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This study presents 1D analytical solutions for the ensemble variance of reactive scalars in one-dimensional turbulent flows, in
case of stationary conditions, homogeneous mean scalar gradient and turbulence, Dirichlet boundary conditions, and first order
kinetics reactions. Simplified solutions and sensitivity analysis are also discussed.These solutions represent both analytical tools for
preliminary estimations of the concentration variance and upwind spatial reconstruction schemes for CFD (Computational Fluid
Dynamics)—RANS (Reynolds-Averaged Navier-Stokes) codes, which estimate the turbulent fluctuations of reactive scalars.

1. Introduction

Modelling the turbulent fluctuations of a transported scalar
interests several industrial processes and environmental phe-
nomena, both in atmosphere ad water bodies, especially
where the scalar fly time (𝑡𝑓) is smaller than the Lagrangian
integral time scale (microscale dispersion) or if the target
parameter, such as damage due to high concentration levels,
is nonlinear with respect to the transported scalar. In par-
ticular, scalar fluctuations are crucial in modelling pollutant
reactions, as they normally depend on the instantaneous
concentrations rather than their mean values.

Concentration fluctuations are relevant in several disper-
sion phenomena: accidental releases, dispersion of reactive
pollutants, impact of odours, microscale air quality and water
quality, and several industrial processes, such as combustion
and process fluid treatments.

In this context, Reynolds’ average or mean concentration
(𝐶) is generally insufficient to represent the time and spatial

evolutions of the instantaneous concentration field. Thus, a
series of experimental (e.g., [1–5]) and numerical (e.g., [6–8])
studies have investigated concentration fluctuations, mainly
focusing on the ensemble variance of concentration (𝜎2𝐶),
which is also involved in the definition of the intensity of
fluctuations (𝑖𝐶 = 𝜎𝐶/𝐶).

Several numerical methods have been developed in order
to evaluate the concentration variance. They are based on
Direct Numerical Simulations (DNS; [9]), Large Eddy Sim-
ulations (LES) coupled with Lagrangian subgrid schemes
[10], probability density function (pdf) models [11, 12], RANS
models [13, 14], and Lagrangian micromixing numerical
models [15–19].

These methods are somewhat constrained to the respect
of the balance equation of the concentration variance, which
was first derived by [20], for passive scalars. Reference
[21] further discussed its terms and provided a similarity
solution. Reference [22] proposed a formulation for the bal-
ance equation of 𝜎2𝐶, depending on Lagrangian parameters.
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The influence of the reactive terms is discussed in [23].
So far, the reference analytical solutions for concentration
fluctuations were derived in decaying grid turbulence, under
homogeneous nonstationary conditions: [15] treated the con-
centration variance, whereas [24] represented the probability
density function of a transported scalar.

In this paper, 1D analytical solutions for the ensemble
variance of a reactive scalar are derived, assuming stationary
conditions, homogeneous turbulence, and mean scalar gra-
dient, first order kinetics reactions, and Dirichlet boundary
conditions. These solutions aim at providing an analytical
solver for both preliminary estimations of the concentration
variance and upwind schemes for CFD codes, potentially
involving CFD models for pollutant dispersion based on the
Finite Volume Method [13] or the Finite Difference Method
[25, 26].

The paper is organized as follows. Section 2 briefly revises
the balance equation of the concentration variance, according
to [21], and the uniform solution provided by [15], both
simply adapted to represent reactive scalars. In Section
3, this study proposes several analytical solutions for the
concentration variance, under stationary conditions. Section
4 discusses a sensitivity analysis on themain nondimensional
parameters of the analytical models of Section 3. Finally,
Section 5 resumes the main conclusions of the study, whereas
Appendix A reports a couple of analytical solutions for the
mean scalar gradient, which is one of the key inputs of the
analytical models of Section 3.

2. Balance Equation for the Ensemble Variance
of a Reactive Scalar in a Turbulent Flow

2.1. Balance Equation of the Ensemble Variance. The balance
equation for the concentration variance of a passive scalar
dispersed in a turbulent flow was first derived by [20] and
then discussed in detail in [21]. Their formulation is here
briefly reported and adapted to consider reactive scalars.

The balance equation of the pollutant mass reads

𝜕𝐶

𝜕𝑡
+ 𝑢𝑗

𝜕𝐶

𝜕𝑥𝑗

= 𝐷𝑀

𝜕
2
𝐶

𝜕𝑥
2
𝑗

+ 𝑇, (1)

where 𝐶 is the instantaneous concentration, 𝐷𝑀 the molec-
ular diffusion coefficient, and 𝑢 the velocity vector. Einstein
notation applies to the subscript “𝑗” hereafter, if not otherwise
stated. From left to right, the terms of (1) represent the
local rate of change of the instantaneous concentration, the
advective term of𝐶, the divergence of themolecular diffusion
flux of 𝐶, and the instantaneous reactive term (𝑇).

Concentration and velocity can be expressed according
toReynolds decomposition. Reynolds average (over-bar sym-
bol) of (1) provides
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(2)

Hereafter, the apex “󸀠” denotes a turbulent fluctuation.
Introducing the continuity equations for an incompressible
turbulent flow

𝜕𝑢𝑗

𝜕𝑥𝑗

= 0,

𝜕𝑢𝑗

𝜕𝑥𝑗

= 0,

𝜕𝑢
󸀠
𝑗

𝜕𝑥𝑗

= 0 (3)

into (2), one can write the balance equation for the mean
concentration of a passive scalar:

𝜕𝐶

𝜕𝑡
+ 𝑢𝑗
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𝑗

+ 𝑇. (4)

From left to right, the terms of (4) represent the local rate of
change of the mean concentration, the advective term of 𝐶,
the divergence of the turbulent and the molecular diffusion
fluxes of 𝐶 and the mean reactive term.

Subtracting (4) from (1), the balance equation for the
concentration fluctuation is obtained:
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(5)

Aftermultiplying (5) times 2𝐶󸀠 and considering the following
equality:
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one can write
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(7)

Averaging (7), one obtains the balance equation of the
concentration variance of a reactive scalar dispersed in a
turbulent incompressible flow:
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(8)

where the terms on the left hand side represent the local
rate of change of 𝜎2𝐶, the advective term and the divergence
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of the turbulent flux of the concentration variance, respec-
tively. On the right-hand side, (8) shows the production
term of 𝜎2𝐶 (always nonnegative), the dissipation rate of the
concentration variance due to molecular diffusion (𝜀𝐶 =

−2𝐷𝑀(𝜕𝐶
󸀠
/𝜕𝑥𝑗)
2 always nonpositive), the divergence of the

molecular diffusion flux of 𝜎2𝐶 (negligible) and the reactive
term (𝑅2 ≡ 2𝐶

󸀠
𝑇
󸀠), which quantifies the direct effects of

chemical and physical reactions.
The production term in (8) represents the increase in

concentration variance due to nonhomogeneous conditions
of the mean concentration field.

The dissipation rate of the concentration variance is ruled
bymolecular diffusion. Let us consider a fixed point and time:
close fluid particles exchange pollutantmass due tomolecular
diffusion and thus homogenize the instantaneous concentra-
tion field. The concentration variance then decreases. This
term is not negligible even at very high Reynolds numbers
(Re) as the gradient of the instantaneous concentrationwould
tend to infinity.

2.2. Parameterizations of the Turbulent Fluxes. The turbulent
fluxes in the balance equation of the concentration variance
(8) assume approximated and simpler formulations, accord-
ing to the “𝐾-theory,” which is the theory of the turbulent
dispersion coefficients, as reported and further developed by
several authors [27]:

𝑢
󸀠
𝑗𝐶
󸀠
= −𝐾𝑇,𝑗
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𝑗 (𝐶
󸀠
)
2
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2
𝐶
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.

(9)

Here,𝐾𝑇,𝑗 and𝐾𝑠,𝑗 are the vectors of the turbulent dispersion
coefficients of the scalar mean and variance, respectively.
They are usually assumed equal and denoted by 𝐾𝑇,𝑗.

These parameterizations are commonly used in Eulerian
numerical models, although they introduced several limi-
tations. The most important shortcomings emerge in case
of strongly nonlinear relationships between the turbulent
flux and the mean/variance gradient. Further, (9) loses the
information about the concentration-velocity covariance and
the velocity autocorrelation. The resulting errors are not
negligible at themicroscale, even if we just compute themean
concentration.

2.3. Parameterizations of the Dissipation Rate of the Con-
centration Variance. Several parameterizations are available
for the dissipation rate of the concentration variance (𝜀𝐶).
In particular, this study refers to the formula of [15], here
reported and discussed. First, one may notice the following
equalities:

𝜀𝐶 ≡ −2𝐷𝑀(
𝜕𝐶
󸀠

𝜕𝑥𝑗

)

2
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𝜕
2
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󸀠

𝜕𝑥
2
𝑗

. (10)

Considering (4) and (5), assuming a turbulent regime and
that reaction rates do not affect the dissipation term, (10) can
be expressed as follows:

𝜀𝐶 = 2𝐶
󸀠
(
𝑑𝐶
󸀠

𝑑𝑡
− 𝑇
󸀠
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󸀠
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󸀠
)
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𝑑𝑡
.

(11)

IECM (Interaction by the Exchange with the Conditional
Mean; [15, 28]) represents a major micromixing formula-
tion, which is alternative to other simpler schemes used
in Lagrangian stochastic modelling for pollutant dispersion
(e.g., [29]). IECM relies on the following expression for the
Lagrangian derivative of the instantaneous concentration:

𝑑𝐶

𝑑𝑡
= −

𝐶 − ⟨𝐶 | 𝑢⟩

𝑡𝑚

, (12)

where ⟨𝐶 | 𝑈⟩ represents the mean concentration condi-
tioned on the Lagrangian velocity vector (𝑈) and 𝑡𝑚 is the
mixing time (i.e., the time scale of the dissipation rate of the
concentration variance), which is defined by [15, 30] or [31].

Combining (11) and (12), [15] obtains the following
expression:

𝜀𝐶 = −2𝐶
󸀠
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)
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𝐶
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𝜎
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𝐶
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𝐶
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)
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2
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[𝜎
2
𝐶 − (𝐶

󸀠
⟨𝐶 | 𝑢⟩)] .

(13)

Further, in case of uniform mean scalar gradient and 1D
dispersion, [15] reports the following expression for the
conditional mean:

⟨𝐶 | 𝑢⟩ = 𝐶 +
𝐶
󸀠
𝑢
󸀠

𝜎
2
𝑢

𝑢, (14)

where 𝜎𝑢 stands for the standard deviation of velocity.
This parameter can be provided by diagnostic tools, RANS
codes (e.g., [32–35]), or LES models, which allow a detailed
characterization of the turbulent structure of the atmospheric
boundary layer (e.g., [36–38]).

Considering both (14) and (9), the dissipation rate of 𝜎2𝐶
becomes

𝜀𝐶 = −
2

𝑡𝑚

[
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𝜎
2
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󸀠
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𝜎
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𝑢

]

]
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2
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2
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𝐾
2
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𝜎
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𝑢

(
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)

2
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𝜎
2
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𝐾
2
𝑇

𝜎
2
𝑢

(
𝜕𝐶

𝜕𝑥
)

2

.

(15)

As we consider 1D dispersion phenomena, the plume spread
has the same dimension as the boundary layer height. Under
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these conditions, the mixing time can be related to the
turbulent kinetic energy (𝑞) and its dissipation rate (𝜀) via
Richardson constant (𝐶𝜑; [15]):

𝑡𝑚 =
2𝑞

𝐶𝜙𝜀
=

3𝐶0

2𝐶𝜙

𝑇𝐿, 𝑇𝐿 =
2𝜎
2
𝑢

𝐶0𝜀
, (16)

where the Lagrangian integral time scale (𝑇𝐿) is introduced.
Its relationship with the dissipation rate of the turbulent
kinetic—last equation in (16)—is reported by several authors
(e.g., [15]). This relationship can be derived applying Taylor
analysis and comparing the formulas of the plume spread
alternatively depending on the Lagrangian structure function
or the Lagrangian integral time scale.

Taking into account (16), the dissipation term becomes

𝜀𝐶 = −

4𝐶𝜙

3𝐶0𝑇𝐿

[𝜎
2
𝐶 −

𝐾
2
𝑇

𝜎
2
𝑢

(
𝜕𝐶

𝜕𝑥
)

2

] . (17)

In conclusion, we can refer to a couple of simplified formu-
lations for the dissipation rate of the concentration variance:
a 3D generic formulation (13) and a simplified 1D expression
in case of uniform mean scalar gradient (17).

2.4. Representation of the Reactive Terms. The role of the
reactive term in the balance equation of the concentration
variance is here discussed, by alternatively considering 2nd-
order kinetics, 1st-order kinetics, and 0th-order kinetics.

In case of 2nd order kinetics, the reactive term 𝑇 is
represented by

𝑇 = −𝑟𝐶𝐴𝐶𝐵, 𝐶𝐴 ≡ 𝐶, (18)

where species𝐴 and 𝐵 are reactants and 𝑟 is the reaction rate.
The ensemble mean of (18) is equal to

𝑇 = −𝑟𝐶𝐴𝐶𝐵

= −𝑟(𝐶𝐴 + 𝐶
󸀠
𝐴) (𝐶𝐵 + 𝐶

󸀠
𝐵)

= −𝑟 (𝐶𝐴𝐶𝐵 + 𝐶
󸀠
𝐴𝐶
󸀠
𝐵)

(19)

and the ratio between the last two terms in (19) defines the
segregation coefficient

𝐼𝑠 ≡
𝐶
󸀠
𝐴𝐶
󸀠
𝐵

𝐶𝐴𝐶𝐵

. (20)

After considering the fluctuation of (18):

𝑇
󸀠
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󸀠
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󸀠
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󸀠
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󸀠
𝐴𝐶
󸀠
𝐵)⌋
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󸀠
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󸀠
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󸀠
𝐴𝐶
󸀠
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󸀠
𝐴𝐶
󸀠
𝐵)

(21)

the reactive term in the balance equation of the variance
becomes

𝑅2 = 2𝐶
󸀠
𝐴𝑇
󸀠

= −2𝑟[𝐶𝐴𝐶
󸀠
𝐴𝐶
󸀠
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󸀠
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2
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󸀠
𝐴)
2
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= −2𝑟 (𝐶𝐴𝐶
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2
𝐶𝐴
𝐶𝐵 + (𝐶

󸀠
𝐴)
2
𝐶
󸀠
𝐵) .

(22)

The first term in the final formulation of (22) depends on the
reactant covariance, the second one on the variance of the
control reactant (𝐴) and the last one is a triple correlation
term, whose eventual parameterization can refer to [39]

(𝐶
󸀠
𝐴)
2
𝐶
󸀠
𝐵 ≈ 𝐼𝑆 (𝐶

󸀠
𝐴𝐶
󸀠
𝐵𝐶𝐴 + 𝜎

2
𝐶𝐴
𝐶𝐵) . (23)

The advantage of (23) simply relies on the fact that, in the limit
of reactants never coexisting (𝐼𝑠 = −1), (23) guarantees that
𝑅2 is exactly zero.

1st-order kinetics can be simply represented by imposing
𝐶𝐵 = 1 in (22):

𝑅2 = 2𝐶
󸀠
𝐴𝑇
󸀠
= −2𝑟𝜎

2
𝐶𝐴
. (24)

This kind of reactions always decreases both the instanta-
neous and the mean concentration. Further, a first order
kinetics formula is linear with respect to the reactant concen-
tration; thus, it locally decreases the concentration variance
(provided the same mean scalar gradient) according to (24).

Finally, a 0th order kinetics (e.g., 𝑇 = −𝑟) is equivalent to
considering both 𝐶𝐴 = 1 and 𝐶𝐵 = 1 in (22). In this case, the
concentration variance does not depend on the reaction rate:

𝑅2 = 0. (25)

In conclusion, the expressions (22), (24), and (25) alterna-
tively represent the reactive term in the balance equation of
the concentration variance, in case of 2nd-order, 1st-order,
and 0th-order kinetics reactions, respectively.

2.5. 1D Analytical Solution of Sawford (2004) under Uni-
form and Nonstationary Conditions. Sawford [15] reported a
1D analytical solution of the concentration variance under
homogeneous and nonstationary conditions. Here, this solu-
tion is reported and adapted to reactive scalars.

First, consider the 1D balance equation of the concentra-
tion variance, as resulting from the combination of (8), (9),
(15), and (24), provided a uniform concentration variance:

𝜕𝜎
2
𝐶

𝜕𝑡
= 2𝐾𝑇(

𝜕𝐶

𝜕𝑥
)

2

+
2𝐾
2
𝑇

𝜎
2
𝑤𝑡𝑚

(
𝜕𝐶

𝜕𝑥
)

2

− 2
𝜎
2
𝐶

𝑡𝑚

= 4𝐾𝑇(
𝜕𝐶

𝜕𝑥
)

2

− 2
𝜎
2
𝐶

𝑡𝑚

.

(26)

Defining the constant “𝑎,” one can write

𝜕𝜎
2
𝐶

𝜕𝑡
= −2

𝜎
2
𝐶 − 𝑎 (𝑡𝑚/2)
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, 𝑎 ≡ 4𝐾𝑇(
𝜕𝐶

𝜕𝑥
)

2

. (27)
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After integration from the initial time (𝑡 = 0) to the generic
time 𝑡, one obtains

∫

𝜎2
𝐶
(𝑡)

𝜎2
𝐶
(0)

𝑑𝜎
2
𝐶

(𝜎
2
𝐶 − 𝑎 (𝑡𝑚/2))

= ∫

𝑡

0
−
2𝑑𝑡

𝑡𝑚

󳨐⇒ ln [𝜎
2
𝐶 (𝑡) − 𝑎

𝑡𝑚

2
] − ln [𝜎

2
𝐶 (0) − 𝑎

𝑡𝑚

2
] = −2

𝑡

𝑡𝑚

󳨐⇒ 𝜎
2
𝐶 − 𝑎

𝑡𝑚

2
= [𝜎
2
𝐶 (0) − 𝑎

𝑡𝑚

2
] 𝑒
−2(𝑡/𝑡𝑚)

󳨐⇒ 𝜎
2
𝐶 = 𝜎
2
𝐶 (0) 𝑒

−2(𝑡/𝑡𝑚)
+ 𝑎

𝑡𝑚

2
(1 − 𝑒

−2(𝑡/𝑡𝑚)
)

󳨐⇒ 𝜎
2
𝐶 = 𝜎
2
𝐶 (0) 𝑒

−(4𝐶𝜙/3𝐶0)(𝑡/𝑇𝐿)

+ 3
𝐶0

𝐶𝜙

𝐾𝑇𝑇𝐿 (
𝜕𝐶

𝜕𝑥
)

2

(1 − 𝑒
−(4𝐶𝜙/3𝐶0)(𝑡/𝑇𝐿)

) .

(28)

Finally, considering (38), as explained in the following sec-
tion, the uniform time-dependent solution for the concen-
tration variance becomes

𝜎
2
𝐶 = 𝜎
2
𝐶 (0) 𝑒

−(4𝐶𝜙/3𝐶0)(𝑡/𝑇𝐿)

+ 3
𝐶0

𝐶𝜙

𝜎
2
𝑢𝑇
2
𝐿 (

𝜕𝐶

𝜕𝑥
)

2

(1 − 𝑒
−(4𝐶𝜙/3𝐶0)(𝑡/𝑇𝐿)

) .

(29)

The solution tends to an equilibrium value, when the produc-
tion and the dissipation terms equalize:

𝜎
2
𝐶 (𝑡 󳨀→ ∞) = 3

𝐶0

𝐶𝜙

𝜎
2
𝑢𝑇
2
𝐿 (

𝜕𝐶

𝜕𝑥
)

2

. (30)

This formula highlights the importance of modelling the
dissipation term in (26). When this term is absent (this is the
case of Lagrangian models without any micromixing scheme
or Eulerian models without any dissipation term for 𝜎2𝐶), the
concentration variance linearly grows with time, indefinitely:

𝜕𝜎
2
𝐶

𝜕𝑡
= 2𝐾𝑇(

𝜕𝐶

𝜕𝑥
)

2

󳨐⇒ 𝜎
2
𝐶 = 2𝐾𝑇(

𝜕𝐶

𝜕𝑥
)

2

𝑡 = 2𝜎
2
𝑢𝑇𝐿𝑡 (

𝜕𝐶

𝜕𝑥
)

2

.

(31)

In case of a null mean scalar gradient

𝜕𝜎
2
𝐶

𝜕𝑡
= −𝜎
2
𝐶 (

2

𝑡𝑚

+ 𝑟) (32)

there is no production term and the variance tends to zero, as
follows:

𝜎
2
𝐶 = 𝜎
2
𝐶 (0) 𝑒

−(2/𝑇𝐿+𝑟)
. (33)

3. 1D Solutions for the Balance
Equation of the Concentration Variance
under Stationary Conditions

3.1. Main Solution under Stationary Conditions. Provided
1D stationary conditions and homogeneous turbulence, the
balance equation of the concentration variance (8) assumes
the following form:

𝑢
𝜕𝜎
2
𝐶

𝜕𝑥
+
𝜕𝑢
󸀠
(𝐶
󸀠
)
2

𝜕𝑥
= −2𝑢

󸀠
𝐶
󸀠 𝜕𝐶

𝜕𝑥
− 2𝐷𝑀(

𝜕𝐶
󸀠

𝜕𝑥
)

2

+ 2𝐶
󸀠
𝑇
󸀠
.

(34)

Introducing the parameterizations for the turbulent fluxes (9)
and 𝜀𝐶 (17), as well as the expression of the reactive term in
case of 1st order kinetics reaction (24), one obtains

𝑢
𝜕𝜎
2
𝐶

𝜕𝑥
− 𝐾𝑇

𝜕
2
𝜎
2
𝐶

𝜕𝑥
2

= 2𝐾𝑇(
𝜕𝐶

𝜕𝑥
)

2

−

4𝐶𝜙

3𝐶0𝑇𝐿

[𝜎
2
𝐶 −

𝐾
2
𝑇

𝜎
2
𝑢

(
𝜕𝐶

𝜕𝑥
)

2

] − 2𝑟𝜎
2
𝐶.

(35)

After assuming the definition of the turbulent kinetic energy
in 1D:

𝑞 =
3

2
𝜎
2
𝑢 (36)

considering (16) and (36) and dividing by 𝐾𝑇, (35) becomes

𝜕
2
𝜎
2
𝐶

𝜕𝑥
2

−
𝑢

𝐾𝑇

𝜕𝜎
2
𝐶

𝜕𝑥
−

1

𝐾𝑇

(

𝐶𝜙𝜀

𝑞
+ 2𝑟) 𝜎

2
𝐶

+ 2(
𝜕𝐶

𝜕𝑥
)

2

(1 +

𝐾𝑇𝜀𝐶𝜙

2𝑞𝜎
2
𝑢

) = 0.

(37)

It is convenient to introduce the relationship between the
turbulent dispersion coefficient and the Lagrangian integral
time scale, as derived froma simple analysis of these turbulent
scale parameters:

𝐾𝑇 = 𝜎
2
𝑢𝑇𝐿. (38)

The system (16), (36), and (38) provides another expression
for the turbulent dispersion coefficient

𝐾𝑇 =
8

9

𝑞
2

𝐶0𝜀
(39)

and allows writing (37) with no explicit dependency on𝐾𝑇:

𝜕
2
𝜎
2
𝐶

𝜕𝑥
2

−
9

8

𝑢𝐶0𝜀

𝑞
2

𝜕𝜎
2
𝐶

𝜕𝑥
−
9

8

𝐶0𝜀

𝑞
2

(

𝐶𝜙𝜀

𝑞
+ 2𝑟) 𝜎

2
𝐶

+ 2(
𝜕𝐶

𝜕𝑥
)

2

(1 +
2

3

𝐶𝜙

𝐶0

) = 0.

(40)
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Equation (40) represents a 2nd-order inhomogeneous ODE
(Ordinary Differential Equation)

𝜕
2
𝜎
2
𝐶

𝜕𝑥
2

+ 𝑎
𝜕𝜎
2
𝐶

𝜕𝑥
+ 𝑏𝜎
2
𝐶 + 𝑐 = 0, Δ ≡ 𝑎

2
− 4𝑏 ≥ 0 (41)

with the following constant coefficients:

𝑎 ≡ −
9

8

𝑢𝐶0𝜀

𝑞
2

, 𝑏 ≡ −
9

8

𝐶0𝜀

𝑞
2

(

𝐶𝜙𝜀

𝑞
+ 2𝑟) ,

𝑐 ≡ 2(
𝜕𝐶

𝜕𝑥
)

2

(1 +
2

3

𝐶𝜙

𝐶0

) .

(42)

Its general solution assumes the form

𝜎
2
𝐶 = 𝑐1𝑒

𝜆1𝑥
+ 𝑐2𝑒
𝜆2𝑥

−
𝑐

𝑏
(43)

which is completed by the following definition:

𝜆1,2 ≡
−𝑎 ± √𝑎

2
− 4𝑎𝑏

2

=
1

2

{

{

{

9

8

𝑢𝐶0𝜀

𝑞
2

± √
9

2

𝐶0𝜀

𝑞
2

[
𝜀

𝑞
(

9

32

𝑢
2
𝐶0

𝑞
+ 𝐶𝜙) + 2𝑟]

}

}

}

.

(44)
One can verify that the system (43) and (44) is a general solu-
tion of (41), as briefly described in the following. According
to (43), the left hand side of (41) becomes

𝜆
2
1𝑐1𝑒
𝜆1𝑥

+ 𝜆
2
2𝑐2𝑒
𝜆2𝑥

+ 𝑎 (𝜆1𝑐1𝑒
𝜆1𝑥

+ 𝜆2𝑐2𝑒
𝜆2𝑥

)

+ 𝑏 (𝑐1𝑒
𝜆1𝑥

+ 𝑐2𝑒
𝜆2𝑥

−
𝑐

𝑏
) + 𝑐.

(45)

The value of 𝜆2𝑖 can be derived from (44):

𝜆
2
1,2 = (

−𝑎 ± √𝑎
2
− 4𝑏

2
)

2

=
𝑎
2

4
+
𝑎
2
− 4𝑏

4
∓
𝑎

2

√𝑎
2
− 4𝑏

=
𝑎
2

2
− 𝑏 ∓

𝑎

2

√𝑎
2
− 4𝑏.

(46)

Replacing 𝜆𝑖 and 𝜆
2
𝑖 in (45), according to (44) and (46), one

obtains

(
𝑎
2

2
− 𝑏 −

𝑎

2

√𝑎
2
− 4𝑏) 𝑐1𝑒

𝜆1𝑥

+ (
𝑎
2

2
− 𝑏 +

𝑎

2

√𝑎
2
− 4𝑏) 𝑐2𝑒

𝜆2𝑥

+ 𝑎[(
−𝑎 + √𝑎

2
− 4𝑏

2
) 𝑐1𝑒
𝜆1𝑥

+(
−𝑎 − √𝑎

2
− 4𝑏

2
) 𝑐2𝑒
𝜆2𝑥

]

+ 𝑏 (𝑐1𝑒
𝜆1𝑥

+ 𝑐2𝑒
𝜆2𝑥

−
𝑐

𝑏
) + 𝑐

(47)

which finally verifies that the system (43) and (44) is a general
solution of (41):

𝑐1𝑒
𝜆1𝑥

[(
𝑎
2

2
− 𝑏 −

𝑎

2

√𝑎
2
− 4𝑏) + (

−𝑎
2
+ 𝑎√𝑎

2
− 4𝑏

2
) + 𝑏]

+ 𝑐2𝑒
𝜆2𝑥

⋅ [(
𝑎
2

2
− 𝑏 +

𝑎

2

√𝑎
2
− 4𝑏) + (

−𝑎
2
− 𝑎√𝑎

2
− 4𝑏

2
) + 𝑏]

− 𝑐 + 𝑐 = 0.

(48)

Dirichlet boundary conditions can now be imposed on the
left boundary (𝑥 = 0)

𝜎
2
𝐶 (𝑥 = 0) ≡ 𝜎

2
𝐶0 󳨐⇒ 𝜎

2
𝐶0 = 𝑐1 + 𝑐2 −

𝑐

𝑏
󳨐⇒ 𝑐1 = 𝜎

2
𝐶0 − 𝑐2 +

𝑐

𝑏

(49)

and the right boundary (𝑥 = 𝐿) of the domain

𝜎
2
𝐶 (𝑥 = 𝐿) ≡ 𝜎

2
𝐶𝐿 󳨐⇒ 𝜎

2
𝐶𝐿 = 𝑐1𝑒

𝜆1𝐿
+ 𝑐2𝑒
𝜆2𝐿

−
𝑐

𝑏
󳨐⇒ 𝑐2𝑒

𝜆2𝐿

= 𝜎
2
𝐶𝐿 − 𝑐1𝑒

𝜆1𝐿
+

𝑐

𝑏
.

(50)

Combining (49) with (50), one can obtain the value of 𝑐2:

𝑐2𝑒
𝜆2𝐿

= 𝜎
2
𝐶𝐿 − (𝜎

2
𝐶0 − 𝑐2 +

𝑐

𝑏
) 𝑒
𝜆1𝐿

+
𝑐

𝑏

󳨐⇒ 𝑐2 (𝑒
𝜆2𝐿

− 𝑒
𝜆1𝐿

) = 𝜎
2
𝐶𝐿 − (𝜎

2
𝐶0 +

𝑐

𝑏
) 𝑒
𝜆1𝐿

+
𝑐

𝑏

󳨐⇒ 𝑐2 =

𝜎
2
𝐶0𝑒
𝜆1𝐿 − 𝜎

2
𝐶𝐿 + (𝑐/𝑏) (𝑒

𝜆1𝐿 − 1)

(𝑒
𝜆1𝐿 − 𝑒

𝜆2𝐿)
.

(51)

Thus, the constant 𝑐1 from (49) becomes

𝑐1 =

𝜎
2
𝐶𝐿 − 𝜎

2

𝐶0𝑒
𝜆2𝐿 − (𝑐/𝑏) (𝑒

𝜆2𝐿 − 1)

(𝑒
𝜆1𝐿 − 𝑒

𝜆2𝐿)
. (52)

Considering the values of 𝑐1 and 𝑐2 from (52) and (51),
respectively, (43) assumes the following form:

𝜎
2
𝐶 =

𝜎
2
𝐶𝐿 − 𝜎

2
𝐶0𝑒
𝜆2𝐿 − (𝑐/𝑏) (𝑒

𝜆2𝐿 − 1)

(𝑒
𝜆1𝐿 − 𝑒

𝜆2𝐿)
𝑒
𝜆1𝑥

+

𝜎
2
𝐶0𝑒
𝜆1𝐿 − 𝜎

2
𝐶𝐿 + (𝑐/𝑏) (𝑒

𝜆1𝐿 − 1)

(𝑒
𝜆1𝐿 − 𝑒

𝜆2𝐿)
𝑒
𝜆2𝑥

−
𝑐

𝑏
.

(53)
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Figure 1: 1D analytical solution for the balance equation of the con-
centration variance, under stationary conditions. Legend: + solution
with reference parameters; × solution with reference parameters
in the absence of mean velocity and 𝑟𝑁 = 0; ∗ solution with
reference parameters in the absence of mean velocity, null variance
at boundaries, and 𝑟𝑁 = 0.

Other few and simple algebraic passages finally provide a
complete 1D solution of the balance equation of the concen-
tration variance for a reactive scalar in a turbulent flow, under
stationary conditions:

𝜎
2
𝐶 = {−

𝑐

𝑏
[𝑒
𝜆1𝑥

(𝑒
𝜆2𝐿

− 1) − 𝑒
𝜆2𝑥

(𝑒
𝜆1𝐿

− 1)

+ (𝑒
𝜆1𝐿

− 𝑒
𝜆2𝐿

)] + 𝜎
2
𝐶0 (𝑒
(𝜆1𝐿+𝜆2𝑥)

− 𝑒
(𝜆1𝑥+𝜆2𝐿))

+ 𝜎
2
𝐶𝐿 (𝑒
𝜆1𝑥

− 𝑒
𝜆2𝑥

)}
1

(𝑒
𝜆1𝐿 − 𝑒

𝜆2𝐿)
,

𝜆1,2 ≡
1

2

{

{

{

9

8

𝑢𝐶0𝜀

𝑞
2

± √
9

2

𝐶0𝜀

𝑞
2

[
𝜀

𝑞
(

9

32

𝑢
2
𝐶0

𝑞
+ 𝐶𝜙) + 2𝑟]

}

}

}

,

𝑏 ≡ −
9

8

𝐶0𝜀

𝑞
2

(

𝐶𝜙𝜀

𝑞
+ 2𝑟) , 𝑐 ≡ 2(

𝜕𝐶

𝜕𝑥
)

2

(1 +
2

3

𝐶𝜙

𝐶0

) .

(54)

It is immediate to verify that (54) satisfies the boundary
conditions imposed.

The solution (54) is widely discussed and analysed in
Section 4, where several examples are available (e.g., Figure
1), in terms of both nondimensional anddimensional physical
quantities. Hereafter, we just provide some clarification about
the role of the reactive term and the mean scalar gradient.

The reference solution is derived considering 1st-order
kinetics reactions. In this case, however, one cannot obtain
an exact uniform mean scalar gradient (stationary regime),

in the absence of a source term, as we can appreciate from the
balance equation of the mean concentration:

𝜕𝐶

𝜕𝑥
=

𝐷𝑇

𝑢

𝜕
2
𝐶

𝜕𝑥
2
−

𝑟

𝑢
𝐶. (55)

This means that (54) can only consider a uniform mean
gradient as an approximated condition for both 1st and 2nd
order kinetics reactions.

On the other hand, an exact uniform scalarmean gradient
can relate to a 0th-order kinetics:

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
= 𝐷𝑇

𝜕
2
𝐶

𝜕𝑥
2
− 𝑟 󳨐⇒

𝜕𝐶

𝜕𝑥
=

𝐷𝑇

𝑢

𝜕
2
𝐶

𝜕𝑥
2
−

𝑟

𝑢
= −

𝑟

𝑢
.

(56)
However, in this case there is no need for a reactive term in
the balance equation of the variance, according to (25).

The mean scalar gradient is the key parameter in the
production term of the concentration variance and affects the
constant 𝑐 in (54). 𝜕𝐶/𝜕𝑥 should be approximately uniform
and can be calculated by means of simplified analytical
solutions (Appendix A) or using the measured or simulated
values of the mean concentration, where they are available in
the domain of interest.

3.2. Solution under Stationary Conditions, in the Absence of
MeanVelocity. In the absence ofmean velocity, (44) becomes

𝜆1,2 = ±
3

2
[√

𝐶0𝜀

2𝑞
2
(

𝜀𝐶𝜙

𝑞
+ 2𝑟)] , Δ

= 0 = 𝑢, 𝜆 ≡ 𝜆1 = −𝜆2.

(57)

Under these conditions, we can derive a simpler and alter-
native formulation of the general solution (54). Considering
that 𝜆 ≡ 𝜆1 = −𝜆2, the first line of (54) becomes

𝜎
2
𝐶 = {−

𝑐

𝑏
[𝑒
𝜆𝑥

(𝑒
𝜆𝐿

− 1) − 𝑒
−𝜆𝑥

(𝑒
𝜆𝐿

− 1)

+ (𝑒
𝜆𝐿

− 𝑒
−𝜆𝐿

)]

+ 𝜎
2
𝐶0 (𝑒
𝜆(𝐿−𝑥)

−
1

𝑒
𝜆(𝐿−𝑥)

) + 𝜎
2
𝐶𝐿 (𝑒
𝜆𝑥

−
1

𝑒
𝜆𝑥

)}

⋅
1

(𝑒
𝜆𝐿

− 𝑒
−𝜆𝐿

)
.

(58)

Introducing the following hyperbolic functions (and their
derivatives)

cosh (𝑥) = 𝑒
𝑥
+ 𝑒
−𝑥

2
, sinh (𝑥) = 𝑒

𝑥
− 𝑒
−𝑥

2
,

cosh󸀠 (𝑥) = sinh (𝑥) , sinh󸀠 (𝑥) = cosh (𝑥)
(59)

into (58), one can obtain the following expression:

𝜎
2
𝐶 =

𝑐

𝜆
2
[1 −

𝑒
𝜆𝐿

− 1

𝑒
2𝜆𝐿

− 1
(𝑒
𝜆𝑥

+ 𝑒
𝜆(𝐿−𝑥)

)]

+
1

senh (𝜆𝐿)
{𝜎
2
𝐶,0senh [𝜆 (𝐿 − 𝑥)] + 𝜎

2
𝐶,𝐿senh (𝜆𝑥)} .

(60)
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This change in the reference system

𝑥
󸀠
= 𝑥 −

𝐿

2
󳨐⇒ 𝑥 = 𝑥

󸀠
+
𝐿

2
(61)

implies that

(𝑒
𝜆𝑥

+ 𝑒
𝜆(𝐿−𝑥)

) = (𝑒
𝜆(𝑥󸀠+𝐿/2)

+ 𝑒
𝜆(𝐿/2−𝑥󸀠)

)

= 𝑒
𝜆(𝐿/2)

(𝑒
𝜆𝑥󸀠

+
1

𝑒
𝜆𝑥󸀠

) = 𝑒
𝜆(𝐿/2) cosh (𝜆𝑥󸀠) ,

senh [𝜆 (𝐿 − 𝑥)] = senh [𝜆 (
𝐿

2
− 𝑥
󸀠
)] ,

senh [𝜆𝑥] = senh [𝜆 (
𝐿

2
+ 𝑥
󸀠
)] .

(62)
Combining (60), (61), and (62), the simplified solution of the
1D stationary balance equation of the concentration variance,
in the absence of mean velocity, assumes the following
expression:

𝜎
2
𝐶 =

𝑐

𝜆
2
[1 −

𝑒
𝜆𝐿

− 1

𝑒
2𝜆𝐿

− 1
𝑒
𝜆(𝐿/2) cosh (𝜆𝑥󸀠)] +

1

senh (𝜆𝐿)

⋅ {𝜎
2
𝐶,0senh [𝜆 (

𝐿

2
− 𝑥
󸀠
)] + 𝜎

2
𝐶,𝐿senh [𝜆 (

𝐿

2
+ 𝑥
󸀠
)]} ,

𝜆 =
3

2

𝜀

𝑞

√
𝐶0𝐶𝜙

2𝑞
.

(63)
This solution, represented in Figure 1 (e.g., the green plot), is
verified, as described in the following. One may first notice
that

𝑏 = 𝜆
2
,

𝜕
2
𝜎
2
𝐶

𝜕𝑥
2

=
𝜕
2
𝜎
2
𝐶

𝜕 (𝑥
󸀠
)
2
,

𝜎
2
𝐶 ≡ 𝐴 + 𝐵 cosh (𝜆𝑥󸀠)

+ 𝐶{𝜎
2
𝐶,0senh [𝜆 (

𝐿

2
− 𝑥
󸀠
)]

+𝜎
2
𝐶,𝐿senh [𝜆 (

𝐿

2
+ 𝑥
󸀠
)]} ,

(64)

where 𝐵 and 𝐶 are constants, directly defined by comparison
with (63).

One can consider the second derivative of the variance in
the new reference system:

𝜕
2
𝜎
2
𝐶

𝜕 (𝑥
󸀠
)
2
= 𝜆
2
𝐵 cosh (𝑥󸀠)

+ 𝜆
2
𝐶{𝜎
2
𝐶,0senh [𝜆 (

𝐿

2
− 𝑥
󸀠
)]

+𝜎
2
𝐶,𝐿senh [𝜆 (

𝐿

2
+ 𝑥
󸀠
)]}

= (𝜎
2
𝐶 +

𝑐

𝑏
) 𝜆
2

(65)

and then write (41), according to (63) and (65):

𝜕
2
𝜎
2
𝐶

𝜕 (𝑥
󸀠
)
2
− 𝜆
2
𝜎
2
𝐶 + 𝑐 = 𝜆

2 𝑐

𝑏
+ 𝑐 = 0 (66)

which finally verifies that (63) is the solution of (41), in the
absence of mean velocity.

Under these conditions, we can simply write the deriva-
tive of the concentration variance:

𝜕𝜎
2
𝐶

𝜕𝑥
󸀠
= 𝜆𝐵 senh (𝜆𝑥󸀠)

− 𝜆𝐶{𝜎
2
𝐶,0 cosh [𝜆 (

𝐿

2
− 𝑥
󸀠
)]

+𝜆𝜎
2
𝐶,𝐿 cosh [𝜆 (

𝐿

2
+ 𝑥
󸀠
)]} .

(67)

Although it is not immediate to get a general expression
to locate the maxima/minima, a simple solution is obtained
in case (𝜎

2
𝐶,0 = 𝜎

2
𝐶,𝐿), as plotted in Figure 1 (blue line).

This assumption provides a maximum or a minimum at the
domain centre (𝑥󸀠 = 0), in case (𝜎

2
𝐶,0 < 𝜎

2
𝐶,eq) or (𝜎

2
𝐶,0 >

𝜎
2
𝐶,eq), respectively, according to the definition of the equilib-

rium variance (68), as provided in Section 3.3.

3.3. Solution under Uniform and Stationary Conditions. The
balance equation of the concentration variance shows a
simple formulation under uniform and stationary conditions.
In this case, the dissipation term 𝜀𝐶 and the reactive term
(24) exactly equal the production term of 𝜎2𝐶 (“equilibrium
solution”):

𝜎
2
𝐶,eq = −

𝑐

𝑏
=

16

9

(𝜕𝐶/𝜕𝑥)
2
(1 + (2/3) (𝐶𝜙/𝐶0))

(𝐶0𝜀/𝑞
2
) (𝐶𝜙𝜀/𝑞 + 2𝑟)

. (68)

This expression also represents the value of the horizontal
inflection points in the general solution (54). Under these
conditions, the divergence of both the turbulent and themean
transport scalar fluxes is null.

4. Sensitivity Analysis

The solutions (54), (63), and (68) of the 1D balance equation
of the concentration variance are here discussed and analysed
by means of a sensitivity analysis.

The results are presented in terms of nondimensional
parameters: all the physical quantities are normalized (“𝑁”)
over the reference time, length, and mass scales, respectively:
𝑡0 = 𝑇𝐿 = 2𝜎

2
𝑢/𝐶0𝜀, 𝑥0 = 𝐿, and 𝑚0 = (𝜕𝐶/𝜕𝑥)𝐿

2. Thus, the
main nondimensional parameters, 𝐿𝑁, (𝜕𝐶/𝜕𝑥)𝑁 and 𝑇𝐿,𝑁,
are always equal to unity, whereas the other nondimensional
quantities vary according to the following expressions: 𝑢𝑁 =

𝑢𝑇𝐿/𝐿, 𝜎𝑢,𝑁 = 𝜎𝑢 ∗ 𝑇𝐿/𝐿, 𝑟𝑁 = 𝑟 ∗ 𝑇𝐿, and 𝜎
2
𝐶,𝑁 = 𝜎

2
𝐶/[(𝜕𝐶/

𝜕𝑥)𝐿]
2.

The “reference solution” of this analysis is defined by
the following arbitrary choice, which simply provides a
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Figure 2: Reference nondimensional solution with sensitivity analysis on the boundary nondimensional values 𝜎2𝐶,𝑁, which are alternatively
equal to 0, 1/30, and 1/15 (all the independent combinations are reported).

meaningful and general reference configuration: 𝑢ref,𝑁 =

𝜎𝑢,ref,𝑁 = 1/6, 𝐶0 = 2, 𝐶𝜑 = 3, 𝑟𝑁 = 1, 𝜎2𝐶,0,𝑁 = 0.00833,
and 𝜎

2
𝐶,𝐿,𝑁 = 0.05833. Under these conditions, it follows that

𝜎
2
𝐶,eq,𝑁 = 1/30 and 𝜀𝑁 = 2(𝜎𝑢,𝑁)

2
/𝐶0𝑇𝐿,𝑁 = 1/36.

Discussion first considers some generic features of the
solution (54), as plotted in Figure 1 under three different
configurations.

The reference solution (red plot) shows a central region of
very low gradients (very weak turbulent andmean transports
of𝜎2𝐶), where the production and the dissipation terms almost
balance each other.

In this context, the reactive term plays an analogous role
to the dissipation term 𝜀𝐶 and one may refer to them as
“the dissipation terms” of the concentration variance, just for
simplicity of notation.

At the edges of the domain, the production (left bound-
ary) or the dissipation (right boundary) terms alternatively
dominate. In these lateral regions, the turbulent scalar flux is
always negative (directed upstream) and provides a positive
(right boundary) or a negative (left boundary) contribution
to the rate of change of the concentration variance, thus
balancing the excess in the variance dissipation/production.
At the same time, a weak nonnegative mean transport is
responsible for a local decrease of 𝜎2𝐶.

In other words, the production term is uniform because
turbulence is homogeneous as well as the mean scalar gra-
dient. At the same time, the dissipation terms linearly grow
with the concentration variance. Thus, the turbulent and the
mean transport are responsible for driving the concentration
variance away from the zone in excess of 𝜎2𝐶 production (low
variance) and towards the regions in excess of 𝜎2𝐶 dissipation
(high variance), in order to establish a stationary regime.

Figure 1 also reports a couple of examples of the solution
for passive scalars (63) in the absence of mean velocity (green
plot). In particular, the blue line represents the symmetric
solution cited at the end of Section 3.2.

Figure 2 reports a sensitivity analysis of themain solution
(54) on the choice of the nondimensional boundary values.
Let us first examine Figure 2(a), where the left boundary value
is null and the right boundary value is alternatively equal to
0, 1, or 2 times the equilibrium value of (68). In the first case
(𝜎2𝐶,𝐿,𝑁 = 0), the production term equals the dissipation terms
in the central region of the domain. Elsewhere, the (uniform)
production term is higher than the dissipation terms and
the turbulent flux transports the excess of the concentration
variance away from the domain. The mean velocity makes
the solution be slightly asymmetric, with a peak located on
the right half of the domain. In the second case (𝜎2𝐶,𝐿,𝑁 =

𝜎
2
𝐶,eq,𝑁), the solution is almost uniform in the right half of the

domain as the equilibrium value is already reached around
the domain centre. Finally, when (𝜎2𝐶,𝐿,𝑁 = 2𝜎

2
𝐶,eq,𝑁), the

solution is almost symmetric to the first case (𝜎2𝐶,𝐿,𝑁 = 0) with
respect to the equilibrium line, for 𝑥 > 𝐿/2. In this region,
the turbulent fluxes balance the deficiency in the variance
production by transporting the concentration variance from
the right boundary towards the domain centre.

Figure 2(b) considers the uniform solution of (68), est-
ablished with the choice 𝜎

2
𝐶,0,𝑁 = 𝜎

2
𝐶,𝐿,𝑁 = 𝜎

2
𝐶,eq,𝑁: the pro-

duction term is everywhere balanced by the dissipation
terms, without any effects of neither turbulent fluxes nor
advection.The other solutions refer to (𝜎2𝐶,𝐿,𝑁 = 2𝜎

2
𝐶,eq,𝑁) and

are almost identical in the right half of the domain. Let us
notice that the solution with (𝜎2𝐶,0,𝑁 = 𝜎

2
𝐶,𝐿,𝑁 = 2𝜎

2
𝐶,eq,𝑁) is

symmetrical to the configuration with (𝜎2𝐶,0,𝑁 = 𝜎
2
𝐶,𝐿,𝑁 = 0;
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Figure 2(a)), with respect to the line of the equilibrium
value.

Figure 3 investigates the role of the nondimensionalmean
velocity. In the absence of a mean flow (𝑢𝑁 = 0), the
equilibrium value is reached at the centre of the domain,
where a horizontal inflection point is established (red plot).
The solution is symmetric with respect to its central value.
Increasing the nondimensional mean velocity, the relative
importance of the mean transport grows and the upstream
boundary value of 𝜎2𝐶,𝑁 influences the solution more and
more noticeably; further, the solution is not symmetric
anymore and the equilibrium value is located in the right half
of the domain.

The effects of the nondimensional standard deviation of
velocity, whose square is directly proportional to the nondi-
mensional turbulent kinetic energy, are shown in Figure 4(a).
An increase in 𝑞 determines a highest variance production
all over the domain. Considering the highest and the lowest
values of 𝜎𝑢,𝑁, the nondimensional variance lies out of the
range provided by the Dirichlet boundary values, in the most
of the domain. As 𝑢𝑁 is relatively low, one can always detect
at least a maximum, a minimum, or a horizontal inflection
point in the profile of 𝜎2𝐶,𝑁, in the very inner domain.

Contrarily, the dependency of the nondimensional vari-
ance on the nondimensional reaction rate has an opposite
behaviour. In fact, the reactive term always acts as a dissipa-
tion term (linear in 𝜎

2
𝐶) and its increase tends to lower down

the scalar variance all over the domain (Figure 4(b)). In case
of extreme values of 𝑟𝑁, one may notice that the most of the
domain is characterized by 𝜎2𝐶 values lying out of the interval
provided by the Dirichlet boundary conditions.

The sensitivities on the Lagrangian integral time scale
and the mean scalar gradient are finally shown in Figure 5
in terms of dimensional parameters, just to provide a more
physical representation of the role of these quantities. An
increase in𝑇𝐿 or 𝜕𝐶/𝜕𝑥 improves the “production term” with
similar effects on the profile of the concentration variance.

5. Conclusions

The study presents 1D analytical solutions for the ensemble
variance of reactive scalars in turbulent flows, in case of
stationary conditions, homogeneous mean scalar gradient
and turbulence, Dirichlet boundary conditions and 1st-order
kinetics reactions.

A sensitivity analysis has discussed the role of the dif-
ferent terms in the balance equation of the concentration
variance, with focus on the production term, the dissipation
rate of the scalar variance, the reactive term, the turbulent
transport and advection. The analysis has detected three
main scale parameters: the domain length, the Lagrangian
integral time scale and the product of the mean scalar
gradient times the square of the domain length. Thus, the
analysis has investigated the dependency of the solution on
the nondimensional boundary values, reaction rate, mean,
and standard deviation of velocity.

These analytical solutions represent an immediate tool for
preliminary estimates of the concentration variance in several
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Figure 3: Reference nondimensional solution with sensitivity anal-
ysis on the nondimensional mean velocity, which is alternatively
equal to 0 (+), 1/6 (×), 1/2 (∗), and 5/3 (◻).

application fields, where concentration fluctuations play a
relevant role: accidental releases, pollutant reactions, odour
assessment, microscale air quality and water quality, and
several industrial processes, such as combustion. Although
the solutions referred to 1D configurations (e.g., unstable
turbulent boundary layers of plug-flow reactors or pollutant
treatment devices), they can still provide approximate estima-
tions for simplified 3D configurations.

Finally, the proposed solutions represent upwind spatial
reconstruction schemes for the concentration variance, as
they can be implemented in CFD-RANS codes, as well as
in prognostic or diagnostic meteorological and ocean mod-
els, which simulate the turbulent fluctuations of reactive pol-
lutants.

Appendix

A. 1D Analytical Solutions for
the Mean Scalar Gradient

Several authors (e.g., [40, 41]) presented analytical solutions
on the scalar transport in fluid flows. Here, some of them
are reported to compute the mean scalar gradient, which
is a key input parameter for the analytical solutions of the
concentration variance.

A.1. Mean Transport, 0th-Order Kinetics, and Continuous
Source. In case of a continuous and infinite pollutant source
over an horizontal plane 𝑦-𝑧 and neglecting the along-flow
dispersion (𝜎𝑢 ≪ 𝑢), the steady-state solution of the balance
equation for the mean concentration reads ([40]):

𝐶 (𝑥) =
𝑚𝑖

𝑢
exp(−𝑟𝑥

𝑢
) , (A.1)
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Figure 4: (a) Reference nondimensional solution with sensitivity analysis on the nondimensional standard deviation of velocity, which is
alternatively equal to 1/24 (+), 1/8 (×), 1/6 (∗), 1/4 (◻), and 1/3 (◼)—𝜎

2
𝐶,eq,𝑁 is 0.002083, 0.01875, 1/30, 0.075, and 4/30, respectively. (b) Reference

nondimensional solution with sensitivity analysis on the nondimensional reaction rate, which is alternatively equal to 0 (+), 1/2 (×), 1 (∗), 2
(◻), or 10 (◼)—𝜎

2
𝐶,eq,𝑁 is 1/12, 0.04762, 1/30, 0.02083, and 0.005208, respectively.
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Figure 5: (a) Reference dimensional solution (but 𝑟 = 0.001/s) with sensitivity analysis on the Lagrangian integral time scale, which is
alternatively equal to 50 s (+), 75 s (×), 100 s (∗), 150 s (◻), or 200 s (◼)—𝜎

2
𝐶,eq is 8.694 𝜇g

2/m2, 18.90 𝜇g2/m2, 32.507 𝜇g2/m2, 68.66 𝜇g2/m2, and
115𝜇g2/m2, respectively. (b) Reference dimensional solution (but 𝑟 = 0.001/s) with sensitivity analysis on the scalar mean gradient, which is
alternatively equal to 0 𝜇g/m2 (+), 0.1765 𝜇g/m2 (×), 0.353 𝜇g/m2 (∗), 0.44125 𝜇g/m2 (◻), or 0.5295𝜇g/m2 (◼)—𝜎

2
𝐶,eq is 0 𝜇g

2/m2, 8.127 𝜇g2/m2,
32.507 𝜇g2/m2, 50.79 𝜇g2/m2, and 73.14 𝜇g2/m2, respectively.
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Figure 6: Normalized solutions of the mean concentration and
its gradient for a continuous plane source, only considering the
advection term and a 0th order kinetics (𝑈 = 5ms−1, 𝑚𝑖 =

0.1 kg s−1, and 𝑘 = 0.8 ∗ 10
3molm−3 s−1).

where𝑚𝑖 is the time rate of mass injection per unit area. The
derivative of (A.1) with respect to 𝑥 is

𝜕𝐶 (𝑥)

𝜕𝑥
= −

𝑚𝑖𝑟

𝑢
2
exp(−𝑟𝑥

𝑢
) . (A.2)

The curves in Figure 6 show the solutions of (A.1) and (A.2),
normalized by the value at the origin, for 𝑥 > 0. Given the
exponential nature of (A.1) and (A.2), the two normalized
solutions coincide.

A.2. Turbulent Transport, Instantaneous Source, and Infinite
Domain. The solution to the advective-diffusion equation
is here reported, in case of instantaneous point source and
infinite domain.

Considering a point source in stagnant conditions, the
mean concentration can be described as follows [40]:

𝐶 (𝑥, 𝑡) =
𝑀

√4𝜋𝐾𝑇𝑡
exp(−

(𝑥 − 𝑥0)
2

4𝐾𝑇𝑡
) , (A.3)

where𝑀 represents the source strength and𝑥0 is the injection
point of the tracer.

For 𝑥 = 𝑥0, one can find the maximum value of the mean
concentration:

𝐶max (𝑡) =
𝑀

√4𝜋𝐾𝑇𝑡
. (A.4)

If we consider 𝑡 = 0, the concentration tends to an infinite
value: 𝐶(𝑡 = 0) = ∞.

We can derive (A.4) with respect to time as

𝜕𝐶

𝜕𝑡
=

𝑀

4√𝜋𝐾𝑇𝑡
3
exp[

− (𝑥 − 𝑥0)
2

4𝐾𝑇𝑡
] [

(𝑥 − 𝑥0)
2

2𝐾𝑇𝑡
− 1] .

(A.5)

Instead, the mean scalar gradient can be expressed as

𝜕𝐶

𝜕𝑥
=

𝑀(−2𝑥 + 2)

4𝐾𝑇𝑡√4𝜋𝐾𝑇𝑡
exp[

− (𝑥 − 𝑥0)
2

4𝐾𝑇𝑡
] . (A.6)

The analytical solution of (A.6) can be possibly used as
an approximate estimation of the mean scalar gradient,
which relevantly influences the analytical solutions for the
concentration variance (Section 3). Although (A.6) referred
to nonstationary conditions, it can approximate the mean
scalar gradient during a late stage of a dispersion process.
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