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ABSTRACT 

 
Exosomes are small, cell-secreted vesicles that carry specific 

repertoires of proteins and RNAs to recipient cells. The selective 

transfer of proteins and RNAs in the exosomal cargo represents 

an important mean of inter-cellular communication.  

The exosomal microRNAs (miRNAs) can modulate the cellular 

microenvironment and exosomal RNA cargo selection is 

deregulated in pathological conditions. On the other hand, the 

mechanisms controlling specific RNA sorting into extracellular 

vesicles are still poorly understood. The selectivity of miRNA 

loading encodes the inter-cellular message carried by the 

exosome, but the mechanism of selectivity at the molecular level 

is a key question. 

In this laboratory evidence has been recently provided on the 

mechanism allowing the loading in exosomes of a specific 

repertoire of miRNAs. This by identifying and determining the 

functional role of both a specific miRNAs motif and a specific 

interactor of it, i.e. the RNA-binding protein SYNCRIP 

(Synaptotagmin-binding Cytoplasmic RNA-Interacting Protein, 

hnRNP-Q or NSAP1) (1). SYNCRIP knock-down impairs 

sorting of miRNAs in exosomes. Furthermore, SYNCRIP 

directly binds to specific miRNAs enriched in exosomes sharing 

a common extra-seed sequence (hEXO motif). The hEXO motif 
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has a role in the exosome miRNA loading, since its embedment 

into a poorly-exported miRNA enhances the sorting of this 

molecule into exosomes.   

On the other hand, a common putative CYTO motif, common to 

intracellular-enriched miRNAs, was previously characterized 

(2).  

In this study, we demonstrated in hepatic cells that PCBP2 (Poly 

C-binding protein 2, aCP2 or hnRNPE2) is a protein interactor 

that specifically, and directly, binds to intracellular-retained 

miRNAs embedding a CYTO motif.  

PCBP2 is localized in the intracellular compartment and its acts 

as a “retention factor”. Its knock-down, indeed, determines the 

export of specific CYTO-miRNAs in exosomes.  

Our results provide new insights into the knowledge of 

mechanisms controlling miRNA partition in the cell, 

characterizing a new negative regulator of exosomal loading.  
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INTRODUCTION 

1. The Extracellular Vesicles (EV) and the 

growing role of the Exosomes 
 
Extracellular vesicles (EVs) are vesicles composed of 

membrane whose release is evolutionally conserved in cells, 

ranging from prokaryotes to higher eukaryotes (2).  

The secretion of EVs was initially described as a mean to 

eliminate unneeded compounds from the cell; now it is known 

that EVs are more than just waste carriers being able to exchange 

components between cells and to act as signaling vehicles in 

normal cell homeostatic processes or as a consequence of 

pathological developments (2; 3; 4; 5) 

Based on their biogenesis, involving membrane-trafficking pro-

cesses, EVs can be divided in two main categories: exosomes 

and microvesicles (6) (Fig.1).  

Microvesicles, formerly called ‘platelet dust’, were first 

described as subcellular material originating from platelets in 

normal plasma and serum (7). They are characterized by a 

diameter of 50-1,000 nm and are generated by an outward 

budding of the plasma membrane and the subsequent fission and 

release in the extracellular space (8). 
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On the other hand, exosomes are intraluminal vesicles (ILVs) 

with a diameter of 30-100 nm. They are made up an inward 

budding of endosomal membrane during maturation of 

multivesicular endosomes (MVEs) and secreted upon fusion of 

MVEs with the cell surface (9; 5).  

In recent years, exosomes have emerged as biological agents, 

essential in intercellular communication, with a therapeutic 

potential. In the era of nanomedicine, the study of mechanisms 

regulating the sorting of nucleic acids and proteins in exosomes 

are fundamental, as their changing content both in physiological 

and pathological conditions. This is necessary to exploit the 

therapeutic potential of exosomes in delivering drugs. 

 
 
Fig.1 The Extracellular vesicles:  the microvesicles are formed either 
by budding of the plasma membrane, instead the exosomes are release 
by the fusion of multivesicular endosomes (MVEs) with the plasma 
membrane (6) . 
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1.1 Biological properties of exosomes 

 

Studies on exosomes’ composition show that vesicles can carry 

various cargoes (proteins, lipids and nucleic acids). Their nature 

and abundance are cell-type-specific and often influenced by the 

physiological or pathological state of the donor cell (10; 11) 

(Fig. 2).   

Protein and lipid configuration of exosomes depends on the 

different ways of biogenesis. They can be formed in two 

manners, so called ESCRT-dependent and ESCRT-independent 

pathways (Fig. 3).  

In the first case, the Endosomal Sorting Complex Required for 

Transport (ESCRT) machinery is involved in the formation of 

ILVs and consists of four complexes associated proteins (12). 

The former machinery acts in a stepwise manner: ESCRT-0 is 

responsible for clustering in a ubiquitin-dependent manner; 

ESCRT-I and ESCRT-II induce bud formation; ESCRT-III 

drives vesicle scission. Moreover, accessory proteins (especially 

the VPS4 ATPase) are involved in this mechanism to allow 

dissociation and recycling of ESCRT machinery. Also, Syntenin 

and ALIX (the ESCRT accessory protein ALG-2 interacting 

protein) are involved in linking between cargoes and ESCRT-III 

(13; 12).  
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The ESCRT-independent mechanisms can involve: lipids, 

tetraspanins or heat shock proteins.   

In case of lipid involvement, ESCRT-independent mechanism 

of exosome biogenesis requires ceramide. In fact, it can allow 

the generation of membrane subdomains with a spontaneous 

negative curvature on the membranes. Alternatively, ceramide 

can be metabolized to sphingosine-1-phosphate to activate Gi 

protein-coupled sphingosine 1 phosphate receptor, essential for 

cargo sorting into exosomal ILVs (14).  

 

 

 

 
Fig.2 The exosomes composition:  the exosomes can carry various 
cargoes including proteins, lipids and nucleic acids. The particular 
composition will directly affect the fate and function of extracellular 
vesicles, strengthening the importance of selective cargo-sorting 
mechanisms. Of note, depending on the cell type, exosomes will 
display a set of cell-type-specific proteins that account for their 
specific fates and functions (6) . 
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Proteins of the tetraspanin family (CD9, CD63, CD81 and 

CD82) can regulate ESCRT-independent endosomal sorting, 

too. Mechanistically, these proteins form clusters and dynamic 

membrane platforms with other tetraspanins or with different 

transmembrane and cytosolic proteins, probably acting in the 

formation of the microdomains that will bud (15). Recent 

structural analysis of tetraspanins revealed a cone-like structure 

with an intramembrane cavity that can accommodate 

cholesterol. Clustering of several tetraspanins could induce 

inward budding of the microdomain in which they are enriched 

(16). Finally, the heat shock proteins (HSP70, HSP90) turn out 

to be involved in sequestration of cytosolic proteins in to ILVs 

(17). In sum, both ESCRT-dependent and ESCRT-independent 

mechanisms operate in exosome biogenesis. Their contributions 

may vary depending on the cargoes, recruiting them, and the cell 

type. 

In addition to the lipidic and proteic component linked to the 

biogenesis of exosomes, various other proteins are present on 

membrane vesicles. They are fundamental to drive mobilization 

of secretory MVBs and fusion of their limiting membrane with 

plasma membrane. In fact, the RAB family of small GTPase 

proteins (Rab4, Rab5, Rab7, Rab9, Rab11, Rab27, Rab35) 

controls different steps of intracellular vesicular trafficking: 

budding, mobility through cytoskeleton interaction, and docking 
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on the target compartment, leading to membrane fusion (18) 

(Fig. 3). Apart from proteins, exosomes also carry nucleic acids, 

including RNAs (mRNAs and non-coding RNAs) and DNA 

sequences (19; 20; 21; 22). The nucleic acids transfer plays a key 

role in cell-cell communication in many different contexts and 

pathologies. 

The mechanisms involved in targeting nucleic acids to exosomes 

are so far elusive. Different machineries have been proposed to 

perform specific nucleic acid sorting: the ESCRT‑II  

subcomplex acting as an RNA-binding complex (23); the 

tetraspanin-enriched microdomains sequestering RNA-binding 

proteins in the membrane subdomains (24; 25); the miRNA-

induced silencing complex (miRISC) and protein argonaute 2 

(AGO2), both mediating RNA-silencing processes (26).  
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Fig.3 The intracellular machineries of exosome biogenesis and 
secretion. Exosomes are formed as ILVs by budding into early 
endosomes and MVBs. Several molecules are involved in the 
biogenesis of ILVs, such as the ESCRT machinery, lipids (such as 
ceramide) and the tetraspanins. The fate of MVBs can be either fusion 
with lysosomes or fusion with the PM, which allows the release of 
their content to the extracellular milieu. Several RAB proteins 
(RAB11, RAB27 and RAB35) have been shown to be involved in the 
transport of MVBs to the PM and in exosome secretion. In addition, 
SNAREs are probably involved in fusion of these MVBs with the PM 
(12). 
 

1.2 Physiological and pathological functions of 

exosomes in cell-to-cell communication 

 

Exosomes exert their effects on fundamental biological 

processes in different manner. They can directly activate cell 

surface receptors, merge their membrane contents into the 

recipient cell plasma membrane and deliver effectors (miRNAs, 

mRNAs, transcription factors, oncogenes and infectious 

particles into recipient cells) (27; 28).  

The exosomes control fundamental cellular and biological 

functions (Fig 4). 

They have been isolated from plasma, urine, tears, sweat, milk, 

seminal fluid, cerebrospinal fluid, participating in the 

maintenance of normal physiology (as stem cell maintenance, 

tissue repair, immune surveillance or blood coagulation) (29; 30; 

25; 31). 
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Again, in addition to classical synaptic neurotransmission, 

neurons communicate via the secretion of exosomes that can 

contribute to a synaptic plasticity, too. It is demonstrated a 

greater glutamatergic activity with an increased release of 

extracellular vesicles containing neurotransmitter receptors 

from cortical neurons (32; 33). 

Furthermore, immune responses can be regulated by the 

exosomes activity. Several mechanisms have been described for 

the suppression of the immune response: the exosomes can 

enhance the function of regulatory T cells, suppress natural killer 

(NK) and CD8+ cell activity, and inhibit monocyte 

differentiation into dendritic cells (DC) as well as DC maturation 

(34; 35). By contrast, the effects of immune activation can be 

mediated by exosome‑promoted proliferation and survival of 

hematopoietic stem cells and the activation of monocytes, B 

cells and NK cells (36; 37). 

In addition to their fundamental role in regulation biological 

processes, exosomes are often involved in the pathogenesis of 

the disease (Fig. 4). 

The best pathologic understood role of exosomes is their 

involvement in tumoral biology. In fact, the tumor-derived 

exosomes (TDEs) are involved above all in processes for the 

formation of a pre-metastatic tumor niche and for the stimulation 

of tumor progression (38; 39). For instance, TDEs can 
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determine: neoplastic proliferation, angiogenesis, matrix 

remodeling via the secretion of matrix proteases, metastatic 

development and, finally, immune escape by modulating T cell 

activity (40; 41; 42; 43). 

For this reason, TDEs have a fundamental role in many steps of 

tumor progression. Beyond cancers, exosomes have been 

implicated in the spread of numerous pathogens, including: 

HIV‑1, via the horizontal transfer of C-C chemokine receptor 5 

(CCR5), essential for viral cell entry; Epstein–Barr virus (EBV), 

via the transfer of viral miRNAs, repressing the expression of 

EBV target genes in non-infected cells; prions, via the selective 

delivery of PrP with specific modifications and glycoforms into 

neuronal cells (44; 45; 46). Finally, exosomes contribute to the 

local propagation of neurodegenerative disease, allowing 

longer-range communication within the central nervous system 

and affecting static neural networks located at a distance.  

For instance, it has been shown that in the context of Alzheimer's 

disease, in which the pathologic β-amyloid peptides have been 

shown to be released in association with exosomes, contributing 

to the pathogenic deposition of amyloid-β in other parts of the 

brain (47). Similarly, the synuclein α protein has been detected 

inside the extracellular vesicles, providing a local propagation of 
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Parkinson's disease from enteric neurons to the brain and, so, to 

the superior cortical centers (48).  

 
 
 
Fig.4 Roles of extracellular vesicles in normal physiology and 
disease pathogenesis (49).  
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2. Mechanisms controlling the selective loading 

of miRNAs in exosomes 

 
The study of exosomal content through next generation 

sequencing (NGS) shows that the RNAs are the most abundant 

components in the vesicles. In particular, in addition to miRNAs 

and mRNAs, small ribosomal RNA (rRNAs) have been 

identified, together with structural RNAs (vRNAs, Y-RNAs and 

SRP-RNAs) and tRNAs, which are preferentially fragmented 

(50). 

The RNA sorting into the exosomes is conceivably controlled 

by several mechanisms, still not fully understood. 

With respect to mRNAs, a role for conserved zip-codes in the 3ʹ 

untranslated regions has been reported  (51). Concerning 

miRNAs, different players can affect the sorting (Fig. 5). The 

neural sphingomyelinase 2 (nSMase2) is the first protein 

identified as involved in the loading of miRNAs into exosomes, 

although the mechanisms remain largely unclear. To date, the 

overexpression of nSMase2 seems to determine an increase in 

the number of exosomal miRNAs. On the other hand, there is a 

reduction of exported miRNAs in conditions of knock out 

nSMase2 (52). 

Furthermore, the RNA-binding protein Y-box protein 1 

(YBX1), located in the exosomes, is responsible for sorting of 
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some miRNAs and the other small noncoding RNA (tRNAs, Y-

RNAs and Vault RNAs) in exosomes.  YBX1 physically 

interacts with miR-233 and determines its packaging into 

exosomes (53; 54). 

Moreover, with respect to sequence, miRNAs with 3-end rich of 

poly (U) are preferentially sorted into exosomes, while miRNAs 

with 3-end rich of poly (A) are preferentially intracellular (55). 

Furthermore, through proteomic studies, AGO2 was identified 

in the exosomes. This suggests a correlation between AGO2 and 

the miRNA sorting. In fact, the knockout of AGO2 is 

responsible of decrease of the preferentially-exported miRNAs, 

such as miR-451, miR-150 and miR-142-3p (56). 

Notably specific proteins, described in the next section, are 

known to bind specific elements of RNA sequence and to control 

the sorting of miRNAs into exosomes.  
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Fig.5 The sorting mechanism for exosomal miRNAs (57). 
 

2.1 Sequence-dependent miRNA sorting in exosomes 

 
Currently, the research is focusing on the study of miRNA 

specific sequence responsible of loading into the exosomes.  

There are only two miRNA motifs identified for the exosomal 

sorting: EXO- and hEXO- motif. 

The first one is the “EXO Motif” (GGAG) identified by 

Villarroya-Beltri et al. in 2013 (58).  

Analyzing miRNA profiles of primary T lymphoblasts and their 

exosomes, microarray assay shows that a lot of exosomal 
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miRNAs present a common sequence in the 3’ half, so called 

EXO-motif. 

Mutagenesis experiments show that EXO-motif is necessary for 

miRNA sorting. Furthermore, mass spectrometry identifies the 

Heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) 

in the exosomes. The sumoylated hnRNPA2B1 binds 

specifically the EXO-motif and is the regulator of EXO-miRNA 

sorting into exosomes. 

The second one is the hEXO-motif (GGGCUG), identified by 

Santangelo et al. in 2016 (1), through analysis of miRNA 

profiles in murine hepatocytes and their exosomes. 

The hEXO-motif is responsible of miRNA sorting only if is 

present in the extra seed. By biotin miRNA pull down, mass 

spectrometry and RIP analysis, the SYNCRIP (synaptotagmin-

binding cytoplasmic RNA-interacting protein; also known as 

hnRNP Q or NSAP1) is found to interact directly on the hEXO-

motif. The knockout of SYNCRIP is responsible of increase of 

hEXO-miRNAs in intracellular compartment. Also, in this case, 

mutagenesis experiments show that hEXO-motif is necessary 

for the SYNCRIP binding and, then, for miRNA sorting. 
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3. Role of Heterogeneous Nuclear 

Ribonucleoprotein (hnRNPs) in controlling 

miRNA partition  

 
Heterogeneous nuclear ribonucleoproteins (hnRNPs) consist in 

a large family of RNA-binding proteins (RBPs). They are 

approximately 20 proteins. Most of them present a nuclear 

localization signal (NLS), predominantly localized in the 

nucleus. The hnRNP proteins frequently undergo post-

translational modifications (methylation, phosphorylation, 

ubiquitination and sumoylation), with changes in biological 

activity and subcellular localization.  

The hnRNPs are considered the key proteins in the nucleic acid 

metabolism. They have a role in the post-transcriptional 

processing and transport of RNA molecules (59). 

Through the binding with specific sequences, hnRNPs regulate 

RNA processing, nucleo-cytoplasmic shuttling and maturation, 

intra-compartmental localization and turnover (60).  

The hnRNPs are present in the cell and in extracellular space. 

These proteins are involved in the secretion of RNA in 

exosomes. The mechanism for binding and sorting is still 

unknown. 
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3.1 hnRNP A2B1: structure and functions 

 

The hnRNP A2B1 is a ubiquitous protein by weight of 37 kDa. 

This protein consists of an N-terminal and a C-Terminal 

structural domain (Fig 6). In the N-terminal end there are two 

RNA recognition motif (RRM)-type RNA-binding domains, 

characterized by four β-sheets and two α-helices (βαββαβ) (59). 

In the C-terminal end, protein shares an arginine-glycine-rich 

subdomain that contains repeated arginine-glycine-glycine 

(RGG) sequences. The RGG region is an auxiliary domain. It is 

responsible for homologous and heterologous interactions with 

other hnRNPs, with capacity of binding RNA. For this reason, 

RGG-rich regions are considered an alternative RNA-binding 

domain. They are fundamental for the cellular localization of 

protein, too. In particular, RGG domain contains a nuclear 

localization sequence regulated by arginine methylation (61). 

The hnRNP A2B1 is involved in mRNA translation and splicing. 

It plays an important role in oligodendrocytic and neuronal 

mRNA trafficking, binding an RNA transport signal present in 

the 3’UTR, called A2 response element (A2RE) (62; 63).  

hnRNP A2B1 is involved in HIV RNA trafficking to the 

packaging sited by the binding to the A2RE sequences, too (64).  

Thanks to the prion-like domain, the hnRNP A2B1 can take part 

to the RNA granule assembly (cytoplasmatic riboprotein 
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granules consisting of nontranslated mRNA and translation 

repressors) (65). 

Finally, sumoylated hnRNP A2B1 can carry the miRNA in the 

exosomes thanks to the ability of interacting with cytoskeletal 

proteins and binding directly the EXO motif (66). 

 

3.2 SYNCRIP: structure and functions 

 

SYNCRIP (hnRNP Q) is a conserved RNA-binding protein by 

the molecular weight of 73 kDa. The hnRNP Q presents three 

isoforms, called hnRNP Q1-Q3, according to alternative 

splicing events. 

The protein contains three conserved RRM domains and an acid-

rich domain in the N-terminal end. The a-helix acid-rich domain 

is essential for the interaction with the cytosine deaminase 

APOBEC1 (67). Instead, C-terminal end is unstructured, less 

conserved and it is important for the interaction with 

synaptotagmins (68) (Fig. 6). 

Recent studies, based on the capacity of SYNCRIP to bind 

specific RNA targets, discover a non-canonical RNA-binding 

region in N-terminal end. The crystal structure of this region 

shows that the acid-rich domain is connected to the first RRM 

by a abb sequence. The abb sequence aligns the RRM1 and the 

N-terminal unit for RNA recognition (NURR), creating a 
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continuous RNA binding surface. The NURR domain, highly 

conserved, is essential for both recognition and binding to the 

hEXO-motif. The N-terminal NURR domain binds directly the 

GGCU/A sequence. The mutation in NURR domain causes the 

failure of SYNCRIP to bind the hEXO-miRNA and 

consequently the lack of its sorting in exosomes (69). The other 

RRM domains recognize a different range of RNA sequence: 

UACU and poly-A sequence (70; 71). 

hnRNP Q regulates the mRNA editing, transport, translation and 

degradation, too (72; 73). 

Finally, SYNCRIP is involved in neural and muscular 

development. In the nervous system, this protein takes part in 

the growth of neuromuscular junctions and in the nascent axons 

(74). For this reason, dysfunctions of hnRNP Q determine severe 

neuro-degenerative disorders and cardiomyopathies (75; 76; 

77). 

 

3.3 Poly-C Binding Protein 2: structure and functions 

 

The Poly-C Binding Proteins 2 (PCBP2) is part of a subset of 

hnRNP E together with PCBP1, PCBP3 and PCBP4.  

PCBP2, also called hnRNP E2 or aCP2, is characterized by high 

affinity for the polycytosine (polyC).   
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Like the other members of hnRNP E, PCBP2 presents three 

hnRNP K homology domains (KH domain): two of them are 

located near the N-terminal end; a third one is in the C-terminus. 

The structure of each KH domain is characterized by three β-

strands, packed against three α-helices in a specific order 

(βααββα).  A flexible loop (Gly-X-X-Gly) linking two α-helices 

in the KH core interacts with RNA. This interaction is mediated 

by a combination of electrostatic interactions, hydrogen binding 

and van der Waals contacts (78; 79). The hnRNP E2 carries two 

nuclear localization signals (NLS): the first one sequence (ten 

amino acids) is mapped between the KH1 and KH2 domains; the 

second NLS (twelve amino acids) is localized at the KH3 

domain (80). For the NLS, aCP2 is predominantly localized to 

the nucleus. PCBP2 regulates gene expression at multiple levels, 

such as transcriptional regulation (81), mRNA stabilization and 

translation.  

The hnRNP E2 can stabilize non-viral mRNA binding the C-rich 

element, present in 3’UTR. On the other hand, hnRNP E2 can 

stabilize viral mRNA binding the internal ribosome entry site 

(IRES) in the 5’UTR (82; 83).  Furthermore, the PCBP2 binding 

to the IRES sequence in the IV domain of polio virus mRNA 

determinates the translational enhancement of mRNA (84; 85). 

Also, PCBP2 is an iron chaperone and contributes to ferritin iron 

loading (86). Finally, PCBP2 takes part in the miRNA 
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processing. This protein is associated with Argonaute 1 protein-

containing complex with Dicer. In vitro studies suggest that 

cytosolic iron can regulate the multimerization of PCBP2, 

fundamental for interaction with pre-miRNA. PCBP2 can be 

multimerized when the cytosolic iron is low, binding pre-

miRNAs and presenting them to Dicer for a more efficient 

miRNA processing. Meanwhile, an excess of cytosolic iron 

determines a non-binding of PCBP2 to the pre-miRNAs as well 

as the reduction of mature miRNAs production (87). 

 

 
Fig.6 Some members of hnRNP family. The hnRNPs are named 
alphabetically from hnRNP A1 to hnRNP U. RRM RNA recognition 
motif, KH K-homology domain, RGG RNA-binding domain 
consisting of Arg-Gly-Gly repeats. Adapted from (59). 
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MATERIALS AND METHODS 

 
1. Cell Culture Conditions 

 
Nontumorigenic murine hepatocyte 3A cells (88) were grown at 

37°C, in a humidified atmosphere with 5% CO2, in RPMI 1640 

medium supplemented with 10% FBS (Gibco Life Technology), 

50 ng/mL epidermal growth factor (EGF), 30 ng/mL insulin 

growth factor (IGF) II (PeproTech), 10 mg/mL insulin (Roche), 

and penicillin/streptomycin, on dishes coated with collagen I 

(Collagen I, Rat Tail; Gibco Life Technology). To collect 

hepatocyte exosomes, 80 ´ 106 cells were cultured for 72 hrs in 

RPMI-1640 supplemented with 10% FBS depleted of bovine 

exosomes by 70 minutes centrifugation at 100,000 ´ g 

(Beckman Optima L80; Beckman Coulter). 

 
2. Exosome Purification 

 
Extracellular vesicles were prepared according to International 

Society of Extracellular Vesicles (ISEV) recommendations (89). 

In particular to isolate exosomes, conditioned media (CM) from 

12 150 mm plates each containing 13 million hepatocytes was 

collected after 72-hrs culture in complete medium containing 

exo-depleted FBS. Cell-conditioned media were centrifuged at 

2,000 ´ g for 20 min to remove cells and then 20,000 ´ g for 1 
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hr to remove cell debris. Cleared supernatants were passed 

through 0.22 mm filter membranes, concentrated by VivaSpin 

20 centrifugal filter device (Sartorius), ultracentrifuged in a 

SW32ti rotor at 100,000 rpm for 70 min, and finally resuspended 

in PBS. 

To remove contaminant non-vesicular RNA-proteins (90), 

exosomes were treated with 100 mg/mL proteinase K (60 min) 

followed by heat inactivation of the protease; unprotected RNA 

was degraded by 15-min incubation with 2 mg/mL protease-free 

RNase A (Sigma-Aldrich) followed by addition of RNAsin 

RNase inhibitor (Promega). 

To assess intravesicular localization of PCBP2, the exosomes 

were isolated with MagCapture (TM) Exosome Isolation Kit PS 

(FUJIFILM Wako) according to the manufacturer’s instructions 

and were analyzed by western blot. 

 
3. Biotin miRNA Pull-Down 

 
Biotin miRNA pull-down experiments were performed on 

cytoplasmic extracts. Briefly, cells were lysed in hypotonic 

buffer (10 mM Tris-Cl [pH 7.5], 20 mM KCl, 1.5 mM MgCl2, 

5 mM DTT, 0.5 mM EGTA, 5% glycerol, 0.5% NP40, and 40 

U/mL RNAsin [Promega]) supplemented with protease 

inhibitors (Roche Applied Science). Lysates were incubated on 

ice for 30 min and then centrifuged at 13,000 rpm for 30 min at 
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4°C. Protein concentration was determined with Protein Assay 

Dye Reagent (Bio-Rad) based on the Bradford assay.  

Samples (1 mg of proteins) were incubated for 1 hr at 4°C with 

10 nmol synthetic single strand miRNA oligonucleotides 

containing a biotin modification attached to the 5’ and via a 

spacer arm (Sigma-Aldrich) (Table 1) (91). 

SoftLink Soft Release Avidin Resin beads (50 µL - Promega), 

previously blocked with 1 mg/mL yeast tRNA (Roche Applied 

Science), were added to reaction mixture for 90 min at 4°C, and 

then the beads were washed five times with 1 mL lysis buffer. 

Elution was for 5 min at room temperature with Laemly Buffer 

(containing 2-β mercaptoethanol and SDS). 
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Name Oligonucleotides sequence 
Biotin-miR-26b-3p [Btn] CCU GUU CUC CAU UAC 

UUG GCU C 
Biotin-miR-29b-3p [Btn] UAG CAC CAU UUG AAA 

UCA GUG UU 
Biotin-miR-96b-3p [Btn] CAA UCA UGU GUA GUG 

CCA AUA U 
Biotin-miR-155b-
3p 

[Btn] CUC CUA CCU GUU AGC 
AUU AAC 

Biotin-miR-3470a [Btn] UCA CUU UGU AGA CCA 
GGC UGG 

Biotin-miR-29b-3p 
CYTO MUTATED  

[Btn] UAG CGU UGC AUG AAA UCA 
GUG UU 

Biotin-random [Btn] CUU CAG UGA CAG CAC 
AUC GA 

Biotin-polyA [Btn] AAA AAA AAA AAA AAA 
AAA AAA 

 
Table 1. Biotynilated RNA oligonucleotides used in pull down 
experiments 
 

4. SDS-PAGE and Western Blotting 

 
Cells were lysed in RIPA buffer (50 mM Tris-HCl pH 7.6, 150 

mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 1% NP40) 

containing freshly added cocktail protease inhibitors (cOmplete, 

EDTA-free Protease Inhibitor Cocktail; SigmaAldrich) and 

phosphatase inhibitors (5 mM EGTA pH 8.0; 50 mM sodium 

fluoride; 5 mM sodium orthovanadate).  Lysates were incubated 

on ice for 20 min and then centrifuged at 13000 rpm for 30 min 
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at 4°C. Protein concentration was determined with Protein 

Assay Dye Reagent (Bio-Rad), based on the Bradford assay. 

Samples (20 µg of proteins) were prepared in Laemly Buffer 

(containing 2-β mercaptoethanol and SDS) and were loaded on 

10% acrylamide gels.  

Gels were electrophoresed at 100 V in Running Buffer (25mM 

Tris, 190 mM glycine; 0.1% SDS) and then transferred to a 

nitrocellulose membrane (Pure Nitrocellulose Membrane 0.45 

μm; Bio-Rad) at 100 V for 1 hr and 30 min in Transfer Buffer 

(50 mM Tris, 40 mM glycine; 0.1% SDS; 20% Methanol). 

Blots were blocked in 5% non-fat milk prepared in TBS-Tween 

(10mM Tris-HCl pH 7.5; 150mM NaCl; 0.05% Tween 20) and 

incubated overnight with the primary antibody (a-PCBP2 cod. 

AV40568 – Sigma Aldrich; a-SYNCRIP cod. MAB11004 – 

Millipore a-Alix cod.2171S – Cell Signaling; a-Tubulin cod.  

SC-5286 – Santa Cruz).  

Then blots were incubated with HRP-conjugated species-

specific secondary antibodies (Goat Anti-Mouse IgG (H+L)-

HRP Conjugated 170-6516 or Goat Anti-Rabbit IgG (H+L)-

HRP Conjugated 172-1019) followed by enhanced 

chemiluminescence reaction (Clarity Max ECL Substrate and 

Clarity Western ECL Substrate – Bio-Rad) and the signal was 

revealed through autoradiography X-ray film. 
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5. RNA Extraction, RT-PCR and Real-Time 

qPCR 

 
Total RNA from cells and exosomes was isolated by Qiazol and 

the miRNeasy Mini Kit and (QIAGEN) following the 

manufacturer’s protocols. RNA purity was assessed by 

spectrophotometric measure of optical density 260 

(OD260)/OD280 » 2 and OD260/OD230 >1.8 with a Nanodrop 

2000c Spectrophotometer (Thermo Fisher Scientific).  

Intracellular and exosomal total RNA (150 ng) was reverse 

transcribed with the MystiCQ microRNA cDNA Synthesis Mix 

(Sigma Aldrich) according to the manufacturer’s protocol. 

Diluted (1:10) cDNA samples were used for qPCR in a total 

volume of 10 µL using GoTaq qPCR Master Mix (Promega) and 

the reaction were carried out in Bio-Rad-iQ-iCycler.  

The cycling condition were: 95°C for 3 min, followed by 40 

cycles at 95°C for 10 sec 57°C for 30 sec, then the temperature 

was raised from 65°C to 95°C with 0.5°C increase step for 0.5 

seconds. The melting temperature is variable according to the 

sequence of oligonucleotides. The sequence of primer used are 

listed in Table 2 and 3. The small RNA U6 was used for 

normalization of miRNA relative quantities in both cellular and 

exosomal preparations. 
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The results were analysed with Manager Software (Bio-Rad) 

and calculates with the DC(t) method. 

 
miRNA Primer sequence Tm 

(ºC) 
mmu-miR-
26b-3p 

CCT GTT CTC CAT TAC TTG GCT C 62 

mmu-miR-
29b-3p 

TAG CAC CAT TTG AAA TCA GTG TT 
 

61.5 

mmu-miR-
96-3p 

CAA TCA TGT GTA GTG CCA ATA T 57 

mmu-miR-
155- 3p 

CTC CTA CCT GTT AGC ATT AAC 57 

mmu-miR-
194-2-3p 

CCA GTG GGG CTG CTG TTA TCT G 
 

63.9 

mmu-miR-
328- 3p 

GGC CCT CTC TGC CCT TC 60 

mmu-miR-
365-2-5p 

GAC TTT CAG GGG CAG CTG 58 

mmu-miR-
3470a 

TCA CTT TGT AGA CCA GGC TG 
 

61 
 

 
Table 2. Primers for miRNAs qPCR analysis.  
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Name Primer sequence Tm 
(ºC) 

PCBP2 For  ACACCGGATTCAGTGGCA 
Rev  TTGATTTTGGCGCCTTGACG 

58 
58 

Rpl32  
 

For  AAGCGAAACTGGCGGAAAC  
Rev  TAACCGATGTTGGGCATCAG 

57 
58 

Rnu6  
 

For  TCGCTTCGGCAGCACATA  
Rev  ACGAATTTGCGTGTCATCCT 

56 
56 

 
Table 3. Primers for RT-qPCR analysis. 
 

6. Co-Immunoprecipitation 

 
Cells were lised with IP Lysis Buffer (150 mM NaCl, 50 mM 

Tris-HCl pH 7.5, 2 mM EDTA, 1% TRITON-X100 and 10% 

glycerol) plus containing freshly added cocktail protease 

inhibitors (cOmplete, EDTA-free Protease Inhibitor Cocktail; 

SigmaAldrich) and phosphatase inhibitors (5 mM EGTA pH 

8.0; 50 mM sodium fluoride; 5 mM sodium orthovanadate). 

Lysates were incubated on ice for 1h and then centrifuged at 

13000 rpm for 30 min at 4°C. Protein concentration was 

determined with Protein Assay Dye Reagent (Bio-Rad), based 

on the Bradford assay.  

2 mg of proteins (one for the specific antibody and one for the 

specie-specific corresponding IgG) were precleared adding 40 

µL of Protein A Sepharose for 3 hrs at 4°C in a total volume of 

1 ml of IP Lysis Buffer in rotation.  
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Then, Protein A Sepharose was removed by centrifugation and 

the extract were incubated with 5 µg of specific antibody a-

PCBP2 (cod. RN025P - MBL) or Normal Rabbit IgG (cod. 12-

370 - Millipore) as negative control, to proceed with 

immunoprecipitation at 4°C overnight. 

Immuno-complexes were collected adding 50 µL of Protein A 

Sepharose for 3 hrs at °C in rotation.  

The immunoprecipitated proteins were washed trice with Net 

Gel Buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 1mM 

EDTA, 0.1% NP40 and 0.25% gelatin).  

Finally, immunoprecipitated proteins were separated from 

Protein A Sepharose adding 50 µL of Laemly Buffer 2X. 

Samples were boiled at 95°C for 5 min, beads were eliminated 

by centrifugation and half of each sample was loaded on 

polyacrilammide gel and analysed by Western Blotting. 

 

7. UV Cross-Linking RIP 

 
In UV cross-linking RIP, hepatocytes were washed twice with 

PBS and subjected to UV cross-linking (one-time irradiation at 

800 mJ/cm2 in 254 nm Stratalinker - Stratagene 2400, 

Stratagene).  

Cells were then lysed in 10 mM HEPES (pH 7.3), 20 mM KCl, 

2 mM MgCl2, 0.5 mM EGTA, 1 mM EDTA, 1 mM DTT, 40 
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U/mL RNAsin inhibitor, 0.1% SDS, 0.5% sodium deoxycholate, 

and 0.5% NP40 at 4°C for 10 min. After that, lysates were 

centrifuged at 13,000 rpm for 30 min at 4°C. Protein 

concentration was determined with Protein Assay Dye Reagent 

(Bio-Rad) based on the Bradford assay.   

1 mg protein aliquots (one for the specific antibody and one for 

the specie-specific corresponding IgG) were diluted in NT2 

buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM MgCl2, 

0.05% NP40) plus protease inhibitor and RNAsin inhibitor and 

precleared with 15 µL protein A/G Dynabeads (Invitrogen) for 

30 min in rotation. 

Pre-cleared proteins were centrifuged at 13,000 rpm for 10 sec 

and the supernatant was incubated over night at 4°C in rotation 

with 5 µg of specific antibody (a-PCBP2 cod. RN025P – MBL; 

a-SYNCRIP cod. 05-1517 – Millipore) or IgG (Normal Rabbit 

IgG cod. 12-370 – Millipore; Normal Mouse IgG cod. 12-371– 

Millipore) as negative control, to proceed with 

immunoprecipitation.		
Immunoprecipitated complexes were collected by incubation 

with 20 µL Dynabeads (Protein A Dynabeads for PCBP2 

immunoprecipitation; Protein G Dynabeads for SYNCRIP 

immunoprecipitation; Invitrogen) for 3 hrs at 4°C in rotation. 

The complex beads-proteins were collected and, before 
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washing, 100 µL of the supernatant of the IgG samples were 

collected and stored as Input sample. 

The samples were washed 5 times with the Denaturing Wash 

Buffer (500 mM LiCl, 0.2% SDS and 0.1% Sodium 

deoxycholate) (92; 93) plus protease inhibitor to allow only the 

detection of direct interactions. Coimmunoprecipitated miRNAs 

were extracted using Qiazol and the miRNeasy kit. qPCR 

analysis was performed with GoTaq qPCR Master Mix 

(Promega) and miRNA fold enrichment in immunoprecipitated 

samples were expressed as IP/IgG. 

 

8. shRNA Silencing 

 
Stable PCBP2 knockdowns were achieved through infection 

with shRNAs cloned in pSUPER retro puro retroviral vector 

(Oligoengine). 

Viral supernatants were collected 48 hrs after transfection of 293 

gp packaging cells, filtered (0.45 mm), and added to 

hepatocytes. At 48 hrs post-infection, selection was performed 

with 2 µg/mL puromycin for at least 1 week before analysis. The 

sequence of shRNA scramble used as control was previously 

described (94). The sequences of shRNA oligos used for cloning 

are reported in Table 4. The stable PCBP2 knockdowns and the 
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control cellular line are called respectively 3A shPCBP2 and 3A 

shCTR. 

 

Name Sequence 

PCBP2 S 
GATCCCCGAGCAGACCCATCCATAATT
TCAAGAGAATTATGGATGGGTCTGCTC
TTTTTA   
As 
AGCTTAAAAAGAGCAGACCCATCCATA
ATTCTCTTGAAATTATGGATGGGTCTG
CTCGGG 

Scramble S 
GATCCCCGCGAAAGATGATAAGCTAAT
TCAAGAGATTAGCTTATCATCTTTCGCT
TTTTA 
As 
AGCTTAAAAAGCGAAAGATGATAAGC
TAATCTCTTGAATTAGCTTATCATCTTT
CGCGGG 

 
Table 4. Oligos for shRNA cloning in pSUPER.retro.puro vector. 
 

9. Statistical Analysis 

 
For the qRT-PCR analysis, statistical differences were assessed 

with the one-tailed paired Student’s t-test using GraphPad Prism 

Version 6 (GraphPad Software). Data are presented as mean ± 

SD, and p values < 0.05 were considered statistically significant. 
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AIM OF THE WORK 

 
Recently, great advances were made in the knowledge about 

exosomal composition and function in pathological and 

physiological conditions. Evidence showed that the miRNAs’ 

sorting into the exosomes is well-regulated. A growing number 

of proteins was identified to be involved in this process, but 

sequence-specific mechanisms and RNA-binding regulators 

responsible of the control of miRNA partition are still largely 

unknown.  

Our previous results indicated that exosomal microRNAs 

presented a common sequence called hEXO-motif. This 

sequence was responsible of miRNAs sorting in to the 

exosomes. Furthermore, the hnRNP SYNCRIP (hnRNPQ) was 

identified as a direct interactor of hEXO-motif, by pull down 

experiment followed by a mass spectrometry analysis.  

We found that a SYNCRIP knock-down determined a reduced 

sorting of hEXO-miRNAs. 

Starting from these observations, we aimed to investigate the 

role of other proteins in the molecular machinery determining 

miRNAs loading into the exosome or the intracellular retention. 

In this frame, we here described the identification of another 

hnRNP, the RNA-binding protein PCBP2 (hnRNPE2) as a 

negative regulator of exosomal miRNA loading.  
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RESULTS 
 

1. PCBP2 is an interactor of hCYTO-miRNAs 

 
Starting from the analysis of a small RNA sequencing, 

Santangelo and colleagues previously investigated in 

hepatocytes on the partition of miRNAs in intracellular and/or 

EV compartments (1). Published results highlighted the 

existence of specific repertoires of miRNAs enriched in 

exosomes (called hEXO-miRNAs) or in the intracellular 

compartment (called hCYTO-miRNAs). In particular, 69 

hCYTO-miRNAs were identified, with a fold enrichment [FE] 

£ -1.5 and a false discovery rate [FDR] £ 0.10 (Table 5), on the 

other hand 126 miRNAs were enriched in the exosomes, with a 

[FE] ³ 1.5 and FDR] £ 0.10 (1). The hEXO - motif, found causal 

for miRNA export in exosomes (1), was discovered thanks to a 

comparison of the sequences of exosomal miRNAs, using 

Improbizer (95). However, the same approach applied to the 

analysis of intracellular retained miRNA sequences did not 

allowed the identification of common motifs. Nevertheless, 

through a simple sequence comparison, we here identified a 

subset of miRNAs sharing a putative CL motif 

(A/UC/ACAUU/G) (Fig.7A and Table 6), previously identified 

by Villarroya-Beltri et al. in 2013 (58). 
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Aiming to identify proteins able to bind miRNAs embedding the 

CL-motif (and possibly involved in controlling miRNA 

retention), we incubated the hepatocyte extracts with 

streptavidin beads coated with the biotinylated hCYTO-miRNA 

miR-29b-3p as probe and, as a negative control, a biotinylated 

random sequence (see Methods). Then, the pulled-down 

proteins were subjected to mass spectrometry through Q-

EXACTIVE PLUS -Orbitrap Mass Spectrometer (in 

collaboration with Montaldo C., INMI Lazzaro Spallanzani, 

IRCCS, Rome). Thanks to a Gene Onthology analysis, different 

RNA-binding proteins were identified (data not shown). Among 

the RNA-binding proteins precipitated with miR-29b-3p and not 

with the random sequence, we focused on PCBP2. In fact, as 

shown in Fig. 7B, PCBP2 binding to different hCYTO-miRNAs 

was validated by pull-down experiments and successive western 

blot analysis. For these experiments, the poly-A sequence was 

used as a positive control while the random sequence was used 

as a negative control. MiRNAs embedding a putative CL-motif, 

such as miR-26b-3p, miR-29b-3p, miR-96-3p and miR-155-3p 

were used as probes (Fig 7B). These analyses demonstrated that 

PCBP2 is an interactor of different hCYTO-miRNAs sharing a 

putative CL-motif. 
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Fig 7. Identification of PCBP2 as bound to hCYTO-miRNAs. 
A. CL-motif identified by Villarroya-Beltri et al., 2013 and used for 
our analysis (58).  
B.  Western blot analysis for PCBP2 in samples derived by miRNA 
pull-downs performed with cellular extracts of murine hepatocytes 
and the indicated biotinylated [Btn] miRNAs, selected for our analysis 
as embedding a putative CL-motif (indicated in red). Poly(A) was 
used as positive control, while random sequence was used as a 
negative control. WCE, whole cellular extract.  
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2. PCBP2 binding to the CL-motif is direct and 

sequence specific  
 

To get further inside on the interaction between PCBP2 and CL-

embedding miRNAs, we performed RIP experiments (Fig.8A). 

In particular, to identify only the direct protein-RNA 

interactions, RIPs were carried out by denaturing wash protocol 

after UV cross-linking (according to McHugh et al., 2015; 

Battistelli et al., 2016).  

By RIP assays, PCBP2 was found to directly bind to hCYTO-

miRNAs previously analysed by pull-down experiments, such 

as miR-26b-3p, miR-29b-3p, miR-96-3p and miR-155-3p. In 

these experiments, positive control of PCBP2 binding was miR-

328-3p (according to Eiring et al., 2010 (96)). On the other hand, 

miR-365-2-5p was used as a negative control, embedding the 

hEXO motif but no CL-motifs.  
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Fig 8. PCBP2 binding to the CL-motif is direct and sequence 
specific 

A. RNA immunoprecipitation experiments with anti-PCBP2 antibody 
(or IgG as control) performed on cellular lysates. The levels of the 
indicated miRNAs in immunoprecipitated samples were determined 
by qRT-PCR and reported as ratio between IP/IgG. Data are means ± 
SD of four independent experiments, and statistically significant 
differences are reported (*p < 0.05; ns, no significance).  
B. Western blot analysis for PCBP2 in samples derived from miRNA 
pull-downs performed with cellular extracts of murine hepatocytes 
and the indicated biotinylated [Btn] miRNAs (lower panel). [Btn]Poly 
A, [Btn] Random sequence, [Btn] miR-29b-3p and Btn] miR-29b-3 
CYTO MUTATED (upper panel). WCE, whole cellular extract. 
 

 

These analyses demonstrated that PCBP2 directly binds to a 

subset of hCYTO-miRNAs sharing a CL-motif. 

We further analyzed the PCBP2 binding capacity when the CL-

motif sequence is mutated. An artificial miR-29-3p was 

generated by mutation of all the six bases of the CL sequence 

(A/UC/ACAUU/G was changed in GUUGCA; the mutant form 

was called miR29-3p-CYTO MUTATED). 

We performed a pull-down experiment using [Btn]miR-29b-3p, 

[Btn]miR-29b-3p CYTO MUTATED and as negative control a 

random sequence. As shown in Fig. 8B, the next western blot 

analysis demonstrated that the PCBP2 capacity of binding to 

hCYTO-miRNA was drastically reduced when the specific CL-

motif sequence is mutated.  

Overall, these results demonstrated that the PCBP2 binding to 

the CL-motif is direct and sequence specific. 
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3. PCBP2 has a role in controlling hCYTO-

miRNAs retention 

 
To assess the possible functional role of PCBP2 in miRNA 

partition, we in first investigated on PCBP2 localization in 

intracellular or exosomal compartments. 

According to International Society of Extracellular Vesicles 

(ISEV) recommendations (89), conditioned media (CM) from 

13 million hepatocytes was collected after 72-hrs culture to 

isolate exosomes and was centrifuged to remove cells (2,000 ´ 

g for 20 min) and cell debris (20,000 ´ g for 1 hr). Then, the 

exosomes were isolated with MagCapture (TM) Exosome 

Isolation Kit (see details in Methods). 

Western blot analysis on both cellular an exosomal protein 

extracts demonstrated that PCBP2 is an intracellular protein. 

Indeed, it does not colocalize with the exosome specific marker 

Alix (13), nor with SYNCRIP, previously validated as able to be 

embedded in these vesicles (1) (Fig. 9A). 

Next, we assessed the effect of PCPBP2 silencing with respect 

to miRNA sorting, aiming to investigate on its possible 

functional role in miRNAs retention.  

Thus, short hairpin RNAs (shRNAs) for PCBP2 silencing and a 

scramble sequence (Table 4) were cloned in the pSUPER retro 

puro retroviral vector (Oligoengine). Then, 293 gp packaging 



 
 45 

cells were transfected with the correspondent pSUPER-0 (empty 

vector as CTR.) or the pSUPER-PCBP2 vector. Viral 

supernatants were collected 48 hrs after transfection and 

hepatocytes were infected with the retroviruses expressing the 

short hairpin RNA against PCBP2 or a scrambled sequence as 

control. At 48 hrs post-infection, stable 3A shCTR and shPCBP2 

cell lines were obtained by selection with 2 µg/mL puromycin 

for at least 1 week. As shown in fig 8B, western blot and qRT-

PCR analysis demonstrated that PCBP2 levels were 

significantly reduced in cells infected with the retrovirus 

targeting its transcript (Fig. 9B) 
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Fig 9. PCBP2 localization and silencing. 
A. Western blot analysis of exosomal and intracellular extracts for 
PCBP2, SYNCRIP and the exosomal marker Alix. The reported 
experiment is representative of three independent ones.  
B. PCBP2 protein and mRNA levels in cytoplasmic extracts of 
PCBP2-silenced (shPCBP2) and shCTR hepatocytes. b-tubulin has 
been used as loading control.  The densitometry analysis (lower left 
panel) was made quantified the protein levels using ImageJ software. 
Data are means ± SD of three independent experiments, and 
statistically significant differences are reported (***p <0.001; ** p < 
0.01).  
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Fig 10. Role of PCBP2 in hCYTO-miRNAs retention.  
qRT-PCR analysis of exosomal (upper panel) and intracellular (lower 
panel) levels of selected miRNAs in shPCBP2 compared to shCTR 
control. The values are calculated by the DDCt method, normalized to 
small nuclear RNA (snRNA) U6 levels in exosomes or cells, 
expressed as fold enrichment and shown as mean ± SD. Statistically 
significant differences are reported for five independent experiments 
(* p < 0.05; ** p < 0.01; ns, no significance).  
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As showed in fig 10 upper panel, the comparison of microRNA 

levels in exosomes produced respectively by stably silenced 

PCBP2 cells and control cells confirmed that hCYTO-miRNAs 

(miR-26b-3p, miR-155-3p, miR-96-3p, and miR-29b-3p) were 

more represented in the exosomes, once PCBP2 was interfered. 

The miRNAs used as control were the hEXO-miRNAs miR-

365-2-5p and miR-194-2-3p (1). 

Thus, PCBP2 knock-down correlates to the hCYTO-miRNAs 

loading in to the exosomes, suggesting that PCBP2 may act as a 

retention factor. 

 

4. PCBP2 and SYNCRIP display different 

sequence-specific binding  
 
 
We found by a simple sequence comparison that some miRNAs, 

such as miR-3470a, embed both the putative CL-motif 

A/UC/ACAUU/G and the hEXO motif GGCU (this latter) 

previously found causal to the loading in exosomes and bound 

by SYNCRIP (1). This observation prompted us to assess 

whether PCBP2 and SYNCRIP binding capacity to miRNA 

sequences could be antagonistic in determining the partition 

outcome.  

The selective binding capacity of both proteins was assessed by 

RNA-immunoprecipitation experiments after UV-crosslinking.  
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In PCBP2 immunoprecipitated samples miR-29b-3p, 

embedding a CL-motif, and miR-3470, with both CL- and 

hEXO-motifs, were found enriched. Conversely, PCBP2 did not 

directly bind to miR-365, characterized as a hEXO-motif 

embedding-miRNA (Fig. 11 A left panel). Furthermore, PCBP2 

silencing impacted on the export in exosomes of the miR-3470, 

resulting in a further loading of this exosomal miRNA (Fig. 11 

B). On the other hand, SYNCRIP did not bind to miR-29-3p, 

that has only the CL-motif, while it was able to directly bind to 

the hEXO-miR-365 and to the miR-3470, showing both motifs 

(Fig. 11 A right panel). Furthermore, Santangelo and colleagues 

(1) demonstrated that knock-down of SYNCRIP did not caused 

an exosomal loading of the intracellular enriched (and CL-motif 

embedding) miR-29-3p, only affecting the export of hEXO-

miRs, such as miR-3470 and miR-365.    

Interestingly, co-immunoprecipitation (Co-IP) assays did not 

show the interaction between SYNCRIP and PCBP2. As shown 

in Fig 11 C, Western blot analysis of co-immunoprecipated 

samples demonstrated that PCBP2 and SYNCRIP do not interact 

(note that the co-immunoprecipitation was performed in 

presence of RNAsi inhibitors, thus the possible assembly of a 

RNA-mediated protein-protein complex was excluded). 

Overall, these data indicate that the two proteins display 

sequence-specific capacity in regulate the partition in the cell of 
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selected miRNAs. However, with respect to miRNAs with both 

sequence signals of retention and export, both proteins can bind 

them, maybe antagonistically (thus, PCBP2 knock-down could 

render available to SYNCRIP-mediated export a reservoir of 

intracellular miRNAs). 
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Fig 11. PCBP2 and SYNCRIP display different sequence-specific 
binding.  
A. RNA immunoprecipitation experiments with anti-PCBP2 antibody 
(left panel) and anti-SYNCRIP (right panel) (or IgG as control) 
performed on cellular lysates. The levels of the indicated miRNAs in 
immunoprecipitated samples were determined by qRT-PCR and 
reported as ratio between IP/IgG. Data are means ± SD of three 
independent experiments, and statistically significant differences are 
reported (*p < 0.05; ***p <0.001; ns, no significance) 
B. qRT-PCR analysis of exosomal (right panel) and intracellular (left 
panel) levels of selected miRNAs in shPCBP2 compared to shCTR 
control. The values are calculated by the DDCt method, normalized to 
small nuclear RNA (snRNA) U6 levels in exosomes or cells, 
expressed as fold enrichment and shown as mean ± SD. Statistically 
significant differences are reported for five independent experiments 
(* p < 0.05; ns, no significance).  
C. Immunoprecipitation of PCBP2 in murine hepatocyte cells with 
rabbit polyclonal anti-PCBP2 was analyzed for Western Blotting with 
anti-PCBP2 and anti-SYNCRIP antibody. The control 
immunoprecipitation was performed with Normal rabbit antiserum 
(IgG). The reported experiment is representative of three independent 
ones.  
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DISCUSSION AND CONCLUSION 
 

In our study, we investigated on the role played by the RNA 

binding protein PCBP2 in controlling miRNAs partition in the 

cell.  

The RNA Binding Protein PCBP2 is a member of hnRNP E 

family. The protein is characterized by its involvement in the 

stabilization of viral and non-viral mRNA (82; 83; 84; 85), it has 

been described associated with Argonaute 1 protein-containing 

complex with Dicer and it is also involved in the miRNAs 

maturations (87).  

Concerning microRNA partition, while current knowledge 

points to a key role for the exosome-mediated transfer in cell-to-

cell communication, the processes controlling the selective 

compartmentalization between cell and EV, in physiology and 

disease, are still largely uncharacterized. Recent evidence 

highlighted the loading in exosomes of miRNAs in dependence 

of different RNA-binding proteins. In particular, a functional 

role in miRNA loading was attributed to the RBP SYNCRIP: the 

knock-down of this protein in hepatocytes impaired the 

exosomal loading of some exosome-enriched microRNAs. 

Moreover, SYNCRIP binds directly, through the NURR domain 

(69), to exported miRNAs characterized to embed a short hEXO 



 
 55 

motif. Notably, the insertion of this sequence in a normally cell-

retained miRNA induced its exosomal export, highlighting the 

functional role of this sequence motif. 

It’s conceivable that a multiprotein machinery dynamically 

governs both the EVs sorting and the intracellular retention of 

specific subsets of miRNAs. Interestingly, in lymphocytes 

Villaroya and colleagues highlighted that intracellular miRNAs 

were enriched in specific sequence determinants, called (CL)-

motifs (58).  

Here, the RBP Poly-C-binding protein 2 is identified in the 

hepatocyte as a component of the machinery controlling miRNA 

partition between cell and EVs. RNA immunoprecipitation after 

UV cross-linking demonstrated that this protein directly binds to 

some miRNAs embedding the CL-motif (A/UC/ACAUU/G) 

and RNA pull down by using as probe an intracellular miRNA 

(miR-29b) mutated in this sequence proved the specificity of 

binding. Moreover, PCBP2 knock-down allows the EVs loading 

of specific intracellular-enriched microRNAs, this implying a 

functional role for this protein in retention of specific molecules.  

Finally, as depicted in Fig 12, our data revealed that PCBP2 and 

SYNCRIP binding to miRNAs is sequence-specific (panels A 

and B). In the case of miRNAs with both the motifs (e.g. miR-

3470), while RIP analysis demonstrated that both the proteins 
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could interact to these RNA molecules, co-immunoprecipitation 

assays highlighted that SYNCRIP and PCBP2 do not form a 

complex, this conceivably implying a mutually exclusive 

binding (see panel C). When PCBP2 levels are lower, it’s 

conceivable that a larger fraction of miRNAs is available for 

SYNCRIP-mediated export (Fig 12 panel C). 

However, further studies are necessary to clarify the 

mechanisms controlling PCBP2 and SYNCRIP function in the 

cell as well as to approach the systematic characterization of the 

riboprotein machinery that governs the exosome-mediated 

pivotal mechanism of cell-to-cell communication.  
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Fig 12. Proposed molecular model.  
A. miRNAs with a putative CL-motif were intracellular thank to 
PCBP2 binding  
B. SYNCRIP was responsible of hEXO-miRNAs sorting in to the 
exosomes (1) . 
C. Both SYNCRIP and PCBP2 can bind miRNAs with both CL-motif 
and hEXO-motif. Probably, the balance between them can determine 
miRNA fate and the RNA fractions available to SYNCRIP are 
exported. In PCBP2 knock down condition, a larger fraction of 
miRNAs is available to SYNCRIP –mediated sorting into the 
exosomes. 
 
 

 

 

  



 
 59 

APPENDIX 

 
hCYTO-miRNAs with Exo versus Cell FE <=1.5 
miRNA log2 FE FE P value 

mmu-miR-181b-1-3p -4,84 -28,64 3,70E-10 
mmu-miR-155-3p -4,65 -25,10 0,003842355 
mmu-miR-6539 -4,64 -24,89 1,23E-11 
mmu-let-7c-1-3p -3,54 -11,60 0,017624529 

mmu-miR-26a-2-3p -3,48 -11,18 6,80E-05 
mmu-miR-1291 -3,32 -10,00 0,004779382 
mmu-miR-31-3p -3,06 -8,34 6,82E-05 
mmu-miR-96-3p -3,06 -8,32 0,002266478 
mmu-miR-30d-3p -2,87 -7,33 2,77E-10 
mmu-miR-98-3p -2,86 -7,25 9,43E-05 
mmu-miR-770-5p -2,84 -7,15 0,008352633 
mmu-miR-182-3p -2,68 -6,41 0,000800133 
mmu-miR-24-1-5p -2,66 -6,32 0,000133799 
mmu-miR-450b-5p -2,59 -6,04 1,89E-16 
mmu-miR-677-5p -2,47 -5,53 0,010238144 
mmu-miR-374c-3p -2,39 -5,23 0,000258931 
mmu-miR-339-3p -2,35 -5,10 0,009557318 
mmu-miR-152-5p -2,34 -5,07 3,75E-05 
mmu-miR-30b-5p -2,34 -5,05 0,00098675 
mmu-miR-6914-3p -2,22 -4,64 0,026323071 
mmu-miR-582-5p -2,20 -4,59 0,000778831 
mmu-miR-3963 -2,19 -4,57 0,00058735 

mmu-miR-26a-1-3p -2,11 -4,30 0,011252497 
mmu-miR-24-2-5p -2,07 -4,19 0,002501594 
mmu-miR-148b-5p -1,97 -3,91 0,005718163 
mmu-miR-27b-5p -1,94 -3,83 9,05E-05 
mmu-miR-27a-5p -1,93 -3,82 0,001836188 
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mmu-miR-301a-5p -1,92 -3,79 0,002181934 
mmu-miR-181a-1-3p -1,92 -3,79 0,000252485 

mmu-miR-296-5p -1,89 -3,71 7,33E-05 
mmu-miR-700-5p -1,87 -3,67 0,011509892 
mmu-miR-702-3p -1,84 -3,59 0,000537268 
mmu-miR-582-3p -1,83 -3,55 0,000308816 
mmu-miR-331-3p -1,82 -3,53 0,0189538 
mmu-miR-450a-5p -1,82 -3,53 5,86E-08 
mmu-let-7f-1-3p -1,82 -3,52 4,84E-05 

mmu-miR-181c-5p -1,77 -3,42 0,000529543 
mmu-miR-200a-5p -1,75 -3,37 0,010390178 
mmu-miR-148b-3p -1,74 -3,34 7,26E-09 
mmu-miR-326-3p -1,70 -3,26 0,002570155 
mmu-miR-29c-3p -1,70 -3,25 0,020579101 
mmu-let-7f-2-3p -1,66 -3,17 0,011523613 

mmu-miR-30c-1-3p -1,65 -3,14 0,008079124 
mmu-miR-21a-5p -1,64 -3,12 3,46E-18 
mmu-miR-183-3p -1,56 -2,95 0,012416158 

mmu-miR-129-2-3p -1,55 -2,94 0,007045177 
mmu-miR-181c-3p -1,54 -2,92 0,001633009 

mmu-miR-3102-3p.2-3p -1,54 -2,90 0,016431251 
mmu-miR-872-3p -1,54 -2,90 0,019395233 

mmu-miR-92a-1-5p -1,53 -2,88 0,014796053 
mmu-miR-15b-3p -1,51 -2,84 0,00531211 
mmu-miR-744-3p -1,45 -2,74 0,022527563 
mmu-miR-330-5p -1,44 -2,72 0,001492934 
mmu-miR-192-3p -1,42 -2,67 0,029469126 
mmu-miR-26b-3p -1,40 -2,64 0,019022386 
mmu-miR-16-2-3p -1,38 -2,61 0,010300709 
mmu-miR-3109-3p -1,36 -2,57 0,019703042 
mmu-miR-542-3p -1,36 -2,56 0,000203214 
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mmu-miR-26b-5p -1,34 -2,53 2,17E-08 
mmu-miR-194-5p -1,34 -2,53 0,016321071 

mmu-let-7b-3p -1,22 -2,32 0,000848952 
mmu-miR-192-5p -1,19 -2,29 0,007244431 
mmu-miR-676-5p -1,19 -2,28 0,027157968 
mmu-miR-301a-3p -1,16 -2,23 0,006545763 
mmu-miR-872-5p -1,15 -2,22 2,83E-05 
mmu-miR-301b-3p -1,15 -2,22 0,001583586 
mmu-miR-1843b-5p -1,11 -2,15 0,023827271 

mmu-miR-26a-5p -0,97 -1,96 0,010963296 
mmu-miR-674-3p -0,76 -1,70 0,023655557 

 
Table 5. hCYTO-miRNAs with a fold enrichment [FE] £ -1.5 and 
a false discovery rate [FDR] £ 0.10 from Santangelo et al., 2016. 
 
 
 

mmu-miR-194-5p UGUAACAGCAACUCCAUGUGGA  

mmu-miR-26b-3p CCUGUUCUCCAUUACUUGGCUC  

mmu-miR-181a-1-3p ACCAUCGACCGUUGAUUGUACC  

mmu-miR-96-3p CAAUCAUGUGUAGUGCCAAUAU  

mmu-miR-155-3p CUCCUACCUGUUAGCAUUAAC  

mmu-miR-15b-3p CGAAUCAUUAUUUGCUGCUCUA 

mmu-miR-148b-3p UCAGUGCAUCACAGAACUUUGU  

mmu-miR-31-3p-5p UGCUAUGCCAACAUAUUGCCAUC  
 

Table 6. hCYTO-miRNAs with CL-motif (red) selected for our 
analysis.  
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