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Abstract

Let G be a graph, u and v two vertices of G, and X a subset of V(G).
A w-v geodesic is a path between u and v of minimum length. I,(u,v)
is the set of vertices that lie on any u-v geodesic and I,(X) is the set
Uuwex Lo(u,v). X is g-convez if I;(X) = X. Analogously, Im(u,v) is
the set of vertices that lie on any induced path between u and v and
I (X) is the set U, ,cx Im(u,v). X is m-conver if I, (X) = X.

The g-convex hull [X]gs of X is the smallest g-convex set containing
X. IM(X) equals I4(X), if h = 1, and equals I(I'7'(X)), if h > 1. The
geodetic iteration number, gin(X), of X in G is the smallest h such that
I})(X) = I} (X) = [X]g. The geodetic iteration number of G, denoted
by gin(G), is defined as gin(G) = maz{gin(X)|X C V(G)}.

In this paper we provide an O(n®m) time algorithm (where n and m
are the cardinalities of the vertex set and of the edge set of the graph,
respectively) to compute the geodetic iteration number of a graph be-
longing to the class, say I', of graphs in which the families of g-convex
sets and of m-convex sets coincide (i.e., every g-convex set is m-convex).
Since I' properly contains the class of distance-hereditary graphs, this
result extends the result in [1]. Furthermore, we provide an O(n?*m)
time algorithm to compute the geodetic iteration number of a bipartite
distance-hereditary graph.

Keywords convex hull, iteration number, geodesic convexity, monophonic con-
vexity, distance-hereditary graphs, bipartite distance-hereditary graphs

1 Introduction

A convexity space on a connected graph G is any set of subsets of V(G) which
contains the empty set, the singletons, and V(G), and is closed under set in-



tersection. Several graph convexity spaces have been defined using different
path types; in particular, shortest paths (geodesics) and induced (or minimal
or chordless) paths, were used to define geodesic convexity (or g-convexity) [2]
[3] and monophonic convexity (or m-convexity) [2] [4], respectively. In [5] the
class, say I', of graphs in which g-convexity and m-convexity are equivalent was
introduced and characteristic properties of the graphs in I' (that allow to solve
the problem of deciding the membership of a graph in I' in polynomial time)
were stated. This class is a natural extension of the class of distance-hereditary
graphs that are the graphs in which every induced path is a geodesic.

The geodetic iteration number of a graph, introduced in [6], is a measure of
the “non g-convexity” of the family of the subsets of the vertex set of a graph.

In [1], the authors provide a characterization in terms of forbidden induced
subgraphs of the distance-hereditary graphs whose geodetic iteration number is
less or equal to a given positive integer. As a consequence of this result they
provide an O(n3m) algorithm to compute the geodetic iteration number of a
distance-hereditary graph.

In this paper, both an O(n3m) algorithm to compute the geodetic iteration
number of a graph in I' and an O(n?m) algorithm to compute the geodetic
iteration number of a bipartite distance-hereditary graph are provided.

The paper is organized as follows. After giving (Sections 2) basic graph
theoretic definitions, we provide preliminary results concerning the separators
and the prime components of a graph (Section 3) and relating the minimal vertex
clique separators to the induced and shortest paths of a graph in the class I’
(Section 4). In Section 5, we introduce the concept of “joint” of a set of vertices
in a prime component and we prove that in a graph in I" the g-convex hull of a
set X of vertices is the union of the g-convex hulls of its joints. On the basis of
this result, in Section 6, we state the main result concerning the computation of
the geodetic iteration number of a graph in I'. Finally, in Section 7, we provide
both an O(n®m) time algorithm to compute the geodetic iteration number of
a graph in I' and an O(n?m) time algorithm to compute the geodetic iteration
number of a bipartite distance-hereditary graph.

2 Basic definitions

In what follows, G will be a finite, undirected, and simple graph. V(G) and
E(G) denote the vertex set and the edge set of G, respectively. As usual we use
the notation uv for an edge {u,v} and we denote by n and m the cardinalities
of V(G) and E(G), respectively. G is complete if every two distinct vertices of
G are adjacent.

In the following let X be a nonempty subset of V(G). The subgraph of G
induced by X, denoted by G(X), is the graph G’ such that V(G') = X and
E(G) ={e € E(G)le C X}. X is a cliqgue if G(X) is complete. By G — X
(G—v when X = {v}) we denote the induced subgraph G(V(G)\ X). By N(X)
(N(v) when X = {v}) we denote the neighbourhood of X in G, i.e., the set of
vertices in V(G) \ X that are adjacent to a vertex in X.



A path is a sequence (vy,...,vx), k > 1, of distinct vertices of G such that
vivit1 € E(G), 1 < i < k. Let p = (v1,...,v) be a path. V(p) is the set
of vertices appearing in p and E(p) is the set of edges consisting of a pair of
vertices that are consecutive in p. The length l(p) of p is |E(p)| = k — 1.
The vertices v; and vy are connected and are called the endpoints of p; v;,
1 < i < k, is an internal vertex of p. The subsequence (v;,viy1,...,v;) of p,
1 <i<j <k, is the v;-vj subpath of p. A chord of p is an edge v;v; € E(G),
where v; and v; are not consecutive in p. A path is induced if it has no chords.

Ifp=(u=uy,...,ur, =v)is awu-wv path and p’ = (v =vy,...,v, = w) is a v-w
path such that V(p) NV (p') = {v}, then the concatenation pp’ of p and p’ is
the w-w path (v = wuq,...,ug,va,...,vp = w).

A graph is connected if every two vertices are connected. The maximal
connected induced subgraphs of a graph G are its connected components. A
connected graph G is 2-connected if G — v is connected, for each v € V(G). A
graph is a block graph if every block (maximal 2-connected subgraph) is com-
plete.

Henceforth, G is a connected graph. Let u and v be two vertices of G and
X a subset of V(G). A u-v geodesic is a u-v path of minimum length. A graph
G is distance-hereditary if every induced path of G is a geodesic.

The geodetic interval of u and v, denoted by I,(u,v), is the set of vertices
that lie on any u-v geodesic and the geodetic interval of X, denoted by I4(X),
is the set |, ,ex Ig(u, v), with the convention that I,(0) = 0. X is g-conver if
I,(X) = X. The g-convex hull [ X], of X is the smallest g-convex set containing
X. I}X) is defined recursively as follows: I9(X) = X, I}(X) = I,(X), and
IM(X) = 1,(I})71(X)) for h > 1. The geodetic iteration number, gin(X), of X in
G is the smallest integer h such that I}(X) = I'*1(X). The geodetic iteration
number of G, denoted by gin(G), is defined as gin(G) = maz{gin(X)|X C
V(G)}.

The monophonic interval of u and v, denoted by I, (u,v), is the set of
vertices that lie on any induced u-v path and the monophonic interval of X,
denoted by I, (X), is the set |, ¢ x Im(u,v), with the convention that I,,,(0) =
0. X is m-convex if I,,(X) = X. The m-convex hull [X|],, of X is the smallest m-
convex set containing X. I" (X) is defined recursively as follows: 1% (X) = X,
IL(X) = I,(X), and 1" (X) = L, (I"=1(X)) for h > 1.

Fact 1. Let G be a graph and X a subset of V(G).
1. [X]y = I}(X), for every positive integer h > gin(X);
2. [X]g = Ug(X)ly;
3. [X]g C [X]m-

We denote by g(G) and m(G) the family of the g-convex sets and the family
of the m-convex sets of G, respectively.

Given a (finite) set V, a hypergraph H on the vertex set V is a family of
nonempty subsets of V' that covers V' (i.e., V' = [,y €); the elements of H are
the edges of H.



3 Vertex separators and prime components

In this section we state a number of results concerning the vertex separators and
the prime components of a graph, which will be used in the following sections.

Let G be a connected graph and X C V(G). Let K be a connected compo-
nent of G — X (observe that N(V(K)) C X); we denote by K the subgraph of
G induced by V(K) U N(V(K)) and we say that K is an X-component of G if
N(V(K)) = X. Let v and v be two vertices of G; u and v are separated by X if
they belong to distinct connected components of G — X; X is a clique separator
for v and v if u and v are separated by X, and X is a clique; X is a clique
separator of G if there exist two vertices for which X is a clique separator; X is
a minimal separator for u and v if u and v are separated by X and by no proper
subset of X. X is a minimal vertex separator of G if there exist two vertices for
which X is a minimal separator. X is a minimal vertex clique separator of G if
it is both a clique and a minimal vertex separator of G.

Fact 2. Let G be a graph, u and v two vertices of G, and X a subset of V(G).
X separates u and v if and only if X N{u,v} = 0 and, for every u-v path p,
V(p)NX #£0.

Lemma 1. Let G be a graph, X a subset of V(G), and K a connected component
of G — X. N(V(K)) separates every two vertices u € V(K) and v € V(G) \
V(K).

Proof. Let u be a vertex in V(K) and v a vertex in V(G) \ V(K). Since no

vertex in V(K) is adjacent to a vertex in V(@) \ V(K), for every u-v path p,
V(p) N N(V(K)) # 0 so that, by Fact 2, N(V(K)) separates u and v. O

Lemma 2 ([5]). Let G be a graph and X a subset of V(G). X is a minimal
separator for two vertices u and v if and only if u and v belong to two distinct
X -components of G.

Lemma 3. Let G be a graph, X a clique of G, K a connected component of
G — X, and u and v two vertices in V(G) \ V(K). One has that I, (u,v) C
V(G) \ V(K).

Proof. Suppose, by contradiction, that there exists an induced u-v path p in G
such that V(p) NV (K) # 0. Let w € V(p)NV(K). Let pyy be the u-w subpath
of p and py, the w-v subpath of p. Since u is either in X or in a connected
component of G — X distinct from K, by Fact 2, V(puw) N X # 0; analogously,
V(pwe)NX # 0. Let v’ be a vertex in V (pyq,)NX and v’ a vertex in V (py, )N X.
Since u’ and v are distinct and not consecutive in P, and {v/,v'} CV(p)N X,
p is not induced (contradiction). O

Corollary 4. Let G be a graph, X a clique of G, and K a connected component
of G—X. If Y CV(G)\V(K), then [Y],, CV(G)\ V(K).

Proof. By Lemma 3, one can easily prove, by induction, that, for every j, j > 0,
L,(Y) CV(G)\ V(K). O



Two vertices are clique separable in G if there exists a clique of G separating
them. A prime component of G is a subgraph of G induced by a maximal subset
of V(@) not containing two vertices that are clique separable in G. G is prime
if G has only one prime component. The prime hypergraph Pg of a graph G is
the hypergraph whose vertex set is V(G) and whose edges are the vertex sets
of the prime components of G. Due to the maximality of a prime component,
one has the following.

Fact 3. Let G be a graph and P a prime component of G. For every u ¢ V(P),
there exists v € V(P) such that u and v are clique separable.

Lemma 5. Let G be a graph, P a prime component of G, and K a connected
component of G —V(P). One has that N(V(K)) is a clique.

Proof. Suppose, by contradiction, that there exist two nonadjacent vertices x
and y in N(V(K)). Since z and y are in N(V(K)) and K is connected there
exists an induced z-y path p whose internal vertices are in V(K). Let u be an
internal vertex of p (u exists, since xy ¢ E(G)). Since u ¢ V(P), by Fact 3,
there exists a vertex v € V(P) and a clique X such that X separates u and v.
Since p is induced, X cannot contain two vertices not consecutive in p, so that
X does not separate x and u or y and u. It follows that X separates x and v
or y and v (contradiction). O

Lemma 6. Let G be a graph, P a prime component of G, and K a connected
component of G — V(P). One has that V(P)\ N(V(K)) # 0.

Proof. Suppose, by contradiction, that V(P) = N(V(K)) so that every vertex
in V(P) is adjacent to a vertex in V(K) and, hence:

(a) for every pair of vertices u € V(K) and v € V(P), there exists an induced
u~v path having all vertices, except v, in V(K).

Firstly, let us show that:

(b) given a nonempty subset U of V(P), if there exists a vertex v € V(K)
such that u is clique separable from no vertex in U and is clique separable
from a vertex v € V(P), then there exists a vertex v’ € V(K) that is
clique separable from no vertex in U U {v}.

To this aim, let us show that
(¢) every clique separating u and v must contain U.

Suppose, by contradiction, that there exist a clique X separating u and v, and
a vertex x € U such that ¢ X. Since, by Lemma 5, V(P) is a clique, x is
adjacent to v so that X separates u and x (contradiction).

Let p be an induced u-v path such that V(p) \ {v} C V(K) (such a path exists
by (a)). By (¢) and Fact 2, every clique separating v and v must contain U
and at least one internal vertex of p. Let u’ be the last vertex in (the sequence)
p belonging to a clique separating u and v (see Figure 1); then, by (c), u’ is



Figure 1:

adjacent to every vertex in U and, hence, u is clique separable from no vertex
in U. In order to prove (b), it remains to show that ' and v are not clique
separable. Suppose, by contradiction, that there exists a clique X separating
u’ and v. Then, by (¢) and Fact 2, X contains U and a vertex w in the u'-v
subpath pys, of p. Since p is induced, X cannot contain a vertex in the u-u’
subpath of p so that, if u and v were connected in G — X, then v’ and v would
be connected in G — X, contradicting the fact that v’ and v are separated by
X. Therefore X is a clique separating u and v and, since w follows ' in (the
sequence) p a contradiction arises. Therefore, v’ and v are not clique separable
and (b) is proved.

Let uy € V(K) be a vertex adjacent to a vertex in V(P). Then u; is clique
separable from no vertex in N(uy) NV (P); furthermore, by Fact 3, there exists
a vertex v; € V(P) such that u; and vy are clique separable. Therefore, by (b),
there exists a vertex us € V(K) such that us is clique separable from no vertex
in N(up)NV(P)U{v}. T V(P)= N(u1)NV(P)U{v1}, then, by Fact 3, P is
not a prime component of G (contradiction). Otherwise, there exists vy € V(P)
such that us and v are clique separable so that, by (b), there exists uz € V(K)
such that us is clique separable from no vertex in N(up) N V(P) U {v1,va},
and so on. Therefore by applying (b) a finite number of times, we reach a
contradiction. O

Theorem 7. Let G be a graph, P a prime component of G, and K a connected
component of G=V (P). There exists a connected component K' of G—N(V(K))
containing V(P)\ N(V(K)); furthermore:

1. K' is an N(V(K))-component of G, and

2. N(V(K)) is a minimal clique separator for every two vertices u € V(K)
and v € V(K')



Proof. Since, by Lemma 6, V(P)\ N(V(K)) # 0 and, by Lemma 5, N(V(K)) is
a clique, every two vertices in V(P)\ N(V(K)) are connected in G — N(V(K))
(otherwise P would not be a prime component of G) and, hence, there exists a
connected component K’ of G— N(V(K)) such that V(P)\ N(V(K)) C V(K').
Proof of 1. Let us show that K’ is an N(V(K))-component of G. Suppose, by
contradiction, that there exists a vertex w in N(V(K)) \ N(V(K')) (observe
that, since K’ is a connected component of G — N(V(K)), w ¢ V(K')) and
let w’ be a vertex in V(P)\ N(V(K)) C V(K’), By Lemma 5, N(V(K)) is a
clique and, hence, N(V(K")) is a clique. Furthermore, by Lemma 1, N(V(K"))
separates w and w’. Since both w and w’ are in V' (P)), a contradiction arises.
Proof of 2. By Lemmas 5 and 2. O

The next result relates prime components and convex hulls.

Theorem 8. Let G be a graph, X a subset of V(G), and P a prime component
of G. If X CV(P) then [X].m C V(P).

Proof. By Lemmas 5 and 3, one can easily prove, by induction, that, for every
jy 320, I, (X) S V(P). N

Since Pg is a cover of V(G) the following holds.
Fact 4. Let G be a graph and X a subset of V(G). One has that

xX= |J xnv().
V(P)ePa

Lemma 9 ([5]). Let G be a graph. For every prime component P of G, a
nonempty subset X of V(P) belongs to m(G) if and only if X is a clique or
X =V(P).

Let G be a graph, X a subset of V(G), and P a prime component of G. In
the following, IC(X, P) is the set of the connected components K of G — V(P)
such that X NV (K) # 0.

Lemma 10. Let G be a graph, X a subset of V(G), and P a prime component
of G. For every j, j >0, K(I](X), P) = K(X, P).

Proof. By induction.
Basts. j = 0. Trivial.
Induction. j > 0. By inductive hypothesis, C(I]~!(X), P) = K(X, P). There-
fore K(X, P) C K(I}(X), P). Furthermore, if K ¢ K(IJ(X), P), then I7(X) N
V(K) = 0 and, hence, X NV (K) = (). O

4 The class T

In this section, after recalling the characterization of the graphs in I" provided
in [5], we state some results (which will be useful in the next sections) relating
minimal vertex clique separators to induced paths and geodesics of a graph in
the class I'.



Theorem 11 ([5]). Let G be a graph. g(G) = m(G) if and only if
(1) g(P) = m(P) for every prime component P of G, and

(2) for every minimal vertex clique separator S of G and for every S-component
K of G and for every vertexr u € V(K)NN(S), the set SU{u} is a clique.

In Figure 2 a graph in the class I'" and its prime components Py, Ps, ..., Ps are
shown.

Lemma 12. Let G be a graph such that g(G) = m(G) and X a minimal vertex
clique separator of G. For every induced path p having an endpoint in an X-
component of G, |[V(p) N X| < 1.

Proof. Let p = (u = w1, wa, ..., w, = v) be an induced u-v path such that u is
in an X-component, say K, of G. If k < 2, then the statement trivially holds. If
k > 3, suppose, by contradiction, that |V (p)NX| > 1. Let w; be the first vertex
in p not belonging to V(K) (so that w; € X) and w; a vertex in V(p) N X
distinct from w; (so that j > 4); one has that w;—; € V(K) N N(X). Since
9(G) = m(G) and X is a minimal vertex clique separator, by (2) in Theorem
11, X U{w;_1} is a clique so that w;_; and w; are adjacent and, hence, p is not
an induced path (contradiction). O

Lemma 13. Let G be a graph such that g(G) = m(G) and X a subset of V(G).
If Y is a minimal clique separator for two vertices in X, then' Y C I4(X).

Proof. Let v and w be two vertices in X such that Y is a minimal clique
separator for u and w. Let p = (u = wi,...,Wi—1, Wi, Wit1,...,Wp = W),
k > 3, be a u-w geodesic. By Fact 2 and Lemma 12, |V(p) N Y| = 1. Let
Vip)NY = {w;}. IfY = {w;} then the statement trivially holds. Other-
wise, let y be a vertex in Y distinct from w; and let K, and K, be the Y-
components of G containing v and w, respectively. Since w;_1 € V(K,)NN(Y)
and w1 € V(K,) N N(Y), by (2) in Theorem 11, y is adjacent to both w;_1
and w;11. Therefore, (w1, ..., wi—1,Y, Wit1,-..,wy) is a u-w geodesic. O

Lemma 14. Let G be a graph such that g(G) = m(G), X a minimal clique
separator for two wvertices uy and us, and v a vertex in X. If py is a uy-v
geodesic and ps is a v-ug geodesic, then pips s a uy-us geodesic.

Proof. Suppose, by contradiction, that p;ps is not a geodesic. Let p be a uj-us
geodesic. Let v’ be a vertex in X NV (p) and py,» and pyrq, the ui-v’' subpath
and the v'-uy subpath of p, respectively. Since I(p) < I(p1p2) = 1(p1)+1(p2), one
has that [(py,./) < 1(p1) or I(pyru,) < 1(p2). Assume, without loss of generality,
that {(pu,v) < l(p1); let K be the X-component of G containing u; and w the
vertex preceding v’ in py,,,. By Lemma 12, w € V(K) N N(X), so that, by (2)
in Theorem 11, w is adjacent to v. Let p,, ., be the u;-w subpath of p and let
P’ = Py, w(w,v). One has that [(p) = I(py,v) < l(p1) (contradiction). O



5 The joint of a vertex set in a prime component

Let G be a graph, X a subset of V(G) and P a prime component of G. The
joint of X in P is the set

X, if X CV(P),

J(X,P) = {X NV(P)U UKeIC(X,P) N(V(K))NIy (X), otherwise.

Fact 5. Let G be a graph, X a subset of V(G) and P a prime component of G.
J(X,P) C I, (X)NV(P).

Figure 2:

Example 1. Consider the graph in Figure 2 and let X = {a,b,c}. One has
I,(X) ={a,b,c,1,2,...,8}, I;(X)NV(P) = {c,3,4,5,6,7}, and J(X,P,) =
{¢,3,4,7}.

In this section we will prove that, if g(G) = m(G), then

[X]g: U [J(X»P)]g»

PePg

Example 1 (continued). One has that J(X, P;) = {¢,3,4,7}, J(X,P) =
{a,3}, J(X,P3) =0, J(X,P) = {4,7}, J(X,Ps5) = {4,7,8}, and J(X, Ps) =
{b,8}. Therefore, by Lemma 9 and Theorem 8, one has that [J(X, P)]ly =
V(P), [J(X, P2)]g =V(P), [J(X, P3>]g =0, [J(X, P4)]Q ={4,7}, [J(X, P5)]g =
V(Ps), and [J(X, Ps)]g = V(Fs) so that [X], =V (P)UV (P)UV (Ps) UV (Fs).

If we consider the graph in Figure 2 and the vertex set X = {a,b,c},
we can observe that I,(J(X,P1)) = {¢,3,4,5,6,7}, so that I,(X)NV(P) =



I,(J(X, P1)). We will prove now that the equality
Iy(X)NV(P) = I,(J(X, P))
always holds.

Lemma 15. Let G be a graph such that g(G) = m(G), X a subset of V(G),
and P a prime component of G. One has that I,(J(X,P)) = I,(X) NV (P).

Proof. Firstly, let us show that

I,(J(X, P)) € I,(X) N V(P).

By Fact 5, J(X,P) C V(P) and, hence, by Theorem 8 and 3 in Fact 1,
I,(J(X,P)) C V(P). Therefore, in order to show that I4(J(X, P)) C I,(X)N
V(P) it is sufficient to show that I,(J(X, P)) C I,(X). Let v be a vertex in
I,(J(X, P)). Let p be a geodesic between two (not necessarily distinct) vertices
u and w belonging to J(X, P) such that v € V(p). Distinguish two cases.

Case 1. There exists K € K(X, P) such that both « and w are in N(V(K)).
By Lemma 5, N(V(K)) is a clique and, hence, either u = w or v and w are
adjacent; therefore, either v € V(p) = {u} or v € V(p) = {u, w}. Since, by Fact
5, both w and w are in I,(X), it follows that v € I,(X).

Case 2. There is no K € K(X, P) such that both u and w are in N(V(K)). If
both u and w are in X, then, trivially, v € I;(X). Otherwise, assume without
loss of generality, that v ¢ X. By the definition of joint of X in P, there
exists a connected component K, € (X, P) such that v € N(V(K,)) (so that
w ¢ N(V(K,))). Let v be a vertex in X N V(K,) and let p,.,, be a u'-u
geodesic. Since, by 2 in Theorem 7, N(V(K,)) is a minimal clique separator
for v/ and w, by Lemma 14, the u’-w path p’ = pyrp is a geodesic. Therefore,
if w e X, then, since v € V(p) C V(p'), v € I4(X). Otherwise, by the definition
of joint of X in P, there exists a connected component K,, € (X, P) distinct
from K, such that w € N(V(K,)). Let w’ be a vertex in X NV (K,,) and let
Puww be a w-w’ geodesic. Since u € V(P)\ N(V(K,)), by 2 in Theorem 7,
N(V(K,)) is a minimal clique separator for v and w’. By 1 in Theorem 7,
there exists an N(V (K, ))-component K’ of G containing u. Since, by Lemma
12, u is the unique vertex in V(py,,) N N(V(K,)) (and, hence, is the unique
vertex in V(py) N V(P)) and u ¢ N(V(K,)), one has that v € V(K') so
that, by 2 in Theorem 7, N(V(K,,)) is a minimal clique separator for u’ and
w’. Therefore, by Lemma 14, the u/-w’ path p” = p'pyw is a v'-w’ geodesic.
Since v € V(p) C V(p”), one has that v € I (X).

Now let us show that:

1y(J(X, P)) 2 I,(X) N V(P).

Let v be a vertex in I,(X) NV (P). Let v and w be two vertices in X such that
v is on a u-w geodesic p = (u = v1,v2,...,05 = w), h > 1, and let v = v;,
1 <i<h. Let r = min(llv; € V(P)) and s = max(l|v; € V(P)). Let us show
that:
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(a) v isin J(X, P).

If r = 1 then (a) trivially holds. If » > 1, then u ¢ V(P). Let K be the
connected component in IC(X, P) such that v € V(K). Since, v, € N(V(K))
and v, € V(p) C I4(X), (a) holds. Analogously, it is possible show that:

(b) vs isin J(X, P).
From (a) and (b), it follows that v € I,(J(X, P)). O

Lemma 16. Let G be a graph such that g(G) = m(G), X a subset of V(G),
and P a prime component of G. For every j, j > 1,

I I1,(X)NV(P) = I(X)NV(P).
Proof. Since I,(X) NV (P) C I,(X), for every j, j > 1,
I NI (X)NV(P)) C I (1,(X)) = I (X)

and, since I,(X) NV (P) C V(P), by Theorem 8 and & in Fact 1, for every j,
Jj=1 .
"I (X)NV(P)) CV(P).

Therefore, for every j, j > 1,
L7N(L,(X) NV(P)) € (X) N V(P).
Now, let us prove, by induction, that, for every j, 7 > 1,
I(X) NV(P) C I\ (I,(X) N V(P)).

Basis. j = 1. Trivial.
Induction. j > 1. Let v € I)(X)NV(P). If v € IJ7*(X), then, by inductive
hypothesis, v € IJ72(I,(X) NV (P)) C I;=*(I,(X) N V(P)). Therefore assume
that v € IJ(X) \ IJ7(X). Observe that, since v ¢ J(X, P) (otherwise, by Fact
5, v would be in I,(X) C IJ7Y(X)), v ¢ V(ﬁ), for every H € K(X, P) and,
hence, by Lemma 10,

(a) v ¢ V(H), for every H € K(IJ~(X), P).

Let u and w be two vertices in I7~!(X) such that v is on a u-w geodesic p = (u =
V1,V2,...,0p =w), h >3, and let v =v;, 1 < i < h. Let r = min(l|v; € V(P)
and s = maxz(l|v; € V(P)). Let us show that:

(b) v, € IY(X).

If » = 1, then (b) trivially holds. If r > 1, then u ¢ V(P). Let K, be
the connected component of G — V(P) containing u. Observe that, by (a),
v e V(P)\ N(V(K,)); therefore, by 2 in Theorem 7, N(V(K,)) is a minimal
clique separator for v and v and, hence, by Lemma 2, v and v are in two
distinet N(V(K,))-components of G. Let K be the N(V(K,))-component of

11



G containing v. Since v is on a u-w geodesic and u ¢ V(K), by Lemma 3, one
has that w € V(K). Tt follows (since w € IJ7'(X)) that IJ""(X) N V(K) # 0
and, hence, by Corollary 4, X N V(K) # (. On the other hand, by Lemma 10,
X NV(K,) # 0. Therefore, by 2 in Theorem 7, N(V(K,)) is a minimal clique
separator for two vertices in X and, hence, by Lemma 13, N(V(K,)) C I,(X).
Since, v, € N(V(K,)), (b) is proved. Analogously, it is possible show that

(c) vs € Ig_l(X).

Consider the v,-vs subpath p’ of p. One has that p’ is a v,-vs geodesic and
v € V(p'). Since, by (b) and (c), both v, and v, are in IJ='(X) N V(P), by
inductive hypothesis, both v, and v, are in IJ=2(I,(X) N V(P)) and, hence,
ve 7Y I,(X)NV(P)). O

Theorem 17. Let G be a graph such that g(G) = m(G) and X a subset of
V(G). One has that

Xl = U Vx P,
PePa

Proof. Firstly, let us show that, for every prime component P of G:
(a) [J(X, P)ly € [X]gnV(P).

By 2 in Fact 1, for every prime component P of GG, one has that
(a.1) [J(X, P)lg € [Uy(J(X, P))]g-

Furthermore, by Theorem 8 and & in Fact 1, for every prime component P of
G, one has that

(a2) [L(X) NV (P)]g € V(P).

Finally, since, for every prime component P of G, I,(X) NV (P) C I,(X) and,
by 2 in Fact 1, [I;(X)], = [X]4, one has that, for every prime component P of
G,

(a.3) [y (X) NV (P)]g € [X],-
Therefore, (a) follows from (a.1), (a.2), (a.3), and Lemma 15.

Let us show now that:

(b) xl, e U V&P
V(P)EPq

Let h = gin(X). If h = 0, X = [X], and, hence, since XNV (P) C J(X, P), one
has that [X], N V(P) C [J(X, P)],; therefore (b) follows fron Fact 4. If h > 1,
then one has
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xl,= U nve)= (Fact 4)

V(P)ePc

- U IQ(X)OV(P): (1 in Fact 1)
V(P)ePc

- U Is};_l(lg(X) NnV(P)) C (Lemma 16)
V(P)EPa

c U mx)nv(p),= (1 in Fact 1)
V(P)ePa

- U [Ly(J (X, P))]g = (Lemma 15)
V(P)ePa

= U &P (2 in Fact 1)
V(P)ePa

O

6 The geodetic iteration number

In this section we state the results concerning the geodetic iteration number of a
set of vertices of a graph in the class I' (Theorem 18) and the geodetic iteration
number of a graph in the class ' (see Theorems 19 and 20).

Theorem 18. Let G be a graph such that g(G) = m(G) and X a subset of
V(G). One has that:

1. gin(X) =0, if X is g-convex;

2. gin(X) =1, if X is not g-convex and, for every prime component P of

G, I,(X)NV(P) is g-convex;
3. gin(X) = max{gin(J(X, P)) | V(P) € Pg}, otherwise.
Proof. Proof of 1. Trivial.
Proof of 2. Let h = gin(X); since X is not g-convex, h > 1. One has that
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[Ly(X)]lg = [X]g = (2 in Fact 1)

= I5(X) = (1 in Fact 1)

- U I;L(X) nV(P) = (Fact 4)
V(P)ePga

- U [gil(Ig(X) NnV(P)) = (Lemma 16)
V(P)ePga

= U noonve)= (I4(X)NV(P) is g-convex)
V(P)ePc

= Iy(X) (Fact 4)

so that I,(X) is g-convex and, hence, gin(X) =1

Proof of 8. Let h = gin(X) and k = maz{gin(J(X,P)) | V(P) € Pg}. Since
X is not g-convex, h > 1; furthermore, k¥ > 1 (otherwise, for every prime
component P of G, J(X,P) would be g-convex and, hence, by Lemma 15,
I,(X) N V(P) would be g-convex). Suppose, by contradiction, that h # k. If
h > k, then one has that

U v&xpPL,= | nuxp)= (1 in Fact 1)
V(P)ePa V(P)ePa
= U IF'I,x)nv(p) = (Lemma 15)
V(P)ePg
= U nxnvre) g (Lemma 16)
V(P)ePa
¢ U nxnve) =
V(P)ePq
= U Xgnv(p)= (1 in Fact 1)
V(P)EPq
=[X], (Fact 4)

If h < k, then, one has that
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Xl,= U v = (Fact 4)

V(P)ePg
= U nx)nve) = (1 in Fact 1)
V(P)ePg
= U I 'x)nvp) = (Lemma 16)
V(P)EPg
= U nux.p)c (Lemma 15)
V(P)EPq
¢ U nmuxpy= |J V&P (1 in Fact 1)
V(P)ePa V(P)ePa
In both cases, by Theorem 17, a contradiction arises. O

Theorem 19. Let G be a graph such that g(G) = m(G). One has that:
1. gin(G) =0, if G is complete;
2. gin(G) =1, if G is not complete and is a block grah;
3. gin(G) = max{gin(P) | V(P) € Pg}, otherwise.

Proof. Proof of 1. If G is complete, then every subset X of V(G) either is empty
or is a clique and, hence, is g-convex; therefore, gin(G) = 0.

Proof of 2. Let X be a subset of V(G). Since G is a block graph, for every
prime component P of G, I,(X) NV (P) is empty or is a clique and, hence, is
g-convex. Therefore, by I and 2 in Theorem 18, gin(X) < 1. It follows that
gin(G) < 1. Since G is not complete, G has at least two nonadjacent vertices u
and v; since {u, v} is not g-convex gin(G) = 1.

Proof of 3. Let k = max{gin(P) | V(P) € Pg}. Since G is not a block graph,
there exists a prime component of G containing two nonadjacent vertices v and
v; since gin({u,v}) > 1, one has that k > 1. Let X be a subset of V(G). If X
is g-convex or, for every prime component P of G, I,(X) NV (P) is g-convex,
then by 7 and 2 in Theorem 18, gin(X) < k. Otherwise, by & in Theorem 18,

gin(X) = max{gin(J(X,P)) | V(P) € Pg} < k.
Therefore, gin(G) < k. Let P’ be a prime component of G such that gin(P’) = k
and X' a subset of V(P) such that gin(X') = gin(P’). Then gin(X’) = k and,
hence, gin(G) = k. O
Example 1 (continued). Let G be the graph in Figure 2. One has that

gin(Py) = 4, gin(Py) = 3, gin(P3) = gin(Py) = gin(Ps) = gin(Ps) = 0, and,
hence, gin(G) = gin(Py) = 4.
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Theorem 20. Let G be a prime graph such that g(G) = m(G). One has that:
1. gin(G) =0, if G is complete;
2. gin(G) = max{gin({u,v}) | wv ¢ E(G)}, otherwise.

Proof. Proof of 1. Trivial.

Proof of 2. Let h = gin(G) and k = max{gin({u,v}) | uv ¢ E(G)}; observe
that h > k > 1. Suppose, by contradiction, that h > k. Let X be a subset of
V(G) such that gin(X) = h. Since h > 1, X cannot be empty and cannot be a
clique. Let # and y be two nonadjacent vertices in X. Since g(G) = m(G), by
Lemma 9, one has that:

V(@) = [, yl]y = Iy ({,y}) € I5(X) € I3(X) = [X], = V(G)

which is a contradiction. O

7 Computing the geodetic iteration number

By Theorems 19 and 20, in order to compute the geodetic iteration number of
a graph G € I that is neither complete nor a block graph we have to com-
pute the prime components of G and then to compute gin({u,v}), for every
pair of nonadjacent vertices u and v that are both in a prime component of
G. The prime components of a graph G can be computed using the O(nm)
decomposition algorithm given in [7] and modified by [8]. Furthermore, we can
compute gin({u,v}) in O(nm) by applying the algorithm in Figure 3 which is
substantially the process described in [9] to compute the g-convex hull of a set
of vertices. Therefore, the following holds.

input: a graph G and a subset X of V(G);
output: gin(X);
begin
gin(X) :=0;
°:=X;
for every u € I° do I' :=J, ¢ o Iy(u,v);
while I° # I' do
begin
gin(X) := gin(X) + 1;
for every u e I'\ I' do I* := |, 1 Iy(u,v);

IO - Il.

I' = 12’

end
end.

Figure 3:
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Theorem 21. Let G be a graph such that g(G) = m(G). The geodetic iteration
number of G can be computed in O(n3m).

Let us discuss now the complexity of computing the geodetic iteration num-
ber of a bipartite distance-hereditary graph. In [10] it is proved that the class
of bipartite distance-hereditary graphs is properly contained in a proper sub-
lass, say T (in [10], such a class is the class of cross-cyclic graphs having no
cycle of length 3), of T' and that for a graph in T the g-convex hull of a set
of vertices X coincides with the 2g-convex hull of I,(X), where the 2g-convex
hull of a vertex set is defined analogously to g-convex hull with the difference
that only geodesics of length 2 are considered. Therefore, if G is a bipartite
distance-hereditary graph, in order to compute gin({u,v}) we can use the O(m)
algorithm in Figure 4 which is substantially the algorithm provided in [10] to
compute the g-convex hull of a set of vertices in a graph belonging to I''. This
algorithm firstly computes I4(X), and then add a vertex v to Ig(X), j>2,if
v is adjacent to at least two vertices in Ig’l(X) and, hence, is on a geodesic of
lenght 2 between two vertices in I g_l(X ). Therefore the following holds.

input: a bipartite distance-hereditary graph G and a subset X of V(G);
output: gin(X);

begin

I° .= X;
gin(X) :=0;
I' =1, (X);
I? =171

for every v € V(G) \ X do adj(v) := 0;
while 1° # I' do
begin
gin(X) := gin(X) + 1;
for every u € I' \ I° do
for every v € N(u) \ I' do
begin
adj(v) := adj(v) + 1;
if adj(v) = 2 then I? := I’ U {v}
end
10:=1T1;
I'.=1r?
end
end.

Figure 4:

Theorem 22. The geodetic iteration number of a bipartite distance-hereditary
graph can be computed in O(n*m) time.
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