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The investigation of solar-like oscillations for probing the star

interiors has encountered a tremendous growth in the last decade.

For ground based observations the most important difficulties in

properly identifying the true oscillation frequencies of the stars

are produced by the gaps in the observation time-series and

the presence of atmospheric plus the intrinsic stellar granulation

noise, unavoidable also in the case of space observations. In this

paper an innovative neuro-wavelet method for the reconstruction

of missing data from photometric signals is presented. The

prediction of missing data was done by using a composite

neuro-wavelet reconstruction system composed by two neural

networks separately trained. The combination of these two neural

networks obtains a ”forward and backward” reconstruction. This

technique was able to provide reconstructed data with an error

greatly lower than the absolute a priori measurement error. The

reconstructed signal frequency spectrum matched the expected

spectrum with high accuracy.

Index Terms—Kepler Mission, Recurrent Neural Networks,

Wavelet Theory, Photometry, Missing Data

I. INTRODUCTION

The investigation of solar-like oscillations for main se-
quence, sub giant and red giant stars for probing the star
interiors has encountered a tremendous growth in the last
decade. This science, known as Asteroseismology, is fairly
increasing our knowledge about stellar physics, especially after
the launch of the NASA space mission Kepler in 2009 [1].

The data acquired for the study of solar-like oscillations are
mainly of two different types, spectroscopic and photometric.
Although in both cases they are in the form of a temporal
sequence of measurements (time-series) and are able to probe
the same physical quantities, the information carried on is
not equivalent and their usage appears to be complementary.
Ground-based observations, which usually detect oscillations
by exploiting very high-precision Doppler shift measurements
of the spectroscopic lines, can probe a wider number of modes
of oscillations because of their high sensitivity to spatial
resolution upon the stellar disk. Nonetheless, ground-based
projects are able to follow up one target per time and heavily
suffer the alternating of day and night due to Earths rotation,
which hence does not allow for continuous-time observations.
Furthermore, the effort and workload required for assembling
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the spectrometers used to acquire the data do not allow to use
such systems on space.

For ground-based observations the most important difficul-
ties in properly identifying the true oscillation frequencies of
the stars are produced by the gaps in the observation time-
series and the presence of atmospheric plus the intrinsic stellar
granulation noise, the latter unavoidable also in the case of
space observations. The gaps are caused by the alternation of
day and night and casual interruptions of data flow due to
bad weather conditions; the first introduces possible shifts of
11.57 µHz n the identified frequencies and the second spurious
frequencies. The noise can produce peaks whose amplitude is
even larger than the real stellar frequencies. All the mentioned
disturbs make the identification of stellar oscillations uncertain
in several cases. In this paper the problem of data prediction in
order to reconstruct the gaps present in the observation time-
series has been addressed by using an hybrid computation
methods based on wavelet decomposition and recurrent neural
networks (RNNs).

Wavelet analysis has been used in order to reduce the data
redundancies and selectively remove stellar granulation noise
so obtaining a representation that can express their intrinsic
structure, while the neural networks (NNs) are used for the
exploiting the complexity of non-linear data correlation and
to perform the data prediction. In order to minimize the
error propagation, we designed a composite network, with
doubled neural paths, to obtain a ”forward and backward”
reconstruction. This composite WRNN uses as input several
time steps of the signal, in the past and in the future with
respect to the gap.

II. KEPLER DATA AS A PROBE FOR TESTING WRNN
METHOD

New missions based on photometric acquisitions have been
launched on space in the few past years. The latest one in
particular, the NASA Kepler mission, which is presently in
the middle of its running, is providing an enormous amount
of an unprecedented quality data, with a combined differential
photometric precision high to 2 · 106 for a 12th magnitude
solar-like star for a 6.5 hour integration [2]. In fact, the pho-
tometric observations allow the great advantage of acquiring
brightness measurements on hundred of targets at the same
time and, most of all, they can be carried out directly from
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Fig. 1. The light flux time-series and the relative power spectrum

main sequence to red giants stars. The data used in this paper were collected
by Kepler satellite with a sampling rate of about 58.7 s, as light flux measure-
ment and corrected flux estimation with the related absolute error. The data
were relative to the star KIC 3102411 measured at short cadence in the season
Q2.2. The most common way to analyze a time-series and thus to derive the
frequencies of oscillations is to convert the data acquired on the time domain to
a set of values that range in a frequency domain (the Power Spectrum). This
is done in general by adopting a Fourier analysis on the time-series, both of
radial velocities (from Doppler shift measurements) and of radiation flux counts
(from photometric acquisitions) [3]. The result is shown in Fig. 1, where the
upper panel represents the light-curve, i.e. a time-series of radiation flux counts,
for a star observed by Kepler and the lower panel is its relative Fourier trans-
form reported in a logarithmic scale. As clearly visible, a bump of power arises
around 150 µHz, showing the typical pattern for a set of p-mode frequencies
that roughly follows a gaussian shape peaked at its maximum frequency ⌫max.
As one can intuitively understand, the longer is the observation run, the higher

Fig. 1. The light flux time-series and the relative power spectrum

space, allowing scientists to weed out the problem of the daily
gap, which strongly hampers the quality of the results, but
not the problem of granulation noise. Long term acquisitions
of brightness variations on the surface of stars are able to
tell us a lot about solar-like oscillations as they are directly
correlated to variations in temperature of the surface layers. By
the continuous production of new data sets, many interesting
studies can be made upon the stars falling in the Kepler field
o view (FOV), from early main sequence to red giants stars.

The data used in this paper were collected by Kepler satellite
with a sampling rate of about 58.7 s, as light flux measurement
and corrected flux estimation with the related absolute error.
The data were relative to the star KIC 3102411 measured at
short cadence in the season Q2.2. The most common way to
analyze a time-series and thus to derive the frequencies of
oscillations is to convert the data acquired on the time domain
to a set of values that range in a frequency domain (the Power
Spectrum). This is done in general by adopting a Fourier
analysis on the time-series, both of radial velocities (from
Doppler shift measurements) and of radiation flux counts
(from photometric acquisitions) [3].

The result is shown in Fig. 1, where the upper panel
represents the light-curve, i.e. a time-series of radiation flux
counts, for a star observed by Kepler and the lower panel is
its relative Fourier transform reported in a logarithmic scale.
As clearly visible, a bump of power arises around 150 µHz,
showing the typical pattern for a set of p-mode frequencies
that roughly follows a gaussian shape peaked at its maximum
frequency ⌫max. As one can intuitively understand, the longer
is the observation run, the higher is the frequency resolution
at which the frequency peaks in the power spectrum can be
measured. The presence of huge gaps equally spaced in the
time-series, as in the case of the daily gap, causes the arising
of fictitious peaks in the power spectrum, which are not real
frequencies of oscillation and that consequently affect the
identification of the true p modes by hampering the true pattern
of the solar-like excess of power in the power spectrum.

III. THE WRNN METHODOLOGY

The reconstruction of missing data from photometric time-
series was done by using a composite neuro-wavelet recon-
struction technique. RNNs are able to predict the continuation
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Fig. 2. Wavelet decomposition and thresholding

exhibit the following properties:

+1Z

�1

 (x) dx = 0. (1)

� (x)�2 =

+1Z

�1

 (x) ⇤(x) dx = 1. (2)

is called wavelet if it can be used to define a Hilbert basis, that is a complete
system, for the Hilbert space L

2(R) of square integrable functions. The Hilbert
basis is constructed as the family of functions { j,k : j, k 2 Z} by means of

dyadic translations and dilations of  ,  j,k(x) =
p

2j(2j
x � k). For an extended

treatment one can consult [10],[11],[12]. It is known in literature that the star
granulation produces temporal variations in the light flux. These variations, at
frequencies greater than 100 µHz, produce a quasi-white signal-related noise ef-
fect. Even if it is not possible to adapt a neural network to this kind of noise,
the used wavelet decomposition permits to locate the coe�cients bands related
to frequencies from about 4250 µHz to higher frequencies. Thresholding to zeros
these two related bands (Fig. 2), the resulting coe�cients and residuals carries
the relevant information for the predictions. These wavelet coe�cients were so
provided as input (ui(t)) to the system. Another positive e�ect is that these
wavelet coe�cients provide a less redundant representation of the information
carried out by the signal. This e�ect was proven to be an advantage for a correct
and e�cient training of recurrent neural networks [13],[14],[15]. As yet shown by
a previous work of the authors [16], a properly designed hybrid neuro-wavelet
recurrent network is able to execute wavelet reconstruction and prediction of
a signal. The selected neural networks are composed by two hidden layers of

Fig. 2. Wavelet decomposition and thresholding

of a time series amounts to picking one of a class of functions
so as to approximate the input-output behavior in the most
appropriate manner. For deterministic dynamical behaviors,
the observation at a current time point can be modeled as
a function of a certain number of preceding observations.
In such cases, the model used should have some internal
memory to store and update context information [4], [5]. This
is achieved by feeding the network with a delayed version
of the past observations, commonly referred to as a delay
vector or tapped delay line. These networks do not try to
achieve credit assignment back through time but instead use
the previous state as a part of the current input. Such a simple
approach may be seen as a natural extension to feedforward the
networks in much the same way that ARMA models generalize
autoregressive models.

A network with a rich representation of past outputs, is
a fully connected recurrent neural network, known as the
Williams-Zipser network (NARX networks) [6], [7], [8]. For
stochastic phenomena, like the considered ones, real time
recurrent learning (RTRL) has proven to be very effective,
in fact RTRL based training of the RNN is made upon
minimizing the instantaneous squared error at the output of the
first neuron of the RNN [6], [9]. The reconstruction system is
composed by two NARX RNNs with the same topology and
number of neurons but separately trained with RTRL algorithm
(Fig. 4). A complete description of RTRL algorithm, NARX
and RNNs can be found in [8]. The first one is trained to
predict the signal samples one step ahead in the future, while
the second one is trained to predict the signal samples one step
backward in the past. The combination of these two neural
networks obtains a ”forward and backward” reconstruction
(Fig. 4). This reconstruction technique was able to minimize
the error propagation and, also, the possibility to conduct a
double check verification of the reconstructed data.

At a first time the selected neural networks were trained

to reconstruct missing data from a photometric time-serie
which was yet proven to have an high cross-correlation degree.
Although different kinds of topology and size variations were
implemented, the system was not able to provide predictions
with enough accuracy. On the other hand, there was evidence
of misleading data sequences avoiding a correct training of
the networks. At a successive step the same procedure was
adopted, but, this time, providing as input the wavelet decom-
positions of the signal. A function  2 L

2(R) that exhibit the
following properties:

+1Z

�1

 (x)dx = 0 (1)

|| (x)||2 =

+1Z

�1

 (x) ⇤(x)dx = 1 (2)

is called wavelet if it can be used to define a Hilbert basis,
that is a complete system, for the Hilbert space L

2(R of square
integrable functions. The Hilbert basis is constructed as the
family of functions { j,k : j, k 2 Z} by means of dyadic
translations and dilations of  , j,k(x) =

p
2j(2j

x � k). For
an extended treatment one can consult [10], [11], [12]. It is
known in literature that the star granulation produces temporal
variations in the light flux. These variations, at frequencies
greater than 100 µHz, produce a quasi-white signal-related
noise effect. Even if it is not possible to adapt a neural network
to this kind of noise, the used wavelet decomposition permits
to locate the coefficients bands related to frequencies from
about 4250 µHz to higher frequencies. Thresholding to zeros
these two related bands (Fig. 2) the resulting coefficients and
residuals carries the relevant information for the predictions.

These wavelet coefficients were so provided as input (ui(t))
to the system. Another positive effect is that these wavelet
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Fig. 3. The radial basis transfer function f(x) and the relative wavelet function f̃(x)

16 neurons and a single output neuron. The wavelet decomposition of the time
series is given as N ⇥ 4 input vectors with a 3-step delay and a 1-step out-
put feedback. While the forward network was trained with coe�cients at time
t0 to predict output signals s(t0 + 1), the backward network was trained to
backward reconstruct the signal at a previous time (t0 � 1) in the past. For
clarity, on describing the forward neural network with a functional of the type
F [u(t)] = y(t + 1), it follows that the backward network will be described by a
similar F̃ [u(�t)] = ỹ(�t � 1). In this manner, at the end of a correct training
of the selected neural networks, it will be possible to reconstruct missing part
of the data series using both the neural networks. The forward network will re-
construct forward in time the missing part from the beginning to his mid-point.
The backward network will reconstruct backward in time from the ending to the
same mid-point of the same gap. The resulting reconstructed signal s̃, from a
signal s with missing data in the interval [t1; t3] will be:

s̃(t) =

8
>><

>>:

s (t) t 2 ] �1 , t1 [
y (t) t 2 [ t1 , t2 [
ỹ (t) t 2 ] t2 , t3 ]
s (t) t 2 ] t3 , +1 [

(3)

In the present paper the implemented WRNN is able to reconstruct a signal from
wavelet coe�cients, but it is also capable to predict these wavelet coe�cients,
and, then, to reconstruct the predicted signal. To obtain this behavior some rules
had to be applied during the design and implementation work. For reasons that
will be cleared ahead, all the hidden layers have a pair neuron number, and,
also, to permit in sequence the wavelet coe�cient exploitation and the signal
reconstruction, a double hidden layer is required in the proposed architecture.
As for the hidden layers the neurons activation function (transfer function) have
to simulate a wavelet function. It is not possible to implement a wavelet function
itself as transfer function for a forecast oriented time predictive neural network,

Fig. 3. The radial basis transfer function f(x) and the relative wavelet function f̃(x)

coefficients provide a less redundant representation of the
information carried out by the signal. This effect was proven
to be an advantage for a correct and efficient training of
recurrent neural networks [13], [14], [15]. As yet shown by a
previous work of the authors [16], a properly designed hybrid
neuro-wavelet recurrent network is able to execute wavelet
reconstruction and prediction of a signal. The selected neural
networks are composed by two hidden layers of 16 neurons
and a single output neuron.

The wavelet decomposition of the time series is given as
N ⇥ 4 input vectors with a 3-step delay and a 1-step out-
put feedback. While the forward network was trained with
coefficients at time t0 to predict output signals s(t0 + 1), the
backward network was trained to backward reconstruct the
signal at a previous time (t0 � 1) in the past. For clarity, on
describing the forward neural network with a functional of the
type F [u(t)] = y(t+1), it follows that the backward network
will be described by a similar F̃ [u(�t)] = ỹ(�t � 1). In this
manner, at the end of a correct training of the selected neural
networks, it will be possible to reconstruct missing part of
the data series using both the neural networks. The forward
network will reconstruct forward in time the missing part from
the beginning to his mid-point. The backward network will
reconstruct backward in time from the ending to the same
mid-point of the same gap. The resulting reconstructed signal
s̃, from a signal s with missing data in the interval [t1; t3] is

s̃(t) =

8
>><

>>:

s(t) t 2] � 1, t1[
y(t) t 2 [t1, t2[
ỹ(t) t 2]t2, t3]
s(t) t 2]t3, +1[

(3)

In the present paper the implemented WRNN is able to recon-
struct a signal from wavelet coefficients, but it is also capable
to predict these wavelet coefficients, and, then, to reconstruct
the predicted signal. To obtain this behavior some rules had
to be applied during the design and implementation work. For
reasons that will be cleared ahead, all the hidden layers have
a pair neuron number, and, also, to permit in sequence the

wavelet coefficient exploitation and the signal reconstruction,
a double hidden layer is required in the proposed architecture.
As for the hidden layers the neurons activation function
(transfer function) have to simulate a wavelet function. It is
not possible to implement a wavelet function itself as transfer
function for a forecast oriented time predictive neural network,
this because wavelets do not verify some basic properties such
as the absence of local minima, and does not provide by itself
a sufficiently graded response [17].

In the existent range of possible transfer functions only
some particular classes approximate the functional form of
a wavelet. In this work the radial basis functions (radbas)
were chosen as transfer functions, indeed this particular kind
of functions well describes in first approximation half of a
wavelet, even if these functions do not verify the properties
shown by (1) and (2). Anyway, after scaling, shift and repeti-
tion of the chosen activation function, it is possible to obtain
several mother wavelet filters. Let f : [�1; 1] ! R+ to be the
choosen transfer function, then

f̃(x) = f̃(x + 2k) =

⇢
+f(2x + 1) x 2 [�1, 0]
�f(2x � 1) x 2 [0, 1]

(4)

verifies all the properties of a wavelet function. So it is possible
for the selected neural networks to simulate a wavelet by using
the radbas function defined in the [1; 1] real domain. It is
indeed possible to verify that

2k+1Z

2h+1

f̃(x)dx = 0 8 h < k 2 Z (5)

It was shown that, in order to simulate a wavelet function,
the chosen transfer functions must be symmetrically periodical
to emulate a wavelet. This is the reason for choosing a pair
number of neurons in the aim to have the same number
of positive and negative layer weights in the reconstruction
layer. Theoretically, if this happens, then the neuron pairs
of the second layer are emulating exactly a reconstruction
filter. Although this was a theoretical schema, there are strong
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this because wavelets do not verify some basic properties such as the absence of
local minima, and does not provide by itself a su�ciently graded response [17].
In the existent range of possible transfer functions only some particular classes
approximate the functional form of a wavelet. In this work the radial basis func-
tions (radbas) were chosen as transfer functions, indeed this particular kind of
functions well describes in first approximation half of a wavelet, even if these
functions do not verify the properties shown by (1) and (2). Anyway, after scal-
ing, shift and repetition of the chosen activation function, it is possible to obtain
several mother wavelet filters. Let f : [�1; 1] ! R+ to be the choosen transfer
function, then

f̃(x) = f̃(x + 2k) =

⇢
+ f(2x + 1) x 2 [� 1 , 0 ]
� f(2x � 1) x 2 [ 0 , 1 ]
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verifies all the properties of a wavelet function. So it is possible for the selected
neural networks to simulate a wavelet by using the radbas function defined in
the [�1; 1] real domain. It is indeed possible to verify that
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It was shown that, in order to simulate a wavelet function, the chosen transfer
functions must be symmetrically periodical to emulate a wavelet. This is the
reason for choosing a pair number of neurons in the aim to have the same number
of positive and negative layer weights in the reconstruction layer. Theoretically,
if this happens, then the neuron pairs of the second layer are emulating exactly
a reconstruction filter. Althoug this was a theoretical schema, there are strong
reasons for the weights, in this experimental setup, to have a non-zero sum,
because the neural network beyond to perform the inverse wavelet transform
must perform also the signal prediction.

Fig. 4. Neural networks structures (left), Forward and Backward reconstruction (right)

reasons for the weights, in this experimental setup, to have a
non-zero sum, because the neural network beyond to perform
the inverse wavelet transform must perform also the signal
prediction.

IV. RESULTS AND CONCLUSION

We performed simulations on one month photometric survey
of the star KIC 3102411 observed during the season Q2.2
from the Kepler orbital telescope with a sampling rate of about
58.847 s and so a sampling frequency of almost 1.7 · 102 Hz.
Wavelet analysis was used in order to remove the data sparsity
and to thresh- old the higher frequencies (mostly characteristic
of the star granulation and intrinsically affected by a signal-
correlated time-evolving noise). In particular the lower two
sub-bands of the decomposition were substituted with zero-
vectors. In this manner the filtered reconstructed signal was
transferred to the neural networks. To test the capabilities of
the system, several gaps, ranging from 2 to 10 samples, were
artificially placed at random positions in the data series.

The trained forward and backward reconstruction system
was able to reconstruct the missing data with an error greatly
lower than the absolute a priori measurement error. The
reconstructed signal frequency spectrum matches the expected
spectrum with high accuracy, as shown in Figs. 5 and 6.
This paper has outlined the advantage of a composite hybrid
neuro-wavelet system as advanced reconstruction tool for
photometric time-series. This technique leads to implement
a new generation of tools based on recurrent neural networks
with the future possibility of further developments such as
embedded system for data reconstruction of corrupted time-
series for noise-affected survey contests.
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4 Results and conclusion
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a sampling rate of about 58.847 s and so a sampling frequency of almost 1.7·10�2

Hz. Wavelet analysis was used in order to remove the data sparsity and to thresh-
old the higher frequencies (mostly characteristic of the star granulation and in-
trinsically a�ected by a signal-correlated time-evolving noise). In particular the
lower two sub-bands of the decomposition were substituted with zero-vectors.
In this manner the filtered reconstructed signal was transferred to the neural
networks. To test the capabilities of the system, several gaps, ranging from 2 to
10 samples, were artificially placed at random positions in the data series. The
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