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Abstract

In the era of information, emergent paradigms such as the Internet of Things

with billions of devices constantly connected to the Internet exchanging het-

erogeneous data, demand new computing approaches for intelligent big data

processing. Given this technological scenario, a suitable approach leverages

on many computational entities, each of which performs tasks with low com-

putational burden, conceived to be executed on multi-core and many-core

architectures.

To this aim, in this thesis, we propose Evolutive Agent Based Clustering

(E-ABC) as promising framing reference. E-ABC is conceived to orchestrate

a swarm of intelligent agents acting as individuals of an evolving population,

each performing a random walk on a different subset of patterns. Each agent

is in charge of discovering well-formed (compact and populated) clusters and,

at the same time, a suitable subset of features corresponding to the subspace

where such clusters lie, following a local metric learning approach, where

each cluster is characterized by its own subset of relevant features. E-ABC is

able to process data belonging to structured and possibly non-metric spaces,

relying on custom parametric dissimilarity measures.

Specifically, two variants are investigated. A first variant, namely E-
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ABC, aims at solving unsupervised problems, where agents’ task is to find

well-formed clusters lying in suitable subspaces. A second variant, E-ABC2,

aims at solving classification problems by synthesizing a classification system

on the top of the clusters discovered by the swarm.

In particular, as a practical and real-world application, this novel classi-

fication system has been employed for recognizing and predicting localized

faults on the electric distribution network of Rome, managed by the Italian

utility company ACEA. Tests results show that E-ABC is able to synthesize

classification models characterized by a remarkable generalization capabil-

ity, with adequate performances to be employed in Smart Grids condition-

based management systems. Moreover, the feature subsets where most of the

meaningful clusters have been discovered can be used to better understand

sub-classes of failures, each identified by a set of related causes.



Chapter 1

Introduction

During the last decades, the Information and Communication Technology

area (also known as ICT) has experienced an enormous growth. Just think

about the Moore law [1] which has driven the computer industry development

between mid 1960s and late 2010s. For about half a century integrated cir-

cuits complexity (in terms of transistor density) has doubled each 18 months.

This has brought from 66 MHz single core – single thread CPU, 8 MB RAM,

1 GB hard-drive personal computer at half 1990s, to 3.7 GHz 6 cores –

12 threads CPU, 32 GB RAM, 4 TB hard-drive personal computer at the

second half of 2010s (some raw data just to have an hint without taking

into account the actual detailed performance) for about the same discounted

price. Performance improvement is not the only consequence of this process.

The miniaturization itself has opened up lots of new possibilities. It has dra-

matically drop down the price for lower performance electronics making it

possible to have a fully functional computer in a single 30 by 65 mm board,

whose power consumption is lower than 2 W, for about 5 e as it is the case
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4 CHAPTER 1. INTRODUCTION

for Raspberry Pi Zero (Figure 1.1). This has encouraged the spread of this

Figure 1.1: Photo shot of a Raspberry Pi Zero.

kind of devices. Just think about the success and spread of smartphones

at the consumer level and sensors and robotics in industrial environment.

A huge amount of data is poured every day into the Internet by end-users

through social networks, bots analyzing the Internet itself, sensor networks

and the introduction of 5G networks [2] will give a further boost to inter-

connectivity and sensorization. The direction traced is that of the Internet

of Things (IoT) where all electric devices will have a direct connection with

the network and they will pour an always growing amount of sensored data

into the Internet. All of these data are nowadays universally known to be an

economical resource for user profiling, diagnostics and prediction in the most

diverse fields of application, but they will be unusable if we will not have

efficient and effective tools to extract intelligible information from them.

In the last decade, machine learning and computational intelligence emerged

as breakthrough disciplines in order to analyze and extract knowledge from

data [3, 4, 5]. Machine learning algorithms are usually based on biologically-

inspired concepts and are able to learn from data and experience without
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being explicitly programmed to do so [3, 6]. In other words, given a set of

input–output pairs pertaining to suitable domain and codomain, machine

learning algorithms are able to learning the underlying mapping of the pro-

cess that generated these input–output pairs.

Broadly speaking, machine learning algorithms can be divided in three main

families, depending on the nature of the input space and the nature of the

output space:

• classification: in classification problems, the output space contains a

suitable finite set of problem-related classes pertaining to a categorical

domain. For example, one might train a classification system in order

to distinguish between ’normal’ or ’abnormal’, given the state of a

physical system

• function approximation: in function approximation problems such as

regression, the output space is a normed space, usually R, and aim of

the learning system is to estimate as accurately as possible the output

value for a given input pattern. For example, one might train a function

approximation system in order to predict tomorrow’s temperature or

chance of raining.

• clustering: in clustering problems there are no output values and regu-

larities have to be discovered only by considering mutual relationships

between patterns lying in the input space.

In the literature, problems like classification and function approximation are

usually referred to as supervised learning problems since the learning system
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can rely on ground-truth values, whereas clustering problems usually fall

under the unsupervised learning umbrella. However, as will be thoroughly

stressed during this thesis, clustering and classification shall not be consid-

ered as two diametrically opposed techniques and might as well cooperate.

Indeed, the so-called decision clusters are well-known in the literature: ac-

cording to the decision clusters model, one can cluster the input space with-

out considering any output value and then infer a labelling over the resulting

clusters. Every new pattern can be classified according to the nearest cluster,

or the K nearest clusters or using a fuzzy assignment procedure [7, 8, 9].

Specifically, all clustering algorithms such as k-means [10], DBSCAN [11]

and OPTICS [12] share the same approach of finding groups (clusters) of sim-

ilar data according to some predefined criteria (density, homogeneity and the

like) and according to a given dissimilarity measure which, as its name sug-

gests, quantifies the distance between any two patterns. Figure 1.2 sketches

one of the possible outcomes for a clustering problem.

The employment of a classification system can be divided in two indepen-

dent phases: training and usage. During the training phase, a classification

algorithm observes pattern–class label pairs drawn from the data set under

analysis and exploits them to synthesize a classification model. To simplify,

the classification model is a domain space segmentation where each area is

associated with a class label. Once the model is synthesized, it can be used

to predict and assign a class label, out of the given set of classes, to unknown

elements based on its position in the domain space. Figure 1.3 sketches the

decision boundary for a binary classification problem, whereas Figure 1.4

shows the same problem, but likely solved by the aforementioned decision
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Figure 1.2: A possible clustering solution.

clusters approach.

In the recent years, the multiple agent paradigm emerged in order to

perform both supervised and unsupervised learning [13, 14, 15] and has a

tight link to the well-established reinforcement learning [16, 17, 18, 19] and

is rapidly expanding towards deep reinforcement learning [20, 21, 22]. Ac-

cording to the multi-agent framework, a set of elementary units called agents

operate in either synchronous or asynchronous matter in order to process the

data set at hand. Its intrinsic setup makes this paradigm very appealing in

big data contexts, since agents usually operate independently one another

and can be embarrassingly parallelized across several computational units

[20, 23].
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Figure 1.3: Decision boundary for a binary classification problem.

For example, as clustering procedures are concerned, in [24] a multi-agent

approach has been used for local graph clustering in which each agent per-

forms a random walk on a graph with the main constraint that such agents

are ”tied” together by a rope, forcing them to be close to each other. In

[25] a set of self-organising agents by means of Ant Colony Optimisation has

been applied to anomaly detection and network control. In [26] each agent

runs a different clustering algorithm in order to return the best one for the

data set at hand. In [27] agents negotiate one another rather than being

governed by a master/wrapper process (e.g. evolutive algorithm). In [28]

ant colony optimisation has been used in order to organise agents, where

each ant ”walks” on the data set, building connections amongst points. In
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Figure 1.4: Decision boundary for the same classification problem, solved by
means of decision clusters.

[29] each agent consists in a set of data points and agents link to each other,

thus leading to clustering. In [30] a genetic algorithm has been used where

the agents’ genetic code is connection-based: each agent is a clustering result

whose genetic code builds a (sub)graph and, finally, such subgraphs can be

interpreted as clusters. In [31] the multi-agent approach collapses into two

agents: a first agent runs a cascade of principal component analysis, self

organizing maps and k-means in order to cluster data and a second agent

validates such results: the two agents interactively communicate with each

other. Finally, in [32] a multi-agent algorithm has been proposed in which

agents perform a Markovian random walk on a weighted graph representation

of the input data set. Each agent builds its own graph connection matrix
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amongst data points, weighting the edges according to the selected distance

measure parameters, and performs a random walk on such graph in order

to discover clusters. This algorithm has been employed in [33] to identify

frequent behaviours of mobile network subscribers starting from a set of call

data records.

An interesting aspect of clustering techniques is that they allow synthe-

sizing data-driven models of real-world phenomena acting as white boxes:

indeed, it is quite easy to analyze clusters’ contents. This kind of knowledge

discovery is of paramount importance for specific applications, in which field-

experts (personnel with likely no expertise in machine learning) may gather

further insights on the modelled system. Examples of real-world applica-

tions in which this kind of knowledge discovery is crucial include predictive

medicine [9], device profiling and anomaly detection in IoT networks [34]

and the failure prediction in modern Smart Grids [35] equipped with smart

sensors and powerful data centers.

In fact, the availability of smarter and low-cost technology in the power

grid industry is changing forever the way to approach the underlying prob-

lems arising in the world-wide power network. Following this line, the Smart

Grids concept is becoming a reality. It is the case of the Advanced Me-

tering Infrastructure (AMI) in Smart Grids with the capability to facilitate

two-way communication between a “smart” meter and the grid operator’s

control center, as well as between the smart meter and consumer appliances

[36, 37]. Hence, ICTs are providing the enabling technologies to transform

the actual power grid in the future Smart Grids. The communication infras-

tructure equipped with suitable protocols stack together with Smart Sensors
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scattered in the power grid and suitable data centers allow collecting and

processing a huge amount of data. The nature of data that can be extracted

is highly heterogeneous and depends also on the application. By the way,

the lowering of the costs of smart sensors and the increase in the transport

capacity of the communication network together with ever high-performance

computation machines allow collecting raw data related to both: the power

grid status and the environment where the power grid is immersed. Power

grid and environment data can be integrated in order to extract, through

Knowledge Discovery from Data (KDD) mechanisms and Computational In-

telligence (CI) techniques, useful information for the managing of the power

network infrastructure. It is the case of Condition Based Maintenance (CBM)

programs that can be automated and rationalized using a Decision Support

System (DSS) capable of carrying on a decision-making process based on

data collected from Smart Sensors and related to faults and outages that

can happen during the normal grid operations. The current study born from

the need of synthesizing an ad-hoc DSS for CBM capable of mining on fault

states within the real-world power grid managed by Azienda Comunale En-

ergia Ambiente (ACEA), the company in charge of managing the electric

power grid of Rome, Italy. It is well-known that the quick and accurate

diagnosis and restoration of power grid faults are extremely important for

keeping the power grid operational and minimizing losses caused by power

failure. Moreover, for a power grid early warning system, evaluating, warn-

ing against, diagnosing and automatically controlling faults to avoid hidden

troubles or limit fault-related losses to the lowest level is critical to ensure

the healthy and safe service of the power grid [38, 39].
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We can define a DSS as an expert system that provides decision support for

the commanding and dispatching systems of the power grid. Such a system

analyzes the risk for damage of crucial types of equipment, assesses the power

grid security, forecasts and provides warnings about the magnitude and lo-

cation of possible faults, and timely broadcasts the early-warning signals

through suitable communication networks [40]. The information provided by

the DSS can be used also for CBM in the power grid [41].

CBM is defined as “a philosophy that posits repair or replacement decisions

on the current or future condition of assets”. The objective of CBM is thus

to minimize the total cost of inspection and repair by collecting and inter-

preting (heterogeneous) data related to the operating condition of critical

components. Through the use of CBM, advanced smart sensor technologies

have the potential to help utilities to improve the power grid reliability by

avoiding unexpected outages. A discussion on how the changes in modern

power grids have affected the maintenance procedures can be found in [42];

the importance of modern diagnostic techniques is treated in [43].

P. J. Werbos argues that the main paradigm around the “injection” of

intelligence in the actual technology ecosystem is the Computational Sys-

tem Thinking Machine (CSTM) [44]. Through methods and techniques re-

lated to the Computational Intelligence (CI) framework and more in general

to Machine Learning and Artificial Intelligence techniques, they allow large

systems, such as Smart Grids, to carry out important functions through high-

performance algorithms, such as advanced monitoring, forecasting, decision-

making, control and optimization. These algorithms must be fast, scalable

and dynamic. The main CI paradigms for Smart Grids related to problem so-
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lutions are Neurofuzzy, Neuroswarm, Fuzzy-PSO, Fuzzy-GA, Neuro-Genetic

[45]. Such paradigms often well developed in a theoretical framework with

promising results needs further research and analysis effort in order to be

considered useful in real-world applications. This is the case of clustering or

classification techniques for fault recognition in a Smart Grids – the main

application of this thesis – based on real-world data, coming from smart sen-

sors, describing, through suitable features, the Smart Grid states, i.e. faults

or standard functioning states. As we will see in the remainder of the thesis,

real-world applications in Data Science, such as data classification and Data

Mining can see many difficulties in applying standard procedures that are

developed for vector-based feature space. Moreover, real applications rely so

often on non-metric spaces in which standard Machine Learning procedure

can fail. Hence, CI techniques hybridized with Soft Computing, data-driven

modeling techniques and Data Mining algorithms have been widely adopted

in the Smart Grid [46, 47, 48, 49]. On the other hand as a highly application-

driven discipline, data mining has seen great successes in many applications

[50].

The algorithm developed in this thesis constitutes a building block of an

advanced DSS with the aim of predicting faults and outages occurring in the

power grid of Rome offering even a modeling tool of failures. Fault states

are described by a complex and heterogeneous pattern related to both the

network devices (constitutive parameters) and the environmental conditions

such as weather conditions, load, etc. (external causes). In fact, the state of

the power grid consists of real-valued numbers, integers, categorical variables

and unevenly time-spaced sequences of events. From the classifier point
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of view, it is worth to note that the starting feature space is non-metric.

Furthermore, the causes of a fault during the normal power grid operations

can be heterogeneous and it is likely that it exists several sub-classes of

fault and, for each one of them, a different set of features can be correlated

with the fault occurrence. Moreover, in a large power grid feeding millions of

users, the number of faults can be very large. For this purpose, a multi-agent

clustering paradigm [51, 52] together with an evolutionary metric learning

technique [53] is adopted, with the objective of discovering local sub-classes

of faults stored in a huge real-world data set. Detailed requirements and

considerations leading to our algorithm design are described in next chapter

2.



Chapter 2

Requirements Elicitation

As we said in chapter 1, the algorithm we have developed and we are going

to describe and analyze in depth, takes its moves from the necessity to face

data sets with specific properties. The actual data set which has inspired

this algorithm is the one from Acea company about power grid faults. Acea

is the company which is in charge of managing the electric power grid in

Rome. Each single element of the data set (pattern) they were interested to

deal with is an aggregation of uneven data which represents an operational

condition of the power grid. Each of these is associated to a state regular

functioning or fault situation occurred few time later. The target was to

develop a tool to predict faults of the power grid. Each pattern contains

information about geographical coordinates of the event, weather conditions

and intrinsic grid properties where the event occurred. At this stage we are

not interested in details about this data set (described in §4.2.3). Here we

are only interested in some high-level properties of this data set, which are

common to be found in real world data sets, so as to justify the development

15
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of an algorithm to face them.

2.1 High-level Data Set Properties

In the following we shortly summarize the main Acea data set properties

which have inspired the design of the algorithm described and developed in

this thesis.

2.1.1 High Data Set Cardinality

From the starting of digital age, data sets availability has increased dramati-

cally. That is likely because companies, noting information has a commercial

value, have started to collect data through more and more sensor networks

about their technological equipment and human users for profiling. At the

same time, data sets cardinality has increased due to growing amount of

information technologies users, posing additional challenges when it comes

to synthesize machine learning models. In most clustering and classification

algorithms, the most atomic task is pattern-to-pattern dissimilarity com-

putation. For some clustering algorithms (including, but not limited to,

k-medoids, DBSCAN and linkage clustering) a straightforward and time ef-

ficient solution would be to compute all possible pairwise dissimilarities and

keep them in memory [54]. Let us suppose we have a dissimilarity function

d(·, ·) and it is symmetric so that, given two patterns p1 and p2, we have

d(p1, p2) = d(p2, p1) (2.1)
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Table 2.1: Memory required to store pattern-to-pattern distances for all pat-
terns in data set.

Patterns quantity Memory occupation [GB]
126492 32
178886 64
252983 128

For a data set with n patterns the number of relevant elements to be stored

n · (n− 1)

2
(2.2)

would result in an asymptotic time and space complexity of

O(n2) (2.3)

For a practical analysis, this means that, under the operational hypothesis

we use 32-bit floating point variables for distance storage, with a modern top

consumer level computer we can deal with data sets containing no more than

about 250000 patterns, as shown in table 2.1 (an Intel R© CoreTM i9-9900K

supports at most 128 GB RAM) The opposite alternative is computing the

dissimilarity between two patterns p1, p2 each time it is necessary. This

requires no additional memory beyond what is necessary to store the data

set itself. On the other hand, it requires additional time because d(p1, p2)

must be evaluated again each time it is needed.
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2.1.2 Uneven Features

Real world patterns not always may be represented by means of a real valued

vector where each component xj (feature) of each pattern pi is a real-valued

scalar:

pi = (x1, x2, ..., xm), xj ∈ R, xj ∈ [0, 1] (2.4)

For example, this is a common scenario as heterogeneous (structured) pat-

terns are concerned, where each feature may be a data type way more com-

plex than a plain real valued scalar. For instance, they can be time series,

texts, graphs, audio tracks, images, videos or whatever we are able to store

in a digital data type. In information science all of these elements are rep-

resented by means of sequences of numbers, but can not be compared with

a simple Euclidean distance. For example, time series will likely require Dy-

namic Time Warping; sequences will likely require an edit distance (e.g.,

the Levenshtein distance in case each atomic element of the sequence is a

plain character); text mining and sentiment analysis usually rely on embed-

ding techniques such as bag-of-words and TF-IDF or on neural approaches

in order to consider also words semantic; how to compare graphs depends on

their topology and edge/node properties, if present; audio tracks can again

be treated as sequences or they can be analyzed in frequency domain; images

comparison is strongly application dependent: many optical flow algorithms,

such as Lucas-Kanade [55] or Brox [56], are available for motion detection, or

feature extraction algorithms, such as SIFT [57] or SURF [58], may fit better

if the task is object recognition or scene interpretation and reconstruction;

for videos we have the same possibilities we have for images but, in addition,
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we have to take into account they are sequences of images.

Data embedding is a common approach to face learning from complex data.

Embedding methodologies map original data to real valued vectors to over-

come the comparison problem. In this way patterns representations are ob-

tained which can easily be compared by means of a simple Euclidean dis-

tance. However, designing this mapping function is a critical issue since it

must fill the semantic gap between the two domains as much as possible. In

any case, once a dissimilarity measure is given in every feature space, the

overall dissimilarity measure can always be defined as a convex linear combi-

nation of the elementary dissimilarities, where weights can be learned during

the training procedure, in order to maximize system performance and at

the same time giving insights about the relative importance of each feature.

Moreover, improved knowledge discovery capabilities can be obtained rely-

ing on algorithms yielding explicit clusters of patterns, since simple statistical

representations of clusters (such as the average vector or variability ranges)

can be easily interpreted in natural language, conversely to other black box

models (e.g., artificial neural networks and support vector machines). Under

this light, patterns are properly compared feature by feature in their original

domain and the results are further normalized in [0, 1] range in order to avoid

implicit weighting of different components. These dissimilarities between ho-

mologous features are finally combined in order to obtain a final dissimilarity

value.
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2.1.3 Feature Selection and Local Metric Learning

As we have seen in §2.1.2, patterns may be constituted of many independent

features, each one with its own data type. Not all of the features describing

a pattern are strictly necessary to determine its membership to a given class.

We may be interested in discovering which components are useful to discrim-

inate different classes. In other words we want to determine which features

are informative for a classification task and which ones can be dropped. This

task is known in literature as metric learning. Field experts may be able to

provide some knowledge about which features are supposed to be more rele-

vant and which others are likely useless. Moreover, different classes may be

visible in different subspaces, increasing the complexity of this task, which

leads to the local metric learning. It is a more specific version of metric

learning where different groups of classes result to be discernible in different

subspaces. Metric learning and local metric learning help to simplify synthe-

sized models, making them easier to be interpreted and understood by field

experts.

Specifically, the metric learning problem is concerned with learning a

(parametric) distance function tuned to a particular task and has been shown

to be useful when used in conjunction with techniques that rely on distances

or dissimilarities such as clustering algorithms, nearest-neighbor classifiers

and the like [59]. For example, if the task is to asses the similarity (or dis-

similarity) between two images with the aim of finding a match, for example

in face recognition, we would discover a proper distance function that em-

phasizes appropriate features (hair color, ratios of distances between facial



2.1. HIGH-LEVEL DATA SET PROPERTIES 21

key-points, etc). Although this task can be performed by hand, a tool for

automatic learning important features capable to learn task-specific distance

functions in a supervised manner can be assessed. Many declinations of met-

ric learning are available, besides, according to Fig. 2.1, they can be resumed

in three principal paradigms: fully supervised, weakly supervised and semi su-

pervised. An informal formulation of the supervised metric learning task is

as follows: given an input distance function d(~x, ~y) between objects ~x and

~y (for example, the Euclidean distance), along with supervised information

regarding an ideal distance, construct a new distance function d̂(~x, ~y) which

is “better” than the original distance function [60]. Normally, fully super-

vised paradigms have access to a set of labeled training instances, whose

labels are used to generate a set of constraints. In other words, supervised

distance metric learning is cast into pairwise constraints: the equivalence

constraints where pairs of data points belong to the same class, and in-

equivalence constraints where pairs of data points belong to different classes

[61]. In weakly supervised learning algorithms we do not have access to

the label of individual training data and learning constraints are given in

a different form as side information, while semi-supervised paradigm does

not use either labeled samples or side information. Some authors (e.g. Liu

Yang in [61]) deals with unsupervised metric learning paradigms, sometimes

called also manifold learning referring to the idea of learning an underly-

ing low-dimensional manifold1 where geometric relationships (e.g. distance)

between most of the observed data are preserved. Often this paradigm co-

1A manifold is a topological space that resembles Euclidean space near each point.
Hence a n-dimensional manifold has a neighborhood that is homeomorphic to the Eu-
clidean space of dimension n.
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incides with the dimensionality reduction paradigm of which examples are

the well-known Principal Component Analysis [62] and the Classical Scaling

(CS), that are based on linear transformations. As non-linear counterpart

it is worth it to take note of Embedding methods such as ISOMAP [63],

Locally Linear Embedding [64] and Laplacian Eigenmap [65]. Other meth-

ods are based on information-theoretic relations such as Mutual Information.

Hence, the form or structure of the learned metric can be linear, non-linear,

local. Linear metric learning paradigms are based on the learning of a met-

ric in the form of a generalized Mahalanobis distance between data objects,

i.e. D ~W
ij =

√
(~xi − ~xj)T ~W T ~W (~xi − ~xj) =

√
(~xi − ~xj)T M(~xi − ~xj), where

M = ~W T ~W is a matrix with suitable properties that needs to be learned. In

other words, the learning algorithm learns a linear transformation ~x → ~W~x

that better represents similarity in the target domain. Sometimes in available

data there are some non-linear structures that linear algorithms are unable

to capture. This limitation leads to a non-linear metric learning paradigm,

that can be based on the kernelization of linear methods or direct non-linear

mapping methods. The last cases lead, for the Euclidean distance, to a ker-

nelized version combining the learned transformation φ(~x) : Rm → Rm with a

Euclidean distance function with the capability to capture highly non-linear

similarity relations, that is Dφij = ‖(φ(~xi)− φ(~xj)) ‖2 [66].

Local metric refers to a problem where multiple local metrics are learned

and often relies on heterogeneous data objects. In the last setting, algorithms

learn using only local pairwise constraints. According to the scheme depicted

in Fig. 2.1 the scalability of the solution is a challenging task, considering the

growing of the availability of data in the Big Data context. The scalability
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could be important both considering the data set dimension n or the dimen-

sionality of data m. Finally, the intrinsic optimization task underlying the

metric learning paradigm makes important the optimality of the solution de-

pending on the structure of the optimization scheme, that is, if the problem

is convex or not. In fact for convex formulations it is guaranteed the attain-

ing of a global maximum. On the contrary, for non-convex formulations, the

solution may only be a local optimum.

As clustering algorithms are concerned, local metric learning paved the

way towards the development of subspace clustering algorithms, whose capa-

bilities of finding clusters in specific subspaces (namely, subspaces in which

clusters themselves are better defined) have been widely affirmed in the lit-

erature, especially as Euclidean spaces are of interest [67, 68].

Figure 2.1: Five key properties of ML algorithms [69].
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Chapter 3

Algorithms Design

In chapter 2 we described the principles at the base of this work inspired by

some common properties observed in data sets. Here in the following we are

going to analyze in details how these observations have been implemented in

the algorithm design process. We will see how the problem has been split in

two simpler sub-problems: one about how to discover clusters, possibly lying

in different subspaces, in an efficient and scalable manner, the other on using

these clusters to build a classification model.

3.1 Algorithm Properties

A real world data set may be very large. It may be so huge to make it un-

feasible analyzing the entire data set in a centralized way. It can even be an

infinite data stream generated during system at hand operation. Before to go

on describing our solution to face this problem, we need some considerations

about this kind of data sets and mostly their sub-sampling properties. Sup-

25
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pose we have a data set as shown in figure 3.11 and suppose it is a data set

with so many patterns that it is impossible to analyze it all at one time within

a reasonable amount of time. For the sake of representation here we used

a bi-dimensional Cartesian plot with patterns normalized in unitary hyper-

cube, but as it is shown in the following it is not mandatory for our purpose.

A necessary but realistic condition for the approach we are describing is that

a given problem-related class is represented by one or more groups of homo-

geneous patterns (clusters): in light of this hypothesis, patterns that belong

to the same class might not be necessarily similar one another. Now suppose

Figure 3.1: Two well-formed clusters in a bi-dimensional Euclidean space.

we do not consider the entire data set but only a small sub-sampling as shown

1Many images in this first part are not technical accurate pictures, they are intended
for narrative purposes only.
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in figure 3.2. Despite the lower data density (see Figure 3.1 vs. Figure 3.2),

it is still possible to recognize portions of the input space where data is con-

centrated. This means clustering algorithms are still valid candidates when

Figure 3.2: By performing a random sub-sampling, the two clusters from
Figure 3.1 are still visible.

it comes to perform space segmentation, where each segment is associated

with a class label. For this reason Decision Clusters have been chosen for

our classification model: they suit for necessity of working with small data

sub-sample and it allows to split the problem in two simpler tasks. The first

task is to find groups of homogeneous patterns (clusters), the second is to

use these clusters to build a classification model. Moreover Decision Clusters

also satisfy the requirement of dealing with structured data or, more gen-

erally, non-metric data which can not be represented with a Cartesian plot.
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In fact, several clustering algorithms such as the aforementioned k-medoids,

DBSCAN and hierarchical clustering rely only on explicit pairwise dissim-

ilarities and do not rely on any algebraic structures which turn out to be

nonsensical as non-metric spaces are concerned [54, 70, 71, 72].

Under consideration of fast algorithm requirement, the choice for clustering

algorithm at the basis of the proposed system fell on RL-BSAS [73], which

adds some Reinforcement Learning-like behaviour to the standard BSAS al-

gorithm [4]. RL-BSAS is not the strongest clustering algorithm in terms of

performances because can only discover clusters with hyper-spherical shape,

but it is capable of running in O(n), where n is the number of patterns in

the data set, because it needs to iterate over input data only once.

Feature selection may be a very challenging problem in high dimensionality

spaces. In case of binary feature activation, where each feature can only be

active or inactive (as it is the case in this work), it is a combinatorial prob-

lem whose complexity grows as O(2n) where n is the number of features in

patterns domain. Our choice fell on entrusting this task to a metaheuristic

optimization. The choice of a Genetic Algorithm [74] to face feature selection

[75] is justified by the difficulty in describing the problem in closed form. In

this sense our system acts as a black box: given a subspace, we are able to

evaluate easily the quality of the results generated by its usage (fitness), but

we can not define a procedure to modify it for certainly improve the perfor-

mance. A Genetic Algorithm is instead capable of driving the optimization

only relying on the fitness value associated to a given input variables config-

uration (i.e., the genetic code). Moreover, the intrinsic Genetic Algorithm

population structure makes the design of a parallelizable multi-agent sys-
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tem very appealing, due to the intrinsic agents’ independence: indeed, each

agent is in charge of investigating a different data sub-sample in a different

subspace by means of a simple clustering algorithm with low resources re-

quirements. The final result derives from inter-agent sharing and gathering

together individual agents results obtained generation by generation. It is

in a sense an emergent result generated by a plethora of elementary agents

solving very simple tasks.

The development of this algorithm has been divided in two phases. In the

first one we developed a system capable of performing clustering with si-

multaneous local metric learning, in the second we adapted it to create a

classification model by collecting clusters, useful for this task, generation by

generation. These two algorithms are described in details respectively in fol-

lowing §3.3 and §3.4. The former part has been investigated in [76] and [77],

whereas the latter results have been published in [78].

3.2 Multi-Agent Framing

Referring to the taxonomy presented in [14] our algorithms can be classified

as reward-based (specifically stochastic search) homogeneous team learning.

These algorithms consist of multi-agent systems which globally aim in the

first case to cluster the data set and, in the second one, to build a classification

model. Despite each agent has its own parameter configuration and its own

data set sub-sample to be analyzed, each one performs an instance of the

same clustering algorithm. The most of inter-agent communication occurs

by the Genetic Algorithm. On the basis of the achieved results each agent
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is given a fitness value which results in its reward. The agent reward is in

the form of a higher probability of sharing its configuration and propagating

it to next generation. The higher is the agent fitness the the higher is the

probability of propagating its genetic code to the next generation.

3.3 Clustering: E-ABC

As already mentioned above, this Evolutive Agent Based Clustering algo-

rithm (E-ABC) consists of a population composed of simple agents which

perform trivial tasks. Agents live in an environment promoting those which

get better results and the population evolve generation by generation. Dur-

ing the evolution the result is built step by step to be returned at the end of

the procedure. In the following we are going to walk through the entire struc-

ture with a bottom-up approach. We will start from the clustering algorithm

performed by each agent to reach the evolutive over-structure going through

the inter-agent interactions. The whole E-ABC structure is schematized in

figure 3.3 which acts as an atlas of the algorithm.

3.3.1 Agent Behavior

Basic Sequential Algorithm Scheme

Basic Sequential Algorithm Scheme (BSAS) is a clustering algorithm which

cluster the given data set with a single scan. As already discussed above,

the choice of this algorithm is due to its simplicity and the consequent low

system requirements for a single agent executing it. In its basic implementa-
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Figure 3.3: Block diagram of the E-ABC algorithm.
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tion, BSAS only requires a single configuration parameter θ representing the

maximum distance of a pattern from the centroid of the cluster it belongs

to. BSAS scans all input data pattern by pattern. For each pattern px it

computes the distance Dk = d(px, Ck) from all of the clusters Ck already

created and selects the one minimizing the distance D. If D < θ, then px

is added to the corresponding Ck cluster, otherwise a new cluster is created

with px inside2. After each new pattern-to-cluster assignment, the centroid

of the cluster is updated. Trivially, for very small θ values, BSAS is likely

to return a huge number of clusters: in order to avoid this scenario, a new

parameter K∗ can be introduced and it indicates the maximum number of

allowed clusters. If K∗ is considered, new clusters are generated if and only

if the number of clusters discovered so far is below K∗.

Let us suppose BSAS is analyzing the data set in figure 3.4 following the px

index order. When BSAS analyzes the first pattern p1 there is still no cluster

so it just create C1 and put p1 inside. When p2 is analyzed its distance from

C1 is computed, but, because d(p2, C1) > θ, cluster C2 with it is created.

Distance of p3 from C1 and C2 is computed. Because C2 is the closets cluster

and it is close enough, p3 is added to it. And so on and so forth for the whole

data set. Notice that each pattern resulting in an outlier with the given θ

will remain alone or grouped with few other patterns in its cluster.

Pseudocode

2From here on each section describing an algorithm have an ending paragraph with its
pseudocode adherent as much as possible to the implementation. Refer to it for details.
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Figure 3.4: Schematic behaviour of the BSAS algorithm.

Symbols

Ck - kth cluster

θ - cluster radius

D - distance between two entities (cluster - cluster, cluster - pattern,

pattern - pattern...)

D - normalized D

p - single pattern in Str, Sv or Sts

K∗ - maximum number of clusters RL-BSAS is allowed to create

BSAS

Input: dataset S, θ, K∗

Output: Ck
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1: Initialization: let the first pattern of the set S be the centroid of the first

cluster Ck with θ radius

2: for each p in S do

3: for each Ck cluster do

4: compute pattern - cluster distance D (with respect to the metric

configuration associated to Ck)

5: normalize D as D = D
θ

6: end for

7: select Ck for which D is minimized

8: if D < 1 then

9: insert p in Ck

10: else if number of cluster Ck ≤ K∗ then

11: create new Ck

12: insert p in Ck

13: end if

14: end for

Basic Sequential Algorithm Scheme with Reinforcement Learning

As we may observe in the above description, BSAS in its basic implementa-

tion is very sensitive to data ordering and, especially for low θ values, might

as well create a huge number of clusters with very few patterns due to its

partitional-like nature. This is the reason for which we adopted a modified

version of it that at the same time reduce the number of returned clusters

and only keeps the most relevant ones. It is named Reinforcement Learn-

ing BSAS (RL-BSAS): a Reinforcement Learning mechanism is used to keep

track of the most relevant clusters which must be kept and those which in-

stead deserve to be deleted. For this purpose each new cluster is associated

with an initial energy value. When a new pattern px is associated to an

existing cluster, the energy of this cluster is increased, whereas the energy
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of all the others is reduced. If px can not be associated with any existing

cluster, all their energies are decreased. If the energy of a cluster vanishes it

is deleted. Moreover the maximum amount of returned clusters is bounded

to a user defined number. When a pattern can not be associated with any

existing cluster, a new one is created only is a free slot is available.

Pseudocode

Symbols

β - RL-BSAS penalty parameter

IE - initial RL-BSAS clusters energy

RL-BSAS

Input: dataset S, θ, K∗, β

Output: Ck

1: Initialization: let the first pattern of the set S be the centroid of the first

cluster Ck with θ radius

2: for each p in S do

3: for each Ck cluster do

4: compute pattern - cluster distance D (with respect to the metric

configuration associated to Ck)

5: normalize D as D = D
θ

6: end for

7: select Ck for which D is minimized

8: if D < 1 then

9: insert p in Ck

10: increase Ck energy by 1

11: decrease all others Ck energy by β

12: else

13: decrease all Ck energy by β

14: if number of clusters Ck < K∗ then
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15: create new Ck

16: initialize Ck energy to IE

17: insert p in Ck

18: end if

19: end if

20: for each Ck cluster do

21: if Ck energy ≤ 0 then

22: delete Ck

23: end if

24: end for

25: end for

Agent Characterization

What distinguish two agents is the set of parameters which condition their

behaviour. Specifically these parameters are β, θ and w highlighted in fig-

ure 3.5. β is the death rate of clusters in RL-BSAS reinforcement learning

approach, θ is a vector storing the actual radii of clusters discovered by the

agent and initialized with θ and w describes the subspace where the agent

is acting.

Intra-Agent Fusions

In E-ABC, agents have memory of discovered clusters as generations go by.

In order to shrink the bucket of clusters belonging to a given agent, an intra-

agent fusion procedure is triggered right after the RL-BSAS execution (see

figure 3.5). The end-user defines a threshold parameter θfus and two clusters

are merged if the distance between their respective centroids is below this

threshold. After merging, the centroid of the resulting cluster is updated and
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its strength is restored to the default value.

Figure 3.5: Block diagram of the agent behaviour in E-ABC.

Pseudocode

Symbols

Pi - population of ith generation

aij - jth agent of Pi

Cijk - kth cluster discovered by aij

θfus - distance threshold for cluster fusion
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E-ABC Agent

Input: aij, S
∗
tr

Output: Cijk (set in aij)

1: CALL rlbsas with aij, S
∗
tr RETURNING Cijk

2: repeat

3: for each pair Cijk1 , Cijk2 in Cijk do

4: compute D between Cijk1 and Cijk2

5: if D < θfus then

6: merge Cijk1 and Cijk2

7: end if

8: end for

9: until a merge occurs

10: set resulting Cijk clusters in aij

3.3.2 Inter-Agent Fusions

When each agent of the current population has completed its task of running

the clustering algorithm on the given data set sub-sample, an additional

fusion step occurs. For various reasons (the same parents in the previous

generation, evolutionary convergence or just accidentally) different agents

may share the same search subspace. With this premise, different agents may

discover similar clusters, namely clusters either very close to each other or

with non-negligible overlap. In order to shrink the set of clusters discovered

by the swarm during the evolution, agents are grouped by subspace and

their clusters are merged together if they are closer then θfus parameter.

After this step, genetic operators may take place. The inter-agent fusion

procedure is quite similar to that above described for intra-agent fusion,

except an additional check which is required to ensure clusters to be merged
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were found in the same subspace.

Pseudocode

E-ABC Inter-Agent Fusion

Input: aij, S
∗
tr

Output: Cijk (set in aij)

1: repeat

2: for each pair Cij1k1 , Cij2k2 in Cijk do

3: if Cij1k1 subspace match Cij2k2 subspace then

4: compute D between Cij1k1 and Cij2k2

5: if D < θfus then

6: merge Cij1k1 and Cij2k2

7: end if

8: end if

9: end for

10: until a merge occurs

11: set resulting Cijk clusters in aij

3.3.3 Evolutionary Procedure

Fitness Function

The core of any evolutionary optimization procedure is the evaluation of each

individual with a given fitness function value. Once this have been done, they

can be ordered before to be given to the genetic operators. In E-ABC we are

just performing a clustering, so the only information about the performance

of a single agent is contained in the quality of the clusters themselves. There

are two main properties for a cluster to be desired: compactness and cardi-

nality. Given a cluster C with centroid c containing a set of patterns px as
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shown in figure 3.6, cardinality is the number of patterns contained in the

Figure 3.6: Given a cluster C centered in c, desired C properties are high
cardinality (number of patterns px it contains) and high compactness (com-
plement of average distance px – c).

cluster:

ca = |C| (3.1)

and compactness co is defined as the complement of dispersion. Dispersion is

in turn the average distance of px patterns from the centroid c of the cluster

itself:

co = 1−
∑

px∈C d(px, c)

|C|
(3.2)

to make them comparable, compactness and cardinality both have been nor-

malized in [0, 1] range by properly scaling according to the data set shard

(the former) and the square root of the number of features (the latter). The

normalization of the two terms allows a straightforward and unbiased com-

bination: the final fitness (to be maximized) for a single cluster is then

Fcc(C) = λ · fco(C) + (1− λ) · fca(C) (3.3)
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where λ ∈ [0, 1] is a user defined trade off parameter. So far we have defined

how to compute the fitness value associated to a single cluster. The evolu-

tionary procedure will not deal directly with clusters, but with the agents

which output them. Each agent, by running RL-BSAS, may find multiple

clusters and the fitness function associated to the agent is evaluated as the

mean value among the fitness values of its clusters (see Eq. 3.3).

Genetic Operators

Once each individual fitness value has been evaluated, the current popula-

tion can be sorted and the genetic operators may be applied to build the

individuals for the next population. Parameters optimized by means of the

genetic algorithm are: the penalty β for the RL-BSAS behavior, the clusters

radii θ and the metric representing the agent search space w. The evolution-

ary procedure we use is a custom implementation and composition of well

known genetic operators elitism, tournament selection, mutation and single-

point crossover. One last note, it is worth to mention before the operators

description, is that, where it is possible, inheritance does not only involve the

agent configuration, but also the discovered clusters. In other words, if the

configuration changes occurred in the evolutionary process do not invalidate

the clusters discovered so far, the agent created for the next generation is

not empty, instead it already contains the clusters found by the agents it is

derived from.

Overall Structure This implementation of the genetic algorithm makes

use of four standard genetic operators: elitism, selection, mutation and
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crossover. The population of the next generation is composed of two blocks.

The former is the result of the elitism and it is meant to preserve the best

results obtained so far, while the latter, obtained through selection, mutation

and crossover, is meant to explore the parameters space looking for better

solutions. Specifically, the best individual so far is preserved by means of

elitism and the end-user can specify the percentage of individuals obtained

by means of crossover and mutation. If the percentage does not add up to

the number of individuals, new individuals will be randomly spawned.

Elitism The elitism just copies the best agent (with respect to the given

fitness values) from the current generation to the next one with all their con-

figuration parameters, the discovered clusters and the set of patterns consti-

tuting the clusters themselves.

Selection The selection process chooses the individuals to be employed in

the mutation and the crossover operators. 50% of the population is prelim-

inarily selected through a uniform random extraction. Two lists of agents

are then composed, one with the individuals to be modified by the mutation

operator, and the other one with the individuals to be mated by the crossover

operator. Each list is built by an additional random extraction step of the

individuals from the subsampled population. The probability of an individ-

ual to be selected by the second extraction is proportional to its fitness value.

Each agent can be selected only once for each list, but it may belong to both

of them.
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Mutation Depending on the fitness of the selected individual, the mutation

may be “small” (local search) or “big” (exploration). It is small if the fitness

value is high, big otherwise. This is because if the agent has gained a good

fitness it is supposed to be near to a locally optimal solution in the search

space, otherwise it is worth to try a much different parameters configura-

tion. As mentioned above each agent configuration is composed of RL-BSAS

penalty, clusters radii and the metric. Only one of these three components

is mutated at a time. The first step is to extract a uniformly distributed

value in {0, 1, 2} to select which component to mutate. If 0 is extracted the

RL-BSAS penalty value is mutated. The new value is extracted with uniform

distribution. In case of small mutation the range to extract the new value

is built as the old one ±5% of the admissible range size, if the mutation is

big the extraction range is the old value ±25% of the admissible range size.

When 1 is extracted by the block selection all the clusters radii of the agent

are mutated by extracting the new value in the range centred on the old

value ±5% (small mutation) or ±25% (big mutation) of the admissible range

size. If the selected block is 2 (agent metric), in case of small mutation only

one weight of the metric is flipped, otherwise a set of weights is randomly

selected and flipped.

Crossover As described above, the section of the genetic code to apply

the operator to is preliminarily selected by means of a random extraction.

Because the list of radii has a link with the clusters each agent has found

so far, it make no sense to exchange two cluster radii between two different

agents. For this reason the crossover operator only applies to the RL-BSAS
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penalty value and to the metric. If the former is extracted the value is

exchanged between the two selected agents, otherwise one crossover point is

extracted from the indices of the metric weights and they are exchanged from

that index to the end of the metric weights list.

3.3.4 E-ABC Main Loop

Putting together the components described so far, the main E-ABC pro-

cedure structure may be summarized as it follows: one first population is

created and randomly initialized. Each agent executes its clustering proce-

dure for a different random data set sub-sample and its results are evaluated

in terms of fitness value. At this stage the main loop of the evolutionary

procedure is entered. Each loop execution corresponds to a different gener-

ation of the genetic algorithm. At each iteration the evolutionary procedure

creates a new population, each agent performs the clustering of a new ran-

dom data set sub-sample (possibly starting with the inherited clusters) and

its fitness is evaluated. There are two possible stop criteria: the first one

checks if the average population fitness has converged, the second one checks

if the maximum number of iterations has been performed. The convergence

test compares the current average fitness with the value of the previous gen-

eration. If the difference does not exceeds the given threshold a counter is

incremented, otherwise it is set to 0. If the counter reaches the set threshold

the main loop is interrupted. When one of the stop criteria occurs all the

clusters discovered by all the agents in the last generation are collected all

together and returned as the final result.
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Pseudocode

Symbols

Pi - population of ith generation

|P∗| - population size

aij - jth agent of Pi

imax - max number of generations

Str - training set

Sv - validation set

Sts - test set

M - classification model

Accgl - M accuracy over Sv or Sts

θ - cluster radius

w - binary vector for subspace search

Cijk - kth cluster discovered by aij

|Cijk| - Cijk normalized cardinality

〈Cijk〉 - Cijk normalized compactness

AccCijk
- accuracy over Sv of the classification model only containing Cijk

E - elite pool containing good agent configurations

δFavg - minimum Favg increment for generation

σFavg - δFavg violations counter

σFavg - maximum δFavg violations count

FccCijk
- Cijk fitness based on |Cijk| and 〈Cijk〉

FCijk
- Cijk fitness based on FccCijk

, AccCijk
and Accgl

λ - Tradeoff parameter between |Cijk| and 〈Cijk〉
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E-ABC

Input: Str, Sv, Sts

Output: M

1: σFavg = 0

2: for j = 1 to |P∗| do

3: set a0j in P0 to random configuration

4: end for

5: CALL evaluatePopulation with P0

6: for i = 1 to imax do

7: CALL evolvePopulation with Pi−1 RETURNING Pi

8: CALL evaluatePopulation with Pi

9: compute Favg

10: if Favg increment < δFavg then

11: INCREMENT σFavg

12: else

13: σFavg = 0

14: if σFavg > σFavg then

15: BREAK

16: end if

17: end if

18: end for

19: return Cijk {for last i run}

Evaluate Population

Input: Pi

Output: FCijk
(set in aij)

1: for each aij in Pi do

2: set S∗tr to Str random subsample

3: CALL rlbsas with aij, S
∗
tr

4: end for

5: for each aij in Pi do

6: for each Cijk in aij do
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7: compute FccCijk
= λ · 〈Cijk〉+ (1− λ) · |Cijk|

8: end for

9: set Cij∗ as Cijk with the highest FccCijk

10: set aij fitness value to FccCij∗

11: end for

Agents Evolution

Input: Pi−1

Output: Pi

1: copy GC with best fitness from Pi−1 to Pi {elitism}
2: for 40% |P∗| do

3: select GCm with deterministic tournament over Pi−1 {mutation}
4: mutate θ of GCm with a scale factor

5: mutate w by flipping a random number of bit

6: add mutated GCm to Pi

7: end for

8: for 40% |P∗| do

9: select GCco1 with deterministic tournament over Pi−1 {crossover}
10: select GCco2 with deterministic tournament over Pi−1

11: assign θGCco1 to GCco2 and θGCco2 to GCco1

12: perform single-point crossover to wGCco1 and wGCco2

13: add crossovered GCco1, GCco2 to Pi

14: end for

15: add random GCr to Pi to fill population size {randomize}
16: return Pi

3.4 Classification: E-ABC2

Evolutive Agent Based Clustering Classifier (E-ABC2) is a classification algo-

rithm which takes advantage of the approach proposed for E-ABC algorithm

and uses it to extract meaningful clusters from the data set, which will later
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be used for building the classification model.

3.4.1 Classification Model: Decision Clusters

For requirements described in chapter 2 and technical solutions chosen in

§3.1, where motivations are described in details, the classification model used

in E-ABC2 is inspired by Decision Clusters model. Decision Cluster models

are composed by a set of clusters induced over the training data. When

an unknown pattern px is required to be classified, clusters containing the

pattern itself are selected, and information about clusters composition in

terms of their class partition is used to determine px membership (detailed

classification procedure in §3.4.2).

Each cluster C included in model MC = {C1, C2, ...} is a set of patterns.

Since BSAS has been considered as the core clustering algorithm in both E-

ABC and E-ABC2, clusters are well described by an hypersphere. Moreover,

because of local metric learning assumption, each cluster may lie in a different

subspace. To keep track of the subspace where C has been found, it is

associated with a binary vector w storing which features have been taken

into account to compute pattern-to-pattern dissimilarity. In summary: a

classification model MC is a set of clusters C; each cluster is a set of patterns

px and is characterized by a subspace described by vector w where it lies, its

centroid and its radius.
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3.4.2 Pattern Classification Procedure

When a pattern px needs to be classified, all clusters C stored in model MC

are initially considered as prospective actors for classification. The pattern-

to-cluster dissimilarity D = d(px, c) for each C is computed by obviously

considering the subspace w in which C lies. Only clusters for which D is

smaller than C radius take part to the process. Selected clusters are used

to determine the label to be associated with px by means of a majority vote

mechanism. As highlighted in §3.4.3, some low quality clusters may be in-

cluded in MC , mostly in the early stage of the evolutionary procedure and

for clusters close to the decision boundary. “Low quality” refers to clusters

that, although they have a clear most voted class, contain a non-negligible

percentage of patterns belonging to other classes, increasing the uncertainty

for the classification proposed by the considered low quality cluster. To mit-

igate this problem we do not use crisp voting: to keep as much information

as possible each cluster does not vote +1 for its most voted class. It in-

stead express a vote in [0, 1] range for each class, proportionally to its class

composition. Votes of each cluster for all possible classes sum to 1. All

contributions are then summed by class and px is associated with the most

globally voted class. If px does not lie in any cluster from MC , it is marked

by the classifier as unclassified. As we will show in chapter 5, this, together

with considering each unclassified pattern as a classification mistake, helps

to avoid considering the classifier performance undeservedly high by chance.

Pseudocode
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Symbols

Lp - class label assigned to p

V - class by class votes

E-ABC2 Classification

Input: p

Output: Lp

1: initialize V to 0 vote for each class

2: for each Ck in M do

3: compute D between p and Ck

4: if D < θ then

5: sum Ck votes to V

6: end if

7: end for

8: if exists vote in V 6= 0 then

9: set Lp to most voted class in V

10: return Lp

11: else

12: return unclassified

13: end if

3.4.3 Model Synthesis

E-ABC adaptation for classification required modifications and additions

to the procedure described in §3.3. We also tested a preliminary E-ABC2

Python implementation whose results are in §4.2. For shorthand we do not

report details about the initial Python implementation. The algorithm here

described is already the version obtained taking into account what we ob-

served in preliminary tests. Performance of the procedure described in these

paragraphs is shown in detail in chapter 5.
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With the same bottom-up order used in §3.3, in the following we expose E-

ABC2, mainly focusing to the differences with respect to E-ABC. Almost all

modifications can be divided in three categories:

• parameters simplification, to improve the software usability by making

it simpler to be configured

• introduction of structures and procedures required for classification

task

E-ABC2 Agent

The core clustering algorithm RL-BSAS used in E-ABC2 agents is the same

described above for E-ABC agents. At this stage we skip its description

and we refer to 3.3.1 for details. The entire E-ABC2 agent behavior is al-

most unchanged with respect to E-ABC agent. The only difference concerns

intra-agent fusions dealt in 3.3.1. E-ABC version of this step required a user

defined θfus parameter. In E-ABC2 we decided to remove this parameter to

simplify the setup and to substitute it with a procedure which makes more

reliable this step. The decision if performing or not a fusion is not related to

an a priori fixed threshold. It depends instead on clusters to be merged prop-

erties. If two clusters contain each other centroid or, in other words, if their

distance is smaller then their minimum radius, they are merged together.

Agent characterization is slightly different. We observed how inheriting clus-

ters together with the parents configuration from the previous generation

worsen the classification model synthesis. It was imputed to a lower explo-

ration capability: if all agents from the same parents start from the same
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previous cluster, their configuration will never be used to investigate a dif-

ferent area and will never be able to discover other clusters visible in the

same subspace. For this reason clusters inheritance has been removed and

with that the agent is no more characterized by a vector of radii θ. Instead

it is characterized by a single value θ which the agent uses for all clusters it

creates.

Pseudocode

Symbols

θijk - radius of k-th cluster found by agent aij

E-ABC2 Agent

Input: aij, S
∗
tr

Output: Cijk (set in aij)

1: CALL rlbsas with aij, S
∗
tr RETURNING Cijk

2: repeat

3: for each pair Cijk1 , Cijk2 in Cijk do

4: compute D between Cijk1 and Cijk2

5: if D < θijk1 and D < θijk2 then

6: merge Cijk1 and Cijk2

7: end if

8: end for

9: until a merge occurs

10: set resulting Cijk clusters in aij

Cluster Insertion in Model

When a new cluster C is chosen to be included in the model MC , its most

voted class is computed and a copy of C is added to the corresponding sub-
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model. Details about how a cluster is selected to be a candidate and how is

chosen to be included in MC are discussed in 3.4.3.

Pseudocode

Symbols

LCij∗ - label of most voted class for Cij∗ cluster

E-ABC2 Cluster Insertion

Input: M , Cij∗

Output: M update

1: compute LCij∗ by counting patterns p in Cij∗ grouped by ground truth

Lp

2: add Cij∗ to the M sub-model matching LCij∗

Evolutionary Procedure

Based on preliminary tests highlighting difficulties on keeping high quality

individuals with different genetic codes in the population, the whole evo-

lutionary procedure has been refactored, except for fitness calculation that,

despite modified to take into account classification performance in agent qual-

ity evaluation, include the previous fitness computation shown in §3.3.3. An

elite pool structure, whose usage is also discussed in §3.4.3, has been intro-

duced to store high quality individuals drawn back to the active population

during the evolutionary procedure.

Fitness Function Equation 3.3, used in E-ABC for addressing the quality

of the discovered clusters and for the evaluation of agents which have found
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them, is still valid, despite its usage has been slightly modified and has been

joint with information deriving from the classification capability. First, the

normalization of compactness and cardinality have been performed in an

affine fashion, by considering minimum and maximum bounds encountered

so far in previous generations. Hence,

fco(C) =

(
1−

∑
px∈C d(px,c)

|C|

)
− comin

comax − comin
(3.4)

and cardinality fitness component is

fca(C) =
|C| − camin
camax − camin

(3.5)

Furthermore, each agent is characterized by the best value among its clusters

rather than the average value. As regards the trade-off term λ, it is in fact

another parameter that tests in §4.1 revealed could be removed. Specifically,

figure 4.2 shows clustering performance being pretty insensitive to λ in its

mid-range. For this reason and to reduce user defined parameters we fixed

λ = 0.5, so as to result in Fcc being the arithmetic average of fco and fca.

Once a cluster C has been evaluated in terms of compactness and cardinality

we need a method to estimate the utility of including C in MC . For this

purpose we build a temporary decision cluster model on the single cluster

under consideration and we check for its classification capability in terms of

accuracy AccC with respect to the validation set. Testing it on the whole

validation set would make no sense because most elements would fall outside

C and accuracy would be very low. So we have introduced an additional
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step selecting only the validation set sub-sample falling inside C, and AccC

is computed taking into account only this sub-sample. In this way AccC is

computed only on validation set patterns for which C would express a vote

if included in MC as it is discussed in 3.4.2. Accuracy as quality measure

works until dealing with balanced data sets. More robust quality parameter

would be required for unbalanced data sets, whose study has been postponed

to future development. The last step is composing Fcc and AccC in a single

fitness value F for the cluster to be evaluated. We sifted different possibilities

for this purpose. Static fitness components trade off would be the simplest

approach but it would introduce another user defined parameter to be man-

ually defined. Moreover we expect that at the early stage of this process the

agents can only look for clusters with high Fcc. When population knows in

which subspaces patterns are better clustered and it starts collecting clusters

in MC , it can focus on searching clusters useful for classification task. Static

trade off does not satisfy the requirement of adapting to modifying target

during the genetic algorithm execution. To aim this target we could modify

the trade off as a function of the current generation index. It would allow

to move from an objective to the other, but generation index does not ac-

tually give any information about the state of searching good subspaces, so

we added an additional variable computed relying on MC . It is Accgl and it

is the accuracy obtained by the global classification model collected so far,

computed over the entire validation set. In this way Accgl acts as a feed-

back. So at the beginning the process looks for well formed clusters. When

good clusters start to be found and some of them are also useful in MC , the

evolutionary process modify its target step by step toward clusters useful for
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classification. The complete formula for cluster fitness computing is

F (C) = Accgl · AccC(C) + (1− Accgl) · Fcc(C) (3.6)

Genetic Operators The main reason for which evolutionary procedure

has been slightly modified is to satisfy the population diversification require-

ment whose necessity has been introduced at the beginning of §3.4.3. As

in E-ABC, all genetic operators structure have been reorganized to reflect

agents double nature containing in their genetic code information about the

search subspace and about the clustering algorithm configuration. When a

genetic operator is called for an agent, in turn it calls the same operator for

the subspace and the clustering algorithm configuration. In this way, using

some software constructs deepened in appendix A, the software is already

prepared for other kinds of space representations and other clustering algo-

rithms without the need of modifying it. In the following we discuss details of

the current implementation dealing with subspaces represented by w binary

vectors and using RL-BSAS as the core clustering algorithm.

Overall Structure The evolutionary procedure takes as input the cur-

rent population sorted by fitness and generates the next one to be tested.

The first 15% individuals of the new population are chosen by elitism. The

following two bunches of 35% individuals each one are generated respectively

by mutation and by crossover. All individuals to be involved in mutation

and crossover are selected by means of a deterministic tournament. The
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remaining 15% agents are randomly drawn.

Elitism As it is in E-ABC, individuals chosen for elitism are just copied

as they are for the next generation as they are in the input population.

Selection The used selection algorithm is a standard deterministic tour-

nament. Given the current population and the number of tournament com-

petitors, they are randomly drawn. The best one in terms of fitness value is

returned as the selected individual.

Mutation Agents mutation operator calls the same operator for w sub-

space and clustering algorithm configuration. In our implementation w mu-

tation chooses one element with uniform probability distribution and flips

it. For clustering configuration both increment and decrement cluster energy

ratio β and θ radius values are drawn with Gaussian distribution whose mean

value corresponds to the previous value and the standard deviation has been

set as 0.05/3. New subspace and clustering configuration obtained by means

of respective mutation operators are joined to build a new agent.

Crossover As in case of mutation, the corresponding operator is individ-

ually called for subspace and clustering configuration. Each operator takes

two individuals from the previous generation and returns one pair of new

genetic codes. Corresponding elements in both pairs are joined together to

build a pair of new agents: first new subspace with first new clustering config-

uration and second new subspace with second new clustering configuration.

Subspace crossover applies a single point crossover (it randomly draws a w
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position and swaps a subset of binary components), whereas clustering con-

figuration crossover, having only two components in the genetic code, applies

a uniform crossover to one of them (it randomly draws a number in [0, 1] with

uniform probability distribution and swaps the component if the number is

lower than the crossover rate).

Randomization Also randomization calls the corresponding operators for

subspace and clustering configuration. Each one returns a randomly gener-

ated genetic code for its part. These two genetic codes are joined together

to build a new random agent. Subspace randomization draws each w binary

component at random with uniform probability distribution. Clustering con-

figuration randomization draws β in [0.001, 0.999] range and θ in [0.01, 0.50]

range both with uniform probability distribution.

Pseudocode

Symbols

GC - a generic genetic code (may refer to agent genetic code, metric

genetic code or clustering algorithm configuration genetic code)

MR - mutation rate

CR - crossover rate

Agents Evolution

Input: Pi−1

Output: Pi

1: copy 15% GCs from Pi−1 to Pi {elitism}
2: for 35% |P∗| do
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3: select GCm with deterministic tournament over Pi−1 {tournament is

10% Pi−1 based}
4: CALL mutateAgent with GCm RETURNING GC∗m {mutation}
5: add mutated GCm to Pi

6: end for

7: for 35% |P∗| do

8: select GCco1 with deterministic tournament over Pi−1

9: select GCco2 with deterministic tournament over Pi−1

10: CALL crossoverAgent with GCco1, GCco2 RETURNING GC∗co1, GC
∗
co2

{crossover}
11: add crossovered GCco1, GCco2 to Pi

12: end for

13: for 15% |P∗| do

14: CALL randomAgent RETURNING GC∗r
15: add randomly drawn GC∗r to Pi

16: end for

17: return Pi

Agent Mutation

Input: GCm

Output: GC∗m

1: CALL mutateMetric with GCm metric RETURNING GC∗m metric

2: CALL mutateClusteringConfig withGCm clustering configuration RETURNING

GC∗m clustering configuration

3: create GC∗m merging GC∗m metric and clustering configuration

4: return GC∗m

Agents Crossover

Input: GCco1, GCco2

Output: GC∗co1, GC
∗
co2

1: CALL crossoverMetric with GCco1, GCco2 metrics RETURNING GC∗co1,

GC∗co2 metrics
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2: CALL crossoverClusteringConfig with GCco1, GCco2 clustering configu-

rations RETURNING GC∗co1, GC
∗
co2 clustering configurations

3: create GC∗co1 merging GC∗co1 metric and clustering configuration

4: create GC∗co2 merging GC∗co2 metric and clustering configuration

5: return GC∗co1, GC
∗
co2

Random Agent Draw

Input:

Output: GC∗r

1: CALL randomMetric RETURNING GC∗r metric

2: CALL randomClusteringConfig RETURNING GC∗r clustering configu-

ration

3: create GC∗r merging GC∗r metric and clustering configuration

4: return GC∗r

Subspace Mutation

Input: GCm

Output: GC∗m

1: copy GCm to GC∗m
2: flip one random binary feature weight in GC∗m
3: return GC∗m

Subspace Crossover

Input: GCco1, GCco2

Output: GC∗co1, GC
∗
co2

1: copy GCco1, GCco2 to GC∗co1, GC
∗
co2

2: draw a random index position idx in the binary feature weights array

3: for i = 0 to idx do

4: swap binary feature weights in GC∗co1, GC
∗
co2 at position i

5: end for

6: return GC∗co1, GC
∗
co2
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Random Subspace Draw

Input:

Output: GC∗r

1: create GC∗r
2: for each binary feature weight in GC∗r do

3: draw a random binary 0/1 value

4: end for

5: return GC∗r

Clustering Setup Mutation

Input: GCm

Output: GC∗m

1: draw a random value x with uniform distribution in [0, 1]

2: if x < MR then

3: draw new random β value with Gaussian distribution centred in old

value and standard deviation 0.05
3

4: bound β in [0.001, 0.999]

5: set new β value in GC∗m
6: else

7: set old β value in GC∗m
8: end if

9: for each cluster radius in GCm do

10: draw a random value x with uniform distribution in [0, 1]

11: if x < MR then

12: draw new random θ value with Gaussian distribution centred in old

value and standard deviation 0.05
3

13: bound θ in [0.01, 0.10]

14: set new θ value in GC∗m
15: else

16: set old θ value in GC∗m
17: end if

18: end for
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19: return GC∗m

Clustering Setup Crossover

Input: GCco1, GCco2

Output: GC∗co1, GC
∗
co2

1: copy GCco1, GCco2 to GC∗co1, GC
∗
co2

2: draw a random value x with uniform distribution in [0, 1]

3: if x < CR then

4: swap θ values in GC∗co1, GC
∗
co2

5: end if

6: return GC∗co1, GC
∗
co2

Random Clustering Setup Draw

Input:

Output: GC∗r

1: draw new random β value with uniform distribution in [0.001, 0.999]

2: draw one new random θ value with uniform distribution in [0.01, 0.50]

3: create GC∗r with β and θ

4: return GC∗r

E-ABC2 Main Loop

The main loop starts with empty model, empty elite pool and a randomly

generated population. The initial population is evaluated and the main loop

is entered. We do not dwell on the main loop structure and stop criteria

because they are almost the same already discussed for E-ABC algorithm.

The only difference is here we observe the MC accuracy trend instead of

arithmetic average fitness trend to check if it is going to converge to a solution.

When the main loop is over the synthesized model is returned. The main
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loop consists in adding some individuals randomly drawn from the elite pool

on top of the current population to ensure they will be part of the selection

procedure, hence to ensure they will be used for creating a new population

by means of the evolutionary procedure. Agents evaluation consists in turn

in computing current model accuracy, running all agents clustering on data

set sub-samples and computing their fitness value applying formula (3.6).

During this process, if a cluster whose AccC(C) value is at least 60% and

AccC(C) > Accgl, the cluster itself is added to MC and the agent who has

found it is added to the elite pool.

Pseudocode

Symbols

δAcc - minimum Accgl increment for generation

σAcc - δAcc violations counter

σAcc - maximum δAcc violations count

E-ABC2

Input: Str, Sv, Sts

Output: M

1: M = ∅
2: E = ∅
3: σAcc = 0

4: for j = 1 to |P∗| do

5: set a0j in P0 to random configuration

6: end for

7: CALL evaluatePopulation with P0

8: for i = 1 to imax do

9: add to Pi−1 agents randomly drawn from E
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10: CALL evolvePopulation with Pi−1 RETURNING Pi

11: CALL evaluatePopulation with Pi

12: update Accgl with Sv

13: if Accgl increment < δAcc then

14: INCREMENT σAcc

15: else

16: σAcc = 0

17: if σAcc > σAcc then

18: BREAK

19: end if

20: end if

21: end for

22: update Accgl with Sts

23: return M

Agents Fitness Evaluation

Input: Pi

Output: FCijk
(set in aij)

1: compute Accgl

2: for each aij in Pi do

3: set S∗tr to Str random subsample

4: CALL rlbsas with aij, S
∗
tr

5: end for

6: for each aij in Pi do

7: for each Cijk in aij do

8: compute FccCijk
=
〈Cijk〉+|Cijk|

2

9: end for

10: set Cij∗ as Cijk with the highest FccCijk

11: compute AccCij∗ {computed over Sv subsample falling inside Cij∗}
12: compute FCij∗ = Accgl · AccCij∗ + (1− Accgl) · FccCij∗

13: set aij fitness value to FCij∗

14: if AccCij∗ > 0.60 and AccCij∗ > Accgl then

15: CALL addToModel with M , Cij∗
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16: add aij to E

17: end if

18: end for

3.4.4 Parallel Implementation

After satisfactory results have been obtained we optimized the algorithm by

parallelizing time consuming loops whose steps are independent one each

other [79]. All of the parallelizations have been implemented by means of

the OpenMP API. OpenMP provides a thread pool architecture whose size

(number of available threads) can be set at the application startup. The use

of a thread pool reduces the multi-threading management overhead because

it avoids to create and destroy a thread each time it is used. In brief, each

agent independently receives a random data set chunk and outputs a set of

clusters. These tasks can be easily parallelized with a naive parfor-like loop.

The master task spawns as many tasks as there are agents and forwards each

one, with the agent genetic code and the data set chunk, to an available

thread in thread pool: threads perform in parallel agents’ search for clusters.

When a thread completes its task receives a new agent to perform its cluster

search, until the task queue is over. The control now returns to the master

thread that updates the minimum and maximum bounds for compactness

and cardinality (comin, comax, camin and camax). Another parallel for loop

evaluates the clusters returned by each agent (compactness and cardinality

– see Eqs. (3.4), (3.5), (3.3)), elects the best cluster and evaluates its clas-

sification capabilities AccC over the validation set. Finally it computes the

fitness value to associate with each agent as in equation (3.6). The analysis
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of the validation set is also included in a parfor-like loop so that the classi-

fication of each pattern in validation set is performed in parallel. However,

since the validation set might be huge as well (and analyzing it all for each

agent can be a serious bottleneck) it undergoes a subsampling (like the train-

ing set). The same subsample is used to compute Accgl and AccC for each

agent. In this way each agent is evaluated over the same classification task.

At each genetic algorithm generation a new subsample is randomly drawn

with a stratified sampling to keep classes proportions and to avoid loosing

validation set information.



Chapter 4

Preliminary Results

This chapter is organized in two sections: the first one describes setup, tests

and results obtained with E-ABC, and the second one has the same layout

but is focused on testing E-ABC2. Both of them are preliminary tests gained

with a Python version of the software. They where planned to quickly realize

a first implementation of the algorithms and check what it was necessary to

modify before to write the C++ version.

4.1 E-ABC

We propose a set of experiments in order to check its sensitivity to the user

defined parameters. To highlight the metric learning ability we designed a

data set with multiple clusters grouped by different subspaces.

Most of the parameters (β, θ range, θfus) can be deduced from the data

set properties and what the user wishes to discover (minimum cluster size,

maximum cluster extension, ...). Our choice of getting rid of λ in E-ABC2

67
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Table 4.1: Schematic representation of the clusters’ structures
C1 G1 G2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
C2 G3 G4 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
C3 ∼ ∼ G5 G6 ∼ ∼ ∼ ∼ ∼ ∼
C4 ∼ ∼ G7 G8 ∼ ∼ ∼ ∼ ∼ ∼
C5 ∼ ∼ ∼ ∼ G9 G10 G11 ∼ ∼ ∼

stems from the following tests in E-ABC. These tests are not supposed to be

extensive stress tests investigating in details the algorithm capabilities, they

are instead preliminary tests we used to drive the development in direction

of E-ABC2 implementation as already mentioned in 3.4.3. The outcome of

these tests has been published in [77].

4.1.1 Data Set Description

Each test is run on the same data set. The data set contains 5 clusters, each of

which is composed by 1000 patterns. Each cluster is described by 10 features,

but only a few of them are useful to identify it. In particular two clusters

belong to S12 (figure 4.1), two others to S34 and the last one to S567, where

SX is the projection on the X subspace, and X is a subset of the features

indexes. The outline of the dataset is summarized in table 4.1 where Ci is

the ith cluster, Gj is a column vector of 1000 samples drawn from a Gaussian

distribution with standard deviation σ = 0.02. Mean values differ for each

cluster Ci and they are summarized in table 4.2. The ∼ symbol stands for

1000 samples drawn from a uniform distribution, so the corresponding feature

does not give any useful information to characterize the cluster at hand. The

last three columns do not contain any useful information, but only aim to

increase the metric learning task complexity.
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Figure 4.1: The plot shows the first two components of the entire data set,
where patterns of C1 and C2 are plotted in blue and red, respectively, while
yellow points are due to noise from clusters C3, C4 and C5. We want to stress
that only two groups of 1000 patterns each are concentrated in two different
space regions, whereas the remaining 3000 patterns are uniformly distributed
over the whole bidimensional subspace.

Table 4.2: Clusters’ centroids
cluster centroid
C1 (0.2; 0.2)
C2 (0.8; 0.8)
C3 (0.8; 0.2)
C4 (0.2; 0.8)
C5 (0.7; 0.7; 0.7)
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4.1.2 Evaluation Metrics

In order to address E-ABC ability in discovering clusters and, more impor-

tantly, in estimating their parameters, we propose three evaluation measures:

• Estimation Quality (EQ): whose task is to judge radius and centroid

estimation accuracy as

EQ = 1− [(1− ε) · δc + ε · δθ] (4.1)

where δc is the Euclidean distance between true and estimated cen-

troids, δθ is the absolute difference between true and estimated radii

and ε ∈ [0; 1] is a trade-off parameter (in our tests ε = 0.5). Obviously

EQ ∈ [0; 1] and as EQ→ 1, the more accurate the results.

• Identified Patterns (IP): which basically counts how many patterns

within the estimated cluster are indeed part of the ground-truth cluster.

Such value (NC) is then normalized by the size of the cluster itself

(|C|), in order to have IP ∈ [0; 1] and as IP → 1, the more accurate

the results:

IP =
NC

|C|
(4.2)

• Cluster Filling (CF): It is the number NC normalized with respect to

the cardinality of the corresponding ground-truth cluster (CGT ):

CF =
NC

|CGT |
(4.3)

This measure is meant to check which percentage of CGT patterns has
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been correctly discovered. As CF → 1, the more accurate the results.

Each cluster returned by the algorithm is taken into account only if its metric

matches with one of those in the ground-truth. Since multiple ground-truth

clusters share the same metric, the one for which the estimated cluster has

the highest EQ is selected, and IP and CF are only computed in relation

to it.

4.1.3 Tests Results

To test the algorithm sensitivity to λ we have run it for λ assuming different

values spanning from 0.1 to 1.0 with increment step equal to 0.1. The higher

is λ, the higher is the compactness relevance in (3.3) with respect to the

cardinality. Because it makes no sense to look for a cluster with high cardi-

nality without considering its compactness, we decided to exclude the case of

λ = 0.0. For the remaining parameters we have set NA = 100, |R|min = 35,

NSTOP
G = 10, M = 3, θ ∈ [0.01; 0.14], β ∈ [0.1; 0.9], θfus = 0.015.

In figure 4.2 we show the average performances over the 5 clusters in terms

of EQ, IP and CF . Due to the probabilistic nature of the algorithm the

evaluation metrics are in turn averaged over multiple runs. The test stopped

when the mean EQ value got steady (it does not change significantly for

10 consecutive iterations). In table 4.3 instead we present the details of a

single run chosen from λ = 0.5 for which the algorithm has good average

performances.

As λ changes, the EQ is pretty constant. This means that the position and

the radius of the ground-truth clusters have been estimated with a small
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Figure 4.2: EQ, IP and CF average plots for different λ values

Table 4.3: Comparison between ground-truth (CxGT ) and estimated (CxEst)
clusters properties

cluster centroid radius
C1GT (0.200; 0.201) 0.040
C2GT (0.800; 0.800) 0.038
C3GT (0.800; 0.200) 0.037
C4GT (0.200; 0.800) 0.043
C5GT (0.699; 0.699; 0.699) 0.024
C1Est (0.201; 0.203) 0.025
C2Est (0.801; 0.801) 0.028
C3Est (0.800; 0.199) 0.019
C4Est (0.199; 0.802) 0.021
C5Est (0.699; 0.699; 0.699) 0.023
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displacement for each considered weighting between compactness and car-

dinality. For high values of λ (λ ∈ [0.8; 1.0]) we have a quick deteriora-

tion of the performances in terms of both IP and CF. For low values of λ

(λ ∈ [0.1; 0.4]) instead the IP decreases and oscillates, whereas the CF in-

creases. This is imputable to the creation of huge clusters (small values of

λ promote clusters with high cardinality, by almost ignoring their compact-

ness) which may contain many patterns that do not indeed belong to the

corresponding ground-truth cluster. Both of the extremes show undesirable

behaviours. The results are indeed stably good for λ ∈ [0.4; 0.7]. It is worth

to finally note that EQ and IP are very high in absolute terms: the former

is never below 0.95 and the latter is below 0.90 only when the clusters are

searched by taking into account just their compactness. The only drawback

is the lack of clusters filling with respect to the ground-truth, despite it is

imputable to the nature of the algorithm which tries to discover the clusters

without exploring the entire dataset for the sake of time consumption.

4.2 E-ABC2

As we said in above §4.1, tests shown here should not be taken as definitive

results of final E-ABC2 implementation. They are rather experiments we

performed and published in [78] to check if the architecture could work and

which modifications it required to improve performance.

To estimate the algorithm performances we performed two different sets of

tests. In the former group we ran the algorithm on variations of the bench-

mark data set Iris with gradually increasing complexity, in the latter we
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tested the performances on a real data set containing faults data from the

Acea power grid in Rome.

4.2.1 Evaluation Metrics

Due to the balanced distribution of the patterns in the classes of the data set

we used in our tests, the accuracy would be sufficient to validate the classifier

performances. Anyway, to give a more complete picture of the results, we

also report recall, precision and F1-score. All of these measurements have

been computed with respect to the test set Sts. Let cmij be the number of

misclassifications in assigning the jth class label to a pattern associated with

the ith ground-true label. The accuracy Acc, the recall Reci, the precision

Preci, the specificity Speci and the F1-score F1i, related to the ith class as

the positive one, are respectively defined as:

Acc =

∑L
i=1 cmii

|Sts|
(4.4)

Reci =
cmii∑L
j=1 cmij

(4.5)

Preci =
cmii∑L
j=1 cmji

(4.6)

Speci =

∑L
j=1,j 6=i cmjj∑L

j=1,j 6=i cmjj +
∑L

j=1,j 6=i cmji

(4.7)

F1i = 2 · Reci · Preci
Reci + Preci

(4.8)
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4.2.2 Test On Iris Data Set

Data Set Description

As above mentioned, the first data set used in our test is based on the well-

known Iris data set. It has been slightly manipulated to be adapted to the

algorithm properties and to highlight its abilities to work on suitable random

samples drawn from the data set. The original Iris data set is composed of

3 classes each one containing 50 patterns and, consequently, we artificially

increased the data set cardinality up to 3000 patterns, 1000 for each class:

1. the entire data set has preliminarily been normalized in [0, 1] feature

by feature

2. for each original pattern pxo 19 new patterns are created. The ith

component pixn of each new pattern pxn is computed as

pixn = pixo + d (4.9)

where d ∈ [−0.05, 0.05] is a displacement randomly extracted with

uniform distribution

3. the obtained patterns are normalized again to ensure they lie in the

unitary hypercube.

The initial normalization is needed to avoid a data set deformation introduced

by patterns extraction. The resulting T0 data set is used to generate 10

additional data sets T1, ..., T10, where 1, ..., 10 is the number of additional

features appended to each pattern. The role of the additional features is to
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increase the complexity of the feature extraction task. They are randomly

drawn with a uniform distribution in [0; 1] so that the additional features

do not hold any informative content and they just act as noisy components

for the model synthesis procedure. Each data set is split, by means of a

stratified sampling, in training set Str, validation set Sv and test set Sts. Str

is used by the algorithm to look for the clusters, Sv is to check the ability

of the discovered clusters to act as a classifier and Sts is used to check the

performances of the final classifier when the model synthesis is over.

Tests Results

For each data set Ti the algorithm has been executed on 10 different splits

{Str|Sv|Sts}. The results presented in the following are computed as averages

of the performances gained in the 10 different runs. Figures 4.3, 4.4 and
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Figure 4.3: The accuracy obtained on the test set by the final synthesized
models for Iris data set.

4.5 respectively show the accuracy and the class by class F1-score obtained
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Figure 4.4: The class by class F1-score obtained on the test set by the final
synthesized models for Iris data set.
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Figure 4.5: Execution time: the mean time required by the algorithm to
converge to a model with stable performances (the lower is the better) for
Iris data set. Tests have been carried out on a notebook equipped with Intel
Core i7-840QM and 8GB RAM, running Ubuntu 16.04 LTS with Python 2.7.
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Table 4.4: Detailed results for Iris data sets. Performances are measured on
test sets.

Recall Precision F1-score
L1 L2 L3 L1 L2 L3 L1 L2 L3

T0 1.00 0.95 0.94 1.00 0.94 0.95 1.00 0.95 0.94
T1 1.00 0.94 0.94 1.00 0.94 0.94 1.00 0.94 0.94
T2 1.00 0.94 0.92 1.00 0.93 0.94 1.00 0.93 0.93
T3 1.00 0.93 0.91 0.99 0.92 0.94 0.99 0.93 0.93
T4 1.00 0.91 0.92 0.98 0.92 0.93 0.99 0.92 0.92
T5 1.00 0.91 0.91 0.98 0.92 0.93 0.99 0.91 0.92
T6 1.00 0.92 0.90 0.99 0.91 0.92 1.00 0.91 0.91
T7 1.00 0.92 0.86 0.97 0.89 0.93 0.98 0.90 0.89
T8 0.93 0.76 0.75 0.84 0.79 0.80 0.88 0.77 0.77
T9 0.93 0.79 0.81 0.90 0.82 0.82 0.91 0.80 0.81
T10 0.93 0.81 0.83 0.91 0.83 0.84 0.92 0.81 0.83

with respect to Sts, and the time required by the algorithm for the model

synthesis. The abscissa for all of these charts reports the number of non-

informative features added to the Iris data set. Figures 4.3 and 4.4 show

in terms of both accuracy and F1-score a slightly performance degradation

starting from 7 non-informative features. With 8 to 10 non-informative fea-

tures the performances drop down, whereas the accuracy and the average

F1-score over the three classes never goes below 80%. In table 4.4 we report

the detailed results in terms of class by class recall, precision and F1-score

for each test performed with the Iris data sets.

4.2.3 Test On Acea Data Set

Data Set Description

In this work, we study a real-world data set of smart grid functional states

collected by Acea personnel, containing information about faults in the power
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grid of Rome (Italy). Data have been gathered by smart sensors spread within

the power network and stored by various Information Systems. We refer to

a Localized Fault (LF) as the failure of the electrical insulation (e.g., cables

insulation) that compromises the correct functioning of the grid. Therefore,

a LF is actually a fault in which a physical element of the grid is permanently

damaged causing long outages. The considered real-world data set consists

in 2080 patterns describing the power grid states that are split into stan-

dard functioning states (SFSs) and LFs, that is, each pattern x is associated

with a label L(x) : L ∈ {LF, SFS}. The pattern distribution between the

two classes is quite balanced, so the rationale behind the choice of accuracy

as performance metric still holds. The specific pattern structure has been

designed together with Acea personnel and consists in 17 features. The fea-

tures pertaining the Acea data set are heavily structured and they belong to

different data types: categorical (nominal), quantitative (i.e., data belonging

to a normed space) and times series (TSs). The “material’ constituting the

electric equipment (Cu or Al for cables) and its “location’ (aerial or under-

ground for cables) are categorical variables. The main real-valued features

are i) the “PS-LF distance” that represents the distance between the Pri-

mary Station and the location of the LF that gives, in turn, a rough estimate

of the load at that location, ii) the number of Secondary Station (“#SS”)

between the fault location and the Primary Station, iii) the minimum, maxi-

mum and variation of environmental temperature, the average millimeters of

rain in the 2 hours time interval preceding the fault, iv) a feature estimating

the increasing/decreasing change of the Backbone Electric Current (“BEC”)

extracted from the electric current measured on the faulty MV feeder. An-
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other important measure defined as an integer feature is the Current Out of

Bound (“Current OFB”), defined as the maximum operating current of the

backbone that is less than or equal to 60% of the threshold “out of bounds”,

typically established at 90% of capacity. Other features are related to tem-

poral information, as the number of days from the beginning of the year and

the number of minutes from the beginning of the day related to when the

LF fault occurred, while other concern spatial information, as the geographic

coordinates of the fault. Unevenly spaced TSs describe the sequence of short

outages that are automatically captured by the protection systems (Petersen

alarm system) as soon as they occur. Specifically, we have three type of

micro-interruptions: “Int Breaker” related to the intervention of the primary

breaker, “Saving Intervention” related to the decisive interventions of Pe-

tersen’s coil which have prevented the LF and, finally, “Petersen Alarms”

that concerns alarms detected by the device called Petersen’s coil due to loss

of electrical insulation on the power line. The last three events series has

been found correlated with a LF. The data set was validated by cleaning it

from human errors and by completing in an appropriate way missing data,

as explained in [80, 81], where it can be found even a detailed description

of the features and the related data set construction. The complexity of the

Acea data set measured by a suitable methodology is provided in [82].

The Custom-Based Dissimilarity Measure

In Pattern Recognition, objects pertaining many real-world problems may

have a complex representation. This representation is based on a set of mea-

surements arranged as a list (collection) of heterogeneous data types, i.e.
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a structured pattern consisting of features having different semantic and,

thus, syntactic nature. In other words, instead of dealing with a vectorial

feature space endowed with standard algebraic structures such as the Eu-

clidean distance, a non-metric starting space can be still treated defining a

custom-based dissimilarity measure that generalizes the Minkowsky family’s

distances. This class of dissimilarities can be constructed component-wise

by defining a suitable dissimilarity measure depending on the nature of the

considered feature within the feature set describing the structured object at

hand. It is the case of the Acea data set in which the starting feature space

is structured by definition.

Therefore, given two structured patterns x, y representing two different power

grid states, the dissimilarity measure is in general computed as

d(x1, x2; ~W ) =

√
(x1 	 x2)T ~W (x1 	 x2), (4.10)

where T denotes the transpose operator, the weight vector ~w = diag( ~W ) ∈

{0, 1}, in this work, is binary, hence his functionality in E-ABC2 algorithm

consists in selecting relevant features, carrying out a (local) feature selection

procedure, while the 	 operator represents a generic dissimilarity measure

defined depending on the nature of the feature at hand. Specifically, the

proposed weighted custom dissimilarity measure adopts the following sub-

dissimilarities for each feature type. For quantitative data it is necessary to

take care of the semantic difference between integer values describing tem-

poral information and real-valued data related to other information like the

physical power grid status or weather conditions. For temporal information
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(integers) the circular difference is used, while real-valued data, correctly nor-

malized, can be treated with the standard arithmetic difference. Categorical

data in our SGS data set are of nominal type, thus they do not have an

intrinsic metric structure and the well-known simple matching dissimilarity

is adopted. The dissimilarity measure among the unevenly spaced TSs (se-

quences) data is performed by means of the Dynamic Time Warping (DTW)

algorithm.

Tests Results

In the following section we present the main results obtained over the data

set Acea evaluating the capability of E-ABC of recognizing fault states from

standard functioning states. Ten runs of the algorithm have been performed

and results are collected in Table 4.5. The model is learned on the Training

Set Str, validated on the Validation Set Sv and, finally, tested on the Test Set

Sts. From Table 4.5 it is clear that E-ABC is able to learn a suitable classifi-

cation model, recognizing LFs from standard functioning states. Looking at

the average F1-score and the Accuracy, classification performances are satis-

fying, although some runs show a lower recall.

The max and average values of the fitness as a function of the generation

number are depicted in Figure 4.6 for the run T7. For the average fitness,

despite some oscillations, it realizes its process of slow growth. In Figure

4.7 the trend of the Accuracy as a function of the generation number is re-

ported for the same run. After a first stage, following a behavior similar to

that of the fitness, it rises slowly, falling down to several local optima and

then resuming the trend reaching the final accuracy value. In addition to
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Table 4.5: Detailed results for Acea data set. Performances are measured on
test sets.

Recall Precision Accuracy Specificity F1-score
T1 0.79 0.991 0.906 0.995 0.879
T2 0.707 0.907 0.842 0.945 0.795
T3 0.81 1.00 0.918 1.00 0.895
T4 0.745 1.00 0.89 1.00 0.854
T5 0.962 1.00 0.984 1.00 0.981
T6 0.79 1.00 0.909 1.00 0.882
T7 0.893 0.996 0.952 0.997 0.942
T8 0.855 0.996 0.936 0.997 0.92
T9 0.945 1.00 0.97 0.99 0.965
T10 0.945 0.81 0.976 1.00 0.972
Mean 0.844 0.988 0.928 0.992 0.909
Variance 0.008 0.001 0.002 0.00 0.003

Figure 4.6: Maximum and avarage fitness related to run T7.
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Figure 4.7: Accuracy as a function of the generation number on the validation
set, related to run T7.

the classification results, it is useful to provide the user with the most repre-

sentative subspaces, namely the sets of features, which allow the separation

of the two classes. Considering the faults class, we want to individuate the

most frequent features, that are selected at least 20 times in the final model,

over multiple simulations with a value of accuracy higher than 91%, in rec-

ognizing grid malfunction states. Figure 4.8 shows the occurrences of the

chosen features by E-ABC. In other words, the bar plot represents the main

subspaces in which E-ABC found meaningful clusters, whose overall num-

ber is represented by bars height. For example, in the first case, given the

selected metrics we deduce that faults in this subspace are due mainly to

meteorological phenomenons (presence of rain and abnormal temperatures,

for instance). This fact may be related to equipment ageing that are more

subject to sudden changes in atmospheric temperature. Moreover, in the sec-

ond case, the related clusters characterize a sub-class of failures mainly due
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Figure 4.8: The occurrences of key metrics mostly chosen by E-ABC.
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to to the sudden changes of electric current (”BEC”) on aged components,

as suggested by the presence of micro-interruptions related features. This is

also confirmed by the hands-on experience gained over time by Acea experts.

All in all, preliminary tests with E-ABC2 showed satisfactory classifica-

tion capabilities both on the Iris data set and the Acea data set. However,

a major drawback of E-ABC2, at least in its current form, is the very poor

exploration capability: the last generation used to return few subspaces with

respect to our expectations. The elite pool somehow contributed towards

better exploration, yet further improvements have been done and will be

addressed in chapter 5.



Chapter 5

Experimental Results

In this chapter we are going to analyze extensive tests performed with C++

version of E-ABC2 described in appendix A to have statistically valid results.

These tests are grouped in three subsets: the first one was performed with the

vanilla E-ABC2 highlighting some weaknesses as it was originally designed

and requiring an additional software development cycle design–implement–

check; second and third group verify the effectiveness of changes proposed to

face these weaknesses. We considered it was appropriate to show intermediate

results because it is interesting the observed behavior related to the flaw

causing it.

5.1 Data Set Description

For this tests we used two data sets: the modified Iris described in 4.2.2

and an additional synthetic data set conceived to stress E-ABC2 local metric

learning capability. Synthetic data set scheme is summarized in table 5.1. It

87
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Table 5.1: Schematic representation of the clusters’ structures for synthetic
data set

1 2 3 4 5 6 7 8 9 10 11 12 13 14-20
C1 X X X ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
C2 ∼ ∼ ∼ X X ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
C3 ∼ ∼ ∼ ∼ ∼ O O O ∼ ∼ O O O ∼
C4 O O ∼ ∼ ∼ ∼ ∼ ∼ O O ∼ ∼ ∼ ∼
C5 ∼ ∼ O O ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
C6 ∼ ∼ ∼ ∼ ∼ X X X ∼ ∼ ∼ ∼ ∼ ∼
C7 ∼ ∼ ∼ ∼ O O O O O ∼ ∼ ∼ ∼ ∼
C8 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ X X X X X ∼

is composed of 8 clusters relying in different subspaces, each one assigned to

one out of two classes as it is shown in table 5.1 by “X” and “O” symbols.

All patterns are in unitary hypercube and they are uniformly distribute in an

hypersphere with fixed radius. The hypersphere is visible in features where

is “X” or “O”. Features marked with ∼ are not informative for that cluster:

patterns in that cluster have [0, 1] uniformly drawn values for that feature.

Features 14-20, collapsed in a single column, are not informative for any

cluster. Each cluster contains 3000 patterns. Exactly 4 clusters are assigned

to “X” (in the following referred as class 1) and 4 assigned to “O” (referred

as class 2) so as to have perfectly balanced classes. The whole data set is

composed of 24000 patterns.

For both data sets, Iris and Synthetic, we have built in advance 100 splits

in training, validation and test set (respectively Str, Svl and Sts) so as to

be able to run one test for different data setups and different tests with the

same input data to compare their performance.
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5.2 Evaluation Metrics

To evaluate E-ABC2 we built the multi-class confusion matrix over Sts. Be-

cause in some situations our algorithm may return unclassified for some

patterns we have slightly modified the confusion matrix structure to include

this information. Consider the example in figure 5.1. Suppose our data set
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Figure 5.1: An example of confusion matrix summarizing multiple tests.
Each cell contains mean value (above) and standard deviation (below) for
the same cell in different tests.

contains three classes: row index is the expected class and column index is

the predicted class. The first column (labeled 0) tells us how many patterns

the system was not able to classify (returning unclassified). The first row

will be always empty because each pattern in data set is supposed to have
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a ground truth class assigned. There are several parameters which can be

derived from the confusion matrix, each one highlighting a specific aspect of

the classifier performance, but we chose to show the confusion matrix itself

because we found it better readable at glance. Because the aim of these

experiments was to be an extensive test, we have many confusion matrices.

Most of experiments include 10 runs over 100 data set splits in training,

validation and test set. We could not show 1000 confusion matrices, so we

had to summarize them with a single plot. We considered it appropriate to

compute cell by cell mean value and standard deviation and show them with

two lines in the same cell as shown in figure 5.1. Where it seemed useful we

also showed the accuracy. In these specific tests it is informative because the

date sets are perfectly balanced and it has the advantage (with respect to

precision, recall, specificity and F1-score) of being a global value instead of

requesting to be computed class by class.

5.3 Vanilla E-ABC2

The first test we performed was the comparison of E-ABC2 with its evolu-

tionary procedure enabled against E-ABC2 running a random walk: at each

generation all agents are randomly drawn. All of the tests in this section 5.3

have been performed with 10 runs for each of 100 splits. This test was con-

ceived to check the effectiveness of E-ABC2 evolutionary procedure. Despite

the difference is not so clear in figure 5.3 that compares the performance on

Iris in terms of accuracy distribution, it becomes evident in figure 5.6 com-

paring the same kind of plot obtained for Synthetic. Despite these results
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Figure 5.2: Average confusion matrix for vanilla E-ABC2 on Iris data set
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Figure 5.3: Accuracy distribution comparison on Iris data set
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Figure 5.4: Model size distribution for vanilla E-ABC2 on Iris data set
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Synthetic
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Figure 5.5: Average confusion matrix for vanilla E-ABC2 on Synthetic data
set
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Figure 5.6: Accuracy distribution comparison on Synthetic data set
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Figure 5.7: Model size distribution for vanilla E-ABC2 on Synthetic data set
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Table 5.2: Tests highlight the impossibility for this evolutionary scheme of
finding different subspaces at the same time. At most it manages to find a
compromise fitting multiple clusters but not all of them.

C1 C2 C3 C4 C5 C6 C7 C8

0 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1 1,00 0,04 0,05 0,19 0,04 0,05 0,07 0,05
2 1,00 0,05 0,57 1,00 0,58 0,06 0,56 0,06
3 1,00 0,43 0,54 1,00 0,57 0,42 0,54 0,42
4 1,00 0,43 0,55 1,00 0,57 0,42 0,54 0,44
5 1,00 0,42 0,56 1,00 0,59 0,40 0,55 0,40
6 1,00 0,41 0,56 1,00 0,61 0,40 0,56 0,41
7 1,00 0,41 0,56 1,00 0,62 0,40 0,57 0,41
8 1,00 0,41 0,57 1,00 0,63 0,39 0,57 0,40
9 1,00 0,40 0,57 1,00 0,66 0,39 0,58 0,39
10 1,00 0,41 0,57 1,00 0,66 0,39 0,58 0,39
11 1,00 0,40 0,58 1,00 0,66 0,38 0,58 0,39
12 1,00 0,41 0,58 1,00 0,67 0,39 0,58 0,39
13 1,00 0,41 0,58 1,00 0,67 0,38 0,58 0,39

are acceptable for a classification algorithm in development, they immedi-

ately highlight two aspects of E-ABC2 to be improved: model sizes, whose

distributions are shown in figure 5.4 and 5.7, are too large and the accuracy

degrades when real local metric learning is required. For this second defect,

additional investigation revealed that the elite pool mechanism was not work-

ing as it was expected: when a good subspace is found it starts spreading

and saturates the elite pool, preventing exploration of new potentially useful

subspaces. It is also confirmed in table 5.2 showing generation by generation

global model accuracy evaluated for each of Synthetic 8 clusters. We have

associated the problem of model size to some behaviors of the evolutionary

procedure and model building. First of all when a cluster enters the model

there is no mechanism to remove it, neither if it could be substituted by a

better one including its classification capabilities. Secondly there is no check
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to verify if a given cluster has already been added to the model. In this way,

when a good agent is found and its cluster is added to the model, it is likely

a new agent derived from this in the same generation will find a similar clus-

ter, and multiple copies of the same clusters are added to the classification

model.

5.4 Fitness Sharing

We have found this kind of problem where multiple optima have to be found

at the same time by an evolutionary algorithm is known in literature as

Evolutionary Multimodal Optimization [83] [84]. We removed the elite pool

and introduced a Fitness Sharing based approach [85] [86]: after each agent

fitness has been evaluated an additional step occurs to modify it. As if they

where sharing a limited resource, close agents (in terms of search subspace)

are penalized. The more agents share the same subspace, the more their

fitness value is reduced. In this way agents are encouraged to explore new

subspaces that no other agents are investigating. As it was expected

Iris is not affected by this change as it is shown by its confusion matrix

5.8 and plot 5.9 (all useful Iris features are in the same subspace), whereas

the improvement is evident for Synthetic in its confusion matrix 5.11 and

accuracy distribution plot compared to the previous implementation in figure

5.12. An additional unexpected but welcome side effect is the model size

reduction observable in figures 5.10 and 5.13 if compared to figures 5.4 and

5.7. This is likely attributable to an higher efficiency in the evolutionary

process. Also detailed final accuracies in table 5.3 confirm the better subspace
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Figure 5.8: Average confusion matrix for multimodal E-ABC2 on Iris data
set
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Figure 5.9: Accuracy distribution comparison on Iris data set
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Figure 5.10: Model size distribution for multimodal E-ABC2 on Iris data set
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Figure 5.11: Average confusion matrix for multimodal E-ABC2 on Synthetic
data set
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Figure 5.12: Accuracy distribution comparison on Synthetic data set
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Figure 5.13: Model size distribution for multimodal E-ABC2 on Synthetic
data set
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Table 5.3: Multimodal implementation shows an highly better capability
for multiple subspaces detection. Despite not all of clusters are perfectly
classified, for all of them the accuracy is more than acceptable.

C1 C1 C1 C1 C1 C1 C1 C1

0 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
4 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
5 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00
6 0,03 0,00 0,00 0,00 0,00 0,00 0,00 0,00
7 0,06 0,02 0,00 0,00 0,00 0,12 0,00 0,02
8 0,06 0,02 0,00 0,00 0,00 0,12 0,00 0,02
9 0,06 0,02 0,00 0,00 0,00 0,12 0,00 0,02
10 0,06 0,02 0,00 0,00 0,00 0,12 0,00 0,02
...
74 0,89 0,83 1,00 0,71 0,68 0,66 0,95 1,00
75 0,89 0,86 1,00 0,71 0,68 0,67 0,95 1,00
76 0,89 0,86 1,00 0,71 0,68 0,67 0,95 1,00
77 0,89 0,86 1,00 0,71 0,68 0,67 0,95 1,00
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detection if compared to table 5.2.

5.5 Model Pruning

Despite its simple formulation model size reduction is a task not to be un-

derestimated. Given a classification model containing n clusters the compu-

tational cost to find the optimal subset to be used in the final classification

model requires 2n non-trivial tests: each of n clusters can be used or unused

and for each configuration the whole validation set must be classified. The

exhaustive search is then unfeasible. We have started performing some exper-

iments with some heuristics but the development is still far away from being

satisfactory: all of them are still too time consuming. In particular we tested

a greedy approach and a genetic algorithm based one but we could complete

an extensive test only with the first one and only with the smaller Iris data

set. The greedy approach starts with an empty model and iteratively tries

to add all the remaining clusters, one by one, to the current model. At each

iteration it chooses the cluster causing the highest accuracy increment. It

stops when no accuracy increment is possible. We underline once again how

this still require much development and this is not to be supposed being

an extensive test, but we want to show an example because the results are

extremely promising. Classification model sizes shown in figure 5.16 are

extremely lower, without performance degradation that instead is slightly

better (figures 5.14 and 5.15). This confirms the model can be pruned and

at the same time improved by discarding the worst clusters collected in the

classification model.
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Figure 5.14: Average confusion matrix for E-ABC2 with greedy model prun-
ing on Iris data set
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Figure 5.15: Accuracy distribution comparison on Iris data set
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Figure 5.16: Model size distribution for E-ABC2 with greedy model pruning
on Iris data set
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We are actively working to develop a distributed software to face this task

taking advantage of the gossip protocol for computation of aggregate infor-

mation as it is proposed in [87].

5.6 Multimodal E-ABC2 Scalability

Due to results shown in §5.4, multimodal version has been taken as the

reference for E-ABC2 algorithm. It has been optimized as described in §3.4.4

and the performance in terms of time consumption has been analyzed. In

order to address the scalability of the parallel E-ABC2 implementation, the

well-known speedup index has been considered [11, 54, 71, 72]. Speedup

measures the ability of the parallel and distributed algorithm to reduce the

running time as more workers are considered. The data set size is kept

constant and the number of workers increases from 1 to m. Hence, the

speedup with m computational units reads as

speedup(m) =
running time on 1 worker

running time on m workers
(5.1)

Tests have been performed with two different hardware configurations: a

workstation equipped with two 6-cores Intel R© Xeon R© E5-2620v3 CPUs

@2.40GHz, 64GB of RAM, running Linux Ubuntu 18.04 and a consumer level

desktop computer equipped with a 6-cores Intel R© CoreTM i7-8700K CPU

@3.70GHz, 32GB of RAM, running Linux Mint 19 (Ubuntu 18.04 deriva-

tive). Because E-ABC2 is a probabilistic algorithm, we fixed the seed of

pseudo-random function to compare the results of different hardware setups
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and pool thread sizes with exactly the same task. Figures 5.17 and 5.18 re-

spectively show the speedup with Xeon R© E5-2620v3 and CoreTM i7-8700K

CPUs for different sizes of data chunk provided to each agent for cluster-

ing. In both cases the maximum thread pool size is bounded to the number

of available physical cores for the hardware setup (12 for dual Xeon R© E5-

2620v3 and 6 for CoreTM i7-8700K). The desired speedup behavior, expected

1 2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

9

10

11

12
Intel Xeon E5-2620

data chunk 400
data chunk 1600
data chunk 6400

Figure 5.17: Speedup with dual Intel Xeon E5-2620 processor

if the task is fully parallelizable, is perfectly linear with derivative equal to 1

(dashed line). Indeed, with this premise, an m-times larger computing power

will take m times less time to process a given data set. Because a real imple-

mentation always introduce inefficiencies with respect to the ideal behavior

and E-ABC2 is only partially parallelized, we expect real speedup plots below
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Figure 5.18: Speedup with Intel Core i7-8700K processor
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the ideal line. For this test we generated an 800000-patterns data set with

the same structure of Synthetic data set described in §5.1 (100000 patterns

each cluster). As it was expected plots curvature reduces as data chunk size

increases. It is because data chunk size increment reduces the relative weight

of constant (not affected by parallelization) time consumption components

whose contribution becomes negligible. In Xeon R© E5-2620v3 chart the plot

for data chunk containing 6400 patterns is unexpectedly below the plot with

data chunk size equal to 1600. It is unexpected because, with the growing of

data chunk size, the contribution in time consumption of parallelizable steps

should increase, and with it also the benefit of taking advantage of a larger

thread pool. It could be addressable to different situations in evolutionary

procedure for different data chunk sizes, but this uneven behavior is not

shown by CoreTM i7-8700K chart (we remind we fixed the pseudo-random

function seed so that, given a data chunk size, steps needed by the algorithm

to converge to a solution are deterministic). This difference, jointly with

the smaller CoreTM i7-8700K plots curvature, highlights that the speedup

not only depends on the algorithm design and implementation, but is also

deeply affected by the hardware configuration running it.
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Chapter 6

Conclusions

In this thesis we proposed an agent-based clustering algorithm orchestrated

by a genetic algorithm in order to perform feature selection during clustering

(E-ABC) and classification (E-ABC2). Both E-ABC and E-ABC2 rely on a

swarm of many independent agents, each of which exploits a random data

set subsample, with the final goal of extracting well-formed clusters lying in

suitable subspaces. Agents therefore behave as the main actors in the local

metric learning task.

Specifically, we start our development with E-ABC, an algorithm for un-

supervised learning in which the final output can be briefly summarized as

the set of clusters, along with the subspaces in which they lie. A second

algorithm, E-ABC2, aims at building a decision clusters-based classifier on

the top of the discovered clusters. Hence, it can safely be used for supervised

learning. The agents in both E-ABC and E-ABC2 are driven by a genetic

algorithm with the goal of guiding the agents themselves, following an evo-

lutionary metaheuristic fashion, towards suitable solutions. For E-ABC, the

115
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objective is to find well-formed clusters; whereas for E-ABC2, the objective

mainly takes into account the classifier performances.

Preliminary results both on real world data provided by Acea and on

synthetic data showed encouraging results and paved the way for further im-

provements, including a multimodal version of the genetic optimization in

order to foster exploration towards different subspaces. Further computa-

tional results addressed these improvements.

This first implementations of E-ABC and E-ABC2 allow for further im-

provements and future research. First, E-ABC and E-ABC2 can be consid-

ered as “stubs”, in the sense that the philosophy behind the algorithm stays

the same, but the building blocks as such can easily be customized according

to the data analyst needs. Indeed, any (possibly multimodal) evolutionary

mehauristic can be placed instead of a genetic algorithm and any clustering

algorithm can be placed instead of the RL-BSAS.

Further, a straightforward improvement is based on a parallel and dis-

tributed implementation of E-ABC and E-ABC2 by exploiting multi-core and

many-core architectures or, by considering the small computational burden,

by leveraging on low-cost architectures such as Raspberry Pi, Arduino and

Parallella boards. Tests on E-ABC2 with parallel clustering execution and

agents performance evaluation show it may benefit of multi-core hardware.

Additional tests are needed to quantify the extent of this benefit, to de-

termine how to reduce the bottleneck due to genetic algorithm orchestration

(possibly by making it distributed and asynchronous) and other single-thread

steps and to better investigate how the speedup of parallel implementations

is affected by specific multi-core and multi-machine hardware configuration.
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We are also planning additional development of parallel and asynchronous

paradigms to make model pruning feasible and to reduce model size and

make it always up to date with respect to the analyzed data set during the

evolutionary procedure. This approach would also make E-ABC2 usable with

infinite data streams where a continuous model adaptation is required to fit

time dependent data changes.

Another interesting aspect is the extension of E-ABC towards structured

data such as graphs and sequences: thanks to the source code modularity,

level of abstraction and utilization of polymorphism, this extension can also

be considered straightforward.

All in all, the encouraging performances of E-ABC and E-ABC2 allows

them to be considered as a prospective building block for complex decision

support systems suitable to be used in a plethora of industrial applications.
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Appendix A

Software Design

For the software implementation of our algorithm we looked mainly at two

alternatives: Python and C++. Python main strength is growing interest for

this language in Machine Learning community due to popular handy ded-

icated libraries such as SciPy, Keras and TensorFlow. On the other hand

C++ is dramatically faster, being a compiled language, whereas the same

is not true for Python, which is interpreted. It is a common approach in

optimized Python libraries to make use of C++ source for time consuming

procedures [88, 89, 90]. Nevertheless, C++ allows more effective memory

management, which is a useful feature for software supposed to deal with

lots of data. A first Python implementation has to be be imputed to faster

prototyping and easier syntax, with a subsequent porting in C++ for effi-

ciency.

The C++ version of E-ABC2 makes an extensive use of adapter inspired

design pattern [91] and polymorphism. In the following we show some short

code snippets to support the description of these principles usage in our soft-
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ware. For complete declarations of concerned classes we refer to appendix B.

E-ABC2 has been conceived to be used for different kinds of patterns with-

out the need of modifying or rebuilding it. It is decided at runtime which

is the data type E-ABC2 is going to deal with. Because different data types

require different procedures to compute pattern-to-pattern dissimilarity, E-

ABC2 must be taught about how to compute it. For this purpose we use a

kind of adapter: E-ABC2 constructor receives a pointer to a Metric object

encapsulated in other adapters. In our design we decided to leave open the

road to other implementations using a different core clustering algorithm in-

stead of RL-BSAS, so we also included a pointer to a Clustering Algorithm

functor [91] telling E-ABC2 how to cluster patterns. An analogous discussion

can be done for Evolver in charge of defining genetic operators to build a

new population given the current one sorted by fitness.

1 HyperpointD d_14D;

2 d_14D.load("TestData/iris_14D.json.bz2");

3 vector <float > weights14 (14, 1);

4 HyperpointM* metricModel = new HyperpointM(weights14);

5 HyperpointC* clusterModel = new HyperpointC(metricModel)

;

6 RlBsas_config* clustalgConf = new RlBsas_config (0.3f, 3,

metricModel , clusterModel , 0.125f);

7 RlBsas* clustalg = new RlBsas(clustalgConf);

8 EabcAgent* agentModel = new EabcAgent(clustalg , d_14D.

create ());

9 HyperpointME* metricEvolver = new HyperpointME(

static_cast <uint32_t >( weights14.size()));

10 RlBsasE* algconfEvolver = new RlBsasE ();

11 EabcAgentE* agentEvolver = new EabcAgentE(metricEvolver ,

algconfEvolver , 100);

12 Eabc eabc(agentModel , agentEvolver , &d_14D);

13 eabc.train();
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14

15 DecisionClusters* eabcOutModel = dynamic_cast <

DecisionClusters *>(eabc.getClassifier ());

16 eabcOutModel ->store("TestData/iris_14D_model.json.bz2");

1 HyperpointD d_20D;

2 d_20D.load("TestData/synthetic_20D.json.bz2");

3 vector <float > weights20 (20, 1);

4 HyperpointM* metricModel = new HyperpointM(weights20);

5 HyperpointC* clusterModel = new HyperpointC(metricModel)

;

6 RlBsas_config* clustalgConf = new RlBsas_config (0.3f, 3,

metricModel , clusterModel , 0.125f);

7 RlBsas* clustalg = new RlBsas(clustalgConf);

8 EabcAgent* agentModel = new EabcAgent(clustalg , d_20D.

create ());

9 HyperpointME* metricEvolver = new HyperpointME(

static_cast <uint32_t >( weights20.size()));

10 RlBsasE* algconfEvolver = new RlBsasE ();

11 EabcAgentE* agentEvolver = new EabcAgentE(metricEvolver ,

algconfEvolver , 100);

12 Eabc eabc(agentModel , agentEvolver , &d_20D);

13 eabc.train();

14

15 DecisionClusters* eabcOutModel = dynamic_cast <

DecisionClusters *>(eabc.getClassifier ());

16 eabcOutModel ->store("TestData/synthetic_20D_model.json.

bz2");

Two examples above show how our software can be used to load a data set

and how to use it to synthesize a classification model. The first step is to

create an HyperpointD object, that is a Dataset class specialization, and use

it to load the data set. Then we create instances of HyperpointM, Hyper-

pointC and RlBsas which are respectively extensions of Metric, Cluster and

Clusterizer. HyperpointM defines dissimilarity measure specialized for Hy-

perpoint patterns and here is used to tell HyperpointC cluster template how
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to compute pattern-by-pattern distances. HyperpointC in turn defines the

cluster structure and, in particular, how to build its representative. RlBsas

is a functor for RL-BSAS algorithm execution. Once we have these objects

we can instantiate EabcAgent to build the agent template which will be used

in Eabc to build all the population individuals. The last step, before creat-

ing the Eabc instance, is the creation of Evolvers. HyperpointME contains

the genetic operators for the Metric evolution affecting the search subspace,

RlBsasE has the analogous role for RL-BSAS configuration and EabcAgentE

joins them together to be able to evolve an EabcAgents population. At this

point Eabc is created and is ready to run the training procedure for the given

data set. When training is over, these examples also retrieve the synthesized

model and store it to a convenient human readable json format serialization,

compressed with bzip2 algorithm. As these examples show this software

can quickly be adapted to different data sets. In this specific use case the

difference is in patterns length, despite they have the same nature. Notice

weights14 and weights20 lengths are respectively 14 and 20 and they are

used to initialize HyperpointM. Anyway, with similarly simple changes, this

source code could also be adapted for different data types manipulation.
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Classes Declarations

B.1 E-ABC2

Main Class

1 #ifndef EABC_H

2 #define EABC_H

3

4 #include "liboci_global.h"

5

6 #include "classifiertrainer.h"

7 #include "classification/models/decisionclusters.h"

8 #include "eabc/eabcagent.h"

9 #include "eabc/eabcagente.h"

10

11

12 class LIBOCISHARED_EXPORT Eabc : public

ClassifierTrainer{

13 public:

14 Eabc(EabcAgent* agentModel , EabcAgentE* evolver ,

Dataset* dataset , uint32_t verbosity = 0);

15 Eabc(EabcAgent* agentModel , EabcAgentE* evolver ,

Dataset* trainingSet , Dataset* validationSet ,

Dataset* testSet , uint32_t verbosity = 0);
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16 ~Eabc();

17 int32_t train();

18 json getHistory () const;

19 int32_t saveHistoryJson(std:: string filename , bool

compress = true) const;

20

21 private:

22 std:: default_random_engine generator;

23 std:: uniform_int_distribution <uint32_t >

uniformIntDistribution;

24 std::vector <GeneticCode*> evaluatePopulation ();

25 std::vector <GeneticCode*> evolvePopulation(std::vector

<GeneticCode*> agentsGCs);

26 void findCoCaBounds ();

27 float normalizeCompactness(float compactness);

28 float normalizeCardinality(uint32_t cardinality);

29 EabcAgent* agentModel;

30 EabcAgentE* evolver;

31 std::vector <EabcAgent*> agents;

32 DecisionClusters* model;

33 float minCompactness;

34 float maxCompactness;

35 uint32_t minCardinality;

36 uint32_t maxCardinality;

37 std::vector <bool > rightClassifications;

38 uint32_t _verbosity;

39 std::vector <GeneticCode*> elitePool;

40 json _history;

41 static const uint32_t maxNumGens;

42 static const float minGlobalAccuracy;

43 static const float minFitnessIncr;

44 static const uint32_t maxNumSteadyGens;

45 static const uint32_t subsampleSize;

46 static const float tradeoffCoCa;

47 static const uint32_t numEliteInjection;

48 static const uint32_t maxNumElitePool;

49 static const std:: string EXTENSION_CSV;

50 };

51

52 #endif // EABC_H
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Agent

1 #ifndef EABCAGENT_H

2 #define EABCAGENT_H

3

4 #include "evolvable.h"

5

6 #include "eabcagentgc.h"

7 #include "clusterizer.h"

8

9

10 class EabcAgent : public Evolvable{

11 public:

12 EabcAgent(Clusterizer* clustalg , Dataset* datasetModel

);

13 EabcAgent(const EabcAgent& src);

14 EabcAgent* clone() const;

15 ~EabcAgent ();

16 GeneticCode* getGeneticCode ();

17 uint32_t setGeneticCode(const GeneticCode* gc);

18 std::vector <Cluster*> getClusters () const;

19 int32_t run(Dataset* datasample);

20

21 private:

22 Clusterizer* clustalg;

23 Dataset* datasetModel;

24 static const uint32_t initSampleSize;

25 };

26

27 #endif // EABCAGENT_H

Agent Evolver

1 #ifndef EABCAGENTE_H

2 #define EABCAGENTE_H

3

4 #include "evolver.h"

5

6 #include <random >

7

8
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9 class EabcAgentE : public Evolver{

10 public:

11 EabcAgentE(Evolver* metricEvolver , Evolver*

algconfEvolver , uint32_t populationSize);

12 EabcAgentE(const EabcAgentE& src);

13 EabcAgentE* clone() const;

14 std::vector <GeneticCode*> evolve(std::vector <

GeneticCode*> currGCs);

15 GeneticCode* select(std::vector <GeneticCode*> currGCs ,

uint32_t numCompetitors);

16 GeneticCode* mutate(GeneticCode* currGC);

17 std::pair <GeneticCode*, GeneticCode*> crossover(

GeneticCode* mother , GeneticCode* father);

18 std::vector <GeneticCode*> randomize(uint32_t numRanded

);

19 uint32_t getPopulationSize () const;

20

21 private:

22 std:: default_random_engine generator;

23 std:: uniform_real_distribution <float >

uniformRealDistribution;

24 std:: uniform_int_distribution <uint32_t >

uniformIntDistribution;

25 Evolver* metricEvolver;

26 Evolver* algconfEvolver;

27 uint32_t populationSize;

28 static const float mutationRate;

29 static const float crossoverRate;

30 static const uint32_t percentTournament;

31 static const uint32_t percentElitism;

32 static const uint32_t percentMutatation;

33 static const uint32_t percentCrossover;

34 static const uint32_t percentRandom;

35 static const uint32_t sumContributions;

36 };

37

38 #endif // EABCAGENTE_H
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B.2 Hyperpoint

Metric

1 #ifndef HYPERPOINTM_H

2 #define HYPERPOINTM_H

3

4 #include "liboci_global.h"

5

6 #include "metric.h"

7

8 class LIBOCISHARED_EXPORT HyperpointM : public Metric{

9 public:

10 HyperpointM(std::vector <float > weights);

11 HyperpointM* clone() const;

12 bool operator ==( const Metric& rhs);

13 virtual GeneticCode* getGeneticCode ();

14 virtual uint32_t setGeneticCode(const GeneticCode* gc)

;

15 virtual float distance(const Pattern& p1 , const

Pattern& p2) const;

16 virtual float distance(const Pattern& p, const

Representative& r) const;

17 virtual float distance(const Representative& r1 , const

Representative& r2) const;

18 json toJson ();

19 int32_t fromJson(const json& jmetric);

20

21 private:

22 float distance(const std::vector <float >& c1 , const std

::vector <float >& c2) const;

23 };

24

25 #endif // HYPERPOINTM_H

Metric Evolver

1 #ifndef HYPERPOINTME_H

2 #define HYPERPOINTME_H

3
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4 #include "liboci_global.h"

5

6 #include "evolver.h"

7 #include <random >

8

9

10 class LIBOCISHARED_EXPORT HyperpointME : public Evolver{

11 public:

12 HyperpointME(uint32_t numFeatures , bool binaryWeights

= true , uint32_t populationSize = 0);

13 HyperpointME(const HyperpointME& src);

14 HyperpointME* clone() const;

15 std::vector <GeneticCode*> evolve(std::vector <

GeneticCode*> currGCs);

16 GeneticCode* select(std::vector <GeneticCode*> currGCs ,

uint32_t numCompetitors);

17 GeneticCode* mutate(GeneticCode* currGC);

18 std::pair <GeneticCode*, GeneticCode*> crossover(

GeneticCode* mother , GeneticCode* father);

19 std::vector <GeneticCode*> randomize(uint32_t numRanded

);

20 uint32_t getPopulationSize () const;

21

22 private:

23 void validate(std::vector <float >& weights);

24 std:: default_random_engine generator;

25 std:: uniform_real_distribution <float >

uniformRealDistribution;

26 std:: uniform_int_distribution <uint32_t >

uniformIntDistribution;

27 uint32_t numFeatures;

28 bool binaryWeights;

29 uint32_t populationSize;

30 static const float mutationRate;

31 static const float crossoverRate;

32 static const uint32_t percentTournament;

33 static const uint32_t percentElitism;

34 static const uint32_t percentMutatation;

35 static const uint32_t percentCrossover;

36 static const uint32_t percentRandom;

37 static const uint32_t sumContributions;

38 };

39
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40 #endif // HYPERPOINTME_H

B.3 RL-BSAS

Clustering

1 #ifndef RLBSAS_H

2 #define RLBSAS_H

3

4 #include "liboci_global.h"

5

6 #include <inttypes.h>

7

8 #include "clusterizer.h"

9 #include "rlbsas_config.h"

10

11

12 class LIBOCISHARED_EXPORT RlBsas : public Clusterizer{

13 public:

14 RlBsas(const RlBsas_config* config);

15 RlBsas(const RlBsas& src);

16 RlBsas* clone() const;

17 int32_t clusterize(const Dataset* dataset);

18 int32_t removeCluster(uint32_t idx);

19 GeneticCode* getGeneticCode ();

20 uint32_t setGeneticCode(const GeneticCode* gc);

21

22 private:

23

24 float clusterRadius;

25 uint32_t maxNumClusters;

26 float reward;

27 float penalty;

28 float initEnergy;

29 float minEnergy;

30 std::vector <float > energies;

31 std::vector <float > radii;

32 };

33

34 #endif // RLBSAS_H
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RL-BSAS Evolver

1 #ifndef HYPERPOINTME_H

2 #define HYPERPOINTME_H

3

4 #include "liboci_global.h"

5

6 #include "evolver.h"

7 #include <random >

8

9

10 class LIBOCISHARED_EXPORT HyperpointME : public Evolver{

11 public:

12 HyperpointME(uint32_t numFeatures , bool binaryWeights

= true , uint32_t populationSize = 0);

13 HyperpointME(const HyperpointME& src);

14 HyperpointME* clone() const;

15 std::vector <GeneticCode*> evolve(std::vector <

GeneticCode*> currGCs);

16 GeneticCode* select(std::vector <GeneticCode*> currGCs ,

uint32_t numCompetitors);

17 GeneticCode* mutate(GeneticCode* currGC);

18 std::pair <GeneticCode*, GeneticCode*> crossover(

GeneticCode* mother , GeneticCode* father);

19 std::vector <GeneticCode*> randomize(uint32_t numRanded

);

20 uint32_t getPopulationSize () const;

21

22 private:

23 void validate(std::vector <float >& weights);

24 std:: default_random_engine generator;

25 std:: uniform_real_distribution <float >

uniformRealDistribution;

26 std:: uniform_int_distribution <uint32_t >

uniformIntDistribution;

27 uint32_t numFeatures;

28 bool binaryWeights;

29 uint32_t populationSize;

30 static const float mutationRate;

31 static const float crossoverRate;

32 static const uint32_t percentTournament;

33 static const uint32_t percentElitism;
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34 static const uint32_t percentMutatation;

35 static const uint32_t percentCrossover;

36 static const uint32_t percentRandom;

37 static const uint32_t sumContributions;

38 };

39

40 #endif // HYPERPOINTME_H
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[69] Aurélien Bellet, Amaury Habrard, and Marc Sebban. A survey on metric

learning for feature vectors and structured data. CoRR, abs/1306.6709,

2013.

[70] Guido Del Vescovo, Lorenzo Livi, Fabio Massimo Frattale Mascioli, and

Antonello Rizzi. On the problem of modeling structured data with the



BIBLIOGRAPHY 143

minsod representative. International Journal of Computer Theory and

Engineering, 6(1):9, 2014.

[71] Alessio Martino, Antonello Rizzi, and Fabio Massimo Frattale Masci-

oli. Efficient approaches for solving the large-scale k-medoids prob-

lem: Towards structured data. In Christophe Sabourin, Juan Julian

Merelo, Kurosh Madani, and Kevin Warwick, editors, Computational

Intelligence: 9th International Joint Conference, IJCCI 2017 Funchal-

Madeira, Portugal, November 1-3, 2017 Revised Selected Papers, pages

199–219. Springer International Publishing, Cham, 2019.

[72] Alessio Martino, Antonello Rizzi, and Fabio Massimo Frattale Mascioli.

Efficient approaches for solving the large-scale k-medoids problem. In

Proceedings of the 9th International Joint Conference on Computational

Intelligence - Volume 1: IJCCI,, pages 338–347. INSTICC, SciTePress,

2017.

[73] Antonello Rizzi, Guido Del Vescovo, Lorenzo Livi, and Fabio Massimo

Frattale Mascioli. A new granular computing approach for sequences

representation and classification. In The 2012 International Joint Con-

ference on Neural Networks (IJCNN), pages 1–8. IEEE, 2012.

[74] David E. Goldberg. Genetic algorithms in search, optimization and ma-

chine learning. Addison-Wesley, Reading, Massachusetts, USA, 1989.

[75] Salem Alelyani, Jiliang Tang, and Huan Liu. Feature selection for clus-

tering: A review. Data Clustering: Algorithms and Applications, 29:110–

121, 2013.



144 BIBLIOGRAPHY

[76] Alessio Martino, Mauro Giampieri, Massimiliano Luzi, and Antonello

Rizzi. Data mining by evolving agents for clusters discovery and metric

learning. In Neural Advances in Processing Nonlinear Dynamic Signals,

pages 23–35. Springer International Publishing, July 2018.

[77] Mauro Giampieri and Antonello Rizzi. An evolutionary agents based

system for data mining and local metric learning. In 2018 IEEE Inter-

national Conference on Industrial Technology (ICIT). IEEE, February

2018.

[78] Mauro Giampieri, Enrico De Santis, Antonello Rizzi, and Fabio Mas-

simo Frattale Mascioli. A supervised classification system based on evo-

lutive multi-agent clustering for smart grids faults prediction. In 2018

International Joint Conference on Neural Networks (IJCNN). IEEE,

July 2018.

[79] Mauro Giampieri, Luca Baldini, Enrico De Santis, and Antonello Rizzi.

Facing big data by an agent-based multimodal evolutionary approach

to classification. In 2020 International Joint Conference on Neural Net-

works (IJCNN). IEEE, July 2020. Submitted.

[80] Enrico De Santis, Lorenzo Livi, Alireza Sadeghian, and Antonello Rizzi.

Modeling and recognition of smart grid faults by a combined approach

of dissimilarity learning and one-class classification. Neurocomputing,

170:368–383, December 2015.

[81] Enrico De Santis, Antonello Rizzi, and Alireza Sadeghian. A learning in-

telligent system for classification and characterization of localized faults



BIBLIOGRAPHY 145

in smart grids. In 2017 IEEE Congress on Evolutionary Computation

(CEC). IEEE, June 2017.

[82] Enrico De Santis, Antonello Rizzi, and Alireza Sadeghian. Hierarchical

genetic optimization of a fuzzy logic system for energy flows management

in microgrids. Applied Soft Computing, 60:135–149, November 2017.

[83] Ka-Chun Wong. Evolutionary multimodal optimization: A short survey.

CoRR, abs/1508.00457, 2015.

[84] Jian-Ping Li, Marton E. Balazs, Geoffrey T. Parks, and P. John Clark-

son. A species conserving genetic algorithm for multimodal function op-

timization. Evolutionary Computation, 10(3):207–234, September 2002.

[85] B. Sareni and L. Krahenbuhl. Fitness sharing and niching methods

revisited. IEEE Transactions on Evolutionary Computation, 2(3):97–

106, 1998.

[86] Pietro S. Oliveto, Dirk Sudholt, and Christine Zarges. On the benefits

and risks of using fitness sharing for multimodal optimisation. Theoret-

ical Computer Science, 773:53–70, June 2019.

[87] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of ag-

gregate information. In 44th Annual IEEE Symposium on Foundations

of Computer Science, 2003. Proceedings. IEEE Computer. Soc.

[88] Oliver Laslett, Jonathon Waters, Hans Fangohr, and Ondrej Hovorka.

Magpy: A c++ accelerated python package for simulating magnetic

nanoparticle stochastic dynamics, 2018.



146 BIBLIOGRAPHY
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