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1. A Species-Specific Fingerprint

There is a basic (and often overlooked) difference of sta-
tus between genotype and phenotype. It is now widely 
accepted the many-to-many relation between the two 
(Noble, 2011) so that the same genotype can support 
different phenotypes and the other way around. The 
complexity of phenotype/genotype relation is at the ba-
sis of many speculations and the shift from instructive 
to permissive character of the genotype is deeply chang-
ing our view of both physiology and evolution (Po et al. 
2019, Braun E. 2015).

The difference that none (at least to our knowledge) 
took into consideration, is that while genotype (in its 
basic meaning of DNA genome sequence) is a universal 
feature of all the living organisms this universality does 
not hold for phenotypes. In other words, we cannot 
make a phenetic all-encompassing classification based 
on characters as leaves shape (animals have no leaves), 
brain size (only present in animals) or sensitivity to an-
tibiotics (only pertaining to bacteria and fungi).

On the other hand, the strict state and tissue depen-
dence of apparently low-level (and thus universal) phe-
notypes like gene expression, proteomic or metabolom-
ics profiles does not allow for among species unbiased 
comparisons. 

In order to have a universal phenotype shared at all 
the layers of biological organization that in turn remains 
sufficiently stable to be considered as a “species-specif-

ic” fingerprint, we must look at a property shared by 
all living organisms (with the only exception of viruses 
whose living organism status is in any case question-
able): metabolism.

Clearly, we intend for ‘metabolism’ the entire set of 
enzyme-catalysed chemical reactions that ‘can in princi-
ple’ took place in an organism, while those actually tak-
ing place are strongly state dependent and thus highly 
unstable. Metabolism thus corresponds to the entire 
metabolic network having as nodes the small organic 
molecules present in the organism with edges between 
all molecule <A,B> pairs that can be transformed one 
into another by a single chemical reaction.

The possibility of ‘going to phenotype from genotype 
with a single jump’ offered by metabolic networks anal-
ysis, complementing phylogenetic and ecological cues, 
was already explored (Braun E. 2015, Borenstein et al. 
2008, Lewis et al. 2012). Along similar ways the possi-
bility to individuate the lethal mutations (Palumbo et 
al.  2005) by the sole analysis of metabolic network, is 
another fertile research avenue. 

Notwithstanding this interest, all the scholars ex-
plored specific biological problems without testing the 
possibility of considering metabolic network wiring as a 
‘phenotypic barcode’ of biological species exactly in the 
same terms ribosomal RNA 16S is a ‘genotypic barcode’ 
(Sarangi et al. 2019).

Metabolic network wiring is as stable as genotype 
given it stems from the enzymatic proteins encoded in 
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the genome of single organisms (and consequently on 
the kind of chemical reaction those enzymes catalyse). 
Notwithstanding that, the metabolic network represen-
tation does not simply equate the genotype for three 
main reasons:
1. The presence/absence of the enzyme A is indepen-

dent of eventual changes in its sequence (many to 
one genotype-phenotype mapping)

2. The same chemical reaction can be catalysed by dif-
ferent enzymes so allowing for both multiple edges 
between two metabolites (simplification of pheno-
types) and to the same wiring by means of different 
enzyme species (many to one genotype-phenotype 
mapping).

3. The same enzyme can be inserted in different path-
ways in different organisms (one to many geno-
type-phenotype mapping).
This paper demonstrates the mutual distances be-

tween metabolic networks wiring are able to both 
discriminate different species and to reconstruct the 
known phylogenetic relations at all levels of biological 
classification (Martino et al. 2019b).

This was possible by means of a very refined compu-
tational approach based on Granular Computing able to 
conjugate discrimination efficiency and the possibility 
to get biologically meaningful hints.

2. The Computational Approach

The breakthrough of the Granular Computing par-
adigm as a component of the vast toolbox of machine 
learning techniques, allowed the development of ad-
vanced pattern recognition systems able to deal with 
non-conventional data, such as networks (Martino et 
al. 2018). According to the latter, the vast majority of 
the information contained in structured domains (e.g. 
networks, sequences) can be preserved by extracting a 
set of meaningful “information granules” (e.g., portions 
of the networks) and then by describing each original 
network according to the number of occurrences of 
each information granule within the network itself. As 
per the paper commented, the puzzling point is: can dif-
ferent organisms can be discriminated according to sta-
tistically relevant chemical reactions drawn from their 
respective metabolic networks?

This modus operandi allows to solve a ‘global prob-
lem’ (i.e., discriminating amongst organisms having 
different cellular architecture, organisms belonging to 
different species or different kingdoms, and so on) by 
relying on ‘atomic entities’ such as individual chemical 

reactions in a metabolic pathway (i.e., individual edges 
in a metabolic network). This facet is particularly cru-
cial if the “global problem” is hard to be analysed in its 
entirety in order to gather further insights, while “atom-
ic entities” are not.

Furthermore, whether this “global problem” can be 
cast as an optimization problem, one gets the full ben-
efit of the biological interpretability of the learning sys-
tem, paving the way to so called Explainable Artificial 
Intelligent systems. In fact, one can drive the data-driv-
en learning machine towards the selection of the small-
est subset of edges which, at the same time, hold the 
vast majority of the information, hence endowing the 
highest discriminative power.

This summarizes the computational aspect in (Mar-
tino et al. 2019b), in which the authors faced four dif-
ferent problems located at different definition scales 
(discrimination between different cellular architec-
tures – i.e., prokaryotes vs. eukaryotes, discrimination 
amongst different kingdoms, discrimination amongst 
animals, and discrimination amongst bacteria). Other 
than obtaining remarkable discrimination capabilities, 
which accounts for the reliability of the proposed met-
ric, all four problems returned the most meaningful 
set of information granules (chemical reactions) which 
gave rise to biologically meaningful hints, fostering the 
use of metabolic networks as universal phenotype.

On a larger scale, this work fosters the cooperation 
between biologists and pattern recognition engineers, 
unleashing the potential of data-driven techniques to-
wards interpretable models (Martino et al. 2018, Mar-
tino et al. 2019a).

3. Conclusion

Besides the generation of theoretically relevant hints 
(e.g. which specific chemical reactions happen only in 
eukaryotes) the practical application of the results re-
ported in (Martino et al. 2019b) are particularly evident 
in ecological settings.

Each ecological space is defined by the role played by 
different actors (e.g., predators, preys, primary produc-
ers), the existence of a healthy environment depending 
upon a balanced mixture of different ecological niches 
occupation. In the case of microbial communities, es-
pecially in the case of internal ecologies of mucosa mi-
crobiota (Gilbert et al. 2018), the comparison between 
healthy and ‘disease’ microbial profiles is computed in 
terms of genotype barcode that, by definition, does not 
convey any biological information other than species 
identification.  
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Shifting to ‘phenotype barcoding’ could be much 
more informative because allows us to discriminate 
between function preserving (the same metabolic func-
tions are carried out by different species) and function 
altering (a given metabolic activity is no more present) 
changes. This could yield a major achievement in terms 
of both pathology (human microbiota) and environ-
mental sciences (microbial ecology of soil and water).   

The Granular Computing approach used for solv-
ing such a very hard computational problem (needing 
millions of atomic comparisons as applied to metabolic 
networks, each having hundreds of nodes and conse-
quently thousands of edges) allowed a dimensionality 
collapse and the subsequent enucleation of “discrimi-
nant edges”. This is, at least in our opinion, an example 
of a sensible approach to Big Data that saves both the 
prediction efficiency and the biological interpretation, 
paving the way to a productive collaboration between 
different disciplines. Machine learning (and in partic-
ular Granular Computing Inductive Modelling) is not 
only a useful information processing toolset for “in sili-
co” experiments, but represents a true paradigm revolu-
tion in science, towards an efficient and effective way to 
identify meaningful regularities in Big Data, for knowl-
edge discovery and nature understanding.
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