
Modeling and Simulation of Active Plasma Lenses
for High Brightness Electron Beams

PhD School in Accelerator Physics
Dottorato di Ricerca in Fisica degli Acceleratori – XXXI Ciclo

Candidate
Emanuele Brentegani

Thesis Advisors
Prof. Stefano Atzeni
Dr. Enrica Chiadroni

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Accelerator Physics
September 2019



Thesis defended on 13 September 2019

Modeling and Simulation of Active Plasma Lenses for High Brightness Electron
Beams
Ph.D. thesis. Sapienza – University of Rome

© 2019 Emanuele Brentegani. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: September 4, 2019

Author’s email: emanuele.brentegani@gmail.com

mailto:emanuele.brentegani@gmail.com


Io chiedo a una scalata non solamente le difficoltà ma una bellezza di linee
[Walter Bonatti]





v

Abstract

In the last few decades, considerable effort has been devoted to the research aimed
at the optimization of particle accelerators. Specifically, improving the efficiency
and reducing the size of the high brightness electron machines can have a dramatic
technological, scientific, and economic impact. Active plasma lenses are capable
of fostering this process, given their compactness, high focusing strength (up to
kT/m), and symmetry. However, experimental studies have shown that they are
affected by aberrations, which may severely compromise the beam quality and enlarge
the minimum spot attainable. In this thesis we discuss the working principle of
active plasma lenses as well as their aberrations. We built a 2-D, axially symmetric
numerical model that allows to study the hydrogen-filled capillary discharges typically
used for focusing electron beams. We solved the model equations with a modified
version of the open source, fluid dynamics code PLUTO. Specifically, we implemented
an alternating direction implicit method to evolve the parabolic part of the problem
with a semi-implicit approach. We compared the results of our simulations with
measurements of the electron density inside the discharge plasma. We reproduced
experimental results related to active plasma lensing of a high brightness electron
beam. The results of the simulations were consistent with the measurements in
both cases. We also explored the effect of capillary diameter variation on the lens
aberrations, the results are discussed within the thesis.
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Introduction

Nowadays, particle accelerators serve a great variety of purposes. Perhaps the
use most commonly known is the fundamental research in physics, performed by
the great, km-scale, colliders. However most of the accelerators in operation in
the world are not devoted to basic research but rather to industrial and medical
applications. Electron, proton and ion beams are routinely used in the field of
material processing, cultural heritage conservation, biology and medicine (e.g. cancer
treatment). Furthermore, the electromagnetic radiation obtained by bending or
undulating charged particle beams (synchrotron light, usually from electrons) is
an attractive tool with applications in, but not limited to, the study of structure
of materials, direct irradiation and medical imaging. Special cases of synchrotron
radiation facilities are the Free Electron Lasers (FELs), where electrons dynamics
and radiation emission meet a resonant condition thereby providing a coherent and
widely tunable source of electromagnetic radiation. With all their applications,
accelerators boost the technological and scientific advances and also provide social,
environmental and economical benefits.

A great limitation to the usability of these machines is their cost and size,
variables that are both linked to the energy and beam quality required. Smaller and
cheaper accelerators could more easily be allocated inside hospitals and industrial
environments, whereas light sources could be more widespread and reach wider user
communities. In addition, the high energy machines (from hundreds of GeV to TeV
scale) required for the advance of fundamental particle physics have huge sizes and
hardly affordable costs. For instance, the proposed International Linear Collider is
between 30 km and 50 km long, and the Future Circular Collider is foreseen to be of
the order of 100 km long.

In the last years, a considerable effort has been devoted to the research on
efficiency optimization and size reduction of particle accelerators. The available
accelerating gradient, that is the electric field capable of accelerating a beam,
establishes the minimum length necessary for reaching the desired particle energy.
The state of the art technology relies on radio frequency (1 GHz-3 GHz) cavity
resonators, with traveling or standing wave design, usually made of normal conducting
copper [98] or of super conducting metals (for instance niobium) [4]. In these
structures, the maximum gradient achievable is limited to the breakdown limit, to
few tens of MV m−1.

In order to push further this limit one possibility is to resort to higher frequency
devices, hence reducing the geometry and tightening the fabrication tolerances.
In this regard, an example is the development of 12 GHz (X-band) cavities for
the Compact Linear Collider, that allow to obtain gradients up to 100 MV m−1.
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Even miniature-scale copper cavities, resonating at very high frequencies are under
study [22]. Another field of study is the use of RF resonating structures made
of dielectrics [72], that are able to sustain higher electric fields (of the order of
GV m−1) with respect to what is allowed in purely metallic structures. Lastly,
considerable work has been done on the use of plasmas as accelerating media, where
the breakdown problem does not apply at all, being it a state of matter where the
atoms/molecules are already ionized.

Regarding the usability of a beam (in terms of applications), its energy is of key
importance, but its overall quality is described also by other parameters, that are
important as well. Ideally, one would require that the beam particles occupy regions
of the phase space as compact as possible. This requirement is strictly related to
the concept of high brightness. Beam brightness is a figure of merit that is directly
proportional to the beam current and to the beam emittance (see below). We will
formally define the brightness in section 1.1.2. Regarding the transverse dynamics,
a good beam should have small transverse size and small angular divergence, in
addition its divergence should also grow slowly with the propagation of the beam.
These last three conditions may be summarized by saying that it should have small
emittance, a concept that we will formally define in section 1.1. In addition, it is
desirable that the energies of its particles are close together, i.e. the energy spread
should be small (the concept of energy spread will be also defined in section 1.1).
The longitudinal length of a beam as well as the amount of total charge contained
are also important aspects. Finally, the energy efficiency, the repeatability and
reliability of the beam delivery process must be taken into account when designing
an accelerator.

The topic discussed in this thesis is strictly involved with the problem of efficiency
and miniaturization of accelerators, retaining the quality of conventionally produced
beams. Active Plasma Lenses (APL), are of great interest especially because of
the possibility of using them in combination with plasma acceleration techniques,
thereby boosting the research towards novel efficient and high quality accelerators.
In addition, we anticipate that APLs are compact and high performance beam
focusing devices. Thus, they are very desirable in the next generation of accelerators,
also independently of the use of plasma as accelerating medium. These concepts
will be explained in detail below, especially in section 0.2. For completeness and
clarity, before discussing such motivations we briefly outline the principles behind
plasma acceleration techniques.

0.1 Basic principles of plasma acceleration

The key mechanism of plasma acceleration is the collective behavior of a plasma that
happens in response to a perturbation of its initial neutrality. This perturbation
may be produced by injecting one (or more) intense laser pulse(s) or charged particle
beam(s) inside a plasma. Depending on the design choices and beam parameters,
the plasma may be produced by the beam itself, that ionizes an initially neutral gas
during the passage, or, in alternative, the plasma may be preexisting, i.e. produced
by means of other strategies, for instance by triggering an electrical discharge or
with a dedicated laser beam. The source of perturbation is often referred to as driver.
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Figure 0.1. Acceleration of an electron beam exploiting the wake driven in a plasma by
another electron beam. Image by A. Marocchino, simulation performed with the 3-D
PIC code ALaDyn [9].

Inside its wake the plasma electrons oscillate, creating charge distributions that are
approximately periodic (as a first approximation, the ions remain at their positions,
being their inertia much greater than that of the electrons). Due to the presence of
regions with net charge, an electric field arises, which follows the driver and is termed
as wakefield. This field can be used to accelerate as wells as to focus a particle beam
following the driver, which is called witness. This process is exemplified in fig. 0.1,
which contains a view of a computer simulation of the acceleration of an electron
witness by an electron driver inside a plasma.

A rough estimate of the longitudinal electric field sustainable by a plasma wave
is given by the so called cold wave breaking limit:

EWB ≈ 96
√

n0
cm−3 (V m−1), (0.1)

which is a rough estimate of the accelerating gradient attainable (for a derivation of
this expression see section 1.2.1). It is interesting to note that for realistic plasma
densities, this field is much higher than what obtainable in conventional RF structures
and hence it justifies the interest around the development of plasma accelerating
techniques. For instance, with ne = 1016 cm−3, we have EWB ≈ 10 GV m−1, which
is orders of magnitude beyond the typical values of tens of MV m−1.

Since its first proposal, many schemes for exciting the wakes and providing
witness particles in different manners have been proposed. We limit the discussion
to outlining schemes that are targeted on electron acceleration, because beams made
of other particles are not considered in this thesis.

A major distinction in electron acceleration schemes is given by the nature of the
driver. When intense laser pulses are used the scheme belongs to the family of the
laser-driven, whereas when high energy bunches of particles are employed, the scheme
is of beam-driven type. The first plasma acceleration scheme was proposed by Tajima
and Dawson and employed laser pulses as drivers [125]. In the frame of laser-driven
schemes [46], we find the Laser Wake Field Acceleration (LWFA) schemes, that
employ a single intense laser pulse to drive a wake, and the Plasma Beat Wave
Acceleration schemes (PBWA), where the beating of two laser pulses excites a wave
at the plasma frequency (for a definition of plasma frequency, see appendix A). Later,
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in order to overcome some experimental difficulties, such as laser pump depletion
and diffraction, which limited the possible energy gain in laser-driven schemes, the
Plasma Wake Field Acceleration (PWFA) scheme was proposed[33]. In this scheme
the driver is a high energy particle beam. Afterwards, a number of variants of PBWA,
LWFA and PWFA have been proposed as electron acceleration schemes (see some
examples in Ref. [46, 65]). Each one of them has different advantages and limitations,
and its design is tailored to different energies and purposes. Another classification
is provided by the way in which the witness beam is inserted in the wake of the
driver: it may be injected separately into the plasma or it may be generated inside it.
This last mechanism, typical of the laser-driven case, is called internal injection and
consists in the capture and acceleration of some plasma electrons by the wakefield
of the driver. The capture may happen spontaneously in highly non-linear regimes
(see section 1.2.2 for an explanation of the non linear regime) or by means of more
controllable mechanisms [86, 77, 94]. For instance, some internal injection designs
involve the exploitation of the partial ionization of the plasma or the tapering of
the plasma density channel. Instead, when the witness electrons are injected from
outside the plasma, the technique is called external injection. External injection of
electrons is a usual choice for beam-driven schemes, whereas for the laser-driven case
it is considered challenging, due to the experimental difficulties in synchronizing the
laser and electron beams.

Plasma acceleration as a whole is conceptually simple and the achievable peak
gradients make it very appealing. Nevertheless, it is far from replacing the conven-
tional technology, since the overall quality of the beams obtained is not satisfactory.
Even though high gradients have been demonstrated [58, 49, 87], plasma acceleration
is not mature enough to meet many of the common requirements that are instead
easily satisfied by conventional accelerators. However, despite that, it has become an
established research field, possibly capable of creating a new generation of particle
accelerators.

0.2 Motivation for studying active plasma lenses

We provide here some motivations for the recently renovated interest in active plasma
lensing, that is otherwise an old topic [101]. In order not to clutter this section with
lots of definitions and lengthy explanations, many of the concepts here mentioned
will be defined later in this thesis, especially in chapters 1 and 2.

The working principle of active plasma lensing can be summarized with the
focusing/de-focusing effect provided by the Lorenz force acting on charged particles
that are moving in a certain direction and sample magnetic field lines that wrap
around that very direction. Such a magnetic field is created by an electrical current
that flows in the same direction as the current density corresponding to the charged
particles that are being focused. The focusing capabilities of APLs greatly exceed
those of conventional systems, usually relying on electromagnet quadrupoles or
on solenoids, and are even greater than those obtainable in permanent magnet
quadrupoles (see sections 1.1.1 and 2.1 for more details). In addition, APLs are cm-
scale devices and hence very compact with respect to the other available technologies.

It is clear that, for the purpose of accelerator miniaturization, APLs are very
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promising. If in the next future the accelerating sections will be shrank down to
few centimeters or few meters, also the length of the beam transport lines will
need to be shortened. It would be unpleasant to have long lines devoted to the
manipulation of the beam in order to meet the strict requirements for the injection
into (or the extraction from) a short plasma acceleration module. When delivering
a beam to a plasma, small transverse spots are required in order to meet the so
called matching condition. If the size is greater than what required for matching
(we will derive this condition in section 1.2.2), the beam envelope will oscillate
with consequent emission of synchrotron radiation, in this case called betatron
radiation, and possible emittance degradation. Matching the beam to the plasma
also provides a minimization of its divergence at the exit from the plasma stage and
a reduction of the dependence of the divergence angle on the plasma parameters [68,
pp. 130-133, 173-178]. The strong focusing capabilities provided by APLs can be
useful to meet these constraints. Furthermore, as we said before, the quality of
plasma accelerated beams is usually poor. When a beam exits a plasma stage it is
often highly divergent (mrad-scale) and it has non negligible energy spread (percent
level). In such conditions the normalized emittance (which is a generalization of
the emittance concept and is defined in chapter 1) will grow significantly (as shown
in section 1.1.2) if is is not captured shortly afterwards with a suitable focusing
system. APLs can be extremely useful in this regard.

All the mentioned properties make APLs also useful for staging of plasma
acceleration modules, a possibility that has been already demonstrated [121], but
that encounters some potential limitations when applied to very intense beams [81].

Last but not least, we mention the possibility of using APLs as final focus
devices [111] and for emittance measurements [91].

0.3 State of the art

The first reported use of an APL is by Panofsky and Baker, in 1950 [101]. Fifteen
years later, an APL was used by Forsyth et al., for focusing kaons and pions [56].
Later, in the eighties and nineties, the application of APLs to ion beams were studied,
especially for the possibility of using them as final focusing systems for developing
a heavy-ion, inertially-confined fusion reactor [36]. As we said before, the recent
interest in APLs is mostly related to the development of plasma wakefield acceleration
techniques; hence, it is concentrated on the focusing of high brightness electron beams,
by means of unpinched discharges in capillaries with length of the order of centimeters
and radius in the millimeter/sub-millimeter range [130, 121, 108, 106, 113, 82]. For
example, a discharge inside one of the capillaries used at SPARC_LAB is shown
in fig. 0.2.

The main issue that one needs to overcome for effective and efficient active
plasma lensing of high brightness electron beams is the presence of aberrations.
These aberrations can be generated by the transverse profile of the magnetic field
that often does not fit the design requirements and also by the presence of undesired
plasma wakes excited inside the discharge plasma. In addition, one should also take
into account the problem of beam scattering with plasma ions and neutrals, that
may arise when heavy gas species are used (for instance argon). However, this aspect
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Figure 0.2. Electrical discharge inside a 3 cm long, hydrogen filled capillary at
SPARC_LAB. Picture from Ref.[53]

is of minor importance for light elements, such as hydrogen or helium. More details
on APL issues and experimental progresses, are provided in chapter 2.

Regarding the modeling, a number of numerical studies on capillary discharges is
present in literature. Modeling of capillary discharges was fostered by the possibility
of developing and improving laser-related technologies [43, 18]; including, for instance,
the possibility of channeling a laser inside the electron density generated by means of
a discharge, thereby guiding it for distances over the diffraction Rayleight range. Also,
an appealing field of study is the optimization of the plasma generation processes,
to obtain a medium best suitable for LWA and PWA applications. Most part of
the theory and numerical modeling that has been developed models the plasma as
a compressible fluid in a 1-D axially symmetric geometry, where all the quantities
depend on the radial position inside the capillary but not on the longitudinal or on
the azimuthal one [19, 47, 26, 25]. This approximation is justified by considering
the typical length to radius ratio of these capillaries, L/R ≈ 10 ÷ 100. In those
works, the reactions occurring in the plasma are either modeled assuming a local
thermodynamic equilibrium (LTE), which is often applied separately for electrons and
ions [19] or by taking a more accurate and computationally more expensive nonLTE
approach [26]. In addition, it can happen in these discharges that a transverse
thermal equilibrium is quickly reached, the skin effect is negligible and the Ampere’s
self forces are small with respect to the thermal pressure gradients. This allows for
computing the relevant plasma quantities by means of a semi analytical quasi-static
model[19], where the plasma is in thermal equilibrium and evolves adiabatically with
the time variation of the electrical current. We will describe this model in more
detail in section 2.2.1.

Furthermore, 2-D studies considering the transverse section of (ideally) very
long capillaries have been performed. The effect of the transverse capillary shapes
(squared1 and circular) has been theoretically investigated, for both laser guiding

1Squared capillaries allow greater diagnostic accessibility
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and electron beam focusing [5]. Oblong rectangular shapes were also theoretically
studied and proposed for production of electron beams with flat transverse profile [7].

A 3-D magneto hydrodynamic model was used to study a discharge in a capillary
with the aim of providing more accurate theoretical insight on its laser guiding
properties in relation to LWA [6]. The effect of the initial mass density distribution
was taken into account by simulating also the filling process (with a hydrodynamic
model including thermal conduction). The outflow of the hot gas from the open
extremities, and hence the spreading of electron density outside the discharge region,
was considered in the evaluation of the coupling properties between laser beams and
the plasma.

Regarding APLs, a 2-D axially symmetric model is the minimum complexity that
is required to accurately study the time development of the focusing magnetic field,
taking also into account the outflow of matter from the capillary extremities. The
outflow of plasma is important not only because of it is responsible for a modulation
of the plasma properties along the capillary, but also because it may generate electron
density ramps just outside the capillary. A beam passing through these ramps may
excite wakes, sometimes with detrimental effects on its quality [90]. In addition, even
though the capillaries employed have a high L/R ratio, their shape is intrinsically
2-D (at least); the same applies to the electrodes employed. The effect of the 2-D
geometry on the development of the discharge needs to be carefully studied, with a
special care on the magnetic field produced.

To our knowledge, except for Ref. [23], no other numerical study on capillary
discharges with focus on their active plasma lensing properties and employing at
least a 2-D, axially symmetric geometry is present in literature2. With our studies
we aim at addressing these needs, in order to provide further insights on the physical
system, useful for designing effective and efficient APLs in the next future.

0.4 Organization of this thesis
After the present introductory discussion, this thesis is organized as follows:

• In chapter 1 general concepts of accelerator physics will be defined, together
with some fundamental topics in electron beam-plasma interaction that will
be useful in the discussions coming afterwards;

• In chapter 2 the working principle of the active plasma lenses will be explained,
and their main issues will be discussed. In particular we will present the
aberrations coming from the non uniform distribution of the current density
inside the plasma channel. We will outline the problem of the scattering between
beam electrons and plasma ions and heavy particles. We will also discuss on
the aberrations coming from the undesired wakes excited in the plasma. Lastly,
the recent experimental results on the focusing of high brightness electron
beams will be summarized following the presently available literature;

• In chapter 3 the experimental system for gas discharge available at SPARC_LAB
– the location were this thesis work was performed, will be described, together

2Note that in Ref. [6] no magnetic field profile was plotted, being it of little importance for laser
coupling optical properties.
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with the measurement systems implemented. Also, the whole SPARC_LAB
facility, will be briefly introduced;

• In chapter 4 we will explain how a discharge plasma may be modeled in generic
terms, and we will provide an idea of the derivation of the mathematical model
used in the present work for simulation of capillary discharges;

• In chapter 5 we will describe the equations used to model the capillary dis-
charges that we studied in this thesis, including some important details on the
transport parameters and the ionization model employed. Then the numerical
method and the code that we chose to practically solve the system equations
will be explained;

• In chapter 6 we will provide the results of the discharge simulations that we
performed. We will also discuss the outcomes outlining what we learned from
the simulations, in terms of reliability of our model and for the possibility of
optimization of APLs for high brightness electron beams.

We will then conclude by summarizing the main results and with some final remarks.
In the appendix we add the derivation of the main plasma parameters.
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Chapter 1

Accelerators and plasmas

1.1 Transverse beam dynamics fundamentals
Beams of interest in accelerator physics are composed by particles always confined
in regions of small transverse size, approximately centered on the longitudinal axis
of propagation. In general, particles belonging to a real beam have a spread in their
direction and transverse position. Considering that externally driven forces can only
affect the average motion of the particles, being practically unfeasible to act on any
singular particle independently on the others, it is clearly not possible to focus a
beam down to a null size spot.

In this thesis we study beams with the transverse components of momentum
that is much smaller than the longitudinal one:

px, py � pz ≈ p. (1.1)

From now on we indicate the transverse coordinates with x,y (or r when employing
cylindrical coordinates with axial symmetry) and the longitudinal one with z, unless
otherwise noted. Following the assumption above, it is convenient to refer to the
angle of divergence of a particle with respect to the longitudinal axis with the so
called paraxial or small angle approximation:

x′ = px
pz
≈ px

p
, y′ = py

pz
≈ py

p
, (1.2)

where the apex indicates the derivative along the z coordinate.
It is possible to define a statistical quantity, called root mean square emittance,

that is a figure of merit of the beam and takes into account the degree of disorder of
the beam due to non uniformity of particle positions and angles of motion:

εx
.=
√
〈x2〉 〈x′2〉 − 〈xx′〉2, (1.3)

where the 〈α〉 notation indicates the arithmetic mean of quantity α over all the
particles. Note that, if the beam is on axis (〈x〉 = 0) the terms appearing in the
emittance definition represent the variance of the transverse positions of the particles,〈
x2〉, the variance of the transverse directions,

〈
x′2
〉
, and the covariance of the two,

〈xx′〉, which takes into account the degree of correlation of particle positions and
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directions. Obviously, the definition of emittance for the y coordinate may be
obtained by substituting x with y in eq. (1.3). We study now only the physics in the
(x, z) plane, but the discussion may be adapted to the (y, z) in a straight forward
manner.

In accelerator physics, the quantity σx
.=
√
〈x2〉 is called beam envelope and

represents a possible formalization of the concept of transverse beam size. Computing
its second derivative with respect to z and rearranging the terms it is possible to
derive a second order non linear differential equation, describing its longitudinal
evolution in a convenient way:

σ′′x −
〈xx′′〉
σx

= ε2x
σ3
x

(1.4)

It is clear that the term on the right hand side, that contains the beam emittance, may
be physically interpreted as an outward pressure on the beam envelope. The term
〈xx′′〉 contains the second derivatives of the particle positions, which are proportional
to the forces acting in the transverse direction, and involves the dependence of these
forces on x.

For instance, when the beam drifts freely, without the effect of any force on its
particles, i.e. 〈xx′′〉 = 0, the emittance is constant and the equation reduces to

σ′′σ3
x = ε2x, (1.5)

with solutions:

σx(z) =
√

[σx(z0) + σ′x(z0)(z − z0)]2 + εx
σx(z0)2 (z − z0)2. (1.6)

If we set as z0 the location where the beam has the minimum envelope (the so called
beam waist) and we call σ0 the value of the minimum, we may rewrite the solution
as:

σ(z) = σ0

√
1 + ε2

σ4
0

(z − z0)2. (1.7)

We see that the rate of growth the beam envelope from the waist depends on the
emittance (it grows of a factor

√
2 after a characteristic length of σ2

0/ε.
It is clear that having small emittance beams is important in order to keep the

beam divergence and size under control. This is one of the main reasons why it is
most often preferred to have an emittance that is as small as possible.

1.1.1 Conventional beam focusing

If a transverse force acts on the beam and is such that:

x′′ + kx = 0, (1.8)

with k being a real constant, than the particles oscillate around the x = 0 position.
The parameter k is termed as focusing strength. It is easy to verify that in this
case the emittance is constant by computing its derivative from the definition 1.3
and substituting x′′ with −kx. Conditions eq. (1.8) is very desirable in accelerator
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physics, since it allows to focus the beam, or confine it inside a channel, without
spoiling the emittance. In reality, condition1.8 is never met, not only because of
the dependence of k on x,y and z, but also because k may variate from particle to
particle, depending, for instance, on their energy.

The product of the focusing strength with the longitudinal extension, L, of the
region where eq. (1.8) is valid is usually indicated with K (capital letter).

If the transverse positions of the particles do not change significantly during the
passage through the lens, we are in the so called thin lens approximation; a necessary
condition for this is that L be much shorter than 1/

√
k. In this case the lens provides

the particles with a transverse kick ∆x′ = −Kx and focuses an incoming bunch of
particles, each with zero divergence, down to a point that is downstream the lens
location by a distance f = 1/(kL). The parameter f is called focal length.

In the remaining part of this section we discuss on two examples of beam optical
systems: the magnetic quadrupoles and the solenoids. These are of great importance
in high brightness linacs, but are not the only focusing systems used in accelerator
physics. For instance, other common devices are the electrostatic lenses, that
exploit static electric fields for low energy particle focusing, and the radio frequency
quadrupoles that exploit a RF electromagnetic field to accelerate and focus at the
same time (usually employed for low energy ion beams). For further information see
Ref. [70].

Focusing with quadrupoles

We take as example the use of magnetic quadrupoles for beam focusing. These
devices are made by four equidistant and alternated magnetic poles appropriately
placed around the beam axis. The generated magnetic field is such that, watched
on the (x, y) plane, it is null at the position x = 0, it grows linearly with x and is
orientated as ±y. Depending on its sign it contributes to focus or defocus the beam,
thanks to Lorentz force. For an ultra-relativistic beam (β ≈ 1), in the paraxial
approximation, we have that in a quadrupole:

k = qg

m0cγ
, (1.9)

being m0 the rest mass of the particles, q their charge, c the speed of light, γ the
relativistic γ factor and g the gradient along x of the magnetic field component
in y direction, g = By/x. We note that, since k ∝ 1/γ, the more energetic the
beam is, the weaker the quadrupole k. Moreover, if the particles have different
energies, i.e. different γ, they experience different restoring forces, thereby breaking
the uniformity of the focusing strength.

It is important to mention that such a quadrupole field is only focusing in one
direction, and necessarily de-focusing in the other one. In order to have a resulting
global focusing of the beam in both transverse planes, one has to arrange some
quadrupoles (at least two, but to attain some satisfying degree of flexibility three
are very often required), with alternated orientations and accordingly tuned field
gradients.

Quadrupole fields may be produced by means of electromagnets or by permanent
magnets. The first ones are more easily tunable than the second ones, since the
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gradient g may be variated by changing their feeding current, whereas the second
ones require nontrivial movements of the poles. Instead, when dimensions are a
constraint, permanent magnets are explorable solutions for obtaining high field
gradients (up to 600 T m−1 [79, 107]) in small spaces.

Focusing with solenoids

Another solution for beam focusing is the use of the magnetic field generated by
means of current loops wrapped around the beam axis. These loops form a solenoid,
with a radially symmetric magnetic field that is mainly oriented in longitudinal
direction. Outside the device the magnetic field has an important component in
transverse direction, r. The associated focusing strength is:

k =
(

qB0
2γm0c

)2
, (1.10)

where B0 is the magnetic field inside the solenoid. The working principle of a solenoid
is that the beam particles, while entering the device, sample the fringing field, whose
radial component is responsible for a Lorentz force generating a rotational motion of
the particles in the transverse plane. Then, inside the solenoid, due to their the just
acquired velocity component, the interaction with the longitudinal magnetic field
creates a force pointing towards the longitudinal axis. When exiting, they experience
another fringing field which, that generates a velocity component that compensates
the one acquired initially. Note that solenoids are focusing regardless of the sign
of the current flowing in the loops. Furthermore, they focus in both planes at the
same time. A drawback of these devices is that their focusing strength scales like
1/γ2, and are therefore usually preferred at low energies, reserving focusing of high
energy particles to quadrupoles.

1.1.2 Emittance variations and non linearities

Normalized emittance

When particles are accelerated, their longitudinal momentum increases. This means
that the emittance decreases, since the ratios of the x and y components of the
momentum (which do not variate due to pure acceleration) to the longitudinal one
decrease. For this reason, it is convenient to define a so called normalized emittance,
which does not variate under uniform acceleration of the beam:

εNx
.= 1
m0c

√
〈x2〉 〈p2

x〉 − 〈xpx〉
2 =

√
〈x2〉 〈(βγx′)2〉 − 〈xβγx′〉2 (1.11)

In this definition, px takes the role formerly played by x′. When the beam has
negligible relative energy spread, that is defined as

σγ
.=

√√√√〈β2γ2〉 − 〈βγ〉2

〈βγ〉2
, (1.12)

the rms normalized and non normalized emittances are connected by the simple
relation εnx = 〈βγ〉 εx. A parameter related to the normalized emittance is the beam
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brightness, a figure of merit of great importance for many applications, including
the production of FEL radiation (the higher the brightness, the more valuable the
beam). Its definition is:

B = 2I
εN,xεN,y

, (1.13)

where I is the beam current. Note that the brightness is inversely proportional to the
beam (normalized) emittance. This is one of the main reasons why low emittance
beams are highly desirable.

Sources of emittance growth

We note however, that a non uniform acceleration of the beam is capable of producing
emittance growth, besides generating energy spread as obvious. Intuitively this may
be explained by noting that energy non uniformity represents a kind of disorder in
the beam, and therefore a source of emittance. It is easy to verify this fact for a beam
with no correlation between transverse positions and energy and in ultra-relativistic
conditions. In fact, after a bit of algebra the following relation can be obtained [68,
p.165]:

εn,x =
〈
γ2
〉

(σ2
γσ

2
x

〈
x′
〉2 + ε2x). (1.14)

In addition, the relation shows that for large energy spread beams, even an
increase of the spot size or beam divergence generates emittance growth.

As anticipated before, when a beam with large energy spread passes through
magnetic beam optics (such as quadrupoles or solenoids, but also APLs) it may
undergo emittance growth due to the different focusing forces experienced by particles,
depending on their γ. Moreover, also the non uniformity of the magnetic field gradient
inside a quadrupole can be a source of emittance degradation.

Another example is the space charge forces due to the repulsive Coulomb interac-
tion of beam particles, that have a linear and a non linear component. Nevertheless,
when a beam reaches high energies, depending on its current and size, it arrives
to a condition where the space charge forces are negligible. This happens because
the Lorentz force acting on the beam particles depends also on the magnetic field
generated by the beam itself. The magnetic component of the Lorentz force is
attractive and, for high γ, tends to compensate the repulsive electric component. In
fact, in cylindrical symmetry we have:

Fr = e(Er − βcBθ) = e(1− β2)Er = e
Er
γ2 , (1.15)

where Fr is the Lorenz force acting on a beam electron, Bθ is the azimuthal component
of the magnetic field, Er is the radial component of the electric field. Note that we
also used the relation Bθ = β

cEr, that gives the magnetic field of a distribution of
charge that translates rigidly (with velocity βc) in longitudinal direction. It is clear
that the space charge defocussing effect drops like 1/γ2. With respect to the beam
parameters, it happens that the space charge may be neglected approximately when
the beam γ exceeds the threshold:

γtr = Iσ2

2IAε2n
, (1.16)
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where IA = 4πε0m0c
3/e is called Alfvén current and is approximately 17 kA for

electrons. Further explanation may be found in Ref. [68, pp 168-170]

Aberrations

An optical system is said to have aberration when it is not capable of focusing a zero
emittance beam down to a single point focus. The term spherical aberration is also
often used for the analogy with the problems encountered when lenses for optical light
are made out pieces of spherical surfaces. An aberrated lens offers a focusing strength
that is not uniform, either in the transverse direction (transverse aberrations), or in
the longitudinal direction (longitudinal aberrations). The aberration is said to be
chromatic when particle with different energies experience different forces.

In order to minimize the attainable spot and the emittance growth, it is often
preferable to have aberration free optics. In general, however, there are situations
where some degree of aberration is desired, as its effect on the beam quality depends
on the degree of correlation between particle energies, positions and transverse
momenta (see below).

To explain the possibility of emittance increase we consider a thin lens providing
a restoring force on the beam particles proportional to the third power of the particle
positions,

x′′ + ax3 = 0. (1.17)

This corresponds to a focusing strength directly proportional to the square of the
particle positions, k = ax2. The lens length is L and it provides the particles with a
kick ∆x′ = −aLx3 and leaves their positions unchanged. By computing the square
of the rms emittance of the beam after the lens and subtracting the expression of
the emittance before entering the lens, one obtains the following expression, giving
the variation of the squared emittance:

∆(ε2) = −2aL
〈
x2
〉〈
x3x′

〉
+ (aL)2

〈
x2
〉〈
x6
〉

+ 2aL
〈
xx′
〉 〈
x4
〉
− (aL)2

〈
x4
〉2
.

(1.18)
In the case of an initially laminar beam, with particles propagating perfectly parallel
to the longitudinal axis (which implies zero initial emittance), the first and third
term on the right hand side are zero and we are left with:

∆(ε2)
∣∣∣∣
x′=0

= (aL)2
〈
x2
〉〈
x6
〉
− (aL)2

〈
x4
〉2
> 0. (1.19)

It is not difficult to prove that this quantity is always positive, providing an emittance
increase, from zero to a certain positive value. Instead, if we consider a real beam
at waist, the third term of eq. (1.18) vanishes, since 〈xx′〉 = 0, and the expression
becomes:

∆(ε2)
∣∣∣∣
〈xx′〉=0

= −2aL
〈
x2
〉〈
x3x′

〉
+ (aL)2

〈
x2
〉〈
x6
〉
− (aL)2

〈
x4
〉2
. (1.20)

As before, the last two terms provide a positive contribution, but the sign of the
first one is not known a priori. The overall result depends on the kind of correlation
of the particle angles with their positions, and in principle it is even possible that
the emittance will decrease.
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1.2 Beams in plasmas

Since the topic of this thesis is on the use of current carrying plasmas to focus
electron beams, we cover here briefly also the theory of the interaction of electron
beams with plasmas. In fact, it is not possible to study the effect of active lensing
without considering the presence of free electrons and ions in the region of the space
transversed by the beam. Depending on their densities, different kind of wakes (with
their associated electromagnetic wake fields) may be excited in the plasma. Since we
do not cover the topic of the combination of beam focusing and acceleration in the
same plasma, but we rather discuss only-focusing stages, we will limit the discussion
to the aspects that are useful for studying the effect on the plasma wakes on the
beam focusing and the related undesired effects, such as emittance increase.

In addition, the contribution of beam electrons scattering with the plasma ions
have to be considered.

In section 1.2.1, we present the main features of the linear regime, that applies
when the electron plasma density is much greater than the beam density and the
plasma electron move at speed much smaller than the speed of light. In section 1.2.2
we briefly discuss the non-linear regime, that applies when the plasma density is
comparable or smaller than that of the beam. Lastly, in section 1.2.3 we will give
some consideration on the importance of the scattering between beam electrons and
plasma ions.

1.2.1 Linear plasma wakefield regime

When an electron beam enters a plasma that is much denser than the beam itself, its
electric field causes a movement of the plasma electrons, while the ions are almost
immobile, due to their much greater mass. Intuitively, we can imagine that the
plasma electrons initially move trying to shield the beam space charge and eventually
they will start oscillating.

We follow the derivation of the linear regime pedagogically rewritten by Blu-
menfeld [17]. We begin by considering the continuity equation for plasma electron
fluid:

∂ne
∂t

+∇ · neve = 0, (1.21)

and the Lorentz force acting on an electron:

∂pe
∂t

= −e(E + ve×B). (1.22)

In this last equation, the electric and magnetic fields are the superposition of the ones
provided by the plasma and by the beam electrons. The magnetic field generated
by the passage of a cylindrically symmetric ultra-relativistic beam has a magnitude
that is of the order of the ratio between the transverse component of the electric
field and the speed of light, ‖Bb‖ ≈ ‖E⊥,b/c‖. If the plasma electrons move at a
speed that is much smaller than the speed of light, the contribution of the ve×Bb
term in eq. (1.22) is negligible with respect to the one due to the electric field. In
addition, the magnetic field generated by the plasma electrons is even smaller than
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that of the beam. Hence, we can drop the ve×B term and we obtain:

me
∂ve
∂t

= −eE. (1.23)

Then, we linearize eq. (1.21) by considering the electron density as a result of the
superposition of a constant value, n0, with a very small perturbation term, δn:

ne = δn+ n0, |δn| � n0, (1.24)

Using again the assumption of small speed and neglecting second order terms we
get:

∂δn

∂t
+ n0∇ · ve = 0. (1.25)

Taking the time derivative of this equation and using eq. (1.23) to substitute for ∂ve
∂t ,

we arrive at:
∂2δn

∂t2
− n0e

m
∇ ·E = 0, (1.26)

where we can substitute the electric field with its expression obtained from Gauss’
Law, particularized by remembering that, due to the local charge neutrality of
plasma, the ion charge density, ρi, shields the unperturbed electron charge density,
and including the contribution of the electron beam density nb:

∇ · E = ρi − ene − enb
ε0

= −eδn+ enb
ε0

. (1.27)

Thus we obtain:
∂2δn

∂t2
+ e2n0
ε0me

δn = − e
2n0
ε0me

nb, (1.28)

that we can rewrite using the definition of plasma wavenumber, kp =
√

e2n0
ε0mec2

(for the definition of plasma wavenumber see appendix A), and switching to the
co-moving frame by setting ξ .= z − ct:

∂2δn

∂ξ2 + k2
pδn = −k2

pnb, (1.29)

This is the equation of a driven harmonic oscillator. It shows that the plasma
responds to the perturbation due to an electron beam by generating charge density
waves. Its solution may be found using Green’s functions. In the special case where
the electron beam density is separable and the beam is longitudinally limited to
ξ < 0, i.e.

nb = nb,0f(r)g(ξ), ξ < 0 (1.30)
nb = 0, ξ ≥ 0

it takes the simple form:
δn = nb,0f(r)G(ξ), (1.31)

with G(ξ) defined by:

G(ξ) .= kp

∫ 0

ξ
g(ξ′) sin[kp(ξ′ − ξ)] dξ′ . (1.32)
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Expressions for 2-D wakefields

The wake field is defined as the Lorentz force acting on a unit charge that moves at
the same speed as the beam. It can be split in longitudinal wake,

W‖(r, ξ) = Ez (1.33)

that involves only the longitudinal electric field, and transverse wake,

W⊥(r, ξ) = (E + cβ×B)
∣∣∣∣
r
≈ Er − cBθ (1.34)

that has also a magnetic field component.
One can derive expressions for the wake fields starting from the electromagnetic

wave equation, plugging in the source terms and applying the same assumptions
of small plasma perturbation and slow plasma electron motion as in section 1.2.1.
For the special case where the electron beam density is separable and longitudinally
limited to ξ < 0, and thus the plasma perturbation δn is as in eq. (1.31), the wake
fields have the following expressions [32]:

W‖ = −enb,0
ε0k2

p

∂G

∂ξ
F (r) (1.35)

W⊥ = −enb,0
ε0k2

p

G(ξ)∂F
∂r

(1.36)

with F (r) defined by:

F (r) .=k2
pK0(kpr)

∫ r

0
r′f(r′)I0(kpr′) dr′ (1.37)

+ k2
pI0(kpr)

∫ ∞
r

r′f(r′)K0(kpr′) dr′ ,

where I0 is the 0-th order modified Bessel function of first kind and K0 is the 0-th
order modified Bessel function of second kind.

Equation (1.35) and eq. (1.36) allow to calculate the kick experienced by the
beam particles due to the plasma response to its passage.

Maximum longitudinal field

A rough estimate of the maximum longitudinal electric field that may be produced
in the linear case may be performed by assuming a plasma density perturbation
equal to the initial value. This is just meant to set a maximum limit that cannot
be exceeded from inside the linear theory, and the procedure itself is obviously not
strictly correct. In fact, in the linear theory we assumed that the perturbations are
small with respect to the unperturbed situation.

If all the plasma electrons are expelled by the beam passage and they oscillate
coherently with a typical frequency ωp, they will generate an oscillating electric field,

E ≈ E0e
−ikpz. (1.38)
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Computing the divergence of this field one obtains,

‖∇ ·E‖ ≈ ‖−ikpE0‖ = ωp
c
E0 (1.39)

Applying Gauss law considering the full evacuation of plasma electrons we have
ωp
c
E0 ≈

en0
ε0
, (1.40)

that may be rearranged as:

E0 ≈
mec

e
ωp

.= EWB, (1.41)

This expression, already introduced in section 0.1, is the wave-breaking field and,
as said above, represents the maximum field sustainable by a plasma in the linear
regime. It depends only on the plasma density; its expression is often provided in
the engineering form:

EWB ≈ 96
√

n0
cm−3 (V m−1). (1.42)

As already explained in section 0.1, with realistic plasma densities the values obtained
from eq. (1.42) can greatly exceed those attainable in conventional radio-frequency
accelerating structures. This is one of the main reasons that motivates the research
towards plasma wakefield acceleration.

1.2.2 Nonlinear plasma wakefield regime

When the beam density is comparable to the plasma electron density, the plasma
response becomes non linear. Approximately all the plasma electrons are expelled
from the beam passage region due to the repulsive electric field of the beam. The
passage of the beam is not anymore a small perturbation to the plasma, whose
electrons may also move at relativistic speeds. At first order, the result is a bubble
co-moving with the beam, depleted of electrons and containing only the ions, which
are too heavy to move significantly during the beam passage time. Due to the
possible relativistic effects, the wave breaking field (see eq. (1.42)) may be exceeded.

A model for the nonlinear dynamics of electrons in this regime, that allows to
compute the shape of the bubble and accelerating field was developed by Lu [84, 85],
and recently another theory has been provided by Stupakov [123]. We do not enter
the details of any of the these theories here, since it is not necessary for the purpose
of this work.

In addition, we note that for more accurate results, numerical simulations
exploiting more rigorous and complete models have to be used. Typically, particle-in-
cell (PIC) codes are employed, that model the beam and the plasma by using macro-
particles and compute their electromagnetic fields by weighting and distributing their
charges densities on a computational grid; the PIC method provides a great boost in
computational costs with respect to straight forward particle-particle algorithms that
take into account the interaction of each particle with every other separately [12]. For
instance, some PIC codes used in accelerator physics are ALaDyn [9], PIConGPU [28]
and Smilei [38]. Also hybrid PIC-fluid methods are used, that model the beam with
a kinetic approach and treat the plasma as a cold fluid, providing a reduction in
computational time with respect to a fully kinetic algorithm. Among the codes
implementing these methods, we find the program Architect [88].
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Transverse electric field and envelope oscillations

In the approximation of a uniform and infinitely long, axially symmetric ion column,
the transverse electric field experienced by the beam particles may be easily computed
with Gauss Law. It is dependent on the ion density and on the distance from the
axis:

Er = e

2ε0
npr, (1.43)

and the associated focusing strength is:

k = e2

2ε0mec2
np
γ
. (1.44)

In this approximation the focusing strength is uniform. Therefore it is expected that
in this case, i.e. when the plasma is much less dens than the beam, the aberrations
are much smaller with respect to the opposite case in which the ratio of the two
densities is inverted. This is at the base of the concept of underdense plasma
lens [124].

The nonlinear plasma regime is of great importance when intense beams are
concerned, such that the background electron density (much smaller than that of the
beam, as we said) is still high enough to produce significant focusing/accelerating
fields. This is a commonly encountered situation in plasma acceleration modules. In
those cases, the beam envelope will naturally tend to oscillate in the focusing field
of the ions, unless the beam meets the so called matching condition. We derive this
condition here since the possibility of reaching it with the help of an APLs is one of
the motivations behind this technology.

To study the envelope evolution, we refer to eq. (1.4). In order to express the
term 〈xx′′〉 as a function of k, we note that k and x fulfill eq. (1.8), from which it
follows that: 〈

xx′′
〉

= −
〈
kx2

〉
= −kσ2

x, (1.45)

where we used the fact that k is uniform and may be brought outside from the
expectation symbol. Hence, the envelope equation becomes

σ′′x + σxk = ε2x
σ3
x

, (1.46)

that is the equation of a harmonic oscillator with an additional source term on the
right hand side. When the size of the beam is large, the term σxk prevails over the
term ε2x

σ3
x
and thus we have σ′′ < 0. The beam size will therefore decrease, until the

emittance term becomes dominant, implying σ′′ > 0. The beam envelope will then
grow, but the term σxk will eventually prevail again, forcing once more a decrease in
size. This is the mechanism of the beam envelope oscillation (note that the envelope
will remain positive in any case). There exists an ideal condition, where the beam
does not oscillate, and it is found by setting σ′′x = 0 in eq. (1.46). It follows that the
envelope will be constant (of course every single particle will oscillate anyway) if its
rms size is:

σx =
√
εxc

e
4

√
2γε0me

np
(1.47)
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Figure 1.1. Matched rms spot size value for some typical electron densities employed in
plasma acceleration studies

If this situation occurs one says that the beam is matched to the plasma. In fig. 1.1,
we plotted the value of the matched rms spot size against the relativistic γ of the
beam and for some typical plasma densities in plasma wakefield acceleration. For
further details see also Ref. [68, pp. 130-133, 173-178].

1.2.3 Multiple Coulomb scattering

In a particle accelerator the beam is usually kept under conditions of high vacuum and
this prevent it from important (elastic or inelastic) interactions with gas particles1.
For linear accelerator purposes, the effect of inelastic collisions is usually negligible.
Obviously, in a focusing or accelerating device based on plasma, this vacuum condition
cannot be fulfilled, and one should also take into account the possibility of having
beam-neutral or beam-ion scattering.

In a neutral gas, elastic scattering occurs when the impact parameter of a particle
is comparable to (or smaller than) the atomic radius. Instead, the scattering with
charged ions occurs also beyond the atomic radius, due to their electric charge. The
largest impact parameter to be considered is the distance above which the ion field
is shielded. For a quasi neutral plasma, this distance is the Debye length (for its
definition see appendix A), above which ions are screened by the charge of free
electrons. Instead, for the positively charged bubble generated by a beam in the
nonlinear blowout regime, this length is the radius of the ion column, which is of
the same order as the plasma skin depth, kp (see appendix A for the definition of
plasma skin depth).

The problem of beam-gas scattering has been extensively studied [16, 10, 66, 112],
and it has been also generalized to scattering with ions [73, 95]. For the rate of

1Besides this, there are other reasons why beams are kept under high quality vacuum, for instance
the safe operation of the radio frequency devices.
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normalized emittance growth of an ultra-relativistic electron beam we take the
expression derived by Kirby [73, eq. 22]:

ε′x,n = 2πr2
e

n0σ
2
x

γεx

[
Z2
i ln

(
λ

Ra

)
+ 1.78Z(Z + 1) ln

( 287√
Z

)]
. (1.48)

Here, n0 is the neutral vapor density, Zi the ion ionization degree, λ is either the
Debye length or the or the plasma skin depth, Z is the atomic number of the gas
species, re is the classical electron radius and Ra ≈ 1× 10−10 m is the atomic radius.
The left addend in the parenthesis on the right hand side takes into account the
long range interaction of the beam electrons with the plasma ions, instead the right
addend is due to the close range interaction with the heavy particles, either ionized or
not. For fully ionized hydrogen (Z = 1,Zi = 1), in the fully blowout regime (λ = kp)
the two terms are approximately the same size, but for increasing Z, the term due
to neutral vapor becomes dominant [73] (assuming singly ionized ions). In the case
where the beam perturbs the plasma only slightly and no bubble is generated (linear
regime) the plasma deviation from local neutrality can be neglected and the Debye
length should be used as larger impact parameter in eq. (1.48), λ = λDeb. The Debye
length is approximately 3 orders of magnitude shorter than the plasma skin depth,
for temperatures of few eV; nevertheless since it appears inside a logarithm, the rate
of emittance increase does not change significantly with respect to the fully blowout
situation. When multiple Coulomb scattering with ions is an issue, one possibility
to reduce it is using a plasma made of a low Z element.
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Chapter 2

Active plasma lensing

Plasmas may be used in different manners to focus (or defocus) a particle beam.
The kind and quality of the focusing provided may be related to different physical
effects and, depending on the underlying principles, beams with different properties
can be delivered after a plasma lens. The focusing strength may be provided by an
electrical current flowing in the plasma, as well as, by the wake due to the passage
of the beam in the plasma itself. When the focusing is provided by the wake, the
term passive plasma lens is used [124]. Instead, when the focusing is provided by
the magnetic field generated by an externally driven current, the term active plasma
lens (APL) is used.

In section 2.1 we explain the basic physical principle of an APL and we will talk
about its capabilities, whereas in section 2.2 we will discuss the related problems and
drawbacks that have to be taken into account for its design and operation. Lastly,
in section 2.3 the recent results on the application of APLs to electron beams will
be summarized.

2.1 Working principle and main features

In an APL an azimuthal magnetic field is generated by a current flowing through
a plasma channel in the same direction as the beam current. The magnetic field
lines lay on the transverse plane and wrap around the axis of the capillary, thus
producing a focusing Lorentz force on a charged particle beam passing coaxially
through the discharge. In Fig. 2.1 a scheme of principle of an APL is presented.

e–beam
~B

I
electrode

Figure 2.1. Schematic view of an active plasma lens.
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To derive the expression for the focusing strength we start from the Lorentz
force acting on a beam electron,

dpe
dt = −ev×B. (2.1)

Watching only at the radial component of the momentum and considering that the
magnetic field has only an azimuthal component the previous equation becomes:

dpe,r
dt = −evzBφ. (2.2)

Writing explicitly the electron transverse momentum and longitudinal velocity,

d
dt(γmecβr) = −eβzcBφ, (2.3)

substituting the time derivative for the longitudinal one, according to d
dt(γβr) =

c(γβr)′′, and using the paraxaial approximation (βr � βz ≈ 1) one obtains:

γr′′ = − e

mec
Bφ. (2.4)

Now, defining the focusing gradient, g .= Bφ/r as for quadrupoles1, we arrive at the
equation for the transverse electron positions,

r′′ + eg

mecγ
r = 0. (2.5)

To derive the focusing strength of the lens, one has to compute (see section 1.1.1)

kAPL
.= x′′

x
. (2.6)

Considering x = r cosφ, and plugging together the last two equations, we have:

kAPL = eg

mecγ
= e

mecγ

Bφ(r)
r

= e

mecγ

Bφ(
√
x2 + y2)√
x2 + y2 . (2.7)

It is useful to rewrite this expression as a function of the current flowing in the
plasma. The magnetic field is given by Ampere’s law, and when the current density
is uniform on the transverse plane its expression is

Bφ = µ0
2π

Ir

R2 , (2.8)

where I is the electrical current and R is the radius of the (capillary) discharge. We
may therefore rewrite the kAPL parameter as:

kAPL = µ0
2π

e

mec

I

γR2 . (2.9)

In the following of this thesis, we assume rotational symmetry around the beam
propagation axis. This is a realistic approximation, when the geometry of the

1For r = 0, g is defined by the derivative ∂BΦ
∂r

∣∣
r=0

.



2.1 Working principle and main features 17

capillary containing the discharge is also rotationally symmetric and no effects
capable of breaking this condition occur (such as, for instance, instabilities of the
discharge that may occur at high currents). This assumption is acceptable in a
number of recent literature cases [106, 108, 130, 131, 82], even though in some
cases indications of asymmetries have been noticed and are probably related to
the presence of gas inlets in the capillary [108]2. In addition, studies where the
transverse planes have different focusing gradients with different situations are also
present [7, 5]

In the most recent applications (see section 2.3), APLs are implemented by
discharges contained in capillaries of few cm length and radius in the mm order.
They can be made of sapphire (sometimes with printed plastic holders) or directly
of printed plastic. See for instance Ref. [54], where capillaries made of VeroClear-
RGD810 material have been studied.

In addition, applications where the discharge plasma self-pinches under the effect
of the Lorentz force generated between its own current density and magnetic field
existed [21]. This is a well known phenomenon called z-pinch that eventually leads to
instabilities in the discharge column. Regarding the use of APL for high brightness
electron beam focusing, this effect has not been explored in detail: all the studies
consider situations with marginal or negligible pinches.

APLs can focus simultaneously in both transverse planes, as it is clear from
eqs. (2.1) to (2.7), and their focusing strength scales like 1/γ. As a comparison, we
note that the focusing strength of the solenoids, which also provide transversely
symmetric focusing, scales like 1/γ2. This makes solenoids not suitable for application
at high energies, while APLs are as applicable as quadrupoles are, since also the
focusing strength of quadrupoles scales like 1/γ.

Table 2.1. Focusing gradient (T m−1) of an active plasma lens with uniform current density
for various currents and radii.

R (m)
100 200 500

I
(A

) 100 2000 500 80
500 10000 2500 400
1000 20000 5000 800

In table 2.1 some examples of focusing gradients attainable with an APL are
presented. It is possible to reach values up to kT m−1, even higher than those
attainable with permanent magnet quadrupoles that in recent applications attain
gradients of the order of 600 T m−1 [79, 107]. Therefore the lens length required for
attaining satisfying beam confinement and transport is smaller than what required
for quadrupoles, that also need to be placed in doublets (or triplets) for focusing in
both transverse planes. In recent experimental studies, lens of few centimeters have
been used [106, 108, 130, 82]

2See for instance the difference in emittance growth between the horizontal (12 %) and vertical
(80 %) planes in Ref. [108]
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2.2 APL issues

The above described features, make APLs very appealing. However, some issues
and criticalities need to be overcome for stable and optimal focusing of high quality
particle beams. In the following we will discuss the main sources of aberrations that
affect active plasma lenses: the possibility that the azimuthal magnetic field has
a non linear dependence on the radial position inside the lens (section 2.2.1), the
excitation of undesired wakes when a beam passes inside the lens (section 2.2.2) and
the possibility of beam scattering with plasma ions and neutrals (section 2.2.3).

2.2.1 Non linearity of the magnetic field

In a capillary discharge, the establishment of a transverse thermal equilibrium
acts against the formation of a magnetic field profile with a linear dependence on
the radial coordinate. In fact, the capillary wall remains relatively cold during a
discharge, providing a cooling effect on the plasma itself, which rapidly becomes
hotter on longitudinal axis than it is on the walls. For temperatures higher than
a certain threshold (around 2 eV for hydrogen) the plasma electrical resistivity is
monotonically increasing with the temperature, which means that the plasma offers
less electrical resistance on the discharge axis than near the walls. This facilitates
the concentration of current density near the axis of the discharge, which in turn
deposits most part of its ohmic heating power in that region of the plasma. The
process self sustains and an equilibrium condition is eventually reached.

Bobrova [19] developed a semi-analytical model to study a capillary discharge
under such thermal equilibrium conditions and this model has been used recently (see
for instance Ref.[131]) to compute the magnetic field in a plasma lens and explain
the aberrations that have been observed experimentally. We report it here because
it offers a handy representation of the physics underlying the capillary discharge in
equilibrium conditions and it gives easy explanations for the lens aberration that
may be observed 3.

The model has been developed for a discharge in hydrogen. It takes 1-D with
axial symmetry, which means that all the physical quantities are constant over the
longitudinal coordinate (also with no longitudinal motion) and the only coordinate
along which any quantity may variate is the radial one. If the electrical current is
constant over time, or it variates slowly enough with respect to the time required for
establishing the equilibrium, the system reaches a steady state condition the plasma
is in local thermodynamic equilibrium, it does not move anymore and no quantity
changes over time. Under these conditions, the plasma temperature is governed by

3An extension of that model has also been developed, with the inclusion of an axial magnetic
field [120]. We do not discuss it here, since its relevance is mainly related to laser channeling and
not to active plasma lensing.



2.2 APL issues 19

the heat conduction problem:

d
dr

(
rκ

dT
dr

)
+ E2

η
=0, (2.10)

dT
dr

∣∣∣∣
r=0

=0, (2.11)

T (r = 0) =T ∗, (2.12)

where κ is the thermal conductivity, E is the electric field and η is the electrical
resistivity. The first term represents the heat flow due to conduction, whereas the
second term represents the ohmic heating. We note that under steady state condition
the electric field is uniform. To write this equation, phenomena such as Nernst and
Ettinghausen effect are neglected. This is possible only when the ratio between the
electron cyclotron frequency (which depends on the intensity of the magnetic field)
and the electron collision frequency is much smaller than 1; for the cases of our
interest this condition is usually satisfied, see Ref. [19] for further information. In
this condition the electrons are said to be non magnetized. Radiation cooling is also
neglected. When the hydrogen plasma is close to full ionization and the electrons
are non magnetized, one may approximate the transport parameters with [119]:

κ = κ0T
5/2, η = η0T

−3/2, (2.13)

being κ0 and η0 suitable constant values. Moreover, it is possible to define a
normalized radial coordinate and a normalized temperature as:

s
.= r

R
, u(s) .=

[
T (sR)
A

]7/2
, A

.=
√

7R2E2

2η0κ0
. (2.14)

In this way, eqs. (2.10) to (2.12) may be rewritten as

1
s

d
ds

(
s

du
ds

)
+ u3/7 = 0, (2.15)

s′
∣∣∣∣
s=0

=0, (2.16)

u(0) =u∗. (2.17)
(2.18)

Bobrova takes T ∗ = 0 and hence u∗ = 0, but Ref.[131] considers u∗ = 0.01 to
match with rigorous numerical simulations and experiments. For symplicity we
follow Bobrova’s choice, even thought it is less accurate for our case. The system
is easy to integrate numerically4. Its solution is plotted in fig. 2.2 together with
the corresponding temperature, in normalized units. It is possible to compute the
current density by dividing the electric field by the resistivity; the result is directly
proportional to u3/7:

jz(s) = E

η
= E

η0
Au3/7(s). (2.19)

4We solved it with a 4-th order collocation algorithm with control of residuals, that is implemented
in the python library scipy (version: 0.18.1, function: integrate.solve_bvp)



20 2. Active plasma lensing

0.0 0.2 0.4 0.6 0.8 1.0
s

0.00

0.02

0.04

0.06

0.08

u

0.0

0.2

0.4

0.6

0.8

1.0

Te
m
pe
ra
tu
re

(a
.u
.)

Figure 2.2. Solution of eq. (2.15) and corresponding temperature, normalized with respect
to its peak value.

The magnetic field results from Ampere’s law and thus may be computed as

Bφ(sR) = µ0R

s

∫ s

0
s′j(s′)ds′, (2.20)

The result is plotted in fig. 2.3 together with the current density and the corresponding
focusing gradient Bφ/r in normalized units. It is clear that the corresponding APL
has an aberration, that may be quantified as:

∆k
k

= k|s=0 − k|s=1
k|s=0

≈ 0.32. (2.21)

2.2.2 Undesired plasma wakes

When a beam passes trough an APL, it necessarily traverses a plasma region, where
it excites some electron density wakes. The extent of these wakes, and the related
fields and forces acting on the beam must be taken into account when evaluating
the performance of the lens as a whole. The situation is such that the APL is
superimposed to a passive plasma lens.

The part of plasma that sustains the electrical current of the APL is usually
required to be much denser than the beam, otherwise the perturbation brought
by the beam to the current carrying electrons reduces the plasma current density
in the beam region and hence the lens magnetic field (and the focusing strength).
The ratio of the two densities is such that the wakes produced belong to the linear
regime, and the corresponding passive lens is termed as overdense.

Furthermore, since the electron beam must be allowed to pass through the lens
preserving its quality, it is often preferred to have open capillary extremities. An
alternative is the possibility of closing the capillary with polymer windows, but
this solution may cause beam emittance growth due to multiple scattering5. If the

5A polymer (Mylar, 3 µm thick) window has been recently used in Ref. [82], with a beam with
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Figure 2.3. Radial profiles of magnetic field, current density and temperature in a steady
state capillary discharge according to the equilibrium model in Ref. [19]. Data are
plotted normalized to their peak values.

capillary extremities are open, the plasma exits from the discharge region producing
plums with electron density ramps [90]. In the final part of the plums, the electron
density becomes comparable or lower than the one of the beam and the generated
wakes obey the non linear theory. We have an underdense passive plasma lens. The
effects of this last part of the plums is often negligible with respect to the regions
where the plasma density is higher than the one of the beam [90]. In fact, the
passive focusing strength in the extremities of the plums (which is proportional to
np) is much lower than that of the core of the APL plasma (proportional to nb). In
addition, it is usually considered that the aberrations in an underdense passive lens
are also smaller than the ones of an overdense lens [124, 90]. Thus, it is reasonable
to expect that the associated emittance increase is limited and plays a minor role
with respect to the overdense part.

For estimating the emittance degradation due to the overdense plasma, the linear
wakefield theory that has been introduced in section 1.2.1, can be used. For more
accurate computations, numerical simulations exploiting more rigorous models, such
as Particle-In-Cell(PIC) or hybrid PIC-fluid methods, are required. The effect of the
undesired passive focusing highly depends on the specific experimental conditions,
i.e. on the plasma and beam density map, and it needs to be estimated for each
situation singularly.

However, in Ref. [81] some wakefield limits for high quality focusing in APLs
have been analytically computed, using a combination of linear and nonlinear theory.
Those analytical limitations are useful when studying the performance limitations
of APLs from a general point of view, without examining the details of the single
implementation. The study is based on the worst case aberration of the maximum

an initial normalized emittance higher than 3 mm mrad. It provided negligible emittance growth.
However, one may expect that the relative emittance growth is much more relevant when the
starting value is smaller (i.e. for εN ≈ 1 mm mrad).
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focusing gradients induced by wakefield. In the thin lens limit, this leads to an
approximate expression for the emittance growth [80]:

∆(ε2x,n) ≈

∫ L

0

√
7µ0eQk

2
pσzσx

12(2π)3/2mσy
(
1 + kpσxσz

2

)(
1 + 231/4k2

pσ
2
z

)dz
2

, (2.22)

where Q is the beam charge. Obviously, the emittance growth in the other transverse
plane (y) may be computed with the same formula, just changing the subscripts x
for y. The formula works well also for asymmetric beams, up to a ratio of rms spots
in the two transverse planes of the order of 10.

2.2.3 Electron scattering with plasma ions and neutrals

We discussed beam scattering on plasma ions and neutrals in section 1.2.3. Now we
use eq. (1.48) to estimate the importance of this effect for typical design conditions
of the active plasma lenses recently implemented and studied (see next section).
We plot the emittance growth in hydrogen, helium and argon as a function of their
atomic density. We assume that the gases are singly ionized and have a temperature
of 4 eV. We consider a beam with a relativistic γ of 250, an rms spot size of 100 µm
and a normalized emittance of 1 mm mrad. The result is shown in fig. 2.4.

It is clear that for light species like helium and hydrogen the beam degradation
due to scattering is negligible up to densities of 1018 cm3. Instead, for the example
beam considered, the scattering in an argon gas provides non negligible emittance
growth already at densities around 1× 1017 cm−3. However, experimental testing is
highly desirable, in order to have more reliable estimations than what provided by
the formula employed here.

2.3 Experimental advances on the use of APLs for high
brightness electron beams

The first reported use of an APL is by Panofsly and Baker, that focused a 350 MeV
ion beam at the 184 inch cyclotron at the Berkeley Radiation Laboratory [101].
Fifteen years later, the first z-pinch active plasma lens was operated at the AGS
facility of the Brookhaven National Lab, by Forsyth et al. [56], which was used for
focusing of pions and kaons. In the eighties and nineties, a motivation for the study
of APLs came from the possibility of using them as final focusing for heavy ion beams,
in the reactor chamber for an ion-driven-fusion scenario [37, 100, 57, 99, 97, 132]
Z-pinch active plasma lenses were used at the CERN antiproton source [76, 74] and
also at the GSI in Darmstadt for focusing heavy ion beams[21]; an unpinched lens
was also used at the GSI on heavy ion beams[20, 122].

Recently, interests have been concentrated on the use of capillary discharges
(with no pinching) for focusing electron beams. In 2015, at the BELLA center of the
Lawrence Berkeley National Lab, a discharge inside a capillary of 3 cm length and
250 µm diameter was used to focus a beam of 100 MeV produced with laser-wakefield
acceleration, demonstrating focusing gradients up to 3500 T m−1 [130]. Then at
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Figure 2.4. Normalized emittance growth rate for an ultra-relativistic electron beam with
an emittance of 1 mm mrad, a spot of 100 µm and γ = 250 passing through singly ionized
hydrogen (blue), helium (orange), argon (green) as function of the atomic number density
of the gas. A gas temperature of 4 eV was assumed.

BELLA a plasma lens was used to demonstrate the staging of two laser plasma
accelerators [121].

Other studies followed, a great motivation being the possibility to combine APLs
with plasma wakefield acceleration. For instance, in addition to staging plasma
acceleration modules, we mention the potential use of discharge capillaries for
delivering small spot beams. Beams with small transverse dimensions are required
in order to satisfy the matching condition at injection in plasmas. In addition,
APLs may be used for capturing the highly divergent beams exiting from plasma
acceleration modules.

At SPARC_Lab and at LBNL, it has been shown that the non uniformity of
the current flowing inside the discharge capillary may produce aberration inside the
lens, leading to over-focusing of the beam core and emittance increase [131, 108]. At
LBNL a discharge in a helium filled capillary (at atomic density 8× 10−3 cm−3) with
15 mm length and 1 mm diameter was operated with a current lasting approximately
1 µs and with a peak of 440 A. Aberrations compatible with the steady state plasma
model developed by Bobrova [19] (see section 2.2.1) were observed by imaging a
laser-plasma accelerated beam of 60 MeV on a screen placed downstream the lens.
At SPARC a hydrogen-filled 3 cm length, 1 mm diameter capillary, with a discharge
lasting 1 µs and a peak current of 93 A was used for focusing a 126 MeV beam of
approximately 130 µm transverse size (rms) with an initial normalized rms emittance
of 1 mm mrad. Spot reduction down to 24 µm were observed, but emittance increase
up to a factor 10 were also measured ((3.6± 2.0) mm mrad in the best case). It was
inferred that due to incomplete ionization of the discharge channel, aberrations even
higher than those expected from the steady state Bobrova model are possible.

At the race-track Microtron of the University of Mainz an electron beam with
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great stability was used to probe the magnetic field of an active plasma lens [113].
The aberration of the lens was estimated by measuring the kick experienced by a
80 µm transverse size electron beam of 850 MeV energy inside a discharge capillary
filled with hydrogen. The emittance increase was also measured, for different values
of the discharge current up to 740 A, showing an increase of a factor between 2 and
6. After excluding space charge, wakefield and scattering effects, it was evident that
the result was compatible with the bending of the magnetic field radial profile due
to wall cooling effects on the plasma.

In 2018 at SPARC, Pompili et. al managed to focus a beam with substantial emit-
tance conservation, i.e. the beam had εn,x = 0.8 mm mrad and εn,y = 0.5 mm mrad
before entering the capillary and εn,x = εn,y = 0.9 afterwards [108]. This was
achieved by means two key elements. One consisted in increasing the discharge
current (from an initial setup consisting of a 93 A peak profile to a 237 A peak profile)
to increase the hydrogen ionization degree. The second one consisted in taking an
optimal beam size, and finding a trade off between the wake field effects and the
magnetic field nonlinearity. If the beam has a small transverse spot it samples only
the region of the discharge that is closer to the capillary axis, where the field exhibits
a linear profile. Nevertheless, if the total charge of the beam is fixed, squeezing it
too much leads to important wakefield effects. An optimum was found at a spot
of approximately σx,y = 115 µm rms, for a current value of 70 A and a beam of
127 MeV energy and 50 pC charge.

At the CLEAR User Facility, Lindstrøm et al. (2018) performed a transverse scan
of an active plasma lens, comparing the results obtained when filling their capillary
(1 mm diameter, 15 mm length) with helium and with argon [82, 83]. The scan was
performed by measuring the transverse kick experienced by a beam of 50 µm rms
spot size. They recognized that the helium discharge exhibited a non linearity in
the magnetic field profile, in accordance with what found by the other works here
summarized; most importantly, it was found that the argon discharge provided a
magnetic field with a linear dependence on the radial coordinate, up to measurement
accuracy. While interpreting their finding, they suggest that this is due to the
fact that argon gas has a lower thermal conductivity and a lower rate of thermal
transfer between electrons and ions, therefore the peak current is reached before the
steady state condition is established. Emittance was also measured downstream the
capillary, confirming that in the helium discharge the magnetic field nonlinearity
causes degradation of the beam quality, but emittance is preserved downstream the
argon discharge, as expected by the measured magnetic field.
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Chapter 3

Plasma production for lensing
and acceleration

The work related to this thesis has been performed at the SPARC_LAB test facility
(Sources for Plasma Accelerators and Radiation Compton with Lasers And Beams),
located at INFN National Laboratories in Frascati [52]. SPARC_LAB is a test facility
that combines a photo-injector, SPARC [1], capable of producing high brightness
electron beams, and a high power, multi-hundred TW laser, FLAME [14] (Frascati
Laser for Acceleration and Multidisciplinary Experiments), furnishing high intensity-
ultra short pulses. The laser and the photo-injector can operate in a combined
fashion as well as independently. The possibility of coordinating a high brightness
linac with a high power laser for studying aspects of high interest in the field of beam
physics and radiation sources. Among these, we find the laser-plasma wakefield
acceleration with external injection [116], and Thomson back-scattering [128].

SPARC is a highly flexible machine, which performed extensive research activity
in the field of ultra-brilliant electron beam photo-injectors [50, 114, 51] and in free
electron lasers (FEL) physics [59, 75, 60, 103]. Furthermore, studies have also been
carried out in the field of radiation sources other than FEL, among these, the study
of THz radiation sources [62], the installation and complete characterization of a
RF linac-based THz source [34] and a Thomson-back scattering experiment [128].

Recently, the facility has been focused on the application of plasmas to accelerator
physics. In particular, research has been devoted to plasma-wakefield acceleration
techniques, involving the generation and manipulation of high brightness electron
bunch trains, that have applications in exciting resonant plasma waves for plasma
wakefield acceleration and in multi color FEL [96, 35, 103, 105, 104]. Schemes of
laser-wakefield acceleration that make use of external injection of witness beams in
wakes generated by high power lasers, fully exploiting the combination with FLAME,
are also under study [13, 116]. Beam manipulation and evolution in plasmas has
been investigated [117] and special attention has been given to focusing by means of
active [106, 108] as well as passive lensing [90, 115].
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Figure 3.1. Layout of the SPARC_LAB facility. An S-band RF gun (1) is followed by
two S-band accelerating cavities (2), then a last RF acceleration stage is provided by a
C-band structure (3). After that the experimental chamber devoted to plasma capillaries
is present (4). A tunable electromagnet dipole allows for steering the beam and transport
it towards various experimental areas, as the free electron laser undulator (6) (straight
line), beam diagnostics (7) (14° line), Thomson backscattering and external injection
laser wakefield plasma acceleration physics (8) (25° line), in combination with the laser
pulse delivered by FLAME [picture courtesy of Mario Del Franco]

3.1 Main properties of the SPARC_LAB facility

SPARC is composed by a photo-injector capable of producing electron beams up
to 180 MeV. The linear accelerator feeds a 12 m long undulator and in between the
acceleration sections and the undulator, the vacuum chamber hosts the plasma source
for capillary discharge-related experiments. In addition, a tunable electromagnet
dipole allows steering the beam and transport it towards other experimental areas,
as shown in fig. 3.1, where the SPARC and FLAME bunker are schematically
represented. The main beam parameters achievable at SPARC are summarized in
table 3.1. For the sake of completeness, in table 3.2 the properties of the FLAME
laser are presented too.

3.2 System for hydrogen discharge

The capillaries used for the experiments at SPARC_LAB are made of sapphire
or of 3D-printed plastic. However, also for sapphire capillaries, a printed holding
is used. In this thesis, we compare (in chapter 6) our numerical results with
two capillaries that have been experimentally characterized at SPARC. They are
cylindrical, with a diameter of 1 mm. One is long 1 cm and the other one is long 3 cm.
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Figure 3.2. Axonometric drawing of capillary supports, for capillaries of 3 cm length (left)
and 1 cm length (right), with 1 mm diameter. The blue channel represents the actual
capillary, where the discharge takes place and electron beams pass through, the violet
channel is used for filling the capillary with neutral gas. [Reprinted from technical
drawings by V. Lollo]

Gas inlets necessary for filling the capillaries with neutral gas prior to discharging
have a diameter of 0.5 mm and differ in number and position for the two cases. For
1 cm length capillaries there is a single inlet, placed at the center; for 3 cm length
capillaries there are two inlets, placed at 1/4 and 3/4 of the length. An axonometric
representation of the two capillaries is shown in fig. 3.2.

Two flat copper electrodes, each with a hole as wide as the capillary section, are
placed at the extremities of the capillaries (see fig. 3.3) and are powered in order to
trigger the discharge. They are connected to a circuit that is designed to provide the
current and voltage necessary for the discharge process. A schematic representation
of the electrical circuit is shown in fig. 3.4. In order to variate the time profile of
the current, two discharge circuits with similar topologies but different components
are available [53]. In one configuration, a capacitor of 2 nF is connected in series
to a resistor of 100 Ω, whereas in the other configuration two 3.6 nF capacitors are
connected in parallel (furnishing a total capacity of 7.2 nF) and then in series to a
resistor of 36.5 Ω. The capacitors are charged by a high voltage generator whose
current is limited by a high impedance, to prevent components damaging. A fast
solid state thyristor (Belke HTS 320-200-SCR) is triggered to power the electrodes.
We note that the maximum voltage sustainable by the thyristor is 25 kV; this limits
the maximum voltage applicable to the capillary. Most often, the applied voltage

Table 3.1. Main properties of the SPARC photo injector

Charge 10-1000 pC
Energy 30-180 eV
Energy spread 0.01-1 %
Bunch length (FWHM) 0.1-10 ps
Spot size (rms) 5-20 µm
Normalized emittance 1-3 mm mrad
Repetition rate (max) 10 Hz
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Figure 3.3. Drawing of a capillary of 3 cm length with mounted electrodes [Reprinted from
Ref. [109]].

capillary
electrodes

TTL trigger

Figure 3.4. Electrical circuit used to trigger the discharge in the capillary. Two config-
urations have been implemented, one with the resistor R = 100 Ω and the capacitor
C = 2 nF, and another with R = 36.5 Ω and C = 7.2 nF. The parasitic impedances
(mainly inductive) have not been drawn.

is kept at no more than 20 kV. Furthermore, parasitic inductive impedances are
present, whose measurement is not trivial. In Ref. [3] a value of 600 nH has been
assumed as representative for the parasitic inductances in series with the capacitor,
in the 2 nF-100 Ω circuit configuration.

The hydrogen required is provided by a generator (Linde NM Plus Hydrogen
Generator) exploiting the electrolysis of water. The gas pressure is set outside the
vacuum chamber, by means of a pressure regulator located more than 1 m upstream
the fast valve which lets the gas flow in the capillary. The inlet pressure is usually set
at few hundred millibars. The valve is opened for no more than 3 ms, then it is closed
and after few microseconds the discharge is triggered. According to preliminary
gas dynamics simulations performed with the open source tool OpenFoam, the
gas reaches a steady flow condition during the opening of the valve. The few

Table 3.2. Main properties of the FLAME laser

Power 250 TW
Fundamental wavelength 800 nm
Energy on target 5 J
Pulse length (FWHM) 25-40 fs
Spot size <30 µm
Repetition rate (max) 10 Hz



3.3 Plasma diagnostics and measurements 29

Figure 3.5. Scheme of principle of the system for capillary filling and discharging [reprinted
from Ref. [53]]

microseconds waiting time is necessary only in order to distinguish the trigger signals
on the oscilloscopes used to monitor the processes; however, this is a short time with
respect to the typical dynamics of the gas and the flow condition does not deviate
significantly from the steady state during this interval. A scheme of principle of the
whole discharge system is represented in fig. 3.5 [53].

Since the plasma capillary is placed at the end of the linac and in close proximity
with the C-band accelerating structure, the vacuum ressure in the plasma experi-
mental area must be kept around 10−8 mbar. In this regard, several studies have
been performed to define the proper opening time of the valve, i.e. 3 ms, and the
most suitable repetition rate, i.e. 1 Hz., even though the other components are able
to sustain higher operation rates (up to 10 Hz) and the time required for charging
the capacitors is much shorter than 1 s1.

3.3 Plasma diagnostics and measurements

For the measurement of the discharge current a Pearson beam current monitor (with
2ns of usable rise time) is mounted around the cable that sends current from the
capacitor to a capillary electrode. Its signal is analyzed with a 500 MHz-bandwith
oscilloscope (Oscilloscope LeCroy Wavesurfer 454). In fig. 3.6 two typical discharge
currents are plotted. It is worth to point out that the shape of the discharge current
shows little dependence on the capillary length, once the electrical circuit setting is

1This limitation applies to the experimental apparatus that has been used to benchmark
the simulations of this thesis. Improvement to the whole system have undergone and discharge
frequencies up to 10 Hz may currently be sustained.
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Figure 3.6. Discharge current time profiles obtained for 2 nF-100 Ω circuit (left) and 7.2 nF-
36.5 Ω (right). Capacitors charging voltage is 20 kV and backing pressure is approximatly
300 mbar for both cases.

Figure 3.7. Comparison between the current profiles obtained with 1 cm long and 3 cm
long capillary, by applying 20 kV to the 2 nF-100 Ω circuit [53]

fixed, the main effect being a delay (or an anticipation) of the discharge current. In
fact, once ionized, the plasma offers an equivalent resistance of few ohms, which is
much lower than the resistance of the other part of the system (in primis, the main
limitation resistance of 100 or 36.5 Ω), and therefore it plays an almost negligible
role in the whole circuit. The main effect of the capillary length is a delay in the
development of the discharge. In fact, by switching from a capillary of 1 cm to a
capillary of 3 cm length (with the 2 nF-100 Ω circuit, 20 kV charging voltage), the
current profile exhibits a very similar shape but it is translated approximately 170 nm
forward in time, as shown in fig. 3.7 Ref.[53], page 85). This may be explained
with the greater amount of energy required to ionized a bigger volume of gas. The
electrical circuit requires more time to ionized the gas in the 3 cm capillary with
respect to the 1 cm one and the equivalent resistance falls down slower, hence the
current rises in a longer time.

The electron density is measured with longitudinal (mm) and time (100 ns)
resolved optical method exploiting the Stark broadening effect [53, 55]. For definite
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discharge conditions and capillary geometry of interest, the time profile of the current
and the electron density evolution have been extensively characterized [53, 55, 54].

Recently, a measurement of gas temperature and outflow velocity has also been
performed, based on the imaging of the gas plums exiting from the capillary during
the discharge[11].

3.3.1 Discharge reproducibility

Capillary discharge reproducibility and shot-to-shot variation is an important re-
quirement in order to have a reliable plasma source for either acceleration or focusing
purposes. Moreover, the entity of shot-to-shot variations in plasma properties gives
an insight on the underlying physics. It is well known that the process of initial
ionization (the so called electron avalanche) of the gas starts and develops, in the
first few nanoseconds, by means of kinetic effects that are not fully deterministic.
If the discharge exhibited unpredictable shot-to-shot variations, this would be an
indicator that kinetic and non deterministic processes play a non negligible role,
thus fluid models could not be employed to study the plasma.

Discharge stability has been tested with positive results in Ref. [53]. In fact,
the time required for the discharge to reach the peak current, and the value of
the peak current itself, in the case of the 1 cm long capillary, for both the circuital
configurations, exhibits satisfactory stability, as shown by the plots in fig. 3.8. From
these plots it can be seen that the time jitter with respect to the trigger (left plots)
is of few tens of nanoseconds, and the peak current (right plots) variates of no
more than few amperes [53, 55, 54]. The discharge reproducibility is also confirmed
by the electron density measurements performed with the technique of the Stark
Broadening of Balmer–beta line[53], as it is clear from fig. 3.9.
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Figure 3.8. Plots showing the stability properties of the current profile for the capillary of
1 cm length, 1 mm diameter with backing hydrogen pressure of 300 mbar and for both
the circuital configuration explored. In the top-left plot the average time required for
reaching the peak current is displayed; the corresponding time jitter is shown as time
delay standard deviation in the bottom-left plot. In the top-right plot, the average peak
value of the current is plotted; the corresponding intensity jitter is shown in the bottom
right plot as peak current standard deviation. These statistics refer to two samples of
approximately 100 discharges [Reprinted from Ref[53]].
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Figure 3.9. Average over the capillary length of the relative error (standar deviation) in
the measurement of electron density with Stark broadening of Balmer–beta line. The
measurement has been performed on a 3 cm long and 1 mm diameter capillary, fed a
backing pressure of 100 mbar with a capacitor charging voltage of 20 kV [53, p. 100].
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Chapter 4

Modeling a discharge plasma

In this chapter we provide an idea od the derivation of the model that we use for
simulating a capillary discharge. We start by deriving multi fluid plasma models
from the more general Boltzmann equation. Then we derive a single fluid model
and we make further assumptions to arrive at the magneto-hydrodynamic equations
that we will later use for solving capillary discharges.

4.1 From kinetic to fluid models

A plasma is an ionized gas that exhibits a collective behavior, that exists for times
longer than the reciprocal of the plasma frequency and is extended in space for
distances longer than the Debye length. The plasma frequency is the typical frequency
at which plasma electrons oscillate after that their position has been perturbed
(see appendix A). The Debye length is the typical length at which a perturbation
in the plasma is screened (see appendix A). The plasma particles move under the
effect of electromagnetic and gravitational forces that may be generated inside the
plasma or imposed from outside.

We make the hypothesis that the knowledge of the position and velocity of each
single particle of the plasma is not important for modeling the macroscopic behavior
of our plasma with satisfying accuracy. Hence, the system can be described in a
statistical way, by means of a single particle distribution functions fs(x,u), per
each species s present inside the plasma. This distribution models the probability
corresponding the positions in the 6-D phase space ((x,u), where x = (x, y, z) is
the spacial location of a particle and u = (ux, uy, uz) is the velocity of a particle)
of a each particle belonging to the species s. Indeed, one may interpret fs as the
number of particles (of species s) per unit phase space volume. Such volume should
be much smaller than the typical dimension of the whole system but big enough
to contain a high number of particles. The existence of this volume is a necessary
condition for the validity of a fluid description of the plasma, that we will outline in
the following. Obviously, the integral over the full phase space volume Ω gives the
number of particles of species s at time t:∫

Ω
fsd3xd3u = Ns(t), (4.1)
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The amount of particles inside a certain phase space control volume may vary due
to different reasons. The particles may outflow the volume as they move to other
spatial location or they may change their velocity under the influence of some kind
of force. Their number may also increase (or decrease) due to chemical reactions
that transform particles of a certain species into another.

This may be formalized by saying that fs(x,u) fulfills Boltzmann equation:(
∂

∂t
+ u ·∇+ Fs

ms
∇u

)
fs =

[
∂fs
∂t

]
c
. (4.2)

Here we have∇u
.= ( ∂

∂ux
, ∂
∂uy

, ∂
∂uz

),∇ .= ( ∂
∂x ,

∂
∂y ,

∂
∂z ), and ms is the mass of particles

belonging to species s. Fs is a volume force acting on species s and does not include
the close range forces between particles. Instead, these are included in the right
hand side term, which is a source term that takes into account the combined effect of
collisions between particles and chemical reactions. The term with Fs is responsible
for the collective effects of the plasma. In addition, particle acceleration/deceleration
is hidden also inside the collisional term at the right hand side and is related to
forces acting at microscopic scale between particles of the same species s, as well as
between species s and all the other available species.

The most important volume force in our plasma the one due to electric and
magnetic fields Fs = qs(E+u×B), where E and B are the macroscopic electric and
magnetic fields respectively and qs is the particles charge of species s. Considering
the small size (centimeters), the mass density (less than 1× 10−8 g cm−3) of the
devices that we study and the time scales at which we are interested (less than 2 µs),
gravity is certainly negligible.

4.1.1 Multi fluid model

Unfortunately, a kinetic description of a plasma, as the one provided by eq. (4.2), is
often too complicated to be solved in reasonable amount of time. However, many
of the commonly encountered plasma problems (and among these, our capillary
discharges) may be solved introducing further simplifications in the model. The
first of these simplifications is the derivation of a fluid description by substituting
Boltzmann equation with approximate equations for certain moments of the one
particle distribution function. The equations are derived by multiplying both sides
of Boltzmann equation by a function of the velocity, ψ(u), and performing an
integration over the full velocity space, Ωu. When ψ = 1 (zeroth order moment)
we will obtain the mass conservation equation, when ψ = msu (first order moment)
we will obtain the momentum conservation equation and when ψ = mu2 (third
order moment) we will obtain the energy conservation equation. In principle one
may proceed further and consider higher order moments of Boltzmann equation.
In this way additional conservation equations would be derived. Obviously, the
description becomes increasingly more accurate (and more complicated) every time
a new moment equation is included. However, common practice is to stop at the
second one. In the following we comment on the process of derivation of the mass,
momentum and energy conservation equations; the detailed calculations are available
in the literature [15, 45, 110].
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Zeroth order moment

When eq. (4.2) is integrated over the velocity space, the third term gives zero
contribution. By using the fact that the zeroth order moment of fs is the particle
number density, ∫

Ωu
fsd3u = ns, (4.3)

and defining the center of mass velocity vs of species s as

vs
.=
∫

Ωu
fsud3u
ns

, (4.4)

a species number density conservation equation is obtained:

∂ns
∂t

+∇ · (nsvs) =
[
∂ns
∂t

]
c
. (4.5)

The right hand side of this equation is a due to the component of the collisional term
that is related to chemical reactions. If no reactions are occurring in the plasma,
the right hand side will be equal to zero.

First order moment

As it is clear from eq. (4.4), the first order moment of fs is the momentum density
of species s per unit of plasma volume. The result of the computation of the first
moment of Boltzmann equation is a relation that expresses the conservation of
momentum for species s,

∂

∂t
(msnsvs)+∇·(msnsvsvs)+∇· ~Ps−nsFs = ms

∫
Ωu

u
[
∂fs
∂t

]
c

d3u−msvs
[
∂ns
∂t

]
c
,

(4.6)
where the quantity Ps is called pressure tensor and it has been defined as:

~Ps
.= msns

∫
Ωu

(u− vs)fs d3u . (4.7)

The first term at the left hand side of eq. (4.6) comes from the first term of
Boltzmann equation; the second and third terms come from the second term of
Bolzmann equation. The fourth one comes from the third term of Boltzmann
equation. The first term on the right hand side represent the momentum change due
to collisions between the particles of species s with the particles of the other species
(due to momentum conservation principle, the momentum of a certain species does
not change for collisions internal to that species). Lastly, the second term at the
right hand side is the loss (gain) of momentum due reactions that generate (destroy)
particles of species s.

It is important to mention that the pressure tensor is usually decomposed into
its isotropic and anisotropic parts,

~Ps = ps~I + ~Πs (4.8)
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where ~Πs is termed viscous stress tensor and ps, the scalar pressure, is defined by:

ps
.= 1

3msns

∫
Ωu
|(u− vs)|2fs d3u . (4.9)

Using the kinetic definition of temperature,

Ts
.= 1

3
ms

kB

∫
Ωu
|(u− vs)|2fs d3u , (4.10)

where kB is Boltzmann constant, we may rewrite the pressure as:

ps = nskBTs. (4.11)

Second order moment

The result of the computation of the second order moment of Boltzmann equation is:

∂

∂t

(3
2nsTs + 1

2msnsv
2
s

)
+∇ ·

[
Qs + ~Ps · vs +

(3
2nsTs + 1

2nsmsv
2
s

)
vs
]

=

= nsvs · Fs + 1
2ms

∫
Ωu
u2
[
∂fs
∂t

]
c

d3u. (4.12)

The quantities inside the time derivative come from the first term on the left hand
side of Boltzmann equation. The terms to which the divergence operator is applied
come from the second term of Boltzmann equation. The first term on the right
hand side is related to the third term of Boltzmann equation. Lastly, the second
term at the right hand side contains the energy gained (or lost) by species s, as a
consequence of the elastic and inelastic collisions occurring in the plasma (including
reactions).

The term Qs is the heat flux density and is defined by:

Qs = 1
2msns

∫
Ωu
|u− vs|2(u− vs)fs d3u (4.13)

It may be easily shown that the summation 3
2nsTs + 1

2msnsv
2
s is the kinetic

energy of species s. Indeed, as we anticipated, we found an energy conservation
equation.

Note that this equation relates the second order moments (Ts, ~Ps) to a third
order moment: the heat flux density Qs. If we proceeded further with the evaluation
of the moments of Boltzmann equation, the next relation found would relate third
order moments to new forth order moments of fs. In order to close the model one
needs to take some kind of assumption which allows to express ~Πs (contained inside
~Ps), Qs and

[
∂fs
∂t

]
c
in terms of ns, vs, Ts.

4.1.2 One fluid model

From the multi fluid model it is possible to derive other conservation equations,
that represent a single fluid approximation of the plasma. In order to do so, it is
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convenient to define the following quantities:

ρ =
∑
s

msns, (4.14)

v = 1
ρ

∑
s

msnsvs, (4.15)

j =
∑
s

qsnsvs, (4.16)

ρq =
∑
s

qsns. (4.17)

The first equation defines the mass density, ρ; the second one defines the center of
mass velocity (also called bulk velocity), v; the third one defines the current density,
j; the forth the electric charge density, ρq.

We may multiply the number density conservation equations of each species by
the particle mass of that species and then sum up the resulting relations. In this way
one easily obtains the mass conservation equation, which is also called continuity
equation:

∂ρ

∂t
+∇ · (ρv) = 0. (4.18)

Note that there are no source component at the right hand side. This is an
obvious consequence of the fact that in chemical reactions particles are not destroyed
and neither created but only transformed from one species into another. Mass is
a conserved quantity in the plasmas we study, as we have no nuclear reactions
occurring.

For deriving the single fluid momentum conservation equation, one needs to
redefine the pressure tensor of each species taking as reference the bulk velocity,
instead of the center of mass velocity of species s:

~Ps
.= msns

∫
Ωu

(u− v)fs d3u . (4.19)

Then one may build the one fluid thermal pressure tensor as:

~P .=
∑
s

~Ps. (4.20)

Now, recomputing the first moment of Boltzmann equations for each species, employ-
ing the new definition of species pressure tensor and summing up over the species,
one obtains:

∂ρv
∂t

+∇ · (ρvv) +∇ · ~P = ρqE + j×B. (4.21)

Note that in this equation the effect of momentum change due to collisions is
not present. The reason is that the physical principle of momentum conservation
obviously holds even for collisions between different species1.

1We are neglecting the momentum of the photons generated or absorbed during chemical
reactions.
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One can also derive an equation for the current density, by taking the first
moment of Boltzmann equation and multiply it by qs/ms, and then we summing up
over the species. The result is:

∂j
∂t

+
∑
s

qs∇ ·
(
ns

∫
Ωu

uufs d3u
)
−
∑
s

nsq
2
s

ms

(
E + vs

c
×B

)
=
[
∂j
∂t

]
c

(4.22)

The equation above is termed as generalized Ohm’s law.
The single fluid energy conservation equation is derived in an analogous way.

One also needs to redefine the heat flux density taking as reference v:

Q .=
∑
s

1
2nsms

∫
Ωu
|u− v|2(u− v)fs d3u . (4.23)

Using the previously defined quantities in the expression of the second moment of
the Boltzmann equation, performing some algebra between the equations for the
species we get:

∂

∂t

(1
2ρv

2 + 3
2p
)

+∇ ·
(1

2ρv
2v + 3

2pv + ~P · v + Q
)

= j ·E +
[
∂ε

∂t

]
c

(4.24)

where p is the diagonal part of ~P, p~I + ~Π = ~P and the second term at the right
hand side is the energy that is generated or absorbed by the reactions occurring in
the plasma (elastic collisions do not change the energy of the plasma).

We have derived three relations, that represent mass (eq. (4.18)), momentum
(eq. (4.21)) and energy (eq. (4.24)) conservation equations for a single fluid description
of the plasma, to which we have to add the one for the current density (eq. (4.22)).
Unfortunately, these four equations do not provide a closed description of the plasma.
Even if we define how to compute Q, ~Π and the collisional terms, the system does
not have a unique solution, because we do not know how to compute the net charge
density ρq and the current density j with no knowledge on the species fluid velocities
vs and number density ns (also, we need to specify how to compute the integral in the
second term of eq. (4.22)). It is clear that some additional simplifying assumptions
are required in order to perform an actual (and usable) simplification of the multi
fluid model to a single fluid model.

4.2 MHD model
MHD equations may be obtained by applying additional simplifications and assump-
tions to the one fluid equations. In the following we provide an idea of the derivation
of the MHD equations that we solve in chapter 5. The main points of the derivation
path are: the use of a local thermodynamic equilibrium model (section 4.2.1); the use
of Ampere’s law (instead of Ampere-Maxwell’s) for expressing the current density
(section 4.2.2); the reduction of generalized Ohm’s law to a simpler relation.

4.2.1 Local thermodynamic equilibrium

We take the assumption that all the species are very fast at exchanging heat with
each other, with respect to processes that heat or cool down the plasma. Under this
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hypothesis, we are allowed to assume that the species have the same temperature.
It is intended that the temperature is defined with respect to the bulk velocity:

T = Ts
.= 1

3
ms

kB

∫
Ωu
|(u− v)|2fs d3u . (4.25)

We justify this assumption by considering the typical time of heat exchange between
ions and electrons. We consider a plasma made of electrons and H+ ions, with zero
center of mass velocities: ve = 0, vi = 0. In eq. (4.12) for both electrons and ions
we neglect all the other sources of temperature variation except for the electron-ion
heat exchange term. This term is contained inside the collisional term at the right
hand side. The two equations may be written as [69, p.34]:

∂Te
∂t

= ν̂ε(Ti − Te), (4.26)

∂Ti
∂t

= ν̂ε(Te − Ti), (4.27)

where, if the electrons and ion temperature are close together (Ti ≈ Te = T ) we
have:

ν̂ε
ne

= ν̂ε
ni

= λ3.2× 10−9 s
(kBT )3/2 (4.28)

where λ is the Coulomb logarithm [69, p.34], a parameter that is weekly dependent
on the plasma density and temperature. Its value is usually in between a few units
and a few tens. If ne ≈ ni, the solution of eqs. (4.26) and (4.27) is:

Ti = (Ti,0 − T∞)e−tν̂ε + T∞, (4.29)
Te = (Te,0 − T∞)e−tν̂ε + T∞, (4.30)

where Ti,0 is the initial temperature of the ions, Te,0 is the initial temperature of
the electrons and T∞ = Ti+Te

2 is the equilibrium temperature. For a plasma density
of 1× 1017 cm−3 and a temperatures around 1 eV, the typical decay time of the
electron-ion temperature difference is of the order of 1

ν̂ε
≈ 1× 10−9 s, which is below

the timescales of our interest.
Furthermore, it is easy to prove that the following relation holds:

p = kBT
∑
s

ns, (4.31)

This is usually called thermal equation of state.
In addition, we take the assumption that the reactions occurring inside our plasma

are fast enough so that when a small perturbation in the plasma state appears, the
equilibrium shifts instantaneously to a new position. As a consequence the direct
and inverse processes are aways balanced and the collisional source terms in the
energy conservation equation are dropped. Analogously, the chemical fractions are
provided by another equation, that gives the degree of advancement of the processes
from the temperature and mass density. Furthermore, an additional component
appears in the energy equation of the gas, that forms, together with the pressure
component, the internal energy of the plasma. This term takes into account the
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energy stored in the plasma depending on the equilibrium state of the reactions.
Hence, the energy conservation equation becomes:

∂

∂t

(1
2ρv

2 + εint

)
+∇ ·

(1
2ρv

2v + εintv + ~P · v + Q
)

= j ·E (4.32)

The internal energy is provided by a caloric equation of state, in terms of the gas
temperature and mass density. At this point one may drop the species conservation
equation. The actual formulas that link pressure, internal energy and temperature
for our discharge studies are explained in section 5.1.2.

4.2.2 Electric and magnetic fields

One obviously needs to specify the time evolution of the electric and magnetic fields
appearing in the one fluid model. Such fields obey Maxwell’s equations:

∇×E = −∂B
∂t
, (4.33)

∇×B = µ0j + µ0ε0
∂E
∂t
, (4.34)

∇ ·E = ρq
ε0
, (4.35)

∇ ·B = 0. (4.36)

From eqs. (4.34) and (4.35) it is possible to derive the continuity equation for the
electrical current,

∂ρq
∂t

+∇ · j = 0. (4.37)

Just for the purpose of showing the typical decay time of an unbalanced charge
ρq we relate the current density with the magnetic field with the usual Ohm’s law
ηj = E. Substituting it inside eq. (4.37) and using eq. (4.35) we obtain

∂ρq
∂t

+ ρq
ε0η

= 0, (4.38)

whose solution is:
ρq = ρ0e−t/teq , teq = ε0η (4.39)

If the plasma resistivity is 1 Ω m (this is a conservative choice, since typical values
for η are often much smaller in our discharges, i.e. 1× 10−5 Ω m-1× 10−3 Ω m), we
have teq ≈ 1× 10−11 s, that is much smaller than the time scales of the phenomena
that we study. Hence, we may safely neglect the presence of unbalanced charges
and assume that the plasma is locally quasi-neutral: ρq ≈ 0. One may interpret this
choice by imagining that when a net charge appears in the plasma, an electric field is
generated which moves the electrical charges in order to recover the local neutrality.

Furthermore, we may estimate the importance of the displacement current in
Ampere-Maxwell law, eq. (4.34), with respect to the other terms. A rough estimate
of the order of magnitude of the electric and magnetic fields can be provided by
considering that the rotor of a certain quantity scales like the inverse of a typical
length of interest, L. Analogously, the time derivative of a certain quantity scales
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like the inverse of a typical time of interest, T . With this approach, from Faraday’s
law, eq. (4.33), we get

E

L
≈ B

T
⇒ E ≈ LB

T
, (4.40)

and eq. (4.34) becomes
B

Lµ0
≈ j + ε0E

T
. (4.41)

The importance of the displacement current may be estimated by computing the
ratio of term containing the electric field to the term containing the magnetic field
in eq. (4.41),

B
µ0L
ε0E
T

=
B
µ0L
ε0LB
T 2

= T
2

L2 c
2, (4.42)

where we used the relation c−2 = ε0µ0. Since we are only interested in modeling
phenomena that have characteristic speeds, V , much smaller than the speed of light,
L/T = V � c, we may safely neglect the displacement current term in eq. (4.34).

4.2.3 Ohm’s law in MHD

We use local quasi-neutrality assumption to rewrite eq. (4.22). We write it for a
plasma composed only by electrons and singly ionized ions. This is a situation
similar to the one of our hydrogen filled capillary discharges, with the exception
that when the plasma is not fully ionized we also have neutral particles. However,
neutrals only affect the collisional term at the right hand side of that equation.

Under the assumptions above, eq. (4.22) becomes:

E + v×B = 1
ne

j×B

− 1
ne
∇ ·

(
~Pe −

me

mi

~Pi

)
+ me

ne2

[
∂j
∂t

+∇ · (uj + ju)
]

+ 1
ne

Re, (4.43)

where we used n .= ne = ni (which makes sense because of local charge neutrality)
and Re is the resultant of the forces related to collisions between electrons and ions. It
is the only term coming from the collisional term at the right hand side of eq. (4.22),
and it has been derived neglecting the ion contribution to the current density.
In eq. (4.43) the first term on the right hand side corresponds to the electromotive
force due to Hall effect. The second term represents the so-called thermoelectric
effects, i.e. those electromotive forces resulting from pressure gradients. The third
term represents the effects related to electron inertia.

It is worth to mention that eq. (4.22) provides a description of the current density
evolution that is too detailed for most purposes. The order of magnitude of the first
and second terms on the right hand side is much smaller than that of the v×B,
when the Larmor radius (see appendix A for the definition of Larmor radius) is
smaller than the typical length of the spatial variations in the plasma. In addition,
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the third term is negligible when the electron inertia is neglected. At this point we
are left only with:

E + v×B = 1
ne

Re. (4.44)

We may rewrite the right hand side term by imagining that electrons collide with
ions at a certain frequency νei and that they loose their momentum after a collision.
Therefore we pose:

Re = menveνei. (4.45)

Using also the definition of current density (remember that we neglected the ion
contribution to the current), eq. (4.44) becomes:

E + v×B = meνei
ne2 j = ηj, (4.46)

where we defined the electrical resistivity as η .= meνei
ne2 . For fully ionized gases

the computation of electrical resistivity in terms of electron-ion collision frequency
provides usually sufficient accuracy. Nevertheless, when partially ionized gases are
studied, the electrical resistivity is often computed with more rigorous strategies,
that also take into account also the scattering with neutrals (as well as the collisions
between electrons). For our discharges we used the Chapman-Enskog method, that
does not involve the computation of a collision frequency for the electrons section 5.3.
However, we reported the definition of η above as it is useful for understanding the
physics and to explain the proportionality between the electric and magnetic field
terms on the left hand side of eq. (4.46) and the current density.

Lastly we mention that in literature also eq. (4.46) is often termed as generalized
Ohm’s law.

4.2.4 Pressure tensor and heat flux

In order to close the system, we still have to specify how to compute the pressure
tensor ~P and the heat flux density q. For the heat flux density a natural choice is
to link it with the temperature gradient by means of Fourier’s law:

q = −κ∇T. (4.47)

The proportionality constant between the temperature gradient and the heat flux,
κ, is called thermal conductivity. In our model we compute it with the Chapman-
Enskog method, as we do for the electrical resistivity. For a more detailed discussion
on heat flux see Ref. [30].

For the pressure tensor, we keep only the diagonal part, which contains the
pressure. Hence we rewrite its divergence as:

∇ · ~P ≈∇p (4.48)

4.2.5 MHD equations

For convenience, we rewrite here the equations that we derived for modeling the
plasma as a single fluid, with the assumption of local quasi-neutrality, local ther-
modynamic equilibrium, using the simplified form of the generalized Ohm’s law,
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neglecting the displacement current, with the choice of Fourier law for heat flow and
a thermal equation of state for the temperature:

∂ρ

∂t
+∇ · (ρv) = 0, (4.49)

∂ρv
∂t

+∇ · (ρvv) +∇p = j×B, (4.50)

∂

∂t

(1
2ρv

2 + εint

)
+∇ ·

(1
2ρv

2v + εintv + pv
)

+ κ∇T = j ·E, (4.51)

E + v×B = ηj, (4.52)

∇×E = −∂B
∂t
, (4.53)

∇×B = µ0j, (4.54)
∇ ·E = 0, (4.55)
∇ ·B = 0. (4.56)

This system may be reduced and adapted to a more convenient formulation.
One may substitute E · j in eq. (4.51) with the expression that may be obtained

from Poynting’s theorem,

1
µ0
∇ · (E×B) + ε0E ·

∂E
∂t

+ B
µ0
· ∂B
∂t

= −J ·E. (4.57)

where we may also neglect the term containing the time derivative of the electric
field, in agreement with what we did for Ampere-Maxwell law. Also, we use eq. (4.52)
to express the electric field in terms of current density and eq. (4.54) to express the
current density in terms of the magnetic field. Reordering the result one obtains:

∂ε

∂t
+∇ · (εv) =−∇ · (pv) +∇ · (κ∇T ),

−∇ ·
[(

η

µ2
0
∇×B

)
×B

]
,

+ 1
µ0
∇ · [B (B · v)] , (4.58)

where we defined the total energy, ε, as:

ε
.= εint + ρv2

2 + B2

2µ0
. (4.59)

Furthermore, we may take the rotor of eq. (4.52) and substitute eq. (4.53) for
the rotor of the electric field. We may also use again eq. (4.54) to express the
current density in terms of the magnetic field in the resulting equations, as well
as in eq. (4.50). In this way we obtain a system of equations where the electric
field and the current density do not appear explicitly. Note that we may also
drop eq. (4.56) because it follows from eq. (4.53) that the divergence of the magnetic
field does not change in time. Thus if we properly choose the initial conditions,



46 4. Modeling a discharge plasma

i.e. ∇ ·B(t = 0) = 0, the magnetic field will remain divergence free.2. The final
(rearranged) form of the system is:

∂ρ

∂t
+∇ · (ρv) = 0, (4.60)

∂

∂t
(ρv) +∇ · (ρvv) = 1

µ0
(∇×B)×B−∇p, (4.61)

∂ε

∂t
+∇ · (εv) =−∇ · (pv) +∇ · (κ∇T ),

−∇ ·
[(

η

µ2
0
∇×B

)
×B

]
,

+ 1
µ0
∇ · [B (B · v)] , (4.62)

∂B
∂t

=∇× (v×B)−∇×
[
η

µ0
(∇×B)

]
. (4.63)

.

2This is true if the equations are solved exactly. In fact, for certain approximate numerical
solutions of the MHD equations a divergence control method is required for the magnetic field
divergence to remain close to zero.
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Chapter 5

Numerical model of capillary
discharges

In this chapter the mathematical model and numerical techniques employed to
simulate gas filled capillary discharge are explained. We model the plasma as
a compressible fluid, since a particle in cell approach would be computationally
impractical, due to the time scales involved (>1 µs) and to the spacial resolution
required (<100 µm). Thus, we employed a magneto-hydrodynamic (MHD) model, as
explained in section 5.1. Furthermore, we take a local thermodynamic equilibrium
(LTE) assumption, which allows to compute the plasma chemical composition and
internal energy (by means of en equation of state), as a function of the local fluid
temperature and density, instead of integrating in time the reaction equations. The
transport parameters required in the MHD equations, i.e. the electrical resistivity
and thermal conductivity, are computed within the Chapman-Enskog framework,
using accurate collision integrals from the literature; the details of the computation
are provided in section 5.3.

The model is numerically solved with the open source code PLUTO [93]1, which is
a software developed for the numerical solution of mixed hyperbolic/parabolic systems
of partial differential equations, arising from gas and plasma flows in astrophysical
fluid dynamics. Facilitated by the modular and flexible design structure of the code,
we implemented an additional scheme, meant for advancing the diffusive term of the
magnetic field evolution equation and the diffusive term of the energy conservation
equation in an implicit fashion. This has been done with the aim of overcoming the
severe time step limitations due to explicit methods, that are well suited for the
main field of application of the code, that may also run on parallel machines, but
perform poorly when applied to the study of capillary discharges on serial machines.
In subsection section 5.4.1 the implicit solution of the diffusive terms is explained in
detail.

1See also http://plutocode.ph.unito.it/

http://plutocode.ph.unito.it/
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5.1 Plasma as a compressible fluid

We model the plasma as a compressible fluid. Especially, we chose a one fluid
MHD model, thereby taking the assumption of locally neutral plasma (i.e. that ions
and electrons always move in order to mutually neutralize their charge) and also
neglecting fast varying electromagnetic phenomena (i.e. the displacement current
in Ampere-Maxwell equation). In addition, since we aim at studying discharges in
cylindrically shaped capillaries, we solve the problem inside an axially symmetric
geometry, where the symmetry axis coincident with the capillary axis. This choice
greatly simplifies the study with respect to a fully 3-D geometry, while still allowing
to investigate the effect of gas outflow from the capillary extremities during the
development of the discharge.

5.1.1 Magneto-hydrodynamic model

The MHD system that we solve is the one composed by eqs. (4.60) to (4.63). For the
sake of completeness, we rewrite those equations in cylindrical components notation,
applying also the simplifications due to the axial symmetry:

∂ρ

∂t
+ 1
r

∂

∂r
(rρvr) + ∂

∂z
(ρvz) = 0, (5.1)

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+ vz
∂vr
∂z

)
=− ∂p

∂r
− Bφ
µ0r

∂

∂r
(rBφ), (5.2)

ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+ vz
∂vz
∂z

)
=− ∂p

∂r
− Bφ
µ0

∂Bφ
∂z

, (5.3)

ρ

(
∂ε

∂t
+ vr

∂ε

∂r
+ vz

∂ε

∂z

)
=− p

[1
r

∂

∂r
(rvr) + ∂vz

∂z

]
,

+ 1
r

∂

∂r

(
rκ
∂T

∂r

)
+ ∂

∂z

(
κ
∂T

∂z

)
,

+ η

µ2
0

[(
∂Bφ
∂z

)2
+ 1
r2

(
∂

∂r
(rBφ)

)2]
, (5.4)

∂Bφ
∂t

=− ∂

∂z
(vzBφ)− ∂

∂r
(vrBφ) ,

+ ∂

∂z

(
η

µ0

∂Bφ
∂z

)
+ ∂

∂r

(
η

µ0

1
r

∂rBφ
∂r

)
, (5.5)

where r is the radial coordinate, z is the longitudinal coordinate and φ is the
azimuthal coordinate.

5.1.2 Local thermodynamic equilibrium

The plasma chemistry is modeled exploiting an LTE assumption. We assume that
the reactions occurring in the plasma are always locally at steady state, thus we
compute the composition only by knowing the temperature and the mass density; as
a result, the pressure and the internal energy are provided by an equation of state.
In the following, we first explain how we compute the plasma composition, then we
write the expressions for the thermal pressure and internal energy.
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Hydrogen dissociation and ionization

The computation of the composition of a hydrogen gas in LTE conditions, according
to Saha’s teory is here briefly discussed. More details can be found in the literature
[61, 31, 71].

The main reactions taking place in hydrogen in the range of temperature and
mass densities of our interest are the molecular dissociation and atomic ionization,
both represented in table 5.1.

For the range of temperature and mass density of our interest, dissociation
of hydrogen molecules and ionization of hydrogen atoms are the most important
chemical processes. The corresponding energy required is written in table 5.1.

Table 5.1. Dissociation and ionization processes occurring in a hydrogen gas.

Process Reaction Energy required
Molecular dissociation H2 → H + H Ψ = 4.476 eV
Atomic ionization H→ H+ + e− χ = 13.597 eV

From considerations on the partition function [61] it is possible to derive the
following relations between the component concentrations and the gas temperature:

n2
H

nH2

= eΨ/(kBT )
(

2πkBT

h2
mH

2

mH2

)3/2

(5.6)

npne
nH

= eχ/(kBT )
(2πkBT

h2
mpme
mH2

)3/2
(5.7)

If we call n0 the concentration of H2 molecules at low temperature (when dissociation
and ionization have not taken place yet), the four concentrations can be expressed
using two reaction coordinates, x, y, as:

nH2 = (1− x)n0 (5.8)
nH = 2(x− y)n0 (5.9)
np = ne = 2yn0. (5.10)

Rearranging the eqs. (5.6) to (5.10), the system becomes:

[2(x− y)]2

1− x = eΨ/(kBT )

n0

(
2πkBT

h2
mH

2

mH2

)3/2
.= α (5.11)

(2y)2

2(x− y) = eχ/(kBT )

n0

(2πkBT

h2
mpme
mH

)3/2
.= β (5.12)

From these two coupled nonlinear equations it follows
16
αβ

y4 + 2y2 + βy − β = 0. (5.13)

The only acceptable root of this polynomial can be very easily computed with a
root finding algorithm2. We note that in order to calculate x once y is known, the

2The one we employed relies on the computation of the eigenvalues of the companion matrix, from
the open source python package numpy, https://docs.scipy.org/doc/numpy-1.15.0/reference/
generated/numpy.roots.html

https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.roots.html
https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.roots.html
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Figure 5.1. Concentration of free electrons, H+ ions, H atoms and H2 molecules as function
of temperature and for different densities.

expression

x =
−(α− 8y) +

√
(α− 8y)2 − 16(4y2 − α)

8 (5.14)

has better numerical stability than the simpler

x = y

(
1 + 2 y

β

)
, (5.15)

which exhibits some oscillations when x is supposed to smoothly approach zero.
Figure 5.1 shows the concentrations of reactants with varying temperature for
different densities of pure hydrogen in LTE conditions, computed with the Saha
model just explained. It is clear that, for the concentrations of our interest, ionization
and dissociation may be treated as separate processes, since when ionization takes
place, the gas is already fully dissociated. Moreover, if we are not interested in plasma
temperatures below 0.3 eV-0.4 eV, we may take the assumption of fully dissociated
hydrogen.

In this case, the system reduces to Saha’s equation for hydrogen ionization degree,
y:

y2

1− y = mp

h3
(2πmekBT )3/2

ρ
e−χ/(kBT ), (5.16)

where we used also the relations n0 ≈ ρ
2mp and mH ≈ mp. And we have that:

nH2 = 0, (5.17)
nH = 2(1− y)n0, (5.18)
np = ne = 2yn0. (5.19)



5.2 Boundary conditions and geometry 51

In our numerical studies we always initialize the hydrogen at a temperature of at
least 0.3 eV, and lower temperatures are found only in regions of minor interest (i.e.
not inside, nor in the vicinity of the capillary), that have negligible influence on
the rest of the computational domain. Thus we decide to neglect the molecular
dissociation process (i.e. we assume that our gas is always fully dissociated) and we
compute the ionization degree using eq. (5.16). Obviously, in this way we miss to
study the initial development of the discharge, where the gas heats up from room
temperature to few thousands of Kelvin. Unfortunately, that part of the discharge
cannot be modeled with a 2-D MHD approach. Indeed the fluid model itself is not
applicable and one would need to perform a kinetic study. Nevertheless, once the
arc regime is established in the discharge, the kinetic effects have minor importance
(for the range of parameters that we study) and the fluid model is applicable. A
hint that the initial kinetic development has little relevance for the subsequent arc
discharge comes from the experimental repeatability of the discharges that we study
(see Ref. [53] for more details on discharge reproducibility). In fact, the initial gas
ionization is also a stochastic process, which is expected to behave slightly differently
from shot to shot.

Internal energy and thermal pressure

We model the gas with a thermal equation of state, i.e. the pressure is computed
with:

p = nkBT ≈ (1 + y) ρ

mp
kBT. (5.20)

To compute the internal energy, we take into account the three translational degrees
of freedom of the species H, H+ and e−, and we include the contribution of the
ionization energy:

εint = 3
2nkBT + χnH+ ≈

3
2(1 + y) ρ

mp
kBT + χy

ρ

mp
(5.21)

5.2 Boundary conditions and geometry
In this thesis we model only straight capillaries; we do not include tapered or curved
shapes. We aim at emulating the experimental environments in which discharge
capillaries are typically located, i.e. a vacuum chamber of dimensions greater than the
size of capillary. A description of the discharge system implemented at SPARC_LAB
can be found in section 3.2. We model only a small portion of the real vacuum
environment, taking care that it is sufficiently big with respect to the rest of the
capillary. The size of the region mimicking the vacuum outside the capillary is
usually longer than the capillary and it is more than 5 times wider. In fig. 5.2 a
schematic view of the computational domain is represented, including the boundary
conditions applied on which we will comment below. The computational domain is
discretized with a non-uniform rectilinear grid. The grids that we typically employ
have a number of cells between 25000 and 100000. Note that the domain drawn
in fig. 5.2 has a concave/reentrant shape. For this reason, we also implemented
the possibility of setting the boundary conditions for the reentrant corner cells in a
rigorous way.
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Figure 5.2. Schematic view of the domain, not in scale

5.2.1 Symmetries

As anticipated, we employed a 2-D, cylindrically symmetric geometry. The symmetry
axis is coincident with the capillary axis, which is defined by the points where r = 0.
In addition, we placed another symmetry plane at the center of the capillary, even
though the physical system is not rigorously symmetric with respect to that plane.
What brakes the symmetry is the v× B term in eq. (4.63). The velocity vector
is expected to point outwards at both the capillary extremities, as the gas exits
from the discharge region because of the thermal pressure generated inside. Instead,
the magnetic field is expected to point in the same direction at both extremities
(either entering in or exiting from the computational plane). Thus their vector
product has different orientations at the two extremities. Nevertheless, if this played
an effective role in the whole computation, one would find appreciable differences
between solutions obtained with different current flow directions (with no variation
in the other settings). During our tests, we could not find such effects; thus, we
concluded that the error due to this symmetry forcing is acceptable. Note that
the choice of placing this additional symmetry plane may be physically interpreted
as if we closed the capillary at the center with a flat electrode and connected a
current generator between this plate and one of the electrodes located at the capillary
extremity.

5.2.2 Boundary conditions

In our simulations we impose the time profile of the electrical current flowing in
the gas. We do that by imposing the value of the magnetic field on the cylindrical
capillary wall, such that its circulation around the capillary section gives the desired
electrical current (according to Ampere’s law). On the portion of capillary wall
that represents the electrode, we do not impose the value of the magnetic field, but
we prescribe that the gradient of the product between the magnetic field and the
radial coordinate is parallel to the electrode surface. This condition is equivalent to
imposing the orthogonality of the electric field to the electrodes surface.

Thermal conduction occurs between the plasma and the rigid capillary walls
(including the electrodes). Accurately modeling convective heat exchange between
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Figure 5.3. Radial temperature profiles computed in a discharge capillary with different
boundary conditions. The profiles at 300 ns from the beginning of the discharge (cor-
responding to a current of 235 A) have been plotted on the left. The profiles at 600 ns
from the beginning of the discharge (corresponding to a current of 135 A) have been
plotted on the right.

fluid and surface is challenging. From an experimental point of view it is difficult to
know which phenomena play an important role depending on the regime explored.
From a computational point of view, high temperature gradients are expected in
a thin layer just below the rigid wall surface: a very dens mesh, with short time
steps would be required in order to model the process, retaining stability and/or
satisfying accuracy. Bobrova [19] and Broks [26] performed this modeling (with
different strategies) in their 1-D studies.

We imposed various fixed temperature values on the capillary walls and checked
for differences in the computed solutions. We have seen that for boundary tem-
peratures in the range 2600 K-4600 K(corresponding to 0.2 eV-0.4 eV) no important
difference is visible in the transverse temperature profiles. In fig. 5.3 we compare the
results for a simulation of a 3 cm long capillary, with a diameter of 1 mm, uniformly
filled with a mass density of 2.5× 10−7 g cm−3 and with an imposed current having
a peak value of 235 A and lasting approximately 1.2 µs3. As a consequence, we
chose not to model in detail the wall surface heating and we set it to a constant
temperature of 3400 K. This is also the temperature at which we initialize the
hydrogen gas in the domain, as explained above.

Regarding the rigid walls, advection of mass density momentum energy and
magnetic field cannot occur across those interfaces. Thus the component of the
velocity orthogonal to such surfaces is set to zero. Practically, this occurs on the
dielectric capillary walls, on the electrodes, on the symmetry axis r = 0 and on the
symmetry plane z = 0.

3A profile of this current is plotted in fig. 6.2
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5.3 Transport parameters
The thermal conductivity and electrical resistivity are computed assuming a fully
dissociated, partially ionized hydrogen gas. The mixture is thus entirely composed
by monatomic species. In this section, whenever useful to simplify the notation, we
will use integer subscripts to refer to the plasma components:

1↔ e−, 2↔ H+, 3↔ H. (5.22)

For computing the plasma transport parameters, we employ one of the most accurate
and rigorous techniques available, which consists in using high approximations of
the Chapman–Enskog method. Note that the transport models that have been used
in many of the capillary discharge studies available in literature are not suitable for
our case [19, 26, 6]. Indeed the accuracy of the thermal conductivity and electrical
resistivity employed in those works is poor for temperatures below 20 000 K; and we
certainly need to explore situations where the gas temperature is also below that
value.

Regarding the Chapman–Enskog method, most of the required expressions have
been developed in the fifties and sixties [39, 40, 41, 67, 24, 29] (a review of the theory
is available in Ref.[71, 30]). Those expressions depend on quantities called collision
integrals, whose accuracy is crucial for obtaining satisfactorily accurate transport
parameters. We employed the same collision integrals as used by Bruno et al. [27],
who computed the hydrogen transport parameters for temperatures between 50 K
and 50 000 K and a pressure of 1atm. Then we compared our results with the ones
of Ref. [27].

5.3.1 Thermal conductivity

In the computation of the thermal conductivity we take into account the translational
component contribution, κtr, as well as the reactive contribution, κreac, but we neglect
the internal thermal conductivity contribution, κint:

κ = κtr + κreac + κint ≈ κtr + κreac. (5.23)

The internal thermal conductivity takes into account the heat flow due to the
diffusive transport of enthalpy related to the excited states under thermal equilibrium
conditions. The reason why we neglect it is that for the range of temperatures of
3400 K-50 000 K, it is few points percent with respect to the reactive one, as it is
evinced from Ref.[27, table VIII].

For the translational contribution to the thermal conductivity, we exploited the
discussion given by Devoto[39], particularizing the relations for our gas mixture
and choosing the third approximation of the Chapman-Enskog formalism (unless
differently specified). The expression for κtr (see Ref. [39, eq. (17)]) is:

κtr = κ′ + ρkB
n

3∑
i,j=1

EijD
T
i D

T
j

nimimj
, (5.24)

where n .=
∑
ni, Eij is the element at row i and column j of the inverse of the

matrix whose elements are Dijmj . Dij and DT
i are respectively the diffusion and
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the thermal diffusion coefficients (see Ref. [39, eq. (9)]):

Dij = 3ρni
2nmj |q|

√
2πkBT

mi

∣∣∣∣∣∣∣∣∣∣∣∣∣

q00 q01 q02 0
ne

q10 q11 q12 nH+

nH
q20 q21 q22 0

δe,i δH+,i δH,i 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.25)

DT
i = 15ni

√
2πmikBT

4|q|

∣∣∣∣∣∣∣∣∣∣∣∣∣

δe,j − δe,i
q00 q01 q02 δH+,j − δH+,i

δH,j − δH,i
q10 q11 q12 0
q20 q21 q22 0

δe,i δH+,i δH,i 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.26)

where |q| is the determinant of the matrix that one build by stacking together the
submatrices qmp, and placing each element at the macro-row m and macro-column
n, with m,n = 0, 1, 2. qmp matrices are defined as:

qmp .=

 qmpee qmpeH+ qmpeH
qmpH+e qmpH+H+ qmpH+H
qmpHe qmpHH+ qmpHH

 . (5.27)

The parameter κ′ is defined by [39, eq.(14)]:

κ′ = −75kB
8

√
2πkBT

|q|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q00 q01 q02 0
ne

q10 q11 q12 nH+

nH
q20 q21 q22 0
0 ne√

me

nH+√
mH+

nH√
mH

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.28)

The qmpij parameters can be expressed in terms of the collision integrals and are
defined in Ref. [39].

The reactive thermal conductivity takes into account the heat flow due to
the diffusive transport of enthalpy related to the chemical reactants and products
concentration gradients occurring under thermal equilibrium conditions when a
temperature gradient is present. We compute the κreac coefficient with the expressions
developed by Butler and Brokaw [29, 24] who neglect thermal diffusion, pressure
gradients and external force field in order to obtain a handy formulation. For the
actual computation, we particularized the expressions from Ref [71, eq. (5.29) to
(5.32)], that are only a slight modification of (but equivalent to) the ones by Butler
and Brokaw, considering that we have only one chemical reaction.

We call Ri the stoichiometric coefficients of the ionization reaction:

R1↔e+ = +1, R2↔H+ = +1, R3↔H = −1, (5.29)
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The enthalpy of the reaction is defined as:

∆H =
3∑
i=1

RiHi, (5.30)

where Hi is the enthalpy per particle of species i. One can easily compute the
enthalpy per particle by noting that it is equivalent to the product of the mass of
that particle by the mass specific enthalpy of a gas of that particle,

Hi = himi, (5.31)

thus:

H1 = 3
2
kBT

m1
+ p1
ρ1

= 5
2
kBT

m1
, (5.32)

H2 = 3
2
kBT

m2
+ χ

m2
+ p2
ρ2

= 5
2
kBT

m2
+ χ

m2
, (5.33)

H3 = 3
2
kBT

m3
+ χ

m3
+ p2
ρ3

= 5
2
kBT

m3
. (5.34)

Therefore the enthalpy of the atomic ionization reaction is:

∆H = 5
2kBT + χ. (5.35)

If we define:

A
.=

2∑
i=1

3∑
j=i+1

kBT

D̂ij

xixj

(
Ri
xi
− Rj
xj

)2

, (5.36)

where xi = ni/n and D̂ij is defined by

D̂ij = 3
16

(kBT )2

pmijΩ(1,1)
i,j

, (5.37)

where Ω(1,1)
i,j is a collision integral, a quantity that will be defined in section 5.3.3.

Therefore, we may write the reactive thermal conductivity as [24, eq. (3)]:

κreac = 1
kBT 2

(∆H)2

|A|
(5.38)

5.3.2 Electrical resistivity

For the electrical conductivity, Devoto’s third order expression is used, neglecting
the contribution of the ions to the current. From Ref.[39], eq. (29):

η = ρkBT

e2n

1
n2m2D1,2

(5.39)
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5.3.3 Collision integrals for the computation of transport parame-
ters

Collision integrals are parameters that result from three integrations performed in
sequence. The first integration computes the scattering angle of interacting particles,
and involves their trajectories, which depend on the impact parameter, on the
interaction potential and on their initial velocities. From the second integration a
cross section is computed by weighting all possible impact parameters by a function
depending on the scattering angle. Finally, the third integration considers all the
initial velocities and weights the cross sections by a function which depends on
these velocities. The expression for the collision integral of order (l, s) (with l and s
positive integers) for the interaction of species i and j is

Ω(l,s)
i,j =

√
kBT

2πmi,j

∫ ∞
0

γ2s+3Q
(l)
i,j(γ

2kBT )e−γ2 dγ , (5.40)

where γ = mi,jg
2

2kBT
, g is the initial particle relative speed at large distance,mij = mimj

mi+mj

is the reduced mass, and Q(l)
i,j is the transport cross section, defined by

Q
(l)
i,j(εi,j) = 2π

∫ ∞
0

[
1− coslχi,j(εi,j , b)

]
bdb, (5.41)

with b being the impact parameter and χi,j the scattering angle:

χi,j(εi,j , b) = π − 2b
∫ ∞
r0

dr

r2
√

1− b2

r2 − V (r)
εi,j

. (5.42)

In the previous expression r = |r| = |ri − rj | is the distance between the colliding
particles and V (r) is their interaction potential, i.e. the scalar field whose gradient
drives the evolution of the relative position of the particles:

mij
∂2r
∂t2

= −∇V (r). (5.43)

We computed the values of the collision integrals for the interactions between
charged particles (H+ − e−, H+ − H+, e− − e−) using the analytical approximation
developed by Hahn et al. [64, eq. (51)], where the approximation of screened screened
Coulomb potential was employed. In order to use the analytical approximation of
Ref. [64] an expression for the Debye length is required. We use the expression
of Debye length that includes the screening of both electrons and ions (that we
reported in eq. (A.1), see appendix A for more details), because this is the correct
formulation when ion and electron temperatures are equal[27]4. For the interaction
between hydrogen atoms and between hydrogen atoms and hydrogen ions, we used
the fitting expression from Bruno [27, eq. (11)]). Lastly, for the electron-hydrogen
atom interaction, it is employed the fitting expression of Ref.[27, eq. (19)].

4For a discussion concerning the inclusion of the ion and electron contributions in the Debye
length, see Ref. [71, pp.99-100]



58 5. Numerical model of capillary discharges

3000 10000 20000 30000 40000 50000
Temperature (K)

0

5

10

15

20

Th
er

m
.C

on
d.

 (W
 K

1  m
1 )

Pressure: 1.01 × 105Pa

Ref.[4]
This work

Figure 5.4. Comparison between the total thermal conductivity as computed in this work,
and as computed by Ref.[27, table VIII],

5.3.4 Comparison with literature

In the following, we compare the electrical resistivity and the thermal conductivity
that we computed with the results by Ref. [27].

In fig. 5.4 the thermal conductivities of LTE hydrogen are plotted as a function
of temperature at atmospheric pressure. One can notice that the agreement is
satisfactory for the range of temperatures 6000 K-50 000 K, while for temperature
below 5000 K the agreement is poor. The difference is due to the fact that our model
neglects the reactive conductivity component related to molecular dissociation5.
However, when the electrical discharge develops, most part of the plasma heats up
quickly (in a few tens of nanoseconds) and reaches temperature above 5000 K. Thus,
we are confident that such inaccuracy in the thermal conductivity does not represent
a major issue for the accuracy of the whole discharge simulation, since it will affect
only a small portion of less hot plasma, mainly located near the capillary walls or
outside from the capillary.

In fig. 5.4 the electrical resistivity is plotted as a function of temperature at
atmospheric pressure. As expected, the agreement is excellent for the full range of
the plotted temperature.

5.4 Numerical solution of the MHD system
The code PLUTO is used to solve the model equations with a finite volumes approach.
The whole dissipative MHD problem can be viewed as composed by a so called
hyperbolic part (which is related to the advection of mass, momentum, energy and
magnetic field) and a parabolic part (related to the diffusion-like processes, such as

5As shown by [27, table (VIII)], at temperatures of few thousand kelvin, the reactive component
of the thermal conductivity is much greater than the translational and internal ones
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the thermal conduction and magnetic field evolution due to resistivity). Thus, we
can equivalently rewrite eqs. (4.60) to (4.63) as:

∂U
∂t

+ H(U) + P(U) = 0 (5.44)

Where U represents the conservative variables

U .=


ρ
ρv
ε
B

, (5.45)

H is a (non-strict) hyperbolic operator, defined by

H(U) .=∇ ·


ρv

ρvv− 1
µ0

BB + Ip
(ε+ p)v− 1

µ0
B(v ·B)

vB−Bv

, (5.46)

and P is the operator containing parabolic terms, defined by

P(U) .=


0
0

−∇ · (κ∇T ) +∇ ·
[(

η
µ2

0
∇×B

)
×B

]
+∇×

[
η
µ0

(∇×B)
]

. (5.47)

Considering that the hyperbolic and parabolic parts have different dynamics and
bring different time step limitations to the solution scheme, we chose to employ a
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splitting technique, in order to prevent the most restrictive time step limitation
(usually the diffusive one) to affect the computational effort required for the whole
solution. In PLUTO, the Strang splitting technique is implemented.

When the Strang splitting is applied to a system like 5.44, the computed solution
is advanced in time applying only one operator at a time, and alternating the
operators and the time step width as [78]:

Un+1 = eH ∆t
2 eP∆teH ∆t

2 Un (5.48)

The order of alternation of the operators is not prescribed a priori, however it may
affect the stability and accuracy of the solution. In fact, one may apply the opposite
order:

Un+1 = eP ∆t
2 eH∆teP ∆t

2 Un. (5.49)

After some testing, we chose the splitting 5.49, which performed better in terms of
robustness.

We solve the problem related to the H operator with the an explicit finite volumes
method, already implemented in PLUTO. Specifically, the time stepping is performed
with a second order Runge-Kutta method and the single time advance is performed
with a dimensionally split approach, with linear spatial reconstruction and employing
the Rieman solver by Harten, Lax and Van Leer [127, 44]. The problem represented
by the P operator is solved with a semi implicit scheme belonging to the family
of the alternating direction implicit methods (ADI) as discussed in section 5.4.1.
Since the only component of the magnetic field is in the φ direction, its divergence is
identically null and there is no need to apply any divergence control scheme, which
would otherwise be required.

5.4.1 Implicit method for parabolic operators

In order to show the impracticality of solving the eqs. (4.61) to (4.63) with a fully
explicit scheme, we take as example a linear one dimensional diffusion equation:

∂w

∂t
= D

∂2w

∂x2 . (5.50)

When trying to solve it with an explicit scheme, in order to keep the method stable6,
the time step, ∆t, must be limited by a quantity which is directly proportional to the
square of the grid spacing ∆x and inversely proportional to the diffusion parameter
D [8],

∆t ≤ C (∆x)2

D
. (5.51)

The quantity C is the Courant-Friedrichs-Lewy number, it is of the order of the
unity and it depends on the particular method employed and on the dimensionality
of the problem. It is common practice to keep it well below 0.5. The extension of
the limitation 5.51 to multidimensional problems and to other geometries only adds
technical details which complicate the discussion but do not change the conclusions
of the argument. Further information can be found in Ref.[8]. If we apply this limit

6Note that this is only a necessary condition for stability.
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to the case of magnetic field diffusion with a uniform resistivity of 1 Ω m and we
prescribe a grid spacing of 10 µm, we have

D = η

µ0
≈ 8× 105 m2 s−1, (5.52)

and thus:
∆t ≤ C (10 µm)2

8× 105 m2 s−1 ≈ C · 1.3× 10−16 s. (5.53)

If we wish to solve up to few microseconds, we have to advance in time the solution
for some billion steps, this is clearly impractical on serial workstations available
nowadays.

There exist some techniques, usually called super time stepping methods, capable
of accelerating an explicit scheme. Among those we find the Runge-Kutta-Legendre
(RKL) and the Runge-Kutta-Chebyshev (RKC) methods [92, 2]. At the time of
writing, both the RKL and RKC are implemented in the production version of
PLUTO[129], nonetheless when we carried out our studies only the RKC was
available7. We tested it for some of the problems of our interest and we found that
the method was capable of accelerating an explicit scheme by a factor 10 to 100,
which is still not sufficient for running our simulations on a serial machine. Moreover,
RKC exhibited poor robustness for the problems of our interest. Thus we decided
to implement an ADI scheme.

Alternating direction implicit methods

Alternating direction implicit (ADI) methods allow to overcome the time step
limitations of the explicit schemes, while still avoiding some of the complications
of fully implicit methods. They consist in predictor corrector schemes where the
predictor step evolves implicitly only a part of the differential operator (the other
part is evolved explicitly) and the corrector step evolves implicitly the remaining
other part of the operator (instead, the first part evolved explicitly). One may
decide to split the operator along the directions (r and z for us), which practically
results in alternating explicit and implicit updates of the solution vector along the
different coordinates For the case of diffusive problems, such as heat conduction or
magnetic field diffusion in 2-D 8, discretized with 5 points stencil centered finite
differences, ADI schemes are capable of providing more accurate solutions than
a Strang splitting performed on the directions; still requiring only to solve linear
systems whose matrices are tridiagonal. This translates in ease of implementation
with respect to fully implicit methods, that require the inversion of banded sparse
matrices.

Among the most studied, we find the Peaceman-Rachford (PR) [102] and the
Douglas-Rachford (DR) [42] variants. To illustrate how the ADI methods work, we
take the simple case of an initial value problem of the form:

d
dtΨ +A(Ψ, t) = 0, (5.54)

Ψ(0) = Ψ0 (5.55)
7We are referring to PLUTO’s version 4.2 (August 2015)
8For the generalization to 3-D situations, see Ref. [63].
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for t > 0, where the operator A may be decomposed in two simpler components A1,
A2, such that: A = A1 +A2.

The PR method aims to solve it by stepping from tn to tn+1 with the scheme:
Ψn+1/2 −Ψn

∆t/2 +A1(Ψn+1/2, tn+1/2) +A2(Ψn, tn) =0, (5.56)

Ψn+1 −Ψn+1/2

∆t/2 +A1(Ψn+1/2, tn+1/2) +A2(Ψn+1, tn+1) =0, (5.57)

where tn+1/2 = tn is the midpoint between tn and tn+1 and ∆t = tn+1 − tn. It
is worth to mention that Ψn+1/2 is only an intermediate result fo the calculation
and should not be treated as an approximation of Ψ(tn+1/2). Clearly, the predictor
step advances for a half time step the solution according to A1 operator using
forward Euler method, and according to A2 using backward Euler method. In the
corrector step the roles of the operators are reversed. If A1 and A2 they are linear,
time independent and commute, the scheme is second order accurate. For further
information on PR scheme see Ref.[63].

The DR method aims to solve the problem of eqs. (5.54) and (5.55) by stepping
from tn to tn+1 with the scheme:

Ψ̂n+1 −Ψn

∆t +A1(Ψ̂n+1, tn+1) +A2(Ψn, tn) =0, (5.58)

Ψn+1 −Ψn

∆t +A1(Ψ̂n+1, tn+1) +A2(Ψn+1, tn+1) =0, (5.59)

A first difference with the PR scheme is that the roles of A1 and A2 are not
symmetrical; some authors suggest to take as A2 the operator with the best continuity
and monotonicity properties[63]. Also, even if A1 and A2 are linear, time independent
and commute, the scheme is not second order accurate like PR, but first order at
best. However, even though in principle the accuracy of this scheme is lower than
that of PR, the prominent role played by backward differencing gives often better
stability. This is confirmed by the literature [63] and by a number of numerical tests
that we performed In the following we explain how we apply the and ADI scheme to
our computational problem. When solving the diffusion-like problem we first split
the P operator (see eq. (5.47)) in two parts,

P(U) = P1(U) + P2(U), (5.60)

P1(U) =


0
0

−∇ · (κ∇T )
0

 (5.61)

P2(U) =


0
0

∇ ·
[(

η
µ2

0
∇×B

)
×B

]
+∇×

[
η
µ0

(∇×B)
]
, (5.62)

and advance P1 and P2 alternatively, performing a Lie splitting between the problems
of thermal conduction and magnetic diffusion:

eP∆tU ≈ eP2∆teP1∆tU. (5.63)
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In addition, for stability reasons we further subdivide the diffusion time step in N
sub-steps (few tens) and perform a sub-cycling applying an ADI scheme on each one
of them (j = 1, 2):

ePj∆tU ≈ ePj ∆t
N · . . . · ePj ∆t

N︸ ︷︷ ︸
N times

U. (5.64)

The transport parameters are kept fixed during a single ADI step and evolved only
in between two steps. Moreover, in each sub-step of ADI on P2, the update of
the total energy due to magnetic field evolution (see the forth row of the right
hand side of eq. (5.62)) is performed neglecting the effect of energy variation on the
whole system. It is worth to note that the use of Lie splitting adds an additional
splitting error (which is formally first order), but it is necessary in order to keep
the resulting systems tridiagonal. However, considering that the problems are not
strongly coupled, we believe the additional error to be fairly negligible. A similar
splitting scheme among the thermal and magnetic problems is performed also in the
original version of PLUTO, when the super time stepping scheme is employed.

When PR is applied to the diffusive problem of our case we have:

U′ −Un

∆t/2 + P̃jz(U′, tn+1/2) + P̃jr(Un, tn) =0, (5.65)

U′′ −U′

∆t/2 + P̃jz(U′, tn+1/2) + P̃jr(U′′, tn+1) =0, (5.66)

where we defined Un = U(tn), U′′ is an approximation of UnePj∆t, P̃jr is a
discretization of operator Pj that contains all the derivatives with respect to r and
P̃jz a discretization of operator Pj that contains the derivatives with respect to z.
Obviously, one is free to exchange the roles of P̃jr and P̃jz, and exchange them in
order to search for the setting that provide the best stability and accuracy.

The application of DR scheme to our diffusive problem reads:

U′ −Un

∆t + P̃jz(U′, tn+1) + P̃jr(Un, tn) =0, (5.67)

U′′ −Un

∆t + P̃jz(U′, tn+1) + P̃jr(U′′, tn+1) =0. (5.68)

As before, one may exchange the roles of P̃jr and P̃jz in order to search for the
setting that provide the best stability and accuracy, bearing in mind the suggestions
found in literature.

We performed some numerical tests with the aim of comparing the performance
of PR and DR variants on the problems studied in this thesis. It has been found
that, both work excellently well when applied to a reduced version of the problem,
consisting in a plasma that does not move in space (i.e. for the operator P alone).
Nevertheless, when the plasma is free to move and the entire problem in studied
with the combination of the hyperbolic solver and DR scheme, the system is stable if
the global time step is kept at approximately 10−2 ns (much lower than the Courant-
Friederich-Levy limit for explicit solution of advective problems) and the number, N ,
of ADI sub-cycles is higher than 100. Instead, if the PR variant is used a more costly
sub-cycling is required, with N ≥ 500. Thus, we decided to employ DR scheme
throughout this work.
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We note that what found is consistent with the in literature, that DR scheme
is expected to be more robust than the PR. Moreover, the need for sub-cycling in
both DR and PR is also not surprising, considering the non-linearity of the problem
and considering that the ADI methods are combined with a hyperbolic solver by
means of Strang splitting, and not used as is.
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Chapter 6

Plasma discharge simulation

In this chapter we perform some capillary discharge simulations with both the
aim of validating our computational model and exploring some first possibility for
optimizing the operation of APL. First of all, in section 6.1 we compare the results
of our simulations with the electron density measurements available in Ref. [53].
Then, in section 6.2 we try to replicate the experimental results of Ref. [106], where
an APL was used to focus a high brightness electron beam, by simulating the same
discharge and tracking an electron beam through the thus obtained magnetic field.
Lastly, in section 6.3, we explore the effect of the width of the capillary section on
the magnetic field quality, by simulating a discharge in two capillaries that differ
only by the size of their diameters and by the intensity of the imposed current.

6.1 Comparison between simulations and electron den-
sity measurements

In this section we compare the electron density obtained from our simulations with
the longitudinally and time resolved measurements available in Ref. [53, pp. 74-100].
We simulate the same capillaries and apply current profiles that mimic the measured
ones. The capillaries studied have been already described in section 3.2. The first
one, that here we call capillary (a), is 3 cm long and the other one, capillary (b), is
1 cm long. Both have a diameter of 500 µm and are made by a conic sapphire tube,
inserted into a printed plastic holder. Capillary (a) has two inlets, located at 1/4
and 3/4 of its length. Capillary (b) has one inlet, located at the center.

Two flat, holed copper electrodes are placed at the capillary extremities. We
modeled them with 1 mm-thick perfectly conducting material placed at the capillary
exits. Electrical discharges in the 1 cm capillary were driven using the 7.2 nF-36.5 Ω
electrical circuit described in section 3.2. A stable current time profile with duration
of 1.5 µs and peak value of 245 A was measured. Instead, the discharges in the
3 cm capillary were performed using the 2 nF-100 Ω electrical circuit, also described
in section 3.2. In this second case, stable current time profiles with duration of 1.5 µs
and peak value of 95 A were obtained. The time profiles of the two currents are
plotted in figs. 6.1 and 6.2, where they have been overlaid with the current imposed
in our simulations.

Unfortunately, no measurement of the neutral gas present in the capillary prior
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Figure 6.1. Current setting in simulation (black, dashed line), compared with the measured
one (green, continuous line) (case (a)).
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Figure 6.2. Current setting in simulation (black, dashed line), compared with the one
measured (green, continuous line) (case b).
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Figure 6.3. Mass density at the beginning of the simulation, for case (a) (top) and case
(b) (bottom), for a generic value ρ0 of the mass density filling the capillary and the
surrounding vacuum.

to triggering the discharge is available at the time of writing. 1 Therefore, in our
simulations we filled the capillaries with an initially uniform mass density, ρ0. We
will specify below the values of ρ0 in each computation. Outside the capillary, the
density drops smoothly and reaches a base value, ρV ≈ ρ0/1000, that models the
vacuum region surrounding the plasma. Namely, the initial density distributions are
described by:

z < L/2, r < R : ρ = ρ0, (6.1)

z > L/2, r < R : ρ = (ρ0 − ρV) cos2
[
π

2
(z − L/2)

dz

]
+ ρV,

z > L/2, r > R : ρ = (ρ0 − ρV) cos2
[
π

2
(z − L/2)

dz

]
cos2

[
π

2
(r −R)
dr

]
+ ρV,

where dz = 5 mm and dr = 1 mm. The mass distributions for the two cases are
plotted in fig. 6.3. We are aware that the choice of uniformly filling the capillaries
represents a limitation to the accuracy of our results, but we are confident that a
first order benchmarking of our model with experimental cases is still possible.

Furthermore, the gas is initialized at rest and at an initial temperature of 3400 K
(further details on the initial and boundary conditions are available in section 5.2).

1The preliminary gas dynamics simulations mentioned in section 3.2 serve only to estimate the
scale of the timings required for reaching the steady state in the neutral gas flow, but the numerical
studies that have been performed on capillary filling gas dynamics are not mature enough to be
used as initial conditions for discharge simulations.
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We chose the values for ρ0 consistently with the backing pressure that was
set at the capillaries and based on considerations regarding the electron density
measurement process, that we will outline below. The backing pressure was set
at approximately 100 mbar. Assuming ideal gas law is applicable for hydrogen in
these conditions, this corresponds to a mass density of 8× 10−6 g cm−3, for a gas
temperature of 300 K. Considering the length (tens of centimeters), the transverse
size (< 1 cm) of the ducts feeding the inlets and also the presence of few shrinkages,
we expect a severe pressure drop (by a factor 10 ÷ 50) between the value at the
capillary and the one set upstream. We estimate that realistic values for mass
density filling the capillaries are of the order of 10−7 g cm−3. Thus, we performed
simulations with different initial mass densities looking for a condition best fitting
the experimental data.

In addition, in order to properly compare the computed and measured data,
some important considerations must be given. In Ref. [53] the electron density was
obtained by observing the broadening of the H–beta line by Stark effect. For each
timing and longitudinal position, the light coming from the full transverse section
of the capillary was collected, with a camera gated for 100 ns. In fact, as noted by
Ref. [53] in agreement with a number of works [126, 118], in a capillary discharge
the electron density may vary considerably over the radial position: between the
axial and near wall values factors even grater than 2 are common. Nevertheless, the
optical system employed for the measurements did not allow to resolve transverse
positions along the capillary radius. It was necessary to consider the measurement as
representative of a weighted average of the electron density over the capillary section.
A rigorous estimation of the weighting factor was not performed in Ref. [53] and we
do not attempt it either. However, we expect that it is monotonically growing with
the electron density; we explain why in the following.

The H–beta line is due the electronic transitions n = 4 ⇒ n = 2 (n being the
principal quantum number) occurring in the plasma. Its intensity is dependent only
on the population density of the excited level, n = 4, which in turn depends (in LTE
conditions) on the plasma temperature, density and composition. For the plasmas
of our interest, the population density of level n = 4 is monotonically growing with
the electron density [48]. Therefore the higher is the electron density in a certain
region of plasma, the greater is the amount of photons at the H–beta wavelength
emitted from that region. Thus the intensity and broadening of the H–beta spectral
line is more dependent from regions where the electron density is higher, than it
is from regions with lower electron density. Consequently, we treat the values of
electron density provided by Ref. [53] as representative of a value in between the
pure integral average and the maximum over the capillary section.

For each of the two experimental cases, (a) and (b), we plot the results for two
choices of values for ρ0. One is the case best matching the experimental data, when
the maximum value of the computed electron density over the capillary section
is considered. The other one is the best matching case when the average of the
computed electron density over the capillary section is considered. The results for
capillary (a) are plotted in fig. 6.4 whereas the results for capillary (b) are plotted
in fig. 6.5

Regarding case (a), an initial mass density of 8× 10−7 g cm−3 provides the best
resemblance between our computations and the measurements, when we plot the
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Figure 6.4. Comparison between measured [53] (first row) and simulated (second and third
row) time evolution of longitudinal electron density, inside a 3 cm-long, 1 mm-diameter
capillary during a discharge with 90 A peak current. In the second (third) row, the
average (maximum value) of the electron density over the capillary section is plotted for
each longitudinal position and timing.
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Figure 6.5. Comparison between measured [53] (first row) and simulated (second and third
row) time evolution of longitudinal electron density, inside a 1 cm-long, 1 mm-diameter
capillary during a discharge with 245 A peak current. In the second (third) row, the
average (maximum value) of the electron density over the capillary section is plotted for
each longitudinal position and timing.
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average of the electron density over the capillary section. Instead, a mass density
of 3.7× 10−7 g cm−3 provides the best resemblance when we plot the maximum
value of the electron density over the section. Note that the peak of the electron
density value is reached approximately at 450 ns in the first case, and at 550 ns in
the second case. The peak in the measured data is instead around 500 ns, well in
between the two computed cases. We consider the agreement between the measured
and simulated distributions satisfactory.

For case (b), an initial mass density of 6× 10−7 g cm−3 provides the best re-
semblance between our computations and the measurements, when we plot the
average of the electron density over the capillary section. Instead, a mass density
of 2.9× 10−7 g cm−3 provides the best resemblance when we plot the maximum
value of the electron density over the section. The time delay between the peaks of
the computed electron density distributions is in this case negligible. Most notably,
it can be seen that the computed and measured data are in good agreement for the
first 400 ns, but at later times the measured data accumulate a delay (around 100 ns)
with respect to the simulations.

We explain this difference with our choice of the initial distribution of the neutral
hydrogen gas. In the experimental situation, the 1 cm-long capillary has only one
inlet, located at the center. Thus, it is reasonable to expect that the neutral gas
is initially concentrated near the inlet (i.e. at the center) and its density drops
approaching the extremities. Note that this distribution is very different from the
one that we chose for our computations. When the discharge is triggered, the gas
is heated up by the ohmic losses. The thermal pressure increases and pushes the
gas that was concentrated at the capillary center towards the two extremities. It
is reasonable to expect that this mass distributes in the whole capillary and, once
ionized, provides additional electron density, delaying the quenching of the plasma.

We also expect that such effect does not occur in capillary (a), whose inlets are
located at 1/4 and 3/4 of its length. Reasonably, a uniform pressure and mass density
distribution is established between the two inlets before the electrical discharge takes
place.

From the comparison just performed, we conclude that the electron density
computed inside the capillary with our simulation model is realistic, especially for
case (a), where the measured and simulated time evolution of the density are in good
agreement. Instead, for case (b) we observed some discrepancies. One possibility to
explain them is that our choice of the initial neutral gas density distribution may
be too far from the experimental situation. It is clear that additional knowledge
on the initial gas distribution is required for the discharge simulations to provide
reliable time evolutions of the electron density distribution. Such knowledge can be
provided by detailed neutral gas measurements, possibly coupled with numerical
simulations of gas dynamics.

6.2 Focusing of a high brightness electron beam with a
90A peak current APL

In Ref.[106] a high brightness electron beam was focused by means of an APL made
by an electrical discharge inside a hydrogen-filled capillary, with peak current of
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Figure 6.6. Transverse spot of the beam observed by means of a Ce:YAG screen located
20 cm downstream the capillary. Reprinted from Ref. [106]

approximately 90 A. In this section we aim at reproducing those results. The final
scope is primarily to validate our computational model and secondly to provide
additional insight into the physics of the discharge involved.

6.2.1 Experiment and simulation setup

In Ref. [106], an APL consisting in a capillary discharge was used to focus a
single bunch electron beam provided by the SPARC photo-injector. Such a bunch
has a charge of 50 pC and an energy of 126 MeV(γ ≈ 246), with an rms energy
spread of 50 keV. Its normalized emittance is (1.0± 0.2) µm and its rms duration
is 1.1 ps. At the capillary entrance the minimum rms transverse spot recorded was
σx,y = (130± 10) µm; this is also the spot size used for the tracking studies present
in Ref. [106], thus we will also use this value for our computations. In addition, as
beam density distribution we will consider a cylindrically symmetric one, with a
Gaussian radial profile upstream the capillary. This assumption seems reasonable,
considering the transverse beam density map recorded downstream the capillary,
when the discharge is turned off, as we reported in fig. 6.6.

The plasma current used for focusing the electron beam was obtaining by feeding
the electrodes of a hydrogen-filled capillary with the 2 nF-100 Ω electrical circuit
described in section 3.2. The capillary used is 3 cm long and it has a radius of
500 µm. The current time profile is the same as the one already plotted in fig. 6.1 of
previous section. Note that, in order to simplify the presentation, we chose to refer
the time to the start of the discharge, instead of referring it to the instant when the
current reaches the peak value (thereby we take a convention that is different from
the one of Ref. [106]).

Our approach is to simulate the discharge and track the electron beam through
the resulting magnetic field. The current imposed in our simulation is the one
plotted in fig. 6.1. Initially, we fill the capillary with a uniform a mass density of
4.5× 10−7 g cm−3, that we consider realistic, based on the discussion of the previous
section. The mass density filling the capillary is matched smoothly to the surrounding
vacuum region, modeled with a mass density 1000 times smaller. The smoothing is
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Figure 6.7. Longitudinal electron density profile inside the capillary, obtained from the
measurement (blue line), and from the simulation, considering the average over the
transverse section (green line) and the maximum over the transverse section (red line)

done as in eq. (6.1). In the experimental case the backing pressure was set to a few
hundreds millibar. All the other initial and boundary conditions are in agreement
with what explained in section 5.2.

6.2.2 Results

Regarding the electron density, our results at 650 ns are in good agreement with the
measured profile that is plotted in Ref. [106] for that timing. In fig. 6.7 we overlaid
the measured and computed profiles. The measurement was performed observing
the Stark broadening of Balmer–beta line in the assumption of uniform electron
density across the capillary section. Thus, for the reasons explained in section 6.1,
we plotted both the average and maximum value of the computed electron density
over the section.

In order to provide a full view of the focusing capabilities of the simulated
capillary, we plot in fig. 6.8 the time evolution of the longitudinal average of the
focusing gradient:

〈g〉z(r)
.=
∫+∞
−∞ B(r, z) dz

rL
, (6.2)

In the same figure we also plot a colored map representing the time evolution of
the radial variation of the averaged focusing gradient with respect to its value on
the capillary axis. Note that the absolute variation in focusing gradient is directly
responsible for beam emittance growth (being directly proportional to the difference
in focusing strength).

We tracked the beam electrons through the magnetic field obtained in our
simulation, using a leapfrog algorithm. We neglected the space charge effects and
the wakefield generated inside the plasma (passive focusing). For the beam that we
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Figure 6.8. Time evolution of the averaged focusing gradient at r = 0 (bottom plot, blue
line) and at the capillary wall (r = R, orange line, bottom plot). The time evolution of
the current has also been plotted for completeness (dotted line, bottom plot). In the
top plot, the colored map represents the time evolution of the variation of the averaged
focusing gradient with respect to the axial value of the averaged focusing gradient.
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Figure 6.9. Computed (purple) and measured[106] (red, dashed line and blue dashed line)
normalized rms emittance downstream the capillary, overlaid with the current time
profile (gray).

considered, the space charge is of minor importance because its energy is much higher
than what required by the threshold given by eq. (1.16): γtr ≈ 9� 246. Regarding
the passive focusing, we are aware that it is not negligible for the case considered,
however we assume that its importance is marginal. Indeed, in Ref. [106] the
interaction between the SPARC beam and the APL plasma was simulated using the
hybrid kinetic-fluid code Architect [89]: the emittance growth resulting solely from
the passive focusing was of the order of 0.1 mm mrad and the spot reduction inside
the APL was around 2 µm (when the beam is injected 650 ns from the beginning of
the discharge). The emittance growth due to the combined effect of the azimuthal
magnetic field and plasma wakefield was estimated to be more than thirty times
greater and the spot reduction in the APL was five times higher [106, fig. 6].

We computed the normalized rms emittance downstream the lens and we reported
the results in fig. 6.9, together with the measured values from Ref. [106]. We also
computed the rms spot 20 cm downstream the lens, corresponding to the location
in the line where a Ce:YAG screen is installed. The results are plotted in fig. 6.10,
together with the measured values. Note that the measured data are not symmetric
in the x and y transverse directions. This is most likely due to any of the two
following reasons. One possibility is that the x and y profiles of the beam have a
different shape upstream the capillary, regardless of the fact that they have the same
rms size2. The other one is the presence of the inlets in the real capillary which
brake the geometrical symmetry of the insulating walls, and possibly also the one of
the focusing magnetic field.

However, except for the point ad 100 ns, the computed emittance is within the
error bars of the measured data. Shortly below we will comment on the discrepancy

2This would obviously imply that, among the x and y profiles, at least one is not Gaussian
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Figure 6.10. Computed (purple) from discharge simulation results and measured[106] (red,
dashed line and blue dashed line) rms spot 20 cm downstream the capillary, overlaid
with the current time profile (gray). Each of the measured spot sizes has an error of the
order of few microns. The spot size in the approximation of uniform current density is
also plotted, with a purple, dashed line.

between the measured and simulated emittance variation at 100 ns. Regarding
the spot size, the measured and computed values are in fair agreement. The first
computed local minimum is approximately at 200 ns from the beginning of the
discharge: 100 ns before than the measured one. The other computed local minimum
is at 700 ns, delayed of approximately 50 ns with respect to the one measured in y
direction but almost aligned with the one measured in x direction. Regarding the
time location of the first measured minimum, we note that the drop in spot size is
quite abrupt, since up to a timing of 250 ns the beam was not focused at all, even
thought the current already reached a value higher than 30 A. We interpret this as an
indication that the current flows mainly near the capillary walls (up to this timing)
and thus the magnetic field sampled by the beam particles is extremely low. If this
were not the case, the beam would be focused in way similar to what happens in the
descending part of the current profile for the same current intensity. This would also
explain why the emittance is fully conserved at 100 ns. Clearly, for the present case
the first 250 ns are modeled with little accuracy by our simulation. A possible reason
is the choice of the initial mass density distribution or a not satisfying modeling of
thermal conduction at low temperatures. Regarding the second minimum, we note
that even though there is a discrepancy with respect to the measured value, the
spot computed from the simulated magnetic field is much closer than it is the one
computed in the approximation of uniform current density; we are therefore satisfied
with the agreement between simulated and measured spot.

In addition, we compare the magnetic field that we obtained from our simulation
with the one experimentally inferred in Ref. [106], for a timing of 650 ns, correspond-
ing to a current of 45 A. Thus, we plot in fig. 6.11 the longitudinal average of the
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Figure 6.11. Radial profiles of magnetic field longitudinally averaged over the length of
the capillary, computed with PLUTO (at 650 ns, corresponding to a current of 45 A)
(purple), experimentally inferred in Ref. [106] (same timing) (black), and according to
the 1-D, thermal equilibrium model [19](orange). The radial profile of the ionization
degree (green, dashed line) is plotted at z = 0.

computed magnetic field, together with the field experimentally inferred in Ref. [106],
and with the one obtained with the equilibrium model described in section 2.2.1. As
longitudinal average of the magnetic field, we refer to the quantity

〈B〉z(r)
.=
∫+∞
−∞ B(r, z) dz

L
, (6.3)

where L is the capillary length; this definition takes into account also the fringe
magnetic field, that may extend outside of the capillary for a certain length. The
inferred and computed profiles are in fair agreement (even though some discrepancies
are evident). Instead, the field obtained from the equilibrium model highly differs
from both the computed and measured ones. This is clearly related the fact that the
equilibrium model relies on the hypothesis of full ionization of the plasma, which is
not satisfied in this case.

6.3 Effect of diameter variation
According to what found by a number of authors [113, 106, 131] and in agreement
with the thermal equilibrium solution (section 2.2.1) of capillary discharges, the
dependence of the azimuthal magnetic field on the radial position is approximately
linear in the vicinity of the capillary axis and bends approaching the capillary wall,
due to the wall cooling effect. One may speculate that enlarging the capillary
diameter would be useful for building a lens that has better magnetic field quality,
i.e. a field that exhibits a satisfyingly linear transverse profile where the beam is
supposed to pass.

A drawback of this strategy is that higher electrical currents are needed, indeed
the current required to obtain a certain focusing strength grows quadratically with
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Figure 6.12. Time profiles of the electrical current imposed in capillary (a) (green) and
(b) (red).

the capillary radius (assuming uniform current density distribution). In addition,
also the amount of gas to be inflated in the capillary grows quadratically with the
capillary radius, if the mass density inside the discharge region is kept fixed. In
principle, the presence of more mass and a wider capillary section may translate
in the ejection of more plasma from the capillary extremities, with consequent
generation of longitudinally extended plasma regions where the beam may excite
wakes capable of ruining its quality. Moreover, the amount of mass inflated in
the capillary may spoil the vacuum quality, whose requirements are instead quite
stringent in a particle accelerator.

6.3.1 Discharge in capillaries with different radii

We address the questions above by simulating two discharges that are performed in
capillaries with different diameters and current intensities but are otherwise identical.
We compare a case, (a), where the capillary radius, is Ra = 500 µm with another,
(b), where the radius is 20 % greater, i.e. Rb = 0.6 µm. The currents imposed have a
flat-top profile, with a rise time of 100 ns. The current of case (a) has a top value
of 500 A whereas for case (b) the top value is scaled according to the squared ratio
of the diameters, i.e. 720 A. The two profiles are overlaid in fig. 6.12. The current
form that has been chosen is realistic considering the technology available nowadays:
an APL with a similar current profile was experimentally studied by Ref. [113]3.

Each one of the capillaries studied has a total length L = 1.2 cm, which is
composed by a 1 cm-long electrically insulating wall and two 1 mm-long electrodes.
The geometry of the computational domain is consistent with what described in
section 5.2.

The capillaries are filled with an initial mass density ρ0 = 2.5× 10−7 g cm−3.
At room temperature, this amount of neutral gas would correspond to a uniform

3Currents of 188 A-740 A were reached after a 100 ns ramp, and sustained for 240 ns
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Figure 6.13. Temperature map in capillary (a) (top) and in capillary (b) (bottom) at 50 ns
from the beginning of the discharge, with some current density streamlines.

filling pressure of 2 mbar, a value that is considered realistic. Note, however, that
we initialize the gas at a temperature of 3400 K in order to be consistent with
the choice of skipping the hydrogen dissociation process and to provide an initial
fictitious ionization degree. The density outside the capillary drops smoothly until
it reaches the value of ρV = 2.5× 10−10 g cm−3, that models the vacuum region
surrounding the plasma. The matching with the vacuum environment is done as
described by eq. (6.1).

6.3.2 Results

At the beginning of the discharge the plasma resistivity is uniform and the current
density lines follow the minimal path between the two electrodes passing nearby
the capillary walls and not concentrating at the capillary axis. Therefore, the heat
generated by the ohmic losses is deposited at first in an annular channel between the
capillary wall and the axis. This is clearly visible in fig. 6.13, where few streamlines of
the current density are plotted over the temperature map at 50 ns after the discharge
began. The heating of this region of the plasma fosters the concentration of current
at that location. However, after approximately 100 ns-150 ns this behavior comes to
an end, since the heat necessarily diffuses towards the capillary axis. This evolution
can be seen in fig. 6.14, where we plotted the radial and longitudinal temperature
profiles in the two capillaries at certain time instants. Note that this initial transient
lasts more (and is more evident), for the case (b). It seems reasonable that this
is related to the fact that in this case the heat diffusion process has to cover a
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in capillary (a) (top) and (b) (bottom) for various timing from the beginning of the
discharge.
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Figure 6.15. Longitudinal average of the magnetic fields in capillary (a) (continuous lines)
and in capillary (b) (dotted lines), at 50 ns(red) and at 100 ns(blue) from the beginning
of the discharge.

longer path to reach the capillary axis. 4 Once the on-axis plasma is hot enough
with respect to the near wall region, the current density concentrates on the low
resistivity channel at that location. At this point, all the heat generated by ohmic
losses either flows towards the electrically insulating walls or exits from the capillary
following the mass flow at the two extremities. Thus the temperature on the capillary
axis approaches a constant value. Eventually, the equilibrium condition described
in section 2.2.1 is established.

In fig. 6.15, the transverse profile of the longitudinal average of the magnetic field
is plotted, for timings of 50 ns and 100 ns. During the thermal transient (line at 50 ns
of fig. 6.15), the magnetic field has a convex profile in the vicinity of the capillary
axis, due to the distribution of the current density explained above. Such a profile,
more evident for case (b), is clearly not satisfying for active plasma lensing purposes.
Furthermore, we plotted the profiles of the averaged magnetic fields for the two
capillaries at 150 ns in fig. 6.16. Clearly, when the transverse thermal equilibrium
condition is established, the profile of the longitudinally averaged magnetic field
approaches the one foreseen by the equilibrium model described in section 2.2.1.
The magnetic field profiles in the two cases have the similar and almost perfectly
superimposed shapes, up to r = 300 µm. This superposition is an obvious direct
consequence of the choice of scaling the two currents according to the ratio of the
areas of the transverse capillary sections. As expected, capillary (b) has a field that
is closer to a linear case than it is for capillary (a). One might wonder whether this
provides significant improvement in the focusing capabilities of the APL. Hence, we
tracked an electron beam through the fields obtained in the two cases and computed
the emittance downstream the two capillaries. In order to explore a realistic situation,
we employed an electron beam with the same specifications than the one we used

4In a diffusive process, the typical time it takes for energy to be transported over a certain
distance grows quadratically with the distance itself.
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Figure 6.16. Longitudinal average of the magnetic fields in capillary (a) (continuous
line) and in capillary (b) (dashed line), at 150 ns from the beginning of the discharge.
In addition, the fields computed with the equilibrium model [19] (orange) have been
uniformly scaled and overlaid to the two simulated profiles.

in section 6.2 (Gaussian transverse profile, εN = 1 mm mrad, σ = 130 µm, γ = 246).
The results of the tracking are plotted in fig. 6.17. For the first 100 ns from the
beginning of the discharge, the emittance increase for case (b) is greater than for
case (b). This can be explained by watching at fig. 6.15. At the initial timings
the concentration of current density near the capillary walls is more intense in case
(b) than it is in case (a), due to its wider transverse section. This leads to convex
magnetic field profiles, and consequent stronger aberrations for case (b). Then, when
the transverse thermal equilibrium is established (from 150 ns on), case (b) provides
a magnetic field with a higher degree of linearity and thus performs better with
respect to beam emittance growth. We see that when the beam passes through the
APL (b) its emittance grows from 1 mm mrad to 2.2 mm mrad, instead in APL (a)
it grows to twice as much, i.e. 3.4 mm mrad.

Another important aspect to evaluate is the electron density that develops
inside the plasma. In fact, depending on the electron density that is present in
the plasma, the wakes excited by the beam (passive plasma lensing) may have a
significant detrimental effect on its quality [90]. In order to check for the differences,
in terms of electron density between case (a) and (b), we plotted the axial profiles of
electron density for different timing, for both cases, in fig. 6.18. Also, for the sake of
completeness, we plot the full electron density distribution at 400 ns, i.e. when the
two axial distributions exhibit more differences. The profiles in the two cases tend to
differ more at later timings (400 ns), but no other notable differences can be found.
This can be an indication that the slight enlargement of the capillary radius does
not produce significant increase in the ejected electron density. Nevertheless, the
amount of mass and electron density that exits the capillary highly depends on the
mass that was initially contained inside. It is clear that in order to perform a more
reliable comparison, realistic distributions of the neutral gas (i.e. coming from a
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Figure 6.17. Computed normalized rms emittance for a beam passing through capillary
(a) (dashed purple line) and capillary (b) (continuous purple line) for various delays with
respect to the beginning of the electrical discharge. The current flowing in capillary (a)
(capillary (b)) is plotted in gray, with a dashed (continuous) line.

measurement or from a simulation) are required. In addition, note that one expects
the distributions to vary between capillaries with different aspect ratios (with no
variation in the other settings); nevertheless, due to our lack of knowledge in regard,
we employed the same initial distributions for the two cases. Lastly, in order to
estimate the effect of the passive focusing on the beam quality, plasma wakefield
simulations (with a particle-in-cell or hybrid kinetic-fluid approach) including the
beam evolution consistently with the wakes generated are required. Such simulations
should take into account the evolution of the beam consistently with the wakefield
generated and including the radial and longitudinal modulation of the electron
density distribution. Considering that we lack of a highly reliable initial condition
for the mass density distribution for our capillary discharge simulations, also the
reliability of the electron density map obtained is questionable. Thus, we do not
perform any plasma wakefield simulation in the present work, but we plan to do
them in the next future.

6.4 Discussion
In this chapter, we provided an initial validation of our numerical model and we
performed some studies aimed at providing some additional understanding of the
capillary discharge physics. We performed the validation by means of comparison
with experimental results, that are related to measurements of the plasma electron
density and to the beam focusing effects due to active plasma lensing. Then we
studied two realistic discharges (not implemented in reality), in order to explore the
effect of the capillary diameter variation.

We found that the measured and computed electron density distributions are
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Figure 6.18. Axial electron density profiles at various timings from the beginning of the
discharge, for case (a) (blue) and for case (b) (orange). Darkened regions correspond to
locations inside the capillary.
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Figure 6.19. Electron density map at 400 ns from the beginning of the discharge, for case
(a) (top), and case (b) (bottom).

substantially in agreement, even though some important differences are evident.
For the case of a discharge with a 90 A peak current in a 3 cm-long capillary, the
measured and computed electron density are in good agreement. For the case
of a discharge with a 245 A peak current in a 1 cm-long capillary, the measured
and computed electron density exhibit a time shift of approximately 100 ns. Our
hypothesis is that this discrepancy is due to an unrealistic choice of initial neutral
density distribution inside the capillary.

We also reproduced the experimental results of Ref. [106], where a 90 A-peak
current discharge in a 3 cm-long capillary was used to focus a high brightness electron
beam. We tracked the beam particles through the magnetic field obtained from our
simulation and computed the transverse spot size and emittance downstream the
capillary. Our results are in good agreement with the measurements. The main
difference is that from our computations we would expect an important focusing
effect at 200 ns, almost 100 ns earlier than what observed experimentally. Possible
explanations are related to the choice of the initial mass density distribution, or to a
not satisfying modeling of thermal conduction at low temperatures. We provided
also a full picture of the focusing capabilities of such a discharge, by plotting the
longitudinal average of the focusing gradient at each time step.

Lastly, we studied two APLs that differ by their diameter and have currents that
are scaled accordingly, in order to provide the same focusing strength. The focusing
capabilities of the two lenses have been tested by tracking a realistic high brightness
electron beam through the computed magnetic fields. For this beam, we found that
when the diameter is increased by 20 % the emittance growth is halved with respect
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to the narrower diameter case. Furthermore, between the two cases we did not notice
great differences in the electron density that is present on the plasma ejected at the
capillary open extremities. However, realistic initial mass density distributions (not
available at the time of writing) are necessary to perform accurate comparisons.
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Chapter 7

Conclusion

In this work, we discussed the modeling and simulation of active plasma lenses,
with special focus on the study of capillary discharges as focusing elements for high
brightness electron beams. Indeed, high brightness electron beams are of critical
importance for a number of technological as well as scientific applications, and also
for the development of novel acceleration techniques involving, but not limited to,
the excitation of wake fields inside plasmas.

In chapter 1 we discussed the part of the theory of charged particle beams that
we used in this thesis; we also outlined the main aspects of the interaction of charged
particle beams with plasmas.

In chapter 2, the working principle of APLs, i.e. the focusing of a charged
particle beam by means of an azimuthal magnetic field generated by a current
density propagating coaxially with the beam, has been explained in detail. The
interest in APLs is mainly motivated by the high focusing gradients attainable
(kT m−1), by their compactness (length in the cm range) as well as by the fact that
their focusing strength is symmetric in the transverse planes but scales better (like
1/γ) than the other commonly used symmetric devices (the solenoids, where it scales
like 1/γ2). We also described the main issues that involve the APLs. They are the
aberrations that are present when the magnetic field has a non linear dependence
on the transverse position; when the electron beam passing inside the lens generates
wake fields capable of spoiling its quality; and also when the scattering of the electron
beam with the plasma ions and heavy particles becomes important. We also outlined
the experimental progresses that have been obtained recently by different research
groups.

In chapter 3, we briefly described the facility where this work was carried out,
SPARC_LAB, where also experimental research related to the applications of capil-
lary discharges for beam and laser physics studies is undergoing. At SPARC_LAB,
experimental results have also been obtained, on the focusing of high brightness
beams by means of hydrogen filled capillary discharges.

In chapter 4, we outlined the main points that lead to the derivation of the
magneto-hydrodynamic model that we used in this work to simulate hydrogen
discharges in capillaries: resistive MHD equations are used, including thermal
conduction, with the assumption of local thermodynamic approximation has been
taken.
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In chapter 5, we described how we solved the MHD equations. The capillary
that we studied are cylindrical, thus we modeled them inside an axially symmetric
domain. We computed the plasma electrical resistivity and thermal conductivity
with the Chapman-Enskog method, that takes into account the partial ionization of
the plasma. We solved our system of equations with the open source code PLUTO.
In order to overcome the severe time step limitations related to explicit (or super
time-stepping) advancement of the parabolic terms related to thermal conduction
and magnetic field diffusion, we implemented alternating direction implicit methods
(Duglas-Rachford and Peaceman-Rachford schemes).

In chapter 6, we compared the results of our simulations with the electron density
measurements performed by Ref. [53]. The results are substantially in agreement
with each other. We speculate that the moderate differences that we found are related
to the choice of the initial neutral gas filling the capillary. Due to unavailability
of measurements of the initial neutral gas distribution, we assumed an initially
uniformly filled capillary. We explained that this choice may generate inaccuracies in
the description of the plasma dynamics. We also satisfyingly reproduced the results
of Ref. [106], where an APL was used for focusing a high brightness electron beam.
We did it by simulating the capillary discharge and then we tracked an electron
beam trough the computed magnetic field. We refer the little discrepancies that
have been found in the focused spot of the electron beam (the first minimum in the
current scan) to an inaccurate choice of initial neutral mass distribution or to a poor
modeling of thermal conduction at low temperatures.

Then, we studied the effect of diameter variation on the focusing properties of
the APLs. We did this by comparing two discharges in capillaries that differ only by
the capillary diameters and by the intensity of the imposed current (which was scaled
accordingly, in order to provide the same focusing strength in the two discharges).
We tracked a realistic high brightness beam trough the two APLs and we compared
the emittance growth. We noted that for the case studied, a slight (20 %) increase
in the capillary radius allows to reduce the emittance growth (approximately, by a
factor 1/2). However, during the tracking we neglected the effect of the wake fields
that the electron beam may generate inside the discharges. In order to take it into
account accurately, one needs to track the electron beam through the plasma with a
PIC code, or at least with a hybrid kinetic-fluid one. Since detailed measurements of
the hydrogen distribution prior to discharging are not available, we did not perform
such tracking.

Future developments concerning this thesis topic certainly include the simulation
of discharges starting from more realistic initial neutral gas density distributions.
Furthermore, we consider to study the effect of the amount of gas filling the capillary
(related to the backing pressure) at the beginning of the discharge. In addition
the use of other gases besides hydrogen is an interesting aspect to explore with
simulations (especially, due to the findings of Ref. [82]). Studying a gas different
from hydrogen may involve the modification of the model, from a one temperature
fluid, to a two temperatures plasma (where local thermodynamic equilibrium is
applied separately for electrons and ions, as done by Ref. [19]). This modification
is certainly feasible, even though it is not straight forward. Last but not least, the
exploration of different capillary geometries, such as tapered profiles, may open new
possibilities for the optimization of the discharges for beam focusing purposes. The
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same consideration clearly applies also to the shape of the electrodes.
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Appendix A

Plasma parameters

When a perturbation is introduced in a globally neutral plasma, electric charges
tend to organize themselves in order to collectively screen it. The Debye length λD,
provides the order of magnitude of the screening distance. It can be estimated by
studying the equilibrium potential of a point charge, placed in an initially neutral
plasma.

The expression for the Debye length in a fully ionized plasma, composed by
electrons and ions with charge zie is:

λD =
[
e2

ε0kB

(
ne
Te

+ z2
i ni
Ti

)]− 1
2

, (A.1)

where Te is the electron temperature, Ti is the ion temperature, ne is the electron
density and ni is the ion density. In particular, if we only include the contribution
of the electrons, the expression becomes:

λD =
√
ε0kBTe
e2ne

. (A.2)

When the electrons of a plasma are displaced by a small distance, they will
oscillate around the equilibrium position. These oscillations have a typical frequency,
that is called electron plasma frequency:

ωp =

√
e2n0
meε0

. (A.3)

The plasma skin depth is a parameter that is related to the plasma frequency (also
called electron inertial length). It represents the distance to which electromagnetic
waves (with frequency lower than the plasma frequency) can penetrate in a plasma,
and is defined by:

kp = ωp
c
. (A.4)
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