ensure a many-to-many relationship, such that an object
does not uniquely identify a grasp and vice-versa. Aside from multiple objects,
the acquisition protocol was extended in two other manners to test variability of
myoelectric signals. First, the subjects were engaged both in static and dynamic
tasks. In the former case they were only asked to reach and grasp the objects,
without further manipulation, and to keep the desired hand configuration for few
seconds. In the dynamic part the same grasps were used to perform functional tasks
on a subset of previous objects. In this case the subjects were asked to complete a
manipulation action while keeping the required grasp during the whole activity. This
introduces variability in the dynamic context of the hand by producing the crosstalk
given by wrist and limb movements. The third form of variability is represented by
the arm’s orientation during the tasks. To study the limb position effect, all the
static grasps were executed both seated and standing. The functional tasks were
instead performed only in one manner, depending on the most common orientation
in ADLs. The tasks, grasps, and objects are reported in Table 4.1.

Before the beginning of the exercise, twelve sEMG electrodes were placed in
two arrays around the right forearm. The first array, composed of eight electrodes,
was placed at the height of the radio-humeral joint. The second array was located
approximately 45 mm below. As widely done in the field of pattern-recognition
applied to myoelectric control, the sEMG electrodes were placed around the proximal
part of the forearm, where most of the muscles of the hand lie, following an untargeted
approach (Hakonen et al. 2015; Hargrove et al. 2007b), without mark specific muscles’
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Figure 4.2. Overview of the acquisition protocol and setup during the execution of a task.

belly. A latex-free elastic band was wrapped around the electrodes to guarantee
full adherence to the skin. The subject also wore the Tobii glasses and followed the
calibration procedure.

During the exercises the subject was in front of a table on which at least five
objects were placed to ensure visual clutter and to provoke a visual search for a given
item. Before each grasp the subject was trained with a short video to clarify how
the objects should be approached and to encourage familiarity with the exercise. By
means of an automatic text-to-speech, the computer indicated both the beginning
and the end of each grasp. Each movement-object combination was repeated four
times and each grasp repetition lasted approximately 5 s followed by 4 s of rest. An
overview of the acquisition protocol and setup is shown in Figure 4.2.

4.2.2 Data Processing and Classification

The sEMG and gaze data were timestamped in a shared reference time. These
timestamps were used to synchronize all modalities and to upsample them to the
sampling rate of sEMG. The sEMG data were filtered to remove the powerline
interference and the label of each grasp was corrected taking into account the
actual muscular activation by following the approach described by Kuzborskij et al.
(2012). Furthermore these data were standardized to have zero mean and unitary
standard deviation, based on statistics calculated exclusively on training data. For
the classification we adopted the window-based approach introduced by Englehart
and Hudgins (2003) and described in Section 2.2.3. We segmented the data using a
sliding window of 200 ms and an increment of 10 ms (i.e., 20 samples).

After a feature extraction step we used previous segments to train and test
a classifier. For the sEMG data we used the mDWT as feature representation
and a Kernel Regularized Least Squares (KRLS) with exponential χ2 kernel as
classifier. From the accelerometer data the MAV was extracted and used as feature
in combination with a KRLS classifier with RBF kernel. These features, classifier,
and kernel types were previously introduced in Section 2.2.2 and Section 2.2.3 and
were chosen for the good results presented on similar data by Gijsberts et al. (2014).
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Table 4.1. List of grasp types, and static and dynamic tasks acquired in the preliminary
experiments. During the static grasps the subject was required to reach and grasp three
objects without further interactions both while seated and standing. In the dynamic
part the subject was instead asked to manipulate a subset of the objects to execute some
actions while seated or standing.

Grasp Static Tasks Dynamic Tasks

medium wrap
take the can drink from the can (standing)
take the door handle open and close the door (standing)
take the bottle

lateral
take the key turn the key in the lock (standing)
take the zip of the pencil case open and close the jacket (standing)
take the cup

parallel extension
take the plate lift the plate (standing)
take the book

take the drawer

tripod grasp
take the bottle open and close the cap of the bottle (standing)
take the knob of the drawer open and close the drawer (standing)
take the cup

power sphere
take the ball move the ball to the right and back (standing)
take the light bulb

take the key

precision disk
take the jam jar open and close the lid of jam jar (seated)
take the light bulb screw and unscrew the light bulb (seated)
take the ball

prismatic pinch
take the clothespin squeeze the clothespin (seated)
take the key

take the can

index finger extension
take the remote control press a button on the remote control (seated)
take the knife cut bread with the knife (seated)
take the fork

adducted thumb
take the screwdriver turn the screwdriver (seated)
take the remote control

take the wrench

prismatic four fingers
take the fork move the fork to the right and back (seated)
take the knife

take the wrench
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4.2.3 Test on Variability

We perform several classification experiments to study the deterioration of the
accuracy when train and test data were acquired in the different experimental
conditions listed in previous section. The aim of this analysis is to examine whether
the sEMG recorded when performing a specific grasp results dependent on task-
related factors, such as the limb position or the grasped object. The results should
help to understand whether include or not these types of variability in the final
protocol. To this goal we consider four settings, each of them represents a different
train-test split of the data.

Posture-split: Train and test data were split based on the posture of the subject,
so that seated data were used to train a model and standing data to test it.
This split is meant to evaluate the limb position effect.

Dynamic-split: We included in the training the static tasks and in the test group
the functional activities. This split makes it possible to understand whether
and how wrist and limb movements influence the grasp.

Object-split: We included two of the three objects used for each grasp type in the
training set and the remaining one in the test set. We considered all possible
combinations of the three objects and averaged the final accuracy results. The
aim is to understand how object’s characteristics influence the sEMG.

Trial-split: We use three repetitions of each object-grasp combination to train a
classifier and the remaining one to test it. All possible combinations of the
four trials were considered and the obtained classification performance were
averaged per subject. In this case train and test data have the same variability
level. This is the standard approach considered in literature when multiple
repetitions of the same movement are acquired, it is therefore provided as
reference.

The hyperparameters of the classifiers are optimized using k-fold cross validation
on the training set where each of the folds correspond to one of the grasp-repetitions in
the training data. We adopted a dense grid search to choose the hyperparameters: λ ∈
{2−16, 2−15, . . . , 22, 23}, and γrbf , γχ2 ∈ {2−20, 2−19, . . . , 20, 21}. For computational
reasons the training data were downsampled with a factor 10, while the data used
for hyperparameter optimization were downsampled with an additional factor 4.

In Figure 4.3, Figure 4.4, and Figure 4.5 the classification accuracy obtained in
the posture-split, dynamic-split, and object-split experiments is compared against
the trial-split setting. In each experiment the ten grasps (plus the rest posture) are
classified when the input data are only sEMG, only accelerometer, and a combination
of them. We report both the performance scored by each single subject (i.e., the
five points in each column of the plots) and the mean value (i.e., the gray triangle).

The results of the posture-split experiment in Figure 4.3 clearly show poor
performance when the subject’s posture, and therefore arm’s orientation, changes
between train and test data. These results confirm the limb position effect already
highlighted by several studies in the evaluation of grasps collected in multiple
positions (Fougner et al. (2011), Geng et al. (2012), and Khushaba et al. (2014)).
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Figure 4.3. Comparison between the classification accuracy of the trial-split and posture-
split settings. From left to right we report the performance in classifying the ten
grasps and rest from sEMG, accelerometer, and a combination of them. Each symbol
corresponds to a subject and the gray triangle indicates the average.

All these studies report an inter-position performance significantly lower than the
intra-position one. Similarly, also the accuracy observed when passing from static to
functional movements is lower than 60 % as the dynamic-split of Figure 4.4 highlights.
Also Liu et al. (2014) showed that the absence of dynamic movements in the training
data seriously impacts on the final performance. The classification error increases
due to effects of wrist rotation (Peng et al. 2013), forearm orientation, and muscular
contraction during a grasp (Khushaba et al. 2016). Similar results are also obtained
when varying the objects in the object-split experiments of Figure 4.5, even if the
degradation in performance is lower than previous cases. This means that factors
like the object’s weight or shape influence partially the sEMG and accelerometry
during grasp.

This degradation disappears, however, in the trial-split setting where all the forms
of variability are integrated both in the train and test data. In this case the average
accuracy is greater than 80 %, for both the single modalities and their combination.
The solution of pooling all data to enrich the training phase is not innovative and
was also adopted by previous studies (Jiang et al. 2013; Boschmann and Platzner
2013; Masters et al. 2014). Whether this solution is better than other approaches,
like hybrid method with classifiers trained in multiple positions (Radmand et al.
2014), is an open question.

4.3 The MeganePro Dataset

The results presented in the previous section show that factors like arm orientation,
grasp dynamics, and object weight and shape dramatically influence the accuracy in
posture classification. To obtain less domain-specific data we decided to include all
the variability factors previously evaluated in the MeganePro dataset (Cognolato
et al. 2019). The processed version of the acquired data is stored in Harvard’s
Dataverse. In the following we will present the final experimental protocol and setup,
the subjects engaged in our experiments, the objects that they were required to
manipulate, and the performed tasks.
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Figure 4.4. Comparison between the classification accuracy of the trial-split and dynamic-
split settings. From left to right we report the performance in classifying the ten
grasps and rest from sEMG, accelerometer, and a combination of them. Each symbol
corresponds to a subject and the gray triangle indicates the average.
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Figure 4.5. Comparison between the classification accuracy of the trial-split and object-split
settings. From left to right we report the performance in classifying the ten grasps and
rest from sEMG, accelerometer, and a combination of them. Each symbol corresponds
to a subject and the gray triangle indicates the average.
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4.3.1 Subject Recruitment

A total of 15 transradial amputees (13 M, 2 F; age: (47.13 ± 14.16) years) and 30
age- and gender-matched intact subjects (27 M, 3 F; age: (46.63 ± 15.11) years)
participated in this study. In Table 4.2 we report the important characteristics of
all the subjects and, for the first group, the information related to the amputation.

The experiment was designed and conducted in accordance with the principles
expressed in the Declaration of Helsinki. The study was approved by the Ethics
Commission of the canton of Valais in Switzerland and by the Ethics Commission of
the Province of Padova in Italy. The subjects received a detailed written and oral
explanation of the experiment and they were required to give informed consent for
the participation.

4.3.2 Grasp Types and Objects

For the final acquisition we kept the same grasps used in the preliminary experiments
(see Section 4.2.1). Also in this case each grasp was matched with three household
objects that would naturally be manipulated with this grasp. After preliminary
evaluations, some of the items used in previous acquisition have been replaced by
others. For instance the worn jacket was replaced with a pencil case since, when
opening and closing the zip of the former object, the subject’s gaze often falls outside
the field of view of the glasses preventing a good tracking. Moreover, in the case
that an object is not usually found on a table (e.g., a door handle or a door lock),
a custom made support was created. To avoid complications during the exercise,
the key, bulb, lid of the jar, and the screw used with the screwdriver were modified
such that they could not be completely removed from the support. As before, we
took care to ensure a many-to-many relationship between objects and grasps. An
overview of grasps and objects is shown in Table 4.3.

4.3.3 Acquisition Protocol

The acquisition started after the ethical requirements were fulfilled and the devices
worn. As in the preliminary acquisition twelve electrodes were organized in two
arrays around the forearm. The positioning is clarified in Figure 4.6. The subject
was then asked to wear the Tobii glasses and to follow the standard one point target
calibration procedure. This procedure is fast and generally requires only a few
seconds. Once the calibration was completed we prepared an acquisition for the
calibration assessment. This consisted in asking the subject to fixate on a black
cross against a green background that was displayed on a monitor at a distance of
about 1.3 m. The cross was in turn showed in five locations of the screen remaining
fixed on a single one for 3 s.

After these preparation steps the data collection started. Prior to executing
a grasp, videos in first and third person perspectives were shown to clarify the
required movement and the part of the object that should be involved. The subject
was however instructed to execute the movements as naturally as possible, rather
than attempting to mimic the exact kinematics of the demonstration videos. The
amputated subjects were required to execute the action with their missing limb,
rather than just imagining it, as to elicit muscle activations in their residual limb.
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Table 4.2. Participant characteristics. The table reports the ID of the subjects in the
dataset, their age, their gender and their handedness. Clinical parameters about the
amputation(s) are also reported for the transradial amputees. The rightmost column
indicates the relative length of the residual limb with respect to the contralateral limb.

Amputation
ID Age Gender Handedness Lang. Side Cause Years Prosthesis Limb [%]

In
ta

ct
S

u
b

je
ct

s

10 27 M right EN
11 63 M right FR
12 49 M right FR
13 32 M left FR
14 67 M right DE
15 68 M right DE
16 38 M right FR
17 63 M ambidextrous FR
18 55 M right FR
19 29 M right FR
20 48 M left FR
21 62 M left FR
22 39 M right FR
23 53 M right FR
24 29 M right FR
26 45 M right FR
27 68 M right FR
28 62 M right FR
29 58 M right FR
30 66 M right FR
31 39 M right FR
32 34 M right EN
33 69 M right FR
34 57 M right DE
35 29 F ambidextrous EN
36 28 M right IT
37 31 M right EN
38 29 F right EN
39 33 F ambidextrous EN
40 29 M right FR

T
ra

n
sr

a
d

ia
l

A
m

p
u

te
es

101 52 M right IT right electrocution 2 cosmetic 60–80
102 39 M right IT right electrocution 4 cosmetic 60–80
103 63 M ambidextrous IT right trauma 3 myoelectric 60–80
104 49 M right IT right trauma 18 myoelectric 80–100
105 73 M right IT right trauma 6 body-powered 40–60
106 70 M left IT left trauma 5 body-powered 80–100
107 36 M right IT left trauma 7 body-powered 20–40
108 35 M right IT right trauma 9 myoelectric 0–20
109 65 M right IT left trauma 1 cosmetic 80–100
110 38 M right IT left trauma 14 myoelectric 20–40
111 38 M right IT right trauma 10 myoelectric 40–60
112 33 F right IT left oncological 13 cosmetic 60–80
113 28 M right IT left trauma 7 myoelectric 40–60
114 52 M right IT bilateral trauma 35 myoelectric n/a
115 36 F right IT left burn 8 cosmetic n/a
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Table 4.3. Overview of the objects and the grasps of the MeganePro dataset. For each
row we show three objects and the associated grasp with an illustrative picture. Figure
credit for the second column: Atzori et al. 2014b.

Grasp Objects

medium wrap
bottle door handle can

lateral
mug key pencilcase

parallel extension
plate book drawer

tripod grasp
bottle mug drawer

power sphere
ball bulb key

precision disk
jar bulb ball

prismatic pinch
clothespin key can

index finger extension
remote knife fork

adducted thumb
screwdriver remote wrench

prismatic four finger
knife fork wrench
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Figure 4.6. Position of the electrodes around the forearm of an amputated subject.

As in the preliminary version, we divided the acquisition in static and dynamic tasks.
For each grasp, the former consist in reaching and grasping three objects without
lifting or moving them. Each object-grasp combination (see Table 4.3) was repeated
four times both while seated and standing. The latter tasks are instead composed
of several functional activities. For each grasp two of the previously used objects
were manipulated with the desired hand configuration as reported in Table 4.4.
Each activity was repeated four times while seated or standing, depending on what
posture seems more likely in daily life for the given task. After each movement the
subjects were required to return to the rest position. A vocal command marked the
beginning and the end of each grasp and announced the activity to perform. The
rest and movement periods terminated respectively when the explanation of the
required action and a specific “release" command were vocally completed. Therefore
the duration of the movement and rest periods depends on the selected language for
the vocal instructions. A grasp interval lasted on average 5.2 s, 5.7 s, 5.9 s, and 6.0 s
for English, Italian, French, and German. A rest period followed for about 4.1 s,
4.7 s, 4.7 s, and 4.7 s for English, Italian, French, and German. The exact order of
the objects within each repetition was randomized to avoid learning and habituation
effects. Moreover, to encourage visual search, additional objects were placed on the
table besides the ones involved in the task.

4.3.4 Data Processing

A number of processing steps were applied to the raw data acquired with the protocol
described above. The objective of these steps was to sanitize the data, synchronize
all modalities, and remove identifying information from the videos. In the following
we describe all procedures in detail.

4.3.4.1 Timestamp Correction

Due to an unfortunate implementation error, during a number of acquisitions the
modalities were assigned timestamps from individual clocks. To unify all timestamps
in a shared clock, the offset of all clocks was estimated and corrected with respect
to the clock of the sEMG modality using statistics of their relative timing collected
during trial acquisitions. Validations on the remaining unaffected acquisitions
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Table 4.4. Overview of the dynamic tasks. The vocal instruction in English indicates the
task that had to be performed for each object-grasp pair. The last column indicates
whether the subject performed the task while seated or standing.

Grasp Vocal Instruction Position

medium wrap
drink from the can

standing
open and close the door handle

lateral
turn the key in the lock

standing
open and close the pencil case

parallel extension
lift the plate

standing
lift the book

tripod grasp
open and close the cap of the bottle

standing
open and close the drawer

power sphere
move the ball to the right and back

standing
move the keys forwards and backwards

precision disk
open and close the lid of jar

seated
screw and unscrew the light bulb

prismatic pinch
squeeze the clothespin

seated
move the keys forwards and backwards

index finger extension
press a button on the remote control

seated
cut bread with the knife

adducted thumb
turn the screwdriver

seated
move the wrench to the right and back

prismatic four finger
move the knife forwards and backwards

seated
move the fork to the right and back
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confirm that the maximum deviation of our estimate from the ground truth is less
than 12 ms.

4.3.4.2 sEMG and Accelerometer Data

For computational efficiency, the sEMG and accelerometer streams from the elec-
trodes were acquired and timestamped in batches. During post-processing, individual
timestamps were assigned to each sample via piecewise linear interpolation. A new
piece is created if the linear model would result in a deviation of more than 100 ms,
which may happen if the fit is skewed due to missing or delayed data.

For the sEMG data, we furthermore filtered outliers by replacing samples that
exceeded 30 standard deviations from the mean within a sliding window of 1 s with the
preceding sample. The signals were subsequently filtered for power-line interference
at 50 Hz (and its harmonics) using a Hampel filter (Allen 2009). Contrary to the
more common notch filter, this method does not affect the spectrum if there is no
interference.

4.3.4.3 Gaze Data

The data from the Tobii Pro glasses were acquired as individually timestamped
JavaScript Object Notation (JSON) messages. During post-processing, these mes-
sages were decoded and separated based on their type. The messages that relate
directly to gaze information, such as gaze points, pupil diameter and so on, were
then grouped together based on their timestamps.

4.3.4.4 Stimulus

The text-to-speech engine that was used to give vocal instructions introduced
noticeable delays in the corresponding changes of the stimulus. We measured these
delays for all sentences and languages, and moved the stimulus changes forward by
these amounts during post-processing. For each object also the more specific object-
part involved in the exercise was calculated and added to the stimulus information.

4.3.4.5 Synchronization

All modalities were resampled at the original 1926 Hz sampling rate of the sEMG
stream. For real-valued signals, this was done using linear interpolation, while for
discrete signals we used nearest-neighbor interpolation. The signals that indicate the
time and index of the MP4 video were handled separately using a custom routine,
since they require to identify the exact change-point where one video transitions to
the next.

4.3.4.6 Concatenation

The static and dynamic parts of the protocol were acquired independently and
therefore produced separate sets of raw acquisition files. Furthermore, our acquisition
protocol and software allowed to interrupt and resume the acquisition, either at
request of the subject or to handle technical problems. After applying the previous
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processing steps to the individual acquisition segments, they were concatenated
to obtain a single data file per subject. During this merging, we incremented the
timestamps and video counter to ensure that they are monotonically increasing.
Furthermore, if part of the protocol was repeated due to interruptions or problems
with acquisition software, when resuming the acquisition we took care to insert the
novel segment at exactly the right place to avoid duplicate data.

4.3.4.7 Relabeling

The response of the subject and therefore the sEMG activation may not be aligned
perfectly with the stimulus. As a consequence, the stimulus labels around the on-
or offset of a grasp movement may be incorrect, resulting in an undue reduction in
recognition performance. We addressed this shortcoming by realigning the stimulus
boundaries with the procedure described by Kuzborskij et al. (2012). In short, this
method optimizes the log-likelihood of a rest-grasp-rest sequence on the whitened
sEMG data within a feasible window that spans from 1 s before until 2 s after the
original grasp stimulus. As opposed to the uniform prior used in the earlier method,
we instead adopted a smoothed variant of the original stimulus label as prior with
p = 0.6. The recalculated stimulus boundaries have been saved in addition to the
original ones.

4.3.4.8 Removing Identifying Information

All videos were checked manually for identifying information of anyone other than
the experimenters. The segments of video that were marked as privacy-sensitive
were subsequently anonymized with a Gaussian blur. In this procedure, we took
care to re-encode only the private segments and to preserve the exact number and
timestamps of all frames. In addition, the audio stream was removed from all videos
for privacy reasons.

4.4 Technical Validation of the Dataset

The intended purpose for the dataset is the investigation of the sEMG and visual data
and, eventually, their fusion. In this section we therefore concentrate on validating
these two modalities. Some of these analyses are low-level to ensure the quality of
the recorded signals, while others are meant to verify that the dataset can in fact be
used for the motivations for which it was created.

4.4.1 Gaze Validation

The quality of gaze data primary depends on the correctness of the initial calibration
phase recommended by manufacturers of the Tobii glasses before data collection. To
validate this calibration we analyzed the dedicated data acquisitions in which a black
cross was shown on a green background of a screen (see Figure 4.7 and Section 4.3.3)
with the aim to compare the expected and the measured gaze position. Besides data
quality estimation, we are further interested in verifying the naturalness of user’s
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gaze throughout an exercise. To this aim we also calculated distributions of fixations
and saccades and compared them with previous studies.

4.4.1.1 Validation of Calibration

Validating the effectiveness of the calibration of the glasses consists in acquiring
gaze data while the user is focused on a known target and subsequently comparing
the measured gaze location with this ground truth (Holmqvist et al. 2012; Blignaut
and Wium 2014). We used the data recorded during the calibration assessment
described in Section 4.3.3 to evaluate the effectiveness of the calibration as well as
possible accuracy degradation over time. These data were typically collected at the
beginning and end of an exercise. If the exercise was interrupted, the procedure
was shown again before resuming it. We determined the ground truth by manually
locating the cross position in pixels at intervals of 0.2 s using custom software as
shown in Figure 4.7. Since we also included calibration data for the other clinical
exercises done jointly as part of the MeganePro project, a total of 498 acquisitions
were processed in this manner.

The quality of eye tracking is often quantified in terms of accuracy and precision
(Holmqvist et al. 2012; Reingold 2014; Blignaut and Wium 2014). For each axis, the
former measures the systematic error, which is the mean offset between the actual
and expected gaze locations. Precision, on the other hand, measures the dispersion
around the gaze position and thus the random error of the gaze point. In Figure 4.8
these values are visualized with respect to the location within the video frame. This
separation is intentional, as the eye tracking appears to be more accurate and precise
in the center of the frame, namely (−3.5 ± 19.4) px and (−1.5 ± 29.6) px on the x and
y axes. Moving away from the center, the gaze results systematically shift towards the
borders of the frame and its random error increases. We only visualize regions where
we acquired at least 40 validation samples. Pooling all data, the overall accuracy
and precision is (−0.8 ± 25.8) px and (−9.9 ± 33.6) px on the horizontal and vertical
axes. At a typical manipulation distance of 0.8 m, this corresponds to a real-world
precision and accuracy of approximately (−0.4 ± 11.5) mm and (−4.4 ± 14.9) mm.
This is deemed sufficiently accurate considering the size of the household objects
used in our experimental protocol.

To establish whether the calibration deteriorated over time, we compared the
accuracy and precision collected at the beginning of an acquisition with those taken
at the end. In total, we considered 210 uninterrupted acquisitions in which there
was a calibration validation routine both at the beginning and the end. We found
no statistically significant difference in accuracy (sign test, p = 0.95 and p = 1.0
in the horizontal and vertical axes) or precision (sign test, p = 0.24 and p = 0.37),
indicating that drift does not pose an issue for the gaze data.

4.4.1.2 Statistical Parameters

To statistically describe a user’s gaze behavior during the exercises and validate it
against related literature, we first identified fixations and saccades in our eye tracking
data using the IVT method by Salvucci and Goldberg (2000) that was also described
in Section 2.3.2. To ensure that we could calculate the angular velocity of both
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Calibration Cross

Gaze

Figure 4.7. Custom software to manually acquire the cross position in frame coordinates.
The red circle represents the 2-dimensional gaze position recorded by the Tobii glasses.
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Figure 4.8. The accuracy and precision of the eye tracking with respect to the location
within the video frame. For each patch, the shift of the ellipse center with respect to the
cross indicates the accuracy in either axis of the gaze within that patch. The radii of
the ellipse on the other hand indicates the precision.
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eyes for a maximum number of samples, we linearly interpolated gaps of missing
pupil data when shorter than 0.075 s (Olsen 2012). We used a threshold of 70 °/s
to discriminate between fixations and saccades (Komogortsev et al. 2010). When
the Tobii glasses failed to produce a valid eye-gaze point, even after interpolating
small gaps, the corresponding sample was marked as invalid. Excluding one subject
who had strabismus, the percentage of such invalid samples ranged between 1.7 % to
21.0 % and 4.3 % to 30.7 % for able-bodied and amputated subjects. Sequences of
events of the same type were then merged into segments identified by a time range
and processed following the approach described by Komogortsev et al. 2010. First,
to filter noise or other disturbances, fixations separated by a short saccadic period
of less than 0.075 s and 0.5° amplitude are merged. Second, fixations shorter than
0.1 s are marked as invalid and excluded from the analysis.

In the resulting sequence of gaze events, the majority of invalid data are lo-
cated between two periods of saccades, namely (92.2 ± 2.7) % and (92.6 ± 3.9) %
for able-bodied and amputated subjects. This indicates that the Tobii glasses fail
predominantly to register high velocity data. Devices with sampling frequency lower
than 250 Hz have indeed been categorized as “fixation pickers” (see Karn 2000) and
often do not provide reliable results for saccades. For this reason in the following
analysis, rather than considering many short saccades due to interruptions of invalid
segments, we indicate as saccade the period ranging from the end of one fixation to
the beginning of the following.

Figure 4.9 and Figure 4.10 show the distributions of fixation durations and
of saccade amplitudes for both types of subjects. The characteristics of these
distributions, summarized in Table 4.5, coincide with those described in analogous
studies (Johansson et al. 2001; Kinsman et al. 2012; Duchowski 2017). Median values
and the interquartile range are comparable with the results of Johansson et al. (2001),
who report 0.286 s and 3.2° as median duration of fixations and median amplitude of
saccades and 0.197 s to 0.536 s and 1.5° to 7.1° as range for the distributions between
the same percentiles. Moreover, the mean value of the duration of fixations is similar
to the mean duration of around 0.5 s reported by Hessels et al. (2017). Land et al.
(1999) also indicated that saccades dealing with near objects range between 2.5° to
20°. This is coherent with the MeganePro protocol where all the objects were placed
on a table in front of the subjects. These similarities confirm the quality of eye
tracking data and highlight that the subjects maintained a natural gaze behavior
throughout the exercise. Interestingly, we also do not note important differences
between the distributions on intact and amputated subjects.

4.4.2 Myoelectric Signals

To assure the soundness of the recorded sEMG, we first analyzed the spectral
properties and compared these with known results from literature. As a more high-
level validation we verified that the sEMG signal can indeed be used to discriminate
the grasp a subject was performing.
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Figure 4.9. Distribution of the fixation length histogram for able-bodied (blue) and
amputated (red) subjects. The shaded areas indicate the 10th and 90th percentiles, while
the solid line represents the median.
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Figure 4.10. Distribution of the saccade amplitudes histogram for able-bodied (blue) and
amputated (red) subjects. The shaded areas indicate the 10th and 90th percentiles, while
the solid line represents the median.

Table 4.5. Statistical parameters of the duration of fixations and the amplitude of saccades
for able-bodied and amputated subjects.

Subjects Mean Percentiles
25th 50th 75th

Fixations
Intact 0.429 s 0.170 s 0.260 s 0.470 s

Amputated 0.432 s 0.160 s 0.240 s 0.440 s

Saccades
Intact 7.754° 1.662° 3.883° 10.960°

Amputated 7.377° 1.561° 3.720° 9.942°
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Figure 4.11. The distribution (a) of the power spectral densities and (b) the median
frequency throughout the duration of the exercise. The solid line indicates the median
over all electrodes for intact (blue) and amputated (red) subjects, while the shaded area
indicates the 10th and 90th percentiles.

4.4.2.1 Spectral Analysis

For each subject and for each channel, we calculated the power spectral density via
Welch’s method with a Hann window of length 1024 (approximately 530 ms) and
50% overlap. From the distribution of these spectral densities, shown in Figure 4.11a,
we note that nearly all of the energy of the signals is contained within 0 Hz to 400 Hz,
as is typical for sEMG (Basmajian and De Luca 1985). Furthermore, there is no sign
of powerline interference at 50 Hz or its harmonics, confirming the efficacy of the
filtering approach detailed in the Section 4.3.4.2. In reference to the same figure we,
however, observe a large variability of densities among subjects and electrodes. The
spectrum and amplitude of sEMG signals depend on the positioning of an electrode
over a muscle (De Luca 1997b). Since in our protocol none of the electrodes was
positioned precisely on a muscle belly, the signal is variable and in some cases almost
absent.

The same variability is also noticeable in Figure 4.11b, which reports the dis-
tribution of the median frequency over all electrodes for intact and amputated
subjects throughout the entire exercise. The median frequencies we find are close
to the approximately 120 Hz to 130 Hz typically reported for the flexor digitorum
superficialis (Clancy et al. 2008; Kattla and Lowery 2010), which is one on the
muscles we primarily recorded from with our electrode positioning. Finally, we note
that the distribution of the median frequency remains relatively stable over time,
indicating that there are no persistent down- or upward shifts in the spectrum.

4.4.2.2 Grasp Classification

To classify the sEMG signals we segment the data by employing the standard
window-based approach (Englehart and Hudgins 2003) described in Section 2.2.3
with a window length of 400 samples (approximately 208 ms) and 95 % overlap
between successive windows. As feature-classifier combinations we consider:
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Figure 4.12. Classification accuracies for able-bodied and amputated subjects when
predicting the grasp type with three different types of classifiers. The dashed line refers
to the baseline accuracy a classifier would achieve by simply predicting the most frequent
rest class.

• a (balanced) LDA classifier used with the popular four time-domain features
(Englehart and Hudgins 2003);

• K-Nearest Neighbors (KNN) applied on RMS features (Atzori et al. 2014a);
and

• KRLS with a nonlinear exponential χ2 kernel and mDWT features (Gijsberts
et al. 2014; Atzori et al. 2014a).

The classification accuracy is defined as the average accuracy of 4-fold cross
validation. In each of these folds, three repetitions of each grasp-object-position
combination were used as training data and the remaining repetition was employed as
test. This division corresponds to the trial-split presented in Section 4.2.3. Similarly,
any hyperparameters were optimized via nested 3-fold cross validation on the train
repetitions. For all methods, the training data were downsampled with a factor 10
for computational reasons, while the data used for hyperparameter optimization were
downsampled with an additional factor 4. All these steps were equally performed
for the analyses on the preliminary dataset in Section 4.2.3.

The results of classification accuracy, reported in Figure 4.12, show accuracy
between 63% and 82% for both intact and amputated subjects, depending on the
classification method. A baseline classifier, which always predicts the most common
grasp, would have achieved only approximately 50% accuracy. Indeed the rest follows
each repetition of each grasp, it occurs then in about an half of the whole acquisition.
The current results are similar to the results obtained in the preliminary evaluation
(Section 4.2.3). Although a quantitative comparison with related work is of limited
value due to discrepancies in experimental setup and protocol, the current results
are a couple percentage points higher than those presented by Atzori et al. (2014b).
The most likely explanation is the lower number of grasps (i.e., only 10 rather than
40), which inevitably boosts performance.
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Chapter 5
Automated Analysis

The previous chapter introduced a dataset containing both visual and sEMG data.
The Tobii glasses recorded a huge amount of visual data: the whole dataset is
composed of more than 70 h of videos. Since the video is recorded at 25 frames per
second, we collected more than 6 300 000 frames. Moreover, the eye tracker samples
the gaze at 100 Hz providing on average four gaze coordinates per frame. These
large numbers make it unpractical to manually annotate the gaze position in the
scene to evaluate the attention of each subject. In this chapter, we present a method
to automatically analyze these visual data.

In other psychophysical studies, the recorded videos are often manually annotated
frame-by-frame to analyze where the focus of the subject is during the execution
of the experiment (see for instance Land et al. 1999). This approach limits the
amount of experimental data that can be analyzed and leaves room for subjective
interpretation of these data. An alternative is to use the software provided by
manufacturers of eye tracker devices, which may automate certain types of analyses
(Bowman et al. 2009; Belardinelli et al. 2016). Those solutions however do not
exploit the most recent developments in machine learning and computer vision.
Consequently, they still require a considerable amount of manual effort per video
and the overall solution is not fully automated.

We propose a method that minimizes the required human intervention by auto-
matically extracting all information of interest from the recorded data (Gregori et al.
2019). It achieves this by leveraging over state-of-the-art deep learning techniques
to detect and segment all objects of interest (see Table 4.3) from all videos. The
first step of this procedure consisted in an efficient method to collect a few dozen
segmentations per object class from a sequence of frames. Rather than generate
these manually, we instead used a deep learning algorithm to facilitate the creation
of a dataset of segmented items. These data were used to fine-tune a pretrained
object detector, which is later employed to identify and segment all known objects
in the entire video sequence. Finally, these segmentations are combined with the
gaze coordinates to calculate metrics relating gaze with the objects and the user’s
own limb.

In Section 5.1, we present the method used to build the training dataset and
in Section 5.2 we explain how this was used to fine-tune a deep neural network for
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inference on all the MeganePro videos. In Section 5.3, we will describe the metrics
that this approach allowed us to calculate.

5.1 Creation of the Training Dataset

To collect a training dataset containing binary segmentations of the MeganePro
objects, we made use of a recent algorithm for real time video tracking. In the
following, we first present this method and we later show how this was embedded in
a custom application for data collection.

5.1.1 Introduction on SiamMask

The semi-supervised SiamMask method has recently been proposed by Wang et al.
(2019) to track the position of one or more arbitrary objects in a video sequence. By
marking just a bounding box around an object in one frame, this deep convolutional
algorithm (1) segments the object from the background and (2) tracks it in the
following frames.

The majority of approaches for object tracking have tackled the problem of
identifying the target object by means of a bounding box around it (Wu et al. 2013;
Kristan et al. 2018; Valmadre et al. 2018). For our purposes, a shortcoming of this
approach is that the bounding box includes part of the background as well. Object
segmentation methods address this problem by supplementing the bounding box
with a binary segmentation mask, which for each pixel indicates whether it belongs
or not to the object of interest. Such pixel-level accuracy of course requires more
computational effort, which is why many proposed methods are not able to process
a video stream in real-time (Wen et al. 2015; Tsai et al. 2016; Yang et al. 2018; Bao
et al. 2018).

SiamMask has been proposed with the aim to provide the community with a
fast video object segmentation method by overcoming both previous limitations.
Its architecture takes inspiration from Siamese networks (Bromley et al. 1994).
In general, a Siamese architecture consists of two parallel neural networks, each
receiving one input image, and a final shared part of the network that computes the
similarity between the two images. Bertinetto et al. (2016) followed this approach to
address a tracking problem by feeding the network with two images: an annotation
of the target object provided by the user as reference, and a new frame in which this
reference should be located. These two images and the Siamese part of the network
are shown on the left hand side of Figure 5.1. This part of the network produces a
measure of similarity (⋆d) for all possible candidate regions within the new frame
with respect to the reference image. The output is then used to train three tasks
jointly, as shown on the right hand side of Figure 5.1. For each region, the objective
of the three tasks is respectively to assign a score, a refined bounding box, and a
binary mask that segments the object. The final prediction during inference is then
given by the candidate region that has the maximum score.
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Figure 5.1. Schematic architecture of SiamMask. The network takes as input the frame
cropped around the target (top left) and a new frame (bottom left) and computes their
similarities (⋆d). The last part of the network is composed of three branches: two
for bounding box identification and refinement, and one for the binary mask proposal.
Figure credit: Wang et al. (2019).

5.1.2 Application on the MeganePro Dataset

In the present study we opted to use the SiamMask method for its advantages
with respect to other available approaches. First, to precisely estimate where the
subject is focused, we prefer a binary segmentation of the object rather than a simple
bounding box. Second, with real-time performance the building of the dataset is fast
and can interactively be supervised by the user. Although it may seem tempting
to run this tracking algorithm on an entire video annotating each object only at
its first occurrence, in practice it does not work sufficiently reliably on such long
time scales and when objects may exit and enter the visual scene. We therefore used
this method to amplify our manual annotations; with just a single bounding box
annotation per object, we obtain 10 to 20 times as many binary segmentation masks
for our training set.

We embedded the official implementation of SiamMask1 in a custom application.
The network is composed of a ResNet-50 (He et al. 2016) until the final convolutional
layer of the 4th stage combined with convolutional layers on the top. The software
that we implemented to build the dataset with segmented objects works as follows.

1. The user selects a frame from a video recorded by the Tobii glasses.

2. This frame becomes the input image for SiamMask and it is manually annotated
by the user by drawing a bounding box around the objects of interest and by
selecting their class identity.

3. Based on this initialization, SiamMask processes the input image and subse-
quent frames one by one and presents the output segmentations to the user
for validation.

4. For each frame the user can either accept and store, or refuse the proposed
segmentations and proceed with the processing of the following frame (3-4).

1https://github.com/foolwood/SiamMask
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Figure 5.2. The procedure to acquire the training set of segmentation masks. We first select
an arbitrary frame from a video and annotate each object with its bounding box and
object identity. This information is passed to SiamMask, which produces segmentation
masks for this initial frame and the subsequent frames in the video sequence. At each
frame, the user can choose whether or not to include the frame and its segmentations in
the training set or to move to a new initial frame.

Alternatively, the user may stop the procedure for the current sequence of
frames and start at step (1) with a newly selected initial image.

This procedure is also schematically shown in Figure 5.2.

In practice, for each selected initial frame we accepted sequences up to around
15 frames. Applying this procedure repeatedly, we segmented in total 2422 frames
with 11726 segmented object instances chosen from 15 subjects. To include as
much variability as possible in our dataset, we captured the objects from different
perspectives, with different backgrounds, and while partially occluded. Furthermore,
besides the eighteen objects in Table 4.3, we also included segmentations for a
“person” class, which will primarily be used to detect the subjects’ forearm. Two
frames with the segmented instances are presented as example in Figure 5.3.

5.2 Object Segmentation

The collected dataset of masks was then used to fine-tune a deep neural network to
segment the objects in all MeganePro videos. In the following we will describe the
used framework and how we modified it for our purposes.
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(a) Good segmentation. (b) Wrong segmentation.

Figure 5.3. Example of two frames extracted from the MeganePro videos and segmented
using SiamMask. In (a) all the objects are well segmented, in this case the output
masks were all stored for the training dataset. In (b) the arm of the subject is not
recognized, its mask overlays instead with the plate’s mask. In this case all the masks
were discarded.

5.2.1 Introduction on Mask R-CNN

Mask R-CNN is a multi-task framework for object classification, detection, and
segmentation proposed by He et al. (2017). The detection and segmentation tasks
consist in identifying the position of an object respectively via a bounding-box
and with a binary mask at the pixel-level. Whereas SiamMask tracks an arbitrary
annotated object in a sequence of frames, Mask R-CNN instead segments and
classifies all instances of objects that it recognizes in a single frame.

The structure of Mask R-CNN is schematically shown in Figure 5.4. Mask
R-CNN is an extension of Faster R-CNN, which was proposed by Ren et al. (2015)
for object detection. Faster R-CNN is composed of two stages. Initially, the network
proposes candidate object bounding boxes for an input image. For each of these,
the network extracts some features to both propose a classification label and refine
the original bounding box. Mask R-CNN adds to the previous architecture a third
distinct parallel branch that is trained to create a binary segmentation for each
identified object. Like SiamMask, the architecture is therefore composed of parallel
branches, each with a specific role. This task decoupling differentiates the current
approach from previous slower and less accurate methods (Pinheiro et al. 2016; Dai
et al. 2016).

Multiple architectures have been considered on Mask R-CNN. In particular
the backbone, which is the first part of the network for feature extraction, was
implemented with ResNet-50 (He et al. 2016), ResNeXt (Xie et al. 2017), and
ResNet-50-FPN (Lin et al. 2017). The head, which is the top part of the network,
was instead taken from Faster R-CNN with the addition of a small Fully Convolutional
Network (FCN) (Long et al. 2015) for segmentation.

5.2.2 Inference on the MeganePro Dataset

The data we acquired via SiamMask were used to train Mask R-CNN on our objects
of interest (see Table 4.3). Rather than training a model “from scratch”, we instead
bootstrapped from a model that was supplied with the implementation of Mask
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Figure 5.4. Schematic architecture of Mask R-CNN. The first part of the network proposes
several regions of the input image as candidate object bounding boxes. Later each region
is individually processed. A branch of the network proposes the final bounding box and
the object’s class, another branch outputs the segmentation. Figure credit: He et al.
(2017).

Table 5.1. Comparison of Mask R-CNN’s detection accuracy on the COCO dataset
and the accuracy of our finetuned model on the MeganePro dataset. The AP is the
average precision over IoU from 0.5 to 0.95 evaluated at steps of 0.05. AP50 and
AP75 represent the average precision when the threshold of IoU is 0.5 or 0.75. A
detailed description of these metrics can be found on the website of the COCO dataset
(http://cocodataset.org).

Dataset AP [%] AP50 [%] AP75 [%]

MeganePro 77.5 92.7 87.6
COCO (He et al. 2017) 33.6 55.2 35.3

R-CNN by Massa and Girshick (2018). This model used a ResNet-50-FPN backbone
and was pretrained on the Common Objects in COntext (COCO) dataset (Lin
et al. 2014), a large scale generic dataset for object detection, segmentation, and
classification. As is common with fine-tuning, we replaced the final classification layer
of the model with a random initialization and then performed additional training
iterations with a reduced learning rate of 0.0025 to tailor the model to our custom
dataset. The data of ten subjects were used for training, while the validation set
consisted of the data of the remaining five subjects, which were chosen to be as
representative as possible for the entire dataset. We chose to use the model that
minimized the loss on the validation set (i.e., early stopping), which was obtained
after just 4000 iterations. The performance of this model is compared in Table 5.1
with the Average Precision (AP) metrics of the pretrained model on the original
COCO dataset. Note that, due to the limited domain of our dataset and the smaller
number of classes, our performance compares favorably to the larger COCO dataset.
After training, we employed the model in inference mode to detect and segment
objects in all videos of all subjects, as shown graphically in Figure 5.5.
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New Frames for Inference Fine-Tuning of Network

Training Set

MaskRcnn

Output of Inference

Figure 5.5. Procedure for the segmentation the whole dataset. By means of the previous
selected training set we fine-tune the Mask R-CNN model. Later we feed the network
with new frames and the network provides the segmented and classified objects as output.

(a) Good segmentation. (b) Wrong segmentation.

Figure 5.6. Example of two frames extracted from the MeganePro videos and segmented
by Mask R-CNN. In (a) all the objects are well segmented and classified. Even the plate,
which is only partially captured, was recognized with a high score (i.e., 1.0) like the
other items. Also in (b) the majority of the objects are well segmented and classified,
except for two objects. The wrench is well segmented but confused with a pencil case,
while the segmentation mask of the screwdriver does not include the entire object.
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5.3 Distances

The segmentation masks for all videos were stored to disk and then combined with
the gaze data to calculate various distances in pixels. In the following, we restrict
ourselves to segmentations that were recognized with a certainty score of at least
0.8. The distances that are of interest for our analyses are the following.

• The gaze-target distance, which is the distance between the gaze point in frame
coordinates and the target object for a grasp trial, if visible in the frame. If
multiple instances of the same target class were recognized, then we chose the
largest in terms of area.

• The gaze-limb distance denotes the distance between the gaze point and the
hand or residual limb of the participant, if visible. We only consider instances
identified as “human” that fall in the lower half of the image frame and again
prefer the largest one.

• When applicable, the limb-target distance indicates the distance between the
subject’s hand or residual limb and the target object, as defined in the previous
two distances.

Note that with the term “distance” we intend the minimum Euclidean distance in
pixels between a point and the contour of a binary mask or between the contours of
two binary masks. If these overlap, then the distance is 0.
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Chapter 6
Visuomotor Coordination of

Amputated and Intact Subjects

The previous chapter presented an automatic framework to determine which object
a subject is fixating, if any, and the distance of the limb from this object. In the
following we will employ this information to answer two main questions (Gregori
et al. 2019).

1. Can we determine the window of opportunity in which gaze provides useful
information for intent recognition?

2. How does the visuomotor coordination of amputees compare with that of intact
subjects?

After introducing the modalities involved in the analyses in Section 6.1, we
present the results of the visuomotor coordination both in the reach-to-grasp and
manipulation phases. These findings are discussed more thoroughly in Section 6.3 in-
cluding analogies with related studies, the comparison between intact and amputated
subjects, and comments regarding the potential prosthetic application.

6.1 Experimental Setup

In the following analyses we evaluate the gaze behavior by considering the pre-
vious calculated gaze-target distance (see Section 5.3) and the gaze velocity (see
Section 2.3.3). The head movements are studied by means of the velocity provided
by the gyroscope of the Tobii glasses (see Section 4.1). The activity of the hand and
the forearm are collected by the electrodes placed on the arm and the embedded ac-
celerometers (see Section 4.1). Moreover the hand’s movements and positioning can
be monitored by the gaze-limb and the limb-target distances (see Section 5.3). Given
the scope of the present analyses, we only use sEMG from the second and seventh
electrode, which were placed approximately on the extensor and flexor digitorum
superficialis muscles (see Figure 6.1). Besides having relatively high activations,
these electrodes also indicate roughly whether the hand was opening or closing. To
aid visualization, both channels were rectified with a sliding RMS of approximately
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Figure 6.1. The electrodes considered for the visuomotor analysis (circled) were placed
approximately on the extensor and flexor digitorum superficialis muscles.

29 ms (i.e., 57 samples) (Merletti 1999). With respect to accelerometry, we note that
the accelerations of all electrodes were highly correlated due to their positioning
around the forearm. We therefore use accelerations only from the first electrode,
which were normalized with respect to the inertial frame of the initial position in
each movement repetition (Tundo et al. 2013).

6.1.1 Events

The profile of the distances described in Section 5.3 and the modalities described
previously were used to determine the timing of visuomotor events with respect to
the stimulus, such as the first fixation on the target object or the onset of the arm
movement. These events allow us to quantitatively describe the time interval between
the activation of the eyes, head, and limb. The analysis window for each trial ranges
from 2 s before until 2.5 s after the end of the corresponding vocal instruction with a
resolution of 20 ms. We define the following events.

• The first fixation is defined as the first of at least two successive samples
where the gaze-target distance is less than 20 px. This threshold was chosen to
accommodate for some systematic error in the gaze tracking and is roughly twice
the average gaze tracking accuracy (Cognolato et al. 2020). The requirement
for two successive samples that fall below the threshold is to ignore occasional
outliers.

• The saccade to the target object is assumed to initiate at the last sample where
the gaze velocity was less than 70 ° s−1 (Komogortsev et al. 2010), starting from
500 ms prior to the target fixation. This definition in terms of the last preceding
fixation rather than the first saccade makes it robust against missing data
from the eye tracker during saccades. Furthermore, we require this saccade to
start from a gaze-target distance of at least 100 px to avoid occasional trials
where the subject was already fixating the target object.

• The start of the head movement is defined as the first of two successive samples
where the Euclidean norm of the angular velocity vector of the Tobii glasses
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exceeds 12 ° s−1. This threshold was chosen manually to be insensitive to
systematic errors in the measurements of the gyroscope in the Tobii glasses.

• The movement of the arm starts at the first of two successive samples where
the Euclidean norm of the three-axis accelerations exceeds 0.07 g. Also in this
case the threshold was tuned manually to be insensitive to the baseline level
of noise of the accelerometers.

• The activation of the forearm muscles starts when either of the myoelectric
signals exceeds 4 times its baseline level for two successive samples. This
baseline level is taken as the average activation in the rest period from 2 s to
1 s before the vocal instruction ended.

• Finally, the first grasp occurs when there are two successive samples where the
limb-target distance is less than 5 px. This threshold was chosen to allow for a
small error margin in the detected segmentation masks.

Whenever the conditions for an event were not satisfied it was marked as missing
for the corresponding trial. Furthermore, we invalidate all events that were found
within the first 100 ms of the analysis window, as it implies that the subject was not
in a rest position or was already fixating the target object.

6.2 Eye, Head, and Hand Coordination

In the following we relate movements of the eyes and head with that of the forearm
in response to the grasp stimulus during the reach-to-grasp and manipulation phases.
With grasp stimulus we intend the vocal command that instructs the participants
which task to execute. These analyses were performed on all the 30 intact subjects
and 14 amputees collected in the MeganePro dataset. One of the amputated subjects
suffered from strabismus and was therefore excluded from the study. Indeed this
condition made it impossible to obtain reliable eye tracking data since the left and
right gaze directions do not intersect neither pass one near the other (see Section 2.3).
Before moving to these analyses, we verified that the subjects effectively looked at the
target object during a grasp trial. Thanks to the deep learning approach described
in Chapter 5, we determined that in 95.9 % of the trials the subjects looked at least
once at the target (i.e., a gaze-target distance less than 20 px). Manual evaluation of
the remaining 4.1 % of the trials revealed that these were caused by a low accuracy
of the Tobii glasses rather than lack of subject engagement. Note that in this and
following analysis the threshold of 20 px was chosen on the base of previous results
of accuracy and precision of the Tobii glasses shown in Section 4.4.1.1.

6.2.1 Statistical Analysis

One of the objectives of this thesis is to determine the window of opportunity in
which gaze can provide useful information about an upcoming grasp. Table 6.1 shows
that for intact subjects there is a median interval of 561 ms between the fixation
event and the subsequent grasp event. The same interval increases to more than
a second for amputated subjects, although this difference is because they did not
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Table 6.1. Statistical description of the intervals in seconds between various events.
The count refers to the number of trials where both events were recognized, out of
a total of 9703 trials for intact and 4482 trials for amputated subjects, respectively.
For the Kolmogorov-Smirnov test the intervals were averaged per subject to guarantee
independent samples. We highlight in bold the statistically significant differences between
the two groups.

Intact Amputated

Interval # Q1 Med. Q3 # Q1 Med. Q3 Significance

[s] [s]

fixation → grasp 8144 0.321 0.561 0.842 1942 0.581 1.042 1.644 KS = 0.724, p = 2.602 × 10−5

saccade → fixation 5625 0.080 0.160 0.301 2522 0.060 0.140 0.281 KS = 0.190, p = 0.811
saccade → head 5419 −0.301 0.020 0.160 2367 −0.461 −0.020 0.140 KS = 0.338, p = 0.173
head → arm 7929 0.020 0.120 0.301 3507 0.000 0.140 0.371 KS = 0.262, p = 0.447
arm → muscles 7907 −0.020 0.080 0.401 3576 0.200 0.581 1.042 KS = 0.829, p = 4.524 × 10−7

physically interact with the objects and the limb-target distance therefore did not as
often converge to within the 5 px threshold. Not surprisingly, a Kolmogorov-Smirnov
test on the average interval per subject indicated that this difference between both
subject groups was statistically significant. This is in contrast to the coordination
between the initial saccade, the head, and the arm movements, for which we fail to
find a significant difference between both groups. The saccade to the target object
leads to its fixation in approximately1 150 ms. Concurrently with the eyes, also the
head starts to move. This head movement is then followed by acceleration of the
arm around 130 ms later. In intact subjects, the activation of the forearm muscles
comes only 80 ms after the onset of the arm movement in the median case. This
interval is more than half a second longer for amputated subjects and this difference
is found to be statistically significant.

6.2.2 Reach-to-Grasp Phase

The coordination during the reaching phase of all “static” and “functional” grasps
is reported in Figure 6.2 for both intact and amputated participants. Whereas
the previous statistical analysis was intended to provide a quantitative assessment
of the relative timings in eye-hand coordination, this figure instead complements
those numbers by demonstrating how this coordination evolves over time. It does
so by showing the median and quartiles of the distribution over all trials from all
subjects in either group from 1.5 s before to 2.5 s after the conclusion of the vocal
instruction. For both types of subjects, we observe an increase in gaze velocity
from approximately −0.5 s to 1 s. This increase also marks a sharp decrease in the
distance between the gaze and the target object, which leads to a fixation soon after.
From this moment on, the subjects retain their fixation on the object of interest
for the grasp. Based on the median profiles, we see again that the onset of the
head movement starts around the same time as the eye movement and continues for
approximately 1.5 s.

The initiation of the arm movement follows the onset of the eye movements, as

1This is likely a slight overestimation, considering our definition of the saccade and missing
values in the gaze data from the Tobii glasses.
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shown by the median profile of the forearm’s acceleration in Figure 6.2. Shortly after
the arm starts to move, we also observe an increase in sEMG activity, with initially
an emphasis on the extensor and later on the flexor. For able-bodied subjects,
the profile of the limb-target distance confirms our earlier finding that the limb
arrives at the object approximately 500 ms after its fixation. Although this result
is not directly comparable with that for amputated subjects, we observe that the
convergence between their residual limb and the target object appears more gradual
and is characterized by a much larger variability.

A noteworthy observation is that the activation of the eyes always preceded the
end of the vocal stimulus. The reason is that subjects could typically deduce the
target object already before the end of the instruction, as we can observe in the
vocal commands of Table 4.4. This does however not affect our results, since we are
interested in the relative delay between eyes, head, and forearm rather than reaction
times to the stimulus. The differences in reaction time to the vocal instructions
do increase however the dispersion of the distributions. We also note that the
relative contribution among the three axes of the acceleration profile differs between
able-bodied and amputated subjects. The reason is that we normalized this profile
with respect to the initial position of the forearm, which is typically different for
both types of subjects. In the present study, we use accelerometry to determine
when the arm starts to move and rely on the limb-target distance to measure its
convergence to the target object.

6.2.3 Manipulation Phase

In this section we focus on the behavior of intact and amputated subjects during the
functional tasks to further investigate the similarities in gaze strategy. These figures
start from 2 s before the vocal instruction and cover the entire manipulation action.
For this analysis we group the MeganePro activities in three categories based on
the type of task and the associated visual behavior, as shown in Table 6.2. These
categories are in place manipulation actions, lifting actions, and finally displacement
actions.

6.2.3.1 In Place Actions

The in place actions concern manipulation tasks that do not require moving the
object, like opening an object, cutting bread, or pressing a button of the remote
control. The aggregated profiles of all modalities for these actions are shown in
Figure 6.3a for able-bodied subjects and in Figure 6.3b for amputees. During this
type of action, the gaze remains fixed on the target object throughout the entire
duration of the manipulation, as can also be seen in the example in Figure 6.4 that
overlays gaze and object segmentations on representative frames of the first person
video. As expected, the hand remains on the target for the entire duration in case
of able-bodied subjects, whereas for amputees there remains a constant subject-
dependent distance between the residual limb and the target. Head movements are
limited to the initial reach-to-grasp phase to center the object in the field of view,
after which the head remains fixed until the end of the manipulation.
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Figure 6.2. The trend of each modality in the reach-to-grasp phase for (a) intact and (b)
amputated subjects. The zero corresponds to the end of the vocal instruction indicating
the required manipulation. The solid line represents the median over all trials from all
subjects, whereas the shaded areas indicate the 25th and 75th percentiles. Segments
with more than 90 % missing data were omitted.
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Table 6.2. The functional activities performed in the dynamic part of the MeganePro
protocol are grouped in three categories: in place, lifting, and displacement actions. In
the first group we consider manipulation activities that do not require moving the object.
The second group concerns those tasks in which the subject was required to lift an object
up and then place it back in its initial position. In the last case the subject is asked to
horizontally move an object between two positions on the table.

Category Instruction

In place

open and close the door handle
turn the key in the lock
open and close the pencil case
open and close the cap of the bottle
open and close the drawer
open and close the lid of jar
screw and unscrew the light bulb
squeeze the clothespin
press a button on the remote control
cut bread with the knife
turn the screwdriver

Lifting
drink from the can
lift the plate
lift the book

Displacement

move the ball to the right and back
move the keys forwards and backwards
move the keys forwards and backwards
move the wrench to the right and back
move the knife forwards and backwards
move the fork to the right and back
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Figure 6.3. The trend of each modality in the in place functional tasks for (a) intact
and (b) amputated subjects. The zero corresponds to the end of the vocal instruction
indicating the required manipulation. The solid line represents the median over all
trials from all subjects, whereas the shaded areas indicate the 25th and 75th percentiles.
Segments with more than 90 % missing data were omitted.
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Figure 6.4. Example of the visuomotor behavior of an intact (first row) and amputated
(second row) participant while opening a door handle. The gaze trail is represented
by the circles from the current gaze position (red) to ten samples later (white). Both
subject groups direct the gaze on the object during the reaching phase (first column).
The eyes then remain focused on the target object during the grasping and manipulation
phases (second and third columns). In both cases, the motor behavior of the arm is
similar for intact and amputated subjects. During the release phase the gaze shifts away
from the object (fourth column).

6.2.3.2 Lifting Actions

The second group is composed of lifting actions, in which the subject was required
to lift an object up and then place it back in its initial position. As can be seen in
Figure 6.5a and Figure 6.5b, also in this case the gaze anticipates head and forearm
movements. More interestingly, we see a clear movement in the pitch orientation of
the head. Since these actions are executed while standing, the subjects first lower
their head to locate the target object on the table. Then, when they have located
and grasped the object, they raise their head again with a peak pitch velocity at
approximately 1.7 s for able-bodied subjects and slightly later for amputated subjects.
This head movement coincides with a modestly increased gaze velocity and is due
to the tracking motion of the lifting action. In some cases, this tracking strategy
even caused an amputated subject’s gaze-target distance to increase, as can also be
seen in the example in Figure 6.6. Finally, the subjects lower their head again when
tracking the release of the object at the end of the trial.

6.2.3.3 Displacement Actions

The final category are the so-called displacement actions. During these tasks, the
subjects had to grasp the objects, move them horizontally to another position, and
then place them back in the initial position. We note that the gaze and motor
behavior starts earlier with respect to the vocal instruction. For this category of
tasks, the name of the object happens to appear at the beginning of the instruction
(see Table 4.4), thus allowing subjects to initiate the task early. For intact subjects,
we see in Figure 6.7a that, approximately 200 ms before the hand reaches the object,
the gaze-target distance starts to increase again. The gaze, in this case, shifts already
to the destination position for the displacement action, as demonstrated in the
second panel in Figure 6.8. Although less pronounced, the same pattern repeats
itself at around 1.5 s when the subject initiates the return movement. The profiles
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(a) Lifting tasks of intact subjects.
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Figure 6.5. The trend of each modality in the lifting functional tasks for (a) intact and (b)
amputated subjects. The zero corresponds to the end of the vocal instruction indicating
the required manipulation. The solid line represents the median over all trials from all
subjects, whereas the shaded areas indicate the 25th and 75th percentiles. Segments
with more than 90 % missing data were omitted.
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Figure 6.6. Example of the visuomotor behavior of an intact (first row) and amputated
(second row) participant lifting a plate. The gaze trail is represented by the circles from
the current gaze position (red) to ten samples later (white). The eyes focus on the
manipulation point to plan the hand’s approach (first and second columns). During the
lifting phase, the eyes move away from the reaching point and the amputee’s gaze even
exceeds the mask boundary of the plate (third column). The object is fixated again
during the release (fourth column).

for the amputated subjects in Figure 6.7b show different behavior, with an overall
increase in gaze-target distance throughout the entire duration of the movement.
As intact subjects did, their gaze anticipates the path of the hand rather than the
path of the object, which is not physically displaced. This strategy is demonstrated
clearly in the bottom row of Figure 6.8.

6.3 Discussions

The aim of these analyses was to determine the window of opportunity for exploiting
gaze as contextual information in decoding the manipulation intent of amputees. A
related question is to which extent natural gaze behavior of amputees and able-bodied
subjects are similar. After comparing our results with related work, we discuss both
these topics. Finally, we argue for the use of recent developments in deep learning
in the analysis of large-scale visuomotor studies.

6.3.1 Comparison with Related Work

In Section 6.2.2, we presented the results of eye, head, and limb coordination
during reaching and grasping. The eyes are the first to react to the vocal stimulus by
exhibiting an increasing saccade-related activity, leading to a fixation on the target in
about 150 ms. When the eyes start moving, also the head follows almost immediately.
Such short delays between movement of the eyes and the head have been reported
in the literature, ranging from 10 ms to 100 ms during a block-copying task (Smeets
et al. 1996) or in reaction to visual stimuli (Di Cesare et al. 2013; Goldring et al.
1996). This behavior is however strongly dependent on the experimental setting
and even small variations therein can change the outcome. For instance, Pelz et al.
(2001) found that depending on the exercise’s instruction the head may both precede
(by about 200 ms) or follow the eyes (by about 50 ms) in the same block-copying
task.
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Figure 6.7. The trend of each modality in the displacement functional tasks for (a) intact
and (b) amputated subjects. The zero corresponds to the end of the vocal instruction
indicating the required manipulation. The solid line represents the median over all
trials from all subjects, whereas the shaded areas indicate the 25th and 75th percentiles.
Segments with more than 90 % missing data were omitted.
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Figure 6.8. Example of the visuomotor behavior of an intact (first row) and amputated
(second row) participant while moving a ball. The gaze trail is represented by the circles
from the current gaze position (red) to ten samples later (white). The gaze focuses
on the object until the hand’s arrival (first column), when the grasping phase begins
the eyes shift away toward the destination (second column). When the hand reaches
the destination the gaze shifts back to the initial location (third column) to release the
target (fourth column).

After the activation of the eyes and the head we observe the movement onset of
the arm approximately 130 ms later. Similar values ranging from 170 ms to 300 ms
were also reported by Smeets et al. (1996) and Pelz et al. (2001) in a block-copying
task and by Belardinelli et al. (2016) in a pick and place task. Land et al. (1999)
instead found a median delay of 0.56 s during a tea-making activity. Rather than
movement onset, the time the hand takes to reach the target is more interesting for
our scope. For the intact subjects, the hand typically starts to occlude the target
object around 500 ms after the first fixation. Although occlusion does not necessarily
already imply a completed grasp, especially given the first person perspective, we do
expect the grasp to follow not much later. These results confirm that visual attention
on objects anticipates manipulation. In previous studies concerning displacements
(Johansson et al. 2001; Belardinelli et al. 2016; Lavoie et al. 2018) and grasping
activities (Brouwer et al. 2009), a variable delay ranging from 0.53 s to 1.3 s was
found between the eye and hand. Also in these cases, the exact value of the delay
depends on the characteristics of the experiment.

In Section 6.2.3 we concentrated on the visuomotor strategy adopted by ampu-
tated and able-bodied subjects to interact with the objects during three groups of
functional tasks. We can characterize the strategies associated with these groups in
terms of the types of fixations defined by Land et al. (1999) and Land and Hayhoe
(2001), namely locating, directing, guiding, and checking. A fixation to locate is
typically done at the beginning of an action, to mentally map the location of objects
that will be used. Instead, a fixation to direct is meant to detect an object that will
be used immediately after. Fixations to guide are usually multiple and occur when
the gaze shifts among two or more objects that are approaching each other. Finally,
there are long checking fixations to monitor the state of an action waiting for its
completion.

The visual strategy of the in place actions is relatively straightforward. In these
tasks, subjects initiate with a fixation to direct the attention to the target object.
Subsequently, their fixation remains on the manipulated object to check the correct
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execution of the task. Note that this visual attention seems focused on the target
object rather than the subject’s hand, as can be seen comparing the gaze-target and
gaze-limb distances in Figure 6.3a and Figure 6.3b. Indeed, Land et al. (1999) noted
that the hands themselves are rarely fixated.

Also the lifting actions start with a directing fixation to locate the object of
interest. However, whereas the initial fixation is focused on the intended grasp
location (cf. the left column in Figure 6.6), the gaze shifts upwards when the hand
has grasped the object. This coincides with the transition from the directing fixation
to visually checking the lifting action. This is in line with observations by Voudouris
et al. (2018), who noted that people may fixate higher when grasping and lifting an
object to direct their gaze to where the object will be in the future.

Finally, displacement actions are the ones most investigated in the literature.
Previous studies on pick and place tasks (Belardinelli et al. 2016; Lavoie et al. 2018)
and on the block-copying task (Smeets et al. 1996; Pelz et al. 2001) fall in this
category. In this case, we observe in Figure 6.7a that the gaze-target and gaze-limb
distances have three minima for intact subjects, namely at the initial pick-up, the
destination, and at the release again at the initial position. All three minima indicate
fixations that are meant to direct the approach of the hand, either for (1) grasping
the object, (2) displacing it, or finally (3) releasing it. This behavior can clearly
be seen for both intact as well as amputated subjects in the example in Figure 6.8.
We also notice that the eyes did not wait for the completion of the pick-up action,
moving instead toward the position of the destination around 200 ms in advance.
This proactive role of the eyes was highlighted by Land et al. (1999), who measured
the gaze moving on to the next object between 0 s to 1 s before the current object
manipulation was terminated. Also Pelz et al. (2001) observed the eyes departing
from the target object 100 ms to 150 ms before the arrival of the hand.

6.3.2 Comparison between Intact and Amputated Subjects

One of the aims of this work was to understand if a transradial amputation has
introduced important changes in the visuomotor behavior of amputees. During
the reach-to-grasp phase, the overall behavior of intact and amputated subjects is
comparable. Even if the coordination timeline between eyes, head, and limb are
similar, there are some minor discrepancies between the two groups. The main
observed difference concerns the delayed activation of the forearm muscles during the
reaching phase for amputated subjects, which was found to be statistically significant.
Similarly, during the lifting tasks we noted slower pitch movements of the head. It
is likely that some subjects interpreted the instruction to perform the grasp with
their missing limb by activating their phantom limb. Such movements executed
with the phantom limb are known to be slower than those executed with the intact
hand (Raffin et al. 2012a; Graaf et al. 2016).

Throughout the manipulation phase, we observe a striking similarity in visuomo-
tor strategy between the amputated subjects and the control group. The differences
that we noted in the results are not due to an alternative gaze strategy, but rather
the impossibility to physically interact with the objects. For instance, in the lifting
task visualized in Figure 6.5b we saw an increase in gaze-target distance in the range
from 2 s to 5 s. This increase was due to an upward shift in the gaze location to
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track the execution of the lifting action. Similarly, during the displacement task in
Figure 6.7b we do not observe a minimum in gaze-target distance at around 1.5 s
when arriving at the intermediate destination, as was the case for intact subjects (see
Figure 6.5a). Instead, around the same time we observe a peak for the amputated
subjects, solely because the target object is still at its original position. The examples
for these gaze strategies in Figure 6.5 and Figure 6.7 demonstrate how similar intact
and amputated subjects behaved.

6.3.3 Integration of Vision in Prostheses to Improve Intent Recog-

nition

The estimated time interval from fixation to grasp in Section 6.2.1 shows that the
window of opportunity is approximately 500 ms for intact subjects. This interval
cannot be accurately determined for amputated subjects, as they executed the
movement with their missing limb and therefore lacked physical contact with the
target object. Although Figure 6.2b suggests that this window will at least be as
long for amputated users, one may argue that this result is not representative for
movements performed with a prosthesis. However, previous studies showed without
exception that prosthetic users still fixate the target object for the majority of the
reaching phase (Bouwsema et al. 2012; Sobuh et al. 2014; Chadwell et al. 2016;
Hebert et al. 2019; Parr et al. 2019), albeit alternating it more often with fixations
on the hand (i.e., the “switching” strategy). Moreover, this reaching phase may
actually take more than twice as long as compared to the same movement performed
with the anatomical limb (Sobuh et al. 2014; Hebert et al. 2019). These findings
suggest that the target object will still be fixated proactively by a prosthetic user
and that the window of opportunity will more likely be longer than shorter.

Exploiting this anticipatory gaze behavior is appealing because it comes naturally
and therefore does not require specific attention from the user. The success of this
approach relies however on the ability to distinguish informative fixations from
those that are not necessarily related to the manipulation intent. In a preliminary
study we attempted to address this problem by including the onset of the arm
movement as an additional condition, which we have shown here to shorten the
window of opportunity (Gigli et al. 2018). In the next chapter we describe instead a
recent approach that we have developed to maximize the inclusion of gaze related
information. Thanks to the frame-by-frame segmentations, we could accurately
and instantaneously recognize object fixations by measuring the distance between
the object’s segmentation mask and the gaze point. In contrast, common fixation
classifiers, such as IVT (Salvucci and Goldberg 2000), define a fixation simply as
the lack of eye movement. In reality, gaze shifts more commonly involve not only
eye movement, but also head and sometimes even trunk movements (Morasso et al.
1973; Land 2006). When the head moves, the optokinetic and vestibulo-ocular
reflexes cause the eyes to counteract the head movement to maintain a stable gaze
point (Lappe and Hoffmann 2000). It is exactly due to such coordinated gaze
movements that the initial object fixation in Figure 6.2 actually coincides with a
peak in gaze velocity. The need to detect fixations as early as possible therefore
implies a detection method that uses more information than eye movement alone.
Whether this is best done by compensating for head movements (Kinsman et al.
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2012; Larsson et al. 2014) or by comparing the visual object at the gaze point as in
the present study is an open question.

6.3.4 Advantages of Automatic Analysis

Without the deep learning approach described in the previous chapter it would have
been extremely labor intensive to analyze approximately 70 h of video and data from
44 subjects. Manufacturers of eye tracking devices often provide applications for
semi-automatic analyses, but these do not allow the level of automation nor precision
as the procedure described here. Although the object segmentations produced by
Mask R-CNN were occasionally mistaken, the segmentations seen in the examples of
Figure 6.4, Figure 6.6, and Figure 6.8 are representative for the overall performance.
It may easily be overlooked that data from research studies, such as the present,
often contain much less variability than the datasets on which these algorithms
are trained and evaluated. With minimal finetuning efforts, it is therefore likely to
obtain levels of performance that considerably exceed those reported in the literature,
as was seen in Table 5.1.

Our current approach ignores the temporal relationship between consecutive
frames. Considering that the input data come from the recorded videos of the Tobii
glasses, it is likely that the identity and location of the segmented objects will be
very similar from one frame to the next. Mask R-CNN, like CNNs in general, was
not designed to accept a sequence of data as input. The model could be extended to
allow such inputs by employing a so-called Recurrent Neural Networks (RNNs) on
top, which is a type of network proposed in 80’s specifically for modeling time series
(Rumelhart et al. 1986). The “recurrent” in the name refers to its characteristic that
the output at one time step becomes part of the input to the network at the next
step, thus giving it a sense of memory. In the context of video sequences, this would
allow to improve the predictions of a new frame by also considering the information
and predictions for the previous frames.
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Chapter 7
Proof of Concept

The study on visuomotor coordination presented in the previous chapter shows
that a fixation on the target object typically precedes the subsequent grasp by at
least 500 ms. Moreover, depending on the functional activity to be performed, both
intact and amputated subjects remain focused on the target also during the whole
manipulation or, at least, part of it. Since vision actively participates in such tasks it
seems possible to merge visual and forearm information to aid movement recognition.

In a preliminary study, we proposed a method for modality integration based on
multiple steps (Gigli et al. 2018). In the first step, a stable and relevant fixation was
detected by combining a low amount of eye activity with an increase in muscular
activity; this allowed to select fixations that precede a grasp. The object on which
the gaze was directed at that point in time was segmented employing the active
segmentation method proposed by Mishra et al. (2012). High-level features were then
extracted from the cropped image patch using a CNN and integrated, at the kernel
level, in a grasp classifier together with sEMG features. Under the assumption that
the object of interest remains the same during the whole grasp, the CNN features
associated to a fixation were propagated until the next fixation. This method was
evaluated on five intact subjects using the preliminary data collection described in
Section 4.2.1. Despite an improvement in classification accuracy when integrating
visual information, there were several shortcomings that should be addressed. First,
the method to detect stable fixations evaluates gaze-velocity related quantities. As
argued in Section 6.3.3, such approaches delay the recognition of the fixation due to
the presence of head movements. Second, the algorithm used for object segmentation
requires the gaze to fall inside the target object, which may not always happen due
to calibration problems with the Tobii glasses (see Section 4.4.1.1). Finally, the
propagation of the same visual information until the next fixation is unrealistic and
increased the classification errors in the rest period, during which gaze and vision
do not yield any useful information.

In this chapter we present a proof of concept that extends the previous approach
and addresses these problems. Rather than detecting a stable fixation and then
segmenting whichever object is at the gaze point, it instead uses the approach
described in Chapter 5 to segment all the known objects in a frame. The object of
interest is then simply defined as the one nearest to the gaze position, regardless
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of any information on arm movement. Moreover, we add an additional term that
automatically regulates the contribution of the visual information based on the
distance between the gaze point and the object. Also in this case the sEMG and
visual modalities are merged inside a classifier via a kernel combination. This method
is explained in Section 7.1 and tested on the subjects of the MeganePro dataset in
Section 7.2.

7.1 Multimodal Integration

In the following we first present the strategy that was used to combine the sEMG-
and gaze-related information and we conclude with the details of the classifier used
for movement recognition.

7.1.1 Kernel Combination

To process the sEMG data we followed the approach by Englehart and Hudgins
(2003), already used in Section 4.4.2.2, by computing features in a sliding window of
400 samples (i.e., 208 ms) with an increment of 20 samples (i.e., 10 ms). We define as
xi

e the mDWT features extracted from the ith window. However for simplicity in the
following calculation we remove the index of the window indicating the vector as only
xe. The relevant visual information is obtained by combining the segmentation and
classification results of Mask R-CNN with the gaze position. For each frame, among
all the detected objects we only consider the object with the minimum distance
d from the gaze coordinates. The class of the nearest object is then encoded in
a feature vector xid using the one-hot representation. Each vector has eighteen
dimensions as the number of classes (i.e., eighteen MeganePro objects) and all the
elements are 0 except for the position corresponding to the object’s class, which is
1. We excluded the class “person” from these analyses since during manipulation
we want avoid to recognize the hand as nearest object rather than the target object
itself.

After the features have been extracted both for sEMG and visual cues, this
information was used to train a grasp classifier. Among the possible techniques, we
opted for a mid-level multimodal integration (Tommasi et al. 2008). In this case
the fusion happens at the kernel level by means of a weighted sum of cue-specific
kernels:

k(x, y) = we · ke(xe, ye) + wg · kid(xid, yid) , (7.1)

where x = (xe, xid) and y = (ye, yid) are two couples of sEMG and gaze feature
vectors, and we and wg are the weights of the sEMG and gaze contributions. Based
on the results presented in Section 4.4.2.2, we use the exponential χ2 kernel to
express the similarity between the sEMG features in xe and ye (see Section 2.2.2).
For the visual information we use instead a linear kernel, noting that the evaluation
between two xid vectors is 1 if they indicate the same object and 0 otherwise. Since
the output of first kernel ranges in (0, 1] and the output of the linear kernel belongs
to the set {0, 1}, we can ensure that also their combination is in the same range.
For simplicity we can set we = 1 and leave as free hyperparameter to tune only wg,
which describes the importance of the visual cue with respect to the sEMG cue. To
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regulate the gaze contribution we add to the visual cue another term that takes into
account the distance of the gaze from the nearest object. Indeed the closer the gaze
is to the object, the more importance the information has in the kernel evaluation.
The farther the gaze is from the object, the less the visual information should be
regarded. To consider this variable contribution, we add a linear kernel,

kd(xd, yd) . (7.2)

This kernel uses a feature xd that decreases exponentially with the distance d between
the gaze and the nearest object:

xd = e−g·max{0,d−ǫ}, with g = 0.01, ǫ = 20 px. (7.3)

This function is maximum, xd = 1, when the gaze is at most 20 px from the nearest
object, which coincides with the threshold used to indicate the beginning of a fixation
in Chapter 6. As the gaze-object distance increases, the function drops to 0 with a
decay constant g. This property bounds the kernel in the (0, 1] interval, therefore
making its range comparable with that of the previous kernels without the need of
any scaling factors. Adding the modifications, Equation 7.1 becomes:

k(x, y) = kχ2(xe, ye) + wg · klin(xd, yd) · klin(xid, yid) , (7.4)

where we indicate with kχ2 and klin the exponential χ2 and linear kernels described
in Section 2.2.2.

7.1.2 Classifier

The kernel in Equation 7.4 was used with the KRLS classifier, which was used
previously in Section 4.4.2.2 and introduced in Section 2.2.2. For the proof of concept,
the evaluation was repeated over the four possible splits of the train and test data,
where in turn one of the four grasp repetitions was used in the test phase and the
remaining three were employed to train the model. The final prediction accuracy
is given by the average over the four splits. The same k-fold process, but with
just the three training repetitions, was also adopted for the inner cross validation
to optimize the hyperparameters. This optimization involves the regularization
parameter λ of the classifier, the exponential χ2 kernel parameter γχ2 , and the
weight wg used in the kernel combination. The value of each parameter was selected
from a dense grid search: λ ∈ {2−16, 2−15, . . . , 22, 23}, γχ2 ∈ {2−20, 2−19, . . . , 20, 21},
and wg ∈ {0.01, 0.1, 1, 10}. Given the results from preliminary analyses, the decay
constant g was instead kept constant at 0.01. For computational reasons, the training
data were downsampled with a factor 10, while the data used for hyperparameter
optimization were downsampled with an additional factor 4. The classification
accuracy used later for the analyses is defined as the proportion of windows in the
test data that was classified correctly by the classifier.

7.2 Grasp Recognition with Visual Information

The aim of the proof of concept is to experimentally verify whether the grasp
recognition could benefit from the integration of visual information. In this section,
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Figure 7.1. Classification accuracies for intact (left) and amputated (right) subjects
when predicting the grasp type using only sEMG and while integrating also the visual
information. For both types of subjects, the classification accuracy increases when
integrating the visual modality.

we first present the classification performance obtained with the inclusion of gaze
and then analyze these results more deeply.

7.2.1 Classification Performance

Figure 7.1 shows the classification accuracy for both intact and amputated subjects.
We compare for each group the results obtained with the standard classifier that just
utilizes sEMG and the proposed method that integrates gaze and visual information.
The integration of vision with muscular information increases the performance by
about 4 % and 7 % for intact subjects and amputees, respectively. When using
only sEMG data, the performance difference between the two groups of subjects is
approximately four percentage points. This is usually attributed to a deterioration
of the myoelectric signal quality due to the amputation. However, the inclusion of
gaze and visual information, which we have shown to be practically unaffected by
amputation, lowers this difference to less than one percentage point. Moreover, as
reported in Table 7.1, this improvement is consistent for all subjects and statistically
significant (sign test, p = 5.684 × 10−14). Even the subject affected by strabismus
(114) shows a small gain, meaning that the performance increases when the gaze is
tracked. These results confirm the hypothesis that the visual cue holds important
information that can help to improve grasp recognition without asking the subjects
to alter their natural behavior during grasp and manipulation activities.

7.2.2 Analysis of Improvements

Besides showing an increase in classification performance, we are also interested
to understand where this improvement has been gained. In Figure 7.2 we report
the trend of the prediction error during the rest and grasp periods averaged over
all subjects and trials. Since each movement has a (slightly) different duration, we
normalized both the rest phase (−100 % to 0 %) and subsequent grasp (0 % to 100 %)
to make trials comparable. During the grasp the inclusion of visual information
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Table 7.1. Classification accuracy per subject. The table reports the ID of the subjects in
the dataset (first column), and the classification accuracy in each of the four train-test
splits (S) using only sEMG (second-fifth columns) and the combination of sEMG and
gaze (sixth-ninth columns). For each split the highest performance is highlighted in
bold.

sEMG [%] sEMG & gaze [%]
ID S1 S2 S3 S4 S1 S2 S3 S4

In
ta

ct

10 82.38 84.86 83.26 82.51 86.36 87.92 87.09 86.19
11 73.79 73.83 74.77 72.89 76.85 75.63 77.62 75.76
12 82.12 86.51 86.28 85.43 85.79 89.95 89.10 89.33
13 85.92 86.51 86.71 85.24 88.37 89.33 90.03 87.91
14 80.75 82.23 81.45 79.49 83.24 84.42 84.38 82.40
15 80.77 81.91 82.41 80.87 81.61 82.26 84.00 82.54
16 79.29 81.00 80.54 81.14 84.37 85.82 86.07 86.67
17 86.13 88.05 87.41 88.85 88.74 90.06 89.55 90.10
18 77.75 80.99 80.99 79.20 81.20 84.85 85.45 82.44
19 79.72 80.74 78.64 75.55 84.09 83.91 82.62 80.85
20 90.38 90.62 89.90 89.80 91.88 92.04 91.13 91.72
21 78.77 79.52 79.43 78.19 82.98 82.39 82.38 81.83
22 83.08 84.79 86.20 85.63 85.63 86.82 87.74 87.41
23 85.10 87.19 86.83 84.82 86.96 88.95 88.72 86.73
24 83.39 81.80 81.72 80.18 89.65 88.54 87.66 87.17
26 86.50 88.27 88.20 86.45 89.44 90.63 90.87 88.92
27 82.00 82.66 83.57 81.99 85.99 85.24 85.68 83.88
28 82.95 85.16 85.39 85.29 85.35 87.22 87.92 88.33
29 88.99 90.70 90.38 90.05 91.06 92.43 91.61 92.11
30 88.34 88.21 90.00 89.03 90.77 90.11 91.98 91.11
31 84.53 87.02 86.50 83.53 87.74 90.35 89.94 87.57
32 80.44 81.24 80.71 79.65 83.79 85.04 84.67 83.71
33 74.04 76.70 76.51 75.11 77.67 80.14 79.13 78.91
34 83.03 85.56 84.49 83.10 85.83 87.29 87.39 85.70
35 77.77 80.33 81.53 79.84 83.34 84.81 85.67 83.70
36 82.50 86.40 84.93 81.48 87.16 90.57 88.62 85.89
37 86.69 90.02 89.29 87.69 90.41 93.09 91.94 91.53
38 79.11 81.93 80.85 79.05 80.75 83.55 83.00 81.23
39 74.24 73.76 72.19 72.62 80.69 78.80 77.89 78.98
40 79.40 82.43 81.42 80.78 84.94 87.47 85.59 85.67

A
m

p
u
te

es

101 75.36 77.95 78.62 76.52 84.30 86.12 86.01 85.24
102 70.86 73.54 73.91 71.76 82.99 85.73 85.76 83.89
103 77.29 78.02 79.35 77.28 87.50 89.12 89.40 87.90
104 76.51 80.65 80.34 78.14 85.31 86.91 86.80 85.01
105 75.74 79.10 76.31 75.86 82.25 83.73 82.03 81.71
106 78.38 81.65 78.01 76.10 84.09 86.12 84.11 82.60
107 77.63 78.33 79.38 76.52 82.36 83.06 84.54 81.18
108 76.97 79.13 80.34 77.16 85.95 87.73 88.98 85.67
109 78.61 79.06 80.63 79.47 83.82 84.14 85.76 84.57
110 81.30 82.05 81.93 77.65 88.01 88.06 87.81 85.68
111 76.24 81.88 82.48 79.06 83.87 88.71 87.76 86.13
112 82.92 86.51 87.20 82.23 89.93 91.89 91.79 87.55
113 76.24 82.14 79.07 78.75 81.52 87.83 84.29 83.73
114 82.87 87.03 89.81 86.80 83.45 87.49 90.10 87.10
115 68.32 68.04 65.79 64.46 74.76 73.35 73.22 70.17
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contributes to lower the error consistently throughout the entire duration. This means
that vision both compensates for the level of noise in the myoelectric signals during
movement transitions (i.e., 0 % to 20 % and 80 % to 100 % intervals of Figure 7.2)
and, if the target object is fixated, helps to stabilize the grasp during manipulation
(i.e., 20 % to 80 %). In the rest phase it is interesting to note that the error rate
remains practically unchanged for both groups of subjects. As long as the subject’s
gaze is not near to one of the objects of interest, the kernel in Equation 7.2 cancels
the visual contribution in Equation 7.4, which relies exclusively on the myoelectric
information. This is the major improvement that the proposed integration strategy
has with respect to the approach used in our previous work (Gigli et al. 2018), in
which the visual feature associated to a certain fixation was maintained until the
next detected fixation. This propagation often “spilled” into the subsequent rest
period, leading to an increase in misclassifications.

To estimate whether the improvement in performance concerns all the acquired
grasps we evaluate the confusion matrices with and without the inclusion of the
visual information. In general a confusion matrix provides for each class both its
recognition score (diagonal elements) and the misclassification with the other classes
(elements outside the diagonal). To estimate how much each class has gained from
the introduction of vision, the confusion matrix of the standard sEMG-only classifier
has been subtracted to the one of the proposed multimodal classifier. This difference
is shown in Figure 7.3 for both intact and amputated subjects. The positive values
on the diagonal indicate a uniform improvement of the classification accuracy over
all the ten grasps. For the rest in position (1, 1), no improvement nor worsening
is observed. This is in line with the effect already observed in the rest phase of
Figure 7.2. For the amputees, as already shown with classification accuracy results,
the improvement in the diagonal is bigger than for intact subjects. This is moreover
highlighted by the presence of negative values outside the diagonal, indicating that
the number of misclassifications is decreasing.
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Figure 7.2. Normalized error of sEMG (blue dashed) and sEMG+gaze (red) classifiers.
The integration of visual information with sEMG reduces the prediction error during
the grasp both for (a) intact and (b) amputated subjects. The recognition over the rest
was already good with the only sEMG modality and does not change when including
gaze. The figure is best viewed in color.

rest
medium wrap

lateral
parallel extension

tripos grasp
power sphere
precision disk

prismatic pinch
index finger extension

adducted thumb
prismatic four finger

rest
medium wrap

lateral
parallel extension

tripos grasp
power sphere
precision disk

prismatic pinch
index finger extension

adducted thumb
prismatic four finger

Predicted Grasp

A
ct

u
al

G
ra

sp

(a) Intact subjects.

Predicted Grasp

−20 %

0 %

20 %

−20 %

0 %

20 %

(b) Amputated subjects.

Figure 7.3. Difference between the confusion matrices of the sEMG+gaze and sEMG
classifiers. Positive values on the diagonal indicate better recognition of the relative classes
when integrating visual information to sEMG both for (a) intact and (b) amputated
subjects. The figure is best viewed in color.
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Chapter 8
The Difficulty of Grasp Recognition

during ADLs

The previous section demonstrated that gaze may hold useful information for the
recognition of grasp intent. However, the evaluation was intentionally referred to
as a proof-of-concept, since the study was conducted in a controlled laboratory
environment and analyzed offline. The experimental setting involved objects that
were already prepared on a table in front of the subjects, interactions with multiple
objects were not included in the protocol, and a grasp was always followed by a
rest period. Moreover, the participants were not engaged in ADLs and even the
functional tasks, which are more elaborate than the static counterparts, can only be
considered as a small part of more complex activities. These conditions are far from
everyday life situations and inhibit completely natural behaviors.

Good academic results often do not translate to tangible improvements for
prosthetic end-users. For instance, some studies have started to argue that offline
performance metrics commonly reported in academic studies are only weakly related
to the actual controllability of a prosthesis (Lock et al. 2005; Ortiz-Catalan et al. 2013;
Jiang et al. 2014) or applicability in everyday life (Farina et al. 2014). Among the
first to investigate the relationship between offline classification accuracy and online
usability were Lock et al. (2005) and Hargrove et al. (2007a). They trained models
for a number of intact subjects and subsequently evaluated these on a clothespins
relocation task in a virtual environment. The primary result was that classification
accuracy is only weakly related to online usability, as measured by the number
of pins a subject could move. Other studies reported similar results when simply
requiring subjects to match a target posture with a virtual hand (Li et al. 2010;
Simon et al. 2011; Ortiz-Catalan et al. 2013; Jiang et al. 2014). Also Vujaklija et al.
(2017) show that offline accuracy does not reflect performance obtained in clinical
tests, like the popular Southampton Hand Assessment Protocol (SHAP) (Light et al.
2002) and the box-and-blocks test. Moreover both online and offline evaluation are
at risk of overestimating real-life performance if not all sources of variability are
taken into account. Failing to include the influence of limb position (Jiang et al.
2013; Khushaba et al. 2014; Boschmann and Platzner 2013), forearm rotation (Peng
et al. 2013), and static and functional movements (Peng et al. 2013) can cause serious
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degradation during the test evaluation.
The analyses presented in this chapter continue along these lines investigating

whether a rich training phase is sufficient to detect movements executed during
ADLs (Gregori et al. 2018). We take a data-centric approach to understand a
possible degradation of performance by means of an sEMG dataset from two intact
subjects in two sessions each. The first session was composed of standard laboratory
tasks, and the second of ADLs. Unfortunately it was not possible to integrate the
gaze data in this study due to the high level of invalid samples, particularly during
the executions of ADLs. Since both parts were acquired in immediate succession
and with intact subjects, we ignore signal variability due to electrode shift, fatigue,
or muscle changes. The entire evaluation is performed offline, meaning that the
eventual reactivity and adaptation of the user based on the immediate feedback they
may receive in online testing is not addressed here. Instead, the objectives of this
study are:

1. to provide a best-case analysis on whether grasps can be recognized if they
are part of a composite, goal-oriented manipulation action such as an ADL;

2. to understand the eventual cause of a degradation by investigating the data
distributions throughout the acquisition.

The acquired dataset and the preprocessing steps are described in Section 8.1. In
Section 8.2 we present the results of the classification accuracy obtained from models
trained on the only sEMG modality when multiple types of variability are considered.
These findings are discussed and clarified with further analyses in Section 8.3.

8.1 Data Collection and Processing

The dataset we collected to perform our investigation consists of two parts, namely
a set of grasps acquired in a laboratory setting with various sources of variability
and the same grasps in a domestic environment when performing five ADLs. In
the following we describe the acquisition protocol, the preprocessing routines, and
the used classifiers for the sEMG data. The gaze data are analyzed independently,
where we also motivate why we could not include them in these analyses.

8.1.1 Dataset

Two intact right-handed subjects (1M, 1F) participated in two experimental trials
each, for a total of four data acquisitions, and each experiment was divided in
a laboratory and a home part. The laboratory acquisition followed a standard
experimental procedure, which was very similar to the ones used for the preliminary
dataset and the final MeganePro dataset described in Chapter 4. The subject was in
front of a table with a set of objects while a laptop provided audiovisual instructions
on the required grasp and object. Table 8.1 lists the set of tasks and related grasps,
which were selected based on their importance for amputees (Peerdeman et al. 2011)
and their relevance for the subsequent ADLs. We first acquired so-called static
movements, in which the subject was asked to simply grasp the object without
performing any further manipulation action. These movements were acquired both
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while seated and standing to vary the limb position when reaching the objects on the
table. Then we enriched the dataset by performing the grasps as part of functional
actions, such as moving or opening an object. In this case, we executed the movement
either seated, standing, or both depending on which would be more likely in real life.
All 51 movements in this laboratory phase were repeated six times to limit the total
duration of the acquisition while still maintaining a sufficient number of repetitions
to split the dataset during the analyses. Each repetition lasted approximately 4 s
and they were separated by a rest period of around 3 s.

While the first part of the acquisition is similar to the MeganePro protocol, the
second part was much less regulated and involved the subjects executing the five
ADLs described in Table 8.2 in a real home environment. In particular, the previous
grasps and functional movements from the laboratory acquisition were combined to
compose more complex activities. As in a real situation, each grasp can be followed
either by another grasp or by a rest posture, as opposed to the laboratory acquisition
in which movements are always separated by the rest posture. The instructions in
Table 8.2 were meant as a rough guide for the participants; they were free to make
small deviations or interruptions and perform the activity with the speed that felt
most natural.

The setup involved in this experiment is the same as the one adopted in the
other acquisitions described in Section 4.1. However fourteen electrodes, instead of
twelve, were used to acquire the sEMG signal: eight were equally spaced around
the forearm at the height of the radio-humeral joint, while the remaining six were
positioned in a similar equidistant configuration approximately 5 cm lower. A laptop
stored the data acquired from the electrodes, from the Tobii glasses, and, only for
the laboratory acquisitions, the label of the grasp that the subject was required to
perform in each trial.

8.1.2 Processing and Classification

The videos recorded by the Tobii glasses were used to manually label grasps during
the home acquisition, which could not be done automatically due to the unconstrained
nature. A custom software application was developed to visualize this video together
with the myoelectric signals, allowing us to classify the grasps and to determine the
exact movement boundaries. When a grasp could not be reliably determined or in
between ADLs, the corresponding part of the acquisition was marked as invalid and
excluded from the analysis. An example of this process is shown in Figure 8.1. In
total we obtained about 12 min of usable data per session in the home acquisitions.

The data preprocessing and classification procedures were inspired by the ap-
proach taken by Gijsberts et al. (2014). The preprocessing steps are a preliminary
version of the final method developed for the MeganePro dataset (see Section 4.3.4).
Initially, powerline interference was filtered from the myoelectric signals using a
Hampel filter and, only for the laboratory acquisitions, the labels were realigned with
actual sEMG activity. The usable data in the laboratory part are approximately
42 min. For the sEMG data all fourteen channels were standardized to have zero
mean and unitary standard deviation, based on statistics calculated exclusively on
the training set. Furthermore, we segmented the data using a sliding window of
200 ms and an increment of 10 ms (i.e., 20 samples).
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Table 8.1. Overview of the tasks performed in the laboratory acquisition. The static
activities were executed both seated and standing, while the functional movements were
accomplished either seated, standing, or both.

Posture Description
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Perform a static tripod grasp on the cap of a bottle

Perform a static medium wrap on a bottle

Perform a static stick grasp on a screwdriver

Perform a static index finger extension on a knife in
cutting position

Perform a static lateral grasp on a key

Perform a static prismatic pinch on a keyring
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Move a little cup from a distant position in front of
the subject and back (tripod grasp)

Stir with a teaspoon inside a cup (tripod grasp)

Move a bottle from a distant position in front of the
subject and back (medium wrap)

Move a pencil case from the right in front of the subject
and back (medium wrap)

Smear with a knife and put it back on the table (stick
grasp)

Scoop with a knife from a jar and put it back on the
table (stick grasp)

Cut with a knife and put it back on the table (index
finger extension)

Move a little cup from the handle from the right in
front of the subject and back (lateral grasp)

Pour from a little cup (lateral grasp)

Move an upside down bottle cap from the right in front
of the subject and back (prismatic pinch)

Pick a sheet of paper from a distant position in front
of the subject and back (prismatic pinch)

Pour from a bottle (medium wrap)
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Open and close the cap of a bottle (tripod grasp)

Move a pencil case from the floor in front of the subject
and back (medium wrap)

Open and close a horizontal zipper of a pencil case
(lateral grasp)

Move a power cable from the floor in the front of the
subject and back (lateral grasp)

Pick a cookie, bring it to mouth and put it back on
the table (prismatic pinch)

Open and close a book (prismatic pinch)
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Open and close a lid of a jam jar (tripod grasp)

Move a medium jam jar from a cupboard in front of
the subject and back (medium wrap)

Make opening action with a door handle (medium
wrap)

Brush with a toothbrush near the subject’s mouth and
put it back on the table (stick grasp)

Move a ruler resting on a pencil case up and down
(lateral grasp)

Open and close a horizontal zipper of backpack (lateral
grasp)

Open and close a vertical zipper of jacket (lateral
grasp)

Rotate a key and put it back on table (lateral grasp)

Bring to mouth a little cup held from the handle and
put it back on the table (lateral grasp)
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Table 8.2. Overview of the ADLs performed in the home acquisition. The instructions to
accomplish each task are reported with the suggested grasp type.

Task Description

Prepare
bread with
jelly
(standing)

Take bread (medium wrap)
Take a knife (index finger extension)
Cut a slice (index finger extension)
Take a jar of jelly (medium wrap)
Open the jar (tripod grasp)
Take a knife (stick grasp)
Scoop jelly with the knife (stick grasp)
Smear the jelly on a slice of bread (stick grasp)
Put the knife back (stick grasp)
Bring the slice to the mouth (prismatic pinch)

Prepare
coffee
(standing)

Open the coffee machine (tripod grasp)
Take out the filter (prismatic pinch)
Place the filter on the table (prismatic pinch)
Let the tap run (lateral grasp)
Fill the base with water under the tap (medium wrap)
Close the tap (lateral grasp)
Put the filter in the coffee machine (prismatic pinch)
Take a teaspoon (stick grasp)
Fill the filter with coffee (stick grasp)
Close the coffee machine (tripod grasp)
Put the coffee machine on the stove (lateral grasp)
Take a cup (tripod grasp)
Take sugar (medium wrap)
Take a teaspoon (stick grasp)
Put sugar in the cup (stick grasp)
Pour coffee (lateral grasp)
Take a bottle of milk (medium wrap)
Open the milk (tripod grasp)
Pour the milk (medium wrap)
Close the bottle of milk (tripod grasp)
Stir the coffee with milk and sugar (tripod grasp)
Bring the cup to the mouth (lateral grasp)

Open the
door
(standing)

Open a bag’s zipper (lateral grasp)
Take the keys from the bag (lateral grasp)
Open the lock with a key (lateral grasp)
Put the keys back in the bag (lateral grasp)
Open the door with the handle (medium wrap)

Brush
teeth
(standing)

Open the toothpaste (tripod grasp)
Take a toothbrush (stick grasp)
Hold the toothbrush while applying toothpaste (stick grasp)
Brush teeth (stick grasp)
Clean the toothbrush under tap (stick grasp)
Put the toothbrush back (stick grasp)

Do
homework
(seated)

Open a bag’s zipper (lateral grasp)
Take a pencil case from the bag (medium wrap)
Open the zipper of the pencil case (lateral grasp)
Take a piece of paper (prismatic pinch)
Take a pen from the pencil case (stick grasp)
Place a pen on the paper (stick grasp)
Put the pen back in the pencil case (stick grasp)
Plug a power cable in an outlet (lateral grasp)
Open the laptop (prismatic pinch)
Take a bottle from the right (medium wrap)
Open the bottle (tripod grasp)
Take a glass from the right side of the table (medium wrap)
Pour water in the glass (medium wrap)
Close the bottle (tripod grasp)
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As feature representation and classifier we combined mDWT features (see Sec-
tion 2.2.3) with a KRLS classifier with exponential χ2 kernel for non-linearity (see
Section 2.2.2). This setup is the same chosen for previous experiments in Chapter 4,
Chapter 7, and in similar studies (Gijsberts et al. 2014). In some experiments,
however, we compare its performance with the popular LDA (see Section 2.2.1)
applied on top of standard RMS features (see Section 2.2.3). This classifier-features
couple is considered as a baseline since LDA is a simple linear algorithm and RMS
represents the less sophisticated features we can extract from the signal. For each of
the following experiments the data were divided on the base of grasp repetitions so
that approximately two thirds were used to train the models and the remaining one
third to test it. For computational reasons, we subsampled the training data with a
factor of 10. The regularization parameter λ of KRLS and its kernel bandwidth γχ2

were optimized using 4-fold cross validation over a grid with λ ∈ {2−16, 2−15, ..., 24}
and γχ2 ∈ {2−20, 2−19, ..., 24}. The data were also in this case subsampled with an
additional factor of 4 to speed up the optimization phase. The cross validation split
was based on movement repetitions, such that available training repetitions were
assigned to one of the folds in a round-robin fashion. We adopted this strategy to
use a constant number of folds in each experiment and to guarantee at least one
repetition per grasp in each fold. The classification accuracy used in the remainder
of this chapter is defined as the proportion of windows in the test data that was
classified correctly.

8.1.3 Analysis of Gaze Data

Contrary to the previous analysis in Chapter 7, the classifier used in this study takes
into account only sEMG without including any visual information. Although it would
be very interesting to understand whether and how vision helps grasp recognition
especially during ADLs, in this case the gaze data could not be included due to the
high level of invalid samples. Table 8.3 reports the percentage of invalid gaze-related
data for each subject, session, and acquisition. In all but one session the percentage
of invalid samples is lower than 20 % during the laboratory exercises. In contrast,
during the home tasks this value increases to about 50 % in most cases, except for
the second subject in the last session. This high quantity of invalid samples, which
suggests that the Tobii glasses do not provide a good tracking in truly unconstrained
situations, makes the inclusion of gaze data impossible in the following analyses.
The presence of invalid samples is probably related to the combined effects of the
standing posture, in which the majority of the exercises were performed, and the
position of the manipulated objects, right near the subject. In these conditions the
participants tended to look under the lenses of the glasses, but not through them,
preventing the correct eye tracking. Moreover the eye tracking resulted difficult
also when the attention rapidly switch from one object to another. This situation
does not occur during the laboratory acquisitions since the movement to movement
transitions were not taken into consideration.
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Figure 8.1. The graphical user interface of the software that was used to label the grasps
executed during the home acquisitions. The video recorded by the scene camera of the
Tobii glasses is shown on the top to visualize the action. The sEMG channels and three
axes of one accelerometer are plotted to visualize the arm’s activity. On the bottom
the seven classes and an “invalid” option are listed. The user, by means of the “Take
time” button, chooses the boundaries of the movement (red vertical lines overlaid on the
sEMG channels) and one of the proposed classes (red horizontal line on the labels). The
current video time is shown by the yellow horizontal line. The labeling process can be
paused and the acquired labels can be saved to persistent storage.

Table 8.3. The proportion of invalid samples as recorded by the Tobii glasses for each
subject, session, and acquisition. In particular, the 2-dimensional and 3-dimensional gaze
position, and the pupil center position of the left and right eye are compared between
the laboratory and home acquisitions. As highlighted by the bold notation, the data
recorded during the home part always present an higher percentage of invalid samples.

Invalid [%]
Gaze 2D Gaze 3D Pupil center left Pupil center right

Subject Session Lab Home Lab Home Lab Home Lab Home

1 1 12.47 56.70 12.54 56.71 12.57 39.85 18.94 45.29
1 2 34.46 64.52 34.49 64.54 11.50 53.69 17.47 66.67
2 1 19.80 51.58 19.84 51.69 17.57 40.89 16.74 27.31
2 2 20.22 25.32 20.26 25.33 13.65 19.69 15.65 21.86
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8.2 Classification Accuracy of sEMG

To provide insight on how well a laboratory procedure can be employed to predict
grasps in an unconstrained home environment we evaluated multiple splits between
the training and testing data, capturing different types of variability. In Figure 8.2a
we report the classification accuracy per subject when training and testing are limited
to the laboratory environment. We clearly observe poor performance when varying
the subject’s posture between the train and test phases, confirming the limb position
effect reported by several previous studies and also in the posture-split analyzed in
Section 4.2.3. Performance drops also when transferring from static to functional
movements, which is due to the change in arm and hand dynamics when purposefully
interacting with objects. This corresponds to the dynamic-split already analyzed
in Section 4.2.3. Both detrimental effects can be compensated, however, by simply
incorporating these types of variability in the training set. Indeed, when we align
the train and test data by splitting the entire laboratory acquisition over repetitions
(i.e., trial-split of Section 4.2.3), we obtain over 80 % classification accuracy.

This last quantity is representative for the numbers and methodology often
reported in studies on machine learning to recognize hand movements, it is indeed
similar to results reported in our previous analyses in Section 4.2.3 and Section 7.2.
Figure 8.2b shows that it unfortunately does not reflect real-life performance; a
model trained in the laboratory setting obtains less than 40 % accuracy during the
ADLs. Furthermore, the inclusion of functional movements does not significantly
improve this result, even though they were selected specifically to be relevant for our
ADLs. This is in agreement with the common observation that results in a controlled
laboratory setting do not transfer to real life. We also investigated the potential
gain of using the ADLs themselves as additional training data; while testing on one
ADL we included the data from the remaining ones in the training set. However,
Figure 8.2c shows that this does not lead to any consistent improvement.

8.3 Discussion

The previous results show that a model trained in a laboratory setting performs
poorly when applied in a home environment. Here we further analyze this problem
and provide an explanation of this degradation from a machine learning point of
view.

8.3.1 Analysis of Misclassifications

To provide further insight we investigate in Figure 8.3 the change in misclassifications
for various grasp types when moving from the laboratory to the home setting. As done
for the analyses presented in Section 7.2.2, we subtract the confusion matrix of the
classifier tested on the laboratory data from the one of the classifier tested on the home
data. The negative values on the diagonal show that the decrease in performance is
consistent for all types of grasps in the home environment. Interestingly, we also
observe that movements are less often confused with “rest” (i.e., negative value in
the first column of the matrix). This observation is caused by the rest-movement-rest
sequence in our laboratory acquisition protocol: movement transitions, which are
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Figure 8.2. Classification accuracy per session with the KRLS classifier in different settings.
First, we (a) compare train-test splits over the posture (i.e., posture-split from seated to
standing) or the functional context (i.e., dynamic-split from static to functional) with a
test on all laboratory data split over repetitions (i.e., trial-split). Then we (b) compare
performance on home tasks when the classifier is trained either on the static movements
or on the entire laboratory acquisition. Finally, we (c) test each ADL individually with
models trained on just the laboratory acquisition and models that were enriched with
data from the remaining ADLs. Each symbol corresponds to a subject and a trial. The
gray triangle indicates the average over the sessions. The indications aligned with each
vertical line and at the bottom of it specify respectively the training and test set.

typically difficult to predict due to their ambiguous nature (Hargrove et al. 2007a),
always involve the rest posture. During ADLs, on the other hand, grasps can also
immediately succeed other grasps, causing confusion in between these grasp types.

The importance of the transient phase of movements is demonstrated in Figure 8.4,
which reports the error rate over the normalized duration of rest (−100 % to 0 %)
and movements (0 % to 100 %). Errors in the laboratory setting are concentrated
during transitions between rest and movement (−20 % to 20 %), and vice versa
(80 % to 100 % and −100 % to −80 %). In contrast, during the home acquisition the
error rate remains consistently high throughout the entire movement. This result
applies both when the model is trained only on the static laboratory tasks or on the
entire laboratory acquisition, showing only a small improvement in the second case.
Together with the former result, this shows that the poor grasp recognition in real
tasks is irrespective of the grasp type or the phase within a movement.

8.3.2 Domain Divergence

The drastic degradation we observe can be attributed to a mismatch in the domains
of training and test data. Machine learning techniques typically assume that both
datasets come from the same distribution. A violation of this assumption implies
that the model is being evaluated on a different problem than it has been trained on,
with poor performance as logical consequence. To estimate the difference between
our laboratory and home distributions we adopt the measure of domain divergence
proposed by Ben-David et al. (2007). The idea behind this divergence is that if
two distributions are different, then a classifier should be able to distinguish them.
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The blue line represents error behavior when training and testing on laboratory data,
the black line when training on static laboratory data and testing on home data, and
the red line when training on all laboratory data and testing on home data.
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Figure 8.5. Balanced classification accuracy per session with balanced variants of the
KRLS+mDWT and LDA+RMS classifier-feature combinations. In the first two columns
we trained classifiers to distinguish between seated and standing, and between static
and functional movements exclusively from the laboratory acquisition. In the last two
cases the classifiers were trained to discriminate the environment (i.e., laboratory or
home) and the movement “complexity” (static, functional and home). Each symbol
corresponds to a subject and a trial. The gray triangle indicates the average over the
sessions and the horizontal line marks chance level accuracy.

Furthermore, the higher the classifier accuracy, the larger is the divergence between
the two domains.

In Figure 8.5 we apply this strategy to approximate the divergence between
various subsets of our datasets. This check is implemented by simply training a
classifier on a number of classes that correspond to the different variability factors
we are considering. As shown, a balanced variant of our standard KRLS classifier
can discriminate with high accuracy between movements executed while seated or
standing, or also between static and functional movements. More interestingly, it
also discriminates movements executed as part of the laboratory acquisition from
those of the home acquisition with 90 % accuracy. Even a simple LDA with rectified
RMS features is able to distinguish both settings with much higher accuracy than the
chance level one would expect if both distributions were identical. This confirms that
the high discrimination observed is independent from the non linearity introduced
by the classifier.

8.3.3 Variability of Movements during ADLs

Besides demonstrating that movements are different when executed as part of ADLs,
we are also interested in knowing how they are different. In Table 8.4 we report the
average Euclidean intraclass distances for the grasps during the static, functional and
home parts of the acquisitions. We observe that the variability increases from static to
functional movements and similarly from laboratory to home movements. Differences
in the context of the movement, such as the object weight, the arm dynamics, and
the goal of the movement, are a probable explanation for this observation.

The difficulty with these sources of variability is that each ADL will have its own



114 CHAPTER 8. GRASP RECOGNITION DURING ADLs

Table 8.4. Average intraclass distances on RMS features. The distance increases as the
considered variability and movement complexity increase.

Intraclass distance (×10−5)
Grasp Lab Static Lab Functional Home

Tripod Grasp 7.0 11.5 17.7
Medium Wrap 6.2 22.7 16.5
Stick Grasp 6.3 17.9 38.6
Index Finger Extension 6.3 14.3 15.2
Lateral Grasp 6.6 22.6 28.5
Prismatic Pinch 3.6 16.3 16.2

characteristic influence on myoelectric signals. This is observed in Figure 8.6, which
visualizes the first three principal components of the rectified myoelectric signals
of multiple repetitions of two example movements. As expected, repetitions in the
laboratory setting are indistinguishable from one another. In the home acquisition,
on the other hand, the repetitions of the same grasp correspond to different tasks
or even different ADLs and we can easily distinguish them. Considering that our
home acquisition contains only a tiny fraction of the set of activities a normal person
engages in, it would be nearly impossible to construct a training set that sufficiently
incorporates all possible variations.
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(a) Prismatic Pinch Lab (b) Prismatic Pinch Home

(c) Lateral Grasp Lab (d) Lateral Grasp Home

Figure 8.6. Comparison of multiple repetitions of the same movement via the first three
principal components of the rectified sEMG signals in the (a,c) laboratory and (b,d)
home environments. Each color corresponds to one of the repetitions. The figure is best
viewed in color.
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Chapter 9
Conclusions

The motivation for this work was to investigate whether the integration of gaze
behavior could improve grasp recognition in myoelectric prostheses. To study this
idea, sEMG, gaze, and visual data were collected from 15 upper limb amputated
subjects during the execution of grasps and manipulation tasks on household objects.
For comparison also 30 able bodied subjects were engaged in the same experiments.
This dataset was collected following standard procedures in a laboratory environment,
asking the subjects to interact with several objects placed on a table in front of
them with ten predefined hand configurations. The participants were equipped with
electrodes to collect the sEMG signals from the forearm and with eye tracking glasses
to record first person videos and the gaze position.

To understand whether and, if so, when the gaze can provide useful information
for the recognition of the grasp, we thoroughly analyzed the coordination of eye,
head, and hand movements of the participants. The main goal of these analyses was
to verify the anticipatory role of gaze in the visuomotor strategy to estimate the
window of opportunity in which an intelligent prosthesis could exploit the visual
information to better understand the intended grasp. Furthermore, we were interested
to understand whether the amputation has introduced important differences in the
visuomotor coordination as compared to intact subjects. To perform these analyses,
we devised an approach based on recent developments in deep learning to identify
and segment in all videos the objects that were used in the acquisitions as well as the
limb of our participants. The acquired segmentations were later combined with the
gaze position within the image frame to automatically understand the fixated and
grasped objects. This approach not only minimized the manual effort required to
annotate the data, but also allowed to recognize the beginning of a fixation without
delay, even in the presence of eye movements that serve to counteract head and body
movements.

We found that a fixation on the target object typically preceded the subsequent
grasp by approximately 500 ms. Moreover, the visuomotor strategies of amputees
were similar to those of intact subjects both during the reach-to-grasp phase as
well as during functional manipulation tasks. The only observed differences were
related to the impossibility of the amputees to physically displace or interact with
the objects due to the absence of a prosthetic device. We used this knowledge in a
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proof of concept to combine vision with sEMG data in a multimodal kernel-based
classifier for grasp recognition. Contrary to previous studies, we proposed a natural
and simultaneous integration of sEMG and gaze data with the possibility to ignore
the visual modality when it did not contain relevant information for the grasp
recognition. The integration of vision improved the classification accuracy for all
the subjects, making the average performance of the intact and amputated groups
almost equal.

Finally, we investigated if similar results also hold outside the constrained
laboratory setting, where an action or grasp is part of a complex goal-oriented
activity performed in a home environment. In particular, we were interested to
understand whether methods trained on a set of isolated movements can recognize
these same movements during ADLs. To provide insight into this question we
acquired data from two intact subjects in two independent trials each. The initial
part of this acquisition consisted of repetitions of a set of six grasps in a variety
of contexts and executed according to a typical rest-movement-rest protocol in a
laboratory environment, as done for previous experiments. The second part of the
acquisition was performed in a real home environment where the subjects completed
five ADLs combining the previous grasps in unconstrained sequences. This study
only involved sEMG data; gaze data unfortunately had to be excluded due to the
large percentage of invalid samples in this unconstrained situation. Our analysis
using machine learning methods showed that even when trained on a rich set of
laboratory data we are not able to achieve satisfactory accuracy on the ADLs. The
reason for this degradation is a divergence in the distribution of myoelectric data
between the laboratory and home settings. This divergence violates the underlying
assumption in many machine learning methods, namely that train and test data
come from the same distribution. We further show that the trivial solution of simply
adding some more data from some ADLs to predict other such activities is not
sufficient to solve this problem. These results indicate that myoelectric data depend
strongly on the context in which a grasp is performed, such as the goal of the
movement, the size and weight of the manipulated object, and the arm dynamics.

9.1 Future Work

There are a number of possible directions that can be considered for future work.
From the point of view of visuomotor coordination it would be interesting to
investigate the gaze behavior in everyday life situations, as the practical engagement
in daily living tasks would result in more natural behavior. Despite the difficulty of
analyzing data from unconstrained acquisitions, this would give the possibility to
study sequences of multiple activities where a subject is required to interact with
several objects and to plan subsequent actions. Some studies in literature were
already oriented in this direction, however the majority of them involved only a
few subjects, probably due to difficulties in analyzing big amount of data (Land
and Lee 1994; Land et al. 1999; Land and McLeod 2000; Patla and Vickers 2003;
Hayhoe et al. 2012). To this aim it would be useful to test or extend the proposed
segmentation framework in unconstrained situations to facilitate and automate the
data processing.
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Both in laboratory and everyday life situations, the visuomotor coordination of
amputated subjects is altered if a prosthetic arm is used. It would be interesting
to understand how the findings of Chapter 6 relate to the eye-hand coordination
when using a prosthetic device. Previous studies (Sobuh et al. 2014; Bouwsema et al.
2012) have underlined that prosthetic users are more fixated on guiding the current
manipulation, rather than planning the follow-up action. The prosthetic users
declared that a high level of visual attention is required when performing certain
functions with the prosthetic arm (Atkins et al. 1996). This behavior is most likely
caused by the fact that amputated people rely almost exclusively on visual feedback.
However, since only a small number of subjects were engaged in the previous studies
more research will be needed to fully understand the disruption of the visuomotor
strategy. In particular, whether or not this strategy improves when the user develops
trust in the prosthesis (Chadwell et al. 2016) merits attention. Another equally
interesting question is to which extent the proactive gaze behavior can be restored
by integrating tactile or proprioceptive feedback in the prosthesis (Cipriani et al.
2011; Markovic et al. 2018; Marasco et al. 2018, among others).

Another problem that should be addressed is that the Tobii glasses result
uncomfortable when used on a daily basis. The unattractive appearance of many
prosthetic arms is one of the cause of abandonment of some of these devices (Atkins
et al. 1996; Biddiss and Chau 2007a), so the addition of another obtrusive and
cumbersome device would almost surely not be accepted by the vast majority of
end-users. A solution to maintain the acquisition of “visual information” without
burdening the user would be to embed a camera in the prosthesis. Although a few
studies have already reported interesting results in this direction (Došen et al. 2010;
Došen and Popović 2011; DeGol et al. 2016; Taverne et al. 2019), the integration of
sEMG with visual information is often absent or unnatural. Moreover, a disadvantage
of having the camera in the palm is that the object is only seen once the reaching
phase is almost terminated, whereas the eyes already fixate the object even before
the arm starts to move. Therefore, this anticipatory nature would be missing and
the window of opportunity for the integration of visual information would be shorter.

Regardless of the devices used to acquire data, it seems necessary to explore
performance metrics beyond the mere offline evaluation. In the last chapter of this
thesis we observed that the performance of grasp recognition drastically decreases
when they are part of ADLs performed in home environments. To address this
issue, we should investigate whether this train and test discrepancy can be addressed
using incremental learning, in which training becomes an integral part of the daily
operation of a prosthesis. This implies (1) the life-long collection of new data every
time deemed necessary by the user (Strazzulla et al. 2016; Patel et al. 2017) and
(2) to pass from offline to online evaluation where the reaction and the adaptation
of the user is not only taken into account but even embraced (Hahne et al. 2015;
Hahne et al. 2017).
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