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Abstract
Investigating the RNA structure contributes greatly to understand 
RNA roles in cellular processes. Indeed, functional RNAs show 
specific instrumental sub-structures for their interaction with other 
molecules. The RNA structure prediction will provide fundamental 
insights into developing hypothesis connecting function to structure, 
but it is a challenging and unsolved task yet.

We aim at discussing the current status of the widespread RNA 
folding tools and comparing their performances on RNA families 
with known structure, in order to estimate how much the predictions 
are close to the experimental folding.

A comprehensive understanding of RNA folding could highlight 
further roles of long non-coding RNA in the gene expression 
regulation and in the epigenetic regulatory pathways in physiological 
and pathological conditions of a living cell.
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sequences fold in complex secondary structures (interactions of 
base-pairs set) whose analysis could be an important determinant of 
a functional characterization. Indeed, a stable spatial structure of an 
RNA molecule appears crucial in its interactions with other molecules 
in the cell [3] and hence, for performing its biological function [4,5]. 
Thanks to their secondary structure, for instance, the new appreciated 
long non-coding RNAs (lncRNAs)  [6] can guide transcription 
machinery proteins to specific genomic sites leading to a chromatin 
remodeling that could allow access of condensed genomic DNA and 
thus control gene expression. As a consequence, a dysregulation of 
specific long non-coding RNAs could have a deep impact on cancer 
development and progression  [7].

However, for most RNA sequences the experimental 
determination of the structure is still arduous. Therefore, the 
RNA structure prediction is highly requested as well as remains a 
challenging computational task not wholly solved, yet.

Many tools have been developed to address the prediction of 
RNA secondary structure based on different methods [8]. Specifically, 
RNA secondary structures can be determined by using two main 
approaches: single-sequence [9] and comparative methods [10]. 
The first class of methods performs prediction starting from single 
sequences by using techniques that include Free-Energy Minimization 
(MFE) (e.g., Mfold[11] and RNAfold [12]) and machine learning  [13] 
(e.g., ContextFold [14]); while the second one enables the predictions 
for sequence families, for example by inferring sets of base-pairs 
from multiple sequence alignments, looking at the co-variation of 
nucleotides at different positions.

Among the single-sequence approaches, we focus on the 
widespread thermodynamic methods, where the stability of a 
structure is quantified by changes in the folding free energy values 
according to the nearest neighbor rules [9]. The thermodynamic 
formula that guides the folding of an RNA molecule is defined as 
follows:
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where the ratio of the concentration of folded species at 
equilibrium (F) and the unfolded ones (U) represent the equilibrium 
constant K. Moreover, ΔG° is the difference between F and U 
standard free energies [J]; R is the gas constant [J/mol·K] and T the 

Highlights
•	 Studying RNA secondary structures represents a cutting-edge 

topic in structural biology 

•	 Secondary structure predictions are becoming important to 
connect function to structure 

•	 Understanding of structures may unveil new functions of 
both coding and non-coding RNAs 

•	 Overview of the existing tools for RNA (coding and non-
coding) structure predictions 

Introduction
The centrality of RNA molecules in cellular functions has become 

increasingly evident in recent decades [1,2]. Once regarded only 
as carriers of genetics information, it has been shown that RNA 
molecules are functional and play an active role in living organisms: 
catalysts of metabolic reactions and RNA splicing, regulators of 
gene expression and guide for protein localization. The linear RNA 
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sequence conservation, three directions can be followed to predict 
the lowest free energy structure shared by all the sequences: either 
(i) firstly a sequence alignment is performed and the information 
it conveys is then exploited for structure prediction looking at the 
conserved base-pairs in the found alignment (e.g., RNAalifold [12]); 
or (ii) the optimal sequence alignment can be found simultaneously 
to the structure prediction (e.g., Dynalign [25] and Carnac [26]); or 
(iii) the lowest free energy structure can be predicted individually for 
any sequence, and these ones are then aligned in order to find the 
structure shared by all of them (e.g., MARNA [27]). Comparative 
analysis, however, requires multi-alignment of available homologous 
sequences, which presently make it not eligible approach for long 
and not conserved sequences of RNAs, instead of a single-sequence 
prediction analysis that is less demanding in this respect, but pays in 
term of a lower accuracy.

The choice between the different available tools has to be made 
according to the specific project aims. For example, for what concerns 
the lncRNAs [6,28,29], most the available tools are not immediately 
suitable to deal with them, due to the long sequence and the lack of 
multiple alignments of these RNAs.

We tackled this issue in our previous works [30,31], where 
we presented a novel pipeline called MONSTER (Method Of 
Non-branching Structures Extraction and search) that enables to 
detect structural motifs shared between two RNAs. MONSTER 
characterizes the RNA secondary structure through a descriptor-
based method where the entire structure is made up of an array of 
more simple sub-structures (Figure 1). In particular, a predicted RNA 
secondary structure (Figure 1a) can be broken down into separated 
Non Branching Structures (NBSs, Figure 1b) that are conveniently 
represented by a dot-bracket notation (Figure 1c) [32]. Each NBS 
is described by an RNA Sequence-Structure Pattern (RSSP), i.e., a 
pair composed of a string of bases (the sub-sequence corresponding 

temperature [K]. For equilibrium folding, the lowest free energy 
structure in the folding ensemble is the most probable [9]. Hence, 
the aim of predicting secondary structure from thermodynamics is to 
find the set of base-pairs that provides the lowest free energy reaching 
the folded state. Alternatively, structures can be sampled from the 
Boltzmann ensemble according to their probability of occurring, and 
then can be clustered and the representative structure (called centroid 
) is determined (e.g., S fold [15]). In addition, other alternative 
prediction methods rely on the Maximum Expected Accuracy (MEA) 
structure [16] (i.e., the predicted structure with the highest sum of 
base paring probability).

Thermodynamic methods can be divided in two main classes: 
the global folding software (e.g., Fold of RNA structure [17,18], RNA 
fold of Vienna RNA package [12], Web-Beagle [19] based on a new 
alphabet to encode secondary structure [20]) and those favoring 
local folding (e.g., RNALfold [21]). The latter take into account a 
restriction on the span of base-pairs of the RNA molecule, rather than 
the structure of the entire RNA and seem to be more accurate since a 
short-range pairs in long sequences (local folding) are more kinetically 
favored than long-range pairs (global folding) [22]. It has been shown 
that thermodynamic models lead to very fast algorithms and reach 
a high accuracy even if they suffer from steep decrease of accuracy 
with the increase of sequence length [18]. The drop can be controlled 
including additional features, such as a partition function (i.e., the 
sum of the equilibrium constants for all possible secondary structures 
of a given sequence) to determine the base-pair probabilities of the 
prediction [23] or searching for homologous sequences to determine 
a conserved structure [17,24].

A comparative approach to secondary structure prediction 
exploits multiple sequence alignments to predict a consensus 
structure shared by all (or most) sequences in the alignment. In 
particular, given a set of multiple sequences characterized by high 
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Figure 1: An example of the encoding of a predicted secondary structure into a Secondary Structure Descriptor (SSD). (a) RNA secondary structure representation 
with the two highlighted Non-Branching Structures (NBSs) (red one and blue one); (b) the extraction of the two NBSs; (c) mapping of the secondary structure in 
the dot-bracket notation (i.e., a 3-letter alphabet where dots represent unpaired bases, open-closed brackets “()” represent the paired bases) and the visualization 
of the two RSSPs that are a pair of the sub-sequence and the corresponding NBS; (d) the SSD composed of the two RSSPs.
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compatible starting positions and that begin with the same analyzed 
NBS. Finally, it returns the group of RSSPs whose computed score 
according the objective function is the optimal one. It is worth noting 
that in the case of two RSSPs having the same score, SSD_opt selects 
the one whose False Positive (FP) value (i.e., the number of predicted 
base-pairs that are not in the known RSSP) is lower.

Formally, we define: (i) R as the RNA sequence; (ii) S as the 
list of NBSs extracted from the predicted structure of R and sorted 
according to increasing sequence positions; (iii) T as the list of NBSs 
extracted from the experimentally-known structure of R; (iv) si the 
i-th NBS in S (i = 1,..,n with n = |S|) with pos(si) its position in R and 
length (si) its length; (v) ind(∙) as a function that can be applied to 
NBSs in S and returns the index of the argument in the list (starting 
from 1). Then, we consider { }1 2

, s ,...,s
nj j jC s= as a chain of NBS in S 

such that satisfies ,1 1i i n∀ ≤ ≤ −  the following conditions:

( ) ( )
( )
1

1
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Specifically, condition (i) implies that C is sorted according to 
increasing positions in T, hence that 

1,  ,  1 1.i ij j i i n+< ∀ ≤ ≤ − To simplify notation, hereafter we will 
denote the matches in a chain as{ }1 2,s ,...,sns .

Based on these definitions, we define a function score to evaluate 
C as follows:

1
( ) (s )

n

i
i

score C P
=

= ∑ ,

where P(si) is the number of base-pairs (i.e., pairs of brackets in 
the dot-bracket notation) of si that are also in T.

SSD-opt computes the score for all the chains of NBSs in S 
satisfying conditions (i) and (ii), and then selects the chain with the 
highest score. However, this is unfeasible for long sequences, since 
its complexity grows exponentially with the number of NBSs. To 
reduce the complexity, we consider for all s ∈ S only the chain ending 
with s that has the highest score. This can be done with dynamic 
programming using the recursion: ( ) ( ) ( ){ }i i j C jOPT s P s max OPT s∈= +

where 
( )( ) ( )( ) ( ) ( ) ( ){ |  ind nbs ind nbs   pos length pos  }j i j j iC j j i s s s s s= < ∧ < ∧ + ≤

OPT(si) gives for any si ∈ S the highest score of chain ending with 
si and the corresponding optimal chain can be easily determined by 
backtracking. To conclude, SSD-opt taken as input S and T returns 
one optimal chain of NBSs in S.

to the NBS) and a string that represents the secondary structure in 
the dot-bracket notation (the NBS). In addition, a list of parameters 
is associated to each RSSP and composes the header line. The set of 
RSSPs makes up the Secondary Structure Descriptor (SSD) of the 
RNA sequence (Figure 1d).

The underlying idea of MONSTER was to functionally characterize 
RNAs with unknown functions (target RNAs) by searching for similar 
structural motifs in RNA whose function is known (reference RNA). 
The prediction module of MONSTER makes use of RNALfold and 
thus comes under the methods that rely on single-sequence approach.

Here, we report a comprehensive comparison of two 
abovementioned approaches (i.e., single-sequence and comparative) 
with respect to the RNA structure predictions in terms of absolute 
and relative sensitivity of all the analyzed tools. Thus, we benchmark 
the prediction methods on a collection of RNA families with well-
experimentally-known structures (e.g., making use of the freely-
available database RNA strand v2.0) by comparing the predictions 
with respect to the experimentally-known structures.

Pursuing the idea of the RNA structure predictions comparison 
from several different tools, we developed two ad-hoc dynamic 
programming algorithms (SSD-opt and SSD-liberal), presented in the 
following, which are able to assess the accuracy of the most popular 
thermodynamic tool RNALfold from Vienna RNA package (Figure 
2).

RNALfold is a MFE-based predictor that returns the locally 
stable secondary structures of an RNA sequence according to a given 
parameter L that represents the maximum allowed distance between 
base-pairs. Additionally, it computes for each local structure its free 
energy, as well as the starting position in the sequence [21]. The 
output list is composed of all the possible local structures, which are 
predicted and may overlap (i.e., more predictions correspond to an 
identical piece of sequence).

Dynamic	programming	algorithms	to	evaluate	accuracy	of	
RNA	structure	predictions:	SSD_opt	and	SSD_liberal

SSD_opt takes as input a set of predicted sub-structures (NBSs) 
and the related set of the experimentally-known ones (i.e., “Ground 
Truth”) and returns as output the array of non-overlapped predicted 
RSSPs that have the highest number of base-pairs matching with 
the experimentally-known ones. SSD_opt is based on dynamic 
programming, whose objective function is the maximization of 
the number of base-pairs according to what previously explain: it 
computes for each RSSP all the possible groups of RSSPs that have 
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Figure 2: Flowcharts of the procedure built up to run SSD-opt or SSD-liberal. For each RNA input sequence, its local secondary structures are predicted by 
RNALfold; the corresponding overlapped NBSs are then extracted by the module nbRSSP-extractor of MONSTER [30,31] that returns the set of all RSSPs. 
Simultaneously, the known RNA structures are split in the corresponding true RSSPs by the module nbRSSP-extractor of MONSTER and the SSD of the known 
structures is obtained. Finally, pair wise comparisons are performed by SSD-opt or SSD-liberal between the predicted set of NBSs and the known structures. The 
output represents the optimal SSD. Legend: rectangles represent the Input/output blocks; the small circle represents the available published tool; the big circles 
represent our developed algorithms; the last rectangle on the right side represents the final output returned.
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prediction of a secondary structure from thermodynamics. The aim 
is to find the base-pairing that provides the lowest free energy when a 
RNA molecule moves from the unfolded to the folded status. Mfold 
[11] and RNAfold [12] are based on the implementation of the Zuker-
Stiegler algorithm to search for the lowest free energy structure by 
means of empirical estimations of the thermodynamics parameters. 
Finally, Fold algorithm (from the RNA structure package [17,18]) 
folds the RNA sequence into its lowest free energy conformation 
allowing the application of several constraints (e.g., modifications, 
required energy intervals, restrictions about the base-paring rules), as 
well as giving as output not only the lowest free energy structure, but 
all the possible ones.

ML-based: The software package Context Fold [14] relies on 
Machine-Learning (ML) techniques. It contains algorithms that 
provide a RNA structure prediction thanks to several scoring models 
that are trained on large training sets composed of RNA sequences 
with known structures.

MEA-based: Several methods are based on probabilistic 
approaches and look for the Maximum Expected Accuracy (MEA) 
structure in order to enlarge the information and effectiveness of 
their structure prediction. Among them, Sfold (sfold.wadsworth.
org) performs a stochastic sampling of the structures given by 
the Boltzmann structures ensemble according to their occurring 
probability; then, it performs a clustering of the sampled structures. 
Centroid Fold predicts the RNA secondary structure improving 
their accuracy by means of generalized centroid estimators. 
Finally, iPknot (rtips.dna.bio.keio.ac.jp/ipknot/) predicts the 
MEA structure by using integer programming and accounting for 
the pseudoknots.

Comparative	approaches
These methods predict the RNA secondary structure starting 

from multiple sequences in order to find the more conservative one 
(consensus structure) common to all (or almost all) the sequences 
[30,33].

Fold then align: This approach consists in predicting an array of 
structures having the lowest free energy for all the multiple sequences 
given as input. Then, it searches for the structure with lowest free 
energy shared among all the sequences.

An example of tools based on such an approach are MXScarna 
[34] (Multiplex Stem Candidate Aligner for RNAs) and MARNA  
[27]. MXScarna is a multiple alignment tool for RNA sequences 
that uses progressive alignment based on the pair wise structural 
alignment algorithm of SCARNA. MARNA is based on pair wise 
comparisons and it exploits the costs of the edit operations to 
compute the consensus structure of the input multiple alignments. 
To date, the most advanced LocARNA (bioinf.uni-freiburg.de/

SSD-liberal selects for each true NBS the predicted ones that have 
the highest number of base-pairs matching with the experimentally-
known structures, regardless of any overlapping position. The 
algorithm takes as input a set of predicted NBSs (S) and the related 
set of the true ones (T). Thus, it returns as output the optimal chain 
of NBSs (even overlapped) based on the pair wise comparison of the 
predicted structure with the experimentally-known one.

Likewise SSD-opt, SSD-liberal is based on dynamic programming 
(see the previous subsection) and computes all the groups of RSSPs 
that begin with the same analyzed NBS and that reach the best score. 
However, instead of SSD-opt, the scores are assigned only by taking 
into account for the presence of each si ∈ S among the T list, without 
accounting for their overlapping positions. Therefore, the condition 
(ii) of SSD-opt has not to be satisfied. Indeed, in this case the recursive 
function of the dynamic programming algorithm is the following:

(s ) = (s ) + { (s )}i i j c iOPT P OPTmax ∈  

where ( )( ) ( )( ){ |   ind nbs ind nbs }j iC j j i s s= < ∧ <

Methods	for	the	RNA	Structure	Predictions
In this section, we list and describe the main algorithms able to 

predict and extract the secondary structure of both protein coding 
and non-coding RNAs.

Single-sequence	methods
These methods predict the RNA secondary structure starting 

from the single sequence [30,33].

nbRSSP-extractor:  nbRSSP-extractor [30] provides by default 
a unique prediction composed by non-overlapping RSSPs. Briefly, 
starting from a list of all possible (overlapped) local structures 
predicted by RNALfold (window size L = 150), nbRSSP_extractor 
extracts a set of NBSs that do not overlap, according to a specific 
selection criteria based on the means free energy per nucleotide. 
However, nbRSSP_extractor with a specific option can also return 
all the NBSs (even overlapped) that are extracted from RNALfold 
without any selection criteria (see RNALfold-lnrz method), as well as 
the NBSs contained in one unique global structure in the dot-bracket 
format (such as those NBSs extracted from the experimentally-known 
structure and that constitutes the list T).

RNALfold-lnrz: RNALfold-lnrz [30] analysis consists of applying 
the nbRSSP-extractor to select the non-overlapping predictions of 
RNALfold in an alternative way, i.e., the predictions of RNALfold are 
selected based on their decreasing free energies, and then the non-
overlapping ones are chosen.

MFE-based: Based on the Free Energy Minimization (MFE), these 
methods start from the only single RNA sequence and determine the 

Table 1: Metrics

Metric Description Formula

TPR
(sensitivity or recall)

True Positive Rate
•	 probability of a positive test, given a patient ill;
•	 measure of prediction correctness;
•	 should be high.

  = TP TP
P TP FN+

PPV
(or precision)

Positive Predictive Value
•	 the proportion of the true positives against all the positive results; 
•	 capacity of predicting the positives; 
•	 used instead of FPR; 
•	 should be high.

 = 
'

TP TP
P TP FP+

F-measure F-measure
•	 harmonic weighted mean between PPV and TPR;
•	 close to 1 = better prediction.

2 TPR PPV
TPR PPV
⋅ ⋅

+

MCC
Matthew’s	Correlation	Coefficient

•	 equal to:
- -1: false assignments (TN = TP = 0)
-  0: prediction not better than random
-  1: all true assignments (FP = FN = 0)
Set to 0 when denominator = 0
•	 ~ geometric mean between TPR and PPV;
•	 should be high.

( ) ( ) ( ) ( )
TP TN FP FN

TP FP TN FN TP FN TN FP
⋅ + ⋅

+ ⋅ + ⋅ + ⋅ +

TP = True Positive; TN = True Negative; FN = False Negativ; FP = False Positive.

http://rtips.dna.bio.keio.ac.jp/ipknot/
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free energy structure and aligns two RNA sequences. Foldalign 
implements a local or global simultaneous folding and aligns two 
or more RNA sequences. Finally, Carnac implements an improved 
version of the Sankoff algorithm by adding several filters through 
which the set of sequences has to be processed. It calculates the base 
pairing probability matrices and aligns the sequences based on their 
full ensembles of structures.

Base pairing probability: The base pairing probability is defined 
as the probabilities of composing a base-pair in the ensemble of 
RNA secondary structures thanks to which the information about 
the single RNA structure can be enriched [23,36]. Among those 
tools that account for the base-pairing probabilities, Turbo fold of 
the RNA structure package [17] takes as input a set of homologous 
RNA sequences and folds them to identify the common structure 
with the lowest energy configuration. Specifically, it estimates the 
base pairing probabilities by intrinsic and extrinsic information to 
improve the accuracy of its RNA structure predictions. Furthermore, 

Software/LocARNA/) that performs a simultaneous alignment and 
folding replaced it.

Align then fold: Such an approach determines the multiple 
sequences alignment according to the RNA sequences information 
and then predicts the lowest free energy structure shared by the 
highest number of them. CentroidAlifold is based on the generalized 
centroid estimators to find the common lowest free energy structure. 
RNAalifold [12] implements an extension of the Zuker-Stiegler 
algorithm for computing consensus structures from RNA alignments. 
Finally, Pfold (daimi.au.dk/~compbio/pfold/) predicts the folding of 
an RNA alignment input by implementing a Stochastic Context Free 
Grammar, which is trained on a dataset of reference alignments.

Fold and align simultaneously: This approach makes use of 
Sankoff dynamic programming algorithm to simultaneously align 
and fold a set of RNA sequences [8,35]. Dyalingn implements a 
pairwise version of such an algorithm to identify a common lowest 
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Figure 3: Flowcharts of the procedure to evaluate the SSD_opt (or SSD-liberal) performances. From each experimentally known RNA structure of 5s, 16s, 23s 
rRNA and tRNA families, the corresponding known Sequence Structure Descriptor is extracted (experimentally-known SSD). From each RNA families sequence 
the SSD-opt (or SSD-liberal) dynamics programming algorithm is applied in order to extract the corresponding optimal predicted SSD, by taking into account both 
the predicted structure as well as the known-experimental one (see Figure 2). Finally, pair wise comparisons are performed between the optimal predicted SSD 
and the experimentally-known ones. The procedure provides as output the comparison results with their computed statistics. Legend: rectangles represent the 
Input/output blocks; the big circles represent our developed algorithms; the last rectangle on the right side represents the final output returned.

Table 2: Results of SSD-liberal and SSD-opt algorithms on rRNA classes and tRNAs from the RNAstrand v2.0 database.

Tool SSD_liberal SSD_opt

Dataset\
TP FP PPV TPR

F- MCC
TP FP PPV TPR

F- MCC

Metric measure (*) measure (*)

5s
3111 1121 0.735 0.674 0.703 0.704 2785 1186 0.701 0.618 0.657 0.658

rRNA

16s
344593 60895 0.849 0.811 0.830 0.830 144667 36279 0.799 0.665 0.726 0.729

rRNA

23s
223064 38682 0.852 0.800 0.825 0.826 64360 14886 0.812 0.680 0.740 0.743

rRNA
tRNA 1109 56 0.952 0.731 0.827 0.834 983 75 0.929 0.684 0.788 0.797

average 142969 25189 0.847 0.754 0.798 0.799 53199 13107 0.811 0.662 0.729 0.732

TP = correctly predicted base-pairs; FP = base-pairs in the predicted structures but not in the reference; TPR = True Positive Rate; PPV = Positive Predictive Value; 

(*) MCC PPV TPR= ⋅

http://daimi.au.dk/~compbio/pfold/
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RNA sampler (stormo.wustl.edu/RNA Sampler) is a sampling-based 
program that includes structural pair wise information and base 
pairing probabilities estimation to predict common RNA secondary 
structure among multiple sequences. It is also able to deal with 
pseudoknots.

Evaluating	 the	 Performances	 of	 the	RNA	Prediction	
Tools

Here, we present the performances of some RNA folding 
algorithms on reliable and available data-sets of functional RNAs 
with experimentally-known secondary structures (e.g., rRNA 5S, 16S 
and 23S from RNAstrandv2.0 database, rnasoft.ca/sstrand). Thus, 
we compare the prediction results of the RNA folding algorithms 
with respect both to SSD-opt and SSD-liberal algorithms and to 
nbRSSP-extractor and RNALfold-lnrz performances, according to 
the metrics listed in table 1. The comparative analysis of the state-
of-the-art tools have been rearranged from results reported in  
[10] and [33]. In particular, first we evaluate the performances of 
SSD-opt and SSD-liberal algorithms (Figure 3) with respect to the 
experimentally-known structures of the rRNAs families extracted 
from RNAstrandv2.0 database, and then we compare them with 
respect to the RNA secondary structure predictions of the other RNA 
folding algorithms.

We use the following metrics (Table 1) to measure the 
performances of all analyzed RNA structure prediction tools [37]:

1. TPR (True Positive Rate or Sensitivity): fraction of correctly 
predicted pairs of bases;

2. PPV (Positive Predictive Value): fraction of predicted base-
pairs in the known structure;

3. F-measure: it is interpreted as a weighted harmonic mean 
of the sensitivity and PPV;

4. MCC (Matthew’s Correlation Coefficient): it can be 
approximated to the geometric mean between PPV and Sensitivity 
to evaluate the independence of prediction results between two 
algorithms.

TP (True Positive) values correspond to the correctly predicted 
base-pairs; TN (True Negative) values correspond to correctly 
unpaired predicted bases; FN (False Negative) values represents base-
pairs that are in the reference true secondary structure but not in the 
predicted one; FP (False Positive) values correspond to base-pairs 
that are in the predicted structure but not in the reference one.

The performances of both SSD-opt and SSD-liberal algorithms are 
reported in details in table 2. In addition, we assess the comparison 
results of our novel implemented algorithms (SSD-opt and SSD-liberal) 
with respect to our previously developed ones (nbRSSP-extractor and 
RNALfold-lnrz), as well as with respect to the other state-of-the-art tools. 
These performance comparisons are reported in (Table 3).

SSD-opt and SSD-liberal appear to reduce drastically the number 
of FP values (Table 2) and increase the TP ones with respect to the 
nbRSSP-extractor and RNALfold-lnrz analysis. In table 3, we can 
indeed observe as the TPR increases from the 0.56 value of nbRSSP-
extractor up to the 0.66 value for SSD-opt and to 0.75 value for SSD-
liberal.

Specifically, SSD-opt (Table 3) results at a comparable level in 
terms of TPR and PPV with respect to the other tools, while it shows 
higher performances in term of F-measure and MCC with respect to 
the single-sequence prediction tools (e.g., MFE-based, MEA-based 
[8], or ML-based [13]). For what concerns the comparison with 
respect to the comparative approaches, SSD-opt shows comparable 
results or lower ones in terms of PPV, although we have to underline 
that comparative methods often require sets of homologous 
sequences to perform the folding that are in some cases not available 
(e.g., lncRNAs). To conclude, the results of SSD-opt prove that 
RNALfold potentially enables to reach accurate predictions with 
lower computational costs with respect to other tools.

Furthermore, the results of SSD-liberal (Table 3) show as taking 
into account all the alternative predictions of RNALfold, we can reach 
a greater coverage of the possible matches between the predicted and 
experimentally-known structures. This is due to the following reasons: 
(i) on one hand, since SSD-liberal does not bind the search for the 
optimal SSD at the non-overlapped NBSs, it can perform it with a 
higher sensitivity; (ii) on the other hand, by using single-prediction 
tools, we compare a unique structure that does not means the better 
one. To this end, methods that account for alternative predictions 
could be represent a valid approach to enlarge the predictions 
sensitivity.

Conclusions
Here, we presented a comprehensive review of several approaches 

to the RNA structures prediction together with a detailed discussion 
of two novel algorithms (SSD-opt and SSD-liberal) that, starting 
from the local prediction of RNALfold, enable to efficiently find the 
optimal SSD of an RNA secondary structure based on the comparison 

Table 3: Tool performance comparisons

     Category Tool\ Metric TPR PPV F-measure MCC
Si

ng
le

 s
eq

ue
nc

e 
m

et
ho

ds Our algorithms

SSD-liberal 0.754 0.847 0.798 0.799
SSD-opt 0.662 0.811 0.729 0.732

nbRSSP-extractor 0.558 0.441 0.493 0.496
RNALfold-lnrz 0.461 0.473 0.467 0.467

MFE-based
M fold 0.52 0.541 0.53 0.531

RNA fold 0.48 0.468 0.474 0.474
Fold 0.658 0.594 0.624 0.625

ML-based Context Fold 0.780 0.787 0.784 0.784

MEA-based
IPknot 0.580 0.676 0.624 0.626

Centroid Fold 0.550 0.717 0.622 0.628
S fold 0.503 0.508 0.505 0.505

Fold then align MXScarna 0.610 0.725 0.663 0.665
MARNA 0.506 0.729 0.597 0.608

Align then fold
CentroidAlifold 0.650 0.867 0.743 0.751

RNAalifold 0.707 0.781 0.742 0.743
P fold 0.400 0.810 0.536 0.569

Fold and align 
simultaneously

Dyn align 0.719 0.844 0.776 0.779
Fold align 0.615 0.293 0.397 0.425

Carnac 0.571 0.871 0.69 0.705

Base pairing probability
Turbo Fold 0.790 0.747 0.768 0.768

RNA sampler 0.692 0.904 0.784 0.791

Metrics over different RNA datasets (e.g., RNA strand, LSU, RNAse p and SM-A05), TPR = True Averaged rRNA, SSU, LGW17 positive rate; PPV = Positive Predictive 
Value; F-Measure, MCC PPV TPR= ⋅ ; MFE = Minimum Free Energy; MEA = Maximum Speed Accuracy; ML = Machine Learning. 
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with the well-characterized one. To test SSD-opt and SSD-liberal, we 
compare their performances with respect to these prediction tools 
on a collection of RNA families with well-experimentally-known 
structures. On one hand, the results obtained by SSD-opt show 
that RNALfold is potentially able to provide effective and accurate 
predictions. On the other hand, the performances of SSD-liberal 
reflect how methods that make use of alternative predictions enable 
to potentially enlarge the coverage of all the possible matches with 
the true structures. Therefore, a method that accounts for alternative 
predictions could be useful to address the RNA secondary prediction 
providing an increasing sensitivity, despite of a decreasing specificity.
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