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Abstract

Let G be a graph, u and v two vertices of G, and X a subset of V (G).
A u-v geodesic is a path between u and v of minimum length. Ig(u, v)
is the set of vertices that lie on any u-v geodesic and Ig(X) is the set⋃

u,v∈X Ig(u, v). X is g-convex if Ig(X) = X. Analogously, Im(u, v) is
the set of vertices that lie on any induced path between u and v and
Im(X) is the set

⋃
u,v∈X Im(u, v). X is m-convex if Im(X) = X.

The g-convex hull [X]g of X is the smallest g-convex set containing
X. Ihg (X) equals Ig(X), if h = 1, and equals I(Ih−1

g (X)), if h > 1. The
geodetic iteration number, gin(X), of X in G is the smallest h such that
Ihg (X) = Ih+1

g (X) = [X]g. The geodetic iteration number of G, denoted
by gin(G), is defined as gin(G) = max{gin(X)|X ⊆ V (G)}.

In this paper we provide an O(n3m) time algorithm (where n and m
are the cardinalities of the vertex set and of the edge set of the graph,
respectively) to compute the geodetic iteration number of a graph be-
longing to the class, say Γ, of graphs in which the families of g-convex
sets and of m-convex sets coincide (i.e., every g-convex set is m-convex).
Since Γ properly contains the class of distance-hereditary graphs, this
result extends the result in [1]. Furthermore, we provide an O(n2m)
time algorithm to compute the geodetic iteration number of a bipartite
distance-hereditary graph.

Keywords convex hull, iteration number, geodesic convexity, monophonic con-
vexity, distance-hereditary graphs, bipartite distance-hereditary graphs

1 Introduction

A convexity space on a connected graph G is any set of subsets of V (G) which
contains the empty set, the singletons, and V (G), and is closed under set in-
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tersection. Several graph convexity spaces have been defined using different
path types; in particular, shortest paths (geodesics) and induced (or minimal
or chordless) paths, were used to define geodesic convexity (or g-convexity) [2]
[3] and monophonic convexity (or m-convexity) [2] [4], respectively. In [5] the
class, say Γ, of graphs in which g-convexity and m-convexity are equivalent was
introduced and characteristic properties of the graphs in Γ (that allow to solve
the problem of deciding the membership of a graph in Γ in polynomial time)
were stated. This class is a natural extension of the class of distance-hereditary
graphs that are the graphs in which every induced path is a geodesic.

The geodetic iteration number of a graph, introduced in [6], is a measure of
the “non g-convexity” of the family of the subsets of the vertex set of a graph.

In [1], the authors provide a characterization in terms of forbidden induced
subgraphs of the distance-hereditary graphs whose geodetic iteration number is
less or equal to a given positive integer. As a consequence of this result they
provide an O(n3m) algorithm to compute the geodetic iteration number of a
distance-hereditary graph.

In this paper, both an O(n3m) algorithm to compute the geodetic iteration
number of a graph in Γ and an O(n2m) algorithm to compute the geodetic
iteration number of a bipartite distance-hereditary graph are provided.

The paper is organized as follows. After giving (Sections 2) basic graph
theoretic definitions, we provide preliminary results concerning the separators
and the prime components of a graph (Section 3) and relating the minimal vertex
clique separators to the induced and shortest paths of a graph in the class Γ
(Section 4). In Section 5, we introduce the concept of “joint” of a set of vertices
in a prime component and we prove that in a graph in Γ the g-convex hull of a
set X of vertices is the union of the g-convex hulls of its joints. On the basis of
this result, in Section 6, we state the main result concerning the computation of
the geodetic iteration number of a graph in Γ. Finally, in Section 7, we provide
both an O(n3m) time algorithm to compute the geodetic iteration number of
a graph in Γ and an O(n2m) time algorithm to compute the geodetic iteration
number of a bipartite distance-hereditary graph.

2 Basic definitions

In what follows, G will be a finite, undirected, and simple graph. V (G) and
E(G) denote the vertex set and the edge set of G, respectively. As usual we use
the notation uv for an edge {u, v} and we denote by n and m the cardinalities
of V (G) and E(G), respectively. G is complete if every two distinct vertices of
G are adjacent.

In the following let X be a nonempty subset of V (G). The subgraph of G
induced by X, denoted by G(X), is the graph G′ such that V (G′) = X and
E(G′) = {e ∈ E(G)|e ⊆ X}. X is a clique if G(X) is complete. By G − X
(G−v when X = {v}) we denote the induced subgraph G(V (G)\X). By N(X)
(N(v) when X = {v}) we denote the neighbourhood of X in G, i.e., the set of
vertices in V (G) \X that are adjacent to a vertex in X.
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A path is a sequence (v1, . . . , vk), k ≥ 1, of distinct vertices of G such that
vivi+1 ∈ E(G), 1 ≤ i < k. Let p = (v1, . . . , vk) be a path. V (p) is the set
of vertices appearing in p and E(p) is the set of edges consisting of a pair of
vertices that are consecutive in p. The length l(p) of p is |E(p)| = k − 1.
The vertices v1 and vk are connected and are called the endpoints of p; vi,
1 < i < k, is an internal vertex of p. The subsequence (vi, vi+1, . . . , vj) of p,
1 ≤ i ≤ j ≤ k, is the vi-vj subpath of p. A chord of p is an edge vivj ∈ E(G),
where vi and vj are not consecutive in p. A path is induced if it has no chords.
If p = (u = u1, . . . , uk = v) is a u-v path and p′ = (v = v1, . . . , vh = w) is a v-w
path such that V (p) ∩ V (p′) = {v}, then the concatenation pp′ of p and p′ is
the u-w path (u = u1, . . . , uk, v2, . . . , vh = w).

A graph is connected if every two vertices are connected. The maximal
connected induced subgraphs of a graph G are its connected components. A
connected graph G is 2-connected if G − v is connected, for each v ∈ V (G). A
graph is a block graph if every block (maximal 2-connected subgraph) is com-
plete.

Henceforth, G is a connected graph. Let u and v be two vertices of G and
X a subset of V (G). A u-v geodesic is a u-v path of minimum length. A graph
G is distance-hereditary if every induced path of G is a geodesic.

The geodetic interval of u and v, denoted by Ig(u, v), is the set of vertices
that lie on any u-v geodesic and the geodetic interval of X, denoted by Ig(X),
is the set

⋃
u,v∈X Ig(u, v), with the convention that Ig(∅) = ∅. X is g-convex if

Ig(X) = X. The g-convex hull [X]g of X is the smallest g-convex set containing
X. Ihg (X) is defined recursively as follows: I0g (X) = X, I1g (X) = Ig(X), and

Ihg (X) = Ig(Ih−1g (X)) for h > 1. The geodetic iteration number, gin(X), of X in

G is the smallest integer h such that Ihg (X) = Ih+1
g (X). The geodetic iteration

number of G, denoted by gin(G), is defined as gin(G) = max{gin(X)|X ⊆
V (G)}.

The monophonic interval of u and v, denoted by Im(u, v), is the set of
vertices that lie on any induced u-v path and the monophonic interval of X,
denoted by Im(X), is the set

⋃
u,v∈X Im(u, v), with the convention that Im(∅) =

∅. X is m-convex if Im(X) = X. The m-convex hull [X]m of X is the smallest m-
convex set containing X. Ihm(X) is defined recursively as follows: I0m(X) = X,
I1m(X) = Im(X), and Ihm(X) = Im(Ih−1m (X)) for h > 1.

Fact 1. Let G be a graph and X a subset of V (G).

1. [X]g = Ihg (X), for every positive integer h ≥ gin(X);

2. [X]g = [Ig(X)]g;

3. [X]g ⊆ [X]m.

We denote by g(G) and m(G) the family of the g-convex sets and the family
of the m-convex sets of G, respectively.

Given a (finite) set V , a hypergraph H on the vertex set V is a family of
nonempty subsets of V that covers V (i.e., V =

⋃
e∈H e); the elements of H are

the edges of H.
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3 Vertex separators and prime components

In this section we state a number of results concerning the vertex separators and
the prime components of a graph, which will be used in the following sections.

Let G be a connected graph and X ⊆ V (G). Let K be a connected compo-

nent of G−X (observe that N(V (K)) ⊆ X); we denote by K̂ the subgraph of
G induced by V (K) ∪N(V (K)) and we say that K is an X-component of G if
N(V (K)) = X. Let u and v be two vertices of G; u and v are separated by X if
they belong to distinct connected components of G−X; X is a clique separator
for u and v if u and v are separated by X, and X is a clique; X is a clique
separator of G if there exist two vertices for which X is a clique separator; X is
a minimal separator for u and v if u and v are separated by X and by no proper
subset of X. X is a minimal vertex separator of G if there exist two vertices for
which X is a minimal separator. X is a minimal vertex clique separator of G if
it is both a clique and a minimal vertex separator of G.

Fact 2. Let G be a graph, u and v two vertices of G, and X a subset of V (G).
X separates u and v if and only if X ∩ {u, v} = ∅ and, for every u-v path p,
V (p) ∩X 6= ∅.

Lemma 1. Let G be a graph, X a subset of V (G), and K a connected component
of G − X. N(V (K)) separates every two vertices u ∈ V (K) and v ∈ V (G) \
V (K̂).

Proof. Let u be a vertex in V (K) and v a vertex in V (G) \ V (K̂). Since no

vertex in V (K) is adjacent to a vertex in V (G) \ V (K̂), for every u-v path p,
V (p) ∩N(V (K)) 6= ∅ so that, by Fact 2, N(V (K)) separates u and v.

Lemma 2 ([5]). Let G be a graph and X a subset of V (G). X is a minimal
separator for two vertices u and v if and only if u and v belong to two distinct
X-components of G.

Lemma 3. Let G be a graph, X a clique of G, K a connected component of
G − X, and u and v two vertices in V (G) \ V (K). One has that Im(u, v) ⊆
V (G) \ V (K).

Proof. Suppose, by contradiction, that there exists an induced u-v path p in G
such that V (p)∩V (K) 6= ∅. Let w ∈ V (p)∩V (K). Let puw be the u-w subpath
of p and pwv the w-v subpath of p. Since u is either in X or in a connected
component of G−X distinct from K, by Fact 2, V (puw)∩X 6= ∅; analogously,
V (pwv)∩X 6= ∅. Let u′ be a vertex in V (puw)∩X and v′ a vertex in V (pwv)∩X.
Since u′ and v′ are distinct and not consecutive in P , and {u′, v′} ⊆ V (p) ∩X,
p is not induced (contradiction).

Corollary 4. Let G be a graph, X a clique of G, and K a connected component
of G−X. If Y ⊆ V (G) \ V (K), then [Y ]m ⊆ V (G) \ V (K).

Proof. By Lemma 3, one can easily prove, by induction, that, for every j, j ≥ 0,
Ijm(Y ) ⊆ V (G) \ V (K).
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Two vertices are clique separable in G if there exists a clique of G separating
them. A prime component of G is a subgraph of G induced by a maximal subset
of V (G) not containing two vertices that are clique separable in G. G is prime
if G has only one prime component. The prime hypergraph PG of a graph G is
the hypergraph whose vertex set is V (G) and whose edges are the vertex sets
of the prime components of G. Due to the maximality of a prime component,
one has the following.

Fact 3. Let G be a graph and P a prime component of G. For every u /∈ V (P ),
there exists v ∈ V (P ) such that u and v are clique separable.

Lemma 5. Let G be a graph, P a prime component of G, and K a connected
component of G− V (P ). One has that N(V (K)) is a clique.

Proof. Suppose, by contradiction, that there exist two nonadjacent vertices x
and y in N(V (K)). Since x and y are in N(V (K)) and K is connected there
exists an induced x-y path p whose internal vertices are in V (K). Let u be an
internal vertex of p (u exists, since xy /∈ E(G)). Since u /∈ V (P ), by Fact 3,
there exists a vertex v ∈ V (P ) and a clique X such that X separates u and v.
Since p is induced, X cannot contain two vertices not consecutive in p, so that
X does not separate x and u or y and u. It follows that X separates x and v
or y and v (contradiction).

Lemma 6. Let G be a graph, P a prime component of G, and K a connected
component of G− V (P ). One has that V (P ) \N(V (K)) 6= ∅.

Proof. Suppose, by contradiction, that V (P ) = N(V (K)) so that every vertex
in V (P ) is adjacent to a vertex in V (K) and, hence:

(a) for every pair of vertices u ∈ V (K) and v ∈ V (P ), there exists an induced
u-v path having all vertices, except v, in V (K).

Firstly, let us show that:

(b) given a nonempty subset U of V (P ), if there exists a vertex u ∈ V (K)
such that u is clique separable from no vertex in U and is clique separable
from a vertex v ∈ V (P ), then there exists a vertex u′ ∈ V (K) that is
clique separable from no vertex in U ∪ {v}.

To this aim, let us show that

(c) every clique separating u and v must contain U .

Suppose, by contradiction, that there exist a clique X separating u and v, and
a vertex x ∈ U such that x /∈ X. Since, by Lemma 5, V (P ) is a clique, x is
adjacent to v so that X separates u and x (contradiction).
Let p be an induced u-v path such that V (p) \ {v} ⊆ V (K) (such a path exists
by (a)). By (c) and Fact 2, every clique separating u and v must contain U
and at least one internal vertex of p. Let u′ be the last vertex in (the sequence)
p belonging to a clique separating u and v (see Figure 1); then, by (c), u′ is
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Figure 1:

adjacent to every vertex in U and, hence, u′ is clique separable from no vertex
in U . In order to prove (b), it remains to show that u′ and v are not clique
separable. Suppose, by contradiction, that there exists a clique X separating
u′ and v. Then, by (c) and Fact 2, X contains U and a vertex w in the u′-v
subpath pu′v of p. Since p is induced, X cannot contain a vertex in the u-u′

subpath of p so that, if u and v were connected in G−X, then u′ and v would
be connected in G − X, contradicting the fact that u′ and v are separated by
X. Therefore X is a clique separating u and v and, since w follows u′ in (the
sequence) p a contradiction arises. Therefore, u′ and v are not clique separable
and (b) is proved.
Let u1 ∈ V (K) be a vertex adjacent to a vertex in V (P ). Then u1 is clique
separable from no vertex in N(u1)∩ V (P ); furthermore, by Fact 3, there exists
a vertex v1 ∈ V (P ) such that u1 and v1 are clique separable. Therefore, by (b),
there exists a vertex u2 ∈ V (K) such that u2 is clique separable from no vertex
in N(u1) ∩ V (P ) ∪ {v1}. If V (P ) = N(u1) ∩ V (P ) ∪ {v1}, then, by Fact 3, P is
not a prime component of G (contradiction). Otherwise, there exists v2 ∈ V (P )
such that u2 and v2 are clique separable so that, by (b), there exists u3 ∈ V (K)
such that u3 is clique separable from no vertex in N(u1) ∩ V (P ) ∪ {v1, v2},
and so on. Therefore by applying (b) a finite number of times, we reach a
contradiction.

Theorem 7. Let G be a graph, P a prime component of G, and K a connected
component of G−V (P ). There exists a connected component K ′ of G−N(V (K))
containing V (P ) \N(V (K)); furthermore:

1. K ′ is an N(V (K))-component of G, and

2. N(V (K)) is a minimal clique separator for every two vertices u ∈ V (K)
and v ∈ V (K ′)
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Proof. Since, by Lemma 6, V (P )\N(V (K)) 6= ∅ and, by Lemma 5, N(V (K)) is
a clique, every two vertices in V (P ) \N(V (K)) are connected in G−N(V (K))
(otherwise P would not be a prime component of G) and, hence, there exists a
connected component K ′ of G−N(V (K)) such that V (P )\N(V (K)) ⊆ V (K ′).
Proof of 1. Let us show that K ′ is an N(V (K))-component of G. Suppose, by
contradiction, that there exists a vertex w in N(V (K)) \ N(V (K ′)) (observe
that, since K ′ is a connected component of G − N(V (K)), w /∈ V (K ′)) and
let w′ be a vertex in V (P ) \ N(V (K)) ⊆ V (K ′), By Lemma 5, N(V (K)) is a
clique and, hence, N(V (K ′)) is a clique. Furthermore, by Lemma 1, N(V (K ′))
separates w and w′. Since both w and w′ are in V (P )), a contradiction arises.
Proof of 2. By Lemmas 5 and 2.

The next result relates prime components and convex hulls.

Theorem 8. Let G be a graph, X a subset of V (G), and P a prime component
of G. If X ⊆ V (P ) then [X]m ⊆ V (P ).

Proof. By Lemmas 5 and 3, one can easily prove, by induction, that, for every
j, j ≥ 0, Ijm(X) ⊆ V (P ).

Since PG is a cover of V (G) the following holds.

Fact 4. Let G be a graph and X a subset of V (G). One has that

X =
⋃

V (P )∈PG

X ∩ V (P ).

Lemma 9 ([5]). Let G be a graph. For every prime component P of G, a
nonempty subset X of V (P ) belongs to m(G) if and only if X is a clique or
X = V (P ).

Let G be a graph, X a subset of V (G), and P a prime component of G. In
the following, K(X,P ) is the set of the connected components K of G− V (P )
such that X ∩ V (K) 6= ∅.

Lemma 10. Let G be a graph, X a subset of V (G), and P a prime component
of G. For every j, j ≥ 0, K(Ijg(X), P ) = K(X,P ).

Proof. By induction.
Basis. j = 0. Trivial.
Induction. j > 0. By inductive hypothesis, K(Ij−1g (X), P ) = K(X,P ). There-

fore K(X,P ) ⊆ K(Ijg(X), P ). Furthermore, if K /∈ K(Ijg(X), P ), then Ijg(X) ∩
V (K) = ∅ and, hence, X ∩ V (K) = ∅.

4 The class Γ

In this section, after recalling the characterization of the graphs in Γ provided
in [5], we state some results (which will be useful in the next sections) relating
minimal vertex clique separators to induced paths and geodesics of a graph in
the class Γ.
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Theorem 11 ([5]). Let G be a graph. g(G) = m(G) if and only if

(1) g(P ) = m(P ) for every prime component P of G, and

(2) for every minimal vertex clique separator S of G and for every S-component
K of G and for every vertex u ∈ V (K)∩N(S), the set S∪{u} is a clique.

In Figure 2 a graph in the class Γ and its prime components P1, P2, . . . , P6 are
shown.

Lemma 12. Let G be a graph such that g(G) = m(G) and X a minimal vertex
clique separator of G. For every induced path p having an endpoint in an X-
component of G, |V (p) ∩X| ≤ 1.

Proof. Let p = (u = w1, w2, . . . , wk = v) be an induced u-v path such that u is
in an X-component, say K, of G. If k ≤ 2, then the statement trivially holds. If
k ≥ 3, suppose, by contradiction, that |V (p)∩X| > 1. Let wi be the first vertex
in p not belonging to V (K) (so that wi ∈ X) and wj a vertex in V (p) ∩ X
distinct from wi (so that j > i); one has that wi−1 ∈ V (K) ∩ N(X). Since
g(G) = m(G) and X is a minimal vertex clique separator, by (2) in Theorem
11, X ∪{wi−1} is a clique so that wi−1 and wj are adjacent and, hence, p is not
an induced path (contradiction).

Lemma 13. Let G be a graph such that g(G) = m(G) and X a subset of V (G).
If Y is a minimal clique separator for two vertices in X, then Y ⊆ Ig(X).

Proof. Let u and w be two vertices in X such that Y is a minimal clique
separator for u and w. Let p = (u = w1, . . . , wi−1, wi, wi+1, . . . , wk = w),
k ≥ 3, be a u-w geodesic. By Fact 2 and Lemma 12, |V (p) ∩ Y | = 1. Let
V (p) ∩ Y = {wi}. If Y = {wi} then the statement trivially holds. Other-
wise, let y be a vertex in Y distinct from wi and let Ku and Kw be the Y -
components of G containing u and w, respectively. Since wi−1 ∈ V (Ku)∩N(Y )
and wi+1 ∈ V (Kw) ∩N(Y ), by (2) in Theorem 11, y is adjacent to both wi−1
and wi+1. Therefore, (w1, . . . , wi−1, y, wi+1, . . . , wk) is a u-w geodesic.

Lemma 14. Let G be a graph such that g(G) = m(G), X a minimal clique
separator for two vertices u1 and u2, and v a vertex in X. If p1 is a u1-v
geodesic and p2 is a v-u2 geodesic, then p1p2 is a u1-u2 geodesic.

Proof. Suppose, by contradiction, that p1p2 is not a geodesic. Let p be a u1-u2

geodesic. Let v′ be a vertex in X ∩ V (p) and pu1v′ and pv′u2
the u1-v′ subpath

and the v′-u2 subpath of p, respectively. Since l(p) < l(p1p2) = l(p1)+l(p2), one
has that l(pu1v′) < l(p1) or l(pv′u2

) < l(p2). Assume, without loss of generality,
that l(pu1v′) < l(p1); let K be the X-component of G containing u1 and w the
vertex preceding v′ in pu1v′ . By Lemma 12, w ∈ V (K) ∩N(X), so that, by (2)
in Theorem 11, w is adjacent to v. Let pu1,w be the u1-w subpath of p and let
p′ = pu1,w(w, v). One has that l(p′) = l(pu1v′) < l(p1) (contradiction).
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5 The joint of a vertex set in a prime component

Let G be a graph, X a subset of V (G) and P a prime component of G. The
joint of X in P is the set

J(X,P ) =

{
X, if X ⊆ V (P ),

X ∩ V (P ) ∪
⋃

K∈K(X,P ) N(V (K)) ∩ Ig(X), otherwise.

Fact 5. Let G be a graph, X a subset of V (G) and P a prime component of G.
J(X,P ) ⊆ Ig(X) ∩ V (P ).

P2

P5

P1

P3

P4

P6

1 2

c

b

4
7

6
8

a

35

Figure 2:

Example 1. Consider the graph in Figure 2 and let X = {a, b, c}. One has
Ig(X) = {a, b, c, 1, 2, . . . , 8}, Ig(X) ∩ V (P1) = {c, 3, 4, 5, 6, 7}, and J(X,P1) =
{c, 3, 4, 7}.

In this section we will prove that, if g(G) = m(G), then

[X]g =
⋃

P∈PG

[J(X,P )]g,

Example 1 (continued). One has that J(X,P1) = {c, 3, 4, 7}, J(X,P2) =
{a, 3}, J(X,P3) = ∅, J(X,P4) = {4, 7}, J(X,P5) = {4, 7, 8}, and J(X,P6) =
{b, 8}. Therefore, by Lemma 9 and Theorem 8, one has that [J(X,P1)]g =
V (P1), [J(X,P2)]g = V (P2), [J(X,P3)]g = ∅, [J(X,P4)]g = {4, 7}, [J(X,P5)]g =
V (P5), and [J(X,P6)]g = V (P6) so that [X]g = V (P1)∪V (P2)∪V (P5)∪V (P6).

If we consider the graph in Figure 2 and the vertex set X = {a, b, c},
we can observe that Ig(J(X,P1)) = {c, 3, 4, 5, 6, 7}, so that Ig(X) ∩ V (P1) =
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Ig(J(X,P1)). We will prove now that the equality

Ig(X) ∩ V (P ) = Ig(J(X,P ))

always holds.

Lemma 15. Let G be a graph such that g(G) = m(G), X a subset of V (G),
and P a prime component of G. One has that Ig(J(X,P )) = Ig(X) ∩ V (P ).

Proof. Firstly, let us show that

Ig(J(X,P )) ⊆ Ig(X) ∩ V (P ).

By Fact 5, J(X,P ) ⊆ V (P ) and, hence, by Theorem 8 and 3 in Fact 1,
Ig(J(X,P )) ⊆ V (P ). Therefore, in order to show that Ig(J(X,P )) ⊆ Ig(X) ∩
V (P ) it is sufficient to show that Ig(J(X,P )) ⊆ Ig(X). Let v be a vertex in
Ig(J(X,P )). Let p be a geodesic between two (not necessarily distinct) vertices
u and w belonging to J(X,P ) such that v ∈ V (p). Distinguish two cases.
Case 1. There exists K ∈ K(X,P ) such that both u and w are in N(V (K)).
By Lemma 5, N(V (K)) is a clique and, hence, either u = w or u and w are
adjacent; therefore, either v ∈ V (p) = {u} or v ∈ V (p) = {u,w}. Since, by Fact
5, both u and w are in Ig(X), it follows that v ∈ Ig(X).
Case 2. There is no K ∈ K(X,P ) such that both u and w are in N(V (K)). If
both u and w are in X, then, trivially, v ∈ Ig(X). Otherwise, assume without
loss of generality, that u /∈ X. By the definition of joint of X in P , there
exists a connected component Ku ∈ K(X,P ) such that u ∈ N(V (Ku)) (so that
w /∈ N(V (Ku))). Let u′ be a vertex in X ∩ V (Ku) and let pu′u be a u′-u
geodesic. Since, by 2 in Theorem 7, N(V (Ku)) is a minimal clique separator
for u′ and w, by Lemma 14, the u′-w path p′ = pu′up is a geodesic. Therefore,
if w ∈ X, then, since v ∈ V (p) ⊆ V (p′), v ∈ Ig(X). Otherwise, by the definition
of joint of X in P , there exists a connected component Kw ∈ K(X,P ) distinct
from Ku such that w ∈ N(V (Kw)). Let w′ be a vertex in X ∩ V (Kw) and let
pww′ be a w-w′ geodesic. Since u ∈ V (P ) \ N(V (Kw)), by 2 in Theorem 7,
N(V (Kw)) is a minimal clique separator for u and w′. By 1 in Theorem 7,
there exists an N(V (Kw))-component K ′ of G containing u. Since, by Lemma
12, u is the unique vertex in V (pu′u) ∩ N(V (Ku)) (and, hence, is the unique
vertex in V (pu′u) ∩ V (P )) and u /∈ N(V (Kw)), one has that u′ ∈ V (K ′) so
that, by 2 in Theorem 7, N(V (Kw)) is a minimal clique separator for u′ and
w′. Therefore, by Lemma 14, the u′-w′ path p′′ = p′pww′ is a u′-w′ geodesic.
Since v ∈ V (p) ⊆ V (p′′), one has that v ∈ Ig(X).
Now let us show that:

Ig(J(X,P )) ⊇ Ig(X) ∩ V (P ).

Let v be a vertex in Ig(X)∩ V (P ). Let u and w be two vertices in X such that
v is on a u-w geodesic p = (u = v1, v2, . . . , vh = w), h ≥ 1, and let v = vi,
1 ≤ i ≤ h. Let r = min(l|vl ∈ V (P )) and s = max(l|vl ∈ V (P )). Let us show
that:
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(a) vr is in J(X,P ).

If r = 1 then (a) trivially holds. If r > 1, then u /∈ V (P ). Let K be the
connected component in K(X,P ) such that u ∈ V (K). Since, vr ∈ N(V (K))
and vr ∈ V (p) ⊆ Ig(X), (a) holds. Analogously, it is possible show that:

(b) vs is in J(X,P ).

From (a) and (b), it follows that v ∈ Ig(J(X,P )).

Lemma 16. Let G be a graph such that g(G) = m(G), X a subset of V (G),
and P a prime component of G. For every j, j ≥ 1,

Ij−1g (Ig(X) ∩ V (P )) = Ijg(X) ∩ V (P ).

Proof. Since Ig(X) ∩ V (P ) ⊆ Ig(X), for every j, j ≥ 1,

Ij−1g (Ig(X) ∩ V (P )) ⊆ Ij−1g (Ig(X)) = Ijg(X)

and, since Ig(X) ∩ V (P ) ⊆ V (P ), by Theorem 8 and 3 in Fact 1, for every j,
j ≥ 1,

Ij−1g (Ig(X) ∩ V (P )) ⊆ V (P ).

Therefore, for every j, j ≥ 1,

Ij−1g (Ig(X) ∩ V (P )) ⊆ Ijg(X) ∩ V (P ).

Now, let us prove, by induction, that, for every j, j ≥ 1,

Ijg(X) ∩ V (P ) ⊆ Ij−1g (Ig(X) ∩ V (P )).

Basis. j = 1. Trivial.
Induction. j > 1. Let v ∈ Ijg(X) ∩ V (P ). If v ∈ Ij−1g (X), then, by inductive

hypothesis, v ∈ Ij−2g (Ig(X) ∩ V (P )) ⊆ Ij−1g (Ig(X) ∩ V (P )). Therefore assume

that v ∈ Ijg(X) \ Ij−1g (X). Observe that, since v /∈ J(X,P ) (otherwise, by Fact

5, v would be in Ig(X) ⊆ Ij−1g (X)), v /∈ V (Ĥ), for every H ∈ K(X,P ) and,
hence, by Lemma 10,

(a) v /∈ V (Ĥ), for every H ∈ K(Ij−1g (X), P ).

Let u and w be two vertices in Ij−1g (X) such that v is on a u-w geodesic p = (u =
v1, v2, . . . , vh = w), h ≥ 3, and let v = vi, 1 < i < h. Let r = min(l|vl ∈ V (P ))
and s = max(l|vl ∈ V (P )). Let us show that:

(b) vr ∈ Ij−1g (X).

If r = 1, then (b) trivially holds. If r > 1, then u /∈ V (P ). Let Ku be
the connected component of G − V (P ) containing u. Observe that, by (a),
v ∈ V (P ) \ N(V (Ku)); therefore, by 2 in Theorem 7, N(V (Ku)) is a minimal
clique separator for u and v and, hence, by Lemma 2, u and v are in two
distinct N(V (Ku))-components of G. Let K be the N(V (Ku))-component of
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G containing v. Since v is on a u-w geodesic and u /∈ V (K), by Lemma 3, one
has that w ∈ V (K). It follows (since w ∈ Ij−1g (X)) that Ij−1g (X) ∩ V (K) 6= ∅
and, hence, by Corollary 4, X ∩ V (K) 6= ∅. On the other hand, by Lemma 10,
X ∩ V (Ku) 6= ∅. Therefore, by 2 in Theorem 7, N(V (Ku)) is a minimal clique
separator for two vertices in X and, hence, by Lemma 13, N(V (Ku)) ⊆ Ig(X).
Since, vr ∈ N(V (Ku)), (b) is proved. Analogously, it is possible show that

(c) vs ∈ Ij−1g (X).

Consider the vr-vs subpath p′ of p. One has that p′ is a vr-vs geodesic and
v ∈ V (p′). Since, by (b) and (c), both vr and vs are in Ij−1g (X) ∩ V (P ), by

inductive hypothesis, both vr and vs are in Ij−2g (Ig(X) ∩ V (P )) and, hence,

v ∈ Ij−1g (Ig(X) ∩ V (P )).

Theorem 17. Let G be a graph such that g(G) = m(G) and X a subset of
V (G). One has that

[X]g =
⋃

P∈PG

[J(X,P )]g,

Proof. Firstly, let us show that, for every prime component P of G:

(a) [J(X,P )]g ⊆ [X]g ∩ V (P ).

By 2 in Fact 1, for every prime component P of G, one has that

(a.1) [J(X,P )]g ⊆ [Ig(J(X,P ))]g.

Furthermore, by Theorem 8 and 3 in Fact 1, for every prime component P of
G, one has that

(a.2) [Ig(X) ∩ V (P )]g ⊆ V (P ).

Finally, since, for every prime component P of G, Ig(X) ∩ V (P ) ⊆ Ig(X) and,
by 2 in Fact 1, [Ig(X)]g = [X]g, one has that, for every prime component P of
G,

(a.3) [Ig(X) ∩ V (P )]g ⊆ [X]g.

Therefore, (a) follows from (a.1), (a.2), (a.3), and Lemma 15.

Let us show now that:

(b) [X]g ⊆
⋃

V (P )∈PG

[J(X,P )]g.

Let h = gin(X). If h = 0, X = [X]g and, hence, since X∩V (P ) ⊆ J(X,P ), one
has that [X]g ∩ V (P ) ⊆ [J(X,P )]g; therefore (b) follows fron Fact 4. If h ≥ 1,
then one has
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[X]g =
⋃

V (P )∈PG

[X]g ∩ V (P ) = (Fact 4)

=
⋃

V (P )∈PG

Ihg (X) ∩ V (P ) = (1 in Fact 1)

=
⋃

V (P )∈PG

Ih−1g (Ig(X) ∩ V (P )) ⊆ (Lemma 16)

⊆
⋃

V (P )∈PG

[Ig(X) ∩ V (P )]g = (1 in Fact 1)

=
⋃

V (P )∈PG

[Ig(J(X,P ))]g = (Lemma 15)

=
⋃

V (P )∈PG

[J(X,P )]g (2 in Fact 1)

6 The geodetic iteration number

In this section we state the results concerning the geodetic iteration number of a
set of vertices of a graph in the class Γ (Theorem 18) and the geodetic iteration
number of a graph in the class Γ (see Theorems 19 and 20).

Theorem 18. Let G be a graph such that g(G) = m(G) and X a subset of
V (G). One has that:

1. gin(X) = 0, if X is g-convex;

2. gin(X) = 1, if X is not g-convex and, for every prime component P of
G, Ig(X) ∩ V (P ) is g-convex;

3. gin(X) = max{gin(J(X,P )) | V (P ) ∈ PG}, otherwise.

Proof. Proof of 1. Trivial.

Proof of 2. Let h = gin(X); since X is not g-convex, h ≥ 1. One has that
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[Ig(X)]g = [X]g = (2 in Fact 1)

= Ihg (X) = (1 in Fact 1)

=
⋃

V (P )∈PG

Ihg (X) ∩ V (P ) = (Fact 4)

=
⋃

V (P )∈PG

Ih−1g (Ig(X) ∩ V (P )) = (Lemma 16)

=
⋃

V (P )∈PG

Ig(X) ∩ V (P ) = (Ig(X) ∩ V (P ) is g-convex)

= Ig(X) (Fact 4)

so that Ig(X) is g-convex and, hence, gin(X) = 1

Proof of 3. Let h = gin(X) and k = max{gin(J(X,P )) | V (P ) ∈ PG}. Since
X is not g-convex, h ≥ 1; furthermore, k ≥ 1 (otherwise, for every prime
component P of G, J(X,P ) would be g-convex and, hence, by Lemma 15,
Ig(X) ∩ V (P ) would be g-convex). Suppose, by contradiction, that h 6= k. If
h > k, then one has that

⋃
V (P )∈PG

[J(X,P )]g =
⋃

V (P )∈PG

Ikg (J(X,P )) = (1 in Fact 1)

=
⋃

V (P )∈PG

Ik−1g (Ig(X) ∩ V (P )) = (Lemma 15)

=
⋃

V (P )∈PG

Ikg (X) ∩ V (P ) ( (Lemma 16)

(
⋃

V (P )∈PG

Ihg (X) ∩ V (P ) =

=
⋃

V (P )∈PG

[X]g ∩ V (P ) = (1 in Fact 1)

=[X]g (Fact 4)

If h < k, then, one has that

14



[X]g =
⋃

V (P )∈PG

[X]g ∩ V (P ) = (Fact 4)

=
⋃

V (P )∈PG

Ihg (X) ∩ V (P ) = (1 in Fact 1)

=
⋃

V (P )∈PG

Ih−1g (Ig(X) ∩ V (P )) = (Lemma 16)

=
⋃

V (P )∈PG

Ihg (J(X,P )) ( (Lemma 15)

(
⋃

V (P )∈PG

Ikg (J(X,P )) =
⋃

V (P )∈PG

[J(X,P )]g (1 in Fact 1)

In both cases, by Theorem 17, a contradiction arises.

Theorem 19. Let G be a graph such that g(G) = m(G). One has that:

1. gin(G) = 0, if G is complete;

2. gin(G) = 1, if G is not complete and is a block grah;

3. gin(G) = max{gin(P ) | V (P ) ∈ PG}, otherwise.

Proof. Proof of 1. If G is complete, then every subset X of V (G) either is empty
or is a clique and, hence, is g-convex; therefore, gin(G) = 0.

Proof of 2. Let X be a subset of V (G). Since G is a block graph, for every
prime component P of G, Ig(X) ∩ V (P ) is empty or is a clique and, hence, is
g-convex. Therefore, by 1 and 2 in Theorem 18, gin(X) ≤ 1. It follows that
gin(G) ≤ 1. Since G is not complete, G has at least two nonadjacent vertices u
and v; since {u, v} is not g-convex gin(G) = 1.

Proof of 3. Let k = max{gin(P ) | V (P ) ∈ PG}. Since G is not a block graph,
there exists a prime component of G containing two nonadjacent vertices u and
v; since gin({u, v}) ≥ 1, one has that k ≥ 1. Let X be a subset of V (G). If X
is g-convex or, for every prime component P of G, Ig(X) ∩ V (P ) is g-convex,
then by 1 and 2 in Theorem 18, gin(X) ≤ k. Otherwise, by 3 in Theorem 18,

gin(X) = max{gin(J(X,P )) | V (P ) ∈ PG} ≤ k.

Therefore, gin(G) ≤ k. Let P ′ be a prime component of G such that gin(P ′) = k
and X ′ a subset of V (P ) such that gin(X ′) = gin(P ′). Then gin(X ′) = k and,
hence, gin(G) = k.

Example 1 (continued). Let G be the graph in Figure 2. One has that
gin(P1) = 4, gin(P2) = 3, gin(P3) = gin(P4) = gin(P5) = gin(P6) = 0, and,
hence, gin(G) = gin(P1) = 4.
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Theorem 20. Let G be a prime graph such that g(G) = m(G). One has that:

1. gin(G) = 0, if G is complete;

2. gin(G) = max{gin({u, v}) | uv /∈ E(G)}, otherwise.

Proof. Proof of 1. Trivial.
Proof of 2. Let h = gin(G) and k = max{gin({u, v}) | uv /∈ E(G)}; observe
that h ≥ k ≥ 1. Suppose, by contradiction, that h > k. Let X be a subset of
V (G) such that gin(X) = h. Since h ≥ 1, X cannot be empty and cannot be a
clique. Let x and y be two nonadjacent vertices in X. Since g(G) = m(G), by
Lemma 9, one has that:

V (G) = [{x, y}]g = Ikg ({x, y}) ⊆ Ikg (X) ( Ihg (X) = [X]g = V (G)

which is a contradiction.

7 Computing the geodetic iteration number

By Theorems 19 and 20, in order to compute the geodetic iteration number of
a graph G ∈ Γ that is neither complete nor a block graph we have to com-
pute the prime components of G and then to compute gin({u, v}), for every
pair of nonadjacent vertices u and v that are both in a prime component of
G. The prime components of a graph G can be computed using the O(nm)
decomposition algorithm given in [7] and modified by [8]. Furthermore, we can
compute gin({u, v}) in O(nm) by applying the algorithm in Figure 3 which is
substantially the process described in [9] to compute the g-convex hull of a set
of vertices. Therefore, the following holds.

input: a graph G and a subset X of V (G);
output: gin(X);
begin
gin(X) := 0;
I0 := X;
for every u ∈ I0 do I1 :=

⋃
v∈I0 Ig(u, v);

while I0 6= I1 do
begin
gin(X) := gin(X) + 1;
for every u ∈ I1 \ I0 do I2 :=

⋃
v∈I1 Ig(u, v);

I0 := I1;
I1 := I2

end
end.

Figure 3:
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Theorem 21. Let G be a graph such that g(G) = m(G). The geodetic iteration
number of G can be computed in O(n3m).

Let us discuss now the complexity of computing the geodetic iteration num-
ber of a bipartite distance-hereditary graph. In [10] it is proved that the class
of bipartite distance-hereditary graphs is properly contained in a proper sub-
lass, say Γ′ (in [10], such a class is the class of cross-cyclic graphs having no
cycle of length 3), of Γ and that for a graph in Γ′ the g-convex hull of a set
of vertices X coincides with the 2g-convex hull of Ig(X), where the 2g-convex
hull of a vertex set is defined analogously to g-convex hull with the difference
that only geodesics of length 2 are considered. Therefore, if G is a bipartite
distance-hereditary graph, in order to compute gin({u, v}) we can use the O(m)
algorithm in Figure 4 which is substantially the algorithm provided in [10] to
compute the g-convex hull of a set of vertices in a graph belonging to Γ′. This
algorithm firstly computes Ig(X), and then add a vertex v to Ijg(X), j ≥ 2, if

v is adjacent to at least two vertices in Ij−1g (X) and, hence, is on a geodesic of

lenght 2 between two vertices in Ij−1g (X). Therefore the following holds.

input: a bipartite distance-hereditary graph G and a subset X of V (G);
output: gin(X);
begin
I0 := X;
gin(X) := 0;
I1 := Ig(X);
I2 := I1;
for every v ∈ V (G) \X do adj(v) := 0;
while I0 6= I1 do
begin
gin(X) := gin(X) + 1;
for every u ∈ I1 \ I0 do
for every v ∈ N(u) \ I1 do
begin
adj(v) := adj(v) + 1;
if adj(v) = 2 then I2 := I2 ∪ {v}
end

I0 := I1;
I1 := I2

end
end.

Figure 4:

Theorem 22. The geodetic iteration number of a bipartite distance-hereditary
graph can be computed in O(n2m) time.
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