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Abstract.  X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and 

localize elements in cells. To derive information useful for biology and medicine, it is essential 

not only to localize, but also to map quantitatively the element concentration. Here we applied 

quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can 

become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M 

concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving 

the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by 

ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes 

induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in 

epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and 

bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and 

inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and 

untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and 

mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, 

atomic force microscopy and synchrotron phase contrast imaging.  

 

 

 

 

1. Introduction 
Iron is an essential element for cell growth and proliferation being involved in fundamental processes, 

such as DNA replication and energy production. However, iron can also be toxic when present in excess 

because of its capacity to donate electrons to oxygen. Therefore, iron homeostasis is strongly regulated 

http://creativecommons.org/licenses/by/3.0
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both at tissue/secretion and cell levels [1]. In human fluids free iron is maintained at low concentration 

(10-18M) thanks to iron binding proteins as lactoferrin (Lf) in secretions and transferrin in blood [1]. In 

fact, Lf is the most important iron binding glycoprotein of natural immunity [1, 2]. Iron homeostasis is 

also tightly related to inflammation and infection [1, 3]. In particular, macrophages are specialized cells 

involved in these processes regulating iron influx in human fluids [4]. In inflammation and infection 

induced by lipopolysaccharide (LPS) or bacterial pathogens, the synthesis of ferroportin, the sole protein 

able to export iron from macrophages to blood, is inhibited thus hindering iron export, increasing 

intracellular iron, bacterial multiplication and inflammatory processes. Recently, Lf has been found to 

be an important regulator of iron homeostasis and a potent anti-inflammatory factor [1,5]. Conversely, 

very little (if anything) is known about the effect of Lf on the concentration and distribution of iron in 

inflamed and non-inflamed macrophages. The present work has two main aims: i) to demonstrate the 

possibility to quantitatively map the intracellular iron mass fraction and concentration at nanoscale 

spatial resolution in macrophages using combination of several techniques, i.e. X-ray Fluorescence 

Microscopy (XRFM), Atomic Force Microscopy (AFM) and Phase Contrast Imaging (PCI); ii) to 

compare the iron maps of the cells inflamed by bacterial LPS and untreated or treated with milk derived 

bovine Lf (bLf). In previous works [6, 7], we utilized X-ray absorption microscopy instead of PCI. 

However, in this case the relatively high energy photons (17 keV) would give no contrast in absorption 

mode, and phase contrast mode, which is sensitive to tiny variations of refraction index, has been used 

to obtain visible contrast. 

2. Experimental methods 

2.1 Sample preparation 

J774.2 macrophages (Sigma Aldrich) were cultured in RPMI 1640 medium supplemented with 20% 

heat-inactivated foetal calf serum (FCS), 100 unit/ml of penicillin and 100 μg/ml of streptomycin on 

1×1 mm2, 200-nm-thick silicon nitride (Si3N4) membrane windows, mounted on a 5×5 mm2 Si frame 

(purchased from www.Silson.co.uk) previously sterilized in ethanol. Cells were inflamed using E. coli 

LPS (1µg/ml) (InvivoGen). The inflamed cells were untreated or treated with bLf (100µg/ml) (Morinaga 

Milk Industries, Japan). After 48h, cells were rinsed with 100 mM ammonium acetate, cryofixed by 

plunge freezing in liquid ethane bath cooled with liquid nitrogen and then dehydrated in vacuum at low 

temperature overnight. 

2.2 XRFM, PCI and AFM measurements  

Dehydrated cells mounted on the Si3N4 membrane windows were carefully examined with optical 

microscope and selected with the following criteria: integrity, dimensions and distance from other cells.  

AFM measurements were performed on selected cells before XRFM and PCI measurements. AFM 

topography maps were collected off-line by using a Digital Instruments D3100 microscope equipped 

with a Nanoscope IIIa controller. The AFM was operated in ambient air using the tapping mode at a 

resonance frequency of about 260 kHz. Commercial monolithic silicon tips were employed, with an 

apex curvature radius in the 5-10 nm range and a nominal force constant of 40 Nm-1. AFM maps with 

size of the order of 50 μm were collected with lateral spatial resolution of ~100 nm and accuracy in the 

cell thickness measurement of about 30 nm. Images were collected without any real-time filtering or 

flattening, and were post-processed to eliminate all the possible artefacts [6]. The Fig. 1 shows the AFM 

topographic data of a cell treated with LPS in the absence of bovine Lf (bLf).  

The X-ray measurements were carried out at the beamline ID16A-NI at the European synchrotron 

radiation facility (ESRF, Grenoble, France) with spatial resolution of 100 nm (dwell time 50 ms) for 

XRFM and 50 nm for PCI. In this work, the energy was set to 17 keV for all experiments. The samples 

were positioned in the focal plane of the KB system, translated by piezo-stages in the directions 

perpendicular to the beam. The X-ray fluorescence emission lines of several elements were collected by 

the silicon drift energy dispersive detectors positioned in the horizontal plane at 95° of the incoming X-

ray beam. After acquisition the fluorescence spectra were analysed using the PyMCA free program [8], 

and the total counts of the Fe K lines, after subtraction of the backgrounds, were mapped as a function 
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of the sample position with respect to the incoming beam. The resulting fluorescence map for the same 

cell of Figure 1 is displayed in Fig. 2.   

The PC projections were acquired at four different distances (29 mm, 30 mm, 34 mm, 44 mm) 

downstream of the X-ray focus resulting in magnified Fresnel patterns collected by a highly sensitive 

charge-coupled device (CCD) camera.  For each 4 distances, we have acquired 17 images, 10 references, 

with 0.25 s, and 20 dark-fields. A complex procedure to retrieve the phase has been carried out [9, 10]. 

The result for the same cell is shown in Fig. 3.  

 

 

3. Results and conclusion 
The experimental results presented in Figs 1, 2 and 3, allowed to calculate both the iron mass fraction 

and the concentration. The mass fraction (Fig. 4) is obtained normalizing the fluorescence map with the 

projected electron density derived by the analysis of the PCI. The concentration (Fig. 5) is instead 

obtained by normalizing the fluorescence map with the volume of each pixel, as derived by the AFM. 

Both Figs 4 and 5 refer to a cell treated with LPS in the absence of bLf. 

 

     

Figure 4. Iron mass fraction               Figure 5. Iron concentration                Figure 6. Iron concentration 

map of LPS-treated cell in                   map of LPS-treated cell in                   map of LPS-treated cell  

the absence of bLf                  the absence of bLf                               in the presence of bLf  

 

 

It is noteworthy that the distribution maps of the iron mass fraction and of the iron concentration in LPS-

treated cell without Lf are very similar (Figures 4 and 5), confirming the validity of the experimental 

approach. In Fig. 6 the iron concentration map of LPS-treated cell in the presence of Lf is shown. 

Preliminary quantitative evaluation indicated that intracellular iron concentrations in LPS-inflamed cells 

untreated or treated with  bLf were quite different (35 and 7 nM, respectively) in agreement with 

previously reported data on ferroportin synthesis [1, 4, 5]. Interestingly, the cellular iron distribution in 

LPS-treated cell (Fig.5) appeared different respect to that of LPS-treated cell in the presence of bLf 

(Fig.6) being located around the cytoplasm membrane cell, suggesting the reduction of its export 

probably associated to the inhibition of ferroportin [4, 5]. 

     

Figure 1. AFM topographic 

map of LPS-treated cell 

[μm] 

 Figure 2. Fluorescence 

intensity iron map of LPS-

treated cell 

 Figure 3. 2D Phase 

Reconstruction map of LPS-

treated cell 
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In conclusion, for the first time we have shown that with proper combination of different techniques, it 

is possible to obtain quantitative information at nanoscale spatial resolution about iron concentration 

and distribution in inflamed cells, opening the way to more complex studies on the role and therapeutic 

efficacy of Lf in restoring iron and inflammatory homeostasis disorders. This study has been conducted 

on freeze dried cells, but we have also analyzed frozen hydrated cells, the closest ones to the living cells, 

using nanotomography instead of AFM to measure the volume of the cells. The analysis here reported 

has great potentiality to improve the comprehension of the mechanisms of iron homeostasis in conditions 

close to the living one. 
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