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1
Introduction

Torus networks are widely adopted as custom interconnects in High-Performance

Computing (HPC) systems because of a series of interesting features, such as

their regular physical arrangement, short cabling at low dimensions, good

path diversity and good performance for the rather wide class of workloads

characterized by local communication patterns.

One of their main disadvantages is that they have a larger diameter com-

pared to other network topologies, resulting in an increased communication

latency at large sizes. Using a relatively small sized torus network as the low-

est tier of a multi-tiered hybrid interconnect allows exploiting all the advan-

tages of this class of networks while circumventing their inherent limitations,

as demonstrated by recent works [6].

A large number of routing algorithms for this class of networks has been

proposed throughout the years, ranging from deterministic to fully adaptive

ones, with the aim of improving performance – especially under non uniform

traffic conditions – and fault-tolerance.

This thesis describes DQN-Routing: a novel, distributed, unicast, fully

adaptive non-minimal routing algorithm for torus networks. The idea be-

hind the algorithm is to leverage the constantly ever-increasing availability

of ubiquitous computing power to delegate the routing decision to an agent

trained by reinforcement learning [7]. The agent is implemented, according

to the Deep Reinforcement Learning approach [8, 9], with a convolutional
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2 Chapter 1. Introduction

neural network trained with a variant of Q-learning (DQN), having local and

first-neighbour routers states and packet source and destination coordinates

as inputs, and the value functions estimating future rewards for all possible

routing actions as output. The agents calculate the reward corresponding to

their routing action using the receive timestamp contained in the acknowledge

message sent along the reverse path from destination to source node. These

rewards are used to guide the training process toward better performance, i.e.

to perform routing actions that try to minimize the communication latency of

the routed packets given the experienced network state.

In our experimental setup, the routing problem is represented as an inde-

pendent multi-agent reinforcement learning problem , where the environment

is provided by the OMNeT++ [10] discrete event simulator framework mod-

eling a torus network under different traffic conditions. The reference net-

work architectures for our investigation have been APEnet [11] and its latest

incarnation, the ExaNet [12] multi-tier hybrid network dedicated to HPC. In

this context, we focused on the configuration characterized by a number of

nodes in the sub-torus tiers equal to sixteen in a 4x4 bi-dimensional torus,

which allowed to effectively simulate the network by means of a single, al-

though powerful, GPU-accelerated workstation.

We compare the performance of DQN-Routing as measured on this exper-

imental setup for different traffic conditions with those obtained by state-of-

the-art routing algorithms, using traffic patterns generated both synthetically

and by our reference application, the Distributed Polychronous Spiking Neu-

ral Network simulator - DPSNN [13].

2



1.1. Exascale Computing: the New Frontier of HPC Architectures 3

1.1 Exascale Computing: the New Frontier of HPC Archi-
tectures

Next-generation computing systems are being designed to surpass the speed

of today’s most powerful supercomputers by five to ten times. We will then

enter the domain of Exascale computing, when integrated computing system

capable of performing at least a exaFLOPS, or 1018 floating point operations

per second, will enable scientists to tackle problems that were not solvable

in terms of their complexity and computation time (the so-called scientific

HPC grand-challenges). A not exhaustive list of such problems includes: lat-

tice QCD simulations, ab initio quantum chemistry, high-resolution climate

simulations, extreme scale cosmology, and fluid dynamics.

A problem of particular interest is represented by the simulation of the ac-

tivity of the human brain, as this would pave the way to the understanding of

the inner mechanisms of its functioning, and hopefully to the cure of its dis-

eases. On average, a neuron in the brain connects to about 104 other neurons.

In the human brain, there are approximately 1011 neurons and so around 1015

connections. Understanding the way the brain works requires the simulation

of each of these connections (called synapses). Even a cat brain, which is less

than a few percent of a human one, requires a huge data set to be represented,

at least a seventh of an exabyte. As of today, with top-tier HPC computing

systems in the petaFLOPS range the simulation of the cat brain is just about

attainable, but with significantly simplified neurophysiological features [14].

Besides these problems that are fundamental for the advancement of sci-

ence, there are more application-oriented computing applications in the Ex-

ascale domain from which the whole society could have an immediate ben-

efit. To give an idea of the potential disruptive Exascale aftermaths we will

mention just a couple of them. Considering the impact on the environment,

Exascale systems could enable the development of refined simulation models

3



4 Chapter 1. Introduction

of advanced engines and gas turbines increasing by 25-50% the efficiency of

combustion, and thus reducing the pollution caused by fossil fuels [15]. Fo-

cusing on health, the combination of Exascale computing and Deep Learning

techniques is expected to enable precision medicine for treatment of cancer

by understanding the molecular basis of key protein interactions, developing

predictive models for drug response, and extraction of information from mil-

lions of cancer patient records to determine optimal cancer treatment strate-

gies [16].

1.2 The path towards Exascale systems and beyond: hur-
dles and challenges

For decades, the introduction of each new semiconductor manufacturing pro-

cess led to smaller and faster transistors, and to the doubling in the number

of components per integrated circuit approximately every two years, as de-

scribed by the famous Moore’s law. Today, semiconductor process technol-

ogy has been extended to below 10 nm. Arranging transistors at a smaller

scale with the existing materials and technologies represents a big challenge,

that involves leaving the classical physics domain and entering the quantum

mechanics one. So current technology roadmap, based on the shrinking of the

transistor size, may end after three or four generations, posing tremendous

challenges to the design of post-Exascale systems. On the other hand, the

naive expectation that an Exascale system can be obtained simply enlarging

a current Petascale one is readily dispelled by a more thorough examination

of the proposals for emerging computing architectures and the common traits

of the challenges they are all faced with.

4



1.2. The path towards Exascale systems and beyond: hurdles and challenges 5

1.2.1 Energy efficiency

The primary constraint for Exascale and post-Exascale systems is their en-

ergy efficiency. The number one system in the June 2019 Top500 list [17]

of the more powerful HPC deployments in the world is the IBM Summit su-

percomputer installed at the Oak Ridge National Laboratory, with a 148.6

petaFLOPS maximal achieved performance at a power budget of 10.1 MW.

This corresponds to an energy efficiency of 14.7 gigaFLOPS/W, ranking the

machine in the second position of the June 2019 Green500 list [18] of the

most energy efficient supercomputers in the world, very close to the 15.1 gi-

gaFLOPS/W of the best performing DGX SaturnV Volta. Trying to achieve

an exaFLOPS machine simply scaling the IBM Summit supercomputer, as-

suming it is possible, would yield a ∼70 MW power requirement, with asso-

ciated unsustainable environmental impact and cost of operation.

Figure 1.1: Energy efficiency improvement potentials [19]

This energy efficiency bottleneck is the key aspect to take into account in

the design and development of Exascale, and post-Exascale, systems. The

maximum attainable energy efficiency is dictated by the physical limit pro-

posed by Landauer [20, 21] of kT ln 2 for the energy needed to perform one-

5



6 Chapter 1. Introduction

bit irreversible operation (e.g. reset to one), corresponding to an energy of

3× 10−21 J at room temperature and a limit for the energy efficiency of about

0.3 zetta operations per joule (ZOPJ). For comparison, the US DoE’s exascale

research program has the goal of deploying a 1 exaFLOPS machine in the 20-

40 MW range of power consumption, corresponding to 25-50 gigaFLOPS/W

around year 2022, while the US DARPA’s JUMP program targets a long-term

goal of 3 peta operations per joule (POPJ) –not necessarily 64-bit IEEE float-

ing point operations– by around 2035. So there is a gap, and a corresponding

space of improvement, of roughly six order of magnitudes before reaching

the Landauer’s limit, as shown in Figure 1.1 [19].

New technologies are to be explored to progress towards this limit: low-

power devices and components, energy-aware system scheduling and com-

pilation chains, low-power systems and cooling technology, and low-power

heterogeneous computer architectures characterized by the presence of appli-

cation specific computing accelerators. For the development of the latter class

of devices, a hardware and software co-design approach and the maturation

of proper cross-layer design methodologies will be necessary.

One last point that has to be mentioned here, is the fact that thanks to the

growth in parallelism at all system scales, even performance of today’s sys-

tems is increasingly determined by how data is communicated among the nu-

merous devices rather than by the total computation resources available. So,

as we will discuss in section 1.2.5, perhaps the most critical aspect to consider

for the realization of Exascale and post-Exascale systems is the fundamental

challenge of energy efficient data movement. With the energy cost of data

movement dominating the total energy consumption and representing a key

constraint on the final performance, the interconnection architecture plays a

fundamental role towards the design of sustainable future HPC systems.

6



1.2. The path towards Exascale systems and beyond: hurdles and challenges 7

1.2.2 Reliability

With the end of Dennard scaling around 2005, i.e. when processors stopped

getting faster as thermal limitations put an end to frequency scaling, the only

way to keep increasing their performance was to increment the number of

processing units. As a result, the degree of parallelism for a post-Exascale

architecture will likely be very high: a ballpark figure of hundreds of mil-

lions concurrency is to be expected. Reliability and resiliency will be critical

at this scale of parallelism: errors caused by the failure of components and

manufacturing variability will creep in and more drastically affect systems

operation. It is highly probable that a post-Exascale system will have an

even shorter mean time between failures than current HPC systems, which

is only hours [22]. Besides software failures (e.g. file system and kernel re-

lated failures), hardware related errors (e.g., uncorrectable memory errors)

will be equally or more dominant [23]. Progresses in the fields of systemic

fault-awareness and fault-reaction coupled with smart checkpointing and task

migration strategies will be mandatory to reach post-Exascale performance.

1.2.3 Storage system

Currently, there is a significant gap between performance of processors and

memory systems. This is the consequence of their very different rate of in-

crease during the last 20 years: 50% per year for processors performance

vs. 10% per year for memory access performance. As a result, the latency

of current processors is below 1 ns, while that of current memory systems

is around 100 ns; this performance gap is surely one of the main limiting

factors to the development of sustainable HPC systems. The traditional ap-

proach to improve storage bandwidth of memory systems by increasing both

the clock frequency and the width of the storage bus is bounded by phys-

ical limits [24]. The emerging 3D stack memory technologies represent a

7



8 Chapter 1. Introduction

promising opportunity to break the so-called memory wall, permitting faster

clock rates – with suitable processor logic – or permitting multicore access

to shared memory using a large number of vertical vias between tiers in the

stack [25]. In post-Exascale systems hundreds of millions of processes will

perform I/O operations concurrently, requiring hundreds of petabyte (PB)

data and dozens of TB/s aggregated bandwidth. Furthermore, this impressive

requirements will be combined with the emerging request to support a more

complex and diverse set of application domains including, besides traditional

HPC, Artificial Intelligence and High Performance Data Analytics. Novel

hybrid hierarchy storage architectures will be required to enable high scala-

bility of I/O clients, I/O bandwidth and storage capacity. The extensive use of

Non-volatile storage media (NVM) and the integration of storage and Remote

Data Memory Access (RDMA) interconnection, along with the development

of more scalable and robust distributed filesystems, are promising strategies

to significantly improve the efficiency of future storage systems [26].

1.2.4 Programming models

Programming models will have to deal with the very high degree of paral-

lelism expected, allowing the development of software frameworks, possibly

domain-specific ones, that will enhance users’ productivity in programming,

debugging and tuning the applications.

In the the June 2019 Top500 list, the top four systems, and eight in the top

ten, integrate some kind of heterogeneous accelerator device in their com-

puting node. This trend will most likely continue in the next years due to

performance, energy efficiency, density and costs considerations, so it is es-

sential for Exascale and post-Exascale programming models to fully support

heterogeneity of computing devices. Besides this, support for the explicit

control of hierarchical parallelism and data locality, to minimize data move-

ment overhead, and the integration of specific functionalities for fault detec-

8



1.2. The path towards Exascale systems and beyond: hurdles and challenges 9

Figure 1.2: Bandwidth vs. system distance Figure 1.3: Energy vs. system distance

tion and recovery will be mandatory for the full exploitation of the computing

resources [27].

1.2.5 Interconnection Networks

The increasing energy consumption and the bandwidth decrease associated

with data movement as data propagates from on-chip, across the module

(Edge), over the printed circuit boards (PCB), and onto the racks and the

whole system is one of the main limiting factor to the scalability of current

system architectures. Figure 1.2 shows the bandwidth taper (in blue) for con-

ventional electronic interconnect technology (the units are Gbps/mm of hori-

zontal cross-section), while figure 1.3 shows the relationship between the en-

ergy cost of data movement and system distance. For conventional electronic

interconnect technology (in blue), off-chip and inter-node communications

experience an order of magnitude energy wall and an associated shrinking in

bandwidth, while optical photonic interconnect technology (in red) does not

face this problems [28].

This spurs the research for interconnection architectures achieving ade-

quate rates of data transfer, or bandwidth, and curtailing the delays, or la-

tency, between the levels while keeping energy consumption under control.

A good design strategy for Exascale and post-Exascale systems intercon-

nect would involve the implementation of a hierarchical network (e.g. intra-

9



10 Chapter 1. Introduction

node, inter-node, intra-rack, and inter-rack) and the adoption of the technol-

ogy (wireless, optical photonic and electronic), network topology, and rout-

ing algorithms most suited for each level, considering energy efficiency, la-

tency and bandwidth.

The performance increase needed to reach the forthcoming Exascale sys-

tems will be determined by the enhancement of the computing node process-

ing capability along with the increase in the number of computing nodes;

considering that the single node processing power should be around 10 ter-

aFLOPS, the focus for this systems is on the architecture of an interconnec-

tion network of about 100,000 nodes. The required single node communi-

cation bandwidth for this architecture can be easily calculated through the

bandwidth to processing performance ratio of a current HPC system. Tak-

ing the Tiahne-2 [29] as an example of a well-balanced architecture, with

its single-node computing performance of 3 teraFLOPS and node commu-

nication bandwidth of 112 Gbps, this ratio is around 0.04 bit/FLOP, so for

the Exascale node a communication bandwidth of al least 400 Gbps will be

needed to maintain the same ratio [30]. However, for some communication-

intensive HPC application like for example computational fluid dynamics or

graph processing, a higher ratio and so a even higher network bandwidth

would be needed to reach optimal performance.

Silicon photonics interconnects technology offers the possibility of deliv-

ering the needed communication bandwidths with extremely scalable energy

efficiency, although the lack of practical buffering and the fundamental circuit

switched nature of optical data communications require a holistic approach

to designing system-wide photonic interconnection networks. New network

architectures are required and must include arbitration strategies that incor-

porate the characteristics of the optical physical layer [31]. For this reasons,

they will be probably adopted in later post-Exascale systems, while forthcom-

ing Exascale ones will still be based on conventional electronic interconnects.

10



1.2. The path towards Exascale systems and beyond: hurdles and challenges 11

Besides bandwidth, it’s well known that the mean network communication

latency is another critical parameters to be addressed in the design of a net-

work interconnect for a HPC system: using a low-latency interconnect min-

imizes the impact on application’s time-to-solution when scaling the system

to a large number of computing nodes [32, 33, 34]. However, efficient com-

munication does not come for free. Traditionally, the handling of network

protocols deplete precious processor and memory cycles; more specifically, a

common rule-of-thumb states that one CPU clock cycle is needed to process

one bit of incoming data. Furthermore, by copying the message payload to

intermediate buffers at send or receive side, memory bandwidth is needlessly

consumed, the caching subsystem is stressed and the communication latency

is increased. Another relevant aspect to be taken in consideration in the de-

sign of HPC interconnection networks is the fact that for communication-

intensive applications, changes in performance are more highly correlated

with changes of variation in network latency than with changes of mean net-

work latency alone [34].

The implementation of host offloading functionalities, such as zero-copy [35]

and Remote Direct Memory Access (RDMA) [36], in smart network inter-

faces has proven to be an effective approach to face these problems, and will

be most likely further developed for next generations HPC interconnection

networks. Dedicated or configurable computation engines embedded in the

network devices have already started to appear: for example the Mellanox

Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) [37] is

based on dedicated compute engines located on the Infiniband switch data

path dedicated for performing data reduction and aggregation operations.

These hardware enhancements are referred to as In-Network Computing.

The network topology defines the way in which the computing nodes are

connected, and has also a great impact on the performance of the system.

For HPC interconnection networks, besides the traditional torus and fat-tree

11



12 Chapter 1. Introduction

topologies, more recent ones have been proposed, such as Dragonfly [2]. The

properties of these topologies are well-known and they have been used in

the design of supercomputers over the last decades. All these topologies are

characterized by a rigid structure; recently Jellyfish, a network interconnect

adopting a random graph topology and featuring better incremental expand-

ability, shorter paths, and better resilience to failures, has been presented [38].

Again, a multi-tiered network design characterized by the best match be-

tween network topology (along with the corresponding routing algorithms)

and the network tier (intra-node, inter-node, intra-rack, and inter-rack), will

be needed to reach optimal performance for next generations HPC intercon-

nection networks. For example, a two-tiered hybrid interconnect having a

torus network as the lower tier and a fat-tree as the upper one can outperform

state-of-the-art pure torus and fat-tree networks as long as the density of con-

nections between the two tiers is high enough and the size of the subtori is

limited to a few nodes per dimension [6].

1.3 Modern Techniques in Reinforcement Learning

Since this work is heavily based on the exploitation of recent achievement in

the branch of Artificial Intelligence known as Deep Reinforcement Learning,

we provide here a short overview on the topic [7, 39].

Reinforcement learning is about the problem of an agent learning to act,

in the sense of mapping situations to actions, in an environment in order to

maximize a scalar reward signal. This is a closed-loop problem, as the agent

actions have an effect of its later inputs. No direct supervision is provided

to the agent, for instance it is never directly told what is the best action in a

given situation, instead it must find-out which actions will provide the highest

rewards by exploration.

12
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Figure 1.4: Scheme of a Reinforcement Learning scenario (from Wikipedia)

Agents and environments. At each discrete time step t = 0, 1, 2 . . ., the envi-

ronment provides the agent with an observation St, the agent responds by se-

lecting an actionAt, and then the environment provides the next rewardRt+1,

discount γt+1, and state St+1. This interaction is formalized as a Markov De-

cision Process, or MDP, which is a tuple 〈S,A, T, r, γ〉, where S is a finite set

of states, A is a finite set of actions, T (s, a, s′) = P [St+1 = s′ | St = s, At =

a] is the (stochastic) transition function, r(s, a) = E[Rt+1 | St = s, At = a]

is the reward function, and γ ∈ [0, 1] is a discount factor. In our experiments

MDPs will be episodic with a constant γt = γ, except on episode termination

where γt = 0, but the algorithms are expressed in the general form.

On the agent side, action selection is given by a policy π that defines a

probability distribution over actions for each state. From the state St encoun-

tered at time t, we define the discounted return Gt =
∑∞

k=0 γ
(k)
t Rt+k+1 as

the discounted sum of future rewards collected by the agent, where the dis-

count for a reward k steps in the future is given by the product of discounts

before that time, γ(k)t =
∏k

i=1 γt+i. An agent aims to maximize the expected

discounted return by finding a good policy.

13
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The policy may be learned directly, or it may be constructed as a function

of some other learned quantities. In value-based reinforcement learning, the

agent learns an estimate of the expected discounted return, or value, when

following a policy π starting from a given state, vπ(s) = Eπ[Gt|St = s],

or state-action pair, qπ(s, a) = Eπ[Gt|St = s, At = a]. A common way of

deriving a new policy from a state-action value function is to act ε-greedily

with respect to the action values. This corresponds to taking the action with

the highest value (the greedy action) with probability (1−ε), and to otherwise

act uniformly at random with probability ε. Policies of this kind are used to

introduce a form of exploration: by randomly selecting actions that are sub-

optimal according to its current estimates, the agent can discover and correct

its estimates when appropriate. The main limitation is that it is difficult to

discover alternative courses of action that extend far into the future; this has

motivated research on more directed forms of exploration.

Deep reinforcement learning and DQN. Large state and/or action spaces make

it intractable to learn Q value estimates for each state and action pair inde-

pendently. In deep reinforcement learning, we represent the various com-

ponents of agents, such as policies π(s, a) or values q(s, a), with deep (i.e.,

multi-layer) neural networks. The parameters of these networks are trained

by gradient descent to minimize some suitable loss function.

In DQN [8, 9] deep networks and reinforcement learning were success-

fully combined by using a convolutional neural net to approximate the action

values for a given state St (which is fed as input to the network in the form

of a stack of raw pixel frames). At each step, based on the current state, the

agent selects an action ε-greedily with respect to the action values, and adds a

transition (St, At, Rt+1, γt+1, St+1) to a replay memory buffer, that holds the

last million transitions. The parameters of the neural network are optimized

by using stochastic gradient descent to minimize the loss

14
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(Rt+1 + γt+1max
a′

qθ(St+1, a
′)− qθ(St, At))

2 , (1.1)

where t is a time step randomly picked from the replay memory. The gradient

of the loss is back-propagated only into the parameters θ of the online network

(which is also used to select actions); the term θ represents the parameters of

a target network; a periodic copy of the online network which is not directly

optimized. The optimization is performed using RMSprop [40], a variant

of stochastic gradient descent, on mini-batches sampled uniformly from the

experience replay. This means that in the loss above, the time index t will be

a random time index from the last million transitions, rather than the current

time. The use of experience replay and target networks enables relatively

stable learning of Q values, and led to super-human performance on several

Atari games.

1.3.1 Enhancements to DQN

Several extensions to DQN have been proposed to overcome the limitations

that have become evident with its wide adoption. Here we describe three

extensions that have been used in this work.

Double Q-learning. Conventional Q-learning is affected by an overestimation

bias, due to the maximization step in Equation 1.1, and this can harm learn-

ing. Double Q-learning [41], addresses this overestimation by decoupling, in

the maximization performed for the bootstrap target, the selection of the ac-

tion from its evaluation. It is possible to effectively combine this with DQN

[42], using the loss

(Rt+1 + γt+1qθ(St+1, argmax
a′

qθ(St+1, a
′))− qθ(St, At))

2.

15



16 Chapter 1. Introduction

This change was shown to reduce harmful overestimations that were present

for DQN, thereby improving performance.

Prioritized replay. DQN samples uniformly from the replay buffer. Ideally,

we want to sample more frequently those transitions from which there is

much to learn. As a proxy for learning potential, prioritized experience replay

[43] samples transitions with probability pt relative to the last encountered

absolute TD error:

pt ∝
∣∣∣Rt+1 + γt+1max

a′
qθ(St+1, a

′)− qθ(St, At)
∣∣∣ω ,

where ω is a hyper-parameter that determines the shape of the distribution.

New transitions are inserted into the replay buffer with maximum priority,

providing a bias towards recent transitions. Note that stochastic transitions

might also be favoured, even when there is little left to learn about them.

Dueling networks. The dueling network is a neural network architecture de-

signed for value based RL. It features two streams of computation, the value

and advantage streams, sharing a convolutional encoder, and merged by a

special aggregator [44]. This corresponds to the following factorization of

action values:

qθ(s, a) = vη(fξ(s)) + aψ(fξ(s), a)−
∑

a′ aψ(fξ(s), a
′)

Nactions
,

where ξ, η, and ψ are, respectively, the parameters of the shared encoder fξ,

of the value stream vη, and of the advantage stream aψ; and θ = {ξ, η, ψ} is

their concatenation.

16



2
Interconnection Networks for

High-Performance Computing

The research in High-Performance Computing (HPC) architectures tries to

give an answer to the ever-increasing demand for computing power. Today,

the target for top-notch systems is in the range of the exascale computing,

that means an integrated computing system capable of performing at least a

exaFLOPS, or a billion billion floating-point operations per second (the prefix

exa- denotes a factor of 1018).

As we discussed in section 1.2.5, the design of a scalable and low-latency

interconnection network is one of the main challenges in developing such

distributed-memory multiprocessor systems: the communication subsystem

turns out to be the bottleneck in most applications, with the inter-node com-

munication latency, and its stability, being one of the most critical parameters

of the overall parallel computing architecture.

After providing a summary of nomenclature and concepts used in the

domain of interconnection networks according to the reference books from

J. Duato et al. [3] and W. Dally et al. [45] we describe the architecture of

the APEnet interconnection network [46] implementing, in its latest incarna-

tion, the physical, data link and network layers of the ExaNeSt [12, 47] HPC

architecture.

17
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2.1 Networks classification

A classification of interconnection networks is shown in Figure 2.1; this

scheme is not fully exhaustive but it is more than adequate for our purposes.

According to this schema we can categorize networks in four main categories:

shared-medium networks, direct network, indirect network and hybrid net-

works.

Shared-medium networks use a common medium to connect all the de-

vices. Due to its shared nature the network experiences a severe performance

degradation when the number of nodes increases. They usually provide good

multicast/broadcast1 performance and are used in small systems like multi-

CPU nodes.

Direct networks uses a point-to-point node-to-node interconnection. Ev-

ery node is a compute unit with its own processor, memory and peripherals.

Each node has a router block which handles the communication with a subset

of the nodes called neighbours and all the nodes are connected according to a

given network topology. To establish communication between non-neighbour

nodes intermediates steps are used according to a routing function. Direct

networks offer good scalability and are used in many HPC systems.

Indirect networks are made of nodes interconnected through switches. Ev-

ery node is a compute unit but it has no routing capability, the only network

functionality of the node is carried out by the network adapter which connects

the node to a switch. Every switch has a fixed number of ports and every port

can be connected to: a node, another switch or not connected. The connec-

tion of the switches generates the network topology and the routing algorithm

selects the path between the nodes. Having the compute node outside of the

switch increases the distance across two nodes by two producing higher net-
1A multicast is a special send of a message from a node to many nodes, a broadcast is a particular case of

multicast in which a message is sent to all the nodes

18



2.1. Networks classification 19

Figure 2.1: Classification of interconnection networks, original image from [3]
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work latency2. Indirect networks are commonly used in data centres because

they are easier to maintain and do not require specialized network capabilities

from the compute nodes.

Hybrid networks combine the use of direct and indirect network to achieve

better performance. To mitigate the performance degradation of direct net-

works a hierarchical structure can be used, generating islands of direct net-

works interconnected using indirect networks. This approach is gaining ac-

ceptance into the HPC community.

2.2 Network topologies

In both direct and indirect networks the topology can be modelled by a di-

rected graph G(N,C), where the edges of the graph represent the C unidi-

rectional communication channels3 and the vertices the N switches or nodes

for indirect and direct networks respectively. Using this simple model we can

define some basic network properties from the graph representation:

• Node degree/Switch radix: Number of channels connecting a specific

node/switch to its neighbours.

• Distance: The distance d(a, b) between node a and node b of the net-

work is defined as the minimum number of hops required for going from

a to b. Since graph is directed the distance may not be commutative.

• Diameter: The maximum distance between two nodes in the network.

• Regularity: A network is regular when all the nodes have the same de-

gree.

• Symmetry: A network is symmetric when it looks alike from every node.
2Network latency is defined as the time to wait before receiving the data over the network.
3Bidirectional channels can be represented as a couple of unidirectional ones.

20



2.2. Network topologies 21

Figure 2.2: Example of a 4× 4 2D torus (4-ary 2-cube).

We will now present some relevant network topologies and characterise

their properties with a special focus on scalability.

2.2.1 n-Dimensional torus/mesh

In a n-dimensional torus having k nodes along each dimension, referred also

as k-ary n-cube, there are N = kn nodes, each one connected to 2n neigh-

bours, as depicted in Figure 2.2, therefore the nodes can be imagined as dis-

tributed on an n-dimensional grid4. The nodes at the boundaries of the grid

are connected across the borders of the network providing: periodic boundary

conditions, symmetry and regularity. The diameter of the network depends

on the shape of the grid and on the torus dimensions, for an n-dimensional

cubic grid of N nodes the diameter is:

d = n
n
√
N

2
= n

k

2
(2.1)

4The network topology specifies only the connection between the nodes and not their position in space.
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Figure 2.3: Fat-tree topology

Figure 2.4: Folded-Clos (Fat-tree) network

From a scalability point of view this topology has a fixed node degree

and a variable diameter, increasing the number of dimensions of the network

provides a better scalability at the cost of more connectivity. Thanks to its

fixed degree this topology is widely used in HPC’s direct networks since

adding more nodes does not change the structure of the node itself.

Meshes are similar to tori but they have open boundary conditions, so the

network is asymmetric and irregular. The degree of the nodes is not constant,

the diameter is n( n
√
N − 1).

2.2.2 Fat-tree and Folded-Clos

Fat-tree topology was proposed by Leiserson in 1985 as an interconnection

network for general-purpose parallel supercomputers with provably efficient

communication [48]. In a tree topology, the traffic loads on the links increase

moving towards the root: the main idea behind fat-tree network is to have

higher capacity links as we approach the root, as shown in figure 2.3. To im-

plement this concept, fat-tree networks requires switches with an increasing

number of ports, to support more links, moving from leaf nodes to the root.

This translates into a high cost of deployment when scaling the number of

nodes, since high-radix switches are expensive devices.

22
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Figure 2.5: Fully connected topology example for a dragonfly network.

To overcome this limitation to the scalability of the network, a variation of

the fat-tree can be build with a Folded-Clos [49] topology, using smaller radix

switches, as shown in Figure 2.4. With this approach, it is possible to replace

each high-radix switch close to the root with a set of low-radix switches, that

logically behaves like a high-radix one.

2.2.3 Dragonfly

This topology aggregates routers in an efficient way to make them behave as

higher radix ones [2]. The hierarchical structure of the network is composed

by three levels: router, group and system. The intra-group and inter-group

interconnection network topologies can be selected to achieve the system re-

quirements.

In a dragonfly network we have:

• p Terminals connected to each router using terminal channels5

• N Network terminals

• a Routers in each group
5This connection can be done internally for a direct network or externally using a port of the switch for an

indirect network.
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• h Channels within each router used to connect to other groups

• g Groups in the system

Every router is connected to p terminals, a − 1 local channels and h global

channels, therefore the radix of every router is k = p + a + h − 1. Because

every group consists of a routers connected via intra-group channels it can

be considered as a virtual router with an effective radix k′ = a(p + h). This

very high radix (k′ >> k) enables the system level network to be realized

with very low global diameter, defined as the maximum number of expensive

global channels on the minimum path between any two nodes. The parame-

ters a, p and h can have any value; however, to get the optimal load balancing

of the network traffic the parameters should respect the following relation:

a = 2p = 2h (2.2)

This ratio is derived from the fact that each packet traverses two local

channels along its route (one at each end of the global channel) for one global

channel and one terminal channel. The basic topology is depicted in Figure

2.5 and uses a fully connected topology for both the inter-group and intra-

group networks: if we make this particular choice the network is regular and

symmetric. The diameter of the network is 3 for a direct configuration and 5

for an indirect one using the relation (2.2) for the parameters with p = h = 2,

a = 4 the networks scales to N = 72 with k = 7 routers. By using virtual

routers, the effective radix is increased from k = 7 to k′ = 16. Different

topologies can be used to reduce the radix of the nodes at the cost of an

increase in network diameter.
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Figure 2.6: Internal structure of a generic router model (LC = link controller). Original
image from [3]

2.3 Router model

Before going any further in this brief introduction to interconnection net-

works it is fundamental to define and describe a router model. A comprehen-

sive and clear model is the one proposed in [3] which is a good representation

of the real hardware architecture of a router. The internal architecture shown

in Figure 2.6 is divided into the following main components:

• Buffers: FIFO buffers are used for storing messages in transit. The

model in Figure 2.6 has buffers for input and output channels but alter-

native designs may have input or output buffers only.

• Switch: This component connects input buffers to output buffers.

• Routing and arbitration unit: Those components implement the rout-

ing algorithm, selecting the appropriate output channel for an incoming

message and setting the switch accordingly. If the same output chan-
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nel is requested by multiple messages at the same time the arbitration

unit must resolve the contention. The arbitration policy can be a simple

round robin or a complex priority algorithm.

• LC (Link Controller): It implements the control flow logic for the

messages across the channel between two routers.

• Processor interface: This component is a channel interface to the lo-

cal processor instead of an adjacent router. It consists of one or more

injection and ejection channels.

This router model is designed for direct networks but can be used as a

switch model for indirect networks if we remove the processor interface.

2.4 Packets, Flits, Phits

In order to transfer data over the network, they must be prepared and they may

be split in chunks. This process is called packetization and it is done in the

following way: the message to be transferred over the network is split in to

chunks of a fixed size and all of the chunks are then encapsulated into packets.

Packets are made of two parts a data one called payload and a protocol part

called header.

The packet is the smallest unit of information that can be sent over the

network, therefore the header must contain all the addressing data needed

to deliver the payload to its destination; this information is crucial for the

delivery, so the header is stored into the first part of the packet. Other use-

ful protocol information, like error correction codes, can be stored into the

optional footer which is stored into the last part of the packet.

The packet is then divided into smaller sub-units called flits (flow-control

units), those units are the ones whose transfer is requested by the sender and

acknowledge by the receiver. Flits may be divided into phits (physical units)
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Figure 2.7: Fragmentation of a message into packets, flits and phits.

which are the units of information that can be physically transferred in a

single cycle between two nodes. All the different sub-units of information

are depicted in Figure 2.7.

2.5 Packet Switching Techniques

A crucial aspect of a network infrastructure is how the packets are switched

and saved into intermediate nodes during their path. In both direct and indi-

rect networks some switching action is required but we have not yet defined

a policy for switching the packets. In this section three of the main switch-

ing techniques are presented: store and forward, wormhole and virtual cut

through. Whatever policy we decide to adopt, we need to manage a critical

physical resource: the receiving/sending buffers. Every switching technique

has to decide how to manage the free space in the buffers and when to start

and stop forwarding packets. When the network is in a congested state, a

large fraction of the packets are waiting for resources.

2.5.1 Store And Forward (SAF)

This switching technique is very simple and works as follows:

• The node receives al the flits of the packet and stores them into the

receiving buffer of the channel.
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Figure 2.8: An example of messages travelling through a wormhole network. Message A is
blocked by message B generating a contention. Original image from [3]

• The header is parsed by the router and the output port is calculated.

• If the receive buffer of the next node has enough free space to store the

full packet and the channel is free the packet is forwarded, otherwise it

waits.

This approach let the router deal only with complete packets. The main draw-

back of this switching technique is latency: at every hop the switch has to

wait for the full transfer of the packet before forwarding the information. In

absence of congestion the latency L of a packet is given by the (2.3) where:

nflits is the number of flits of the packet, nhops is the number of hops between

source and destination and tflit is the time needed to transfer a single flit6.

L = tflit · nflits · nhops (2.3)
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2.5.2 Wormhole

This technique is the opposite of the SAF one. The switch forwards the

packet a flit at the time as depicted in Figure 2.8 following this schema:

• The first flits of the packet containing the header are received and stored

into the receiving buffer.

• The header is parsed by the router and the output port is calculated.

• If the receive buffer of the next node has enough free space to store a

single flit and the channel is free the first flit is forwarded, otherwise it

waits.

• Every new flit is forwarded as soon as available if the buffer and the

channel are free.

In order to take the routing decision the router has to parse the entire header,

this makes crucial keeping the header into the smallest possible number of

flits, preferably one. The main advantage of this approach is the reduced

latency by pipelining of the full packet transmission time across the hops.

The latency L in absence of congestion can be calculated as follows:

L = tflit · (nflit + nhops) (2.4)

Wormhole routing requires a more complex flow control system which has

to be able to stop and resume the transfer of the packet if congestion occurs,

and it is more prone to congestion because a packet uses resource of multiple

nodes at the same time.
6We are neglecting the time spent by the router to make the routing decision, this time is common to all the

switching techniques and therefore not interesting in this comparison.
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2.5.3 Virtual Cut-Through (VCT)

In this case we want to take the best from both wormhole and SAF and com-

bine them into a single technique. A VCT network behaves like a wormhole

one apart from the forwarding requirements: to forward a packet the receiv-

ing buffer must have enough free space to store the full packet. In this way

we have the same flow control simplicity and resources occupancy as in a

SAF network but the same latency of a wormhole network in absence of con-

gestion. The main drawback is an higher buffer capacity requirement than a

wormhole network: in a wormhole network the buffers must provide at least

enough free space to store a single flit; in VCT and SAF networks the buffers

must provide at least enough free space for a full packet.

2.6 Routing algorithms

A routing algorithm defines which route a packet should take while travelling

from its source to its destination. The selection of the algorithm can heavily

affect network performance, therefore we have to select it carefully. In this

section we will discuss the minimum requirements for a routing function and

we will discuss different approaches to the problem of routing a packet.

It is useful to give some basic definitions. A routing function calculates

the next step that a packet has to take in its path towards its destination: in

principle we could use information gathered across the whole network to

calculate the path but, if we want to achieve a good scalability of the system,

this approach is not practical. In this work we will consider routing functions

that use only local information, coming from the packets, the node, and its

first-neighbour nodes.

The routing action is modelled as a two stage process implemented by two

separated functions: routing and selection. The routing function provides a

set of output channels based of the current node and the destination of the
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packet. The selection among the provided channels is made by the selection

function based on the status of the output channels of the current node. To be

selected a channel must be free according to the switching technique in use,

if all the channels are busy the packet will wait for an available one. Because

the routing function selects the subset of output channels it will be the only

part responsible for granting the delivery of the packet, while the selection

function will only affects performance. In this routing model the domain of

the routing function is NxN for an N nodes network, because the function

considers only the destination and the current nodes.

A routing function is connected if any node of the network can reach any

other node, and because we want all the packets to be delivered on the net-

work, every routing function must be connected. The routing function can

select always the same path between two nodes or can choose between mul-

tiple ones according to the network traffic, the algorithms in the first case are

called deterministic, the ones in the second case are called adaptive. An al-

gorithm is fully adaptive if has the possibility to use all the possible paths. A

routing function is minimal if it only supplies channels that bring the packet

closer to its destination.

The minimum requirement for a routing algorithm is to deliver packets in

a finite amount of time regardless of the network traffic, an in-depth study

of this condition will be done especially for what concerns deadlock and

livelock. Before introducing the problem we need to introduce one useful

instrument to solve it: virtual channels.

2.6.1 Virtual channels

In section 2.5 we learned that the critical resources while sending packets

over a network are the receiving buffers. A common strategy consists of

optimizing the channel usage and reducing congestion using virtual chan-

nels [50]. Virtual channels consist on a set of duplicated buffers multiplexed
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and demultiplexed into the same physical channel by the link control logic.

From the switch point of view there is no difference between a physical chan-

nel and a virtual one because the switch sees only the buffers, all the physical

layer is handled by the link controller. By adding a virtual channel we can

effectively increase the number of channels in the network without adding the

extra cost and complexity of the real hardware link. All the virtual channels

share the bandwidth of the physical link with a certain policy, for example

round robin. If we select a non uniform policy it is possible to implement QoS

into the network using several virtual channels with different priority levels.

In this work virtual channels will be used only to implement deadlock-free

routing.

2.6.2 Deadlock

A deadlock occurs when some packets cannot advance toward their desti-

nation because the buffer requested by them are full. A configuration is an

assignment of a set of packets or flits to each buffer. A deadlocked configu-

ration occurs when some packets are blocked for an infinite amount of time

because they are waiting for resources that will never be granted because they

are held by other packets. This condition must be avoided since it breaks the

functionality of the network itself.

A deadlocked configuration is called canonical if all of the packets present

into the network are blocked. We will study only canonical configurations be-

cause any other deadlocked configuration has a corresponding canonical one.

To obtain a canonical deadlock configuration it is sufficient to stop injecting

new traffic into the network and wait for the delivery of all the non blocked

packets.

The presence or the absence of potentially deadlocking configurations is

a property of the routing algorithm in use. The same topology with the same

number of virtual channels may be deadlock-free or not depending on the
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selected routing algorithm. On the other hand this property is independent of

the network traffic and must be verified without making any assumption on

the traffic pattern.

To avoid deadlock we will focus on two opposite approaches: the detec-

tion of and the reaction to a deadlock configuration, and the impossibility of

deadlock configurations to occur. The first method requires the network to

be aware of being in a deadlocked state and to react breaking the deadlock

condition. If we want to certainly detect a deadlock configuration we need to

use non local information which is usually difficult to collect and analyse in

large networks. If we want to use only local information we can guess if a

packet is deadlocked by using a time-out system. This approach can lead to

misidentification of congested packets into deadlocked ones if the network is

heavily congested, leading to performance degradation. The reaction to a de-

tected deadlock requires the capability of retransmitting packets that need to

free resources. The network must detect and react to the deadlocked configu-

rations faster than they occur, otherwise different deadlocked configurations

can pileup generating network malfunctions. The second method consists

of providing a routing algorithm that cannot generate deadlocked configura-

tions. Because this property must be traffic-independent it is not trivial to

proof that a routing algorithm is deadlock-free, but this problem can be ap-

proached using some graph theory and a bunch of theorems.

Definitions We introduce now the concept of channel dependency [4] and the

channel dependency graph: there is a dependency between channels i and j,

if the routing algorithm can forward a packet holding resources on channel i

to channel j; the channel dependency graph is a directed graphD = G(C,E)

which vertices are all the unidirectional channels in the network I and arcs

represents the pairs (ci, cj) such that there is a channel dependency from ci to

cj.
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We define the routing subfunction R1 for a given routing function R as a

routing function defined on the same domain as R that supplies a subset of

the channels supplied by R. The channels supplied by R1 for a given packet

destination are indicated as escape channels for the packet; let’s refer to the

set of the escape channels with C1. The extended channel dependency graph

ofR1 is defined as the channel dependency graph in which all vertices belong

to C1, the graph is constructed taking into account a wider class of dependen-

cies between channels (direct, indirect, direct cross and indirect cross) [51].

In the case of VCT and SAF networks, only direct and direct cross dependen-

cies must be considered in building the extended channel dependency graph.

Necessary and Sufficient Condition The previous definitions finally allow us to

enunciate the following important theorem[51] proposing a necessary and

sufficient condition for a routing function to be deadlock-free:

Theorem 1. A connected routing function R for an interconnection network

I is deadlock-free if and only if there exists a routing subfunction R1 that is

connected and has no cycles in its extended channel dependency graph.

If the routing algorithm is deterministic the only connected subfunction

is R itself, so in this case the channel dependency graph and the extended

channel dependency graph of R1 are identical. Therefore the resulting con-

dition for deadlock-free routing for non adaptive routing can be stated in the

following corollary, originally proposed as a theorem [4]:

Corollary 1. A deterministic routing function R for an interconnection net-

work I is deadlock-free if and only if there are no cycles in its channel de-

pendency graph D.

This corollary can be used to generate deadlock-free deterministic routing

functions, as in the following example. Consider a ring network of four nodes

connected by unidirectional channels, as the one depicted in Figure 2.9(a), its
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Figure 2.9: (a) Unidirectional ring (left) with its channel dependency graph (right). (b)
Modified deadlock-free unidirectional ring (left) with its channel dependency graph (right).
Original image from [4]
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Algorithm 1 : Deadlock-free routing for unidirectional ring using high and low virtual
channels

1: if curr = dest then
2: Channel := Internal;
3: else if curr < dest then
4: Channel = c1curr
5: else
6: Channel = c0curr
7: end if

channel dependency graphD is shown on the right. Because of the simplicity

of this network the only connected routing function is the one that forwards

the packet through the only available channel if the destination is different

from the current node. The channel dependency graph for this algorithm is

not acyclic, therefore the network is not deadlock-free. In this trivial example

it is very easy to find a deadlocked configuration: any configuration with all

the buffers from all the nodes filled up with packets and zero packets arrived

at destination is deadlocked.

We can make this network deadlock-free by splitting each physical chan-

nel into two groups of virtual channel: high virtual channels (c10, ..., c13) and

low virtual channels (c00, ..., c03) as shown on the left of Figure 2.9(b).

The routing function 1 and the introduction of two virtual channels per

physical channel modify the channel dependency graph into the one depicted

on the right of Figure 2.9(b) which is acyclic, therefore the network is now

deadlock-free.

Sufficient Condition for VCT and SAF Switching Networks If we focus on VCT

and SAF switching networks, only direct and direct cross dependencies must

be considered in building the extended channel dependency graph [51]. Di-

rect cross-dependencies are due to the fact that some channels are used either

as escape channels or as regular channels depending on packet destination.

To avoid this situation, we can define the R1 subfunction using the C1 subset
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of channels as follows:

R1(x, y) = R(x, y) ∩ C1∀x, y ∈ N (2.5)

With this definition ofR1 a channel that belongs to C1 will be used always

as an escape channel for all possible destinations for which it can be supplied

by R, so the cause of direct cross-dependencies is eliminated: the channel

dependency graph and the extended channel dependency graph of the routing

subfunction are identical. This allows to define the following corollary, that

provides a direct manner to check whether a routing function is deadlock-free

(sufficient condition):

Corollary 2. A connected routing function R for an interconnection network

I is deadlock-free if there exixts a channel subset C1 ⊆ C such that the

routing subfunction R1(x, y) = R(x, y)∩C1∀x, y ∈ N is connected and has

no cycles in its channel dependency graph D1.

Finally, the following theorem proposes a relevant property of routing sub-

functions defined according to expression 2.5:

Theorem 2. A connected routing function R for an interconnection network

I is deadlock-free if there exists a channel subset C1 ⊆ C such that the

routing subfunction R1(x, y) = R(x, y) ∩ C1∀x, y ∈ N is connected and

deadlock-free.

Duato’s Protocol for VCT or SAF Networks Theorem 2 is at the basis of a method-

ology, referred as Duato’s Protocol (DP), that provides fully adaptive minimal

and nonminimal routing algorithms, starting from a deadlock-free connected

routing algorithm. Given a VCT or SAF switching interconnection network

I1, the DP is accomplished in two stages:

1. Select one of the existing routing functions for I1, let it be R1. R1 must
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be deadlock-free and connected, it can be deterministic or adaptive. C1

is the set of channels supplied by R1.

2. Split each physical channel into a set of additional virtual channels, C

is the set of all the virtual channels in the network. Cxy represents the

set of output channels from node x that belongs to a path from node x

to node y. The new routing function R can then be defined as:

R(x, y) = R1(x, y) ∪ (Cxy ∩ (C − C1))∀x, y ∈ N (2.6)

So the new routing function can use any of the added virtual channels or,

in alternative, the channels supplied from the starting routing function R1,

but new routing options to C1 are not allowed.

In this work we followed the DP methodology to guarantee that DQN-

Routing is deadlock-free, as we will see in chapter 3.

2.6.3 Livelock

Livelock is a misbehaviour of the routing algorithm which forwards packets

along a path that does not contain their destination, resulting in not delivered

packets and wasted network bandwidth. Any minimal routing function is au-

tomatically livelock-free, the distance d between any couple of nodes into the

network is a finite quantity, therefore every minimal path algorithm delivers

any packets in d steps. For non minimal algorithm extra attention to avoid

livelock must be paid, especially if the algorithm uses only local information

to calculate the path.

A simple technique to avoid livelock, that has been used for this work, is

to limit the number of non minimal hops that a packet can take; this limitation

reduces the flexibility of the algorithm but avoids infinite looping.
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2.7 Selection of Routing Algorithms

In this section several routing algorithms for tori and dragonfly will be pre-

sented. For each algorithm we provide proof of the absence of livelock and

deadlock.

2.7.1 Dimension-Order Routing (DOR)

DOR [4] is a minimal non adaptive routing algorithm for n-dimensional tori

and meshes. Because of the simplicity of this algorithm it is often used as a

base for more complex ones.

The position of the nodes in the network is indicated by n integers giving

the Cartesian coordinates of the node into the grid. The algorithm starts com-

paring the node coordinates against the packet destination coordinates from

dimension 0 up to dimension n−1. If the coordinates are different the packet

is forwarded following the minimal path to the destination, if the coordinates

are equal no action is required: the packet has arrived to its destination. The

critical point of the algorithm is to manipulate the n dimensions in a fixed or-

der7. Figure 2.10 depicts an example of path selected by the dimension-order

algorithm on 2D torus.

The algorithm uses minimal paths so it is livelock-free by definition. Be-

fore considering the deadlock freedom of the algorithm it is useful to divide

the channels into classes:

• A channel belongs to the class d+ if it connects two node in the dimen-

sion d in the increasing coordinates direction.

• A channel belongs to the class d− if it connects two node in the dimen-

sion d in the decreasing coordinates direction.
7The order relation can be any total one and it can be selected only once. To change the order relation the

network has to be completely empty.
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Figure 2.10: Path of the DOR algorithm on a 4x4 torus between nodes (3,0) and (0,1).

To proof the absence of deadlock configurations, we can use the corollary

1 and discuss the channel dependency graph. Thanks to the dimension or-

der any channel of class i± cannot depend on any channel of the class j±

where j > i, this removes all the possible loops between channels belong-

ing to different dimensions. The algorithm selects the minimum path to the

destination, for a given dimension d the shortest path can be either in the di-

rection + or in the direction − but it cannot be in both directions. Therefore

it is impossible to generate dependencies between channels d+ and d− in the

same dimension. The only possible source of cyclic dependency left is within

channel of the same class. If we consider a mesh network, packets are not al-

lowed to cross the boundaries of the network, preventing deadlock. The torus

topology requires more attention because the algorithm is not deadlock-free

in the form presented before. A single channel class of a torus is exactly the

same topology as the circular network depicted on the left in Figure 2.9(a) ,

therefore adding one extra channel dedicated to the packets that have crossed

the border is enough to remove any deadlocking situation. The extra virtual

channels are only required for half of the nodes in the class. In the real imple-
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mentation it is good practice to keep the nodes symmetric and add the extra

virtual channel for all the nodes in the class.

2.7.2 Star-channel [1]

This is a minimal path, fully adaptive routing algorithm for n-dimensional

tori and meshes based on the dimension-order routing. This algorithm adds

an extra virtual channel to the ones used by the DOR to achieve full adap-

tivity. The idea behind this routing function is to use the DOR as an exhaust

valve for any possible deadlock configuration originated by the adaptive be-

haviour.

The network is divided into two sub-networks: one is the star subnet made

of all the channels used by the dimension-order algorithm, the other is the

nonstar one which has one virtual channel on every link8. The routing algo-

rithm uses the two subnetworks according to the following rules:

• A packet can use a free channel of the nonstar subnet to follow a mini-

mal path to its destination in any dimension.

• A packet can use a star channel only if it respects the dimension order

criterion.

Livelock can be excluded because the algorithm uses minimal paths. To

exclude deadlock we can use the channel dependency graph. Packets can

only use the star channels if they meet all the dimensional requirements im-

posed by the algorithm. Because the dimension-order routing function has

an acyclic graph, the extra dependency added by the presence of the nonstar

subnet cannot generate deadlock configurations. For VCT and SAF switch-

ing networks, we can use theorem 2, where C1 is the subset provided by the
8Every algorithm can have more virtual channels to implement QoS or other traffic control features, here

we are discussing the minimum requirements for deadlock and livelock free routing.
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(a) Standard network

(b) Network with extra virtual channels

Figure 2.11: Subsets of the total dependency graph for a fully connected dragonfly network.
Graph 2.11a depicts a standard configuration with no additional virtual channels. Graph
2.11b depicts a deadlock-free configuration with extra virtual channels (identified by a V
letter) for local routing of packets coming from other groups.

star channels and the associated routing subfunction R1 is the connected and

deadlock-free DOR.

2.7.3 Min-routing [2]

This is a near-minimal non adaptive routing algorithm for dragonflies and it

can be considered as a base algorithm for adaptive or more complex ones.

Packets in a dragonfly network can be identified by three number:

• Group index (G): it indicates the group

• Router index (R): it indicates the router within the group

• Node index (N ): it indicates the node within the router

The min-routing algorithm uses a three step process to forward the packet
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using the corresponding local or global channel, for better clarity the algo-

rithm can be described using this pseudo code:

i f ( G node != G d e s t i n a t i o n )

i f ( i s c o n n e c t e d ( G node , G d e s t i n a t i o n ) )

f o r w a r d g ( G d e s t i n a t i o n ) ;

e l s e
f o r w a r d l ( g l o b a l t o l o c a l ( G d e s t i n a t i o n ) ) ;

e l s e i f ( R node != R d e s t i n a t i o n )

f o r w a r d l ( R d e s t i n a t i o n ) ;

e l s e
f o r w a r d i ( N d e s t i n a t i o n ) ;

The function is connected returns true, if the node has a direct global connec-

tion to the given group, false otherwise. The various forward functions for-

ward the packet using global, local or internal port accordingly. The function

global to local returns the index of the local node which as a global direct

connection to the provided group. This method provides a fully connected

near-minimal routing function.

The algorithm is distance-bounded and therefore livelock-free. If no vir-

tual channels are used deadlock configuration can occur because there are

cyclic dependencies. We can easily create a loop between ingoing and out-

going packets between different groups, as depicted in Figure 2.11a because

the same local channels are used for all the packets. In order to break those

loops we need to add one extra virtual channel to the local network dedicated

to packets coming from a different group. If we consider now the channel

dependency all the loops are broken as shown in Figure 2.11b. Note that the

dependency graphs are partial to provide a better understanding of the crit-

ical path, the graph in Figure 2.11b is not connected but this is due to the

partial nature of the graph itself and it does not imply a not connected routing

function.
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2.8 The APEnet Interconnection Network and the ExaNest
Project

In this section we will introduce the APEnet interconnection network and Ex-

aNet, its latest implementation in the context of the H2020 European Project

ExaNeSt [47].

2.8.1 APEnet

The Array Processor Experiment (APE) is a custom design for HPC, started

by the Istituto Nazionale di Fisica Nucleare (INFN) and partnered by a num-

ber of physics institutions all over the world; since its start in 1984, it has

developed four generations of custom machines (APE [52], ape100 [53],

APEmille [54] and apeNEXT [55]). Leveraging the acquired know-how in

networking and re-employing the gained insights, a spin-off project called

APEnet developed an interconnect board based on FPGA that allows to as-

semble a PC cluster à la APE with off-the-shelf components.

The design of APEnet interconnect is easily portable and can be config-

ured for different environments: (i) the APEnet [56] was the first point-to-point,

low-latency, high-throughput network interface card for Lattice Quantum

ChromoDynamics (LQCD) simulations dedicated clusters; (ii) the Distributed

Network Processor [57] (DNP) was one of the key elements of RDT (Risc+DSP+DNP)

chip for the implementation of a tiled architecture in the framework of the

EU FP6 SHAPES project [58]; (iii) the APEnet Network Interface Card,

based on an Altera Stratix IV FPGA, was used in a hybrid, GPU-accelerated

x86 64 cluster QUonG [59] with a 3D toroidal mesh topology, able to scale

up to 104 − 105 nodes in the framework of the EU FP7 EURETILE project.

APEnet+ was the first device to directly access the memory of the NVIDIA

GPU providing GPUDirect RDMA capabilities and experiencing a boost in

GPU to GPU latency test; (iv) the APEnet network IP — i.e. routing logic
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and link controller — is responsible for data transmision at Tier 0/1/2 in the

framework of H2020 ExaNeSt project, as we will see later in the section.

Table 2.1 summarizes the APEnet families comparing the main features.

APEnet DNP APEnet+ APEnet+ V5 ExaNet
Year 2003 2007 2012 2014 2017

FPGA Altera Stratix III ASIC Altera Stratix IV Altera Stratix V Xilinx Ultrascale+
BUS PCI-X AMBA-AHB PCIe gen2 PCIe gen3 AXI

Computing Intel CPU RISC+DSP NVIDIA GPU NVIDIA GPU ARM+FPGA
Link Bandwidth 6.4 Gbps 34 Gbps 45 Gbps 32 Gbps

Latency 6.5µs 4µs 5µs 1.1µs

Table 2.1: The APEnet roadmap to Exascale

The APEnet interconnect has at its core the DNP acting as an offloading

network engine for the computing node, performing internode data transfers;

the DNP has been developed as a parametric Intellectual Property library;

there is a degree of freedom in choosing some fundamental architectural fea-

tures, while others can be customized at design-time and new ones can be

easily added. The APEnet architecture is based on a layer model, as shown

in Figure 2.12, including physical, data-link, network, and transport layers of

the OSI model.

The physical layer — APEphy — defines the data encoding scheme for

the serialization of the messages over the cable and shapes the network topol-

ogy. APEphy provides point-to-point bidirectional, full-duplex communica-

tion channels of each node with its neighbours along the available directions

(i.e. the connectors composing the IO interface). APEphy is strictly depen-

dent on the embedded transceiver system provided by the available FPGA.

It is normally based on a customization of tools provided by the FPGA ven-

dor — i.e. DC-balance encoding scheme, deskewing, alignment mechanism,

byte ordering, equalization, channel bonding. In APEnet+ and APEnet+ V5,

four bidirectional lanes, bonded into a single channel with usual 8b10b en-

coding, DC-balancing at transmitter side and byte ordering mechanisms at

receiver side, allow to achieve the target link bandwidth (34 Gbps [60] and
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45 Gbps [61] respectively).

The data-link layer — APElink — establishes the logical link between

nodes and guarantees reliable communication, performing error detection and

correction. APElink [62] is the INFN proprietary high-throughput, low-latency

data transmission protocol for direct network interconnect based on word-stuffing

technique, meaning that the data transmission needs submission of a magic

word every time a control frame is dispatched to distinguish it from data

frames. The APElink manages the frame flow by encapsulating the packets

into a light, low-level protocol. Further, it manages the flow of control mes-

sages for the upper layers describing the status of the node (i.e. health status

and buffer occupancy), and transmitted through the APElink protocol.

The network layer — APErouter — defines the switching technique and

routing algorithm. The Routing and Arbitration Logic manages dynamic

links between blocks connected to the switch. The APErouter applies a di-

mension order routing [4] (DOR) policy: it consists in reducing to zero the

offset between current and destination node coordinates along one dimension

before considering the offset in the next dimension. The employed switch-

ing technique — i.e. when and how messages are transferred along the paths

established by the routing algorithm, de facto managing the data flow — is

Virtual Cut-Through [63] (VCT): the router starts forwarding the packet as

soon as the algorithm has picked a direction and the buffer used to store the

packet has enough space. The deadlock-avoidance of DOR routing is guar-

anteed by the implementation of two virtual channels [50] for each physical

channel.

The transport layer — APE Network Interface — defines end-to-end

protocols and the APEpacket. The APE Network Interface block has basi-

cally two main tasks: on the transmit data path, it gathers data coming in

from the bus interfacing the programming subsystem, fragmenting the data

stream into packets — APEpacket— which are forwarded to the relevant
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Figure 2.12: The layered architecture of
APEnet

Figure 2.13: A block diagram of APEnet ar-
chitecture

destination ports, depending on the requested operation; on the receive side,

it implements PUT and GET semantics providing hardware support for the

RDMA (Remote Direct Memory Access) protocol that allows to transfer data

over the network without explicit support from the remote node’s CPU.

An APEpacket is composed by a header (1 flit, 128 bit), a payload (up to

256 flits), and a footer (1 flit). For the format of the packet header and footer

refer to Figure 2.14 and Figure 2.15.

The full APE Network Interface offers a register-based space for configu-

ration and status signalling towards the host. Further, it offers a variable size

region for defining a number of ring buffers, each one linked to an OS process

accessing the device. These regions are typically accessed in slave mode by

the host, which is master (read/write of single 32-bit based registers). Four

DMA engines are used to move data to and from the device, plus other addi-

tional services: a TX descriptor queue (to issue buffer transfers from host to

device) and an event queue (to notify different kind of completions to host).
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Single or Multiple DMA engines could manage the same intra-tile port.

The block diagram of the APEnet interconnect architecture is shown in

Figure 2.13.

Figure 2.14: APEnet packet header Figure 2.15: APEnet packet footer

2.8.2 The ExaNeSt project

The ExaNeSt project [64], started on December 2015 and funded by EU H2020

research framework (call H2020-FETHPC-2014, n. 671553), was a European

initiative aiming at developing the system-level interconnect, a fully-distributed

NVM (Non-Volatile Memory) storage and the cooling infrastructure for a

Exascale-class supercomputer with heterogeneous computing nodes integrat-

ing multi-core ARM processors with FPGA reconfigurable devices.

One of the main goals of the project was the design and development of

an interconnection network suitable for exascale-class supercomputers. The

design envision a hierarchical infrastructure of interacting network layers.

Design at the network level is configurable although topologies in the lowest

layers (or tiers) are hardwired. An overview of the foreseen interconnects is

in Table 2.2.

The Unit of the system is the Xilinx Zynq UltraScale+ FPGA, integrating

four 64-bit ARMv8 Cortex-A53 hard-cores running at 1.5 GHz, and 2 ARM-
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Hierarchy Fanout Switching Topology Bandwidth Latency
Tier 4 System 500 Racks Optical
Tier 3 Rack 3 chassis 10GbE (ExaNet) Fat-Tree (Torus) 10 Gbps
Tier 2 Chassis 9 mezzanines ExaNet 2D/3D-Torus 4x10 Gbps 400 ns per hop
Tier 1 Mezzanine 4 nodes ExaNet Ring 2x10 Gbps 400 ns per hop
Tier 0 Node 4 FPGAs ExaNet All-to-All 16 Gbps 400 ns
FPGA Unit ZU9
CORE A53

Table 2.2: The ExaNeSt multi-tiered network.

R5 cores.

The Node is the Quad-FPGA Daughter-Board (QFDB) containing four

Zynq devices, 64 GB of DRAM and 250 GB SSD storage connected through

the ExaNeSt Tier 0 network.

For inter-node communication, one FPGA provides a connector with ten

bidirectional HSS links. Each external link has a maximum rate of 10 Gbps.

Four out of ten links connect neighbouring QFDBs hosted on the Mezzanine

(also known as Blade) (Tier 1). The Mezzanine board enables the mechanical

housing of 4 QFDBs hardwired in a ring topology with two HSS links (2 ×
16 Gb/s) per edge and per direction. The remaining six HSS links, routed

through SFP+ connectors, are mainly used to interconnect mezzanines within

the same Chassis (Tier 2).
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3
DQN-Routing: a Novel Adaptive Routing

Algorithm for Torus Networks Based on
Deep Reinforcement Learning

We designed DQN-Routing, a novel, distributed, unicast, fully adaptive non-

minimal routing algorithm for torus networks. Arithmetic routing is the tra-

ditional approach for torus networks: this is an efficient and scalable solu-

tion. Moving in the same direction, in the sense of relying on some kind of

processing rather than on routing tables, we envisaged the possibility of del-

egating the adaptive part of the routing algorithm to a reinforcement learning

Agent [7], using the deterministic dimension-order routing algorithm as es-

cape routing subfunction (see theorem 2).

Let’s refer to the reinforcement learning scenario shown in figure 3.1: the

Router senses the network state, that makes up the Environment in RL terms,

by observing a state S (that includes routing requests); it processes this state

and provides an interpreted network state S ′ to the Agent, that in response

propose an action (i.e. a routing decision) A′ to the Router; depending on

S, the Router decides to accept the Agent proposal (A = A′) or reject it

(A 6= A′) and takes its routing decision A.

In an asynchronous manner, the Router receives, as part of S, feedback

information for the actions A = A′ it has taken on Agent proposal. The

Router uses this feedback information to provide a scalar reward R′ to the
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Figure 3.1: Reinforcement Learning scenario for DQN-Routing.

Agent for its proposed actions, the Agent uses R′ to adjust its parameters in

order to provide better proposals in future.

In DQN-Routing the Agent is implemented, according to the Deep Re-

inforcement Learning approach [8, 9], with a convolutional neural network

trained with a variant of Q-learning (Deep Q-Network or DQN).

Although we focused on the view of a single Router plus Agent system,

the whole routing problem can be represented as an independent multi-agent

reinforcement learning problem, since the network interconnects many of

such systems, that learn to act independently, without sharing experiences

during the learning process.

3.1 Related Work

The seminal paper by Boyan&Littman (1993) [65] proposes Q-Routing, a

distributed value-based RL algorithm for packet routing in networks with dy-

namically changing topology and traffic conditions. In Q-Routing each router
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does not consider global network information to take routing decisions or to

learn and improve its policy, in this sense it is a distributed variant of the orig-

inal Q-Learning value-based RL algorithm introduced by Watkins(1992) [66].

The main contribution of the paper from Peshkin&Savova [67] can be

identified in applying a policy gradient ascent method for the problem of

adaptive routing in packet-switched communication networks. This method

is a type of reinforcement learning technique that relies upon optimizing

parameterized policies with respect to the expected return (long-term ag-

gregate reward) by gradient ascent. It extends previous results obtained by

Williams [68] with the REINFORCE algorithm and by Baird and Moore [69]

with the VAPS algorithm. The communication network (number and topol-

ogy of nodes, status of the links, dynamic of packets) represents what, in

reinforcement learning jargon, is called the environment. It is represented

by a Partial Observable Markov Decision Process (POMDP) and its model

is not known to the agents (the routers). The nodes (and the routers in the

nodes – the agents) of the network are homogeneous. The agent performs a

local observation of the destination of the handled packet, then performs an

action forwarding the packet to link a according to a softmax rule (the policy)

stored in a lookup table for any (destination, link) pair. This ensures that for a

given destination, any of the links available will be used. After the packet has

reached its final destination, a reward that depends on the total delivery time

for the packet is assigned to the agent: this is the only global information that

the agent has access to. Under these hypotheses, the presented algorithm is

guaranteed to converge to a local optimum in policy parameters space.

Considering the inherent non-scalability of the tabular Q-learning approaches

and the recent development of Deep RL techniques, the idea of using them in

network routing was quite natural. To the best of our knowledge Valadarsky

et al.(2017)[70] were the first to publish this idea, an algorithm based on Trust

Region Policy Optimization (TRPO) [71], along with a research program to
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further investigate in this direction.

Mukhutdinov et el. (2018) [72] proposed an algorithm for packet routing

in the logistics domain, such as material handling systems or automated traf-

fic routing. Their approach is based on deep reinforcement learning networks

combined with link-state protocol and preliminary supervised learning. The

proposed algorithm is designed to run in a distributed fashion on a network

on interconnected routers. The routing problem is schematized as a multi-

agent reinforcement learning problem, with routers representing agents and

modeled as deep neural networks. This choice allowed each router to account

for heterogeneous data about its environment, and enabled the optimization of

more complex cost functions, like in case of simultaneous optimization of bag

delivery time and energy consumption in a baggage handling system. Appli-

cation of the algorithm in simulated computer network and baggage handling

system showed that it outperforms state-of-the-art routing algorithms.

You et al.[73] identify the curse of dimensionality of Q-routing as the

limiting factor prohibiting a more comprehensive representation of dynamic

network states, and thus limiting the potential benefit of reinforcement learn-

ing. They embedded deep neural networks in multi-agent Q-routing. Each

router relies on its own neural network that is trained without communicat-

ing with its neighbors and makes its routing decision independently. They

proposed two different multi-agent DRL-enabled routing algorithms: one re-

placing the Q-table of Q-routing by a deep neural network, the other employ-

ing additional information that include the past actions and the destinations

of non-head of line packets. Results of simulations shows that the direct sub-

stitution of Q-table by a deep neural network may not yield minimal delivery

delays since the neural network does not learn more from the same input

data, while Adaptive routing policy can converge and significantly reduce the

packet delivery time when a richer view on the network state is provided to

the agents.
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3.2 The DQN-Routing Algorithm

We designed DQN-Routing, a distributed, unicast, fully adaptive, non-minimal

routing algorithm for n-dimensional torus networks.

Following to the Duato’s protocol for deadlock-free adaptive routing al-

gorithms introduced in paragraph 2.6.2, we selected the Dimension-Order

Routing (DOR) for the torus interconnect having two virtual channels per

physical channel, as our deadlock-free and connected routing subfunction R1

and associated set of channels C1. Then we added a new virtual channel per

physical channel (DqnChX-, DqnChX+, ...): this new set of channels has been

reserved for the fully adaptive, non-minimal routing actions proposed by the

reinforcement learning Agent according to the scheme depicted in figure 3.1.

The Agent cannot propose channels belonging to C1.

DQN-Routing is based on two kind of traffic: regular packets, transport-

ing data payload on the forward path, and acknowledge packets that are

routed on the reverse path to provide feedback to all the routers involved

in forward path. On acknowledge packet receive, the Router calculates the

reward corresponding to its past routing decision proposed by the Agent us-

ing the timestamp contained in the acknowledge message travelling along the

reverse path, and forwards it to the Agent. These rewards are used to guide

the learning process of the Agent toward better performances, i.e. to improve

its ability to propose routing actions that minimize on average the communi-

cation latency of the routed packets given the experienced network state.

Algorithm 2 describes DQN-Routing of regular packets; for the sake of

clarity a 2-dimensional Torus interconnect is considered, but its extension

to a highest dimension case is straightforward. DQN-Routing requires that

regular packet must be uniquely identified with some kind of packet id; in

section 3.3 we will discuss this requirement in more detail. The algorithm

requires also that the data link layer of the network provides a mechanism for
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Figure 3.2: DQN-Routing table entry.

the router to have access to the virtual channel buffer occupancy of its first

neighbour routers, as in the case of the APEnet interconnect. These quantities

are indicated as RemOccDqnChX-, RemOccDqnChX+, RemOccDqnChY- and

RemOccDqnChY+ in algorithm 2.

When a packet header is received and packet must be forwarded since the

local router is not its destination and it was not flagged as to be routed on a

deterministic DOR path, the distance to the destination router is calculated

and stored in a table entry in the Router memory along with the packet id,

the timestamp, an episode id identifying the routing decision that will be

proposed by the Agent for this packet, and the port from which the packet

header was received.

Note that this last information does not take part in the routing decision,

but is necessary to reconstruct the reverse path for the acknowledge packet, as

it is described in algorithm 3. A suitable format of table entry for the APEnet+

interconnect is represented in figure 3.2. This table entry will be used during

routing of acknowledge packet to produce a suitable reward for the Agent for

the routing decision that it is going to propose for this packet, as shown in

algorithm 3. The choice of a proper reward is of paramount importance in

a reinforcement learning problem. In DQN-Routing we adopted the simple
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reward:

reward = distance/latency (3.1)

Note also that as DQN-Routing is not minimal, so it will be possible to

have multiple entries with the same packet id in the table.

The Router will then produce the observation of the network state S ′ for

the Agent, consisting on the local router and destination router coordinates,

the packet payload size and the level of occupancy of the local and remote

buffers of the adaptive virtual channels, and will communicate it to the Agent

which in response will propose a candidate channel to the Router. If the

candidate output port is busy forwarding another packet and the remote buffer

of the candidate virtual channel has not enough free space to store the entire

packet payload, the candidate adaptive channel will be rejected and the packet

flagged (Pdor) and escaped to the deterministic DOR routing, otherwise the

channel proposed by the Agent will be used for routing.

A straightforward variation of algorithm 2 allows to limit the amount of

traffic generated by acknowledge messages: it is possible to mark regular

packets as triggering the generation of an acknowledge packet at destination

router (ReqAck flag) and to start a new episode only every AckRatio packets

injected. An AckRatio > 1 parameter will correspond to a subsampling of

the network feedback by the Router and will affect the time response of the

learning process.

We can enforce the livelock-free property of the algorithm checking the

number of hops of the packet being routed: if it is above a configurable

threshold, that will be set considering the network diameter, the packet will

be flagged (Pdor) and escaped to deterministic DOR routing.
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Figure 3.3: Header of a DQN-Routing regular traffic packet in the APEnet+ interconnect.

3.3 Considerations on the Implementation of the Algorithm

The actual implementation of the DQN-Routing algorithm poses some re-

quirements both at the level of transport protocol as well as in the network

infrastructure. The minimization of these additional requirements guided us

during the design of the algorithm. Here we analyze them, discussing possi-

ble implementations having as a reference the APEnet+ interconnection net-

work.

Transport Protocol The additional requirements in terms of the transport pro-

tocol are limited to the support in the regular packet header to carry the Packet

Id, the Pdor (packet routed on escape DOR path) and ReqAck (regular traf-

fic packet will trigger the send of an acknowledge packet at the destination

router) flags, and the Packet Type (regular, acknowledge) information.

1. Ideally we would use a 128-bit UUID [74] for the Packet Id but this is an
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impractical solution, as it would double the header size, from one to two

128-bit flits. Referring to the APEnet+ packet header (see Figure 2.14),

a viable solution is to use the lower 9 unused bits in the flag field to

store the value of the modulo 512 counting of injected packets. The

whole header can then be used as Packet Id: in the very pathological

situation when a node repeatedly send packets of the same size to the

same node at the same remote virtual memory address and using the

same virtual channel, this choice will at least guarantee a periodicity of

512 in packet ids. Furthermore the potential risk of mis-identification of

the packet is mitigated by the possibility of choosing a AckRatio > 1.

With this definition for Packet Id, lines 20-21 of algorithm 2 would be

modified, and the 128-bit header would be used to set Puid.

2. The header must carry the Pdor and ReqAck flags: this information can

be stored in otherwise unused higher two bits (62 and 63) of the flags

field.

3. The Packet Type can be encoded in the proto field, currently encoding

only the regular (RDMA) traffic, in bits 30 and 31 of the header.

The resulting DQN-Routing header format for the APEnet+ interconnect is

represented in Figure 3.3.

Acknowledge packets must carry a timestamp and a packet id information.

It is possible to implement this requirement with fixed size packets of 3 flits,

a header carrying also the timestamp, as shown in figure 3.4, plus a payload

flit containing the packet id and a footer.

Router Architecture During the design of DQN-Routing we strived to mini-

mize the additional resources needed in the APEnet Router to implement it.

The additional features are so limited to:

1. An additional virtual channel per physical channel.
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Figure 3.4: Header of a DQN-Routing acknowledge traffic packet in the APEnet+ intercon-
nect.

2. Availability of internal, or tightly coupled, memory to store the table of

routed packets waiting for an acknowledge, containing the information

needed to calculate the reward (timestamp and distance of destination

node), and the port from which the packet was received in order to route

the acknowledge packet along the reverse path. In our simulator, for

a 4 × 4 torus configuration and with one Agent serving four Routers,

we set the maximum number of active episodes for the Agent to 100

without experiencing overruns during simulations. This parameter cor-

respond also to the maximum allowed number of routed packets waiting

for an acknowledge collectively for the four Routers. So, a preliminary

estimate for the size of the table is in the order of some tens of entries for

this topology, with a corresponding needed memory size in the order of

few kilobytes. For a given bandwidth offered to the network, the num-

ber of pending entries is proportional to the torus diameter (see formula
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2.1).

3. A low latency interface to communicate with the Agent. For example

using the AMBA/AXI standard for On-Chip communication[75], also

available for FPGA-based designs like APEnet and ExaNet, a commu-

nication latency in the order of few clock cycles is achievable.

4. Support for a distributed time synchronization infrastructure with an ac-

curacy in the order of hundreds nanoseconds. We assume a 64-bit format

for the timestamp.

Agent Architecture As we will see in Chapter 4, we adopted the Rainbow

algorithm [39] for the Agent implementation in the simulation framework

we used as experimental setup. A very raw estimate of memory and float-

ing point performance needed to implement the Agent with the configuration

used in this work (see appendix A.1) can be directly inferred by measuring the

memory and processor occupancy for the GPU processes in the workstation

we used to execute our simulations, neglecting the contribution of the CPU

part. Each Agent utilizes 343 Mbytes of memory, and roughly the 0.5% of

the processing resources, that considering the GPU model (NVIDIA GeForce

RTX 2080 Ti) translates to∼ 70 gigaFLOPS in single precision floating point

arithmetic and ∼ 2 gigaFLOPS in double precision floating point arithmetic.

These quantities are compatible also with an embedded processing device.

Nevertheless a couple of consideration must be made. First, as we will see in

the next chapter, we used the Rainbow Agent implementation provided by the

RLlib library of the Ray framework [76] without making any modification on

it. This choice was guided by the decision to give priority to the assessment

of the potential of the DQN-Routing algorithm. Nevertheless the Rainbow

Agent was designed, as the original DQN, to interact with the environment

provided by the Atari 2600 benchmark. This environment requires the Agent
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to manage an higher dimensionality observation space, a [210, 160, 3] float-

ing point array corresponding to 210× 160 RGB images, with respect to the

one offered by the Router to the Agent in DQN-Routing, that is a unidimen-

sional floating point array of 13 elements. This hints for a possible simpli-

fication of the Agent for our purposes, allowing to make an implementation

that would require less memory and processing resources. Second, in this

work we did not address the problem of designing or selecting a processing

architecture optimized for low-latency inference in order to provide quickly a

routing decision proposal, that represents a fundamental requirement for the

Agent implementation.
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Algorithm 2 : DQN-Routing for 2-D Tori (regular packets)
1: Global: Size of 2-D Torus (Xmax, Y max)
2: Input: Packet Unique Id (Puid), Packet diverted to deterministic escape path flag

(Pdor), Packet payload size (Psize), Receive Port for packet (Rport), Coordinates of
current node (Xcurr, Y curr) and destination node (Xdest, Y dest)

3: Output: Selected output Channel
4: Procedure:
5: Timestamp := get time();
6: Xoffset := Xdest - Xcurr;
7: Y offset := Y dest - Y curr;
8: if Xoffset = 0 and Y offset = 0 then
9: ACKpacket := prepare ack packet(Puid, Timestamp, Xcurr, Y curr, Rport);

10: inject packet(ACKpacket);
11: Channel := Internal;
12: end if
13: if Pdor = TRUE then
14: add entry(Puid, 0, 0, “”, Rport);
15: Channel := deterministic order routing(Xcurr, Y curr, Xdest, Y dest);
16: end if
17: Distance := MIN(abs(Xdest - Xcurr), Xmax - abs(Xdest - Xcurr)) +

MIN(abs(Y dest - Y curr), Y max - abs(Y dest - Y curr));
18: Eid := agent start episode();
19: if Puid = “” then
20: set packet uid(Eid);
21: Puid := Eid
22: end if
23: add entry(Puid, Timestamp, Distance, Eid, Rport);
24: Observation := prepare observation(Xcurr, Y curr, Xdest, Y Dest, Psize,

LocOccDqnChX−, LocOccDqnChX+, LocOccDqnChY−, LocOccDqnChY+,
RemOccDqnChX−,RemOccDqnChX+,RemOccDqnChY−,RemOccDqnChY+);

25: CandidateChannel := agent get action(Eid, Observation);
26: if is ch available(Psize, CandidateChannel) = FALSE then
27: set packet dor(TRUE);
28: Channel := deterministic order routing(Xcurr, Y curr, Xdest, Y dest);
29: end if
30: Channel := CandidateChannel;

63



64
Chapter 3. DQN-Routing: a Novel Adaptive Routing Algorithm for Torus

Networks Based on Deep Reinforcement Learning

Algorithm 3 : DQN-Routing for 2-D Tori (acknowledge packets)
1: Global: Size of 2-D Torus (Xmax, Y max)
2: Input: Packet Unique Id (Puid), Packet Timestamp (Ptimestamp), Coordinates of

current node (Xcurr, Y curr) and destination node (Xdest, Y dest)
3: Output: Selected output Channel
4: Procedure:
5: Xoffset := Xdest−Xcurr;
6: Y offset := Y dest− Y curr;
7: if Xoffset = 0 and Y offset = 0 then
8: Entry := find entry(Puid);
9: if Entry != null then

10: if Entry.Eid != “” then . calculate and log reward to the agent for this episode
11: Reward := Entry.Distance/(Ptimestamp− Entry.T imestamp);
12: agent log reward(Entry.Eid, Reward);
13: agent end episode(Entry.Eid);
14: end if . packet was escaped to a DOR path, no reward
15: if Entry.Rport = Internal then
16: Channel := Flush; . ack packet reached source node
17: else if Entry.Rport = X+ then
18: Xdest := (Xdest+ 1) mod Xmax;
19: else if Entry.Rport = X- then
20: Xdest := (Xdest− 1) mod Xmax;
21: else if Entry.Rport = Y+ then
22: Y dest := (Y dest+ 1) mod Y max;
23: else if Entry.Rport = Y- then
24: Y dest := (Y dest− 1) mod Y max;
25: end if
26: delete entry(Entry);
27: patch packet destination(Xdest, Y dest);
28: Channel := deterministic order routing(Xcurr, Y curr, Xdest, Y dest);
29: end if
30: end if
31: Channel := Flush; . flush mis-routed ack packet
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4
Experimental Setup and Measurements

In this chapter we describe the simulation framework that we have integrated

to be used as the experimental setup to test the DQN-Routing algorithm and

to measure its performance.

For this purposes, both synthetic and application-generated traffic patterns

were used. In particular, besides Uniform Random Traffic, we used network

communication traces collected during the execution of the DPSNN spiking

neural network simulator [13] on a parallel cluster.

Collected results are presented and discussed, comparing them with those

obtained with deterministic dimension-order routing 2.7.1 and fully adaptive

star-channel 2.7.2 algorithms.

4.1 The Experimental Setup

Our experimental setup can be represented as a multi-agent reinforcement

learning problem, where the environment is provided by a simulator of the

network. When we started this work, there were no available simulation

frameworks suitable for our purposes. So we developed an experimental

setup integrating the OMNeT++ [10] network simulation framework with

the Ray [76] distributed execution framework that includes the reinforcement

learning RLlib library [5]. In our setup, the OMNeT++ network simulator

constitutes the external environment for the reinforcement learning agents
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Figure 4.1: The integrated simulation framework used as experimental setup in this work.

Figure 4.2: A stacked modular view of the RLlib library. Original image from [5]

implemented in RLlib and executed on the Ray framework. The network

simulator invokes the services of the RLlib agents, that are executed in a dis-

tributed fashion in the Ray framework, thanks to REST messages using the

JSON data-interchange format, as shown in Figure 4.1.

Recently ns3-gym [77], a framework similar to the one described here but

based on the ns-3 [78] simulator, has been released. We plan to release our

framework open-source as well.

4.1.1 The Reinforcement Learning Distributed Execution Framework

RLlib [5] is an open-source library for reinforcement learning that offers both

high scalability and a unified API for a variety of applications, as shown in the
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top level of Figure 4.2. It natively supports TensorFlow, TensorFlow Eager,

and PyTorch, but most of its internals are framework agnostic.

RLlib is designed to scale to large clusters, but it is also capable of apply-

ing optimizations such as vectorization for single-core efficiency. This allows

for effective use of multiple agents also on a single workstation.

Policies are a key concept in RLlib. They are Python classes that define

how an agent acts in an environment: agents query the policy to determine

their actions. Policy classes encapsulate the core numerical components of

RL algorithms. This typically includes the policy model that determines ac-

tions to take, a trajectory postprocessor for experiences, and a loss function

to improve the policy given postprocessed experiences.

In RLlib all data interchange happens in the form of sample batches. Sam-

ple batches encode one or more fragments of a trajectory. Typically, collects

batches of size sample batch size, and concatenates one or more of these

batches into a batch of size train batch size that is the input to the Stochastic

Gradient Descent algorithm.

RLlib provides ways to customize almost all aspects of training, includ-

ing the environment, neural network model, action distribution, and policy

definitions, as shown in Figure 4.3. By the way a number of reinforcement

learning algorithms are provided, including Rainbow that is the one that we

adopted in this work, that integrates several extensions to the DQN, as de-

scribed in the work by M. Hessel et al. [39]. In its default configuration,

the parameters of the neural network that approximate the action values are

optimized by using Adam [79], a method for efficient stochastic optimiza-

tion requiring only first-order gradients and with little memory requirement.

For the complete configuration of the agent that has been used for this work

please refer to Appendix A.1.

Using the TensorBoard tool it is possible to constantly monitor the Agents

training process during the, possibly very long, simulations and have an im-
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Figure 4.3: RLlib components, their relations and customizability. Original image from [5]

Figure 4.4: Monitoring the training of 4 Agents during the simulation (mean Q value)

mediate feedback. An example of monitoring the 4 agents training during the

simulation of 1.6 s of DPSNN traffic with an average neuron firing rate of 21

Hz (see section 4.3.3) is shown in Figure 4.4 and Figure 4.5.

4.1.2 The Network Simulation Framework

OMNeT++ [10] is a C++-based discrete event simulation library developed

for modelling communication networks, multiprocessors and distributed sys-

tems. Thanks to its extensible and modular design it can be easily used to

implement any discrete event simulation. OMNeT++ adopts a hierarchical

structure, with modules connected through channels. There are two kind of

modules: simple modules and compound modules. Simple modules are the
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Figure 4.5: Monitoring the training of 4 Agents during the simulation (mean reward)

active components of the simulation, they are implemented in C++ as an ob-

ject oriented specialization of base class modules. Compound modules are

passive containers for any number of simple and compound modules. The

connection between modules is defined using the NED (Network DEscrip-

tion) language. The OMNeT++ framework also provides: support to parallel

distributed simulations using the MPI library, a GUI for developing the code

and for running and debugging the simulations, tools for data analysis and

statistics collection, and support for a plethora of network protocols.

We selected this network simulation framework between several other

suitable ones, like ns-3 [78] or INSEE [80] to cite a few, mainly because

of the availability of the VCT simulation library for OMNeT++ [81], and the

model of the APEnet+ network interconnect based on this library. In par-

ticular, the implementation of the new DQN-Routing router component was

quite straightforward with the library, using the C++ inheritance mechanism.

4.1.3 Interfacing the Frameworks

The interface between the network simulator and the reinforcement learning

frameworks has been implemented leveraging the RLlib support for External

Environments. In many situations, it does not make sense for an environment
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to be “stepped” by RLlib, as it is the case interfacing with OpenAI Gym

agents [82]. For example, if a policy is to be used in a web serving system,

then it is more natural for an agent to query a service that serves policy de-

cisions, and for that service to learn from experience over time. This case

also naturally arises with external simulators that run independently outside

the control of RLlib, but may still want to leverage RLlib for training. RLlib

provides the ExternalEnv class for this purpose. Unlike other environments,

ExternalEnv has its own thread of control. At any point, agents on that thread

can query the current policy for decisions. This can be done for multiple con-

current episodes as well. We used ExternalEnv to implement a REST policy

server that learns over time using the RLlib implementation of the Rainbow

algorithm.

On the OMNeT++ side, we developed the PolicyClient C++ class that uses

the JSON data-exchange format to implement a REST API with the following

primitives:

1. request the start of an episode;

2. provide an observation and get the on-policy action;

3. provide a reward;

4. request the end of an episode.

4.1.4 The Simulated Network Architecture

The reference network architecture for our investigation has been the Ex-

aNet [12] multi-tier hybrid network dedicated to HPC. In this context, we

focused on the configuration characterized by a number of nodes in the sub-

torus tiers equal to sixteen in a 4 × 4 bi-dimensional torus, which allowed

to effectively simulate the network by means of a single, although powerful,

GPU-accelerated workstation. The ExaNet design is based on the APEnet+
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interconnect router (APErouter) for its network layer and on the APEnet+

logic channel (APElink) for its data-link layer. In this work we used the orig-

inal OMNeT++ APEnet+ interconnect model to perform the simulations, and

despite some small differences between the ExaNet and APEnet+ versions of

these components, we believe that the results obtained can be considered in-

teresting for both the network interconnects. The simulated network mimics

four ExaNest Mezzanine boards, each one hosting four QDFB nodes, where

the nodes belonging to the same mezzanine are interconnected on-board with

a bidirectional ring on the X dimension, and the nodes belonging to differ-

ent mezzanine boards are connected along the Y dimension. The resulting

topology is a 4× 4 torus. We set to four the number of DQN-Routing Agents

for this network, hence an Agent offers its services to the four nodes of the

same mezzanine board. This is a slight deviation on what we have described

since now with – one Agent serving one Router – but there is no concep-

tual difference on the envisaged architecture for DQN-Routing. The reason

behind this choice was to enrich the experience of the Agent, providing it

a wider view on the network state, with the idea that this would help the

learning process; at the same time we wanted to investigate the opportunity

of a less demanding scaling of the additional resources requested to actually

implement DQN-Routing.

4.2 Traffic Models

Both synthetic and application-generated traffic patterns were adopted in the

simulation to assess the performance of the DQN-Routing algorithm. In par-

ticular, besides Uniform Random Traffic, we used network communication

traces collected during the execution of the DPSNN spiking neural network

simulator [13] on a parallel cluster.
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4.2.1 Uniform Random Traffic

This traffic pattern can be described as follows: i) all nodes inject packets

in the network at a given bandwidth; ii) all the packets have a random pay-

load size – up to 256 128-bit flits – and they are sent to randomly selected

nodes at the frequency needed to maintain the chosen bandwidth. The pseudo

random number generator uses the Mersenne Twister algorithm implemented

in the OMNeT++ framework; this generator has a period of 219937 − 1 and

623-dimension equidistribution property [83]. The packets are sent using the

software queue so, if network congestion occurs, the effective injected band-

width may be lower that the selected one. This traffic pattern is very useful

to characterize networks against a generic application.

4.2.2 DPSNN Simulator

In this work, we used DPSNN as a reference application simulating networks

of point-like spiking neurons (Leaky Integrate-and-Fire neurons with Spike

Frequency Adaptation, 80% excitatory, 20% inhibitory) [13]. Synapses in-

ject instantaneous post-synaptic currents while synaptic plasticity is disabled.

The simulator implements a mixed event-driven (synaptic and neural dynam-

ics) and time-driven (exchange of spiking messages) integration scheme.

In the simulations used herein, the neural network is organized as bidi-

mensional grids of modules (mimicking cortical columns). Each module is

composed of 2500 point-like neurons, further organized into subpopulations.

The number of synapses projected by each neuron is kept constant with an

average value of 2250 synapses per neuron and neurons are evenly distributed

among processes. As a result, larger network configurations result in more

sparse synaptic connection matrices. Each neuron receives also the stimu-

lus of 800 “external” synapses, each one delivering a Poissonian spike train

at a rate of about 3 Hz. After an initial transient, the neural network en-
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ters an asynchronous irregular firing regime. Inter-process communication is

necessary to deliver spikes to target neurons residing on a process different

from the one hosting the source neuron. Spikes are delivered using the AER

representation (spiking neuron ID, emission time) [84]; in our case 12 byte

per spike are required. The exchange of spikes is currently implemented by

means of synchronous MPI collective operations (mpi all to all v). In each

process, all spikes produced by neurons and targeted to neurons belonging to

a different process are packed into a single message and delivered. The total

number of messages required by the neural network increases with the square

of the number of processes on which the simulation is run. Here is a rundown

of the application tasks that the DPSNN simulator performs:

• Computation: event-driven integration of all neural dynamics and synap-

tic current injection events, occurring in a single network synchroniza-

tion time step (set to 1 ms). This includes a component dominated by

memory access to: 1- time delay queues of axonal spikes, 2- lists of

neuro-synaptic connections, 3- lists of synapses.

• Communication: transmission along the interconnect system of the ax-

onal spikes to the subset of processes where target neurons exist.

• Synchronization: synchronization barrier inserted to simplify the weight-

ing of computation and communication components.

Fluctuations in computation load or communication congestion cause idling

cores and hindered parallelization. The relative weight of the compute in-

creases with the number of neurons per process. On the other side, a higher

number of processes results in higher relative communication costs. Because

of the regularity of the application, it has been possible to mimic its execu-

tion pattern in our simulator using a finite state machine and network traces

collected during its execution on a real computing platform [81]. The traffic

pattern is characterized by long periods of network inactivity, followed by
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bursts of packets when the communication of the axonal spikes occurs. The

time spent by the application to calculate the next state of the neuron can

be considered proportional to the number of spikes received. The average

processing time per single spike can be estimated by profiling the execu-

tion of the application on a real machine. Although the processing time can

change drastically by changing the underling computing devices, we can still

compare different networking solutions without necessarily re-calibrate the

simulation of the processing part.

4.3 Simulation Results

4.3.1 Metrics and Methods

The most commonly used metrics to measure the performance for an inter-

connection network are latency and accepted traffic.

Latency is defined as the time elapsed from the beginning of the packet

transmission and the receive of the message at the destination node. This

definition can be interpreted in different ways: considering a complete system

that includes it the software stack, latency will include the time spent into the

different software layers; on the other hand, if we want to characterize the

net performance of the underlying interconnection network, only the time

spent by the messages travelling in the network should be accounted. In our

measurements we adhered to the latter approach, we did not consider the time

spent by messages in the soft queue.

Once we fix a network architecture, latency varies from packet to packet

since its value is affected by: the distance between source and destination

nodes, the size of the packet and the congestion of the network. The value for

a single packet is not meaningful, especially if we consider a synthetic traffic

pattern; so we used the average value to give a global picture of the network

behaviour. The standard deviation of the latency is also important to get an
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indication of network congestion.

In the case that the simulator setup is able to perform a full simulation

of the application on the system, including that of the processing part, the

simulated time-to-solution is a clear performance metric.

Accepted traffic or throughput is defined as the amount of information

delivered by the network per time unit. Because the amount of information

delivered depends on the number of nodes, this value must be normalized in

order to compare different network configurations, dividing it by the number

of nodes in the network.

It is important to note the difference between applied load and accepted

traffic: the first is an input parameter of the simulation and determines the

amount of data injected into the network; the latter is an output of the simu-

lation and determines the amount of data delivered by the network.

It is worth noticing that in the simulation we performed, the processing

time needed for the routing is not taken into account. While this time is

reduced to few clock cyles for the simple dimension-order arithmetic routing,

this may not be the case for DQN-Routing. Nevertheless in this work we are

interested in the assessment of the potential impact of this new algorithm. If

it turns out to outperform other known algorithms, a further investigation on

the efficient implementation of the required processing will be inserted in our

research agenda.

In DQN-Routing, livelock avoidance has been implemented checking the

number of hops of the packet being routed: if it is above a configurable

threshold the packet will be escaped to deterministic DOR routing. For the

measurements presented here, we set this threshold to 8, that corresponds to

twice the network diameter.

Our measurements for DQN-Routing were performed restarting the agents

at the beginning of the simulation and initializing with uniform random weights

the Deep-Q Network. The Agent will then start an exploration phase that in
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Figure 4.6: Average packet latency vs normalized applied load under uniform random traffic.

our configuration will be performed for the first 100,000 timesteps, i.e. rout-

ing action proposals, annealing ε (the probability of taking a non-optimal

action to explore the environment) from 1.0 to 0.1 over 10,000 time steps. ε

is then kept constant at 0.1 until 100,000 time steps are reached; after, it will

be kept constant at 0.02.

4.3.2 Uniform Random Traffic

When stimulating the network with Uniform Random Traffic at different val-

ues of applied load, with the nodes producing traffic using a Bernoulli process

and with a uniformly random destination, we obtained the results shown in

Figure 4.6.

Besides the fully adaptive, non-minimal path DQN-Routing (DQN, see

section 3.2), we considered for a comparison the deterministic dimension-

order routing (DOR, see section 2.7.1) and the fully adaptive, minimal path

star-channel routing (STAR, see section 2.7.2). The comparison with the
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Figure 4.7: Normalized accepted traffic vs normalized applied load under uniform random
traffic.

star-channel routing is interesting because it poses exactly the same require-

ment of DQN-Routing in terms of the number of additional virtual channels

requested for every physical channel; this number is equal to one.

As expected, both the fully adaptive routing algorithms provide a better

use of the available network resources, resulting in significantly lower aver-

age latency than that achieved using the deterministic DOR routing, starting

from the 60% of the normalized applied load.

In absolute, the best performance in terms of average latency are obtained

by the DQN-Routing. At a 80% of the normalized applied load the net-

work is still below its critical congestion threshold and the average latency is

roughly the half (52%) of that obtained with the star-channel routing, while

it is roughly one quarter (26%) of that measured using the dimension-order
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routing.

The same conclusions can be drawn examining the plot in Figure 4.7, that

shows the normalized accepted traffic versus the normalized applied load un-

der uniform random traffic. The plot shows a linear region shared the three

different routing algorithms. When the network is in the linear region, it is

below its critical congestion threshold and can still properly dispatch the in-

jected traffic messages. When the applied load reaches the saturation point,

the accepted traffic starts to exit from the linear region of the plot and reaches

a plateau. Please note that the plateau does not correspond to the maximum

value of the theoretical normalized accepted traffic of the network, that cor-

responds to 1.92e8 flits/node/s, because of congestion effects.

Figure 4.7 shows that the critical congestion threshold is between 70% and

80% of the normalized applied load for the DOR case, while it is between

80% and 85% for star-channel routing. The highest value for the critical

congestion threshold is obtained with DQN-Routing, in the range between

85% and 90% of the normalized applied load.

4.3.3 DPSNN Traffic

We performed simulations using network traces collected by the execution of

400 ms of the DPSNN application configured to run with 16 processes on a

4× 4 grid for different values of the mean neuron firing rates. Increasing the

mean firing rate leads to a step up in the applied load. With this distribution

of processes – one process mapped on one network node – the communica-

tion pattern comes to closely resemble an all-to-all one occurring in bursts

separated by very low network traffic.

As described in section 4.3.1, our standard procedure for taking measure-

ments involves restarting the Agents at the beginning of each simulation. In

order to investigate the capability of the DQN-Routing algorithm to capture

the dynamic of the network traffic pattern generated by the DPSNN applica-
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Firing Rate
(Hz)

Mean Latency
(µs)

STDEV
(µs)

MAX
(µs)

DOR DQN DOR DQN DOR DQN
21 1.010 1.006 0.508 0.491 3.801 4.729
47 1.900 1.861 1.487 1.421 7.369 8.101
71 2.682 2.618 2.429 2.333 10.411 11.270
89 2.883 2.832 2.678 2.597 11.791 12.270

268 9.755 9.672 10.511 10.368 45.799 41.810
556 33.667 31.290 25.985 23.670 110.301 124.154

Table 4.1: Measurements obtained simulating the execution of 400 ms of the DPSNN appli-
cation distributed on 4x4 processes at different mean neuron firing rates.

tion, we took two sets of measurements: one using the standard procedure

and another performing a pre-training of the Agents by running in sequence

two identical simulations without restarting the Agents in between them, then

collecting results on the second one. With pre-training, we measured a slight

improvement in performance (about 4%), i.e. a decrease in the mean and

maximum values and in the standard deviation of the communication latency

compared with those measured when using the standard procedure.

Results obtained with simulations using the dimension-order routing (DOR)

and DQN-Routing with pre-training (DQN) are reported in Table 4.1.

The two algorithms perform in a substantially comparable way; DQN-

Routing has slightly higher values of maximum latency due to its non-minimal

nature and to the residual exploration performed by the Agents, which amounts

to sporadic cases and does not affect performance. On the other way, DQN-

Routing has a small but measurable edge in its favour all-round the firing

rates as regards the mean latency and, perhaps more interestingly, the stan-

dard deviation.

This is probably due to the broader usage of network resources that DQN-

Routing is free to employ when congestion is present which would be other-

wise left unused with the less flexible dimension-order routing.
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5
Conclusions and Future Work

We designed DQN-Routing, a distributed, unicast, fully adaptive non-minimal

routing algorithm for torus networks based on Deep Reinforcement Learning,

and the general architecture of the router implementing it.

In order to test it and measure its performances, we developed an experi-

mental setup integrating the OMNeT++ [10] network simulation framework

with the Ray [76] distributed execution framework including the RLlib [5]

reinforcement learning library, as when we started this work there were no

suitable frameworks available for our purposes.

The algorithm has been tested and its performance has been measured

using both synthetic and application-generated network traffic.

DQN-Routing has proved to outperform both the deterministic dimension-

order routing (DOR) [4] algorithm and the fully adaptive, minimal-path star-

channel [1] algorithm when using uniform random synthetic traffic, that it is

typically used to represent to a generic application.

On the other hand, when tested against the bursty all-to-all traffic pat-

tern generated by the DPSNN distributed spiking neural network simula-

tor [13], the two algorithms performed in a substantially comparable way;

while DQN-Routing showed slightly higher values of maximum latency due

to its non-minimal nature and to the exploration performed by the Agents, it

featured a small but measurable edge in its favour as regards the mean value

and, perhaps more interestingly, the standard deviation of the communication
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latency.

To improve performance in a continuous operation scenario, with chang-

ing network traffic patterns, we foresee a mechanism for the automatic restart

of the learning phase for the Agent, either periodic or triggered by a decrease

of the mean Q-value below a configurable threshold. Besides this automatic

mechanism, the restart of a learning phase in the Agent could also be ini-

tiated via a cross-layer information propagation from the application to the

network level, implementing a dedicated API. For example, in the DPSNN

reference application the average spiking rate of the simulated neural net-

work is constantly monitored, and the application could communicate to the

network level when there is a significant change in this quantity, as this will

affect the network status.

To characterize the behaviour of the algorithm in presence of unbalanced

traffic sources, we plan to extend this study with hot region, hot spot and

permutation-based traffic, to verify whether DQN-Routing is be able to learn

where the congestion points are and how to circumvent them.

There are several hints showing that the DQN-Routing algorithm could

be effectively adopted for larger and possibly highest dimensional torus net-

works and even for different network topologies (e. g. Dragonfly): the as-

sessment of this statement is planned as future work. The simulation frame-

work that we have integrated is ready for this task as it was designed with

scalability in mind: OMNeT++ supports MPI for parallel execution and RL-

lib library, that we used to simulate the Agent, is part of the Ray distributed

execution framework.

Finally, it has not escaped our notice that DQN-Routing could be useful

in other domains that make use of torus/mesh network interconnects, like the

Network-On-Chip one. Furthermore in this scenario the implementation of

the Agent would be facilitated by the tight integration between the router and

processing resources.
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A.1 Configuration of the Agent

DEFAULT_CONFIG = with_common_config({

# === Model ===

# Number of atoms for representing the distribution of

#return.

#When this is greater than 1, distributional

#Q-learning is used.

#the discrete supports are bounded by v_min and v_max

"num_atoms": 1,

"v_min": -10.0,

"v_max": 10.0,

# Whether to use noisy network

"noisy": False,

# control the initial value of noisy nets

"sigma0": 0.5,

# Whether to use dueling dqn

"dueling": True,

# Whether to use double dqn

"double_q": True,

# Postprocess model outputs with these hidden layers

#to compute the state and action values. See also

#the model config in catalog.py.
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"hiddens": [256],

# N-step Q learning

"n_step": 1,

# === Exploration ===

# Max num timesteps for annealing schedules.

#Exploration is annealed from 1.0 to exploration_fraction

#over this number of timesteps scaled by

#exploration_fraction

"schedule_max_timesteps": 100000,

# Minimum env steps to optimize for per train call.

#This value does not affect learning, only the

#length of iterations.

"timesteps_per_iteration": 1000,

# Fraction of entire training period over which the

#exploration rate is annealed

"exploration_fraction": 0.1,

# Final value of random action probability

"exploration_final_eps": 0.02,

# Update the target network every

#‘target_network_update_freq‘ steps.

"target_network_update_freq": 500,

# Use softmax for sampling actions. Required for

#off policy estimation.

"soft_q": False,

# Softmax temperature. Q values are divided by this

#value prior to softmax.

# Softmax approaches argmax as the temperature

#drops to zero.
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"softmax_temp": 1.0,

# If True parameter space noise will be used for

#exploration

# See https://blog.openai.com/better-exploration-with

#-parameter-noise/

"parameter_noise": False,

# Extra configuration that disables exploration.

"evaluation_config": {

"exploration_fraction": 0,

"exploration_final_eps": 0,

},

# === Replay buffer ===

# Size of the replay buffer. Note that

#if async_updates is set, then each worker will have

#a replay buffer of this size.

"buffer_size": 50000,

# If True prioritized replay buffer will be used.

"prioritized_replay": False,

# Alpha parameter for prioritized replay buffer.

"prioritized_replay_alpha": 0.6,

# Beta parameter for sampling from prioritized

#replay buffer.

"prioritized_replay_beta": 0.4,

# Fraction of entire training period over which

#the beta parameter is annealed

"beta_annealing_fraction": 0.2,

# Final value of beta

"final_prioritized_replay_beta": 0.4,
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# Epsilon to add to the TD errors when updating

#priorities.

"prioritized_replay_eps": 1e-6,

# Whether to LZ4 compress observations

"compress_observations": True,

# === Optimization ===

# Learning rate for adam optimizer

"lr": 5e-4,

# Learning rate schedule

"lr_schedule": None,

# Adam epsilon hyper parameter

"adam_epsilon": 1e-8,

# If not None, clip gradients during optimization

#at this value

"grad_norm_clipping": 40,

# How many steps of the model to sample before

#learning starts.

"learning_starts": 1000,

# Update the replay buffer with this many samples at once.

#Note that this setting applies per-worker

#if num_workers > 1.

"sample_batch_size": 4,

# Size of a batched sampled from replay buffer for

#training. Note that if async_updates is set, then each

#worker returns gradients for a batch of this size.

"train_batch_size": 32,

# === Parallelism ===
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# Number of workers for collecting samples with.

#This only makes sense to increase if your environment

#is particularly slow to sample, or if you"re using

#the Async or Ape-X optimizers.

"num_workers": 0,

# Whether to use a distribution of epsilons across

#workers for exploration.

"per_worker_exploration": False,

# Whether to compute priorities on workers.

"worker_side_prioritization": False,

# Prevent iterations from going lower than this

#time span

"min_iter_time_s": 1,

#Number of GPUs available in the system

"num_gpus": 1

})
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