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DEFORMATIONS OF ALGEBRAIC SCHEMES VIA

REEDY-PALAMODOV COFIBRANT RESOLUTIONS

MARCO MANETTI AND FRANCESCO MEAZZINI

Abstract. Let X be a Noetherian separated and finite dimensional scheme over a field
K of characteristic zero. The goal of this paper is to study deformations of X over a
differential graded local Artin K -algebra by using local Tate-Quillen resolutions, i.e.,
the algebraic analog of the Palamodov’s resolvent of a complex space. The above goal is
achieved by describing the DG-Lie algebra controlling deformation theory of a diagram
of differential graded commutative algebras, indexed by a direct Reedy category.
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1. Introduction

This paper concerns the use of basic model category theory in the study of deformations
of algebraic schemes and morphisms between them, with the aim of being accessible to a
wide community, especially to everyone having a classical background in algebraic geometry
and deformation theory. For this reason the homotopic and simplicial background is reduced
at minimum.

Let X be a Noetherian separated and finite dimensional scheme over a field K of charac-
teristic zero; we study deformations of X over a differential graded local Artin K -algebra by
using local Tate-Quillen resolutions, i.e., the algebraic analog of the Palamodov’s resolvent
of a complex space.

It is well known (see e.g. [26]) that if X = Spec(S) is affine, then the deformations of X
are the same as the deformations of S in the category of commutative algebras. The latter
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2 MARCO MANETTI AND FRANCESCO MEAZZINI

are studied by using a Tate-Quillen resolution R → S, and are controlled by the DG-Lie
algebra Der∗

K
(R,R) via Maurer-Cartan equation modulus gauge action.

For general schemes, fixing an affine open cover {Ui}i∈I , the geometry of X is encoded
in the diagram

S
·
: N → K -algebras , α 7→ Sα = Γ(Uα,OX)

where N denotes the nerve of the cover; the deformation theory of X is equivalent to the
one of S

·
.

Since Tate-Quillen resolutions are cofibrant objects in the model category CDGA
≤0
K

of
commutative differential (non-positively) graded algebras, it is natural to consider S

·
as an

element of the category Fun(N ,CDGA
≤0
K

) of functors N → CDGA
≤0
K

:

(1.1) S
·
: N → CDGA

≤0
K

, α 7→ Sα = Γ(Uα,OX)

where each Sα is considered as a DG-algebra concentrated in degree 0.

Since N is a (direct) Reedy category then Fun(N ,CDGA
≤0
K

) is endowed with the Reedy
model structure (see Section 3) that is strong left proper (Proposition 3.1), in the sense
of [18], briefly recalled here in Definition 2.1. According to the results of [18] there exists
a good deformation theory in strong left proper model categories that, among the other
properties, is homotopy invariant: in our particular case the deformation theory of any
diagram R

·
gives a “deformation” functor

DefR
·

: DGArt
≤0
K
→ Set,

and for any diagram P
·
weak equivalent to R

·
we have an isomorphism of functors DefP

·

≃
DefR

·

.
It is easy to prove (Lemma 5.2) that the restriction of DefS

·

to the subcategory of local
Artin algebras concentrated in degree 0 is the same as the classical deformation functor
of X . Therefore the above facts provide a natural way to define deformations of X over
general DG-Artin local ring in non-positive degrees; moreover we can replace the diagram S

·

with any weak equivalent Reedy cofibrant diagram. It is worth to notice that the algebraic
analog of the Palamodov’s resolvent [21, 22] is in fact a special case of Reedy cofibrant
replacement.

Finally, for any Reedy cofibrant diagram R
·
, we shall be able to prove (Lemma 5.3 and

Theorem 5.5) that the functor DefR
·

is controlled by the DG-Lie algebra of derivations of
R

·
.
The proposed proof strongly relies on the results of [18], where deformations of affine

schemes were considered. More precisely, we show that the ideas developed in [18] in order
to understand the deformation theory of an affine (differential graded) scheme can be
easily adapted to the non-affine case. Philosophically, we can say that the approach to
deformation theory via model categories presented in this paper and in [18], gives not only
similar statements in the affine and non-affine case, but also the same underlying ideas and
strategies in the proofs.

The same approach leads to the description of the cotangent complex as a certain homo-
topy class of S

·
-modules, namely the module of Kähler differentials of a cofibrant replace-

ment (see Section 7). This description relies on the results of [19], where it is proved that
the homotopy category of S

·
-modules is equivalent to the unbounded derived category of

quasi-coherent sheaves on X .
As also suggested by the referee, it would be interesting, instead of just looking at func-

tors of homotopy classes, to consider simplicial functors as in [9] with moduli interpreta-
tions as infinity groupoids as in the Derived Algebraic Geometry literature (Lurie, Pridham,
Toën, Vezzosi etc.): the results of this paper easily extend from schemes to derived schemes.
However, in view of the general philosophy underlying this paper, we preferred to consider
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this possible extension, possibly after the simplicial analogous of the general formal theory
developed in [18].

2. Deformations of morphisms in strong left proper model categories

The goal of this section is to fix notation and to review some results of [18].
Let M be a fixed model category. For every object A ∈M the symbols A ↓M and MA

both denote the undercategory of maps A→ B, B ∈M. There is a natural model structure
on MA under which a map is a cofibration, fibration, or weak equivalence if and only if
its image in M under the forgetful functor is, respectively, a cofibration, fibration, or weak
equivalence. Every morphism A → B induces a push-out functor − ∐A B : MA → MB

which preserves cofibrations and trivial cofibrations.

Definition 2.1 (Definitions 2.9 and 2.13 of [18]). A morphism A→ B in a model category
M is called flat if the push-out functor −∐AB : MA →MB preserves pull-back squares of
trivial fibrations. The model category M is said to be strong left proper if every cofibration
is flat.

Thus, in a strong left proper model category, the push-out along a cofibration preserves
trivial cofibrations and trivial fibrations; hence preserves weak equivalences, i.e. the model
category is left proper. Conversely, a left proper model category may not be strong: for
instance, the category of topological spaces endowed with the usual model structure is left
proper but not strong left proper.

We refer to [18] for a deeper discussion about flat morphisms and for the proof that the
class of flat morphisms is closed under composition, push-outs and retracts. An object X
in M is called flat if the morphism from the initial object to X is flat; clearly a morphism
A→M is flat as a morphism in M if and only if it is flat as an object in the undercategory
A ↓M.

According to [18, Cor. 3.4] an example of strong left proper model category is CDGA
≤0
K

,
the category of differential graded commutative algebras over a field K of characteristic
0 concentrated in non-positive degrees, equipped with the projective model structure ([2],
[6, V.3]): weak equivalences are the quasi-isomorphisms, cofibrations are the retracts of
semifree extensions and fibrations are the surjections in strictly negative degrees.

It is easy to prove that in a left proper model category, weak equivalences between flat
objects are preserved under arbitrary push-outs [18, 2.5+2.11]. The converse is generally
false and this motivates the following definition.

Definition 2.2 (Definition 4.2 of [18]). Let M be a left proper model category. A morphism
A→ K is said to be a thickening if for every commutative diagram

(2.1) A

f

--

g // E

h
��
D

such that f, g are flat and h∐ IdK : E∐AK → D∐AK is a weak equivalence (respectively:
an isomorphism), then also h is a weak equivalence (respectively: an isomorphism).

For instance, in the model category CDGA
≤0
K

every surjective morphism with nilpotent
kernel is a thickening [18, Prop. 3.5]: the name thickening is clearly motivated by the
analogous notion for algebraic schemes [4, 8.1.3].
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Definition 2.3. Let K
f
−→ X be a morphism in a left-proper model category M, with X

a fibrant object. A deformation of f over a thickening A
p
−→ K is a commutative diagram

A

p

��

fA // XA

��
K

f // X

such that fA is flat and the induced map XA ∐A K → X is a weak equivalence. A direct
equivalence is given by a commutative diagram

A

gA

��

fA // XA

��
YA //

h

==④④④④④④④④
X

where h is a weak equivalence. Two deformations are equivalent if they are so under the
equivalence relation generated by direct equivalences.

We denote either by Deff (A
p
−→ K) or, with a little abuse of notation, by Deff (A) the

quotient class of deformations of f up to equivalence. Given any diagram A
h
−→ B

p
−→ K

with p, ph thickening, then the push-out along h gives a natural map h : Deff (A
ph
−→ K)→

Deff (B
p
−→ K): every diagram

A

ph

��

fA // XA

��
K

f // X

as in Definition 2.3 is mapped into the diagram

B

p

��

h∗(fA) // B ∐A XA

��
K

f // X

.

In strong left proper model categories it is possible to describe the class of deformations
exclusively in terms of cofibrations.

Proposition 2.4 (Lemma 4.4 and Prop. 4.6 of [18]). Let K
f
−→ X be a morphism in a

strong left proper model category M, with X a fibrant object. Then every deformation of f

over a thickening A
p
−→ K is represented by a commutative diagram

(2.2) A

p

��

fA // XA

α

��
K

f // X

such that fA is a cofibration and the induced map XA ∐A K → X is a weak equivalence.
The diagrams (2.2) and

(2.3) A

p

��

gA // YA

β

��
K

f // X
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with gA a cofibration, represent the same equivalence class of deformations of f if and only
if there exists a commutative diagram

(2.4)

A
fA

}}③③
③③
③③
③③

��

gA

!!❈
❈❈

❈❈
❈❈

❈

XA
//

α
!!❉

❉❉
❉❉

❉❉
❉

ZA

��

YAoo

β}}④④
④④
④④
④④

X

with the horizontal arrows trivial cofibrations.

The assumption that p is a thickening is essential for the validity of the following theorem.

Theorem 2.5 (Homotopy invariance of deformations: Thm. 5.3 of [18]). Let K
f
−→ X

τ
−→ Y

be morphisms in a strong left proper model category M. If τ is a weak equivalence between
fibrant objects, then for every thickening A→ K, the natural map

Deff (A)→ Defτf(A), (A→ XA → X) 7→ (A→ XA → X
τ
−→ Y ),

is bijective.

Theorem 2.5 implies that it is properly defined the deformation theory of any morphism
f : K → Y by setting Deff = Defτf , where τ : Y → X is any weak equivalence into a
fibrant object X . At the same time, Theorem 2.5 implies that deformation theory (along
a thickening) is invariant under fibrant-cofibrant replacements of f in the undercategory
MK : for every diagram

K

f

��

i // R

β

��
Y

α // X

with X fibrant, i cofibration, β fibration and α, β weak equivalences, the morphisms f and
i have the same deformation theory.

3. Diagrams over direct Reedy categories

Let C be a (non empty) direct Reedy category. This means that C is a small category
and there exists a degree function Ob(C)→ N such that every non-identity morphism raises
degree. In particular, every object a has only the identity as a morphism a→ a.

Examples of direct Reedy categories are:

(1) the category
−→
∆ of finite ordinals with injective strictly monotone maps.

(2) the category associated to a Reedy poset: by definition a Reedy poset is a partially
ordered set I such that there exists a strictly monotone map deg : I → N, i.e.
deg(α) < deg(β) whenever α < β.

(3) every finite product of direct Reedy categories is a direct Reedy category, equipped
with the degree function deg(a1, . . . , an) =

∑
deg(ai).

From non on we shall denote by C a fixed direct Reedy category. As usual we shall
denote by Map(C) the category of maps in C: objects are the morphisms in C, morphisms
are the commutative squares. We are mainly interested in the following full subcategories
of Map(C):

(1) for every a ∈ C denote by [C, a] the full subcategory of Map(C) whose objects are
the morphisms b→ a. This is naturally isomorphic to the overcategory C ↓ a.
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(2) for every a ∈ C denote by [C, a) the full subcategory of Map(C) whose objects are
the non-identity morphisms b → a. This is naturally isomorphic to the latching
category ∂(C ↓ a) defined in [11].

Notice that both [C, a] and [C, a) are direct Reedy categories, with degree function
deg(b→ a) = deg(b).

Let M be a fixed model category. For every diagram X : C → M and every a ∈ C we
may consider the diagram

LaX : [C, a)→M, (b→ a) 7→ Xb .

The latching object of X at a is defined as the colimit of the diagram LaX :

LaX = colim
[C,a)

LaX ,

and the latching map of X at a is the natural map LaX → Xa induced by the natural
maps (LaX)b→a = Xb → Xa.

The Reedy model structure on the category MC of diagrams X : C →M, also denoted
by Fun(C,M), is defined as follows:

(1) a morphism X → Y is a weak-equivalence (respectively, fibration) if for every a ∈ C
the morphism Xa → Ya is a weak equivalence (respectively, fibration).

(2) a morphism X → Y is a cofibration if for every a ∈ C the natural morphism

Xa ∐LaX LaY → Ya

is a cofibration.

It is useful to recall that if X → Y is a Reedy cofibration in MC , then Xa → Ya and
LaX → LaY are cofibrations in M for every a ∈ C, [11, Prop. 15.3.11]. If M is left proper,
then also MC is left proper, [11, Thm. 15.3.4].

It is important to point out that Reedy model structures commute with undercategories
and overcategories in the following sense: denoting by ∆: M →MC the diagonal functor,
for any object A ∈M there exist canonical isomorphisms of model categories

∆A ↓MC = (A ↓M)C , MC ↓ ∆A = (M ↓ A)C .

This is completely trivial since the above natural isomorphisms of categories preserve weak
equivalences and fibrations.

Since our goal is to make deformation theory in MC we need to characterise the flat
morphisms.

Proposition 3.1. In the above setup, a morphism X → Y in MC is flat if Xa → Ya is
flat in M for every a ∈ C. If M is strong left proper, then also MC is strong left proper.

Proof. Let X → Y be a morphism in MC, since push-outs and pull-backs are made object-
wise, and trivial fibrations are detected objectwise, it is clear that if every Xa → Ya is flat,
then also X → Y is flat.

If M is strong left proper and X → Y is a cofibration in MC , we have seen that Xa → Ya
is a cofibration for every a ∈ C, hence Xa → Ya is flat for every a and therefore also X → Y
is flat. �

Lemma 3.2. In the above setup, a cone ∆A → Y in MC is flat if and only if A → Ya is
flat in M for every a ∈ C.

Proof. One implication is proved in Proposition 3.1. The converse is an easy consequence
of the fact that the diagonal functor ∆: M → MC preserves pull-back squares of trivial
fibrations and pull-back squares in MC are detected objectwise. �
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Corollary 3.3. In the above setup, a morphism A→ K in M is a thickening if and only
if ∆A→ ∆K is a thickening in MC.

Proof. Since the diagonal functor ∆ commutes with push-outs, its application to the di-
agram (2.1) immediately implies that if ∆A → ∆K is a thickening then A → K is a
thickening.

If ∆A→ Y is flat, then for every a ∈ C we have

(∆K ∐∆A Y )a = K ∐A Ya

and the morphism A → Ya is flat by Lemma 3.2: this implies that that if A → K is a
thickening then ∆A→ ∆K is a thickening. �

Thus, according to Proposition 3.1 and the results of Section 2, there exists a good
deformation theory of diagrams in a strong left proper model category M over a direct
Reedy index category C.

If we restrict to diagonal thickenings in MC , i.e., to thickenings of the form ∆A→ ∆K
with A → K a thickening in M, by Corollary 3.3 we obtain the following equivalent
description of deformations.

Definition 3.4. Given a thickening p : A→ K in M and a fibrant diagram

X ∈ (MK)C = (K ↓M)C = ∆K ↓MC,

a deformation of X along p is a commutative square

∆A

p

��

f // X

��
∆K // X

such for every a ∈ C the map fa : A → Xa is flat and the map Xa ∐A K → Xa is a weak
equivalence.

The main goal of this paper is to study deformations of a diagram with values in

the strong left proper model category CDGA
≤0
K

over an element in the full subcategory

DGArt
≤0
K

of local Artinian DG-algebras with residue field K . This make sense since,

according to [18, Prop. 3.5] every surjective morphism in DGArt
≤0
K

is a thickening in

the model category CDGA
≤0
K

, and every diagram in Fun(C,CDGA
≤0
K

) is Reedy fibrant:

for a direct Reedy category C, a deformation of a diagram X ∈ Fun(C,CDGA
≤0
K

) over

A ∈ DGArt
≤0
K

is a flat diagram XA ∈ Fun(C,CDGA
≤0
A ) equipped with a weak equivalence

XA∐AK → X , where XA∐AK denotes the diagram defined by (XA∐AK )a = XA,a∐AK

for every a ∈ C.

4. Lifting of trivial idempotents

By definition, a trivial idempotent in a model category is an endomorphism e : X → X
which is a weak equivalence satisfying e2 = e. The next goal is to prove a lifting result
for trivial idempotents that will be essential for the computation of the DG-Lie algebra
controlling deformations of diagrams of algebras over direct Reedy categories. We first
need a preliminary lemma.

Lemma 4.1. Let M be a left proper model category and C a direct Reedy category. Assume
it is given a Reedy cofibration i : P → R, an element a ∈ C and a morphism of diagrams
e : LaR→ LaR that is a trivial idempotent satisfying ei = i. Then

e : Pa ∐LaP LaR→ Pa ∐LaP LaR,
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is a trivial idempotent in the model category M.

Proof. For every diagram X in MC and every a ∈ C we may write LaX = colimLaX ,
where

LaX : [C, a)→M, (LaX)b→a = Xb .

For every morphism f : b→ a in [C, a) there exists a natural bijection

[C, b)
≃
−−→ [[C, a), f) , c

g // b 7→

c
g //

fg ��❃
❃❃

❃❃
❃❃

❃ b

f

��
a

,

and this implies that the latching functor

La : M
C →M[C,a), X 7→ LaX,

preserves fibrations, cofibrations and weak equivalences.
In particular LaP → LaR is a Reedy cofibration, and taking its push-out along the

natural map LaP → ∆Pa we get a Reedy cofibration

∆Pa → ∆Pa ∐LaP LaR

in M[C,a): equivalently the diagram

Q : [C, a)→MPa
, Qb→a = Pa ∐Pb

Rb,

is Reedy cofibrant in M
[C,a)
Pa

.
For every b → a, since Pb → Rb is a cofibration and M is left proper, by gluing lemma

the idempotent e : Pa ∐Pb
Rb → Pa ∐Pb

Rb is a weak equivalence. Since [C, a) has fibrant

constants, the colimit functor colim: M
[C,a)
Pa

→MPa
preserves weak equivalences between

cofibrant objects and the conclusion follows from the natural isomorphism

colim
[C,a)

Q = Pa ∐LaP LaR

that holds since colimits commute with push-outs. �

We are now ready to use Lemma 4.1 together [18, Theorem 6.12] in order to prove

the main result of this section. For every morphism A→ B in CDGA
≤0
A and every direct

Reedy category C we shall denote by −⊗AB : Fun(C,CDGA
≤0
A )→ Fun(C,CDGA

≤0
B ) the

natural functor induced by composition with the usual push-out map −⊗AB : CDGA
≤0
A →

CDGA
≤0
B .

Theorem 4.2 (Lifting of trivial idempotents). Let C be a direct Reedy category, A →

B a surjective morphism in DGArt
≤0
K

and i : X → Y a cofibration of flat diagrams in

Fun(C,CDGA
≤0
A ).

Then every trivial idempotent ǫ of Y ⊗A B, commuting with the cofibration X ⊗A B →
Y ⊗A B, lifts to a trivial idempotent eA : Y → Y such that eAi = i.

Proof. Define an ideal of C as a full subcategory B such that if b ∈ B and a → b is a
morphism in C, then also a ∈ B. By induction on the degree of objects in C it is sufficient
to prove that if the trivial idempotent eA as in the theorem is defined for the restriction of
Y : C → CDGA

≤0
A to an ideal B ⊂ C, then eA can be extended to the restriction of Y to

the ideal B ∪ {a}, where a ∈ C − B is any element of minimum degree.
The trivial idempotent of Y|B induces a trivial idempotent on the latching functor LaY

and then, according to Lemma 4.1, we have a trivial idempotent in CDGA
≤0
A :

Lae : Xa ⊗LaX LaY → Xa ⊗LaX LaY .
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Since the reduction of Lae alongB extends to the trivial idempotent ǫa of Ya⊗AB, according
to [18, Theorem 6.12] there exists a trivial idempotent ea : Ya → Ya lifting ǫa end extending
Lae. �

As in [18, Section 6], Theorem 4.2 has a number of important consequences on the
lifting of factorisations and the push-out of deformations along trivial cofibrations. We
write here only the statements, since the proofs are exactly the same, mutatis mutandis,
of the corresponding results of the above mentioned paper. For simplicity, we shall call
(C,FW)-factorisation and (CW,F)-factorisation the two functorial factorisations given by
model category axioms.

Corollary 4.3 (cf. [18, Thm. 6.13] ). Let A→ B be a surjection in DGArt
≤0
K

and consider

a morphism f : P →M in Fun(C,CDGA
≤0
A ) between flat diagrams. Then every (C,FW)-

factorisation of the reduction

f : P = P ⊗A B →M =M ⊗A B

lifts to a (C,FW)-factorisation of f . In other words, for every factorisation P
C
−→ Q

FW
−−−→M

of f there exists a commutative diagram

P

��

C // Q

��

FW // M

��
P

C // Q
FW // M

in Fun(C,CDGA
≤0
A ), where the upper row reduces to the bottom row applying the functor

−⊗A B and the vertical morphisms are the natural projections.

Corollary 4.4 (cf. [18, Thm. 6.15] ). Let A→ B be a surjection in DGArt
≤0
K

and consider

a morphism f : P →M in Fun(C,CDGA
≤0
A ) between flat diagrams. Then every (CW,F)-

factorisation of the reduction

f : P = P ⊗A B →M =M ⊗A B

lifts to a (CW,F)-factorisation of f . In other words, for every factorisation P
CW
−−−→ Q

F
−→M

of f there exists a commutative diagram

P

��

CW // Q

��

F // M

��
P

CW // Q
F // M

in Fun(C,CDGA
≤0
A ), where the upper row reduces to the bottom row applying the functor

−⊗A B and the vertical morphisms are the natural projections.

Corollary 4.5 (cf. [18, Cor. 6.14] ). Let A ∈ DGArt
≤0
K

and consider a morphism f : P →

M in Fun(C,CDGA
≤0
A ) between flat diagrams. Then f is a Reedy cofibration if and only

if its reduction f : P ⊗A K →M ⊗A K is a Reedy cofibration in Fun(C,CDGAK
≤0).

Corollary 4.6 (cf. [18, Cor. 6.16] ). Let A ∈ DGArt
≤0
K

and consider a flat diagram

P ∈ Fun(C,CDGA
≤0
A ). For every trivial cofibration f : P = P ⊗A K → Q in CDGA

≤0
K

there exist a flat diagram Q ∈ Fun(C,CDGA
≤0
A ) such that Q ⊗A K = Q and a trivial

cofibration f : P → Q lifting f .
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Corollary 4.7 (cf. [18, Cor. 6.17] ). Let A ∈ DGArt
≤0
K

and consider a Reedy cofibrant

diagram Q ∈ Fun(C,CDGA
≤0
A ). For every trivial cofibration f : P → Q = Q ⊗A K in

Fun(C,CDGA
≤0
A ) there exist a flat diagram P ∈ Fun(C,CDGA

≤0
A ) such that P ⊗AK = P

and a lifting of f to a trivial cofibration f : P → Q.

5. The DG-Lie algebra controlling deformations of diagrams of
DG-algebras over direct Reedy categories.

Let C be a fixed direct Reedy category. We have already pointed out at the end of
Section 3 that the general deformation theory of morphisms in strong left proper model
categories applies to any diagram X ∈ Fun(C,CDGA

≤0
K

) and to every diagonal thickening

of Artin type ∆A→ ∆K , A ∈ DGArt
≤0
K

. In this case, for every A ∈ DGArt
≤0
K

the trivial
deformation is defined as a deformation equivalent to the push-out along ∆K → ∆A:
in other words, the trivial deformation of X along A is represented by the diagram of
differential graded algebras a 7→ Xa ⊗K A.

For simplicity of notation we shall talk of deformations of X over A intending deforma-
tions over ∆A→ ∆K .

It is useful to introduce the notion of strict deformation: a strict deformation of a di-
agram X ∈ Fun(C,CDGA

≤0
K

) over A ∈ DGArt
≤0
K

is the data of a flat diagram XA ∈

Fun(C,CDGA
≤0
A ) together an isomorphism of diagrams XA ⊗A K → X . The functor DX

of strict deformations of X is defined by

DX(A) =
strict deformations of X over A

isomorphisms

and it is immediate from definitions and Nakayama’s lemma that whenever X and A are
concentrated in degree 0, then DX(A) are precisely the “classical” deformations of X over

A. Notice that the full subcategory of objects in DGArt
≤0
K

concentrated in degree 0 is
exactly the usual category ArtK of local Artin K -algebras with residue field K .

Example 5.1 (Deformations of idempotent morphisms). The following trick transform the
problem of deformation of an object equipped with an idempotent endomorphism, into the
deformation problem of a diagram over a direct Reedy category.

Denote by C the full subcategory of
−→
∆ having as objects the 3 finite ordinals [0], [1], [2].

We can visualise C as a quiver with relations:

(5.1) [0]

δ0

""

δ1

<< [1]

δ0

""

δ2

<<
δ1 // [2] ,

δ20 = δ1δ0,
δ0δ1 = δ2δ0,
δ21 = δ2δ1.

It is immediate to see that for any category M, every diagram F : C →M such that F (δi)
is an isomorphism whenever i > 0, is isomorphic to a diagram of the form:

(5.2) R

e

!!

id

==R

e

!!

id

==
id // R , R ∈M, e2 = e .

If M is the category of (non-graded) commutative K -algebras, since isomorphisms are
preserved under strict deformations, there exists a natural bijection between strict defor-
mations of the diagram (5.2) and deformations of the pair (R, e).
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As pointed out in [18], the functor of strict deformations is not homotopy invariant and
then it is not the right object to consider: however it is very useful in order to relate the
functor DefX with classical deformations and with solutions of Maurer-Cartan equations.

Lemma 5.2. In the above set-up, if X is a diagram of algebras concentrated in degree 0
and A ∈ ArtK , then the natural map DX(A)→ DefX(A) is bijective.

Proof. By Nakayama’s lemma, if XA, YA are two strict deformations of X , then X ,Y are
diagram of A-algebras concentrated in degree 0. In particular X ,Y are weak equivalent in
Fun(C,CDGA

≤0
A ) is and only if they are isomorphic; this implies that DX(A)→ DefX(A)

is injective.

If X ∈ Fun(C,CDGA
≤0
A ) is a deformation ofX , then by the standard criterion of flatness

in terms of relations [1, 26] we have that for every a ∈ C the A-algebra H0(Xa) is flat and
the projection Xa → H0(Xa) is a quasi-isomorphism. Therefore H0(X ) belongs to DX(A)
and it is equivalent to X ; this implies that DX(A)→ DefX(A) is surjective. �

Lemma 5.3. In the above set-up, if X ∈ Fun(C,CDGA
≤0
K

) is Reedy cofibrant and A ∈

DGArt
≤0
K

, then the natural map DX(A)→ DefX(A) is bijective.

Proof. We first note that if A→ X
φ
−→ X is a strict deformation of X , then K → X ⊗A K

is a Reedy cofibration and then, by Corollary 4.5 also A→ X is a Reedy cofibration.

Injectivity. Consider two strict deformations A → XA
φ
−→ X and A → YA

ψ
−→ X that

are mapped in the same element of DefX . Notice that φ, ψ are objectwise surjective and
hence fibrations. By Proposition 2.4 there exists a deformation A→ ZA → X in DefX(A)
together with a commutative diagram

A

��

 ��
XA

ι //

φ --

ZA

η

��

YA
σoo

ψqqX

such that σ, ι are Reedy trivial cofibrations. In order to prove that A → XA → X is
isomorphic to A → YA → X , we use the fact that, since σ is a trivial cofibration, the
diagram of solid arrows

YA
id //

σ

��

YA

ψ

��
ZA

η //

π

==⑤
⑤

⑤
⑤

X

admits a lifting π : ZA → YA. Therefore, the diagram

A

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

  ❆
❆❆

❆❆
❆❆

❆

XA
π◦ι //

φ !!❇
❇❇

❇❇
❇❇

❇
YA

ψ~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

X

commutes, and the reduction πι : XA ⊗A K → YA ⊗A K is an isomorphism. To conclude
observe that A→ K is a thickening and then π ◦ ι is an isomorphism too.
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Surjectivity. By Proposition 2.4 it is sufficient to prove that every deformation

A
i
−→ XA

π
−→ X,

with i a Reedy cofibration is equivalent to a strict deformation. Thus XA ⊗A K
π
−→ X is a

weak equivalence of Reedy cofibrant diagrams and then, by the standard argument used in
Ken Brown’s lemma there exists a commutative diagram

XA ⊗A K
f //

π
$$❏

❏❏
❏❏

❏❏
❏❏

❏
Y

σ

��

X
goo

id~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

X

with f, g trivial cofibrations and σ trivial fibration. By Corollary 4.6 there exists a trivial

cofibration XA → YA lifting XA ⊗A K
f
−→ Y . By Corollary 4.7 there exists a flat diagram

ZA ∈ Fun(C,CDGA
≤0
A ) and a trivial cofibration ZA → YA lifting X

g
−→ Y . Therefore

A→ ZA → X is a strict deformation equivalent to A
i
−→ XA

π
−→ X . �

Lemma 5.4. In the above situation, let A ∈ DGArt
≤0
K

and ∆A
i
−→ X a Reedy cofibration

in Fun(C,CDGA
≤0
K

). Denoting by X = X ⊗A K = X ⊗∆A ∆K , we have a commutative
diagram of diagrams

∆A

j

��

i // X

��
X ⊗∆K ∆A

g
99ssssssssss
// X

where j is the natural push-out map and g is an isomorphism of diagrams of graded algebras.

Proof. Consider the polynomial algebra A[d−1] ∈ CDGA
≤0
A , where d−1 is a variable of

degree −1 whose differential is d(d−1) = 1. Then the natural inclusion α : A → A[d−1] is
a morphism of DG-algebras, while the natural projection β : A[d−1]→ A is a morphism of
graded algebras; moreover βα is the identity on A. Since X → X is pointwise surjective, the
induced morphism X⊗AA[d−1]→ X⊗AA[d−1] is a trivial fibration, we have a commutative
diagram

∆A

j

��

i // X ⊗A A[d−1]

��
X ⊗∆K ∆A

g̃
77♦♦♦♦♦♦♦♦♦♦♦♦

// X ⊗A A[d−1]

and we can take g as the composition of g̃ and Id⊗β. In order to prove that g is an
isomorphism we can forget the differential everywhere and observe that the projection
A→ K remains a thickening. �

We can rephrase Lemma 5.4 by saying that every strict deformation over A of a cofibrant
diagram X is obtained by perturbing the differential of the trivial deformation X ⊗K A.
Conversely every diagram X of A-algebras obtained perturbing the differential of X ⊗K A
is pointwise flat by [18, Prop. 7.6] and then X is a strict deformation of X ; (notice that
this last point is false if the algebras are not concentrated in non-positive degrees, see [18,
Rem. 7.9]).

Recall that for every R ∈ CDGA
≤0
K

, the DG-Lie algebra of derivations of R is denoted

by Der∗
K
(R,R) = ⊕i∈Z Deri

K
(R,R), where

Deri
K
(R,R) = {α ∈ Homi

K
(R,R) | α(xy) = α(x)y + (−1)i xxα(y)} ,
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the bracket is the graded commutator and the differential is the adjoint operator of the
differential of R.

We can extend naturally the above notion to every diagram R ∈ Fun(C,CDGA
≤0
K

); for
every morphism f : a→ b in C we shall denote by Rf : Ra → Rb the induced morphism of
differential graded algebras. Then we define

(5.3) Der∗
K
(R,R) ⊂

∏

a∈C

Der∗
K
(Ra, Ra)

as the DG-Lie subalgebra of sequences {αa}a∈C such that for every morphism f : a → b
we have Rfαb = αaRf . Equivalently, an element of Der∗

K
(R,R) is a morphism of diagrams

that is pointwise a derivation.
Any DG-Lie algebra L over the field K induces a functor

DefL : DGArt
≤0
K
→ Set

defined in the usual way as the quotient of Maurer-Cartan element modulus gauge action
[10, 16]:

DefL(A) =
MCL(A)

gauge
=
{η ∈ (L⊗K mA)

1 | dη + 1
2 [η, η] = 0}

exp (L⊗K mA)0
.

Therefore every diagram R ∈ Fun(C,CDGA
≤0
K

) induces a deformation functor

DefDer∗
K
(R,R) : DGArt

≤
K
→ Set .

In the following result we denote by MCDer∗
K
(R,R)(A) the set of Maurer-Cartan elements,

i.e.,

MCDer∗
K
(R,R)(A) =

{
η ∈ (Der∗

K
(R,R)⊗K mA)

1 | dη +
1

2
[η, η] = 0

}
.

Theorem 5.5. Let C be a direct Reedy category, let R ∈ Fun(C,CDGA
≤0
K

) be a Reedy
cofibrant diagram and denote by DR the functor of strict deformations of R. Then for
every A ∈ DGArt

≤0
K

there exists a natural bijection

DefDer∗
K
(R,R)(A)→ DR(A),

induced by the map

MCDer∗
K
(R,R)(A)→ DR(A), ξ 7→ (R⊗K A, dR + ξ) .

Proof. We first notice that, according to [18, Prop. 7.7] every diagram of type (R⊗K A, dR+
ξ), with ξ ∈ MCDer∗

K
(R,R)(A) is flat over A and then it is a strict deformation of R, while

by Lemma 5.4 every strict deformation is of this type.
The conclusion follows by observing that, the gauge equivalence corresponds to iso-

morphisms of diagrams of algebras whose reduction to the residue field is the identity.
In fact, given such an isomorphism ϕA : RA → R′

A we can write ϕA = id+ηA for some
ηA ∈ (Hom∗

K
(R,R)⊗K mA)

0. Now, since K has characteristic 0, we can take the logarithm
to obtain ϕA = eθA for some θA ∈ (Der∗

K
(R,R)⊗K mA)

0. �

Corollary 5.6. Let C be a direct Reedy category, S ∈ Fun(C,CDGA
≤0
K

) a diagram and
R → S a Reedy cofibrant replacement. Then the DG-Lie algebra Der∗

K
(R,R) controls the

deformation functor DefS.

Proof. By Theorem 2.5 and Lemma 5.3 we have DefS ≃ DefR ≃ DR. The conclusion follows
immediately from Theorem 5.5. �

Example 5.7 (Deformations of algebra morphisms). The first application of the above
results concerns deformations of a morphism of DG-algebras f : B → C. We choose a
cofibrant resolution p : R → B, followed by a factorisation of fp as a cofibration i : R → S
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and a trivial fibration q : S → C. Then i : R → S is a Reedy cofibrant resolution of the
diagram f : B → C and the DG-Lie algebra controlling deformations of f is given by

L = {α ∈ Der∗
K
(S, S) | αi(R) ⊂ i(R)} .

If one is interested to deformations where both B,C remain fixed, i.e., to morphisms of
DG-algebras of type B ⊗ A → C ⊗ A reducing to f modulus mA we need to consider
the homotopy fibre of the inclusion of DG-Lie algebras L→ Der∗

K
(R,R)× Der∗

K
(S, S), cf.

[14, 17].

6. The Reedy-Palamodov resolvent and deformations of schemes

Let X be a separated scheme over a field K of characteristic 0 and let {Ui}i∈I an affine
open cover of X ; actually the separatedness assumption is only needed to ensure that every
finite intersection of elements of {Ui}i∈I is an affine open subset, therefore this hypothesis
could be relaxed by requiring thatX is semi-separated and that {Ui}i∈I is a semi-separating
cover.

The nerve N of the covering is a Reedy poset with the cardinality as degree function.
Denoting as usual by U{i1,...,ik} = Ui1 ∩ · · · ∩ Uik , since every Uα, α ∈ N , is an affine open
subset, the geometry of X is completely determined by the diagram of K -algebras

(6.1) S
·
: N → CDGA

≤0
K
, α 7→ Sα = Γ(Uα,OX) .

Since the trivial algebra 0 is the final object in the category CDGA
≤0
K

the restriction
of S

·
to the nerve is useful but no strictly necessary: the same works if S

·
is defined on the

entire family of finite subsets of I, with Sα = 0 whenever Uα = ∅.
A deformation of X over a local Artin ring A ∈ ArtK can be interpreted as the data of a

deformation over A of every open subset Ui together with a deformation of the correspond-
ing descent data. In other words, there exists a natural bijection between isomorphism
classes of deformations of the scheme X and isomorphism classes of deformations of the
diagram

U : N op → affine schemes, α 7→ Uα .

Equivalently there exists a natural bijection between isomorphism classes of deformations
of X and isomorphism classes of strict deformations of the diagram S

·
.

Definition 6.1. A Reedy-Palamodov resolvent of X , relative to an affine open cover with
nerve N is a Reedy cofibrant resolution of the diagram S

·
of (6.1).

In particular, the results of previous sections apply to this situation and then Der∗
K
(R,R)

is the DG-Lie algebra controlling deformations of X , where R : N → CDGA
≤0
K

is a Reedy-
Palamodov resolvent.

The name Reedy-Palamodov resolvent is clearly motivated by the large amount of com-
mon features with the usual resolvent considered in deformation theory of complex analytic
spaces. In fact, a Reedy cofibrant resolution of X over the nerve N is a morphism of dia-
grams R→ S

·
over N characterised by the following (redundant) list of properties:

(1) for every α ∈ N we have Hj(Rα) = 0 for every j 6= 0 and H0(Rα) ∼= Γ(Uα,OX);

(2) for every α ∈ N the DG-algebra Rα ∈ CDGA
≤0
K

is cofibrant, and the natural map

colim
γ<α

Rγ → Rα

is a cofibration.

Replacing in the above characterization cofibrations with semifree extensions and cofi-
brant algebra with semifree algebra, we recover precisely the algebraic analogue of Palam-
odov’s resolvent [21, 22], also called free DG-algebra resolution in [3, 5]. Thus we have
proved the following result.
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Theorem 6.2. Let X be a separated scheme over a field K of characteristic 0 and let

R ∈ Fun(N ,CDGA
≤0
K

) be a Reedy-Palamodov resolvent of X. Then the DG-Lie algebra
Der∗

K
(R,R) controls the functor of infinitesimal deformations of X.

Writing down explicitly the resolvent can be very hard: in the following two illustrating
examples we consider the smooth and the cuspidal rational curves, respectively.

Example 6.3 (Resolvent of P1). Let x0, x1 be a set of homogeneous coordinates in P1,
then a Reedy-Palamodov resolvent over the nerve of the affine cover {x0 6= 0} ∪ {x1 6= 0}
is given by

K [x]

��
K [y] // K [x, y, e]

−−−→

K [x]

��

K [y] // K [x, y]

(xy − 1)

where x = x1/x0, y = x0/x1, deg(e) = −1, de = xy − 1.

Example 6.4 (Resolvent of the cuspidal cubic). Let X be the cuspidal cubic in P2 of
equation x20x1 = x32, and consider the affine open cover

X = U0 ∪ U1, U0 = {x0 6= 0}, U1 = {x1 6= 0} .

Then U01 = {x0x1 6= 0} = {x2 6= 0} and via the isomorphism C
≃
−−→ U0, w 7→ [w, 1, w3],

we have:

Γ(U0,OX) =
K [x, z]

(z − x3)
≃ K [w], x = w =

x2
x0
, z = w3 =

x1
x0
,

Γ(U1,OX) =
K [x, z]

(y2 − x3)
, x =

x2
x1
, y =

x0
x1
,

Γ(U01,OX) =
K [t, w]

(tw − 1)
, w =

x2
x0
, t =

x0
x2

.

The corresponding diagram over the nerve is:

S
·
:

K [x, y]

(y2 − x3)

x 7→t2, y 7→t3

−−−−−−−−→
K [t, w]

(tw − 1)

w 7→w
←−−−− K [w] .

An easy computation shows that a possible Reedy-Palamodov resolvent p : R→ S
·
is:

K [x, y, e1]

p1
��

// K [x, y, h, t, w, e1, e2, e3, e4]

p01
��

K [w]oo

p0=id

��K [x, y]

(y2 − x3)

x 7→t2, y 7→t3 // K [t, w]

(tw − 1)
K [w]oo

where: x, y, h, t, w have degree 0; e1, e2, e3, e4 have degree −1;

de1 = y2 − x3, de2 = hx− 1, de3 = tx− y, de4 = tw − 1;

p01(x) = t2, p01(y) = t3, p01(h) = w2, p01(t) = t, p01(w) = w .

It is interesting to notice that the Reedy cofibrant assumption forces to see the hyperbola
U01 as a complete intersection of 3 quadrics and a cubic in K 5 and not as a plane affine
conic.



16 MARCO MANETTI AND FRANCESCO MEAZZINI

7. The tangent and cotangent complexes

It is well known that to every noetherian separated finite-dimensional scheme X over K
are associated the tangent and cotangent complexes. Given a Reedy-Palamodov resolvent
R of X , the tangent complex is the class of Der∗(R,R) in the homotopy category of DG-Lie
algebras, and then by Theorem 6.2 it controls the deformation theory of X . Its cohomology
T ∗(X) is called tangent cohomology [21, 22]; by general results about deformation theory
via DG-Lie algebras, T 1(X) is the space of (classical) first order deformations, while T 2(X)
is the space of (classical) obstructions, cf. [21, Thm. 5.1 and Thm. 5.2].

The cotangent complex LX is an object in the (unbounded) derived category of quasi-
coherent sheaves and it can be used to compute the tangent cohomology by the formula
T i(X) = ExtiX(LX ,OX); moreover LX has coherent cohomology and therefore each T i(X)
is finite dimensional whenever X is proper. The standard reference for the cotangent com-
plex and for its application to deformations of schemes and diagrams is [15].

If X = Spec(S) is an affine K -scheme, then its cotangent complex is defined (up to
quasi-isomorphism) as the sheaf associated to the S-module ΩR/K ⊗R S:

[ ˜ΩR/K ⊗R S] ∈ D(QCoh(X))

where R → S is a cofibrant replacement in CDGA
≤0
K

and ΩR/K denotes the DG-module
of Kähler differentials over R.

According to [3, 5] it is possible to describe a representative of the cotangent complex
in terms of a Reedy-Palamodov resolvent also in the non affine case. Our goal is to present
another construction relying on a certain model for a DG-enhancement for the unbounded
derived category of quasi-coherent sheaves described in [19].

Recall that for every DG-algebra S ∈ CDGA
≤0
K

there exists a model structure on the
category DGMod(S) of DG-modules where ([7, 13]):

• weak equivalences are quasi-isomorphisms,
• fibrations are degreewise surjective morphisms,

• a complex F ∈ DGMod(S) is cofibrant if and only if for every cospan F
f
−→ G

g
←− H

with g a surjective quasi-isomorphism there exists a lifting h : F → H such that
f = gh,
• every DG-module is fibrant,
• cofibrations are degreewise split injective morphisms with cofibrant cokernel.

Now, let X be a Noetherian separated finite-dimensional scheme over a field K , fix an
open affine covering {Ui}i∈I together with its nerve N as defined in Section 6; consider the
following diagram

S
·
: N → CDGA

≤0
K

, Sα = Γ(Uα,OX)

as already defined in (6.1). A S
·
-module consists of the following data:

• an object Fα ∈ DGMod(Sα) for every α ∈ N ,
• a morphism fαβ : Fα⊗Sα

Sβ → Fβ in DGMod(Sβ) for every α ≤ β in N , satisfying
the cocycle condition fβγ ◦ (fαβ ⊗Sβ

idSγ
) = fαγ for every α ≤ β ≤ γ in N .

Notice that in the above definition each map fαβ : Fα ⊗Sα
Sβ → Fβ is equivalent to

its adjoint morphism Fα → Fβ in DGMod(Sα), where the Sα-module structure on Fβ is
given by Sα → Sβ .
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A morphism ϕ : F → G between S
·
-modules is the datum of a collection of morphisms

{ϕα : Fα → Gα}α∈N such that the diagram

Fα ⊗Sα
Sβ

ϕα //

fαβ

��

Gα ⊗Sα
Sβ

gαβ

��
Fβ ϕβ

// Gβ

commutes in DGMod(Sβ). We shall denote by HomS
·

(F ,G) the set of such morphisms,
and by Mod(S

·
) the category of S

·
-modules.

The objects we are mainly interested in are quasi-coherent S
·
-modules.

Definition 7.1 ([19, Definition 3.12]). In the above notation, an S
·
-module F ∈ Mod(S

·
)

is called quasi-coherent if for every α ≤ β in N the map

fαβ : Fα ⊗Sα
Sβ → Fβ

is a quasi-isomorphism of DG-modules over Sβ .

We shall denote by QCoh(S
·
) the full subcategory of quasi-coherent S

·
-modules. No-

tice that the subcategory of quasi-coherent S
·
-modules is closed both under (C,FW )-

factorisations and (CW,F )-factorisations, so that it is well-defined the homotopy category
Ho(QCoh(S

·
)) as the Verdier quotient of cofibrant quasi-coherent S

·
-modules modulo the

class of quasi-isomorphisms.Moreover, there is a natural inclusion functor Ho(QCoh(S
·
))→

Ho(Mod(S
·
)). Definition 7.1 is motivated by the following result, which was proven in [19,

Thm. 3.9 and Thm. 5.7].

Theorem 7.2. The category Mod(S
·
) admits a model structure where both fibrations and

weak equivalences are detected levelwise. Moreover, there exists an equivalence of triangu-
lated categories

Υ∗ : D(QCoh(X))→ Ho(QCoh(S
·
)) , Υ∗[F ] = [{Γ(Uα,F)}α∈N , ]

where Ho(QCoh(S
·
)) denotes the homotopy category of quasi-coherent S

·
-modules.

For a detailed discussion of the quasi-inverse of the equivalence above we refer to [19].
Here we only point out that the equivalence Υ∗ commutes in the natural way with restriction

to subcoverings. If Ñ ⊂ N is the nerve of a subcovering and S̃
·
: Ñ → CDGA

≤0
K

is the cor-

responding diagram, the natural restriction map QCoh(S
·
)→ QCoh(S̃

·
) is a properly de-

fined exact functor and by Theorem 7.2 the induced map Ho(QCoh(S
·
))→ Ho(QCoh(S̃

·
))

is an equivalence of triangulated categories.
By virtue of Theorem 7.2, it is convenient to describe the tangent and cotangent com-

plexes in terms of S
·
-modules. To this aim we first need to introduce the global analogue

of derivations and of Kähler differentials.

7.1. Global derivations and global Kähler differentials. This subsection is devoted
to introduce the global versions of derivations and Kähler differentials, in order to define
the (homotopy classes of) tangent and cotangent complexes in terms of S

·
-modules via the

equivalence of Theorem 7.2.

We begin by defining for every morphism η : R→ P of diagrams in Fun(C,CDGA
≤0
K

)

Der∗
K
(R,P ) ⊂

∏

a∈C

Der∗
K
(Ra, Pa)

the subset of sequences {αa}a∈C such that for every morphism f : a → b we have Pfαb =
αaRf , and the structure of Ra-module on Pa is induced by η. Notice that this is consistent
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with (5.3). Similarly one can define

Hom∗
S
·

(F ,G) ⊂
∏

a∈N

Hom∗
S
·

(Fα,Gα)

for every F ,G ∈ Mod(S
·
).

It is clear that every diagram R
η
−→ P

µ
−→ T induces by composition two morphisms

Der∗
K
(R,P )

µ∗

−→ Der∗
K
(R, T )

η∗

←− Der∗
K
(P, T )

which formally satisfy the usual properties of derivations in the model category CDGA
≤0
K

.

Recall that by [8, 23] for any given S ∈ CDGA
≤0
K

, the functor of Kähler differentials
admits a Quillen right adjoint given by the trivial extension:

Ω− ⊗− S : CDGA
≤0
K
↓ S ⇄ DGMod

≤0(S) : −⊕S .

This adjoint pair easily generalizes to the case of diagrams. Let X be a Noetherian sep-
arated finite-dimensional scheme over a field K , fix an open affine covering {Ui}i∈I to-
gether with its nerve N as defined in Section 6. Now consider the corresponding diagram

S
·
∈ Fun(N ,CDGA

≤0
K

) defined by

S
·
: N → CDGA

≤0
K

, Sα = Γ(Uα,OX)

as in (6.1). Then define the functor ΩN
− ⊗− S

·
: Fun(N ,CDGA

≤0
K

) ↓ S
·
→ Mod≤0(S

·
) as

follows:

• Mod≤0(S
·
) ⊆ Mod(S

·
) denotes the full subcategory of S

·
-modules concentrated in

non-negative degrees; it admits a model structure such that any cofibrant object
X ∈Mod≤0(S

·
) is also cofibrant when regarded as an object in Mod(S

·
), [19, Rem.

3.11].

•
(
ΩN
R ⊗R S·

)
α
= ΩRα

⊗Rα
Sα for every R ∈ Fun(N ,CDGA

≤0
K

) and every α ∈ N .
• for every α ≤ β the map

ΩRα
⊗Rα

Sα ⊗Sα
Sβ = ΩRα

⊗Rα
Sβ → ΩRβ

⊗Rβ
Sβ

is the one induced by Kähler differentials.

Notice that in the setting of Definition 7.7 we have ΩN
R ⊗R S·

= LR. Moreover, there
exists a bi-natural isomorphism

Hom∗
S
·

(ΩN
P ⊗P S·

,F) ∼= Der∗
K
(P,F)

for every P ∈ Fun(N ,CDGA
≤0
K

) and every F ∈Mod≤0(S
·
).

Remark 7.3. It is easy to show that the functor ΩN
− ⊗− S

·
: Fun(N ,CDGA

≤0
K

) ↓ S
·
→

Mod≤0(S
·
) defined above admits a right Quillen adjoint as in the affine case. In particu-

lar, ΩN
− ⊗− S

·
maps Reedy-cofibrant diagrams to cofibrant S

·
-modules. Moreover, by Ken

Brown’s Lemma it preserves weak equivalences between cofibrant objects.

Lemma 7.4. In the above setup, if R is Reedy cofibrant and µ is a weak-equivalence, then

Der∗
K
(R,P )

µ∗

−→ Der∗
K
(R, T ) is a quasi-isomorphism. Moreover, if η : R → P is a weak

equivalence between cofibrant objects in Fun(N ,CDGA
≤0
K

), then:

(1) the map η∗ : Der∗
K
(P, T )→ Der∗

K
(R, T ) defined above is a quasi-isomorphism,

(2) Der∗
K
(R,R) and Der∗

K
(P, P ) are quasi-isomorphic as DG-Lie algebras.

Proof. It is an easy consequence of Remark 7.3 and of standard arguments, see [18, Rem.
6.9] and [19, Lemma 6.14]. �

In particular, by Lemma 7.4 it follows that in the setting of Corollary 5.6 the homotopy
class of the DG-Lie algebra Der∗

K
(R,R) does not depend on the choice of the Reedy cofibrant

replacement R.
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Example 7.5. Let f : R→ S be a surjective morphism of cofibrant DG-algebras with ideal
I. Then the deformations of f are controlled by the DG-Lie algebra

M = {α ∈ Der∗
K
(R,R) | α(I) ⊂ I} ∼= Der∗

K
(R,R)×Der∗

K
(R,S) Der∗

K
(S, S) .

Consider a factorisation f : R
i
−→ H

p
−→ S with i a cofibration and p a trivial fibration.

Then R → H is a Reedy cofibrant resolution of R → S and we need to prove that the
DG-Lie algebra M is quasi-isomorphic to

L = Der∗
K
(R,R)×Der∗

K
(R,H) Der∗

K
(H,H) .

The obvious composition maps give a commutative diagram of complexes

Der∗
K
(R,R) // Der∗

K
(R,H)

����

Der∗
K
(H,H)

����

oooo

Der∗
K
(R,R) // // Der∗

K
(R,S) Der∗

K
(H,S)oooo

Der∗
K
(R,R) // // Der∗

K
(R,S) Der∗

K
(S, S)

OO

oo

where the double head arrows denote surjective morphisms and every vertical arrow is a
quasi-isomorphism. Notice that the assumption that S is cofibrant is used to ensure that
the map Der∗

K
(S, S) → Der∗

K
(H,S) is a quasi-isomorphism. By coglueing lemma we have

two quasi-isomorphisms

L
l // Der∗

K
(R,R)×Der∗

K
(R,S) Der∗

K
(H,S) M

moo

and an easy direct inspection shows that l is surjective. In order to finish the proof it is
sufficient to observe that the fibre product of the above cospan is the DG-Lie algebra of
derivations of the diagram R→ H → S, defined as in (5.3).

Example 7.6 (Derived functor of points). Given a morphism f : B → K in CDGA
≤0
K

we
are interested to morphisms in the homotopy category

B → A A ∈ DGArt
≤0
K

lifting f . Given a cofibrant resolution p : R → B, the above morphisms can be interpreted
as deformations of the diagram fp : R → K inducing a trivial deformation of R. Denoting
by I ⊂ R the kernel of fp, by Examples 5.7 and 7.5 the corresponding DG-Lie algebra is
equal to the homotopy fibre of the inclusion

{α ∈ Der∗
K
(R,R) | α(I) ⊂ I} → Der∗

K
(R,R) .

7.2. The quasi-coherent S
·
-module corresponding to the cotangent complex. Let

X be a Noetherian separated finite-dimensional scheme over a field K , with a fixed open
affine covering {Ui}i∈I . Consider the diagram S

·
as above together with a cofibrant re-

placement R→ S
·
in Fun(N ,CDGA

≤0
K

). Hence, according to Definition 6.1, R is a Reedy-
Palamodov resolvent for X .

Notice that by Lemma 7.4 the tangent complex Der∗
K
(R,R) is well-defined in the ho-

motopy category of DG-Lie algebras, i.e., it does not depend on the Reedy-Palamodov
resolvent R. Moreover, it is quasi-isomorphic (as a complex) to Der∗

K
(R,S

·
).

For what concerns the cotangent complex, we shall make use of the equivalence of The-
orem 7.2, so that we introduce the definition in terms of the homotopy category of quasi-
coherent S

·
-modules.
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Definition 7.7 (The cotangent complex). In the above notation, define the cotangent
complex to be the class [LR] ∈ Ho(QCoh(S

·
)), where the S

·
-module LR is defined by:

• LR,α = ΩRα
⊗Rα

Sα for every α ∈ N ,
• for every α ≤ β the map lαβ : LR,α⊗Sα

Sβ → LR,β is obtained applying the functor
Ω− ⊗− Sβ to the map Rα → Rβ .

Observe that by Remark 7.3 the homotopy class [LR] does not depend on the choice of
the resolvent. Therefore, in order to prove that Definition 7.7 is well-posed we only need to
show that the S

·
-module LR is quasi-coherent in the sense of Definition 7.1. We proceed

by proving a series of preliminary lemmas.
The assumptions in the following lemma are motivated by the fact that, if U = Spec(A)

is an affine scheme and V = Spec(B) ⊂ U is an open affine subset, then the morphism
A→ B is flat and the natural map B ⊗A B → B is an isomorphism.

Lemma 7.8. Let A → B be a flat morphism in CDGA
≤0
K

such that the natural map
B ⊗A B → B is a weak equivalence. Consider a commutative diagram

R
i //

��

S

��
A // B

with the vertical arrow cofibrant replacements and i a cofibration. Then ΩR⊗RB → ΩS⊗SB
is a trivial cofibration of B-modules.

Proof. Let j : S → S ⊗R S be the push-out of i by itself. We first show that j is a trivial
cofibration. By model category axioms cofibrations are closed under pushouts, so that we

only need to prove that j is a weak equivalence. Since the category CDGA
≤0
K

is left proper
and i : R→ S is a cofibration, the natural maps

S ⊗R S → S ⊗R B, S = S ⊗R R→ S ⊗R A,

are weak equivalences. By the universal property of push-out we have a diagram

R

f

��

i // S

g

��

��

A //

..

B

S ⊗R A

q
cc●●●●●●●●●

and q is a weak equivalence by the 2 out of 3 property. Now, since A → B is flat, the
composite map

S ⊗R S → S ⊗R B = (S ⊗R A)⊗A B → B ⊗A B

is a weak equivalence. Therefore the lemma follows by the 2 out of 3 property applied to
the commutative diagram

S
j //

Id
##●

●●
●●

●●
●●

● S ⊗R S

��

// B ⊗A B

��
S // B .

By Remark 7.3 the morphism ΩR⊗RB → ΩS ⊗S B is a cofibration (hence injective); in
view of the standard exact sequence

ΩR ⊗R B → ΩS ⊗S B → ΩS/R ⊗S B → 0 ,
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it is sufficient to show that ΩS/R ⊗S B is acyclic. Since S → S ⊗R S is a trivial cofibration
the module

ΩS⊗RS/S = ΩS/R ⊗R S = ΩS/R ⊗S S ⊗R S

is acyclic. Since S ⊗R S → B ⊗A B → B is a weak equivalence and ΩS/R is cofibrant as an
S-module, there exists a weak equivalence

ΩS/R ⊗S S ⊗R S → ΩS/R ⊗S B .

�

Proposition 7.9. Let A→ B be a flat morphism in CDGA
≤0
K

such that the natural map
B ⊗A B → B is a weak equivalence. Consider a commutative diagram

R
i //

��

S

��
A // B

with the vertical arrow cofibrant replacements. Then ΩR ⊗R B → ΩS ⊗S B is a weak
equivalence.

Proof. By taking a (C,FW)-factorisation of the natural map R ⊗ S → S we have the
diagrams

T

p

��
R

i //

j
??⑦⑦⑦⑦⑦⑦⑦⑦

��

S

g

��
A // B

S
h //

g

��

T

g◦p

��
B

id
// B

with j cofibration and p a trivial fibration admitting a cofibration h : S → T as a section.
Hence by Lemma 7.8 the maps

ΩR ⊗R B → ΩT ⊗T B ← ΩS ⊗S B

induced by j and h are trivial cofibrations. Moreover, the composition

ΩS ⊗S B → ΩT ⊗T B → ΩS ⊗S B

is the identity being h a section of p; therefore ΩT ⊗T B → ΩS ⊗S B is a weak equivalence.
The statement follows by considering the composition ΩR ⊗R B → ΩT ⊗T B → ΩS ⊗S B.

�

We are now ready to prove that Definition 7.7 is well-posed. Recall that by Definition 7.1
a S

·
-module F ∈ Mod(S

·
) is called quasi-coherent if the map fαβ : Fα ⊗Sα

Sβ → Sβ is a
quasi-isomorphism for every α ≤ β in N .

Theorem 7.10. Let X be a Noetherian separated finite-dimensional scheme over a field K ,
with a fixed open affine covering {Ui}i∈I . Consider the associated diagram S

·
as in (6.1),

together with a Reedy-Palamodov resolvent R→ S
·
. Then the S

·
-module LR defined in 7.7

is cofibrant and quasi-coherent.

Proof. Since LR = ΩN
R ⊗RS·

, the statement immediately follows by Remark 7.3 and Propo-
sition 7.9. �

Because of Theorem 6.2, it is important to concretely understand the homotopy class
of the DG-Lie algebra of derivations of a Reedy-Palamodov resolvent. To this aim, the
next result relates the cohomology of derivations of a Reedy-Palamodov resolvent with the
cotangent complex.
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Theorem 7.11. Let X be a Noetherian separated finite-dimensional scheme over a field K ,
with a fixed open affine covering {Ui}i∈I and its nerve N . Consider the associated diagram
S
·
as in (6.1), together with a Reedy-Palamodov resolvent R → S

·
. Then there exist an

isomorphism
H∗ (Der∗

K
(R,R)) ∼= H∗

(
Hom∗

S
·

(LR, S·
)
)
.

Proof. By Lemma 7.4 the map

Der∗
K
(R,R)→ Der∗

K
(R,S

·
) ∼= Hom∗

R(Ω
N
R , S·

) ∼= Hom∗
S
·

(ΩN
R ⊗R S·

, S
·
)

is a quasi-isomorphism. �

It is worth to point out that combining Theorem 6.2 and Theorem 7.11 we have that
the space of first order deformations is nothing but Ext1X(LX ,OX) and the obstructions
are contained in Ext2X(LX ,OX), where LX ∈ D(QCoh(X)) and Υ∗LX = [LR].

8. A remark about deformations of maps (after Horikawa, Ran and
Pridham)

The argument used in Section 6 easily extends to every morphism of separated schemes,
considered as a contravariant functor from the direct Reedy category {0 → 1} to the
category of separated schemes. More precisely, given any morphism f : X → Y of separated
schemes we can find a family of pairs {(Ui, Vi)}i∈I such that:

(1) the family {Ui} is an affine open cover of X ,
(2) the family {Vi} is an affine open cover of Y ;
(3) f(Ui) ⊂ Vi for every i ∈ I.

We then define the nerve N as the family of finite subsets α ⊂ I such that Vα 6= ∅. Then
the data X,Y, f is encoded by the diagram

S
·,· : N × {0→ 1} → CDGA

≤0
K
,

Sα,0 = Γ(Vα,OY ), Sα,1 = Γ(Uα,OX) .

By definition of the Reedy model structure, a diagram Qα,j, α ∈ N , j = 0, 1 over the small
category N × {0→ 1} is cofibrant if and only if for every α ∈ N the maps

colim
γ<α

Qγ,0 → Qα,0, colim
γ<α

Qγ,1 ⊗colim
γ<α

Qγ,0
Qα,0 → Qα,1

are cofibrations in CDGA
≤0
K

. Therefore Q
·,· is cofibrant if and only if Q

·,0 is cofibrant and
Q

·,0 → Q
·,1 is a cofibration.

In particular if R
·,· is a resolvent for f : X → Y , i.e., a Reedy cofibrant resolution of S

·,·,
then R

·,0 is a resolvent of Y , R
·,1 is a resolvent of X and R

·,0 → R
·,1 is a cofibration, cf.

Example 5.7. This implies for instance, considering R
·,1 as a R

·,0-module, that the natural
map

σ : Der∗(R
·,1, R·,1)→ Der∗(R

·,0, R·,1)

is surjective, while the natural map

τ : Der∗(R
·,0, R·,0)→ Der∗(R

·,0, R·,1)

is injective. Therefore we have a short exact sequence

0→ Der∗(R
·,·, R·,·)→ Der∗(R

·,0, R·,0)⊕Der∗(R
·,1, R·,1)

σ−τ
−−−→ Der∗(R

·,0, R·,1)→ 0 .

We have proved that the DG-Lie algebra on the left controls the deformations of f . Thus,
setting T i(f) = Hi(Der∗(R

·,·, R·,·)) we have that T
1(f) is the space of first order deforma-

tions, while T 2(f) is the obstruction space. The resulting cohomology long exact sequence
(8.1)
· · ·T i(f)→ T i(X)⊕ T i(Y )→ Hi(Der∗(R

·,0, S·,1))→ T i+1(f)→ T i+1(X)⊕ T i+1(Y ) · · ·
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is familiar to most people working in deformation theory, since the same has been proved
over the field of complex numbers by Horikawa [12] in the smooth case (see also [20, p.
184] and [14, Rem. 5.2]), by Ran [25] in the reduced case and in full generality by Pridham
(Theorem 3.2 and Lemma 3.3 applied to Example 3.3 of [24]).

The same considerations hold, mutatis mutandis, for every diagramX : Cop → Schemes

of separated K -schemes over the opposite of a direct Reedy category: for simplicity of
notation, for every morphism f : a→ b in C we shall use the same symbol f : Xb → Xa to
denote the corresponding morphism of schemes X(f). Here the role of affine open subsets
is played by elements

U
·
∈

∏

a∈C

{affine open subsets of Xa}

such that f(Ub) ⊂ Ua for every morphism f : a → b in C. The fact that C is Reedy direct
easily implies that there exists a “covering” {Ui,·} of X made by elements as above, with
corresponding nerve N . Finally the deformations of the diagram of schemes X are the same
as the deformations of the diagram of algebras

S
·,· : N × C → CDGA

≤0
K
, Sα,a = Γ(Uα,a,OXa

) ,

that can be studied as in Section 5, since N × C is direct Reedy.
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this paper.
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[15] L. Illusie: Complexe cotangent et déformations I, II. Springer-Verlag LNM 239 (1971), 283 (1972).
[16] M. Manetti: Extended deformation functors. Internat. Math. Res. Notices 14, 719-756, 2002.
[17] M. Manetti: Lie description of higher obstructions to deforming submanifolds. Ann. Sc. Norm. Super.

Pisa Cl. Sci., 6, (2007) 631-659.
[18] M. Manetti, F. Meazzini: Formal deformation theory in left-proper model categories. To appear in

New York Jounal of Mathematics; arXiv:1802.06707 (2018).
[19] F. Meazzini: A DG-enhancement for D(QCoh(X)) with applications in deformation theory.

arXiv:1808.05119, (2018).

http://arxiv.org/abs/0705.4532
http://arxiv.org/abs/1802.06707
http://arxiv.org/abs/1808.05119


24 MARCO MANETTI AND FRANCESCO MEAZZINI

[20] M. Namba: Families of meromorphic functions on compact Riemann surfaces. Lecture Notes in Math-
ematics, 767, Springer-Verlag, New York/Berlin, (1979).

[21] V.P. Palamodov: Deformations of complex spaces. Uspekhi Mat. Nauk. 31:3 (1976) 129-194. Transl.
Russian Math. Surveys 31:3 (1976) 129-197.

[22] V.P. Palamodov: Deformations of complex spaces. In: Several complex variables IV. Encyclopaedia of
Mathematical Sciences 10, Springer-Verlag (1986) 105-194.

[23] D. Quillen: On the (co-)homology commutative rings. Applications of Categorical Algebra (Proc. Sym-
pos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., pp. 65-87, (1970).

[24] J.P. Pridham: Derived deformations of schemes. Communications in Analysis and Geometry, Volume
20, 529-563 (2012).

[25] Z. Ran: Deformations of maps. In: Algebraic Curves and Projective Geometry. Proc. Trento 1988,
Springer L.N.M.

[26] E. Sernesi: Deformations of Algebraic Schemes. Grundlehren der mathematischen Wissenschaften,
334, Springer-Verlag, New York Berlin, (2006).
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