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ABSTRACT 
 
Aim: The aim of this thesis is to create an integrated bioinformatic 
framework for the quantitative assessment of cytoskeleton (CSK) 
morphology. In this research, we demonstrated the validity of this 
approach by applying computational biology in two cases: 
Cytospace images and neurite images. I used these 2 dataset of 
images as reference dataset to build the computational biology 
framework and to verify its functionality. To accomplish this, I 
have analyzed Cytospace optical and confocal microscope images 
by Image J and MATLAB programming.  
I have analyzed the neurite number and length of PC 12 cells by 
using the following software and tools: (a) custom made tool 
MATLAB, (b) Cell profiler, (c) Image J, and (d) Filopodyan. 
Outside this goal of CSK analysis I have also analysed the 
microcalcification and parenchyma images through my 
framework to verify the capability of the framework to operate on 
a different scenario.  

 
Methods: We have developed various algorithms and protocols 
for the analysis of nuclei, tubulin and microtubules. Each 
component of the cytoskeleton plays a very essential role in 
understanding the behaviour of the cell. Moreover, the confocal 
images were processed properly to extract the information 
regarding the cytoskelton.  
Finally, we also studied PC 12 cells and selected / designed useful 
algorithms to analyze changes in the number and length of 
neurites.   

 
Results: In the first part of this thesis we presented an in-silico 
model constructed by using measurable parameters obtained from 
microscope images of cells. We use image analysis software 
Image J to identify cell shape parameters – including surface area, 
roundness, fractal dimension, such as entropy and coherency. In 
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the second part of thesis, we also analysed area, perimeter, major 
and minor axis, circularity, the solidity of the nuclei and tubulin 
by MATLAB programming. In the third part of the thesis, we 
anlayzed the dynamics of neurites by developing MATLAB 
scripts, using also other analysis tools such as Image J, Neuron J.   
 
Conclusion: I have build a computational framework to analyse 
in quantitative manner images from optical and confocal 
microscopy. 
During the first two years of PhD course I select, develop and 
integrated bioinformatics protocols and algorithms to define 
optimized operational pipelines. I used two datasets of image as 
reference to tuning the computational pipeline. 
In the last period of phd course I can apply my optimised 
framework on microscopy images for detection and analysis of  
neurites.  By means of the application of the framework was 
possible reduce considerable time of biologist to analyse the 
images.    
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SOMMARIO 
 
Obiettivo: Lo scopo di questa tesi è quello di creare un framework 
bioinformatico integrato per la valutazione quantitativa della 
morfologia del citoscheletro (CSK). In questa ricerca, abbiamo 
dimostrato la validità di questo approccio applicando la biologia 
computazionale alle immagini di due casi sperimentali. Ho usato 
questo set di dati di immagini come set di dati di riferimento per 
creare il framework di biologia computazionale e verificarne la 
funzionalità. A tale scopo, ho analizzato alcune immagini da  
microscopia ottica e confocale del progetto CYTOSPACE mediante 
la programmazione di Image J e MATLAB. 
Da immagini provenienti da un altro esprimento ho analizzato il 
numero e la lunghezza dei neuriti delle cellule PC 12 utilizzando i 
seguenti software e tools: (a) MATLAB, (b) Cell Profiler, (c) Image 
J e (d) Filopodyan. Al di fuori dell'analisi CSK ho anche analizzato 
le immagini di microcalcificazione e parenchima (da mammografie 
provenienti da un altro esperimento) attraverso il mio framework per 
verificare la capacità del framework di operare su uno scenario 
diverso. 
 
Metodi: abbiamo sviluppato vari algoritmi e protocolli per l'analisi 
di nuclei, tubulina e microtubuli. Ogni componente del citoscheletro 
svolge un ruolo molto essenziale nella comprensione del 
comportamento della cellula. Le immagini confocali sono state 
opportunamente elaborate per estrarre le informazioni relative al 
citoscheletro. 
Infine, abbiamo anche applicato il framework computazionale ad 
immagini di cellule PC 12, al fine di individuare e misurare le 
variazioni dinamiche dei neuriti in termini di numero e lunghezza. 
 
Risultati: Nella prima parte di questa tesi abbiamo presentato un 
modello in silico costruito utilizzando parametri misurabili ottenuti 
da immagini di cellule acquisite tramite microscopia ottica e 
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confocale. Abbiamo usato il software di analisi delle immagini 
Image J per identificare i parametri di forma delle cellule, tra cui 
area superficiale, rotondità, dimensione frattale, entropia e coerenza. 
Nella seconda parte della tesi, abbiamo anche analizzato area, 
perimetro, asse maggiore e minore, circolarità, solidità dei nuclei e 
della tubulina mediante codice appositamente sviluppato in 
MATLAB. Nella terza parte della tesi, abbiamo analizzato la 
dinamica dei neuriti sviluppando script MATLAB, usando anche 
altri strumenti di analisi come Image J, Neuron J. 
 
Conclusione: ho costruito un framework computazionale per 
analizzare in modo quantitativo le immagini provenienti da 
microscopia ottica e confocale. 
Durante i primi due anni del corso di dottorato ho selezionato, 
sviluppato e integrato protocolli e algoritmi bioinformatici per 
definire pipeline operative ottimizzate. Ho usato due set di dati di 
immagini come riferimento per ottimizzare la pipeline 
computazionale. 
Nell'ultimo periodo del corso di dottorato ho applicato il framework 
ottimizzato su immagini al microscopio per il rilevamento e l'analisi 
dei neuriti. Tramite l'applicazione del framework è stato possibile 
ridurre considerevolmente i tempi del biologo per analizzare le 
immagini. 
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Chapter 1 
 
 
1. Introduction and Background 
 
The adult human body contains an estimated 3.72.1013 cells [1] that 
can be grouped into about 200 specialized cell types making [2] the 
complex tissue architecture that forms 60 organs [3].  
Cells are the building blocks of the human body, and are responsible 
for taking the nutrients from the food and converting those nutrients 
into energy. Furthermore, with the developments in molecular 
biology, several molecular components and mechanisms have been 
revealed by which embryos are patterned; therefore, require cells to 
acquire different fates and tissue adopt their defined shapes. In 
particular, careful experimentations and quantifications, 
mathematical and computational modeling are increasing day by 
day to formulate the assumptions and to test the hypothesis, although 
a lack of appropriate methods and tools to represent multiscale 
multicellular systems hampers these studies.  
In a normal living cell, all activities originate in the cytoskeleton 
which plays very important active roles. The cytoskeleton study is a 
very dynamic area of research from the past 70 years. The dynamic 
3D structure popularly know as “cytoskeleton” is a system 
consisting of three main kinds of protein filaments crucial for the 
cell shape, division, and function within all three domains of life [4]. 
Important questions have since opened up at the interface of cell 
biology, system biology, molecular biology, tissue morphogenesis, 
and computational biology. Can we identify physiological changes 
and characterize the cellular biophysical properties such as density, 
connectivity, solidity, stiffness in drug treatments? Which methods 
and techniques we can use to represent the large image dataset of the 
cytoskeleton? Using tools and ideas from the computational biology 
and system biology approach, this interface can be understood.  
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On the one hand, the new techniques are required to manipulate and 
visualize these large image datasets of the cytoskeleton. Upcoming 
technologies such as high throughput screening [5,6] gene 
expression analysis [7,8] quantitative image analysis [9–11] are 
essential to produce the high-resolution quantitative data on these 
dynamics across the spatiotemporal scales. On the other hand, new 
methods for the mathematical and computational modeling are 
much needed to investigate the consequences of such a feedback; 
generally, the behavior of the complex dynamics systems goes far 
beyond the human intuition. The large amounts of quantitative data 
that are being acquired are prompting scientists to new hypothesis 
explaining the complex biological processes. Therefore, expressing 
these hypothesis regarding to the rules and equations which are 
simulated by the computer allows to investigate the non-intuitive 
consequences of the complex interactions and feedback loops. In 
addition, quantitative comparison of the simulation results with the 
large data enables one to narrow down the set of the possible 
hypothesis to a few plausible one that will able to tested 
experimentally (fig 1) . 
Dynamic models are normally ordinary differential equations of the 
genetic regulatory networks which can allow us to know the cell fate 
decisions of multipotent cells and how their trajectories through 
gene expression space are constrained by the interaction between 
genes [12]. Spatial models such as reaction-diffusion models enable 
us to reveal how the morphogen gradients influenced these decisions 
and moreover how the patterned gradient can spontaneously be 
aroused through the interaction between diffusible morphogens 
[13]. Finally, cell-based models in which the cells are introduced as 
discrete and motile agents, can allow us to grasp how specific tissue 
shapes emerge from the mechanical interactions in between the cells 
[14].  
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Figure 1: The representation of the computational modeling in quantitative 
biology. To answer in a unified way for the specific biological questions, 
observations and quantification of wet lab experimentations are followed by the 
construction of the mathematical and computational models that are expressed 
through hypotheses and assumptions. Moreover, these kinds of models are 
basically based upon first principles and/ or on hypothesis which derived from the 
new experiments and observations. When the quantification of the large 
experimental data is used for the parameterization, simulations to generate 
predictions that can be used directly for the statistical validation against 
experimental data. The validation may be imposed model refinement or suggest 
the data acquisition of new experimental data. Through the immense repetitions 
between the workflow of experimentation, quantification, and modeling which 
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increase the confidence in the validity of the model assumptions leads to the 
formation of the new biological theory. 
 
In this thesis, a framework is introduced, which facilitates the 
exploration of such an interplay. Conceptually, this framework is 
based upon the integration of the methods to tackle some specific 
questions on the interactions between the cytoskeleton complexity 
and morphogenesis. 
 
1.1 System Biology 
 
System Biology (SB) deals with the living systems and the functions 
of the system that is in the functional context, for example – free 
energy transduction, or formation of the building blocks for the 
biosynthesis. However, the biological systems have evolved such 
that these functions can take place under a great variety of 
conditions: gene expression or even evolutionary changes. Cellular 
function and its capability to adapt are dependent on the interactions 
between the components of the system. Therefore, system biology 
used to understand the system behavior based on the interactions and 
characteristics of the cellular components and their 
microenvironment  [15]. System biology is an approach that is 
widely classified into two types: a) Pragmatic system biology b) 
System – theoretic biology.  
Pragmatic system biology reveals the use of large scale molecular 
interactions along with the omics approach, which is aiming at 
building the multidisciplinary network by implementing 
mathematical modeling. It is helpful to understand the system 
behavior based on the interactions and characteristics of the cellular 
components and their microenvironments [16]. System biology 
involves various applications of experimental, theoretical, and 
modeling techniques with the goal to study of living organisms at all 
levels, from molecular, through cellular to the behavioral 
perspectives. Various developments in this field make it possible to 
understand determine and perform multidimensional analysis of 
modeling and design of the cytoskeleton architecture from 



Dottorato di Ricerca in Morfogenesi e Ingegneria Tissutale 

 Pag. 9  

experimental data and system-level analysis [17]. Furthermore, the 
computational models are used widely to build and make 
improvements based on the analysis and comparison with the data 
experiments [18]. A large number of ongoing research and 
technological developments are making it possible to manipulate the 
great challenge of exploration. Clearly, morphogenesis and 
phenotypic differentiation are space and time-dependent processes: 
[19] morphological plasticity, rather than being the result of genetic 
“adaptation”, and shows the influence of external physio-chemical 
parameters on any material system and is, therefore, an inherent, 
inevitable property of the organism [20]. 
System biology (SB) is a discipline designed to promote an 
integrated approach focussed on the redefinition of the main idea of 
a biological system, understood as an integrated unit of observable 
entities, interconnected by quantifiable relationships capable of 
expressing a biological function that has, within certain limits, 
apparent autonomy. The model at the center of observation is again 
the cell and cellular populations - along with its micro-environment 
- since in biology subordinate levels to this are incapable of meeting 
the indispensable requirements of the living: replication, evolution, 
and differentiation. SB's approach tends to promote an organic 
vision that is capable to combine complexity prospects (both 
bottom-up and top-down), which are not immediately assimilable to 
classical concepts of deterministic causality but, as in the physics 
approach, to the concept of probabilistic causality. 
SB believes that the flow of info that directs the observed processes 
depends on the concurrence of molecular signals (DNA, proteins, 
lipids, etc.) and physical (system state parameters: forces, 
thermodynamics constraints) interrelating with a dynamic not linear. 
This makes it necessary to have data on which statistical 
assessments can be conducted. This is how made possible by high 
throughput techniques (genomics, proteomics, metabolomics, 
fractal analysis, etc.) that can provide large amounts of information. 
Biological organisms are the major entities that maintain their 
existence through the mutual interactions of its parts [21], i.e., they 
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are systems [22]. Therefore, this view has become the dynamic force 
for an approach to study the complex biological systems, which is 
known as system biology. While the system biology approach has a 
major influence on the field of molecular biology and cellular 
biology, it has the main impact on developmental biology. However, 
providing the current focus on the quantification and dynamic 
modeling in order to understand the developing systems of the 
cytoskeleton, the role of the system biology is becoming essential to 
the developmental biology. 
In this thesis, system biology is regarded to as a support discipline 
in the computational strategies to gain insight into the phenotype of 
the original and treated exposed cells. System biology is used for the 
quantitative collection, analysis, and integration of cancer cells [23]. 
System biology heavily relies on the mathematics of dynamical 
system theory as well as computational simulation methods in order 
to thoroughly understand the dynamics of the system and its 
emergent properties that arise from the nonlinear interactions [24]. 
Hence, within system biology, different methodologies are applied 
to produce high- throughput data that can be used to understand 
cellular phenotypes. In particular, SB highlights the detailed 
quantification of the experimental data in order to make the 
quantitative computational models that can be able to provide the 
testable predictions and able to validate these models against the 
experimental data. Owing to this fact, the integration of the huge 
amount of the data generated is the key challenge that system 
biology is facing in order to understand the establishment of a 
holistic view of the functioning of the cell. 
 
1.2 Cytoskeleton – I- beams of the cells 
 
In the earliest 1900s, several biologists started to explore the 
amazing deformations that some cells could undergo. They have 
assumed that the mechanical properties of those cells generated by 
a specific scaffolding of subcellular components, which is 
commonly known as the cytoskeleton by Paul Wintrebert in 1931. 
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One of the main discoveries in this regard was the characterization 
of the three-dimensional protein network, called cytoskeleton, 
which supports the various cell compartments and connects them 
mechanically and functionally one to another. The cytoskeleton is 
made up of a network of filamentous proteins that can dynamically 
polymerize and depolymerize. This network consists three types of 
structural elements that have different dimension and different 
molecular nature: microtubules (having a thickness of 25 nm and 
formed by the combination of alpha and beta-tubulin molecules), 
intermediate filaments, (which have a thickness of 8-10 nm and can 
be formed from various types of filamentous proteins such as 
cytokerite, vimentina, desmin, and laminae) and microfilaments 
(having a thickness of 5 nm and are formed by the association of G-
actin molecules). One of the significant functions cited for the 
cytoskeleton was that of mechanical support of the cell: it was clear 
from the very beginning that the cytoskeleton elements were to 
ensure the maintenance of the cellular form in coherence with its 
differentiated state, to support and maintain core position and 
suspend the various organelles within the cytoplasm. However, the 
static view of the cytoskeleton that the study of cellular biology has 
profoundly and rapidly changed, pointing out how the cytoskeleton 
actually acts, and above all, to link the various cell compartments 
and thus virtually participate in active mode to most of the functions 
performed by the cells. 
The cytoskeleton is composed of multiple strands of 3 main 
components microtubules, intermediate filaments, and 
microfilaments [25]. Each of these polymers has very different 
geometrical, biochemical, and mechanical properties. But some of 
the cell have more specialized cytoskeleton filaments [26] 
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(A)                                           (B)                                          (C) 

Figure 2: Image of cytoskeletal components (A) microfilaments, (B) 
microtubules, (C) intermediate fibers  
 
A systematic picture of a typical cell with its constituents is 
presented in Figure 3 along with a photo of a fibroblast cell with 
cytoskeleton components observed. In figure 3, the numerous 
components have their own responsibilities. For example, the main 
intracellular entity cell governing not only the mechanical behavior 
but also the cell shape, in a very active manner, which is an 
interconnected network of polymerized filaments called 
cytoskeleton. 
Interestingly, the cytoskeleton is a cellular scaffolding that is bathed 
into the cytoplasm, and it is responsible for the structural integrity 
and mechanical force generation into the living cells. It also provides 
the cell with mechanical stability; it also helps in connecting the 
different parts by serving as tracks for the transportation of the 
proteins and vesicles and also directs the intracellular organization 
through the positioning of the organelles. Moreover, the 
cytoskeleton also plays a crucial role when cells rearrange their 
internal components as they grow, divide or adapt to changing the 
circumstances. Therefore, these processes are accompanied and 
driven by the rearrangement of the cytoskeleton. 
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Figure 3: A) The demonstration of a cell with its prominent constituents 
reproduced from [27] with permission from Macmillan Publishers Ltd. B) 
Fibroblast cell is visualized through the immunofluorescence staining under 
the microscope as - Zeiss AxioVert 40 CFL microscope, using Zeiss AxioCAM 
MRm digital camera as well as AxioVision software (Carl Zeiss AG) [28] the 
cytoskeleton networks are colored as blue for actin, green for intermediate 
filaments (vimentin) and red for microtubules.  

 
Functionally, the cytoskeleton helps to maintain the cell shape, and 
also crucial in the movement of cellular components, segregation of 
chromosomes during mitosis and also in the development of a 
sensing network for mechanotransduction. The eukaryotic 
cytoskeleton is made up of three basic types of filaments, along with 
their associated proteins. Cytoskeleton filaments are interconnected 
with each other, and their functions are coordinated by hundreds of 
associated cytoskeleton accessory proteins [29] 
 
The functions of the various components of the cytoskeleton 
classically can be schematized as follows: 
• Microtubules are the third type of the cytoskeleton filaments, 
which is produced from the tubulin into a hollow cylinder with an 
outer diameter of roughly 25µm and is, therefore, a far higher 
bending stiffness than that of either actin or intermediate filaments 
[30]. The persistence length is so far more, about 6mm  [30,31]. 
Along with the high bending stiffness and the rod-like appearance, 
they are also useful in supporting the creation of the long slender 
structure. Microtubules are often found in an arrangement in which 
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they radiate from the center of the cell [2]. They are very highly 
dynamic, allowing for the remodeling and adaptation of the cell 
structure [30]. 
 
Microtubules are liable to vesicular traffic and mostly to the 
movements of all diaphragm organelles; form the meiotic and 
mitotic cell melt, as well as the "midbodies" characteristic of the late 
phases of cell division; Also represent the structural and functional 
support of membrane expansions with movement such as cilia and 
flagella. Microtubules are assembled into hollow tubes to both sides 
of protofilaments [32]. The term tubulin is a microtubule subunit, 
which is called as an α/β heterodimer [33]. 
• Intermediate filament [34] are responsible for maintaining the 
cellular form in coherence with the differentiated state of the cell, as 
well as maintaining the shape and position of the nucleus [35,36].; 
They are also involved in the development of intercellular junctions 
and cell junctions and the extracellular matrix, thus providing the 
important chemical and physical information about the 
microenvironment in which they are immersed. The different kinds 
of Intermediate filaments share a similar type of basic characteristics 
and provide tensile strength of the cell [37]. Intermediate filaments 
are the family of various protein of which the expression is 
depending upon the type of the cell, and its functions such as 
endothelial cells express different types of keratin and vimentin is 
outstanding into the mesenchymal cells such as fibroblasts [38]. 
Furthermore, IFs are more resistant to high salt concentrations and 
much more stable than the actin filament or microtubules [30,39]. 
Generally, cancer cells have been observed to exhibit a disrupted 
intermediate filament network, which is collapsed around the 
nucleus along with the different mechanical properties.  
 
• Microfilaments are located at the cortical cell cytoplasm level and 
are involved both in the creation of joining cellular structures and in 
cell migration as they are responsible for the formation of membrane 
expansions (filopods and lamellipods) necessary for the cell 
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movement; microfilaments also mechanically support real-world 
expansion such as microvilli that have absorbing or exchange 
function with the outside environment but which can function as 
"mechanical sensors" when exposed to fluids; finally, this type of 
cytoskeleton is involved in the plasma membrane deformation 
processes associated with the formation of endocytosis and 
exocytosis vesicles and the formation of cytoplasmic bridges 
[40,41]. 
While the previous scheme suggests a clear separation of functions 
between the various cytoskeletal components, it is good to keep in 
mind that the dynamic modification of the structure of one of the 
types of filaments of the cytoskeleton necessarily leads to a 
modification, albeit partial, of the set of other components: we can 
say that elements of the cytoskeleton act as an integrated system. For 
example, during mitosis, the shape of the cell changes radically, 
though the mitotic fusing is substantially formed by microtubules, 
while the cellular division also observes the change in the tonal 
filament and microfilament concept. The same considerations can 
be extended to cellular motion: although we know classically that 
filopods and lamellipods are related to changes in the actinic 
cytoskeleton, we cannot generate cell migration without profoundly 
altering its adhesive shape and shape, thus involving all cytoskeletal 
components in this event. Even vesicular traffic is an exemplary 
example of the integrated action of the cytoskeleton: the vesicles are 
transported on "tracks" of microtubules, but fusion with the outer 
membrane or with the internal membrane compartments also 
depends on the arrangement of the other cytoskeleton components. 
Finally, it is now known that elements of the cytoskeleton are 
involved in "signal transduction" within the cell, and therefore 
contribute substantially to modifying not only adhesive/migratory 
but also metabolic/functional behaviour. Signal transduction was 
initially studied regarding the stimulation of hormone cells or 
growth factors. However, it is now clear that cytoskeletal elements 
actively participate in this function and can activate it autonomously 



Garima Verma 

Pag 16  

in response to signals from the "mechanical" variation of the micro-
environment. 
It is clear that in order to study the structure of this three-dimensional 
network of protein filaments, it is necessary to evaluate "in situ" the 
use of protocols to maintain the structural integrity of the cell. This 
was possible thanks to the acquisition of cellular fixation techniques, 
which are the basis of most optical and electronic microscopy 
techniques. These techniques include the use of substances (in most 
cases, alcohols or aldehydes) that allow the structure of the 
molecules that make up the cells to be maintained, in conditions as 
representative as possible of what is happening in vivo. 
 
1.3 Measurable parameters of cytoskeleton system 
 
Image analysis approaches were used to measure a cytokeratin 
filament network visualized by immunofluorescence and confocal 
microscopy. There are two methods as follows that are used to 
segment sets of curvilinear objects.  

1. Mesh approach – This approach is based upon the classical 
methods of the mathematical morphology, takes into consideration 
of global network topology.  

2. Filament approach (novel) – This approach is based upon the 
individual element morphology.   

Both methods, as well as their combination, will allow the 
calculation of several features at two levels of geometry:  Global 
(network topology) and Local (filament morphology) [42]. 
 
Topology: It is known as the study of geometrical properties as well 
as the spatial relations which are unaffected through a continuous 
change of shape or the size of the figures. Generally, the physical 
layout of the network is called topology [43]. 
 
Network Topology: The collection of all the network elements 
can’t be itself constitute a network, however, there must be 
something equally real to make it function as a the whole. The way 
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in which the elements are “wired together” must also be specified in 
some rigorous manner. This pattern of the connections is called the 
network’s topology.  

Table 1: The table representing the parameters to describe the 
topology and morphology of the Cytoskeleton [42] 
 

Global parameters (Network 
Topology) 

Local parameters (Filament 
Topology) 

Network (degree) connectivity, 
- Number of connection points 

(Ncp). 
- Connecting index (Ic). 

Filament (s) morphology, 
Filament shape, Polarity 

Network density, 
- Total length of detected filaments 

(Lf), 
- Number of regions (Nr). 

Length 
 

The mesh structure, 
- Areas of regions (Ar), 
- Mean length of filaments, 

enclosing a region (Lr), 
- Mean elongation factor (Ef). 

Thickness, mean length of 
filaments enclosing a region (2x 
Lf/Nr) 

 
1.4 Quantitative methods to measure cytoskeleton parameters  
 
The possible survey methods for analyzing the structures so far 
described are based upon various microscopy technologies, each 
featuring specific strengths. In particular, we can highlight optical 
microscopy, confocal, and electronic microscopy. 
 
1.4.1 Optical Microscopy  
Optical microscopy [44] is a technique of observation capable of 
producing magnified images of objects or details of them, too small 
to be observed with a naked eye; The instrument used to perform 
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this technique takes the name of an optical microscope. The simple 
microscope is a converging lens between the eye and the object to 
be observed so that the latter is in the intermediate position between 
the focal plane and the lens itself. Under such conditions, the lens 
provides a straightforward and magnified virtual image of the 
object, even if it is at a distance from the lower eye to the next point. 
The maximum magnification obtainable with a single lens is 8-10 
times (8x-10x). 
Larger magnifications can be obtained thanks to the composite 
microscope, a system of two convergent lenses, respectively, lens 
and eyepiece. The object to be observed is placed in front of the lens 
that provides a real, upside-down, and enlarged image. This image 
is dropped at an appropriate distance in front of the eyebrow, which 
provides another image, virtual, magnified, and oriented in the same 
direction. 100x magnification is only possible with the technique of 
"immersion in oil bath." 
In the cell culture study, optical microscopy is used at various 
enlargements to qualitatively and quantitatively evaluate the 
morphology of cells and their displacement, as it appears on the 
focus plane. Small magnifications are initially used to test cell 
culture, count, cluster, or aggregation display for the "broad-
spectrum" statistical significance of the under-investigation 
phenomenon. As the magnification and resolution power increases, 
it focuses on the specific regions of interest (ROI) that the researcher 
feels useful to visualize the expected effects due to a specific 
treatment of the biological sample as compared to the controlled, 
untreated sample. The overall, qualitative and sometimes 
quantitative evaluations are closely linked to the researcher's ability 
and experience. 
 
1.4.2 Immunofluorescence microscopy  
Immunofluorescence microscopy [45] is generally used to define the 
cellular distribution of both the soluble and structural proteins. It is 
an essential technique for the determination of the distribution of the 
proteins within the cells. It is also useful to extract the information 
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on the location and function of proteins that are not well understood. 
One of the major application of immunofluorescence microscopy is 
the fixation conditions beneficial to prepare the cells for the 
antibody which truly preserves the in vivo distribution of the antigen 
of interest [46] Another application of the immunofluorescence 
microscopy is to visualize subcellular localization of proteins in the 
coat morphogenesis and chromosome as in packing throughout the 
development of sporulation in Bacillus subtilis [47]. 
 
1.4.3 Confocal Microscopy 
The contemporary evolution of optical fluorescence microscopy and 
molecular biology has allowed to develop immuno-marking 
techniques which, preceded by fixation protocols, allow "in situ" 
observation of the distribution of molecules within the cells. 
Specifically, these experimental protocols provide for the use of 
specific antibodies that identify molecules of interest within the 
cells, even when they are part of cellular structures whose 
dimensions are below the optical microscope resolution power. A 
detailed study of the cytoskeleton plan would allow us to have not 
only information about the cell structure but also about the 
functional activities the cell itself is carrying out. A significant boost 
to the study of "in situ" cellular biology has been possible thanks to 
the development of confocal microscopy [48]: a system that uses a 
microscope capable of gathering information at various depth levels 
and giving a three-dimensional reconstruction of the analyzed 
fluorescent tracer. However, this technology is not used in 
laboratory practice to the utmost of its potential. Indeed, there is 
always a compromise between the detail that can be obtained for a 
reconstruction that involves the acquisition of a great number of 
sequential images and the time required for such acquisition and 
processing. These studies allow to perform morphological 
evaluations on a very small sample and on interpretative bases that 
may be partly subjective and may change from experimenter to 
experimenter. Hence a quantitative and qualitative analysis of the 
entire cell population is virtually never carried out, losing valuable 
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information that could give us new perspectives for cellular 
behavioral knowledge. Hence, it is necessary to develop new 
innovative technologies to optimize the use of the various 
microscopes and analyze simultaneously the information derived 
from a large number of different images and possibly to link the 
observations made using the different types of microscopy. 
The Confocal Laser Scanning Microscopy (CLSM) is an optical 
microscopic technique that was applied to generate high resolution 
two dimensional and three-dimensional images, projections as well 
as three dimensional of autofluorescent objects. The application is 
widely distributed and related in such disciplines like petroleum 
geology, marine geology, archaeology, cell biology, etc. [49]. 
CLSM has low-cost computer data processing and imaging system 
with the availability of laser light sources. It is popular in the field 
of life sciences and semiconductor device technology. CLSM is also 
useful in characterizing the amorphous structure and also identify 
the gas-solid coexistence in deionized suspensions [50].  
The figure 4 showing the principle for confocal microscopy. The 
CLSM using the fluorescence mode can collect the emissions 
originating from the interior of a biological sample, and hence 
CLSM has been extensively used to map intracellular mechanisms. 
When antibodies were used to stain the specific biological 
structures, fluorescent confocal microscopy provides a powerful 
way to simultaneously map the distribution of the different cellular 
components. The cells here were imaged using a confocal (Leica 
DMIR2) microscope.  
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Figure 4: The figure presents the principle of confocal microscopy. 

 

1.4.4 Electronic microscopy 
Electronic microscopy [51] was certainly the first technology to give 
structural knowledge about the existence of the cytoskeleton since 
cytoskeletal filaments all have a caliber less than the resolution 
power of a conventional optical microscope (0.2 microns). In 
particular, if electronic scanning microscopy (SEM) has provided 
very detailed information on cell surface characteristics (filopods, 
lamellips, cilia, flagellas, microvilli, etc.), electronic transmission 
microscopy (TEM) due to its extraordinary resolution power (0.2 
nm) allowed for the first observation of cytoskeleton elements. 
If the cytoskeletal morphological/ultrastructural study was possible 
thanks to electronic microscopy, knowledge about the nature of the 
structural proteins of the cytoskeleton was possible thanks to 
molecular biology. Conventional molecular biology techniques, 
however, require the lysis of the cells that they want to study and, 
therefore, the loss of structural integrity of the same, so having a 
"proteomic" analysis of a cell population prevents, by chance, the 
possibility of simultaneously perform morphological observations 
on the same cell population. 
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TEM is a principal technology in the field of cell biology to make 
several contributions for over 50 years. TEM is valuable in the 
analysis of the cellular components, for example, cytoskeleton, 
membrane systems, organelles, cilia, and flagella, as well as several 
specialized structures in differentiated cells, for example, microvilli 
and synaptonemal complex [52]. TEM is also useful in the study of 
viral and bacterial infections and understanding their knowledge 
[53]. TEM was used to visualize nanocrystals (NCs), which is able 
to find in the crystallization drops [54].  
 
1.4.5  Atomic Force Microscopy 
Atomic Force Microscopy (AFM) [55] is a greatly involving 
technique for the exploration of the biological systems at the 
nanoscale. Biological samples can be viewed with AFM in two of 
the imaging modes: first is contact mode, and the second is tapping 
mode. AFM has been used for a long time in many scientific fields 
because of the study of the surface structure at nanometer to sub-
angstrong resolution in an ambient and liquid environment. The 
application of AFM has a unique place in pharmaceutical research. 
Also, AFM has several advantages over SEM/TEM for the 
characterization of nanostructures. It also presents three-
dimensional data so that it is possible to measure the height of the 
nanoparticles quantitatively. One of the characteristics of AFM is 
that it is a very cost-effective microscope for nanoscale imaging 
[56].  
 
 
TABLE 2: 
 
Novel techniques to study cytoskeleton are as follows: 
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S.No.  Visualization 
Techniques 

Major 
contributions 

Advantage References 

1.  Atomic force 
microscopy (AFM) 

It is used in 
material 
science and 
widely used 
applications 
in biological 
sciences. 

Used to 
probing the 
extracellular 
matrices and 
the 
mechanical 
properties of 
the cell 
including 
receptor-
ligand 
interactions.    

 
[57] 

2.  Transmission 
Electron Microscope 
(TEM) 

It is used to 
study the 
biological 
structures 
and to 
understand 
how the 
images 
formed. 

Used to study 
the minute 
structures by 
taking the 
electron 
micrographs 
of thin 
sections. 

 
[58–60] 

3.  Immunofluorescence 
microscopy. 

It is used in 
modern 
biology and 
medicine 
developed 
by Coons et 
al in 1950. 

Used to 
develop the 
tissues and 
analyze the 
distribution 
of proteins 
and small 
biological 
and non-
biological 
molecules. 

 
[61–63] 
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4.  Confocal Laser 
scanning microscopy  

It is used to 
produce 
blur-free 
images of 
thick 
specimens at 
various 
depths 

Images are 
taken point 
by point and 
reconstructed 
with a 
computer, 
rather than 
projected 
through an 
eyepiece. 

 
[64,65] 

 
 
1.5 Tools to analyze Cytoskeleton morphology 
 
1.5.1 Cell profiler to quantify and identify the cells parameters 
 
Cell profiler is designed for biologists. It is used for the quantitative 
analysis of biological images. It is free and open-source software for 
the study of cellular functions. It is a flexible software tool and 
measures the cell size, shape, intensity and texture. Cell profiler can 
be downloaded from the website http://www.cellprofiler.org. It runs 
on various platforms Windows, Mac, and Unix. Cell profiler is a 
freely available image analysis software that can able to handle 
hundreds of thousands of images. In cell profiler, the analysis takes 
place the concept of a pipeline of individual modules for the image 
analysis. Each module works in a sequential order to construct a 
pipeline. Many modules are automatic, but the software adjusts each 
module appropriately [66]. 
 
1.5.2 Image J – the technical advance tool 
 
Rasband develops image J software. It is one of the main scientific 
image analysis programs. To facilitate more advanced and precise 
results, the program provides plugins, which is necessary to add 
functionality and diverse visualization. This program is having large 
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bio formats used in over 30, 000 laboratories. In this way, image J 
is a very popular research tool helpful in imaging processing and can 
run in any web browser [67]. 
Moreover, both NIH image and image J used to keep the program 
very simple with no complex user interface. When we open image 
J, the single toolbar appears, and from this straightforward interface, 
all of the proficiencies of the Image J can be found and used. There 
are over 500 plugins that consist of a wide range of functions 
accessible on the Image J website. Most of the plugins are now 
distributed along with the core of the Image J  [67].   
Image J is called an image analysis program that is widely used in 
the biological sciences and beyond it. Owing to its ease of use, 
recordable macros, and extensible plug-in architecture, image J 
appreciates contributions from non-programmers, unprofessional 
programmers, and professional developers alike. Image J is a very 
powerful platform for image processing, which is developed by 
Wayne Rasband at the National Institute of Health (NIH). Since 
when its initial release in 1997, it has proven the paramount in many 
of the scientific endeavors and projects, and particularly those which 
come inside the life sciences. There are so many existing extensions 
– plugins, macros, and scripts for the image j application, which 
have proven very useful to the user community [68].  
Interestingly, image J software is an open software platform that had 
a significant impact on the life of sciences and continues to do. 
Image J is growing significantly because of  freely available and its 
lively and helpful user community.  There are several scientists, 
interested biologists, technical assistants, students, and scientific 
staff who use Image J on a daily basis, and can exchange knowledge 
through a dedicated mailing list. The uses of image J is ranging from 
data visualization and teaching to the advanced image processing as 
well as statistical analysis. From the technical point of view, image 
J provides a very useful interface along with the function to load, 
display and save images, the basic image processing functionality 
like- convolution filters and extension mechanism which includes 
support for macros and plugins [69]. 
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1.5.3 ICY TOOL  
 
Icy is an open community platform software for bioimage 
informatics. It offers the software resources to quantify, visualize, 
and annotate the bioimaging data. Icy comprises a flexible 
framework that is designed around a plugin architecture; it also 
offers rich data structure for the biological images and output data, 
enhanced data visualization. Icy is open-source software that can 
address several issues by providing a comprehensive framework for 
the extensive reproducible research in two bioimage informatics. 
Moreover, the icy internal structure has a core layer that provides 
core functionality a plug-in layer which can implement the 
application-oriented modules and a plug-in management engine that 
can ensure plug-in interoperability. Plugin development takes 
advantage of a rich application programming interface (API) that 
can facilitate the development of the specific algorithms, augmented 
visualization tools, a database that can access and other software 
components. This software uses the Bio format library to read more 
than 100 different file types. Also, icy uses the internal data format 
and offers over 80 different functions for plug-in to access the image 
data. Icy is bundled with a set of bioimage informatics tools, which 
is released on April 2011, having more than 100 plug-ins published 
online [70].  
 
1.5.4 MATLAB  
 
MATLAB is a fourth-generation high-level programming language 
developed by Mathworks. MATLAB allows many functions like 
matrix manipulations, plotting of function of the data, 
implementation of the algorithms, creating the user interfaces, 
interfacing the programs written in the other languages such as C, 
C++, Java and FORTRAN. MATLAB provides an interactive 
environment for the iterative exploration, designing and problem-
solving, In addition, it also provides the built-in tools for the 
visualization of the data and tools for creating custom plots. 



Dottorato di Ricerca in Morfogenesi e Ingegneria Tissutale 

 Pag. 27  

MATLAB nowadays is very much used as a computational tool in 
the field of science and engineering as well as physics, chemistry, 
math field [71].  
Moreover, MATLAB is a high- performance language used for 
technical computing. However, it integrates for the computation, 
visualization, and programming environment. Although it is a 
modern programming language environment that comprises 
sophisticated data structures, consists of built-in editing and 
debugging tools, it also supports object-oriented programming. 
Hence, these factors make the MATLAB an outstanding tool for 
research and teaching. MATLAB consists of many advantages as 
compared to conventional computer languages like C, Fortran to 
solve the technical problems. Interestingly, this software package 
has been commercially available since the past from 1984 and which 
is now been considered as a standard tool in most of the universities 
and industries worldwide. MATLAB is also known for as powerful 
built-in routines, which enable a very wide variety of computations. 
MATLAB consists of its specific applications collected in packages, 
which are called the toolboxes. There are several toolboxes such as 
signal processing, control theory, optimization, simulation, 
symbolic computation and other fields of engineering and applied 
sciences [72]. MATLAB is available on UNIX, PC, and MAC 
platform. We can get Matlab by double-clicking on the Matlab icon 
or by typing Matlab on Unix on the command line. We can also get 
access to the MATLAB command line, which is denoted by “>>”. 
 
1.6 Image analysis 
Image analysis is a very critical phase in most of the medical and 
biological applications and automated image analysis has become 
the central tool for such applications in recent times. A number of 
the commercial high content cellular imaging systems include 
software (Imaris – 3D/4D image visualization and analysis software, 
Solis software, Metamorph and Infinity can be used to characterize 
neuronal projections such as axon and dendrites[73]. In image 
analysis, one of the most crucial step is image segmentation [74]. 
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Segmentation subdivides an image into its components. It also 
differentiates the object of interest from the background. Moreover, 
global thresholding or thresholding is an essential and quick method 
for characterizing the image region which has the same grey value 
[74].  
 
1.7 Filopodyan – image analysis open-source software 
Filopodyan or Filopodia Dynamics Analysis is a program 
developed in R and Fiji [75]. It is an image analysis open-source 
software used for automated segmentation and filopodia analysis 
which quickly annotates the huge number of dynamic filopodia. 
Furthermore, it also used to measure the filopodia fluorescence 
along with the full generation and automation of the large dataset of 
the fluorescence intensity at the sites of membrane proximal while 
formation and at the tip. 
Filopodia are the thin membrane protrusion which acts as an antenna 
for the cell to probe the surrounding environment. Moreover, 
filopodia are commonly found embedded within or protruding from 
the lamellipodia at the free front of the migratory tissue sheets. 
Filopodia have a very important mechanical and sensory role in the 
movable cells.  
Filopodyan performs great on high-magnification, high-quality 
images in the cell types along with the clearly differentiated 
filopodia, in 2D time series. Filopodyan is used for detecting the 
neurites as well as the filopodia [75]. 
 
1.8 Neuron J – image J plugin 
The neurite tracing method is fully manual delineation and was 
tested with four users who repetitively traced the chosen neuronal 
processes in 20 fluorescence microscopy images of the cells inside 
the culture. By analogy with the Image J, the authors called the tool 
‘Neuron J’. It provides functions to label and tracing, to load and 
store the tracings, to calculate and display the dimension of each and 
every tracing and perform statistics on the measurement of all the 
particular tracings[76].  
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Chapter 2  
 
 
2.1 Aims 
 
Our first aim is to build an integrated framework for the quantitative 
assessment of cytoskeleton (CSK) morphology. That task implies 
that we should represent an in-silico model constructed by using 
measurable parameters obtained from cells imaging. This process is 
likely a translation from a ‘biological phenotype’ to an ‘electronic 
phenotype’. First of all, the quality of images provided by currently 
available technologies (confocal, optical and electronic microscopy) 
must be optimized in order to allow a reliable extraction of useful 
data. Currently, quantitative morphological appraisal of cells is 
usually restricted to only a few parameters (surface area, diameter), 
thus leading to a ‘reductionistic’ approach in grasping the 
morphological configuration. This approach is mainly disappointing 
when we are facing non-Euclidean structures – like ‘natural’ objects 
– that should be more realistically represent by fractal-based 
geometry. Therefore, we adopt a Systems Biology approach aimed 
at grasping the whole configuration of the living cell. This 
innovative model requires a great deal of integrated measures in 
order to identify the ‘observables’ (dependent as well as 
independent) that can exhaustively describe the dynamics of the 
system. By considering the cytoskeleton as the main driver of the 
cell shape, we assume to posit a correlation among CSK structure 
and cell shape parameters. Thus, we identified the following 
parameters describing CSK architecture: length, density, thickness, 
branching and hubs. Cell shape parameters belong to the following: 
roundness, solidity, fractal dimension, lacunarity, surface area, 
aspect ratio. Overall, those measures will be integrated in order to 
grasp the complexity of the cell morphology. To do that the cell 
morphology will be quantitatively assessed by means of fractal 
analysis, while CSK architecture will be evaluated by means of 
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coherency analysis. Coherency, indeed, has been proven to greatly 
differ from different cell phenotypes and it is currently deemed 
reliable parameters in following cell phenotypic transitions. These 
parameters will be included in an integrated and comprehensive in 
silico model for which specific protocols and algorithms will be 
defined. The in silico model will be used experimentally to measure 
the changes that occur in cell morphology after exposure to a 
specific treatment. 
My second aim is to apply bioinformatic approach to evaluate in 
quantitative manner data from some experiment leaded by lab 
research team. I receive data about two experiments, cytospace 
experiments and the experiment of the breast microcalcification. In 
the last year of the PhD I receive data of the neurite.   
From the various surveys of the literature, we have noticed that the 
earth’s gravity is one of the major factors limiting of the cell size. It 
also influences the diversity of the cell types and size throughout in 
the biological evolution. In one of the literature [77]. Pavel E. Morez 
ask the question that what is the role of gravity in the life of the cell? 
Cells have evolved in the earth's field of gravity and it is very 
interesting to study how gravity affects the cells on their size, 
variety, division rate and so on. With the beginning of the space 
travel in the recent years which is connected with the weightless 
environments, it is very essential to know more about the effects of 
both the reduced as well as the increased (more than 1g) gravity on 
the development and growth of the cellular and multicellular 
systems [77].  
The third aim is to develop the image analysis algorithms through 
Matlab to describe the cytoskeleton network. The quantitative 
analysis of the microtubules and nuclei pattern was performed by 
using various images – analysis methods. Indeed, the aim is to 
identify the modifications in the CSK network.  
Moreover, in our experiment, we have preliminary combined 
confocal and optical microscopy image analysis to improve the 
quantitative analysis of cytoskeleton architecture of the breast 
cancer cell line (MCF – 7).  
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The fourth aim is that the neurite numbers and length measurement 
of PC 12 cells were analyzed using the following software tools : (a) 
custom made tool MATLAB (b) Cell profiler (c) manual workflow 
in image analysis and (d) Filopodyan. We have shown some 
algorithms which are useful for analyzing the changes in the neurite 
and length. A comparison of the different software and tools 
suggests identifying the length of neurites can be achieved using 
image analysis.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Garima Verma 

Pag 32  

Chapter 3 
 
3. Results  
 
In this chapter, we present the results achieved with our framework 
on the given dataset. We have worked upon the dataset of the 
cytospace experiments and neurites. 
The complete analysis is taking place into 2 parts: analysis by image 
J and analysis by MATLAB. In the third part of the thesis, the 
neurite analysis takes place. 
We now begin the analysis of the dataset with the flow of pipeline 
in the framework and showing how the results produced by image J. 
 
3.1 A confocal – based quantitative analysis in the cytoskeleton 
architecture of MCF -7 Cells:  
 
MCF – 7 is a breast cancer cell line derived from pleural effusion in 
1970. The cell line is displaying 85 chromosomes. These cells tend 
to grow the colonies. MCF – 7 cells are capable of forming tumors 
in nude mice. These cell lines can easily grow in soft agar and having 
low to moderate activity. Hence, MCF – 7 cells have a  low invasive 
capability in vitro.   
A great variety of cellular alterations has been observed during the 
microgravity in the MCF – 7 cells.  
The result section is divided into three parts – in the first part the 
cytoskeleton is analyzed by IMAGE J and in the second part, the 
cytoskeleton data is analyzed by MATLAB programming. The 
results are differentiating from one another. And in third part, the 
neurites data is analyzed by different tools and softwares. 
 
3.2 Application of bioinformatics to analyse confocal image: 
 
To explore the CSK morphology I received a prelimary data set from 
cytospace experiment.  
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A total of three experimental conditions were approached to 
participate in the cells, one subjected to Treated and Untreated with 
melatonin on ground; another subjected to treated and untreated with 
melatonin in space, and cells in space without melatonin at docking 
time. To build an integrated framework from the cytoskeleton image 
series we followed a step-by-step procedure:  we split the color 
channels of the cytoskeleton confocal images to separates 
microtubules and nuclei. From the image J, we refine and adjust the 
threshold by the top and bottom slider. We calculate the threshold 
of each confocal image. Thus, projecting and applying the 
measurement properties to analyze the area, shape, descriptors, 
perimeter, mean, median, standard deviation. This results in a 
description of significant changes of each cytoskeleton nuclei at 
different conditions on the ground as well as in space and docking. 
The steps will be repeated for all the images of the nuclei and 
microtubules separately.  
We identify the following parameters describing CSK architecture: 
length, density, thickness of microtubules. Descriptive nuclei shape 
parameters that belong to the following: roundness, solidity, fractal 
dimension, lacunarity, surface area, aspect ratio. Thus, to define the 
given parameters which are significantly higher or lower than 
predictable by chance, analyses were performed within all 
cytoskeleton structure. Differences were detected for ground, space, 
or docking nuclei experimental conditions.  
 
3.3 Pilot Study for cytoskeleton analysis  
 
We apply computational analysis to measure CSK  morphology 
variation among the controls, docking, and space experimental 
conditions.  
 
The objective of this study phase is not to investigate the real effect 
of microgravity on cells, but to develop a calculation model that 
takes into account all the parameters of interest. On the other hand, 
the images received are only a small set of images relating to the 
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experiment, representative from a point of view of image analysis 
but not sufficient to be able to formulate any scientific hypothesis 
on the possible biological meaning. 
 
Here, I have put the formula to calculate each parameter.  
For area of the cytoskeleton as: area of total number nuclei/area of 
total number microtubules. 
Area of cytoskeleton (A1) = a1/a2 
A1 = Area of the nuclei/Area of the microtubule 
 
This formula is applied to calculate each parameter 
For the roundness of the cytoskeleton as: roundness of 
nuclei/roundness of microtubules. 
Roundness of cytoskeleton (R1) = r1/r2 
R1 = roundness of the total number of nuclei/roundness of total 
number of microtubules 
And so on for other parameters as well… 
 
3.3.1 Formula for the measurement of the cytoskeleton 
 

• Area: The selected area was measured and calculated in 
square pixels in calibrated square units (e.g., mm2, µm2, etc.). 
Note: To measure the area of the cells the function in the 
image J as: analyze---set scale parameter was used to 
spatially calibrate the image. 
 

• Roundness: With this parameter, we have calculated the 
roundness of the nuclei, which gives the value directly 
relative to the aspect ratio and circularity. 
4*[area]/∏*[Majoraxis]2 
 

• Perimeter: The measured length of the outside boundary of 
the selection.  
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• Circularity: It was well defined as the ratio of the area and 
perimeter with the value 1.0, which is, signify the perfect 
circle. As the value is reached to 0.0, it shows an increased 
elongated shape. All the values might not be valid for the 
few particles. 

            4π*[area]/ [perimeter]2 
 

• Solidity: Through this parameter, we are measuring the 
convex area selected by the specific command. 
Solidity: [Area]/[Convex area]2 

 

• Aspect ratio: In this parameter, the aspect ratio of the particle 
fitted in the ellipse.  
AR = [Major axis]/ [Minor axis] 
In this, the fitted ellipse is selected as the major and minor 
axis which are observed in the nuclei.  
 

3.3.2 MCF -7 Cytoskeleton results calculated by Image J 
Software:  
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Figure 5: The Confocal microscopy analysis of the MCF -7 cytoskeleton structure. 
Qualitative analysis of MCF-7 cells: All bars representing the mean and standard 
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deviation. Mean and standard deviation are shown for each experimental group. 
(A) The cytoskeleton area (area of total number of nuclei/area of total number of 
microtubules) was calculated by Image J. (B) The cytoskeleton roundness 
(roundness of total number of nuclei/roundness of total number of microtubules) 
was calculated by Image J. (C) The cytoskeleton perimeter (perimeter of total 
number of nuclei/perimeter of total number of microtubules) was calculated by 
Image J. (D) The cytoskeleton circularity (circularity of total number of 
nuclei/circularity of total number of microtubules) was calculated by Image J. (E) 
The cytoskeleton solidity (solidity of total number of nuclei/solidity of total 
number of microtubules) was calculated by Image J. (F) The cytoskeleton aspect 
ratio (aspect ratio of total number of nuclei/aspect ratio of total number of 
microtubules) was calculated by Image J.  
 
3.3.3 Discussion: 
 
Our analysis providing the new horizons into the diversity of cell 
morphology and suggest the different experimental approaches for 
future study. Besides, coherency is being defined through the 
structure tensor, which evaluates the local orientation in a small 
region of a confocal image. 
 
In figure 5 (A) showing the area of the cytoskeleton in different 
experimental conditions i.e., on the ground, in space and during 
docking with mean and standard deviation. Figure 5 Image (B) 
showing the roundness of cytoskeleton including nuclei and 
microtubules in three different experimental conditions. Image (C) 
showing the perimeter of the cytoskeleton in three different 
conditions. Image (D) showing the circularity of the cytoskeleton. 
Image (E) and (F) showing the solidity and aspect ratio of the 
cytoskeleton in all three experimental conditions which is not so 
much changing according to the graphical representation.   
 
 
Fractal Dimensions: Fractal is a never-ending pattern. These are 
infinitely complex patterns that are self-similar across different 
scales. However, they are used to create by repeating a simple 
process over and over in an ongoing feedback loop. Moreover, 
fractals are very complex, and they can be made by repeating a 
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simple process[78]. It is well known as a non-regular geometric 
shape that contains the same degree of non-regularity on all scales 
[79]. Fractal dimension was known to be firstly introduced by 
Mandelbrot. Fractal dimension usually describes the shape and 
appearance of an object, which consists of the property of self-
similarity. The fractal dimension of many objects is usually 
calculated by using the concept of self-similiarity[80].  
The fractal dimension (FD) is a real number which is used to define 
the geometric complexity of a fractal. One of the ways used to 
quantify FD is the box-counting method. It is used to covering of the 
image with the non-overlapping grid which is made up of the boxes 
and then counting how many boxes of the grid were covering our 
image. After that, this method is repeated by iterating the process 
using the finer grid. Hence, in the end, the pattern of N(r) changes 
with r which will be obtained, as represented in the graph. By using 
a logarithmic scale, a linear regression model will be used to fit the 
line. The FD value is given by the slope of this line. However, the 
input can be a 1D segment, a 2D image, 3D volume. In particular, 
smaller squares will pick up more detail, which will give a better 
approximation of the shape (N(r) squares of the side length r). In this 
sense, the more irregular surface, the higher the value will be.   
Box counting dimension is the typically used method which is in the 
characterization of irregular sets of the science. 
We have performed our analysis with a standard box-counting 
method using FracLac which is based upon the multiple origins of 
the ROI. With the use of the box-counting method, we have defined 
the largest and the smallest box sizes. 

 
Here, C = considered curve, L= Length of the curve C, ɛ = length of 
the segment used as unit to calculate L.  
Along with this, we have processed the images properly and 
calculate the linear relationship when plotting the graph log(N(s)) 
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versus log (1/s) in order to extract the fractal dimension with the 
minimum error, here s is the linear size of the square or cubic mesh. 
Moreover, the box-counting algorithm thus counts the number N(r) 
for different values of the r and the plot of the log of the number N 
(r) versus the log of the actual box size r. Also, the value of the box-
counting dimension that is D is estimated from the Richardson’s plot 
best fitting curve slope [81].  
 

 

 
 
Figure 6: The fractal dimension of MCF-7 nuclei. The graph is showing the 
mean values of fractal dimension experimented on ground and space obtained by 
calculating from image J plugin Frac Lac. All the data are expressed as the mean 
of 5 different experiments. 
 
Discussion  
 
It is commonly recognized that available laboratory data are not 
fully exploited. Even though the biologist’s insight is always 
extremely useful in assessing the relevance of cell samples in 
different experimental conditions, nevertheless the need for more 
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objective and repeatable assessments is becoming urgent, given the 
possibility to automatize – at least partially – the analysis of 
experiments.  
In light of these considerations, at our laboratory, the decision was 
taken to fit the lab with an informatics infrastructure for data 
exchange and processing. In doing so, it has been considered that 
the lab personnel generally had no particular skill or previous 
experience in information engineering, so one essential requirement 
for managing a quantitative, computer-based approach in image 
analysis was to make available easily usable software tools, 
preferably from open source developers. 
The easy accessibility of data stemming from multiple sources is an 
important factor in driving characteristic parameters, to be fed into 
suitable algorithms.  
Confocal microscopy images are tremendously useful for 
quantitative analysis of experiments and model construction. 
Visualization of the cytoskeleton structure is useful to understand 
cell motility, stiffness and more generally the cell phenotype. 
Cytoskeleton properties can be investigated, among other methods, 
by the calculation of the fractal dimension, starting from microscopy 
data. Such an analysis has been performed on confocal images, to 
observe the changes of cell properties due to the experimental 
protocol. Clear meaningful relationships are identified from the data 
experimented on different treatment conditions and are assessed 
graphically. 
 
3.4 Validation of Image J software for the analysis of 
cytoskeleton architecture 
 
The key challenge faced by scientists nowadays is using image J is 
to determine the morphological parameters for the cytoskeleton. 
Therefore, we have verified the performance of Image J in 2D by 
using confocal images of MCF-7 cells. The image groups were 
classified as follows :  
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Data is divided into 3 parts [82]: 1. experimented on ground (with 
and without melatonin) 2. experimented in space (with and without 
melatonin) 3. experimented in space during docking (without 
melatonin). For each image, we have used our algorithm to generate 
the results defining the correlation between the cell shape 
parameters above and tubulin parameters as shown in figures above. 
We have also found that the fractal dimension is a good estimate for 
the cytoskeleton analysis.  
In the existing literature, researchers have already used 
semiautomatic methods for such an analysis. In Masiello MG et al.,  
the authors used Image J to analyze single cell of MDA-MB-231 
cells to obtain single cell shape parameters [83]. 
Hence, the emperical results obtained using the automatic 
algorithms developed by us are used to describe the shape-
morphological parameters of various nuclei and tubulin which are 
exposed to microgravity. The role of each parameter is easy to 
understand, along with their biological interpretation. In contrast to 
the existing methods, the results obtained using our algorithm are 
enough to detect the most important aspects that are related to the 
cytoskeleton architecture. The stepwise algorithm is shown in the 
next chapter. 
To validate our algorithm we compare our results with other 
methods which are able to measure the image features quantitatively 
[84]. We find that our algorithm is able to identify not only the 
microtubule and cell shape parameters but it is also able to improve 
the image processing that helps in identifying the cytoskeleton 
morphology. 
In conclusion, our algorithm can be quiet useful to researchers who 
are working on cytoskeleton research.  
 
3.5 Analysis for identifying cytospace data through Matlab 
programming  
 
As we have already analyzed the cytospace data by image J in the 
previous section, hence in this section we will be more specific to  
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elaborate the morphological parameters of the cytospace data to 
explain the data information.  
Here, we considered the cytoskeleton data (which includes nuclei 
and microtubules) experimented into 3 types of forms for this work 
[82] confocal imaging data experimented on ground (non melatonin 
treated and melatonin treated), confocal imaging data experimented 
on space (non melatonin treated and melatonin treated) and during 
docking in space, confocal imaging data in RPM and during docking 
in RPM [85]. Here, the samples which are used during docking 
whether in space or in RPM is untreated with melatonin [82].  
 
Random positioning Machine: A random positioning machine 
(RPM) is a laboratory instrument that is widely used to provide the 
continuous random change in orientation relative to the gravity 
vector of an accommodated (biological) experiment. Moreover, the 
use of the RPM can generate the effects of the comparable to the 
effects of true microgravity when it changes in the direction are 
faster than the objects (cell and tubulin) response time to the gravity. 
However, in RPM microscopy most of the flight experiments the 
analysis of any microgravity effects is usually done after the fixation 
of the specimens. It would be very relevant to monitor the 
experiment during the actual microgravity [85] 

      
 
Figure 7: figure (A) representing the desktop RPM which is placed in a standard 
incubator [85] Figure (B) representing the RPM which is made up of two motors 
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independently control the rotation of the outer and inner frames. The total size of 
the RPM is 30*30*30 cm [86] 
 
A desktop Random positioning machine is usually defined by 
Huijser and is manufactured by Fokker space which is used to 
stimulate microgravity. As shown in figure 7 above (B) the 
dimensions of the RPM are generally 30*30*30 cm with the inner 
and outer frames which are independently controlled by two 
different motors [86]. 
Here we have been used for our experiment the random positioning 
machine (RPM; desktop RPM, Dutch Space, Leiden, the 
Netherlands), It is a particular kind of 3D clinostat. It contains of 
two independently rotating frames. One frame which is positioned 
inside the other giving a very complex net change of orientation to 
a biological sample mounted in the middle. The degree of 
microgravity simulation basically depends on the angular speed and 
on the inclination of the disk.  However, these tools do not actually 
remove the gravity, but it is a micro weight simulator based on the 
principle of “gravity-vector averaging”: it allows us to apply a 1 g 
stimulus omnidirectionally rather than unidirectionally and the sum 
of the gravitational force vectors tends to zero. The effects caused 
by the RPM are comparable to those of the real microgravity, 
provided that the direction changes are faster than the response time 
of the system to the gravity field. Further, the desktop RPM we used 
has been positioned within an incubator (in order to maintain the 
temperature, CO2, and humidity levels) and is connected to the 
control console through standard electric cables [83,87]. 
 
Figures show the sample images of every experimental data to 
showcase the data.  
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    (A)                                   (B)                      (C)                                 (D) 
Figure (A), (C)-- Sample data experimented on ground without melatonin 
treated 
 Figure (B), (D)—The thresholded image of tubulin and nuclei extracted by 
MATLAB.  

        
    (E)                                 (F)                         (G)                         (H) 

Figure (E), (G)--Sample data experimented on ground treated with melatonin 
   Figure (F), (H)—The thresholded image of tubulin and nuclei extracted by 
MATLAB. 
 
 

    
          (I)                            (J)                         (K)                          (L) 

Figure (I), (K) --Sample data experimented on ground in random positioning 
machine Untreated  

    Figure (J), (L)—The thresholded image of tubulin and nuclei extracted by 
MATLAB. 
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         (M)                                        (N)                                 (O)                                
(P) 
Figure (M), (O) --Sample data experimented during docking in random 
positioning machine 
Figure (N), (P)—The thresholded image of tubulin and nuclei extracted by 
MATLAB. 
 
 

     
   (Q)                               (R )                    (S)                            (T) 
Figure (Q), (S) --Sample data experimented in space without melatonin treated. 

Figure (R), (T)—The thresholded image of tubulin and nuclei extracted by 
MATLAB. 

 

       
          (U)                        (V)                            (W)                            (X) 

Figure (U), (W) --Sample data experimented in space during docking. 
Figure (V), (X)—The thresholded image of tubulin and nuclei extracted by 

MATLAB. 
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          (Y)                        (Z)                        (I)                          (II) 

Figure (Y), (I) --Sample data experimented in space treated with melatonin. 

Figure (Z), (II)—The thresholded image of tubulin and nuclei extracted by 

MATLAB. 

 
3.5.1 Dataset of Cytospace for tubulin by Matlab analysis 
 
In this section, I analyze the data set of the cytospace with the 
MATLAB algorithm. Measuring the tubulin from the image data set 
is very challenging for various reasons. The main issue is the 
adjustment of thresholding. But with the help of MATLAB, I have 
tried to solve the issue.  
The sequence of confocal images which are processed is 48. All the 
images have been segmented by our algorithm and then compared 
with the morphological parameters by the algorithm described in the 
next chapter of this thesis - materials and methods along with the 
ncuclei.  
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Table 3: This table summarizing the type of the cytospace tubulin 
data (mean and standard deviation) extract from the MATLAB 
algorithm. Table summarizing the values of morphological 
parameters of the tubulin image on 3 sample data at the threshold 
value 5. 

 
 Confoca

l images 
of the 
tubulin 

  
Mean and standard deviation values of the parameters in the images at 

gray level 5 

 

 No. of 
tubuli
n 

Area Perimete
r 

Major 
axis 

Minor Axis Entrop
y of the 
image 

Circularit
y 

Image1  21 12956.57
± 
9436.43 

523.97± 
234.81 

150.27
± 
58.84 

104.30±41.5
8 

0.8260 2.58±1.01 

Image2 39 9102.89± 
9580.49 

440.34± 
302.36 

117.81
± 
66.32 

80.85±49.43 0.9234 2.74±0.97 

Image3 9 13530± 
3020.21 

534.48± 
355.61 

150.62
± 
95.44 

98.42±47.54 0.4587 2.76±0.77 
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Table 4: This table summarizing the type of the cytospace tubulin 
data (mean and standard deviation) extract from the MATLAB 
algorithm. Table summarizing the values of morphological 
parameters of the tubulin image on 4 sample data at the threshold 
value 40. 
 
 

 Confocal 
images of 
the 
tubulin 

  
Mean and standard deviation values of the parameters in the images at gray level 40 

 

 No. of 
tubuli
n 

Area Perimeter Major 
axis 

Minor 
Axis 

Entropy of 
the image 

Circularity 

Image1  34 1519.88± 
1553.00 

224.23± 
156.78 

72.40± 
44.14 

28.32± 
16.40 

0.4231 4.78±2.45 

Image2 25 2561.32± 
2561.73 

287.80± 
208.66 

75.11± 
41.82 

40.16± 
26.21 

0.2482 3.59±1.59 

Image3  39 1316.74± 
1240.69 

210.76± 
113.04 

66.05± 
31.64 

29.14± 
15.83 

0.2820 4.01±2.26 

Image4 44 2070.36± 
1888.44 

242.95± 
145.33 

64.93± 
34.05 

39.57± 
20.09 

0.5006 3.21±1.23 

 
 
 
 
 
 
 
 
 
 

im
ag

es
 e

xp
er

im
en

te
d 

on
 g

ro
un

d 
tr

ea
te

d 
w

ith
 

m
el

at
on

in
 



Dottorato di Ricerca in Morfogenesi e Ingegneria Tissutale 

 Pag. 49  

 
 
Table 5: This table summarizing the type of the cytospace tubulin 
data (mean and standard deviation) extract from the MATLAB 
algorithm. Table summarizing the values of morphological 
parameters of the tubulin image on 3 sample data at the threshold 
value 10. 

 
 Confocal 

images of 
the 
tubulin 

  
Mean and standard deviation values of the parameters in the images at gray level 

10 

 

 No. of 
tubuli
n 

Area Perimeter Major 
axis 

Minor 
Axis 

Entrop
y of the 
image 

Circularity 

Image1  31 659.90± 
6333.61 

177.23± 
84.09 

65.29± 
48.71 

36.74± 
28.01 

0.4738 4.90±2.09 

Image2 39 455.84± 
568.1852 

170.61± 
106.54 

50.49± 
34.32 

26.67± 
15.39 

0.3617 6.29±2.7 

Image3 15 346.933± 
295.32 

126.32± 
52.98 

66.65± 
31.18 

33.18± 
24.10 

0.264 4.371±1.97 

 
 
 
 
 
 
 
 
 
 
 

im
ag

es
 e

xp
er

im
en

te
d 

on
 g

ro
un

d 
w

ith
ou

t t
he

 
tr

ea
tm

en
t o

f m
el

at
on

in
 in

  R
PM

 
 



Garima Verma 

Pag 50  

 
 
Table 6: This table summarizing the type of the cytospace tubulin 
data (mean and standard deviation) extract from the MATLAB 
algorithm. Table summarizing the values of morphological 
parameters of the tubulin image on 3 sample data at the different 
threshold value mentioned. 
 

 
 Confocal 

images of 
the tubulin 

  
Mean and standard deviation values of the parameters in the images  

 

 No. of 
tubuli
n 

Area Perimeter Major 
axis 

Minor 
Axis 

Entropy 
of the 
image 

Circularity Threshold 
value 

Image1 23 1687± 
1376.67 

215.66± 
109.77 

84.35± 
57.60 

55.24± 
40.54 

0.6127 2.70± 
1.26 

5 

Image2 13 11919.07± 
9695.72 

548.49± 
353.63 

138.30± 
86.35 

89.42± 
49.47 

0.6042 2.28± 
0.98 

5 

Image3 9 1861.88± 
1417.82 

243.25± 
106.93 

129.76± 
123.94 

81.97± 
85.62 

0.3545 2.94± 
0.94 

15 
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Table 7: This table summarizing the type of the cytospace tubulin 
data (mean and standard deviation) extract from the MATLAB 
algorithm. Table summarizing the values of morphological 
parameters of the tubulin image on 3 sample data at the different 
threshold value mentioned. 
 
 

 Confocal 
images of 
the tubulin 

  
Mean and standard deviation values of the parameters in the images  

 

 No. of 
tubuli
n 

Area Perimeter Major 
axis 

Minor 
Axis 

Entropy 
of the 
image 

Circularity Threshold 
value 

Image1  20 660.5± 
410.044 

164.17± 
79.26 

62.91± 
39.28 

38.32± 
22.89 

0.2967 3.82± 
2.47 

10 

Image2 21 664.47± 
669.21 

177.31± 
111.45 

67.19± 
36.53 

31.56± 
21.38 

0.3108 4.53± 
1.75 

10 

Image3 21 598.95± 
328.46 

181.41± 
78.69 

68.18± 
47.79 

41.21± 
26.69 

0.4336 4.65± 
2.02 

13 
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Table 8: This table summarizing the type of the cytospace tubulin 
data (mean and standard deviation) extract from the MATLAB 
algorithm. Table summarizing the values of morphological 
parameters of the tubulin image on 3 sample data at the different 
threshold value mentioned. 
 
 

 Confocal 
images of 
the 
tubulin 

  
Mean and standard deviation values of the parameters in the images  

 

 No. of 
tubulin 

Area Perimeter Major 
axis 

Minor 
Axis 

Entropy 
of the 
image 

Circularity Threshold 
value 

Image1  14 2105.78± 
3165.10 

261.90± 
227.00 

108.14± 
80.70 

58.55± 
44.45 

0.5600 3.47±1.30 5 

Image2 22 1055.63± 
1081.47 

181.62± 
119.55 

81.24± 
50.44 

58.45± 
37.28 

0.4386 2.96±1.31 10 

Image3 23 1342.65± 
1364.43 

230.39± 
142.26 

78.50± 
52.68 

43.52± 
30.57 

0.5408 3.66±1.71 10 
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Table 9: This table summarizing the type of the cytospace tubulin 
data (mean and standard deviation) extract from the MATLAB 
algorithm. Table summarizing the values of morphological 
parameters of the tubulin image on 3 sample data at the different 
threshold value mentioned. 
 

 
 Confocal 

images of 
the 
tubulin 

  
Mean and standard deviation values of the parameters in the images  

  No. of 
tubuli
n 

Area Perimeter Major 
axis 

Minor 
Axis 

Entropy 
of the 
image 

Circularity Threshold 
value 

Image1  27 611.40± 
459.54 

177.63± 
82.00 

76.54± 
54.63 

40.93± 
29.34 

0.3485 4.67± 
2.25 

10 

Image2 24 390.66± 
353.51 

140.65± 
81.88 

49.80± 
23.67 

25.92± 
12.61 

0.2273 4.50± 
1.95 

30 

 
 
3.6 Validation of MATLAB algorithm for the analysis of 
cytoskeleton architecture 
 
We have performed the validation studies for the identification of 
cytoskeleton architecture using MATLAB. We have investigated 
and developed the algorithms that are needed to measure the 
cytoskeleton morphology.  
Literature survey was done in this regard to see if MATLAB based 
tools have been used previously to identify and investigate the 
architecture of cytoskeleton. We found there are some matlab based 
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softwares like : Code J mapper , Fiberapp, and Cytospectre which 
are able to track and analyse the cellular information. 
In Code J mapper MATLAB is used for extracting the centerline 
location of the cytoskeleton filaments from the confocal microscopy 
image analysis. It is able to compute local connectivity maps, as well 
as several important filament network-related quantities such as: 
curvature, orientation, as well as local filament topology [88].  
 

 
 
Figure 8: (A) Original image (B) Representing the enhanced image after matched 
filtering with an artificial array of filament (C) The image representing the 
localized filament centerline points. (D) The image representing the minimum 
spanning tree in the connectivity matrix ST1. 
 
Another Matlab based program Fiber app is able track the linear and 
circular fiber-like objects. It also has the capability to define the 
segments of heterogeneous stiffness along with their contours. In 
addition to these, Fiber app is also able to simulate the “insilico” 
statistical data as well as the artificial images of the fiber-like objects 
which serves as a powerful tool for the prediction and rationalization 
of the experimental results . 
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Figure 9: Fiberapp software screenshot of the analysis and measurement of the 
filaments. The Confocal microscopy image was selected for tracking the contours 
of fibers. 
 
Cytospectre is another MATLAB based application that can be used 
for the spectral analysis of microscopy images. Spectral analysis 
allows the users to obtain information regarding the orientation and 
size distribution of the targes within the images [89].  
 
By the analysis of these MATLAB based softwares we found that 
they are limited capabilities to perform the morphological analysis 
of nuclei and tubulin. Hence, we wrote our own MATLAB scripts 
for tracking the nuclei and tubulin in confocal images. This work 
proved useful  for tracking the morphological features like – area, 
circularity, major and minor axis etc. The details of the MATLAB 
based algorithms are provided in the next chapter and results 
obtained as discussed above.  
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3.7 Identification and analysis of neurites 
 
3.7.1 Collection of the confocal 2D images for the Image Processing 
 
Images were processed on a Mac workstation with a 1.6 GHz Intel 
Core i5 along with the memory of 8 Gigabyte 1600 MHz DDR3. A 
custom-made MATLAB program (MATLAB R2017, MathWorks) 
was used. The program has been created in such a way that it can 
read, process and analyze different bio formats i.e., .tiff, .jpg,  and 
other MATLAB readable file formats for the access. MATLAB is 
an essential tool used for the image processing and analysis of the 
neurites. In this section, we are describing the MATLAB outcomes 
and results to measure neurites parameters.  
The counting of the neurites is the major task to do. They play a very 
important role in the processing of the neurons. Neurites can be 
identified by the eye using the fluorescence data and can be 
manually annotated in the fluorescence data. Neurites which include 
axons and dendrites are distinctive features of the neurons, which 
allows the maintenance and formulation of the nervous system. 
Axons and dendrites are collectively called neurites which are the 
neuronal projections that are used to create the functional 
connections (synapses) between the neurons. Consequently, the 
development of these projections is necessary for the creation of the 
functional nervous system.  
 
3.7.2 Flowchart of the neurite detection in 
Pheochromocytoma cells 12 by MATLAB 
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3.7.3 MATLAB program for the measurement of the neurites in 
the time-series data  
 
The sample images are shown above in the figures. A couple of 8-
bit images (480*380 pixels), 8-bit with 167 K, in tiff format, is 
available for each hour of the experiment. These images are the input 
for the MATLAB code.  
The program basically works in three main phases; 

• reading the image folder 
• processing the raw image by inbuilt functions in MATLAB 
• saving the extracted neurites and the measurements 

 
 
3.7.3.1 Reading the image folder  
 
MATLAB treats the images as 2D matrices whose elements are the 
values of the image pixels.  Our algorithm for detecting the neurites 
works only for grayscale images, the input is a true-color image or 
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any types rather than the grayscale, it has to be converted to 
grayscale before running the code.  
 
The code starts by reading the folder containing our dataset. The 
command data_folder=’./datasets_of_ebi_protein sets the name of 
the data set folder, which in our case is named 
‘datasets_of_ebi_protein’. Then filepattern = 
fullfile(data_folder,’*dataset’) command is used to set the path to 
the data folder. Then we use dd=dir(filepattern) to read the contents 
of the folder specified by the path already set. This is followed by 
creating a directory called ‘results’ by the command 
mkdir([data_folder filesep ‘results’]).  
 
3.7.3.2.Processing the input images by starting the loop 
We employ a for-loop for reading the folders from 3hrs to 11hrs. 
The code reads the folder names using the command folder_name = 
dd(i).name. To store the results, a directory having the same name 
as the current folder is created inside the result folder command 
mkdir([data_folder filesep ‘results’ filesep folder_name]). We are 
using current_folder = [data_folder filesep folder_name] for 
naming the current folder according to the loop (value of the i). Then 
the code reads the images inside the above folder by the command 
images=dir([current_folder filesep ‘*.tif’]). 
Then a second loop is run for reading the images inside the current 
folder one by one. The image names are retrieved using the 
command  current_image=images(j).name. imname = 
current_image(1:end-4) is the command use to removing the last 
four characters from the name i.e. ‘.tif’ is removed from the 
‘im122.tif’. For making the folder for the current image inside the 
directory, we use  mkdir([data_folder filesep ‘results’ filesep 
folder_name filesep imname]). The next step of the algorithm is to 
read the individual files and convert them to single precision for 
further processing. The command used for this is BW= 
im2single(imread([current_folder filesep current_image])). We 
obtain the size of the image using [nrow,ncol]=size(BW),  and crop 
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the image slightly using the command as BW = imcrop (BW, [5 5 
ncol -10 nrow-10]). Here, we crop the image slightly because there 
are some stray pixels on the border of each image so to remove them, 
we use the command crop.  
 
3.7.3.3 Selecting the cluster containing the neurites  
 
For segmenting the neurites, we use k-means algorithm to cluster 
the image intensity values in to six clusters (k=6) using the 
command [L,Centers]=imsegkmeans(BW, numclust). Then, the 
cluster containing the neurites is selected. We have chosen numclust 
= 6 because only by this value the neurites are selected in the image. 
If we select 3 to 5 values the neurites are not selected by lower than 
6 values. The value of numclust is determined experimentally. 
Typically, the number of clusters should be low, as increasing the 
cluster size significantly increases the computational requirements. 
For the kind of images that we have in the dataset, numclust=6 gives 
good enough segmentation for the algorithm to work. A value less 
than this leads to overlapping segments in the cell. 
Detecting the cluster containing neurites is done by choosing the 
cluster that encircles the second-highest area (the cluster 
corresponding to the highest area represents the background).  
We use bwareaopen to remove the small objects from the image and 
here we choose the value 100 because it works fine. We have 
experimented with different values and chosen the best performing 
one. We use the command nnz for converting the image in which 
the small elements are removed to the number of nonzero matrix 
elements.  
 
 
The following code snippet does this: 
      numclust=6; 
  [L,Centers] = imsegkmeans(BW,numclust);       
  B1 = labeloverlay(BW,L); 
       th=[]; 
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   for k=1:numclust % Choosing the cluster that 
contains the neurites         
    temp_mask = L==k; 
     BWn = imfill(temp_mask,'holes'); 
      BWn=bwareaopen(BWn,100); 
       an = nnz(BWn); 
       gg=[an k]; 
      th=[th;gg]; 
    end 
    [mm,ii]=max(th(:,1)); 
     th(ii,1)=0; 
    [mm,ii]=max(th(:,1));  %Choosing the second 
highest 
     kf=th(ii,2); 
     mask = L==kf;       %This contains the neurites  
 

 
Figure 10: The figure is presenting the two cells at 5 hrs time period on which k 
means clustering has been applied.  
 
 
3.7.3.4 Skeletonized the segmented neurites  
In this section, we describe the basic morphological operations 
performed on the logical/BW image obtained after extracting the 
cluster corresponding to the neurites. We close the holes in the 
image, remove the unconnected, smaller components and smooth 
the image.  Erode the image to get the skeletonized version of the 
image using the command BW3 = bwmorph(mask,’skel’,Inf). These 
operations are performed in the following part of the code: 
 
                se = strel('disk',8); 
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       mask=imclose(mask,se);    %Cleaning the 
image..fill the gaps 
       mask=bwareaopen(mask,200); 
       [L11,n1] = bwlabel(mask,8); 
        if n1==1 
            break;    % Aborting the processing if the 
images are connected 
        end 
        BW3 = bwmorph(mask,'skel',Inf);  % Skeletonize 
the image 
        BW4 = imfill(BW3,'holes'); 
 
 

    
                          (a)                                        (b) 

 
                        (c ) 
Figure 11: (a) Image consisting of clear borders and defining the small structuring 
elements as neurites (b) Skeletonized image (c) Image containing the 2 cells in 
which holes are filled. 
 
 
3.7.3.5 Detecting and isolating the neurites 
For detecting the branches corresponding to the neurites, we detect 
the branch points. These are the points from where the neurites 
branch-out from the cell body. These are the points having three 
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connected pixels in the skeletonized image. Then, these points are 
removed. This results in a binary image where the neurites are no 
longer connected to the blob corresponding to the cell body. The 
blobs in the image are removed in this way, leaving behind the 
segmented neurites.  
Here, bwlookup runs on the matrix and stops where the condition 
satisfies and makelut is used to create the lookup table for the use 
with bwlookup. It is a utility function to help us to construct the 
lookup table. Using lookup table with bwlookup to perform the 
filtering.  
Below is the corresponding code snippet: 
               
                  %Detecting Neurites 
        %Detecting start of branches 
        bp=bwlookup(BW3,  makelut(@(x) sum(x(:))>=4 & 
x(5)==1,3)); %branch     points... 
        bpImage = imdilate(BW3, true(3)); 
        BW5=BW4&~bp; 
        % Removing the blob... 
        BW6=bwareaopen(BW5,1500); 
        BW7=imsubtract(BW4,BW6); 
        BW7=bwareaopen(BW7,10); 
        BW7 = bwmorph(BW7,'skel',Inf); 
        %% 
        L2=immultiply(L1,BW7); 
        %  
        [yy1 xx1]  = find(L2==1); 
        [yy2 xx2]  = find(L2==2); 
        figure, imshow(1.15-BW) 
        hold on 
        plot(xx1,yy1, 'r.', 'MarkerSize', 10) 
        plot(xx2,yy2, 'b.', 'MarkerSize', 10) 
        hold off 
        saveas(gcf,[data_folder filesep 'results' 
filesep folder_name...      filesep imname filesep 
current_image]); 
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                        (a)                                (b) 
 

         
                       (c )                                          (d) 
 
Figure 12 : (a) Detecting the branch points in the image (b) Cells in which 
removing the smaller objects fewer than 1500 (c) Skeletonized the neurites in the 
image (d) labeled image consisting the different color of neurites for cell 1 and 
cell 2.  
 
3.7.3.6 Saving the cell data in the text file and saving the .mat 
file  
 
Once the neurites are segmented, they are overlaid with two 
different colors, depending on which of the two cells they belong to. 
Then measurements are made to get the lengths of the neurites, and 
the overlaid image and the measurements are saved in the results 
directory. 
The corresponding code snippet is: 
  
 header11 = 'Total Neurites detected= '; 
        header12 = num2str(length(cell_1_data)); 
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        fid=fopen([data_folder filesep 'results' 
filesep folder_name filesep imname filesep 
'Cell_1_data.txt'],'w'); 
        fprintf(fid, [ header11 ' ' header12 '\r\n']); 
        fprintf(fid, [ 'Lengths : ' '\r\n']); 
        fprintf(fid, '%f \r\n', A ); 
        fclose(fid); 
        % 
        tempmask2=L2==2; 
        cell_2_data=regionprops(tempmask2, 'area'); 
        B=zeros(1,length(cell_2_data)); 
        for kk2=1:length(cell_2_data) 
            B(kk2)=cell_2_data(kk2).Area; 
        end 
         
        header21 = 'Total Neurites detected = '; 
        header22 = num2str(length(cell_2_data)); 
         
        fid=fopen([data_folder filesep 'results' 
filesep folder_name filesep imname filesep 
'Cell_2_data.txt'],'w'); 
        fprintf(fid, [ header21 ' ' header22 '\r\n']); 
        fprintf(fid, [ 'Lengths : ' '\r\n']); 
        fprintf(fid, '%f \r\n', B ); 
        fclose(fid); 
        % Saving as .mat file 
        save([data_folder filesep 'results' filesep 
folder_name filesep imname filesep imname 
'.mat'],'cell_1_data', 'cell_2_data'); 
 
3.8 Neurite Data Analysis  
 
3.8.1 Logistic curve analysis 
 
The growth curves are the tool used for the study to describe how 
the variable increases over a particular time interval, until it 
approaches its saturation value. Logistic growth occurs when the 
neurite growth rapidly increases in size until it reaches a certain 
point called carrying capacity. The carrying capacity act as a 
moderating force in the growth rate by slowing it when the resource 
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become limited and stopping the growth once it has been reached 
[90].  
 
The logistic growth curve is an S-shaped curve that can be used to 
model the function that increases gradually at first, more rapidly in 
the middle of the growth period and slowly at the end, leveling off 
at a maximum value after some period of time.  
It is one of the simplest S-shaped growth curves. It is based upon the 
hypothesis that when these varying influences do not produce 
extraordinary changes, the population would probably follow the 
growth curve characteristics of living things within limited space 
and with limited economy opportunity.  
The biggest difference is that the line in the logistic growth graph 
changes direction and begins to level off as it near the carrying 
capacity. That means the main difference between exponential and 
logistic growth curve is that logistic growth takes into account 
carrying capacity. GP, IP, SP are the points on curve growth point, 
inflection point, and saturation point.  
 
All data analysis and plotting were performed using MATLAB 
2019b (MathWorks Inc., USA). Fitting of custom functions was 
performed using a non-linear equation or the Trust-Region method, 
implemented in the Curve Fitting Toolbox (ver. 3.5) of MATLAB 
[91].  
The equation is used for the logistic growth model as follows: 
 

 
 
In this equation, a,b,c are the fit parameters. Here, a, b, c are the 
coefficients. And the values of a, b, c are 31.5935, 5.0093, 0.0604. 
One of the figure shown below for the fitting curve as: 
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In this figure, the Y-axis is shown as the neurite length in microns 
and X-axis is shown as time period in minutes along with the fitted 
curve in which R2 value is 0.5986, a value is 0.0604, b value is 
5.0093 and c value is 0.0604. To obtain the fitting curve we have 
done with the MATLAB program. 
 
The graph above is showing the growth rate changes over time. The 
graph increases from left to right, but the growth rate only increases 
until it reaches its point of maximum growth rate, at which the rate 
of increase decreases.  
 
In this work, the logistic model have been applied to describe the 
growth of neurites in PC 12 cells. The study results have shown that 
the logistic model is better in predicting the growth of neurites. 
Therefore, here my goal is to analyse the general model, by using 
the the MATLAB program. In conclusion, the analysis of logistic 
growth model provide the mathematical framework for better 
understanding of neurite growth and the neurite growth which is 
affected by different labelled in the culture medium. It is concluded 
that the logistic function model is an appropriate description of the 
experimental data.  
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           Below is the corresponding code snippet: 
 
dataset = xlsread('Q9HOQ7_second_cell.xlsx'); 
x=dataset(:,1); 
y=dataset(:,2); 
figure (1),..... 
    hold on 
plot(x,y) 
  
xticks([0 3 6 15 24 33 42 51 60]) 
  
a1 = 1; 
c1 = 0; 
b1  = min(y); 
  
  
s   = 
fitoptions('Method','NonlinearLeastSquares',... 
    'Startpoint',  [ b1 a1 , c1] , 'Lower', [ 0 1  
0 ]   , 'Upper',  [ Inf ]  );  
  
f1 = fittype( ' b + (a./(1 + exp(-c.*x) ))' , 
'coefficients', { 'b' , 'a' , 'c'}  ,'options', 
s);  
  
[cf,s1,t] = fit( x , y , f1 ) 
    figure(1),... 
        plot(cf ) 
    xlabel('timeperiod (minutes)','FontSize',15) 
ylabel ('neurites length 
(microns)','FontSize',15) 
   [ cf.b, cf.a , cf.c , s1.rsquare ] 
   text(6,40,'R^2 = 0.5986') 
   text( 6, 39 , 'c = 0.0604') 
   text(6,38, 'a=31.5935') 
   text(6,37,'b=5.0093') 
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3.8.2 Significance of the Logistic Curve 
• The correlation between the physical parameters was 

obtained by using the statistical data analysis tools.  
• By implementing Non linear least squares to the data 

we obtain the results which were compared to the 
actual values available for validation. 

• Logistic models are very useful in stufies of medical 
sciences and biological sciences.  

• The logistic growth curves (S-shaped) is a popular 
model for studying and forecasting future changes.  

 
3.9 Neurites Results produced from cell profiler 
(Stepwise) 
 
 

              
 
Figure 13: coiled-coil domain containing 8, CCDC8 Image used as an 
input in the cell profiler to produce the results. 
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Step 1:  
 

 
 
Input the CCDC8 image by image input module in cell profiler, we 
can drag and drop individual neurite file into this panel.  
 
Step 2: 
Enhance or Suppress features 
It is used to increase or enhance the contrast of the neurites. By 
setting the module as shown in (a) we can get the result output as 
shown in (b) below: 
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                                                    (a) 
 

 
                                                      (b) 
Step 3 
Enhance or Suppress features: 
Using the previous contrasting image labeled as “neurites”, in this 
step again Enhance or suppress features module is used to suppress 
the intensity of certain pixels relative to the rest of the image by 
changing the module setting.  
By setting the module as shown in (a) we can get the result output 
as shown in (b) below 
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                                          (a) 
 
 

 
     
                                                 (b) 
Step 4 
Morph:  
Morph used the skeleton module to generate a skeletonized image. 
It usually performs the low-level morphological operations on 
binary or grayscale images.  
By setting the module for morph as shown in (a) we get the result 
output as shown in (b) below 
 

 
                                                         (a) 
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(b) 
 
Step 5 
Identify the primary objects 
Identifies the nucleus. 
By setting the module for identification of primary objects as shown 
in (a) we get the result output as shown in (b) below 
 

 
                                             (a) 
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                                         (b) 
Step 6 
Identify secondary objects 
Identifies the cell body. 
By setting the module for identification of secondary objects as 
shown in (a) we get the result output as shown in (b) 

 
                                                  (a) 
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                                            (b)  
Step 7 
Apply threshold 
It is used to create a binary image. 
Here, we have used the second “neurites2” enhance and suppress 
image as shown in step 3 to produce the thresholding result 
By setting the module for identification threshold as shown in (a) we 
get the result output as shown in (b) 
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                                               (a) 
 

 
 
                                             (b) 
 
Step 8 
Morph 
Morph used the skeleton module to generate a skeletonized image. 
It usually performs the low-level morphological operations on 
binary or grayscale images. Here, we are using the threshold image 
to produce the output shown in figures.  
By setting the module for morph as shown in (a) we get the result 
output as shown in (b) 
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(a) 
 

 
(b) 
 
3.10 Neurites changing in different image at different time 
interval: 
From the figure below we can see that the neurites are changing at 
different time intervals in both the cells, i.e first and second cells. 
The images were taken from the database of neurites as 
http://neurite.embl.de/ The length of neurites are having different 
length at each time period taken from the database. 	
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I have studied this neurite analysis by different tools and techniques. 
Focusing on the detection as well as measurement. I have used 
different tools like MATLAB, Filopodyan, cell profiler, neuron J. 
And then I studied different techniques to detect these neurites by 
the tools discussed previously. Once I detect the neurites from the 
tools like MATLAB, Filopodyan, Cell profiler, Neuron J  and then 
I compared them, and I got the results of different neurite length and 
count.  
Due to the great number of images obtained from the neurite 
database, and performing their analysis was a very challenging task. 
The central objective of this work was done both by manual as well 
as automatic analysis. Manual work is done by the tools – Cell 
Profiler, Neuron J and other image J plugins. Automated work is 
done by MATLAB and Filopodyan.  
The comparison of the results obtained with Filopodyan and Neuron 
J shows that individual length measurement is highly fluctuating. 
Hence, I have tried to show some differences in the time series data 
by proposing the analysis from different tools and techniques.  
 
 

                     
             (1)                                                      (2) 
 
Figure 14: Sample images of the EB 1 protein (GFP tagged) labeled PC12 cells 
from time period 0 to 11 hours. Scale bars are 10µm. Couple of images from the 
database are used for the image analysis by different software.   
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3.11 Programming for detecting the neurites  
 
For the detection and counting of the neurites, I am using the 
MATLAB inbuilt functions. I am using the segmentation process for 
the detection of neurites as the MATLAB function imsegkmeans 
clustering. Below are shown the results about the detection and 
number of neurites detected from the raw image. The process of 
detecting is done by the morphological functions inbuilt in 
MATLAB. As for the study of these neurites in the raw images, we 
are facing some problems in the dataset of 0,1,2 hrs time series data. 
In the dataset of 0,1,2 the two cells are overlapping with each other. 
Hence the results are not satisfactory for the dataset 0-2 hrs. So, for 
the analysis of 0,1,2 hrs time series dataset I have used Neuron J 
plugin in Image J. As for the dataset from 3 to 11 hours we have 
used MATLAB. MATLAB helps us to produce the results from 3-
11 hrs time series dataset.  

 

      
 
                  (a)                                                        (b)  
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                       (c)                                                  (d) 

 
 
 

             
                       (e)                                                (f )  

 
 

                    
                      (g)                                                                   (h) 
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                      (i) 

 
 

Figure 15: Morphology of the cells: Analysis of the neurites counting and length 
measurements in two separate data set, i.e first and second cell: detection of length 
and counts of neurites at different time periods given below. The first cell 
represented in red color neurite and second cell represented in blue color neurites 
in each image,  a) 3 hrs (b) 4 hrs (c) 5hrs (d) 6hrs (e) 7hrs (f) 8hrs (g) 9hrs (h) 
10hrs (i) 11hrs. All scale bars are at 10 µm. 
 
With the help of a script written in MATLAB,  neurite detection 
from the time period 3-11hrs was successful. It helps us to know the 
measurement of the neurites at different time. The plot is shown 
below in section 3.13. In this plot, the average length of the first cell 
neurites is 45.32 microns and the average length of the second cell 
is 24.07 microns. Here in the result above MATLAB helps to 
segment the neurites from the cell body. We need to measure only 
the neurites which is attached with the cell body so that we know the 
count and measurement of the neurites. 
  
3.12 Comparison of the total neurites’ length under various 
time-series data  
 
The length of neurites changes found from the tables were plotted in 
a graph to find out the distinctive pattern of changes in the neurite 
time series data. The MATLAB program is able to detect the 
neurites and count the number of neurites along with their length 
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measurements of the time series data from 3 to 11 hrs. In figure 14  
we have compared the two sets of cells i.e first and second cells. 
Furthermore, we have plotted the sum of the lengths of neurites at 
each particular time period for the first and second cells.  
The results are different in the first and second cells because the 
number of neurites is different at different time periods. We have 
measured each and every neurite at different time intervals. We have 
represented the first and second cell in figure 14 in the first image. 
The first and second cell are not equally treated. I have chosen first 
cell and second cell according to the measurement. The first cell I 
have chosen because I have measured the neurites of first cell firstly. 
And the latter second cell, I have measured the neurites after the first 
cell. I have named first and second cell randomly. Neurite 
measurement of the first cell is done firstly, and the neurite 
measurement of the second cell is done afterward. 
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Figure 16 : Total length of neurites at each time period from 3-11 hours is 
presenting in two different sets of cells. Sum of total neurites length at each time 
period.  
 

 
 
Figure 17: The histogram for counting total number of neurites in two sets of cells 
the time series data ranges from 3 to 11 hrs. The dataset presenting the cumulative 
sum of the neurites from 3 to 11 hrs.  
 
3.13 Detection of neurites from time period 0 to 2 hrs by Neuron 
J 
Neuron J is a plugin of Image j to enable the analysis and tracing of 
the image structures which are elongated, like neuronal processes. 
The Image J plugin neuron J can able to handle only 2D images of 
8bit grayscale / indexed color. Here we are presenting the 
comparison of neurite dataset from 0 to 2 hrs in the first cell and 
second cell.  
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Figure 18 (a) Representative images of the first cell and second cell dataset from 
0-2hrs time period. Scale bar is 10µm 
 

  
(a) 
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Figure 19: The histogram plot of total mean length of neurites in first cell data 
series at different time intervals from 0 to 2 hrs. Mean±SD 
 

 
Figure 20: The histogram plot of total mean length of neurites in second cell data 
series at different time intervals from 0 to 2 hrs. Mean±SD 
 
The significant differences of the dataset between 0-2 hrs in the first 
and second cell is non-significant done by one-way ANOVA. There 
is no significant difference in between the first and second cell at 
different time intervals.  
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Figure 21: The comparison of the sum of length of neurites in first and second cell 
at 0-2 hrs time period. Running line representing the sum of total length of neurites 
in first cell and dotted line representing the sum of total length of neurites at each 
time period 0-2 hrs in second cell. 
 
3.14 Detection of neurite in PC 12 cells from time period 0-
11hrs by MATLAB and neuron J                       
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Figure 22: The dataset presentation of sum of length of neurites in the set of first 
and second cell. Running line representing the total length of neurites in first cell 
and dotted line representing the sum of length of second cell. In this dataset, the 
neurite dataset 3-11 hrs is measured by MATLAB and 0-2 hrs dataset is measured 
by neuron J. 
 
Interestingly, we have studied here the counting and measuring the 
data of neurites from figure 22 and present the sum of length of 
neurites in both the cell first and second cell measured from both 
Neuron J and MATLAB. The dataset of neurites from 0-2hrs is 
measured by Neuron J and 3-11 hrs neurite dataset is measured by 
MATLAB segmentation. Both of the measurement is joined 
together and shown as in figure 22 
 
3.15 Further detection of the neurites using neuron J along with 
their logistic curves 
 
We have taken the neurite database of PC 12 cells which are sorted 
in the subcellular localization in vitro cells. In the following, 



Dottorato di Ricerca in Morfogenesi e Ingegneria Tissutale 

 Pag. 87  

different proteins have been considered to analyze the neurites 
outgrowth by the Image J plugin called neuron J.  
 
3.15.1 First, we have used the KIF3C protein in PC 12 cell data from 
the site  http://neurite.embl.de/html/kinesin-
like_protein_kif3c.html. The time-lapse data is used as O14782 
c.mov which is converted into the images by ffmpeg software and 
then our analysis took place on those images. A sample of the 
images is shown below.	
In particular, there are 2 cells in the images which are separately 
analyzed at different time intervals from 0-8 hours. The cell in which 
the neurites are firstly measured is named as first cell and the cell in 
which the neurites are measured latter is named as second cell.  One 
of the images is shown below as figure 23(A): 

 

    
                      (A)                                          (B) 
 
Figure 23: Images with detected neurites by neuron J of KIF3C of PC 12 cells in 
first cell at different time periods (A) 0 hours time period (B) 2 hours time period 
Scale bar is 10µm. 
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Figure 24: Images with detected neurites by neuron J of KIF3C of PC 12 cells in 
second cell at different time period (A) 0 hours time period (B) 2 hours time period 
Scale bar is 10µm. 

 
Figure 25: Graphical representation of the sum of the length of all the neurites at 
the particular time period from 0-8 hrs in KIF3C proteins in PC12 cells. The 
measurement is according to the neurite length measured at the different time 
intervals in KIF3C protein in PC 12 cells.  
 

 
3.15.1.1  Logistic curve analysis of the KIF3C in PC 12 cells : 
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Figure 26: Graphical representation of the logistic curve of neurite length of first 
cell values from 0-8 hrs time period. Y-axis values are in microns and X is the 
time period in hrs. Red line is presenting the fitted curve in which R2 value is 
0.1656. 
 
 

 
 
Figure 27: Graphical representation of the logistic curve of neurite length of 
second cell values from 0-8 hrs time period. Y-axis values are in microns and X 
is the time period in hrs. Red line is presenting the fitted curve in which R2 value 
is 0.5478. 
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3.15.2 EB-1: Another analysis is taken place by taking EB1 protein 
(gfp tagged) labeled PC 12 cells for the analysis from the web link 
http://neurite.embl.de/html/microtubule-associated_protein2.html. 
It belongs to the RP/EB family member 1 and is known as 
microtubule-associated protein.  
The time-lapse data is used as EB1 1.mov which is converted into 
the number of images by ffmpeg software and then our analysis took 
place on those images. In particular, there are 2 cells in the images 
which are separately analyzed named as first and second cell 
changing their morphology at different time intervals from 0-11 
hours. One of the image is shown below: 	
 

 
 
Figure 28: Sample Image showing the first cell and second cell at 0 hours.  
 
Below are some images shown in which the morphology of the cells 
are changing with the time intervals from 0-11 hours. 

                                                                         
              (A)                                           (B) 
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             (C)                                 (D) 
Figure 29: Images with detected neurites by Filopodyan in microtubule-associated 
protein of PC 12 cells in the first cell (A) Neurite detected in PC 12 cells 
expressing microtubule-associated protein in first cell at 0 hours time period (B) 
Neurite detected in PC 12 cells expressing microtubule-associated protein in first 
cell at 4 hours time period (C) Neurite detected in PC 12 cells expressing 
microtubule-associated protein in first cell at 8 hours time period(D) Neurite 
detected in PC 12 cells expressing microtubule-associated protein in first cell at 
11 hours time period. Scale bar is 10µm 
 

    
                     (A)                                  (B) 
 

    
                    (C)                              (D) 
 
Figure 30: Sample Images with detected neurites by Filopodyan (image J plugin) 
in microtubule-associated protein of PC 12 cells in second cell dataset (A) Neurite 
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detected in PC 12 cells expressing microtubule-associated protein in second cell 
at 0 hours time period (B) Neurite detected in PC 12 cells expressing microtubule-
associated protein in second cell at 4 hours time period (C) Neurite detected in PC 
12 cells expressing microtubule-associated protein in second cell at 8 hours (D) 
Neurite detected in PC 12 cells expressing microtubule-associated protein in 
second cell at 11 hours. Scale bar is 10µm 

 
Figure 31: Dataset representation for the sum of length of all neurites at particular 
time period from 0-11 hrs in PC12 cells expressing membrane-associated protein.   
 
3.15.2.1 Logistic curve analysis of EB-1 microtubule-associated 
protein in PC 12 cells:  
 

 
Figure 32: Graphical representation of the logistic curve of neurite length of first 
cell values from 0-11 hrs time period. Y-axis values are in microns and X is the 
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time period in hrs. Red line is presenting the fitted curve in which R2 value is 
0.4371. 
 

 
 
Figure 33: Graphical representation of the logistic curve of neurite length of 
second cell values from 0-11 hrs time period. Y axis values are in microns and X 
is the time period in hrs. Red line is presenting the fitted curve in which R2 value 
is 0.1894. 
 
3.15.3 Tubulin alpha 2, TUBA 2: Tubulin is known as the major 
constituent of microtubules. It is a protein that is localized in PC12 
cells inside the microtubules. We have taken the data of tubulin 
alpha 2, TUBA 2 from the neurite database website for the analysis 
of the neurites 
http://neurite.embl.de/html/tubulin_alpha_2___tuba2.html. 	
The time-lapse data is used as tubulin 1.mov which is converted into 
the number of images by ffmpeg software and then our analysis took 
place on those images. Below some of the images are shown in 
which neurite has been detected: 
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                        (A)                                 (B) 

     
 
                       (C )                                  (D) 
 
Figure 34: Images with detected neurites in tubulin alpha 2, TUBA 2 of PC 12 
cells at different time period (A) 0 minutes time period (B) 22 minutes time period 
(C) 58 minutes (D) 118 minutes. Scale bar is 5µm 
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Figure 35 : Graphical representation of sum of length of all the neurites, by 
calculating the sum of number of neurites at each particular time period which is 
differentiated in minutes as : 0, 1, 10, 22, 34, 46, 58, 70, 82, 94, 106, 118 in tubulin 
alpha 2, TUBA 2 of PC 12 cells. TUBA 2 of PC12 cells contain only one cell 
including neurites measured by neuron J.  
 
3.15.3.1 Logistic curve analysis of tubulin alpha 2, TUBA 2 in 
PC 12 cells:  
 
 

 
 
 
Figure 36: Graphical representation of the logistic curve of neurite length of the 
cell values at 0, 1,10, 22, 34, 46, 58, 70, 82, 94, 106, 118 minutes time period. X 
axis values are in microns and Y is the time period in minutes. Red line is 
presenting the fitted curve in which R2 value is 1.1548. 
 
3.15.4 Hypothetical protein Q9H0Q7 : It is a protein that is 
localized in PC12 cells inside the cytoskeleton - microtubules. We 
have taken the data of hypothetical protein from the neurite database 
website for the analysis of the neurites 
http://neurite.embl.de/html/hypothetical_protein_q9h0q7.html. 	
The time-lapse data is used as Q9H0Q7 3.mov which is converted 
into the number of images by ffmpeg software and then our analysis 
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took place on those images. In particular, there are 2 cells in the 
images which are separately analyzed named as first and second cell 
changing the morphology at different time intervals from 0, 3, 6, 15, 
24, 33, 42, 51, 60 minutes. Some of the images are shown below:  
 

     
                          (A)                             (B) 

       
                   (C)                                        (D) 
 
Figure 37: Images with detected neurites in hypothetical protein Q9H0Q7 of PC 
12 cells in first and second cells (A) 0 minutes time period (B) 15 minutes time 
period (C) 42 minutes time period (D) 60 minutes time period. Scale bar is 10µm 
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Figure 38: Graphical representation of the sum of length of all the neurites, at each 
particular time period of first and second cell values which is differentiated in 
minutes as : 0, 3, 6, 15, 24, 33, 42, 51, 60 in hypothetical protein Q9H0Q7 of PC 
12 cells. 
 
 
3.15.4.1 Logistic curve analysis of hypothetical protein Q9H0Q7 
in PC 12 cells:  
 

 
                                                  (A) 
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                                            (B) 
 
Figure 39: Graphical representation of the logistic curve of neurite length of the 
cell values at 0, 3, 6, 15, 24, 33, 42, 51, 60 minutes time period. Y axis values are 
in microns and X is the time period in minutes. Red line is presenting the fitted 
curve (A) logistic curve of the first cell values with the R2 value as 0.5653 (B) 
logistic curve of the second cell values with the R2 value as 0.5986. 
 
3.16 length of single neurite measured by Image J 
In this current study, we studied the length of single neurite of PC 
12 cell which is manually detected by software image j as shown in 
the figure below: 
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Figure 40: The representation of single neurite length at position 0 
measured by Image J at different time intervals 
 
Here, I have opened the image in image J and then measured 
each neurite length by selecting the neurite by freehand line 
in image J and then I have click on the analyze—measure to 
measure the neurite length.  

 
 
Figure 41: The length of single neurite at the position 0 neurites measured 
by image J from time period 0-11 hrs.  
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3.17 length of single neurite measured by Filopodyan 
In this study, we have demonstrated that the length of single 
neurite of eb-1 protein analyzed from image J and filopodyan 
have different results as shown in figure 41 and figure 43. 
 

 
 
figure 42: The figure representing the single neurite at position 0. The 
length of neurite at different time interval from 0-11hrs. 
 

 
 
figure 43: The single neurite length at position 0 is measured by filopodyan at 
different time intervals from 0-11 hrs.  
 
By focusing on the neurite analysis we also plotted the profile graph 
at time period 0 of eb1-1 protein as shown in figure 44, with this plot 
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profile we can display the 2D graphical plot for the intensities of the 
pixel as a line within the image. Here in this image below 
representing the x axis as the distance along the line and y axis is 
representing the pixel intensity.  

 
 
figure 44: the plot profile graph at time period 0 of eb1-1 protein. At the 
left representing the image of eb1-1 cell with the line measurement of the 
neurite. At the right the representation of the plot profile.  
 
In the current study, the result tells us that the single neurite 
measured by Image J at different time periods showing the different 
fluctuations as compared to the single neurite measured by 
Filopodyan as shown in figure 41 and 43. The results from Image J 
and filopodyan of single neurite measurement at position 0 is 
showing difference. On the other hand, the length of neurite 
measured by Image J is decreasing after 8hrs as compared to the 
length of neurite measured by Filopodyan which is also showing the 
same result after 8 hrs. There is as such no much difference between 
the two measurements. Further, the plot profile is formed by Image 
J as shown in figure 44 which is representing the intensities of the 
pixels. As shown in figure 41 the neurites are changing from time to 
time at different time intervals at position 0 when measured by 
Image J the neurites are having different lengths at different time 
intervals. Whereas when measured by Filopodyan as shown in 
figure 43 it is showing the different length at position 0 at different 
time interval which shows the different structures of neurites. 
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3.18 Validation of a tools and softwares for identification and 
analysis of Neurites 
 
We have used Image J plugin Neuron J which is a fully manual 
tracing method to measure the length of neurites.  
 
The disadvantage of this method is that it still requires the user 
interaction, which allows the analysis of only a managable number 
of neruites. On the other hand, Filopodyan – another image J plugin 
can work without user interaction but it is useful only for counting 
of the neurites present in the image and measuring their lengths.  
 
Furthermore, We have also written the MATLAB scripts to extract 
the neurite information from the images. Interestingly, we were able 
to extract the neurite information like – length, number, and 
correlation between the shape of neurites as we can see in the results 
above.  
There are other existing softwares which are useful for neurite 
outgrowth quantification as discussed in literature [92]. 
One of the interesting software is Neuron Cyto which is fully 
automated and helpful in visualizing the neurite length, complexity, 
quantity of soma and soma size. 
In conclusion,  we presented various softwares which are useful for 
the segmentation of neurites in images based on quantitative 
analysis. The neurites analysis which is described in previous 
section allows both automated segmentation and tracking of images 
to obtain the neurite results. Properties such as length, count, and 
other changes which can be easily extracted from the images.  
Compared to other softwares our analysis can be expand by using 
the softwares like Neuron Cyto.  
 
 
 
 



Dottorato di Ricerca in Morfogenesi e Ingegneria Tissutale 

 Pag. 103  

Chapter 4 
 
4. Materials and Methods 
 
4.1 The experimental sample of Cytospace  
 
Overview 
The experiment Cell Shape and Expression (CYTOSPACE) is one 
of the nine scientific research and technology projects selected, 
which is developed and managed by the Italian Space Agency (ASI) 
to be part of the Italian scientific complement for the Futura Mission 
to the International Space Station (ISS). The experiment, designed 
by the Cytospace Team and led by Kayser Italia, was carried out on 
the International Space Station (ISS) by Samantha Cristoforetti, 
starting from April 16th, 2015. 
The experiment CYTOSPACE aims for the first time to create an 
experimental model capable of highlighting the relationship 
between microgravity, cell shape, and gene expression.  In 
particular, cytospace experiment will investigate the in vitro effects 
exerted by microgravity and melatonin exposure on breast 
carcinoma cell line MCF-7 by exploring morphological, 
cytoskeletal and genetic changes with respect to parallel on ground 
experiments. 
CYTOSPACE experiment has been carried out autonomously inside 
Kayser Italia’s Experiment Unit, which accommodates a culture 
chamber, five reservoirs filled with chemicals, a fluidic system 
through which fluid displacement takes place and a microcontroller 
board. The experiment unit was accommodated into the Kayser 
Italia’s Experiment Container (KIC-SL), designed to fit into the 
KUBIK incubator facility in the Columbus Lab on the ISS. 
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4.1.1 Cytospace Data analyzed by MATLAB 
I have received a big set of confocal images like these as below 
shown into the figure with all the cells and tubulin separately. Data 
is being divided into 3 parts [82]: 1. experimented on ground (with 
and without melatonin) 2. experimented on ground in RPM without 
melatonin and during docking in RPM without melatonin. 3. 
experimented in space (with and without melatonin) and during 
docking without melatonin [82]. 
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Figure 45: The figure showing the folders of the data of CYTOSPACE. 
 
EACH FOLDER CONSISTS IMAGES LIKE THESE BELOW:  

 

 

 

 

  
CTRL on ground                                              E1 docking space 

4.2 Pipeline for the analysis of nuclei and tubulin by Matlab 
 
• The chosen image is firstly converted into the grayscale; 
• Threshold has been applied on the grayscale image; 
• morphologically holes are filled with the data (nuclei, tubulin); 
• nuclei/tubulin from the borders are cleared from the image; 
• Reducing the noise from averaging filter and median filter  
• Removing the small objects from the binary image; 
• A watershed segmentation is performed on the binary image 
• Calculation of entropy has been done, Number of objects 

counted, morphological parameter (area, perimeter, minor axis, 
major axis, circularity, solidity) have been calculated.  

 
4.2.1 Image Processing 

The use of the computer algorithms is to enhance the digital images 
of the nuclei and microtubules in order to prepare them for the 
morphological analysis the main aim of this chapter. Thus, 
MATLAB is a great programming language for technical computing 
is used. There are basic MATLAB distribution which can be 
expanded by adding a range of toolboxes for the various 
applications. The particular toolbox which is interest to us as the 
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image processing toolbox. This software provides us a 
comprehensive set of reference – standard algorithms as well as 
graphical tools for image processing, analysis, visualization, and 
algorithmic development. Hence, in this section, the MATLAB 
program has been aimed to process the three types of experimental 
data experimented on ground and in space to extract the nuclei and 
tubulin. The MATLAB function and the resulting algorithms are 
discussed below. 
 
4.2.2 MATLAB program for the cytospace data 
MATLAB program for measurement of Area, Perimeter, Major 
axis, and Minor axis and Entropy of the nuclei/Tubulin in all 3 
experimental data (on the ground, in space and docking).  
The sample images are shown above in the figures. Like this, we 
have a couple of images in every experimental data in a .tiff type 
image of size (1024*1024); 8 bit with 1MB. These are the raw 
image is the input for the MATLAB programming.  
The program basically works in three main phases; 
• reading the raw image 
• processing the raw image 
• then returning the extracted nuclei for the measurement 

 
4.2.2.1 Reading the image 
In the MATLAB software, the images are considered as matrices 
whose elements are the pixel value of the image. Moreover, if the 
input is the true color image or any other type rather than the 
grayscale, it has to be converted to grayscale before running the 
code.  
Therefore, to read the image the code is I = imread(filename.jpg), 
reads the grayscale image from the graphics file into the matrix I. 
Moreover, if the file contains a grayscale, I is an M-by-N array. 
Here, M refers to the number of rows and N is the number of 
columns respectively. 
We use the function rgb2gray in the Matlab to convert the true color 
image into the gray-scale. However, this function is first of all 
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converts the RGB image into the HSL color space. As just like the 
RGB color space, in the HSL, every pixel has three values. Unlike 
the RGB, these values don’t represent the individual basic color 
components, they stand for the hue, saturation and luminance. The 
first two are used to measure the color and the third one is used to 
measure the intensity. The conversion from RGB to HSL is simply 
linear transformation- multiplying the vector of the color values by 
3*3 regular matrix. Hence, this function keeps only the value of the 
luminance in the resulting gray. Subsequently, we linearly scale the 
values of the pixels in Gray into the range of the [0, 1]. so that the 
maximum value is present in Gray is 1 , the minimum value is 0. 
 
4.2.2.2 Thresholding the image 
 
The next step is the image binarization after choosing the 
appropriate threshold value. MATLAB has the threshold function, 
which can thresholds an image of any data type, by using the general 
syntax threshold = 10; I2 = I >threshold. Where I is the raw image 
and further my idea is to extract the blue channel at a given 
threshold. Because the blue channel consists of the nuclei. All pixels 
under the threshold belongs to the object. By setting this threshold 
the raw image is displayed as the binarized image. Moreover, 
thresholding operation is used to convert a grayscale image into a 
binary image. A binary image is consisting of 2 colors whether it is 
black (‘0’) or white (‘1’). A suitable threshold should be selected in 
order to separate the objects from the background image.  
 

        

Threshold at 10                     Threshold at 15                  Threshold at 20 
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Figure 46: By setting the threshold at 10, 15, 20 gives us the following the 

three results respectively of the nuclei.  

       

Threshold at 10                     Threshold at 15                  Threshold at 20 

Figure47: By setting the threshold at 10, 15, 20 gives us the following the 

three results respectively of the tubulin.  

Here, at the low thresholds, we have lost several pixels of the 
nuclei. As increasing the threshold value, more and more pixels are 
fall under it.  
 
4.2.2.3 Removing particles  

          After thresholding, we need to remove the impurities and 
particles within nuclei which can strongly affect the quantitative 
analysis on the cell boundaries and hence it should be removed. To 
this aim, the region filling operation should be used. The function 
imfill, I = imfill(I2,’holes’), which identifies the pixels constituting 
holes within the connected components in the binary image and fills 
them. Moreover, a hole is a set of connected background pixels that 
can’t be reached by filling in the background from the edge of the 
image. The resulting image is shown in the figure 
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Figure 48: this figure representing the concept of connectedness.  
 
4.2.2.4 Clearing the border components 
 
The image processing function I4=imclearborder(I3); is used to remove 
the connected objects of a binary image that touches any image 
border. This function is used to clear the image border. It tends to 
reduce the overall intensity level in addition to suppressing border 
structure. The nuclei of the interest has been successfully segmented 
by thresholding. Further, the objects which are connected to the 
border of the image has been removed by using the imclearborder 
function. The connectivity in the imclearborder function has been 
set to 4 to remove the diagonal connections [93].  

 

                                
           (A)                                                                    (B) 

Figure 49 (A) representing the thresholded image without removing border 
components as nuclei whereas figure (B) representing the image removing the 
border components as nuclei.  
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                        (A)                                       (B) 
Figure 50 (A) representing the thresholded image without removing border 
components as tubulin whereas figure (B) representing the image removing the 
border components as tubulin.  
 
4.2.2.5 Removal of the noise by averaging filter and median 
filter 
 
Now after clearing the border components next step is to filter the 
noisy image through averaging filter. Therefore, we are applying 
filters as average filter. Median filter is used to filter the noisy image, 
[J]. Kmedian = medfilt2(I4); is used as a median filter to remove the 
noise from the binarized image.  
 
4.2.2.6 Particle removing step from the processed image  
 
If there is any small particle still left remained inadvertently after 
the removal of the noise from the median filter, bwareaopen function 
is used to eliminate it. I5 = bwareaopen(Kmedian, 100); this 
function helps to removes from a binary image all connected 
components (objects/nuclei/microtubules) that have fewer than 100 
pixels, and then produces another binary image, I5. The default 
connectivity is 8 for the two dimensions.   
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          (a) Original nuclei                                          (b) Extracted nuclei 

                        Figure51 : Initial image vs processed image. 

                     
               (a) Original tubulin                                          (b) Extracted tubulin 

                        Figure52: Initial image vs processed image. 

 

 
4.2.2.7 Image Segmentation by watershed algorithm  
 
Segmentation is seemed to be one of the key issues in modern 
medical image analysis which is enabling in the numerous clinical 
applications. However, segmentation is the process of assigning the 
labels into the pixels in 2D images or inside the voxels of 3D images. 
The procedure is that the image is split into the segments which are 
also known as regions or areas. Further, in the medical imaging 
segmentation is very essential for the quantification of the data and 
for the 3D visualization of the appropriate image data. Moreover, 
for clinical purposes, the segmentation techniques with the use of 
MRI  has been widely used in the monitoring of the brain infarctions, 
as well as brain tumors.  
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Watershed transform is been said to be the most useful image 
segmentation [94]. The watershed lines are effectively divided into 
the individual catchment basins in the raw or gradient image. The 
methodologies of the image segmentation is usually based upon the 
watershed transform algorithm which has been developed and 
improved from the past decade. The term watershed is referred to as 
the ridge which divides the areas drained by different river systems. 
Hence, a catchment basin is area usually draining into the river or 
the reservoir [94]. Thus the watershed transformation in a 
mathematical morphology is known as a very powerful tool for 
image segmentation [95]. The watershed transform applies to the 
gray-scale in the image processing in a way that can be used to solve 
a variety of image segmentation problems. Here, I am presenting the 
watershed algorithm applied on the grayscale images below:  
 
4.2.2.8 Watershed algorithm  
 
After removal of noise, the next step is to run the watershed 
algorithm for those nuclei which are joined with each other as shown 
in figure 50. We will use the watershed algorithm on the filtered 
image which is produced from the section above 4.2.2.6  
  Hence the first code to be implemented is I6 = watershed (I5); used 
to calculate the watershed of the processed image.  
Lrgb = label2rgb(I6); used to calculate the label image, 
imshow(imfuse(I5,Lrgb)); axis([10 175 15 155]), this code is used 
to fuse the two images together and then zooming in into one 
particular blob. Next, we use bw2 = ~bwareaopen(~I5, 10); to 
remove very small dots. It is also used to removes them in the 
foreground, that’s why we have complemented the image before as 
well as after the calling bwareaopen. Then, D= -bwdist(~I5); Ld = 
watershed(D); requires to compute the watershed transform of D. 
Then, bw2=I5; bw2(Ld == 0) = 0; used to convert the watershed 
ridge lines, in white and correspond to Ld == 0. After that, by using 
these 2 functions the ridge lines to segment the binary image by 
changing the corresponding pixels into the background. Then, the 
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watershed-based segmentation methods is used to filter out little 
local  minima by using imextendedmin and then later can modify 
the distance by transforming so that no other minima would occur at 
the filtere-out locations. This is known as “minima imposition” 
which can be implemented via the function imimposemin. mask = 
imextendedmin(D, 2);  
Ld2 = watershed(D2); bw3 = I5; bw3(Ld2 == 0) = 0; 
imshow(bw3); and then finally to modify the distance transform 
which only has minima at the desired locations. the final image we 
get is shown in the figure below:  
 

              
 
         (a) Original nuclei                       (b) watersheded nuclei 
 
                        Figure 53: Initial image vs watershed image. 

                  
         (a) Original tubulin                     (b) watersheded tubulin 
 
                        Figure 54: Initial image vs watershed image. 
 
 
4.2.2.9 Determination of the entropy of nuclei and tubulin 
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Entropy can be defined as the measure of the information content. 
To achieve the high compression ratio, entropy should be in low 
values. In image processing, the entropy E is known as the amount 
of information which is present in an image in other terms, it is 
defined as the measure of randomness. It is defined by [96,97].  
Here, Entropy is defined as: 

 
although (xi) is representing the probability mass function of the 
outcome xi. (i.e H is predicted as the entropy of the grayscale image, 
p is known as the probability of the given intensity value in the 
image, for example: if b = 2, then we will get the unit of entropy as 
in bits) [98].  
Logically defining entropy is that it is the measure of disorder, a 
neighborhood should be taken into account, which is popularly 
known as local entropy [99]. In MATLAB command entropy can be 
find out by the command as entropy(image), which computes the 
value (single value) of the logical array or the grayscale image. 
Therefore, here we used, J=entropy(bw3); which returns J, a scalar 
value representing the entropy of the grayscale image bw3. 
 
4.2.2.10 Determining the number of nuclei and tubulin, area, 
perimeter, major axis, and minor axis: 
 
The task of counting the nuclei by MATLAB program of the 
cytospace data has been approached. Although there are different 
specific techniques which differ. This type of geometric features can 
be done in MATLAB by using specific commands.  
The cell and tubulin count function which is used in the binary image 
to count each individual nuclei/tubulin. We have the cytospace data 
to differentiate the neuclei from tubulin which were in close 
proximity from one to another. bwconncomp(image,conn) function 
in MATLAB can label each and every cell within the image. 
Moreover, this bwconncomp function also allow us for the usage of 
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the region props function which can be provided as the information 
about each cell’s and tubulins- area, perimeter, major axis, and 
minor axis.  
Hence, these morphological parameters were found to be calculated 
by the use of command regionprops (cc, area, perimeter, majoraxis, 
minor axis) operation in which ‘cc’ is representing the stack of the 
connected components within the binary image. The stack, ‘cc’, is 
found to be throughout the use of the bwconncomp (bw3,conn) 
command , in which bw3 was the image and ‘conn’ is the 
connectivity. Thus, the cell area values were further overlaid on the 
original image by using each of the cell’s center of the mass as a plot 
point. 
The command which is used to count the number of connected 
objects and number of objects in the watersheded image we use cc= 
bwconncomp(bw3, 8); n= cc.NumObjects; 
 
4.2.2.11 Determining the number of circularities and solidity of 
the neuclei and tubulin in the image: 
 
In addition to the cell area, perimeter, major and minor axis. cell 
circularities and solidity is another method to describe the cell 
morphology. Neuclei that are quantified by the function ‘cell 
circularity’ are utilized to differentiate the ratio between the length 
and the width of the cell therefore in order to calculate the cell 
circularity value. The command which is used to extract the 
circularity data is ‘circularities=perimeter.^2./(4*pi*filledarea)’. 
This will help to obtain the cell behavior which is considered as the 
most informative parameter of the cell. Thus, circularity is 
calculated via circularity = 4pi area/perimeter2 [100,101]. This 
measure, however, indicates the perimeter of a perfect circle at the 
value of 1.0 and the decrease from this value would reflect the less 
circular in shape [102].  
Another morphological parameter as a shape descriptor of the cell 
which is used to describe the structure of the cell is the ‘Solidity’. 
Solidity is computed as the ratio between the object of the area and 
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the convex envelope area 
Sol =A/Ac 
Here, A is the area of the cell, Ac is the proportion of the pixels in 
the convex hull that are also in the region. 
 
4.2.3.1 Basic process of tubulin image analysis 
 
Data of confocal tubulin image: 
The color images are used three channels (red, green and blue) 
(RGB) to produce the overall composite. The RGB images require 
a 3D array to convey the extra color information. The first plane in 
the third dimension is presenting the red pixel intensities, the second 
plane presenting the green pixel intensities and the third plane 
presenting the blue pixel intensities. In this analysis, we have to 
convert the RGB image to grayscale to perform the tubulin analysis 
to utilize the green channel alone to enhance the contrast between 
the background and the features such as tubulin. There are so many 
processing and measurement tools, which are written to operate on 
the greyscale images, and this may need to be extracted from RGB 
color image. 
Furthermore, a binary image is one which contains only black and 
white pixels. The image consists of a binary array, typically of 0’s 
and 1’s. Images of any type which may be converted to this format 
for the processing or analysis.  
 
Image processing  
 
The image processing task is used to transform the grey values of 
the pixels. There are basically three mechanisms by which it can be 
done. a) in its most simple form of the pixels the grey values are 
changed without any processing of the surrounding or neighborhood 
pixel values. b) Neighborhood processing is used to incorporate the 
values of the pixels in a small neighborhood around each pixel in 
question. c) Finally, the transforms are used to more complex and 
involve the manipulation of the entire image so that the pixels values 
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are represented in a different but equivalent form. This might allow 
for the more efficient and powerful processing before the image is 
reverted to its original mode of representation.  
 
Thresholding 
Thresholding is used to allow the separation of an image into 
separate components by converting it into the binary image. This 
usually involves the image being separated into the white or black 
pixels on the basis of whether their intensity value is more or less 
than a certain threshold level. The process of the thresholding may 
be particularly useful to remove the unnecessary detail or variations 
and the highlight detail that is of interest. For the analysis of most of 
the tubulin images through Matlab, I have taken different threshold 
value because the pixels of green tubulin in binary and grey-level 
converted image are having varying levels of the background 
illumination and by taking different thresholding values in 
MATLAB I have separate the tubulin data from the whole RGB 
image.  
 
4.2.3.2 Algorithm 
The algorithm is summarized as shown in the figure below to extract 
the tubulin from the confocal images.  
The detailed algorithm of tubulin is the same as I have done for the 
Neuclei through Matlab programming therefore here we are 
discussing the results.  
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Figure 55: The figure is divided into 4 parts as (i) input image (ii) Confocal image 
is converted into grayscale image (iii) noise removal from the image (iv) 
watershed segmentation is used for the overlapping tubulin fibers.  
 
 
4.3 Methods for the analysis of neurites 
 
4.3.1 MATLAB Platform 
 
For our study, Image processing has been done particularly on the 
MATLAB platform because of its various features which are 
exclusively found in MATLAB. With the help of MATLAB, we 
have measured the neurites. First of all, we have set the path of the 
data set in the MATLAB environment. Then, running a for-loop to 
read each folder in the dataset. Next step is to run a sub for –loop to 
read each image in the current folder one by one. We have used k-
means clustering to segment the image into different clusters 
according to pixel intensity. Then, by detecting the cluster that 
contains neurites, by choosing the cluster that encircles the second-
highest area (the cluster corresponding to the highest area represents 
the background). Actually, the background has a remarkably 
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uniform intensity and texture. Instead, the foreground is composed 
of neuclei bodies in which different segments have different 
intensity values. This results in the fact that the foreground is itself 
divided into many more clusters, while the background is 
represented by a single cluster because of its homogeneous intensity. 
By performing erosion to skeletonize the image and then detecting 
the branch points. These points represent the points where the 
neurites are attached to the neuclei body.  
Finally segmenting the neurites and putting on a color overlay. And 
then, at last, saving the results as text and mat files in the result 
folder. 
 
4.3.2 Image J plugins – Filopodyan and neuron J 
 
4.3.2.1 Filopodyan 
 
Filopodyan is developed as an image analysis open-source software 
for the analysis and for the automated segmentation of filopodia’s 
which can also annotate to track a huge number of the dynamic 
filopodia’s. The Filopodyan software is written in R and Fiji which 
is publicly accessible at https://github.com/gurdon-
institute/Filopodyan. 
The method to analyze the neurite with Filopodyan as follows:  
• The chosen image is firstly open into the Fiji software. 
• By free-hand line outline the particular cell for measuring 

the neurite. 
• Removing the outside things from the edit scroll down 

menu “clear the outside”. 
• Measuring the selected cell neurite by the plugin 

Filopodyan automatically.  
• Calculation of the length of the neurites will be seen in 

the selected spreadsheet resulted from the Filopodyan 
plugin 
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A typical image from the neurite database was loaded into FIJI. With 
the help of the freehand line tool, we outline the particular cell for 
measuring the neurite. Then after cleaning the other cell, we will 
measure the selected cell from Filopodyan. Next, we will select 
Filopodyan from the plugins in FIJI. The pixel size which is set as 1 
pixel, thresholds are chosen from the drop-down menu and the ED 
iterations, base back frames, and LoG sigma are set. The program 
then runs the neurites are selected in the images automatically. The 
length of each neurite in the table pops up once the Filopodyan filter 
is applied.  
 
4.3.2.2 Neuron J  
 
Neuron J is a very well-known image J plugin which helps us for the 
quantification and tracing of the elongated image structure. This 
program is able to handle one image at one time [103]. The 
following method to detect the neurites from the neuron J image j 
plugin: 
First of all, the image is selected from the neurite database and then 
opens the neuron J plugin inside the image j software. For this 
purpose, we use the command as plugin—neuron J. Then next is to 
open the image in neuron J plugin by following command as neuron 
J----load image. Then manually trace all the neurites with the help 
of function inside the neuron J plugin as “Add tracing”. Then by 
adding all the tracing, we need to measure the tracing with “measure 
tracing” this will measure the length of neurites. 
The pipeline to perform the morphological analysis by opting the 
image from neurite database with Neuron J is as follows:  
• The chosen image is firstly open into image J software.  
• By selecting the neuron J plugin menu of the image J. The 

neuron J toolbar will replace the image J toolbar. 
• Then open the image to be measured for neurite 

detection. 
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• Manually load the neurites tracings and then measure the 
tracing of the neurites by the “Measure tracing” the 
option inside the neuron J plugin menu. 

• Neuron J will display the tracing measurements as a 
length of neurites. 

 
4.3.2.3 Cell profiler 
 
The selected images were processed by adding modules to make a 
pipeline. When the pipeline is structured by organizing the modules 
through the setting option, then we can run our structured pipeline 
to produce the results. The modules are shown in the figure below 
as a menu of “analysis modules” which is a pipeline to analyze the 
neurites.  
 

 
 

Figure56 : Screenshot of the cell profiler software showing the analysis 
modules which is used as pipeline for producing the results by cell profiler. 
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 4.4 Dataset of neurites 
 
The dataset of neurites from a published report by Laketa et 
al., [104] has been taken from the 
http://neurite.embl.de/html/microtubule-
associated_protein2.html. We have analyzed the neurites 
from the neurite database that were labeled for EB-1, 
KIF3C, Tubulin alpha 2 (TUBA 2), the major constituent of 
the microtubules and the hypothetical protein Q9H0Q7 
which is localized to the cytoskeleton of PC12 cells. The 
time-lapse data is used as eb1-1.mov, KIF3C.mov, Tubulin 
alpha 2.mov, Hypothetical protein Q9H0Q7.mov which are 
converted into the number of images by ffmpeg software and 
then used for the analysis. 
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4.5 The experimental Algorithms and protocols 
 
1. The following experimental protocol for performing the 
quantitative morphological analysis of the data measured by Image 
J represents an example of procedure among a big set of realized 
ones [105]: 

 
 
Figure 57 : Flowchart of thresholding and morphometric analysis of nuclei and 
tubulin from confocal microscopy images of cytoskeleton.  
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2. The algorithm for calculating area, perimeter, major axis, minor 
axis and entropy of the nuclei through Matlab program 
 

 

Read	Image	in	MATLAB	
program

Image	Inhacement

Convert	into	gray

Thresholding

clear	the	nuclei	from	the	
border	of	the	image

fspecial	and	median	
filteration	applied	to
remove	the	noise

Remove	small	particles	
from	the	image

Watershed	segmentation	
applied	to	seperate	the	

nuclei

Entropy	calculated

Number	of	objects	counted

Calculate Area,	Perimeter,	
Major	axis,	Minor	axis
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3. The algorithm for calculating circularity of the nuclei through 
Matlab program 
 

 
 

Read	Image	in	MATLAB	
program

Image	enhacement

Resize	the	image

Convert	into	gray

Thresholding

Remove	the	noise	from	the	
image

Clear	the	cell	from	the	image	
borders

Watershed	image	segmentation	
applied	to	seperate	the Nuclei

Fill	the	holes	

Calculate	circularities
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4. The algorithm for calculating solidity of the nuclei through 
Matlab program 

 

Read	Image	in	MATLAB	
program

Image	Inhacement

Convert	into	gray

Thresholding

clear	the	nuclei	from	the	
border	of	the	image

fspecial	and	median	
filteration	applied	to remove	

the	noise

Remove	small	particles	from	
the	image

Watershed	segmentation	
applied	to	seperate	the

nuclei

Number	of	objects	counted

Calculated	solidity
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5. The algorithm for calculating area, perimeter, major axis, minor 
axis of the tubulin through Matlab program 

 

Read	Image	in	MATLAB	
program

Image	Inhacement

Convert	into	gray

Thresholding

clear	the tubulin from	the	
border	of	the	image

fspecial	and	median	
filteration	applied	to
remove	the	noise

Remove	small	particles	
from	the	image

Watershed	segmentation	
applied	to	seperate	the	

tubulin

Entropy	calculated

Number	of	tubulin	
counted

Calculate Area,	Perimeter,	
Major	axis,	Minor	axis
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6. The algorithm for calculating circularities of the tubulin through 
Matlab program 

 

Read	Image	in	MATLAB	
program

Image	enhacement

Resize	the	image

Convert	into	gray

Thresholding

Remove	the	noise	from	the	
image

Clear	the	tubulin	from	the	
image	borders

Watershed	image	segmentation	
applied	to	seperate	the tubulin

Fill	the	holes	

Calculate	circularities
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7. Workflow of the cell profiler by which neurites are detected in 
the  images taken from neurite database www.neurite.embl.de 
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CONCLUSION 
 
The main task of this PhD course was to build a workframe to use 
bioinformatics tools to support biologists. For this reason many 
types of software have been taken into consideration and a careful 
selection has been made. Furthermore, original code was developed 
to improve the analytical capacity in specific cases. We then 
identified 2 uses cases as an application example. A work of 
benchmarking needs instead the availability of many uses cases, 
each representative of an application class. A benchmarking work 
could be the natural consequence of the work done so far and could 
be a topic for an upcoming post doctoral course. 
 
I applied my computerized methods to study the images of slides 
with samples of cell cultures under simulated microgravity 
conditions (via RPM – Random Positioning Machine) and the real 
exposure which came from the CYTOSPACE experiment 
conducted by a team of our laboratory on April 2015. The 
calculations have been done for evaluating the CSK architecture and 
density of fibers (tubulin, Microtubules, Intermediate filaments).  
Furthermore, we have analyzed the difference between the neurites 
images taken from the neurite database and examined the results by 
comparing (a) custom-built code using the MATLAB image 
processing toolbox (b) Neuron J (c) Cell profiler pipeline (d) 
Filopodyan. The MATLAB code for studying neurites has used K-
means clustering to segment the image based on the intensity value 
and we manually select the cluster that contains neurite. Finally, we 
use some morphological operations to segment the neurites. The 
fitting of a logistic curve to evaluate the growth rate (r) of neurites 
is a first step towards a more comprehensive quantification and 
automation of the neurite analysis. Hence in the future, the analysis 
of the neurite images could be automated to measure the network 
properties and correlation with the cell shape.   
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Appendix A: 
 
MATLAB CODES FOR THE DETECTION OF 
CYTOSKELETON (NUCLEI, TUBULIN) ANALYSIS 

 
#Image processing of the Nuclei  
a=imread('~/Desktop/spacemel.jpg'); 
>> R= a (:,:,1); 
>> G= a (:,:,2); 
>> B= a (:,:,3); 
>> imshow(B,'InitialMagnification','fit'); 
>> imshow(G,'InitialMagnification','fit'); 
>> imshow(B,'InitialMagnification','fit'); 
>> B2 = imclearborder (B); 
>> imshow(B2,'InitialMagnification','fit'); 
>> Kaverage = filter2(fspecial('average',3),B2)/255; 
>> figure 
>> imshow(Kaverage,'InitialMagnification','fit'); 
>> Kmedian =medfilt2(B2); 
>> imshow(Kmedian,'InitialMagnification','fit'); 
>> C= imnoise (Kmedian,'gaussian',0.005); 
>> D= wiener2(C,[5 5]); 
>> imshow(D,'InitialMagnification','fit'); 
>> imshow(C,'InitialMagnification','fit'); 
>> figure , 
>> imshow(D,'InitialMagnification','fit'); 
>> threshold = 90; 
>> E=D>threshold; 
>> imshow(E,'InitialMagnification','fit'); 
>> F= imfill(E,'holes'); 
>> imshow(F,'InitialMagnification','fit'); 
>> L=watershed(F); 
>> imshow(L,'InitialMagnification','fit'); 
>> Lrgb=label2rgb(L); 
>> imshow(Lrgb,'InitialMagnification','fit'); 
>> imshow(imfuse(F, Lrgb)) 
>> axis([10 175 15 155]) 
>> G= ~bwareaopen(~F,10); 
>> imshow(G,'InitialMagnification','fit'); 
>> H=-bwdist(~bw); 
Undefined function or variable 'bw'. 
  
>> H=-bwdist(~F); 
>> imshow(H,'InitialMagnification','fit'); 
>> Ld = watershed(H); 
>> imshow (label2rgb(Ld)) 
In imshow (line 332)  
>> G=F; 
>> G(Ld == 0) = 0; 
>> imshow(G,'InitialMagnification','fit'); 
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>> mask = imextendedmin (H,2); 
>> imshowpair(F,mask,'blend') 
> In images.internal.initSize (line 71) 
  In imshow (line 332) 
  In imshowpair (line 126)  
>> D2=imimposemin(H,mask); 
>> Ld2=watershed(D2); 
>> bw3=F; 
>> bw3(Ld2 == 0)= 0; 
>> imshow(bw3,'InitialMagnification','fit'); 
 
#Counting the nuclei and calculating the 
density of the Nuclei 
 
I=imread('nuclei.jpg'); 
b=imopen(I,ones(5,5)); 
figure;imshow(b,'InitialMagnification','fit'); 
d=bwareaopen(b,1000); 
cc=bwconncomp(d); 
objects_per_unit_area = cc.NumObjects/(size(d,1) * size(d,2)); 
 
#To set the contrast in the image  
>> clear 
>> i=imread('image_epi.jpg'); 
>> h1=figure; 
>> imshow('image_epi.jpg'); 
>> h2=figure; 
>> imcontrast(h1); 

#to set the contrast in the tubulin image 
a=imread('Tubulin.jpg'); 
imcontrast 
h1=figure; 
imshow('tubulin.jpg'); 
h2=figure; 
imshow('tubulin.jpg'); 
imcontrast(h1); 
 

#Removing the noise from the image 
 
c=imclearborder(b); 
imshow(c); 
d=imadjust(c); 
figure, imshow(d); 
Kmedian=medfilt2(d); 
imshow(Kmedian); 
e=imnoise(Kmedian,'gaussian',0.005); 
f=wiener2(e,[5 5]); 
imshow(f); 
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#to crop the image 
 
figure,imshow(I,(1:100,:,: )) 
figure,imshow(I,(1:100,: )) 
 

#to save the nuclei in the red channel for 
posterior usage 
imwrite(R,’hela.red’,’jpeg’) 
imwrite(R,’hela.red,jpeg’) 
imwrite(R,’hela.red.jpeg’,’Quality’,100) 
 
the imtool allow us to interactively explore an image 
imtool(I); 
imtool(‘hela’) 
imtool(I,’InitialMagnification’,200) 
 
BW= imread(‘acell.tif’); 
imshow(BW) 
bwarea(BW) 

#to find area perimeter minor and major axis 
of the nuclei 
% clc; 
% close all; 
% clear all; 
I =imread('image1.jpg'); 
I =rgb2gray(I); 
Threshold = 10; 
I2 = I>Threshold; 
imshow(I2,'InitialMagnification','fit'); 
I3=imfill(I2,'holes'); 
imshow(I2,'InitialMagnification','fit'); 
I4=imclearborder(I3); 
imshow(I4,'InitialMagnification','fit'); 
Kaverage = filter2(fspecial('average',3),I4)/255; 
figure; 
imshow(Kaverage,'InitialMagnification','fit'); 
Kmedian = medfilt2(I4); figure; 
imshow(Kmedian,'InitialMagnification','fit'); 
I5 = bwareaopen(Kmedian, 100); 
imshow (I5,'InitialMagnification','fit'); 
I6 = watershed (I5); 
Lrgb = label2rgb(I6); 
imshow(Lrgb,'InitialMagnification','fit'); 
imshow(imfuse(I5,Lrgb)); 
axis([10 175 15 155]) 
bw2 = ~bwareaopen(~I5, 10); 
imshow(bw2,'InitialMagnification','fit'); 
D= -bwdist(~I5); 
imshow(D,[]); 
Ld = watershed(D); 
imshow (label2rgb(Ld)); 
bw2=I5; 
bw2(Ld == 0) = 0; 
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imshow(bw2) 
mask = imextendedmin(D, 2); 
imshowpair(I5,mask,'blend'); 
D2 = imimposemin(D,mask); 
Ld2 = watershed(D2); 
bw3 = I5; 
bw3(Ld2 == 0) = 0; 
imshow(bw3); 
  
cc= bwconncomp(bw3, 8); 
n= cc.NumObjects; 
  
Area = zeros(n,1); 
Perimeter = zeros(n,1); 
Majoraxis = zeros(n,1); 
Minoraxis = zeros(n,1); 
    K=  
regionprops(cc,'Area','Perimeter','MajorAxisLength','MinorAxisLengt
h');  
     
  for i=1:n 
      Area(i) = K(i).Area; 
      Perimeter(i) = K(i).Perimeter; 
      Majoraxis(i)=K(i).MajorAxisLength; 
      Minoraxis(i)=K(i).MinorAxisLength; 
  end 
  graindata(1, 1) = mean(Area); 
  graindata(2, 1) = mean(Perimeter); 
  graindata(3, 1) = mean(Majoraxis); 
  graindata(4, 1) = mean(Minoraxis); 
 
#To find the circularities of the image 
nuclei 
I = imread ('image4.jpg'); 
I = imresize(I, [500,500]); 
subplot(2,2,1) 
imshow (I) 
title('input image') 
grayimage = rgb2gray(I); 
subplot(2,2,2) 
imshow(grayimage) 
title('GrayScale Image') 
BinaryImage = imbinarize(grayimage); 
subplot(2,2,3) 
imshow(BinaryImage) 
title('Initial (Noisy) Binary Image') 
BinaryImage = bwareaopen(BinaryImage, 100); 
subplot(2,2,4) 
imshow(BinaryImage) 
title('Cleaned Binary Image') 
% BinaryImage2 = imclearborder(BinaryImage); 
% subplot(3,2,1) 
% imshow(BinaryImage2); 
% title('Clear border Binary Image') 
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[LabeledImage, Numberofobjects] = bwlabel(BinaryImage); 
Stats = regionprops('Table', 
LabeledImage,'FilledArea','Perimeter'); 
FilledImage = imfill(BinaryImage,'holes'); 
Boundaries = bwboundaries(FilledImage); 
Perimeter = [Stats.Perimeter]; 
FilledArea = [Stats.FilledArea]; 
Circularities= Perimeter.^2./(4*pi*FilledArea); 

 
#calculating the contrast and homogeneity 
I =imread('image4.jpg'); 
I2 =rgb2gray(I); 
% imshow(I2); 
glcm = graycomatrix(I2, 'offset',[2 0;0 2]); 
stats = graycoprops(glcm,{'contrast','homogeneity'}) 
 

#To calculate the solidity of the Nuclei the 
code will run 
I =imread('clearnuclie.jpg'); 
imshow(I) 
% I2 =rgb2gray(I); 
% % imshow(I2); 
% glcm = graycomatrix(I2, 'offset',[2 0;0 2]); 
% stats = graycoprops(glcm,{'contrast','homogeneity'}) 
BW = im2bw(I,graythresh(I)); 
L= bwlabel(BW); 
figure, imshow(L) 
S = regionprops(L, {'Solidity'}); 
Solidity = [S. Solidity]; 
figure; imshow(ismember(L, find(Solidity >= 0.9))) 
figure; imshow(ismember(L, find(Solidity <= 0.25))) 
 

#program for calculating circularities of 
Nuclei and tubulin  
I = imread ('image1.jpg'); 
I = imresize(I, [500,500]); 
subplot(2,2,1) 
imshow (I) 
title('input image') 
grayimage = rgb2gray(I); 
subplot(2,2,2) 
imshow(grayimage) 
title('GrayScale Image') 
% BinaryImage = imbinarize(grayimage); 
Threshold=10; 
BinaryImage=grayimage>Threshold; 
subplot(2,2,3) 
imshow(BinaryImage) 
title('Initial (Noisy) Binary Image') 
BinaryImage = bwareaopen(BinaryImage, 100); 
BinaryImage = imclearborder(BinaryImage); 
subplot(2,2,4) 
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imshow(BinaryImage) 
title('Cleaned Binary Image') 
% BinaryImage2 = imclearborder(BinaryImage); 
% subplot(2,3,[3,2]) 
% imshow(BinaryImage2); 
% title('Clear border Binary Image') 
J= entropy(BinaryImage); 
[LabeledImage, Numberofobjects] = bwlabel(BinaryImage); 
Stats = regionprops('Table', 
LabeledImage,'FilledArea','Perimeter'); 
FilledImage = imfill(BinaryImage,'holes'); 
Boundaries = bwboundaries(FilledImage); 
Perimeter = [Stats.Perimeter]; 
FilledArea = [Stats.FilledArea]; 
Circularities= Perimeter.^2./(4*pi*FilledArea); 
 

 
#program with the water shed algorithm 
 
I = imread ('image1.jpg'); 
I = imresize(I, [500,500]); 
subplot(2,2,1) 
imshow (I) 
title('input image') 
grayimage = rgb2gray(I); 
subplot(2,2,2) 
imshow(grayimage) 
title('GrayScale Image') 
% BinaryImage = imbinarize(grayimage); 
Threshold=10; 
BinaryImage=grayimage>Threshold; 
subplot(2,2,3) 
imshow(BinaryImage) 
title('Initial (Noisy) Binary Image') 
BinaryImage = bwareaopen(BinaryImage, 100); 
BinaryImage = imclearborder(BinaryImage); 
subplot(2,2,4) 
imshow(BinaryImage) 
title('Cleaned Binary Image') 
% BinaryImage2 = imclearborder(BinaryImage); 
% subplot(2,3,[3,2]) 
% imshow(BinaryImage2); 
% title('Clear border Binary Image') 
I6 = watershed (BinaryImage); 
Lrgb = label2rgb(I6); 
imshow(imfuse(BinaryImage,Lrgb)); 
axis([10 175 15 155]) 
bw2 = ~bwareaopen(~BinaryImage, 10); 
D= -bwdist(~BinaryImage); 
imshow(D,[]); 
Ld = watershed(D); 
imshow (label2rgb(Ld)); 
bw2=BinaryImage; 
bw2(Ld == 0) = 0; 
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mask = imextendedmin(D, 2); 
% imshowpair(BinaryImage,mask,'blend'); 
D2 = imimposemin(D,mask); 
Ld2 = watershed(D2); 
bw3 = BinaryImage; 
bw3(Ld2 == 0) = 0; 
imshow(bw3); 
J= entropy(BinaryImage); 
[LabeledImage, Numberofobjects] = bwlabel(bw3); 
Stats = regionprops('Table', 
LabeledImage,'FilledArea','Perimeter'); 
FilledImage = imfill(bw3,'holes'); 
Boundaries = bwboundaries(FilledImage); 
Perimeter = [Stats.Perimeter]; 
FilledArea = [Stats.FilledArea]; 
Circularities= Perimeter.^2./(4*pi*FilledArea); 
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