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Abstract

Let (M,ω, J, g) be a non-compact almost Kähler manifold. In this paper we provide various criteria that
assure that ωk induces a non trivial class in the reduced Lp maximal/minimal cohomology of (M, g). Fur-
thermore in the last part we explore some topological applications of our results.
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Introduction

Let (N,ω) be a compact symplectic manifold of dimension 2n. Among its basic properties there is the well
known fact that ωk induces a non trivial class in the de Rham cohomology of N , that is

0 6= [ωk] ∈ H2k
dR(N) (1)

for any k = 1, ..., n. Consider now a non-compact symplectic manifold (M,ω). Let J be an almost complex
structure compatible with ω and let g be the Riemannian metric induced by ω and J , that is g(X,Y ) :=
ω(X, JY ) for any X,Y ∈ X(M). Usually in the literature a manifold M equipped with three tensors ω, J
and g as above is called an almost Kähler manifold, see e.g. [35]. For various reasons, besides the usual de
Rham cohomology, in the non-compact setting it is also interesting to consider the Lp-de Rham cohomology
which, roughly speaking, is defined as the quotient between Lp-closed forms modulo Lp-exact forms 1. Thus,
looking at (1), it is natural to wonder whether something similar holds true also for the Lp-cohomology of a
non-compact almost Kähler manifold. Certainly we cannot expect that a generalization of (1) holds true for
an arbitrary non-compact almost Kähler manifold without any further assumption on (M,ω, J, g) or p. First,
as ω is parallel with respect to some Hermitian connection, it is necessary to assume that volg(M) < ∞ in
order to have ωk ∈ LpΩ2k(M, g) and p ∈ [1,∞). Secondly there are celebrated vanishing theorems for the
L2-cohomology of certain complete Kähler manifolds (Z, h) based on the fact that the corresponding Kähler
form ω admits a primitive in L∞Ω1(Z, h), that is there exists η ∈ Ω1(Z) ∩ L∞Ω1(Z, h) such that d1η = ω, see
e.g. [22] and [28]. Thus we can say that the aim of this paper is to provide an answer to the following question:

• Let (M,ω, J, g) be a non-compact almost Kähler manifold. Under what circumstances does ωk induce a
non-trivial class in the Lp-cohomology of (M, g)?

We have already mentioned above that we are led to assume volg(M) < ∞. In what follows we will see that
another important property is the q-parabolicity (and other criteria inspired by the notion of q-parabolicity)
of (M, g). Let us now provide some more details by explaining the structure of this paper. The first section
is devoted to the background material about Lp-cohomology and almost Kähler manifolds. The second section
is split in two parts. Its first subsection collects various technical propositions that will be needed later. The
second subsection contains the main results of this paper. More precisely it is devoted to various criteria assuring

1We refer to the first section of this paper for a precise definition.
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the non-vanishing of [ωk] in H
2k

p,max /min(M, g), where H
2k

p,max /min(M, g) is the reduced Lp-maximal/minimal

cohomology of (M, g) respectively, see (5) and (7). Concerning the non-vanishing of [ωk] in H
2k

p,max(M, g) we
prove the following

Theorem 0.1. Let (M,ω, J, g) be a possibly incomplete almost Kähler manifold of finite volume and dimension

2m > 0. Assume that H
2m

p,max(M, g) = H
2m

p,min(M, g) for some 1 ≤ p <∞. Then ωk induces a non trivial class

in H
2k

q,max(M, g) for any k = 1, 2, ...,m and q ∈ [p,∞].

Requiring (M, g) to be q-parabolic, see Def. 1.3, we can also deduce the non-vanishing of [ωk] in H
2k

p,min(M, g)
for certain p. More precisely we have

Theorem 0.2. Let (M,ω, J, g) be a possibly incomplete almost Kähler manifold of finite volume and dimension
2m > 0. Assume that (M, g) is p-parabolic with 1 < p <∞ and let p′ = p/(p− 1). Then:

1. For any k = 1, 2, ...,m, ωk induces a non trivial class in H
2k

q,max(M, g) for any q ∈ [p′,∞].

2. For any k = 1, 2, ...,m, ωk induces a non trivial class in H
2k

q,min(M, g) for any q ∈ [1, p].

Finally the last section contains various examples and applications. We exhibit, especially in the framework
of Kähler manifolds, various examples of metrics satisfying the above theorems. Moreover we show some
topological applications of our results. In particular we prove the following

Theorem 0.3. Let (X,h) be a compact and irreducible Kähler space of complex dimension m. Assume that
every point p ∈ sing(X) has a local base of open neighborhoods whose regular parts are connected. Then

H2k(X,R) 6= {0}

for each k = 0, 1...,m. In particular if X is a compact and irreducible normal Kähler space then

H2k(X,R) 6= {0}

for each k = 0, ...,m.

Acknowledgments. This work was performed within the framework of the LABEX MILYON (ANR-10-
LABX-0070) of Université de Lyon, within the program ”Investissements d’Avenir” (ANR–11–IDEX–0007)
operated by the French National Research Agency (ANR). It is a pleasure to thank Markus Banagl, Jacopo
Gandini, Luca Migliorini and Jon Woolf for helpful conversations.

1 Background material

Before starting we point out that in this paper a manifold M will be always assumed to be connected. The aim
of this section is to recall briefly some basic notions about Lp-spaces and Lp-cohomology. We refer to [14], [15],
[29] and [38] for proofs and more details. Let (M, g) be an open and possibly incomplete Riemannian manifold of
dimension m and let dvolg be the one-density associated to g. We consider M endowed with the corresponding
Riemannian measure, see for instance [20] pag. 59 or [4] pag. 29. A k-form ω is said measurable if, for any
trivialization (U, φ) of ΛkT ∗M , φ(ω|U ) is given by a k-tuple of measurable functions. Given a measurable k-form
ω the pointwise norm |ω|g is defined as |ω|g := (g(ω, ω))1/2, where with a little abuse of notation we still label
by g the metric induced by g on ΛkT ∗M . Then for every p ∈ [1,∞) we can define LpΩk(M, g) as the space of
measurable k-forms such that

‖ω‖LpΩk(M,g) :=

(∫
M

|ω|pg dvolg

)1/p

<∞.

For each p ∈ [1,∞) we have a Banach space, for each p ∈ (1,∞) we get a reflexive Banach space and in the
case p = 2 we have a Hilbert space whose inner product is

〈ω, η〉L2Ωk(M,g) :=

∫
M

g(ω, η) dvolg .
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Moreover Ωkc (M), the space of smooth k-forms with compact support, is dense in LpΩk(M, g) for p ∈ [1,∞).
Finally L∞Ωk(M, g) is defined as the space of measurable k-forms whose essential supp is bounded, that is the
space of measurable k-forms such that |ω|g is bounded almost everywhere. Also in this case we get a Banach
space.
Consider now the de Rham differential dk : Ωkc (M)→ Ωk+1

c (M) and let dtk : Ωk+1
c (M) −→ Ωkc (M) be its formal

adjoint. As it is well known dtk is the differential operator uniquely characterized by the following property: for
each ω ∈ Ωkc (M) and for each η ∈ Ωk+1

c (M) we have∫
M

g(ω, dtkη) dvolg =

∫
M

g(dkω, η) dvolg .

For any p ∈ [1,∞) we can look at dk as an unbounded, densely defined and closable operator acting be-
tween LpΩk(M, g) and LpΩk+1(M, g). In general dk admits several closed extensions. For our purposes
we recall now the definitions of the maximal and minimal one. The domain of the maximal extension of
dk : LpΩk(M, g) −→ LpΩk+1(M, g) is defined as

D(dk,max,p) := {ω ∈ LpΩk(M, g) : there is η ∈ LpΩk+1(M, g) such that

∫
M

g(ω, dtkφ) dvolg = (2)

=

∫
M

g(η, φ) dvolg for each φ ∈ Ωk+1
c (M)}. In this case we put dk,max,pω = η.

In other words the maximal extension of dk is the one defined in the distributional sense. The domain of the
minimal extension of dk : LpΩk(M, g) −→ LpΩk+1(M, g) is defined as

D(dk,min,p) := {ω ∈ LpΩk(M, g) such that there is a sequence {ωi} ∈ Ωkc (M) with ωi → ω (3)

in LpΩk(M, g) and dkωi → η in LpΩk+1(M, g) to some η ∈ LpΩk+1(M, g)}. We put dk,min,pω = η.

Briefly the minimal extension of dk is the closure of Ωkc (M) under the graph norm of dk. Clearly D(dk,min,p) ⊂
D(dk,max,p) and dk,max,pω = dk,min,pω for any ω ∈ D(dk,min,p). Note that for k = 0 the maximal domain
D(d0,max,p) is nothing but the Sobolev space W 1,p(M, g) while the minimal domain D(d0,min,p) is nothing but

the Sobolev space W 1,p
0 (M, g), that is the closure of C∞c (M) in W 1,p(M, g).

Also in the case p =∞ dk admits a closed extension dk,max,∞ : L∞Ωk(M, g) −→ L∞Ωk+1(M, g) defined as

D(dk,max,∞) := {ω ∈ L∞Ωk(M, g) : there is η ∈ L∞Ωk+1(M, g) such that

∫
M

g(ω, dtkφ) dvolg = (4)

=

∫
M

g(η, φ) dvolg for each φ ∈ Ωk+1
c (M)}. In this case we put dk,max,∞ω = η.

In other words a measurable k-form ω ∈ L∞Ωk(M, g) lies in D(dk,max,∞) if the distributional action of dk
applied to ω lies in L∞Ωk+1(M, g).
It is easy to verify that if ω ∈ D(dk,max /min,p) then dk,max /min,pω ∈ D(dk+1,max /min,p) and the corresponding
compositions are identically zero, that is dk+1,max,p ◦ dk,max,p ≡ 0 and dk+1,min,p ◦ dk,min,p ≡ 0. Analogously
dk+1,max,∞ ◦dk,max,∞ ≡ 0 on D(dk,max,∞). The Lp-maximal/minimal de Rham cohomology of (M, g) is defined
as

Hk
p,max /min(M, g) := ker(dk,max,p)/ im(dk−1,max /min,p)

while the reduced Lp-maximal/minimal de Rham cohomology of (M, g) is defined as

H
k

p,max /min(M, g) := ker(dk,max,p)/im(dk−1,max /min,p), (5)

where im(dk−1,max /min,p) is the closure of im(dk−1,max /min,p) in LpΩk(M, g) respectively. Clearly the identity
ker(dk,max /min,p)→ ker(dk,max /min,p) induces a surjective map

Hk
p,max /min(M, g)→ H

k

p,max /min(M, g). (6)

Similarly we have the L∞-de Rham cohomology and the reduced L∞-de Rham cohomology defined respectively
as

Hk
∞,max(M, g) := ker(dk,max,∞)/ im(dk−1,max,∞)
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and
H
k

∞,max(M, g) := ker(dk,max,∞)/im(dk−1,max,∞). (7)

Clearly also in this case we have a surjective map

Hk
∞,max(M, g)→ H

k

∞,max(M, g) (8)

induced by the identity ker(dk,max,∞)→ ker(dk,max,∞). We recall now some well known properties that will be
frequently used later:

a) Let 1 < p <∞ and let p′ = p/(p− 1). Let ω ∈ LpΩk(M, g). Then ω ∈ D(dk,max,p) and LpΩk+1(M, g) 3 ψ =
dk,max,pω if and only if for any η ∈ D(dm−k−1,min,p′) we have∫

M

ψ ∧ η =

∫
M

ω ∧ dm−k−1,min,p′η. (9)

Analogously, given an arbitrary ω ∈ LpΩk(M, g), we have ω ∈ D(dk,min,p) and LpΩk+1(M, g) 3 ψ = dk,min,pω
if and only if for any η ∈ D(dm−k−1,max,p′) we have∫

M

ψ ∧ η =

∫
M

ω ∧ dm−k−1,max,p′η. (10)

b) Let 1 < p <∞ and let p′ = p/(p− 1). Then the bilinear map

H
k

p,max(M, g)×Hm−k
p′,min(M, g)→ R, ([ω], [η]) 7→

∫
M

ω ∧ η (11)

is a well-defined and non-degenerate pairing.

c) Let 1 ≤ p ≤ q ≤ ∞. Assume that volg(M) < ∞. It is well known that if ω ∈ LqΩk(M, g) then ω ∈
LpΩk(M, g) and that the corresponding inclusion i : LqΩk(M, g) ↪→ LpΩk(M, g) is continuous. Then it is
immediate to check that if ω ∈ D(dk,max,q) then ω = i(ω) ∈ D(dk,max,p) and

i ◦ dk,max,q = dk,max,p ◦ i on D(dk,max,q). (12)

Similarly if 1 ≤ p ≤ q <∞ and ω ∈ D(dk,min,q) then ω = i(ω) ∈ D(dk,min,p) and

i ◦ dk,min,q = dk,min,p ◦ i on D(dk,min,q). (13)

d) Let 1 ≤ p ≤ q ≤ ∞ and let U ⊂M be an open subset. Let ω ∈ D(dk,max,p) ⊂ LpΩk(M, g). Then

ω|U ∈ D(dk,max,p) ⊂ LpΩk(U, g|U ) and dk,max,p(ω|U ) = dk,max,pω|U . (14)

We continue now by giving the following definitions.

Definition 1.1. Let (M, g) be a possibly incomplete Riemannian manifold. Let 1 ≤ p < ∞. We will say that
the Lp-Stokes theorem holds on LpΩk(M, g) if the following two operators

dk,max,p : LpΩk(M, g)→ LpΩk+1(M, g) and dk,min,p : LpΩk(M, g)→ LpΩk+1(M, g)

coincide.

A well known result says that when (M, g) is complete then the Lp-Stokes theorem holds true for any
k = 0, ...,m. We will recall later a proof of this result, see Prop. 3.1. Conversely there are examples of
incomplete Riemannian manifolds where the Lp-Stokes theorem fails to be true, see for instance [5], [6], [8] and
[19].

Definition 1.2. Let (M, g) be a possibly incomplete Riemannian manifold. Let 1 ≤ p < ∞. We will say that
the Lp-divergence theorem holds on (M, g) if the following two operators

dt0,max,p : LpΩ1(M, g)→ Lp(M, g) and dt0,min,p : LpΩ1(M, g)→ Lp(M, g)

coincide.
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In the above definition dt0,max,p : LpΩ1(M, g) → Lp(M, g) and dt0,min,p : LpΩ1(M, g) → Lp(M, g) are the

Lp-maximal/minimal extensions of dt0 : Ω1
c(M)→ C∞c (M). Analogously to (2) and (3) dt0,max,p : LpΩ1(M, g)→

Lp(M, g) is defined in the distributional sense while dt0,min,p : LpΩ1(M, g) → Lp(M, g) is the graph closure of

dt0 : Ω1
c(M, g)→ C∞c (M).

Definition 1.3. Let (M, g) be a possibly incomplete Riemannian manifold. Let q ∈ [1,∞). Then (M, g) is said
to be q-parabolic if there exists a sequence of Lipschitz functions with compact support {φn}n∈N ⊂ Lipc(M, g)
such that

1. 0 ≤ φn ≤ 1;

2. φn → 1 almost everywhere as n→∞;

3. ‖d0φn‖LqΩ1(M,g) → 0 as n→∞.

Definition 1.4. Let (M, g) be a possibly incomplete Riemannian manifold. Then (M, g) is said to be stochas-
tically complete if

e−t∆
F
0 1 = 1

where ∆F0 : L2(M, g) → L2(M, g) is the Friedrich extension of the Laplace-Beltrami operator ∆0 : C∞c (M) →
C∞c (M) and e−t∆

F
0 : L2(M, g)→ L2(M, g) is the heat operator associated to ∆F0 .

We add a small remark to the above definition. The heat operator e−t∆
F
0 is an integral operator with a

positive smooth kernel k(t, x, y), (t, x, y) ∈ (0,∞) ×M ×M , such that
∫
M
k(t, x, y) dvolg(y) ≤ 1 for all t > 0

and x ∈M . Hence, given a bounded function f ∈ L∞(M), the function e−t∆
F
0 f(x) :=

∫
M
k(t, x, y)f(y) dvolg(y)

is well defined and it is still bounded.
We invite the reader to consult [20] and [36] for an in-depth treatment about q-parabolicity and stochastic
completeness. The definition of the heat operator can be found for instance in [4] or [20].

We conclude this section by recalling few basic notions concerning almost Kähler manifolds, see e.g. [35]
for more details. Let (M,ω) be a symplectic manifold of dimension 2m. It is well known that there exists a
compatible almost-complex structure J ∈ End(TM), that is an endomorphism of tangent bundle of M satisfying
J2 = −Id and such that g(X,Y ) := ω(X, JY ) is a Riemannian metric on M , where X,Y ∈ X(M), see e.g. [7].
Moreover the symplectic form ω and the volume form dvolg are related by the following formula: m! dvolg = ωm.

Definition 1.5. An almost Kähler manifold (M,ω, J, g) is given by a symplectic manifold (M,ω) endowed with
a compatible almost-complex structure J and the Riemannian metric g defined as g(X,Y ) := ω(X, JY ) for any
X,Y ∈ X(M).

From now on by saying that an almost Kähler manifold (M,ω, J, g) is complete we will mean that g is a
complete metric on M .

Proposition 1.1. Let (M,ω, J, g) be an almost Kähler manifold. Then ω ∈ L∞Ω2(M, g)

Proof. Let ∇ : C∞(M,TM)→ C∞(M,T ∗M ⊗ TM) be the second canonical connection. We refer to [13], [35]
and the reference therein for more details. Here it is enough to recall that ∇ is a connection compatible with
both g and J , that is ∇g = 0 and ∇J = 0. It is easy to check now that these two properties entail that ω
is parallel with respect to ∇. Finally, as ∇ is compatible with g, we have d0(g(ω, ω)) = 0, and thus we can
conclude that ω ∈ L∞Ω2(M, g) as desired.

2 Main results

This section is split in two subsections. In the first one we collect various technical results that will be needed
later. The second one is devoted to the main results of this paper.

2.1 Some technical propositions

We have the following propositions:

Proposition 2.1. Let (N, g) be an oriented and possibly incomplete Riemannian manifold of dimension n.
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1. Let η ∈ L1Ωn(N, g). Then
∫
N
η <∞.

2. Let η ∈ L1Ωn(N, g) such that η ∈ im(dn−1,min,1). Then
∫
N
η = 0.

Proof. As usual let dvolg be the volume form of g. Then there exists a function f ∈ L1(N, g) such that
f dvolg = η. We have

|
∫
N

η| = |
∫
N

f dvolg | ≤
∫
N

|f |dvolg = ‖η‖L1Ωn(N,g) <∞.

This establishes the first point. For the second point, as η ∈ im(dn−1,min,1), we know that there exists a
sequence of smooth forms with compact support {βk}k∈N ⊂ Ωn−1

c (N) such that lim dn−1βk = η in L1Ωn(N, g)
as k → ∞. Moreover we recall that L∞(N) is the dual Banach space of L1Ωn(N, g). Therefore we have∫
N
η = lim

∫
N
dn−1βk as k → ∞. But

∫
N
dn−1βk = 0 for each k ∈ N thanks to the Stokes theorem. Hence∫

N
η = 0 as well.

Proposition 2.2. Let (N, g) be a possibly incomplete Riemannian manifold of dimension n. Let ω ∈ D(dk,max,p) ⊂
LpΩk(N, g) for some k = 0, 1, ..., n and 1 ≤ p <∞. Assume that there exists an open subset U ⊂ N with compact
closure such that ω|N\U ≡ 0. Then ω ∈ D(dk,min,p).

Proof. According to [15] Th. 12.5 we know that there exists a sequence {ωj} ⊂ Ωk(N) ∩ LpΩk(N, g) such that
ωj → ω as j → ∞ in the graph norm of D(dk,max,p). Let V be an open neighborhood of U with V compact.
Let χ ∈ C∞c (N), χ : N → [0, 1], be a smooth function with compact support such that χ(x) = 1 for any x ∈ V .
Then, using the fact that χω = ω, χdk,max,pω = dk,max,pω and d0χ ∧ ω ≡ 0, it is an easy exercise to check
that the sequence {χωj} converges to ω in the graph norm of D(dk,max,p). Finally, as {χωj} ⊂ Ωkc (N), we can
conclude that ω ∈ D(dk,min,p) as desired.

Proposition 2.3. Let (N, g) be a possibly incomplete Riemannian manifold of dimension n. Let γ ∈ D(dr,max,∞) ⊂
L∞Ωr(N, g). Then the following properties hold true for any k = 0, 1, ..., n and p ∈ [1,∞):

• If ω ∈ D(dk,max,p) then γ∧ω ∈ D(dk+r,max,p) and dk+r,max,p(γ∧ω) = dr,max,∞γ∧ω+ (−1)rγ∧dk,max,pω.

• If f ω ∈ D(dk,min,p) then γ∧ω ∈ D(dk+r,min,p) and dk+r,min,p(γ∧ω) = dr,max,∞γ∧ω+ (−1)rγ∧dk,min,pω.

Proof. Let ω ∈ D(dk,max,p). We first point out that dr,max,∞γ∧ω+(−1)rγ∧dk,max,pω ∈ LpΩr+k+1(N, g). This
follows easily by the fact that γ ∈ L∞Ωr(N, g), dr,max,∞γ ∈ L∞Ωr+1(N, g), ω ∈ LpΩk(N, g) and dk,max,pω ∈
LpΩk+1(N, g). According to [15] Th. 12.5 we know that there is a sequence {ωj} ⊂ Ωk(N) ∩ D(dk,max,p) such
that ωj → ω as j →∞ in the graph norm of dk,max,p. Assume for the moment that

{γ ∧ ωj} ⊂ D(dk+r,max,p) and that dk+r,max,p(γ ∧ ωj) = dr,max,∞γ ∧ ωj + (−1)rγ ∧ dkωj . (15)

It is immediate to check that γ∧ωj → γ∧ω in LpΩr+k(N, g) and dr,max,∞γ∧ωj +(−1)rγ∧dkωj → dr,max,∞γ∧
ω + (−1)rγ ∧ dk,max,pω in LpΩr+k+1(N, g) as j →∞. Thus we can deduce that

γ ∧ ω ∈ D(dr+k,max,p) and dr+k,max,p(γ ∧ ω) = dr,max,∞γ ∧ ω + (−1)rγ ∧ dk,max,pω.

In order to complete the proof of the first point we are left to show (15). To this aim it is enough to show
that for each point x ∈ N there exists an open neighborhood U such that (γ ∧ ωj)|U ∈ D(dk+r,max,p) ⊂
LpΩk+r(U, g|U ) and (dr+k,max,p(γ ∧ ωj))|U = (dr,max,∞γ ∧ ωj + (−1)rγ ∧ dkωj)|U . Therefore let U be an
open subset of N with compact closure. Clearly for any p ∈ [1,∞) γ|U ∈ D(dr,max,p) ⊂ LpΩr(U, g|U ) and
dr,max,p(γ|U ) = dr,max,∞(γ|U ) = (dr,max,∞γ)|U , see (12) and (14). Using again [15] Th. 12.5 we know that
there is a sequence {γn} ⊂ Ωr(U) ∩ D(dr,max,p) ⊂ LpΩr(U, g|U ) such that γn → γ|U in LpΩr(U, g|U ) and
drγn → (dr,max,∞γ)|U in LpΩr+1(U, g|U ) as n → ∞. Consider now the sequence {γn ∧ ωj |U}n∈N. Since U is
compact and ωj ∈ Ωk(M) we have ωj |U ∈ L∞Ωk(U, g|U ) and dkωj |U ∈ L∞Ωk+1(U, g|U ); this allows us to get
immediately that γn ∧ ωj |U ∈ LpΩr+k(U, g|U ), dr+k(γn ∧ ωj |U ) ∈ LpΩr+k+1(U, g|U ), γn ∧ ωj |U → (γ ∧ ωj)|U
in LpΩr+k(U, g|U ) and dr+k(γn ∧ ωj |U ) → (dr,max,∞γ ∧ ωj + (−1)rγ ∧ dkωj)|U in LpΩk+1(U, g|U ) as n → ∞.
Therefore

(γ ∧ ωj)|U ∈ D(dr+k,max,p) ⊂ LpΩr+k(U, g|U ) and dr+k,max,p(γ ∧ ωj)|U = (dr,max,∞γ ∧ ωj + (−1)rγ ∧ dkωj)|U .

In other words the restriction over U of dk+r(γ∧ωj), where dk+r(γ∧ωj) is understood in the distributional sense,
is given by (dr,max,∞γ ∧ ωj + (−1)rγ ∧ dkωj)|U . Thus the proof of the first statement is complete. The second
statement follows by arguing as for the first one. In particular, as ω ∈ D(dk,min,p), we can take {ωj} ⊂ Ωkc (M)

6



such that ωj → ω as j →∞ in the graph norm of dk,min,p. By the first point we know that γ ∧ω ∈ D(dk,max,p),
{γ ∧ ωj} ⊂ D(dr+k,max,p) and γ ∧ ωj → γ ∧ ω in D(dr+k,max,p) with respect to the corresponding graph norm.
Finally, since γ ∧ ωj has compact support we can use Prop. 2.2 to conclude that {γ ∧ ωj} ⊂ D(dk,min,p) and
this completes the proof the second statement.

Proposition 2.4. Let (M, g) be a possibly incomplete Riemannian manifold. Then W 1,p(M, g) ∩ L∞(M) ∩
C∞(M) is dense in W 1,p(M, g) for any 1 ≤ p <∞.

Proof. We adapt to our case the prof of Prop. 2.5 in [2]. According to [15] Th. 12.5 we know that W 1,p(M, g)∩
C∞(M) is dense in W 1,p(M, g) for any 1 ≤ p <∞. Therefore it is enough to show that W 1,p(M, g)∩L∞(M)∩
C∞(M) is dense in W 1,p(M, g)∩C∞(M) with respect to the norm of W 1,p(M, g). Let f ∈W 1,p(M, g)∩C∞(M)
and let

fn :=
f(

f2

n + 1
) 1

2

.

Clearly we have fn ∈ C∞(M) and ( f
2

n + 1)−
1
2 ∈ L∞(M). Thus we get fn ∈ Lp(M, g). Moreover we have

|fn| =
|f |(

f2

n + 1
) 1

2

≤
√
n.

We can thus conclude that fn ∈ L∞(M) for each n ∈ N. Concerning dfn we have

dfn =

(
f2

n
+ 1

)− 1
2

df − 1

n

(
f2

n
+ 1

)−3/2

f2df.

As ( f
2

n + 1)−
1
2 ∈ L∞(M) we get ( f

2

n + 1)−
1
2 df ∈ LpΩ1(M, g). For the other term, 1

n ( f
2

n + 1)−3/2f2df , we have

n/(f2 + n) ≤ 1 which in turn implies (1 + f2/n)−3/2 ≤ n/(f2 + n). In this way we get

1

n
(
f2

n
+ 1)−3/2f2 ≤ f2

f2 + n
≤ 1. (16)

Since df ∈ LpΩ1(M, g) we can thus deduce that 1
n ( f

2

n +1)−3/2f2df ∈ LpΩ1(M, g). Therefore dfn ∈ LpΩ1(M, g).
Summarizing we showed that {fn}n∈N ⊂W 1,p(M, g)∩L∞(M)∩C∞(M). Finally we are left to prove that {fn}
converges to f in W 1,p(M, g). Concerning ‖fn − f‖pLp(M,g) we have

‖fn − f‖pLp(M,g) =

∫
M

∣∣∣∣1− (
f2

n
+ 1)−

1
2

∣∣∣∣p |f |p dvolg .

As 1− ( f
2

n + 1)−
1
2 ∈ L∞(M) we can use the Lebesgue dominate convergence theorem to conclude that fn → f

in Lp(M, g) as n→∞. We come now to ‖dfn − df‖pLpΩ1(M,g). We have

‖dfn − df‖pLpΩ1(M,g) ≤ ‖df −
(
f2

n
+ 1

)− 1
2

df‖LpΩ1(M,g) + ‖ 1

n

(
f2

n
+ 1

)−3/2

f2df‖LpΩ1(M,g).

Again by virtue of the Lebesgue dominate convergence theorem we have

lim
n→∞

‖df −
(
f2

n
+ 1

)− 1
2

df‖LpΩ1(M,g) = 0.

Finally for the remaining term we have

‖ 1

n

(
f2

n
+ 1

)−3/2

f2df‖LpΩ1(M,g) =

∫
M

∣∣∣∣∣ 1n
(
f2

n
+ 1

)−3/2

f2

∣∣∣∣∣
p

|df |pg.

Thanks to (16) we can use again the Lebesgue dominate convergence theorem to deduce that

lim
n→∞

‖ 1

n

(
f2

n
+ 1

)−3/2

f2df‖LpΩ1(M,g) = 0.

In conclusion we proved that fn → f in W 1,p(M, g) as n→∞. The proof is thus complete.
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Proposition 2.5. Let (M, g) be a possibly incomplete Riemannian manifold of dimension m. Assume that
(M, g) is p-parabolic with p ∈ [1,∞). Then L∞Ωk(M, g) ∩ D(dk,max,p) ⊂ D(dk,min,p) for any k = 0, ...,m.

Proof. Let η ∈ L∞Ωk(M, g)∩D(dk,max,p) and let {φn} be a sequence of functions that makes (M, g) p-parabolic.
Consider the sequence {φnη}. Thanks to Prop. 2.3 we know that {φnη} ⊂ D(dk,p,max) and dk,p,max(φnη) =
d0φn ∧ η + φndk,p,maxη. As 0 ≤ φn ≤ 1 for each n ∈ N we can use the Lebesgue dominate convergence theorem
to conclude that φnη → η and φndk,max,pη → dk,max,p in LpΩk(M, g) and LpΩk+1(M, g) as n → ∞. By using
the fact that ‖d0φn‖LpΩ1(M,g) → 0 as n→∞ and that η ∈ L∞Ωk(M, g) ∩ D(dk,max,p) we can conclude that

lim
n→∞

‖d0φn ∧ η‖LpΩk+1(M,g) ≤ lim
n→∞

‖d0φn‖LpΩ1(M,g)‖η‖L∞Ωk(M,g) = 0.

Thus we showed that φnη → η in D(dk,max,p) endowed with the corresponding graph norm as n→∞. Finally,
thanks to Prop. 2.2, we know that {φnη} ⊂ D(dk,min,p) and this allows us to conclude that η ∈ D(dk,min,p) too.
The proof is thus complete.

Proposition 2.6. Let (M, g) be a possibly incomplete Riemannian manifold and let p ∈ [1,∞).

1. If (M, g) is p-parabolic then W 1,p(M, g) = W 1,p
0 (M, g).

2. If volg(M) <∞ then (M, g) is p-parabolic if and only if W 1,p(M, g) = W 1,p
0 (M, g).

Proof. These properties are well known. For the sake of the reader we give a proof. According to Prop. 2.4 it is
enough to show that W 1,p(M, g)∩L∞(M)∩C∞(M) ⊂W 1,p

0 (M, g). Let f ∈W 1,p(M, g)∩L∞(M)∩C∞(M) and
let {φn} be a sequence of Lipschitz functions with compact support that makes (M, g) p-parabolic. We want
to show that {fφn} ⊂W 1,p

0 (M, g) and fφn → f in W 1,p(M, g) as n→∞ . The inclusion {fφn} ⊂W 1,p
0 (M, g)

follows immediately by Prop. 2.2 and Prop. 2.3 while the convergence fφn → f in W 1,p(M, g) is a direct
consequence of Prop. 2.5. Thus we proved that f ∈ W 1,p

0 (M, g) and so we can conclude that W 1,p(M, g) =
W 1,p

0 (M, g). This shows the first point. Assume now that W 1,p(M, g) = W 1,p
0 (M, g) and that (M, g) has finite

volume. Then there exists a sequence {φn} ⊂ C∞c (M) such that φn → 1 in W 1,p(M, g) as n → ∞. As it
is well known we can pick up a subsequence {φ̃n} ⊂ {φn} such that φ̃n → 1 pointwise almost everywhere as
n→∞. Let us define ψn := min{φ̃n, 1}. Then it is straightforward to check that {ψn} is a sequence of Lipschitz
functions with compact support that makes (M, g) p-parabolic.

2.2 Non-vanishing theorems

This subsection is concerned with various non-vanishing theorems for the (reduced) Lp-cohomology of a possibly
incomplete almost Kähler manifold of finite volume. We collect various criteria inspired by the notion of q-
parabolicity and related properties. We start with the following:

Theorem 2.1. Let (M,ω, J, g) be a possibly incomplete almost Kähler manifold of finite volume and dimension

2m > 0. Assume that H
2m

p,max(M, g) = H
2m

p,min(M, g) for some 1 ≤ p <∞. Then ωk induces a non trivial class

in H
2k

q,max(M, g) for any k = 1, 2, ...,m and q ∈ [p,∞].

Proof. First we start with few remarks. Thanks to Prop. 1.1 we know that ω ∈ L∞Ω2(M, g). Clearly for each
k = 1, 2, ...,m, ωk ∈ Ω2k(M) ∩ L∞Ω2k(M, g). Since volh(M) < ∞ we have ωk ∈ Ω2k(M) ∩ LsΩ2k(M, g) for

any s ∈ [1,∞]. Therefore ωk ∈ ker(d2k,max,s) for any s ∈ [1,∞], that is ωk induces a class in H
2k

s,max(M, g) for

any s ∈ [1,∞]. Furthermore, as ωk ∈ L∞Ω2k(M, g), we have that the map Lk : LpΩr(M, g)→ LpΩr+2k(M, g)
given by η 7→ ωk ∧ η is bounded. Now we tackle the proof of the statement. By contrast let us assume that

[ωk] = 0 in H
2k

q,max(M, g) for some k ∈ {1, 2, ...,m} and some q ∈ [p,∞]. This means that there exists a sequence

{φj} ⊂ D(d2k−1,max,q) ⊂ LqΩ2k−1(M, g) such that

lim
j→∞

d2k−1,max,qφj = ωk

in LqΩ2k(M, g). Let us now consider the sequence {φj∧ωm−k}. According to Prop. 2.3 we have {φj∧ωm−k} ⊂
D(d2m−1,max,q) and d2m−1,max,q(φj ∧ ωm−k) = (d2k−1,max,qφj) ∧ ωm−k. Hence

lim
j→∞

d2m−1,max,q(φj ∧ ωm−k) = ωm
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in LqΩ2m(M, g). By the fact thatH
2m

p,max(M, g) = H
2m

p,min(M, g), H
2m

p,max(M, g) = LpΩ2m(M, g)/im(d2m−1,p,max)

and H
2m

p,min(M, g) = LpΩ2m(M, g)/im(d2m−1,p,min), we can deduce that

im(d2m−1,max,p) = im(d2m−1,min,p).

Since (M, g) has finite volume and q ≥ p we have in particular that {φj ∧ ωm−k} ⊂ D(d2m−1,max,p) and

lim
j→∞

d2m−1,max,p(φj ∧ ωm−k) = ωm

in LpΩ2m(M, g), see (12). Hence we get that ωm ∈ im(d2m−1,max,p) ⊂ LpΩ2m(M, g). This, together with the

fact that im(d2m−1,max,p) = im(d2m−1,min,p), implies the existence of a sequence {ψj} ⊂ Ω2m−1
c (M) such that

lim d2m−1ψj = ωm in LpΩ2m(M, g) as j →∞. Using again that (M, g) has finite volume we can conclude that

lim
j→∞

d2m−1ψj = ωm

in L1Ω2m(M, g). Finally, according to Prop. 2.1, this implies that

m! volg(M) =

∫
M

ωm = 0

which is clearly absurd. We can thus conclude that [ωk] 6= 0 in H
2k

q,max(M, g) for each k ∈ {1, 2, ...,m} and for
any q ∈ [p,∞].

In the following propositions we collect many properties that imply the assumptions of Th. 2.1

Proposition 2.7. Let (M,ω, J, g) be a possibly incomplete almost Kähler manifold of finite volume and dimen-
sion 2m > 0. Assume that the Lp-Stokes theorem holds on LpΩ2m−1(M, g) for some 1 ≤ p < ∞. Then ωk

induces a non trivial class in H
2k

q,max(M, g) for any k = 1, 2, ...,m and for any q ∈ [p,∞].

Proof. As we assumed that the Lp-Stokes theorem holds at the level of (2m − 1)-forms we know that the
following two operators coincide

d2m−1,max,p : LpΩ2m−1(M, g)→ LpΩ2m(M, g) and d2m−1,min,p : LpΩ2m−1(M, g)→ LpΩ2m(M, g).

Hence we know in particular that im(d2m−1,max,p) = im(d2m−1,min,p) which in turn implies immediately

H
2m

p,max(M, g) = H
2m

p,min(M, g).

As (M, g) has finite volume and q ≥ p the conclusion now follows immediately by Th. 2.1.

Proposition 2.8. Let (M,ω, J, g) be a possibly incomplete almost Kähler manifold of finite volume and dimen-
sion 2m > 0. Assume that the Lp-divergence theorem holds for (M, g) for some 1 ≤ p < ∞. Then ωk induces

a non trivial class in H
2k

q,max(M, g) for any k = 1, 2, ...,m and for any q ∈ [p,∞].

Proof. Let ∗ : Ωkc (M) → Ω2m−k
c (M) be the Hodge star operator induced by g. It is easy to check that

∗ : Ωkc (M) → Ω2m−k
c (M) extends as a bounded and bijective operator ∗ : LpΩk(M, g) → LpΩ2m−k(M, g) such

that ‖η‖LpΩk(M,g) = ‖ ∗ η‖LpΩ2m−k(M,g) for any η ∈ LpΩk(M, g). Using ∗ : LpΩk(M, g)→ LpΩ2m−k(M, g) it is
easy to show that for each k = 0, 1, ..., 2m we have

± ∗ dk,max /min,p∗ = dt2m−k−1,max /min,p

where the sign depends on the parity of k. Thus the fact that the Lp-divergence theorem holds entails that the
two operators

d2m−1,max,p : LpΩ2m−1(M, g)→ LpΩ2m(M, g) and d2m−1,min,p : LpΩ2m−1(M, g)→ LpΩ2m(M, g)

coincides. In other words the Lp-Stokes theorem holds on (M, g) at the level of (2m− 1)-forms. As (M, g) has
finite volume and q ≥ p the conclusion follows immediately by Prop. 2.7.
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Proposition 2.9. Let (M,ω, J, g) be a possibly incomplete almost Kähler manifold of finite volume and dimen-
sion 2m > 0. Assume that

dim(H
2m

p,max(M, g)) = 1

for some 1 < p < ∞. Then ωk induces a non trivial class in H
2k

q,max(M, g) for any k = 1, 2, ...,m and for any
q ∈ [p,∞].

Proof. Since H
2m

p,max(M, g) = LpΩ2m(M, g)/im(d2m−1,p,max) and H
2m

p,min(M, g) = LpΩ2m(M, g)/im(d2m−1,p,min)
the identity LpΩ2m(M, g)→ LpΩ2m(M, g) induces an injective map

H
2m

p,max(M, g) ↪→ H
2m

p,min(M, g). (17)

As (M, g) is connected and has finite volume we have dim(H
0

p′,max(M, g)) = 1 where p′ = p/(p − 1). This
latter property follows immediately by the fact that if f ∈ D(d0,max,p′) and d0,max,p′f = 0 then f ∈ C∞(M)
and therefore it has to be constant, see e.g. [15] Th. 12.5. As M is connected and volg(M) < ∞ we can

conclude that ker(d0,p′,max) = R. Using the duality (11) this in turn implies that dim(H
2m

p,min(M, g)) = 1.

Thus, thanks to (17) and the fact that H
2m

p,max(M, g) = LpΩ2m(M, g)/im(d2m−1,p,max) and H
2m

p,min(M, g) =

LpΩ2m(M, g)/im(d2m−1,p,min) we can conclude that

im(d2m−1,p,max) = im(d2m−1,p,min).

Since q ≥ p and (M, g) has finite volume, the conclusion now follows by Th. 2.1.

So far we deduced only non-vanishing properties for the class [ωk] with respect to the reduced Lp-maximal
cohomology. Requiring (M, g) to satisfy some stronger assumption, for instance q-parabolicity, we can also show
the non-vanishing of [ωk] with respect to the reduced Lp-minimal cohomology. This is the goal of the next:

Theorem 2.2. Let (M,ω, J, g) be a possibly incomplete almost Kähler manifold of finite volume and dimension
2m > 0. Assume that (M, g) is p-parabolic with 1 < p <∞ and let p′ = p/(p− 1).

1. For any k = 1, 2, ...,m, ωk induces a non trivial class in H
2k

q,max(M, g) for any q ∈ [p′,∞].

2. For any k = 1, 2, ...,m, ωk induces a non trivial class in H
2k

q,min(M, g) for any q ∈ [1, p].

Proof. According to Prop. 2.6 we know that W 1,p(M, g) = W 1,p
0 (M, g). This last equality amounts to saying

that the operators

d0,max,p : Lp(M, g)→ LpΩ1(M, g) and d0,min,p : Lp(M, g)→ LpΩ1(M, g)

coincide. Using (9) and (10) we get that also the following two operators

d2m−1,max,p′ : Lp
′
Ω2m−1(M, g)→ Lp

′
Ω2m(M, g) and d2m−1,min,p′ : Lp

′
Ω2m−1(M, g)→ Lp

′
Ω2m(M, g)

coincides. Hence the Lp
′
-Stokes theorem holds on (M, g) at the level of (2m − 1)-forms. As (M, g) has finite

volume and q ≥ p′ the thesis is now a consequence of Prop. 2.7. Now we deal with the second point. First we
have to show that ωk ∈ ker(dk,min,q) for each k = 1, ...,m and each q ∈ [1, p]. This follows easily using the fact
that (M, g) is p-parabolic. Let us consider a sequence of Lipschitz functions with compact supports, {φj}, that
makes (M, g) p-parabolic. As (M, g) has finite volume it is straightforward to check that {φj} makes (M, g)
q-parabolic for any q ∈ [1, p]. Consider the sequence {φjωk}. Then, according to Prop. 2.3, we know that
{φjωk} ⊂ D(d2k,max,q) and d2k,max,q(φjω

k) = φjd2kω
k + d0φj ∧ ωk = d0φj ∧ ωk for any q ∈ [1, p]. It is now

immediate to verify that φjω
k → ωk as j →∞ in D(d2k,max,q) with respect to the corresponding graph norm.

As φjω
k has compact support for each j ∈ N, we can use Prop. 2.2 to deduce that ωk ∈ D(d2k,min,q). Finally,

as ωk ∈ D(d2k,min,q) ∩ ker(d2k,max,q) we can conclude that ωk ∈ ker(d2k,min,q) for any q ∈ [1, p] as required.

Thus we know that ωk induces a class in H
2k

q,min(M, g). In order to complete the proof we have to show that

ωk 6∈ im(d2k−1,q,min) for any q ∈ [1, p] and k = 1, 2, ...,m. By contrast let’s assume that ωk ∈ im(d2k−1,q,min)
for some q ∈ [1, p] and k = 1, 2, ...,m. Thus there exists a sequence {βn} ⊂ Ω2k−1

c (M) such that d2k−1βn → ωk

in LqΩ2k(M, g). Clearly {βn ∧ ωm−k} ⊂ Ω2m−1
c (M) and d2k−1(βn ∧ ωm−k)→ ωm in LqΩ2m(M, g) as n→∞.

As volg(M) <∞ we can deduce that d2k−1(βn ∧ ωm−k)→ ωm in L1Ω2m(M, g) as n→∞. Hence, using Prop.
2.1, we can conclude that volg(M) = 0 which is clearly absurd. In conclusion we proved that ωk induces a

non-trivial class in H
2k

q,min(M, g) for any q ∈ [1, p] and k = 1, 2, ...,m as desired.
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Proposition 2.10. Let (M,ω, J, g) be a possibly incomplete almost Kähler manifold of finite volume and di-
mension 2m > 0. Assume that W 1,p(M, g) = W 1,p

0 (M, g) for some 1 < p <∞ and let p′ = p/(p− 1).

1. For any k = 1, 2, ...,m, ωk induces a non trivial class in H
2k

q,max(M, g) for any q ∈ [p′,∞].

2. For any k = 1, 2, ...,m, ωk induces a non trivial class in H
2k

q,min(M, g) for any q ∈ [1, p].

Proof. This follows immediately by Prop. 2.6 and Th. 2.2.

Proposition 2.11. Let (M,ω, J, g) be a possibly incomplete almost Kähler manifold of finite volume and di-
mension 2m > 0. Assume that (M, g) is stochastically complete.

1. For any k = 1, 2, ...,m, ωk induces a non trivial class in H
2k

q,max(M, g) for any q ∈ [2,∞].

2. For any k = 1, 2, ...,m, ωk induces a non trivial class in H
2k

q,min(M, g) for any q ∈ [1, 2].

Proof. Since (M, g) is stochastically complete we know that W 1,2
0 (M, g) = W 1,2(M, g), see e.g. [21] Th. 1.7. In

particular, as (M, g) has finite volume, stochastic completeness actually amounts to the equality W 1,2
0 (M, g) =

W 1,2(M, g) which in turn is equivalent to requiring (M, g) being parabolic, see for instance [3] Prop. 2.6 or [23].
Finally the conclusion follows by Th. 2.2.

We have now some corollaries. First we need to introduce some notations. According to (12)-(13) we know
that for any 1 ≤ p ≤ q ≤ ∞ the inclusion i : D(dk,max /min,q) ↪→ D(dk,max /min,p) induces a natural map at

the level of cohomology groups i∗ : H
2k

q,max /min(M, g)→ H
2k

p,max /min(M, g). In the next statements the image of

H
2k

q,max /min(M, g) inH
2k

p,max /min(M, g) through i∗ will be denoted by im
(
H

2k

q,max /min(M, g)→ H
2k

p,max /min(M, g)
)
.

Corollary 2.1. In the setting of Th. 2.1.

1. For any p ≤ q ≤ s ≤ ∞ and k = 1, 2, ...,m we have

im
(
H

2k

s,max(M, g)→ H
2k

q,max(M, g)
)
6= {0}.

2. Assume now that 1 < p < ∞. For any 1 < r ≤ p′, with p′ = p/(p − 1), and k = 1, 2, ...,m we have

H
2k

r,min(M, g) 6= {0}.

Proof. The first point follows by the fact that, as showed in Th. 2.1, ωk induces a non trivial class in
H2k
q,max(M, g) for any q ∈ [p,∞] and k = 1, 2, ...,m. The second point follows by Th. 2.1 and (11).

Corollary 2.2. Let (M,ω, J, g) be a possibly incomplete almost Kähler manifold of finite volume and complex
dimension m > 0. Assume that one among Propositions 2.7, 2.8, 2.9 holds true for (M, g). Then

im
(
H

2k

s,max(M, g)→ H
2k

q,max(M, g)
)
6= {0}

for any p ≤ q ≤ s ≤ ∞ and k = 1, 2, ...,m and

H
2k

r,min(M, g) 6= {0}

for any 1 < r ≤ p′, with p′ = p/(p− 1), and k = 1, 2, ...,m.

Proof. This is an immediate application of Cor 2.1 and Prop. 2.7, 2.8, 2.9.

Corollary 2.3. In the setting of Th. 2.2.

1. For any p′ ≤ q ≤ s ≤ ∞ and k = 1, 2, ...,m we have

im
(
H

2k

s,max(M, g)→ H
2k

q,max(M, g)
)
6= {0}.
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2. For any 1 ≤ q ≤ p and k = 1, 2, ...,m we have

im
(
H

2k

∞(M, g)→ H
2k

q,min(M, g)
)
6= {0}.

This in turn implies that for any 1 ≤ q ≤ s ≤ p and k = 1, 2, ...,m we have

im
(
H

2k

s,min(M, g)→ H
2k

q,min(M, g)
)
6= {0}.

3. Assume that p ≥ 2. For any p′ ≤ q ≤ p and k = 1, 2, ...,m we have

im
(
H

2k

q,min(M, g)→ H
2k

q,max(M, g)
)
6= {0}.

Proof. The first property follows by arguing as in Cor. 2.1. Concerning the second point we first note that,
thanks to Prop. 2.5 and the fact that volg(M) < ∞, we have a continuous inclusion D(dk,∞) ↪→ D(dk,z,min)
for any k = 0, 1, ..., 2m and z ∈ [1,∞) where each domain is endowed with the corresponding graph norm.

As previously recalled this inclusion induces a natural map at the level of cohomology groups H
2k

∞(M, g) →
H

2k

q,min(M, g). Since we have shown that 0 6= [ωk] ∈ H
2k

∞(M, g) for any k = 1, 2, ...,m and 0 6= [ωk] ∈
H

2k

q,min(M, g) for any q ∈ [1, p] and k = 1, 2, ...,m we can conclude that im(H
2k

∞(M, g) → H
2k

q,min(M, g)) 6= {0}
for any 1 ≤ q ≤ p and k = 1, 2, ...,m. The same argument leads to the conclusion that for any k = 1, 2, ...,m

we have im(H
2k

s,min(M, g)→ H
2k

q,min(M, g)) 6= {0} for each 1 ≤ q ≤ s ≤ p. Finally in the case p ≥ 2, as we know

that both 0 6= [ωk] ∈ H2k

q,min(M, g) and 0 6= [ωk] ∈ H2k

q,max(M, g) for any k = 1, 2, ...,m and p′ ≤ q ≤ p, we can

conclude that im(H
2k

q,min(M, g)→ H
2k

q,max(M, g)) 6= {0} for each p′ ≤ q ≤ p and k = 1, 2, ...,m.

We have also the following corollaries whose proofs are omitted because straightforward.

Corollary 2.4. In the setting of Prop. 2.10. Then Cor. 2.3 holds true for (M, g).

Corollary 2.5. In the setting of Prop. 2.11. Then Cor. 2.3 holds true for (M, g) with p = p′ = 2.

Remark 2.1. Thanks to (6) and (8) we know that whenever the reduced Lp-maximal/minimal cohomology is
not trivial then also the Lp-maximal/minimal cohomology is not trivial.

3 Examples and applications

In this section we explore various examples and applications of the previous results. We start with the case of
complete almost Kähler manifolds with finite volume. First we need to recall the following important property:

Proposition 3.1. Let (M, g) be a complete Riemannian manifold of dimension m. Then for any p ∈ [1,∞)
and k = 0, 1, ...,m, the following two operators

dk,max,p : LpΩk(M, g)→ LpΩk+1(M, g) and dk,min,p : LpΩk(M, g)→ LpΩk+1(M, g)

coincide.

Proof. This is a well known result whose proof, in the case p = 2, goes back to Gaffney [12]. For the sake of
completeness we recall here a proof. It is a well known fact that completeness is equivalent to the existence of
a sequence of smooth functions with compact support {φn} ⊂ C∞c (M) such that:
a) 0 ≤ φn ≤ 1;
b) {An} is an exhaustion of M made by open subsets with compact closure, where An is the interior of supp(φn),
the support of φn;
c) lim d0φn = 0 in L∞Ω1(M, g) as n→∞.
For a proof we refer for instance to [10] Lemma 12.1 pag. 57. Consider now any form η ∈ D(dk,max,p). Then,
thanks to Prop. 2.3, we know that φnη ∈ D(dk,max,p) and dk,max,pφnη = d0φn∧η+(−1)kφndk,max,pη. By virtue
of Lebesgue’s dominate convergence theorem, the inequality ‖d0φn∧η‖LpΩk+1(M,g) ≤ ‖d0φn‖L∞Ω1(M,g)‖η‖LpΩk(M,g)

and the fact that lim d0φn = 0 in L∞Ω1(M, g) as n→∞ it is easy to verify that φnη → η in D(dk,max,p) with
respect to the corresponding graph norm as n → ∞. Finally, as φnη has compact support, we can use Prop.
2.2 to deduce that {φnη} ⊂ D(dk,min,p) which in turn implies that η ∈ D(dk,min,p) too.
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We can summarize the above proposition by saying that on a complete Riemannian manifold of dimension
m the Lp-Stokes theorem holds true for any p ∈ [1,∞) and any k = 0, 1, 2, ...,m. Clearly the equality dk,max,p =
dk,min,p implies immediately that the (reduced) Lp-maximal cohomology and (reduced) Lp-minimal cohomology

coincide, that is H
k

p,max(M, g) = H
k

p,min(M, g). Henceforth we will simply label with H
k

p(M, g) the (reduced)
Lp-cohomology of a complete Riemannian manifold (M, g).

Proposition 3.2. Let (M,ω, J, g) be a complete almost Kähler manifold of finite volume. Then ωk induces

a non-trivial class in both H
2k

∞,max(M, g) and H
2k

p (M, g) for any k = 1, 2, ...,m and p ∈ [1,∞). Moreover
Corollaries 2.1–2.5 hold true for (M, g).

Proof. Thanks to Prop. 3.1 we know that on (M, g) the Lp-Stokes theorem holds true for any p ∈ [1,∞) and
any k = 0, 1, 2, ..., 2m. Now, thanks to Prop. 2.7, we can conclude that ωk induces a non-trivial class in both

H
2k

∞,max(M, g) and H
2k

p (M, g) for any k = 1, 2, ...,m and p ∈ [1,∞).

In order to provide some examples to Prop. 3.2 we recall now the definition of various complete non-compact
Kähler manifolds with finite volume that already appeared in the literature. First we recall some notions that
will be needed to describe these examples.

Complex spaces are a classical topic in complex geometry and we refer to [11] and to [18] for definitions and
properties. Here we recall only that a reduced complex space is irreducible if and only if reg(X) is connected. A
reduced and paracompact complex space X is said Hermitian if the regular part reg(X) := X \ sing(X) carries
a Hermitian metric h such that for every point x ∈ X there exists an open neighborhood U 3 p in X, a proper
holomorphic embedding of U into a polydisc φ : U → DN ⊂ CN and a Hermitian metric β on DN such that
(φ|reg(U))

∗β = h. If dω = 0, that is the fundamental form of h is closed, then (X,h) will be called a Kähler
space. Important examples of Kähler spaces are given by complex projective varieties V ⊂ CPn with the Kähler
metric on reg(V ) induced by the Fubini-Study metric of CPn. More generally, given a compact Kähler manifold
(M, g), any analytic subvariety X ⊂M whose regular part carries the Kähler metric induced by g is a compact
Kähler space. We refer to [28] for more details. In addition we recall that two Riemannian metrics g1 and g2

over a manifold M are said quasi-isometric if there exist positive constants a and b such that ag1 ≤ g2 ≤ bg1.

Poincaré-type Kähler metrics. Let (M,h) be a compact Kähler manifold with fundamental form ω. Let
D be a normal crossing divisor. Let LD be the line bundle on M associated to D. Let us label by s : M → LD
a global holomorphic section whose associated divisor (s) equals D. Let ρ be any Hermitian metric on LD
such that ‖s‖ρ, the norm of s with respect to ρ, satisfies ‖s‖ρ < 1. A Kähler metric g on M \ D which is
quasi-isometric to a Kähler metric with fundamental (1, 1)-form

bω −
√
−1

2π
∂∂ log(log ‖s‖2ρ)2

for b a positive integer, will be called a Poincaré-type metric. Endowed with g, (M \D) becomes a complete
non-compact Kähler manifold with finite volume. We refer to [9], [16] and [39] for more on these metrics.

Saper-type Kähler metrics. Let X be a singular subvariety of a compact Kähler manifold (M,h). Let
ω be the fundamental (1, 1)-form of (M,h). Let π : N → M be a holomorphic map from a compact complex
manifold N to M whose exceptional set D is a divisor with normal crossings in N and such that the restriction

π|N\D : N \D −→M \ sing(X)

is a biholomorphism. Let LD be the line bundle on N associated to D. Let s : N → LD be a global holomorphic
section whose associated divisor (s) equals D. Let τ be any Hermitian metric on LD such that ‖s‖τ , the norm
of s with respect to τ , satisfies ‖s‖τ < 1. A Kähler metric gS on N \ D which is quasi-isometric to a Kähler
metric with fundamental (1, 1)-form

lπ∗ω −
√
−1

2π
∂∂ log(log ‖s‖2τ )2

for l a positive integer, will be called a Saper-type Kähler metric, distinguished with respect to the map π. The
corresponding Kähler metric on M \ singX ∼= N \D and its restriction to X \ singX is also called Saper-type
Kähler metric. Endowed with gS the complex manifolds N \ D, M \ sing(X) and reg(X) become complete
non-compact Kähler manifolds of finite volume. These metrics were introduced by Saper in [32] in the setting
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of complex projective varieties with isolated singularities. Their construction was later generalized by Grant-
Melles and Milman in [16] and [17] to the case of an arbitrary subvariety of a compact Kähler manifold. The
above definition is taken from [17].

Grauert-type Kähler metrics. Let (X,h) be a Kähler space and let ω be the fundamental form of h. A
Grauert-type Kähler metric is a Kähler metric on reg(X) whose fundamental form is given by ω + i∂∂f , where
f : X → R is a Grauert potential. Equipped with ω + i∂∂f , reg(X) becomes a complete non-compact Kähler
manifold with finite volume. We refer to [28] for more details and existence results.

Bergman metric. This is the Kähler metric on the regular part of the Baily-Borel-Satake compactification
of a quotient like Γ \D where D = G/K is required to be a bounded symmetric domain, G is the set of real
points of a semi-simple algebraic group defined over Q, K a maximal compact subgroup and Γ ⊂ G is an
arithmetic subgroup acting freely on D. We refer to [33] and the references therein for more on this topic.

We give now some examples of incomplete Kähler/almost Kähler metrics fulfilling some of the assumptions
used in the previous sections.

Compact Kähler spaces. As recalled above a Kähler space (X,h) is a Hermitian space such that ω,
the fundamental form associated to h, satisfies dω = 0. Compact Kähler spaces (and more generally compact
Hermitian spaces) have finite volume and are q-parabolic for any q ∈ [1, 2], see [3] and [31]. Therefore we can
conclude that Th. 2.2, Prop. 2.10, 2.11 and the corresponding corollaries hold for (X,h).

Almost Kähler pseudometrics. Let (M,J) be a compact almost complex manifold. Let g be a section
of T ∗M ⊗ T ∗M → M such that g is symmetric, non-negative, compatible with J and g|A is strictly positive,
where A is an open and dense subset of M . Clearly A has finite volume with respect to g. This follows easily by
the fact that M is compact and dvolg ≤ cdvolh where h is any Hermitian metric on M and c > 0 is a suitable
constant. Furthermore assume that ω( , ) := g(J , ) is closed and that M \ A ⊂ ∪si=1Ni, where each Ni is a
compact submanifold of M satisfying cod(Ni) ≥ 2 for every i = 1, ..., s and where cod(Si) is the codimension
of Si. Then, according to [3] Prop. 4.7, we know that (A, g|A) is q-parabolic for any q ∈ [1, 2]. Hence we can
conclude that Th. 2.2, Prop. 2.10, 2.11 and the corresponding corollaries hold for (A, g|A).
An important family of examples belonging to the above setting can be constructed as follows: Let (X,h) be a
compact Kähler space of complex dimension m. Let π : M → X be a resolution of X, that is M is a compact
complex manifold, π : M → X is holomorphic and surjective, π−1(sing(X)) = D is a normal crossing divisor
of M and π|M\D : M \D → reg(X) is a biholomorphism, see [24]. We recall that a divisor with only normal
crossings is a divisor of the form D =

∑r
i=1 Vi where Vi are distinct irreducible smooth analytic hypersurfaces

of M and D is defined in a neighborhood of any point by an equation in local analytic coordinates of the type
z1 · · · zk = 0, 1 ≤ k ≤ m. Finally, if we define g := π∗h, it is easy to check that g is a symmetric non-negative
section of T ∗M ⊗ T ∗M →M that is compatible with J , the complex structure of M , and such that g|(M\D) is
strictly positive. In other word g is a Kähler pseudometric on M .

Now we continue by showing some topological applications of our results. In the next proposition the first two
points are a particular case of a more general non-vanishing theorem that can be proved as a consequence of the
Hard Lefschetz theorem and the decomposition theorem, see e.g. [25] and the references therein. Here we provide
a new proof based on the results of the previous section. First we need to introduce some notations. In the sequel
Hp,q

c,∂
(reg(X)) will denote the Dolbeault cohomology of reg(X) with compact support while Hp,q

2,∂max
(reg(X), h)

will denote the L2-maximal Dolbeault cohomology of (reg(X), h). Clearly the latter is the cohomology of
the L2-maximal Dolbeault complex whose definition is omitted since it is completely analogous to that of the
L2-maximal de Rham complex. We refer to [1] for more details.

Proposition 3.3. Let (X,h) be a compact and irreducible Kähler space of complex dimension m > 0. Assume
that dim(sing(X)) = 0. Then:

1. If m is odd we have H2k(reg(X),R) 6= 0 and H2k
c (reg(X),R) 6= 0 for each k = 0, ..., [m/2] and k =

[m/2] + 1, ...,m, respectively.

2. If m is even we have H2k(reg(X),R) 6= 0 for each k = 0, ..., (m/2)−1, im(Hm
c (reg(X),R)→ Hm(reg(X),R)) 6=

{0} for 2k = m and H2k
c (reg(X),R) 6= 0 for each k = (m/2) + 1, ...,m.

3. Hp,p

∂
(reg(X)) 6= 0 and Hp,p

c,∂
(reg(X)) 6= 0 whenever 2p < m− 1 and 2p > m+ 1, respectively.
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Proof. According to [27], [28] and [32] we know that

Hk
2,max(reg(X), h) ∼=

 Hk(reg(X),R) k ≤ m− 1
im(Hm

c (reg(X),R)→ Hk(reg(X),R)) k = m
Hk
c (reg(X),R) k ≥ m+ 1

(18)

As previously remarked we know that (reg(X), h) is q-parabolic for each q ∈ [1, 2] and with finite volume.
Thus we can apply Th. 2.2 in order to conclude that H2k

2,max(reg(X), h) 6= {0} for each k = 1, ...,m. Moreover
H0

2,max(reg(X), h) 6= {0} too as H0
2,max(reg(X), h) = ker(d0,max) = R, as a consequence of the fact that

(reg(X), h) is connected and with finite volume. This together with (18) shows that the first two properties of
the above proposition hold true. Concerning the third point we first claim that

• ωk induces a non trivial class in Hk,k

2,∂max
(reg(X), h) for each k = 1, ...,m.

By contrast let us assume the existence of an integer k ∈ {1, 2, ...,m} and a (k, k − 1)-form η ∈ D(∂k,k−1,max)
such that ∂k,k−1,maxη = ωk. As Ωk,k−1(reg(X)) ∩ D(∂k,k−1,max) is dense in D(∂k,k−1,max) with respect to the
corresponding graph norm, see for instance [5] pag. 98, we can deduce the existence of a sequence of smooth
forms {ηn} ⊂ Ωk,k−1(reg(X)) ∩ D(∂k,k−1,max) such that

lim
n→∞

∂k,k−1ηn = ωk

in L2Ωk,k(reg(X), h). Let us consider now the sequence {ηn ∧ ωm−k}. Clearly

{ηn ∧ ωm−k} ⊂ Ω2m−1(reg(X)) ∩ L2Ω2m−1(reg(X), h)

as ηn ∈ L2Ωk,k−1(reg(X), h) ∩ Ωk,k−1(reg(X)) and ωm−k ∈ L∞Ωm−k,m−k(reg(X), h) ∩ Ωm−k,m−k(reg(X)).
Concerning ∂2m,2m−1(ηn ∧ ωm−k) we have

∂2m,2m−1(ηn ∧ ωm−k) = (∂k,k−1ηn) ∧ ωm−k

which certainly lies in L2Ωm,m(reg(X), h) ∩ Ωm,m(reg(X)) since ∂k,k−1ηn ∈ L2Ωk,k(reg(X), h) ∩ Ωk,k(reg(X))
and ωm−k ∈ Ωm−k,m−k(reg(X)) ∩ L∞Ωm−k,m−k(reg(X), h). In particular

lim
n→∞

∂m,m−1(ηn ∧ ωm−k) = ωm

in L2Ωm,m(reg(X), h). Moreover ∂m,m−1(ηn ∧ ωm−k) = 0 as ηn ∧ ωm−k ∈ Ωm,m−1(reg(X)). This in turn tells
us that

d2m−1(ηn ∧ ωm−k) = ∂m,m−1(ηn ∧ ωm−k) ∈ L2Ωm,m(reg(X), h).

Therefore {ηn ∧ ωm−k} ⊂ L2Ω2m−1(reg(X), h) ∩ Ω2m−1(reg(X)), {d2m−1(ηn ∧ ωm−k)} ⊂ L2Ω2m(reg(X), h) ∩
Ω2m(reg(X)), that is {ηn ∧ ωm−k} ∈ D(d2m−1,max). Furthermore we know that (reg(X), h) is parabolic and
so, as explained in the proof of Th. 2.2, we have d0,max = d0,min. Taking the adjoint and composing with
the Hodge star operator we reach the conclusion that d2m−1,min = d2m−1,max. Eventually we showed that
{ηn ∧ ωm−k} ∈ D(d2m−1,min) and

lim
n→∞

d2m−1(ηn ∧ ωm−k) = ωm.

As volh(reg(X)) < ∞ we can now use Prop. 2.1 to conclude that volh(reg(X)) = 0, which is clearly absurd.

Hence we showed that ωk induces a non trivial class in Hk,k

2,∂max
(reg(X), h) for each k = 1, ...,m. The conclusion

now follows by the fact that Hp,q

2,∂max
(reg(X), h) ∼= Hp,q

∂
(reg(X)) for p + q < m − 1 and Hp,q

2,∂max
(reg(X), h) ∼=

Hp,q

c,∂
(reg(X)) for p+ q > m− 1, see [28] Th. 2.30 and Th. 2.31.

Finally we come to the main topological application. In order to prove the next theorem we need to introduce
the following variant of the L∞-cohomology. Let (M, g) be an arbitrary Riemannian manifold. Let us define

CΩk∞(M, g) := {ω ∈ D(dk,max,∞) ∩ CΩk(M) such that dk,max,∞ω ∈ CΩk+1(M)}

where CΩk(M) and CΩk+1(M) are the spaces of continuous k-form and (k + 1)-forms over M , respectively.
Consider now the complex

...
dk−1,max,∞→ CΩk∞(M, g)

dk,max,∞→ CΩk+1
∞ (M, g)

dk+1,max,∞→

and let us label by Hk
∞,max,c(M, g) the cohomology of the above complex. We have now all the ingredients for

the next
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Theorem 3.1. Let (X,h) be a compact and irreducible Kähler space of complex dimension m > 0. Assume
that every point p ∈ sing(X) has a local base of open neighborhoods whose regular parts are connected. Then

H2k(X,R) 6= {0}

for each k = 0, 1...,m.

Proof. In order to prove the above theorem we need to show the following property that we believe to have an
independent interest.

• Let (X,h) be as above. Then Hk
∞,max,c(reg(X), h) ∼= Hk(X,R) for any k = 0, 1, ..., 2m.

The above claim is essentially a consequence of the main result proved in [37]. As the setting in [37] is slightly
different than ours we give here all the details. Thanks to the triangulation theorem of Lojasiewicz, see [26],
we know that X is locally contractible. This in turn implies, see [30] or [34], that the cohomology of X with
coefficients in the constant sheaf RX and the singular cohomology of X with coefficients in R are isomorphic.
Hence during the remaining part of the proof we will use the notation Hk(X,R) for both the singular cohomology
of X with coefficients in R and the cohomology of X with coefficients in the constant sheaf RX . Consider now
the presheaf on X defined by the assignment

X ⊃ U 7→ {CΩk∞(reg(U), h|reg(U))}

where U is any open subset of X and k = 0, ..., 2m. In other words this is the presheaf that assigns to
every open subset U ⊂ X the space of continuous k-forms lying in L∞Ωk(reg(U), h|reg(U)) whose image under

the distributional action of dk lies in CΩk+1(reg(U)) ∩ L∞Ωk+1(reg(U), h|reg(U)). Let us label by C∞h Ωk the

corresponding sheaf arising by sheafification. The sections of C∞h Ωk over an open subset U ⊂ X are given by

C∞h Ωk(U) = {s ∈ CΩk(reg(U)) ∩ L∞locΩk(reg(U), h|reg(U)) such that for each p ∈ U there exists an

open neighborhood W with p ∈W ⊂ U such that s|reg(W ) ∈ CΩk∞(reg(W ), h|reg(W ))}. (19)

Clearly the differential dk induces a sheaves morphism that for simplicity we still label by dk : C∞h Ωk → C∞h Ωk+1

and that obeys dk+1 ◦ dk = 0. We claim now that the following complex of sheaves over X

0→ C∞h Ω0 d0→ ...
dk−1→ C∞h Ωk

dk+1→ ...
d2m−1→ C∞h Ω2m → 0 (20)

is a fine resolution of the constant sheaf RX . By the assumptions we know that every point p ∈ sing(X) has
a local base of open neighborhoods whose regular parts are connected. Now it is immediate to verify that

ker(C∞h Ω0 d0→ C∞h Ω1) gives the constant sheaf RX . Moreover the existence of a partition of unity with bounded
differential, see [1], assures that the complex (20) is made by fine sheaves. Concerning the exactness of (20),
by the definition of Hermitian complex space, we know that for any x ∈ X there exists an open neighborhood
U 3 p in X, a proper holomorphic embedding of U into a polydisc φ : U → DN ⊂ CN and a Hermitian metric
β on DN such that (φ|reg(U))

∗β = h. Hence we are in position to apply [37] Th. 4.2.1 to deduce that (20)

is an exact sequence of sheaves. As X is compact we have C∞h Ωk(X) = CΩk∞(reg(X), h), that is the space of
global sections of C∞h Ωk equals the space of continuous k-forms lying in L∞Ωk(reg(X), h) whose image under
the distributional action of dk lies in CΩk+1(reg(X)) ∩ L∞Ωk+1(reg(X), h). We can thus conclude that the
cohomology of the complex given by the global sections:

0→ C∞h Ω0(X)
d0→ ...

dk−1→ C∞h Ωk(X)
dk+1→ ...

d2m−1→ C∞h Ω2m(X)→ 0

coincides with Hk
∞,max,c(reg(X), h) for each k = 0, ..., 2m. So we proved that

Hk(X,R) ∼= Hk
∞,max,c(reg(X), h).

Clearly ωk induces a class in H2k
∞,max,c(reg(X), h) for any k = 1, ...,m. Moreover 0 6= [ωk] ∈ H2k

∞,max,c(reg(X), h)

because, thanks to Th. 2.2, we know that ωk /∈ im(d2k−1,max,∞). Finally H0
∞,max,c(reg(X), h) 6= {0} because

H0
∞,max,c(reg(X), h) = C(reg(X)) ∩ ker(d0,max,∞) = R. We can thus conclude that H2k(X,R) 6= {0} for each

k = 0, 1...,m as desired.
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We have now the last result of the paper. In order to state it we recall the notion of normal complex space.
Let X be a reduced complex space. The sheaf ÕX of weakly holomorphic functions is the sheaf that assigns
to every open subset U ⊂ X the space of holomorphic functions f : U \ (U ∩ sing(X))→ C such that for each
point p ∈ U there exists an open neighborhood p ∈ V ⊂ U such that f |V \(sing(X)∩V ) is bounded. The space X

is called normal if ÕX,p = OX,p for every p ∈ X. See [11] for more details.

Corollary 3.1. Let (X,h) be a compact and irreducible normal Kähler space of complex dimension m. Then

H2k(X,R) 6= {0}

for each k = 0, 1, ...,m.

Proof. It is easy to see that if X is normal then for each point p ∈ X there exists a local base of open
neighborhoods whose regular parts are connected. Now the above corollary follows by Th. 3.1.
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