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Abstract In reconstructing the common evolutionary history of hosts and
parasites, the current method of choice is the phylogenetic tree reconciliation.
In this model, we are given a host tree H, a parasite tree P , and a function σ
mapping the leaves of P to the leaves of H and the goal is to find, under some
biologically motivated constraints, a reconciliation, that is a function from the
vertices of P to the vertices of H that respects σ and allows the identification
of biological events such as co-speciation, duplication and host switch.

The maximum co-divergence problem consists in finding the maximum
number of co-speciations in a reconciliation. This problem is NP-hard for ar-
bitrary phylogenetic trees and no approximation algorithm is known.

In this paper we consider the influence of tree topology on the maximum
co-divergence problem. In particular we focus on a particular tree structure,
namely caterpillar, and show that –in this case– the heuristics that are mostly
used in the literature provide solutions that can be arbitrarily far from the
optimal value. Then, we prove that finding the max co-divergence is equivalent
to compute the maximum length of a subsequence with certain properties of
a given permutation. This equivalence leads to two consequences: (i) it shows
that we can compute efficiently in polynomial time the optimal time-feasible
reconciliation and (ii) it can be used to understand how much the tree topology
influences the value of the maximum number of co-speciations.
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1 Introduction

Symbiotic interactions concern almost every organism in the biosphere and
have a great impact in essential fields of human life like health and agricul-
ture. Due to the fact that symbiotic relationships represent a close association
that may be continuous over time, the species involved may affect each other’s
evolution (this is known as co-evolution). Indeed, the closeness of the inter-
action can lead to co-speciation, that is the joint speciation of the involved
species. Studying co-speciation is important for many reasons: it can shed
light on the analysis of the rates of evolution between host and parasites, in
determining how old the association between the host and the parasite is, and
also in helping the design of better ways to combat pathogenic organisms (see
for example [12]).

The task of obtaining evidence of co-speciation, presenting exciting oppor-
tunities for the study of evolution, poses many theoretical and methodological
challenges. One of the principal ways to infer co-speciation is through co-
phylogeny which allows the reconstruction of the co-evolutionary history of
ecologically linked groups of organisms. Nowadays the most used method in
co-phylogeny studies is phylogenetic tree reconciliation [1,3–5,9,11,6,15]. In
this model, we are given a host tree H, a parasite tree P , and a function σ
mapping the leaves of P to the leaves of H (σ reflects the current knowledge
on which existing parasites inhabit which hosts). The goal is to find a function
γ from the vertices of the parasite tree to the vertices of the host tree, that
extends σ and associates to each internal vertex of the parasite tree one of
the following types of biological events: (a) co-speciation, indicating that the
parasite speciates in correspondece to a speciation of the host, (b) duplication,
indicating that the parasite speciates independently of the host and (c) host
switch, indicating that after a speciation of the parasite one of the new species
switches to a new host that is not related to the previous one (see for example
[3,4,9,11]).

A high number of co-speciations of the species involved in the symbiotic
relationship is usually considered as an indicator of possible co-evolution. Thus,
one notion of optimality –that was introduced by Page in [11] and is usually
referred as maximum co-divergence– requires to maximize the number of co-
speciations [11,16]. If timing information on the host tree is unknown (for real
datasets this information is rarely availble and reliable) this problem is NP-
hard [10,16]. The difficulty stems from the presence of host switches. Indeed, a
host switch introduces a temporal constraint in the order of the speciations in
the host tree. This because for a host switch to happen the donor host and the
receiver host must have co-existed in time. Hence, a sequence of host switches
may lead to an incompatible sequence of speciation events in the host tree. A
reconciliation for which there exists an order of the speciation events in the
host tree that respects the partial order induced by the topology of the tree as
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well as the constraints introduced by the host switches is called time feasible.
In the following we refer to the problem of finding a time feasible reconciliation
with maximum co-divergence as TF-MCD.

Considered the NP-hardness of TF-MCD, two natural relaxations are mostly
considered in the literature: (i) the host switches are forbidden in the solution,
and in this case the problem can be solved optimally using the LCA (the least
common ancestor) mapping, and (ii) the host switches are allowed but the
solutions are not required to be time feasible, in this case the problem can still
be solved in polynomial time using dynamic programming (DP) but may be
biologically infeasible [1,7,16].

For general instances, both of these relaxations provide reconciliations
whose value can be arbitrary far from the value of an optimal time feasible
solution. A natural question is whether for particular topologies of phyloge-
netic trees these algorithms can provide optimal time feasible solutions. This
could potentially be used to design efficient heuristics or approximation algo-
rithms that, by locally identifying these structures as subtrees, make optimal
local choices. In this context, we consider TF-MCD in the very special case
in which both the host and the parasite trees are caterpillars of the same size
and function σ is a bijection.

After recalling the basic notations and definitions (Section 2) and proving
some properties of time feasible reconciliations on caterpillars (Section 3), we
show that even in this case the two algorithms (LCA and DP based) provide
solutions that can be arbitrarily far from the optimal time feasible solution
(Section 4). Then, in Section 5, we prove that finding the max co-divergence
is equivalent to compute the maximum length of a subsequence with certain
properties of a given permutation. This equivalence leads to two consequences:
(i) it shows that we can compute efficiently in polynomial time the optimal
time-feasible reconciliation and (ii) it can be used to understand how much the
tree topology influences the value of the maximum number of co-speciations
(that, as already pointed out, is considered as an indication of co-evolution). In
Subsection 5.1. we show that, choosing the bijection σ between the n leaves of
the two caterpillars uniformly at random, the value of the maximum number of
co-speciations is Θ(

√
n) w.h.p., so implying that –when this number is close to

this value– no biological information can be deduced. In Section 6 we explore
some structural properties of the set of optimal solutions for our particular
instances. Many open problems arise from our work, and we list some of them
in Section 7.

2 Basic notations and definitions

In this section we formalize many concepts already informally introduced in
Section 1.

A rooted phylogenetic tree is a leaf-labelled tree that models the evolution
of a set of taxa from their most recent common ancestor (placed at the root).
The internal vertices of the tree correspond to the speciation events. A direc-
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tion is intrinsically assumed in the tree, that corresponds to the direction of
evolutionary time. Henceforth, by a phylogenetic tree T , we mean a rooted
tree with labelled leaves and where every vertex has in-degree 1 (except for
the root that has in-degree 0) and out-degree 2 (except for the leaves that
have out-degree 0). For such a tree T , the set of vertices is denoted by V (T ),
the set of arcs by A(T ), and the set of leaves by Leaves(T ).

For a vertex v ∈ V (T ):

– if v is different from the root, we call its parent as par(v);
– we denote by Tv the subtree of T rooted in v and the vertices in Tv are the

descendants of v;
– the set of ancestors of v, denoted by Anc(v), is the set of vertices in the

unique path from the root of T to v. We denote by Anc−(v) = Anc(v)\{v}.

Two vertices u and v are said to be incomparable if neither u ∈ Anc(v) nor
v ∈ Anc(u).

The reconciliation function
Let H,P be the phylogenetic trees for the host and parasite species respec-
tively. We define σ as a function from the leaves of P to the leaves of H that
represents the association between currently living parasite and host species.

Definition 1 [16] Given H, P and σ, a function γ : V (P ) → V (H) is a
reconciliation if:

1. for any p ∈ Leaves(P ), γ(p) = σ(p) (γ extends σ);
2. for any internal vertex p ∈ V (P ) \ Leaves(P ) with children p1 and p2:

(a) γ(pi) 6∈ Anc−(γ(p)) for i = 1, 2 (a child cannot be mapped to an an-
cestor of the father);

(b) LCA(γ(p), γ(p1)) = γ(p) or LCA(γ(p), γ(p2))) = γ(p) (one of the two
children is mapped to the subtree rooted at its father);

moreover, γ highlights a subset Ξγ of A(P ) and partitions the set V (P ) into
three sets Θγ , ∆γ and Σγ as follows:

3. given an arc (u, v) ∈ A(P ), (u, v) ∈ Ξγ ⇔ LCA(γ(u), γ(v)) 6∈ {γ(u), γ(v)}
(γ(u) and γ(v) are incomparable and arc (u, v) is a host switch);

4. for any p ∈ V (P ) \ Leaves(P ) with children p1 and p2:
(a) p ∈ Θγ ⇔ (p, p1) ∈ Ξγ or (p, p2) ∈ Ξγ (p is associated to a host switch

event);
(b) p ∈ ∆γ ⇔ LCA(γ(p1), γ(p2)) ∈ {γ(p1), γ(p2)} (the children are mapped

to comparable vertices and p is associated to a duplication event);
(c) p ∈ Σγ ⇔ LCA(γ(p1), γ(p2)) = γ(p) and γ(p1) and γ(p2) are incompa-

rable (p is associated to a co-speciation event).

Time-feasibility of a reconciliation
Time feasibility is an important biological constraint that we require on the
reconciliation. We recall here the definition of a time feasible reconciliation
presented in [5,15].
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Definition 2 Given a reconciliation γ, construct directed graph Gγ as follows:

– the vertex set of Gγ coincides with V (H),
– the arc set of Gγ contains the arcs of A(H) and in addition:

– for any host switch (u, v) ∈ Ξγ the following arcs:
(1a) (par(γ(u)), γ(v)); (1b) (par(γ(v)), γ(u));

– for all the couples of host switches (u, v), (u′, v′) ∈ Ξγ for which u ∈
Anc(u′) the following arcs:

(2a) (par(γ(u)), γ(u′)); (2b) (par(γ(u)), γ(v′));
(2c) (par(γ(v)), γ(u′)); (2d) (par(γ(v)), γ(v′)).

γ is time feasible if and only if Gγ does not contain any directed cycle.

Max co-divergence problem (TF-MCD)
Given any reconciliation γ, we define its value, val(γ), as the number of co-
speciations it contains, i.e. |Σγ |. In the literature, this value is usually called
as co-divergence. We focus on the following problem:

Definition 3 The max co-divergence problem (TF-MCD) is characterized by
the following instance and question.
Instance: I = (H,P, σ) containing two phylogenetic trees H,P and a function
σ : Leaves(P )→ Leaves(H);
Question: Find a time feasible reconciliation γ for which val(γ) is maximum.

Our setting
In this paper we consider the case when the host tree H and the parasite tree
P are both caterpillars on n leaves and σ is a bijection.

For the forthcoming definitions refer to Figure 1. We recall that a caterpillar
is a tree in which all the vertices are within distance 1 of a central path,
called spine. Every rooted phylogenetic tree that is also a caterpillar can be
uniquely identified by the sequence of the labels of its leaves ordered from
the furthest to the nearest to the root (for what concerns the only two leaves
at the same distance from the root, by convention, we put first the one with
lexicographic smaller label). Without loss of generality we will assume that P
will be identified by the sequence 0, 1, 2, . . . , n − 1 and H by l0, l1, . . . , ln−1,
with l0 < l1.

We will assume that the (internal) vertices on the spine of P are called
starting from the furthest from the root as x1, x2, . . . , xn−1. Similarly, we call
y1, . . ., yn−1 the vertices on the spine of H.

Note that x1 has two children that are the leaves 0 and 1 and y1 has two
children that are the leaves l0 and l1; for any other 2 ≤ i ≤ n− 1, the children
of vertex xi are leaf i and internal vertex xi−1, while the children of yi are leaf
li and internal vertex yi−1.

Since in our setting H and P have a fixed structure and σ is a bijec-
tion, an instance I = (H,P, σ) can be identified simply by sequence S =
σ−1(l0), . . . , σ−1(ln−1) of the leaves of the host, that is a permutation on
{0, 1, 2, . . . , n − 1}. So, in the rest of this paper, when we speak about S we
implicitly assume to have given the two caterpillars H and P , and bijection σ.
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0    1   2    3   4    5   6

x1
x2
x3
x4
x5
x6

P

!(0)=l3
!(1)=l2
!(2)=l5
!(3)=l0
!(4)=l4
!(5)=l1
!(6)=l6

l0 l1 l2

y1
y2
y3
y4
y5
y6

H

l3 l4 l5 l6
3      5     1     0     4      2     6

Fig. 1 An example of an instance where host and parasite trees are the caterpillars on 7
leaves together with the mapping σ. Note that S = 3, 5, 1, 0, 4, 2, 6.

3 Properties of time feasible reconciliations for caterpillars

Here we prove some properties of time feasible reconciliations whose instance
is a pair of caterpillars connected by a bijection σ. We will use these properties
in the following of the paper.

Theorem 1 Given an instance S, let γ be one of its time feasible reconcilia-
tions; it holds that γ(xi) 6∈ Anc−(γ(xj)) for any 1 ≤ i < j ≤ n− 1.

Proof Suppose on the contrary that the claim does not hold, so there exist
two indices i < j such that γ(xi) ∈ Anc−(γ(xj)) and j − i is minimum. This
assumption has some immediate consequences:

1. j − i > 1, indeed, in view of Definition 1.2(a) (a child cannot be mapped
to an ancestor of its parent), xj cannot be the parent of xi;

2. Anc−(γ(xi)) ⊂ Anc−(γ(xj));
3. γ(xi+1) 6∈ Anc−(γ(xj)) and γ(xi) 6∈ Anc−(γ(xj−1)) because j − i is mini-

mum.

From item 1. it follows that xi+1 6= xj and xj−1 6= xi (although xi+1 and
xj−1 are not necessarily distinct). We will prove that, in view of our assump-
tion, in γ there necessarily exist two host switches (xi+1, xi) and (xj , xj−1)
making γ time infeasible, so reaching a contradiction.

Presence of host switch (xi+1, xi). In view of Definition 1.2(a) we have
that γ(xi) 6∈ Anc−(γ(xi+1)). On the other hand, from items 2. and 3. we have
γ(xi+1) 6∈ Anc−(γ(xj)) ⊃ Anc−(γ(xi)).

It follows that xi+1 is mapped by γ neither in subtree of Hγ(xi), nor in
an ancestor of γ(xi). Hence, it is mapped in some leaf outside Hγ(xi) and
(xi+1, xi) is a host switch.

Presence of host switch (xj , xj−1). In view of item 3. γ(xi) 6∈ Anc−(γ(xj−1)).
Moreover, from Definition 1.2(a) and item 2. we have γ(xj−1) 6∈ Anc−(γ(xj)) ⊃
Anc−(γ(xi)).
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Thus γ(xj−1) is a leaf outside Hγ(xi). Since γ(xi) ∈ Anc−(γ(xj)), γ(xj) ∈
Hγ(xi), so xj and xj−1 are incomparable, implying that (xj , xj−1) is a host
switch.

Since xj ∈ Anc−(xi), in graph Gγ will be added the four arcs related
to the pair of host switches (xi+1, xi) and (xj , xj−1) with u = xj , v = xj−1

and u′ = xi+1, v
′ = xi, and in particular arc (2b), that is (par(γ(xj)), γ(xi)).

By hypothesis γ(xi) ∈ Anc−(γ(xj)), thus in Gγ there is already a path from
γ(xi) to par(γ(xj)); hence the addition of arc (par(γ(xj)), γ(xi)) creates a
cycle contradicting the hypothesis that γ is time feasible. ut

The next corollary follows straightforwardly from Theorem 1.

Corollary 1 Given an instance S, let γ be one of its time feasible reconcil-
iations. For any two internal vertices of P , xi and xj, with i < j for which
γ(xi), γ(xj) 6∈ Leaves(H), it holds that γ(xj) ∈ Anc(γ(xi)).

In other words, for any time feasible reconciliation γ, the order of the
mapping of the internal vertices is kept on the spine of the caterpillar H.

The next theorem shows a simple sufficient condition for γ to be time
feasible.

Theorem 2 Given an instance S, let γ be one of its reconciliations. Then
γ is time feasible if for every two distinct internal vertices a, b of P , with
b ∈ Anc−(a), both the following conditions hold:

(i) If γ(a) 6∈ Leaves(H) then γ(b) 6∈ Leaves(H)
(ii) γ(a) 6∈ Anc−(γ(b))

Proof Let γ be a reconciliation that satisfies the conditions (i) and (ii) and
suppose by contradiction that γ is not time feasible. By Definition 2, this im-
plies that Gγ has a cycle C. Note that Gγ is formed by the directed caterpillar
H and some additional arcs. By construction, in Gγ there are no arcs depart-
ing from a leaf of H, as every arc departs from par(w) for some w. Thus, no
leaf belongs to cycle C (where every vertex must have outdegree at least one).
Hence, calling yi the vertex in C with smallest index, there exists yj , with
i ≤ j such that arc e = (yi, yj) is in C. This arc should have necessarily been
added because of either : (1) a single host switch (u, v) or (2) a pair of two
host switches (u, v) and (u′, v′) such that u ∈ Anc−(u′) (moreover, it easily
follow that u ∈ Anc−(v′)∩Anc−(v)). We show now that (1) and (2) are both
not possible by a case by case analysis depicted in Figure 2:

(1a) If e is of type (1a) of Definition 2, then yi = par(γ(u)) and yj = γ(v);
hence, γ(v) ∈ Anc−(γ(u)) (see Figure 2(1a));

(1b) if e is of type (1b) of Definition 2, then yi = par(γ(v)) and yj = γ(u); it
follows that γ(u) ∈ Anc−(γ(v)) (see Figure 2(1b)).

In both cases we get a contradiction as (u, v) is a host switch and, by item (3)
of Definition 1, γ(u) and γ(v) must be incomparable in H.
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par(g(u))=yi

g(v))=yj

g(u)

par(g(v))=yi

g(u))=yj

g(v)

par(g(u))=yi

g(u’))=yj

g(u)

par(g(u))=yi

g(v’))=yj

g(u)

par(g(v))=yi

g(u’))=yj

g(v)

g(u))=yk

par(g(v))=yi

g(v’))=yj

g(v)

g(u))=yk

(1a) (1b) (2a)

(2b) (2c) (2d)

Fig. 2 The cases in the proof of Theorem 2.

(2a) If e is of type (2a) of Definition 2, then yi = par(γ(u)) and yj = γ(u′);
hence γ(u′) ∈ Anc−(γ(u)) (see Figure 2(2a));

(2b) if e is of type (2b) of Definition 2, then yi = par(γ(u)) and yj = γ(v′); so
γ(v′) ∈ Anc−(γ(u)) (see Figure 2(2b)).

Since we know that u ∈ Anc−(u′) ∩ Anc−(v′), in both cases we contradict
condition (ii) of the statement.

(2c) If e is of type (2c) of Definition 2, yi = par(γ(v)) and yj = γ(u′); from
condition (i) of the statement, γ(u) is an internal vertex yk in H; from
condition (ii), γ(u′) 6∈ Anc−(γ(u)), hence k > j (see Figure 2(2c));

(2d) if e is of type (2d) of Definition 2, yi = par(γ(v)) and yj = γ(v′); from
condition (i) γ(u) is an internal vertex yk in H; from condition (ii), γ(v) 6∈
Anc−(γ(u)), hence k > j (see Figure 2(2d)).

In both cases it follows that γ(u) ∈ Anc−(γ(v)), that is u and v are not
incomparable and hence (u, v) cannot be a host switch, a contradiction. ut

It is worth to note that Theorem 2 defines only sufficient conditions for a
reconciliation to be time feasible. Indeed, while condition (ii) of Theorem 2 is
necessary for the time feasibility of a reconciliation (see Theorem 1), condition
(i) is not, as shown by the example in Figure 3.
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0                  1               4              2              3

x1

x4

x3

x2

Fig. 3 An example of time feasible reconciliation γ showing that condition (i) of Theorem 2
is not necessary: here S = 0, 1, 4, 2, 3; a = x1 and b = x3, hence b ∈ Anc−(a), γ(a) 6∈
Leaves(H) but γ(b) ∈ Leaves(H).

For every reconciliation γ, here we prove that for every internal vertex xi
of P , at least one of the leaves in its subtree is mapped in a leaf of the subtree
rooted at γ(xi) in H.

Lemma 1 Given an instance S, let γ be one of its time feasible reconcilia-
tions; for every internal vertex xi there exists a j ∈ Leaves(Pxi

) for which
σ(j) ∈ Leaves(Hγ(xi)).

Proof The proof is by contradiction, so we assume that there exists ı̄ such
that all the leaves of P 0, 1, . . . , ı̄ are mapped outside Hγ(x̄ı). Then let l be the
smallest integer for which γ(xl) belongs to Hγ(x̄ı). (Observe that such an l is
at most ı̄ because at least γ(x̄ı) ∈ Hγ(x̄ı).)

If l = 1 by our assumption σ(0), σ(1) 6∈ Hγ(x̄ı) which contradicts Definition
1.2(b) (stating that at least one of the two children is mapped to the subtree
rooted at the father).

If l > 1 then xl−1 6∈ Hγ(x̄ı) as l is the smallest integer and again by our
assumption σ(l) 6∈ Hγ(x̄ı) which again contradicts Definition 1.2(b). ut

Note that the previous result holds not only for caterpillars but for any
two host and parasite trees.

We now prove that every reconciliation maps co-speciations and duplica-
tions to internal vertices of H.

Lemma 2 Given an instance S, let γ be one of its time feasible reconcilia-
tions. For every internal vertex xi, if γ(xi) ∈ Leaves(H) then xi ∈ Θγ .

Proof Let xi be such that γ(xi) = lk and suppose on the contrary that xi 6∈ Θγ .
Note that clearly xi 6∈ Σγ , hence xi ∈ ∆γ and then both its children are
mapped in lk. Note that i > 1 as the children of x1 cannot be both mapped in lk
(being σ a bijection). Then we should have γ(xi−1) = σ(i) = lk. Note that none
of the leaves of Pxi−1

is mapped in Leaves(Hγ(xi−1)) = Leaves(Hlk) = {lk}.
Then from Lemma 1 we reach a contradiction. ut
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4 LCA and DP based algorithms on caterpillar phylogenetic trees

In this section we show that, even in the special case when the two trees
are caterpillars, the LCA and DP based algorithms can produce solutions
arbitrarily far from the value of an optimal time feasible solution. To this
purpose, given an instance S we can define three values:

– val(γLCA), the number of co-speciations in the unique time feasible recon-
ciliation γLCA obtained by mapping each internal vertex of P to the least
common ancestor of the mapping of its children in H;

– val(γOPT ), the number of co-speciations in any time feasible reconciliation
γOPT that has the maximum number of co-speciations;

– val(γDP ), the number of co-speciations in a possibly time infeasible recon-
ciliation γDP that has the maximum number of co-speciations. Note that
this can be obtained by a dynamic programming algorithm (see for example
[1,5,16]).

For these three values the following holds:

Fact 3 For every arbitrary instance I = (H,P, σ):

val(γLCA) ≤ val(γOPT ) ≤ val(γDP ).

Fact 3 provides upper and lower bounds for the maximum number of co-
speciations in an optimal time feasible reconciliation. Even in our very sim-
plified setting, these lower and upper bounds can be arbitrarily far as the gap
may depend on the size of the trees as shown by the following examples.

Example 1. We define an instance S for which val(γLCA) is arbitrarily
far from val(γOPT ).

S is defined by the following bijection σ:

σ(i) =


ln−1 i = 0

l0 i = n− 1

li otherwise.

Sequence S is obtained from the identity permutation by exchanging the
values in the first and last position. As an example, see H1 in Figure 4 when
n = 7.

Observe that γLCA maps all xi, 1 ≤ i ≤ n − 1, in the root of H1. From
Definition 1, ΣγLCA

= {x1} and ∆γLCA
= {x2, . . . , xn−1}. Hence, val(γLCA) =

1.
Now, observe that γ defined as γ(xi) = yi for 1 ≤ i ≤ n− 1 is a recon-

ciliation with Σγ = {x2, . . . xn−2}, Θγ = {x1} and ∆γ = {xn−1}. Hence,
val(γ) = n − 3, and γ is a time feasible reconciliation in view of Theorem 2.
Then:

1 = val(γLCA) < val(γ) = n− 3 ≤ val(γOPT ).

Example 2. We define an instance S for which val(γDP ) is arbitrarily far
from val(γOPT ).
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To this purpose for n odd, let S = 0, n+1
2 , 1, n+1

2 + 1, 2, n+1
2 + 2, . . . , n −

1, n+1
2 − 1 be defined by the following bijection σ:

σ(i) =

{
ln+i

2
if i is odd

l i
2

otherwise

Sequence S is obtained by putting the first n+1
2 integers in the even posi-

tions and the remaining n−1
2 integers in the odd positions. As an example, see

H2 in Figure 4 when n = 7. For this example, γLCA is the following reconcili-
ation:

γLCA(xi) =

{
y2i if 1 ≤ i ≤ n−1

2

yn−1
2

otherwise

that produces ΣγLCA
= {x1, x2, . . . xn−1

2
} and ∆γLCA

= {xn+1
2
. . . , xn−1}.

Hence, val(γLCA) = n−1
2 . By applying Theorem 4 (stated in the next sec-

tion) we have val(γLCA) = val(γOPT ).
Consider now the following reconciliation γ:

γ(xi) =


y2i if 1 ≤ i < n−1

2

σ(n− 1) if i = n−1
2

y2i−n otherwise

that produces Σγ = {x1, . . . xn−1
2 −1, xn−1

2 +1, . . . xn−1}, Θγ = {xn−1
2
, xn+1

2
},

giving val(γ) = n− 3. Clearly, as the DP algorithm takes the maximum over
all reconciliations (time infeasible and feasible) we conclude:

n− 1

2
= val(γLCA) = val(γOPT ) < n− 3 = val(γ) ≤ val(γDP ).

6    1   2    3   4    5   0

y1
y2
y3
y4
y5
y6

H1

y1
y2
y3
y4
y5
y6

H2

0    4   1    5   2    6   3

Fig. 4 The host trees H1 and H2 illustrating the two examples where the LCA and the
DP based algorithms produce reconciliations whose values are far from the optimum.
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5 TF-MCD is polynomially solvable for identical caterpillars and
bijection σ

In this section we show that, although the DP and LCA based algorithms do
not provide good solutions in the case of caterpillars, it is however possible to
provide the optimal time feasible solution in polynomial time.

As already mentioned in the introduction, if the timing information on the
host tree (i.e. the order in which speciation events occurred in the host phy-
logeny) is not available, TF-MCD is NP-hard [10,16]. If timing information
on the host tree is known, the problem has been tackled in [14,7,1]. However,
the optimal solutions produced by the algorithm in [1] can still be time infea-
sible. This is because the constraint used in [1] to ensure the time feasibility
works only locally but two locally time consistent host switch events can be
globally inconsistent (see [7]). In [14,7] the authors propose an algorithm of
time complexity O(nm) (for n and m size of the host and parasite tree, re-
spectively) which globally guarantees the time feasibility, but their model is
slightly different from the one we used (for example the duplication events are
not defined the same way and host switch events are defined on edges).

Based on this, although the structure of caterpillar defines a total order of
the speciation events in the host tree, the polynomiality results in [14,7,1] do
not directly apply to our model. Here we show that such an algorithm can be
still found. Moreover it is efficient as it has time complexity O(n log n).

Definition 4 Given a sequence z = z1, . . . , zt, t ≥ 2 of integers, a subsequence
zi1 , zi2 . . . , zik , of z is nearly increasing if either (a) ik = 2, or (b) zi2 < . . . <
zik and zi1 < zi3 . We denote by lnis(z) the length of a longest nearly increasing
subsequence of z.

In other words, a subsequence is nearly increasing if either it is increasing
or it becomes increasing by exchanging the positions of the first two elements.
Observe that the possibility to re-order the first two elements of the sequence
mimics the fact that there is no fixed order in the unique pair of leaf siblings
of the caterpillar.

We now proceed to prove the main result of this section.

Lemma 3 Given an instance S, let γ be one of its time feasible reconcilia-
tions; then lnis(S) ≥ val(γ) + 1.

Proof Let it be val(γ) = r. If r = 0 or r = 1 then the claim is obvious because
lnis(S) ≥ 2. So, let it be r ≥ 2. We will show that the r co-speciations
of γ will define a nearly increasing subsequence of S of length r + 1. Let
Σγ = {xi1 , . . . , xir}, with i1 < i2 . . . < ir. From Lemma 2 for all 1 ≤ j ≤ r,
γ(xij ) = ykj . From Corollary 1 we have k1 < k2 . . . < kr. The sequence
k1, . . . , kr identifies a subsequence of length r of S, S′ = σ−1(lk1), . . . , σ−1(lkr )
in H.

We show now that S′ is an increasing subsequence, that is for all 1 ≤ j < r,
σ−1(lkj ) < σ−1(lkj+1

). To this purpose is enough to show that
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for 1 ≤ j < r it holds ij < σ−1(lkj+1) ≤ ij+1. (1)

Since xij+1
is associated to a co-speciation event, exactly one of its two

children must be mapped on lkj+1
. If the child mapped on lkj+1

is leaf ij+1

then we are done since ij < σ−1(lkj+1
) = ij+1. Otherwise the child mapped

on lkj+1 is internal vertex xij+1−1. Let t be the largest integer such that
xij+1−1, . . . , xij+1−t are all mapped in lkj+1 . This means that σ−1(lkj+1) =
ij+1 − t. Since ij+1 − t ≤ ij+1 we have that σ−1(lkj+1

) ≤ ij+1.
On the other hand, xij is a co-speciation, so it is mapped on the spine

of H and so it cannot be mapped in lkj+1
, and thus ij+1 − t > ij . Hence,

ij < ij+1 − t = σ−1(lkj+1).
It remains to show that we can extend S′ to the left to create a nearly

increasing subsequence of length r+1. We show that exists a lj with 0 ≤ j < k1

such that σ−1(lj) < σ−1(lk2
).

If i1 = 1 then, as x1 is a co-speciation, both its children 0, 1 are mapped
in the subtree Hγ(x1) and we have two cases:

(a) σ−1(lk1) = 0: then 1 will be mapped in some lj with j < k1 and we
extend S′ by adding as a first element 1 (note that 1 < σ−1(lk2);

(b) σ−1(lk1
) = 1: then 0 will be mapped in some lj with j < k1 and we

extend S′ by adding as a first element 0 obtaining an (r + 1) long increasing
subsequence.

Finally, suppose that i1 > 1, then there exists xi1−1 and Definition 1.4(c)
guarantees γ(xi1−1) ∈ Hγ(xi1 ). There are two cases:

(a) γ(xi1−1) = lk1
: then, as xi1 is a co-speciation, i1 is mapped in some lj

with j < k1. From inequality (1) i1 < σ−1(lk2
) and so we extend to the left S′

by adding i1;
(b) γ(xi1−1) 6= lk1

: then, by Lemma 1, there exists a leaf lj with j < k1

such that σ−1(lj) ≤ i1 − 1. We extend S′ to the left by adding σ−1(lj). Note
that the obtained sequence is increasing as σ−1(lj) < σ−1(lk1). ut

In the following lemma we show it is possible to construct a time feasible
reconciliation in correspondence of a nearly increasing subsequence. The main
idea is the following: if S′ is a nearly increasing subsequence of S, for any leaf
lij of H corresponding to the ij-th element of S′, except the first one, we map
in yij (that is the corresponding internal node of lij ) the internal node of P
whose leaf is labeled with the same label as lij (formally this node is xσ−1(lij )).

These internal nodes of P will be the co-speciations of γ. Every other internal
node of P , xk, that has not been mapped yet, is mapped together with xm
with m being the maximum value that is smaller than k and such that xm is
already mapped. In this way, we still have to map the first group of internal
nodes of P , x1, . . . , xt with t = σ−1(li2)−1. The mapping of these latter nodes
will be different according to whether S′ is increasing or not. However, in both
cases, the mapping will guarantee that the first node we mapped xσ−1(li2 ) will
be a co-speciation.

Lemma 4 Given an instance S, there exists a time feasible reconciliation γ
such that val(γ) ≥ lnis(S)− 1.
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Proof Let S′ be a nearly increasing subsequence of S. Preliminarily observe
that |S′| ≥ 2; if |S′| = 2 then the last element in S is either 0 or 1 (indeed,
if there were a value a 6= 0, 1, then either 0, 1, a or 1, 0, a would be a nearly
increasing subsequence of S of length 3); the reconciliation mapping all internal
vertices of P on the root of H is time feasible and val(γ) = 1 as Σγ = {x1}.

Let now |S′| > 2 and S′ = σ−1(li1), . . . , σ−1(lir+1
) be a nearly increasing

subsequence of S, of length r+1. We consider two cases: (a) σ−1(li1) < σ−1(li2)
or (b) σ−1(li2) < σ−1(li1) < σ−1(li3).

(a) σ−1(li1) < σ−1(li2) – refer to Fig. 5.a for an example.

We define the following reconciliation γ for all xi with 1 ≤ i ≤ n− 1:

γ(xi) =


σ(0) 1 ≤ i < σ−1(li1)

li1 σ−1(li1) ≤ i < σ−1(li2)

ylik σ−1(lik) ≤ i < σ−1(lik+1
), for all 2 ≤ k ≤ r

ylir+1
i ≥ σ−1(lir+1).

Observe that in view of the definition of γ, for every 2 ≤ k ≤ r + 1, xik
is mapped to an internal vertex γ(xik). Moreover, its child ik is mapped
in the subtree of Hγ(xik

) consisting of only one leaf while the other child,
xik−1

, is mapped in the other subtree.
Hence S′ defines r co-speciations being Σγ ⊇ {xi2 , xi3 , . . . xir+1

} and so
val(γ) ≥ r. It remains to show that γ is a time feasible reconciliation. To
see this, observe that both the conditions of Theorem 2 hold for γ.

(b) σ−1(li2) < σ−1(li1) < σ−1(li3) – refer to Fig. 5.b for an example.

We define the following reconciliation γ for all xi with 1 ≤ i ≤ n− 1:

γ(xi) =


σ(0) 1 ≤ i < σ−1(li2)

li2 σ−1(li2) ≤ i < σ−1(li1)

ylik σ−1(lik) ≤ i < σ−1(lik+1
), for all 2 ≤ k ≤ r

ylir+1
i ≥ σ−1(lir+1

).

Using arguments similar to the previous case, we observe that γ is time
feasible and S′ defines r co-speciations, Σγ ⊇ {xi2 , xi2 , . . . xir+1

}. Hence,
val(γ) ≥ r.

ut

Given an instance S, Lemma 3 holds for every time feasible γ and in par-
ticular for γOPT , so we get lnis(S) ≥ val(γOPT ) + 1; on the other hand,
val(γOPT ) ≥ val(γ), so from Lemma 4 it comes out val(γOPT )− 1 ≥ lnis(S).
Observe that lnis(S) can be computed similarly to the length of the longest in-
creasing subsequence of S. Indeed, the latter one can be computed inO(n log n)
time [13,2] where the main idea is to scan the sequence from left to right,
maintaining at any given time an efficient representation of all the possible
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8                  2               4              6              7             3              0             1              5
li1 li2 li3 li4

x1x2
x3

x4
x5

x6

x7
x8

8                  4               2              6              7             3              0             1              5
li1 li2 li3 li4

x1x2
x3

x4
x5

x6

x7
x8

Fig. 5 Two instances where: (a) S = 8, 2, 4, 6, 7, 3, 0, 1, 5 and hence σ−1(li2 ) < σ−1(li1 ).
(b) S = 8, 4, 2, 6, 7, 3, 0, 1, 5 and hence σ−1(li1 ) < σ−1(li2 ).

increasing subsequences that can be formed with the elements seen so far and
then applying binary search to extend them. It is easy to see that lnis(S)
can be computed in the same way by keeping also the sequences that can be
increasing by exchanging the first two positions. This adds a constant multi-
plicative factor to the comparisons made by the algorithm and then lnis(S)
can be computed in O(n log n). Hence, it follows:

Theorem 4 Given an instance S, it holds:

val(γOPT ) + 1 = lnis(S).

and it is possible to find an optimal time feasible reconciliation in polynomial
time.

5.1 Behavior of val(γOPT ) for randomly chosen instances

Given a sequence S, let lis(S) be the length of the longest increasing sub-
sequence; it is obvious that lis(S) ≤ lnis(S) ≤ lis(S) + 1. We exploit some
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known results for lis(S) to draw some inferences on lnis(S). To do this, we
call π(n) a permutation chosen uniformly at random on the first n positive
integers and define the expected value of the longest increasing subsequence
length over all permutations of order n as ln = 1

n!

∑
π(n) lis(π(n)). It is well

known that, for all n ≥ 1, ln ≥
√
n (see for e.g. [13]).

The following result shows that in fact the behavior of lis(π(n)) for a
typical permutation π(n) is asymptotycally the same as that of its average
value. More formally:

Theorem 5 (Hammersley’s convergence theorem [8]) The limit limn→∞
ln√
n

exists. Furthermore, for every permutation π(n) chosen uniformly at random,

and for every ε > 0, Pr{| lis(π(n))√
n
− Λ| > ε} → 0 as n → ∞, where Λ is a

constant.

It is clear that this result holds also for lnis(S). It follows that, for an
instance S, in order to deduce some possible biological correlation between
the two caterpillars, we should obtain a similarity that is greater than what is
expected by chance, in other words we should have lnis(S) = ω(

√
n).

6 Properties of reconciliations for caterpillars

If we do not restrict our attention to optimal reconciliations but consider the
whole set of time feasible reconciliations, then it is always possible to have
both a reconciliation without host switches (e.g. by the LCA mapping) and
a reconciliation with no duplications (e.g. by mapping every internal vertex
of the parasite to a leaf of the host). In other words, forbidding either host
switches or duplications let us loose the optimality keeping the time feasibil-
ity. This is true even when we consider only our special instances. Indeed,
Example 1 in Section 4 shows that an optimal time feasible solution without
host switches may not exist; the same holds for duplications e.g. for instance
S = 3, 1, 8, 2, 7, 5, 0, 4, 6: by checking exhaustively (e.g. using a tool as Euca-
lypt [5]) each of its optimal time feasible reconciliations, we realize it contains
at least one duplication. Nevertheless, if we drop the time feasibility require-
ment, we can eliminate duplications keeping the optimality. The next theorem
provides a transformation that, given an optimal time feasible reconciliation,
outputs a reconciliation without duplications with the same val but not nec-
essarily time feasible.

Theorem 6 Given an instance S, there exists always a (not necessarily time
feasible) reconciliation δ with val(δ) = val(γOPT ) and ∆δ = ∅.

Proof Let γOPT = γ be the optimal time feasible reconciliation defined in the
proof of Lemma 4. If γ has no duplications then we are done. Otherwise, from
Lemma 2, the duplications can be only in the internal vertices of H. Hence,
let yd1

, . . . , ydf for some 1 ≤ f ≤ lnis(S), the vertices in which at least one
duplication is mapped. By construction, for each dj , let xdj , xdj+1, . . . , xdj+tj ,
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with tj ≥ 1, be the vertices mapped by γ in ydj . Observe xdj ∈ Σγ and all
the others are in ∆γ ∪ Θγ . Let t′j be the largest integer for which xdj+t′j

is a duplication. For each j = 1, . . . , f we construct reconciliation δ from γ
by setting δ(xdj ) = . . . = δ(xdj+t′j−1) = ldj (see Figure 6). On all the other
vertices, δ coincides with γ. Notice that:

(i) xdj was a co-speciation in γ and is a host switch in δ;
(ii) xdj+1

, . . . , xdj+t′j−1 were either duplications or host switches in γ and are
all host switches in δ;

(iii) xdj+t′j was a duplication in γ and becomes a co-speciation in δ;
(iv) xdj+t′j+1, . . . , xdj+tj remain host switches when passing from γ to δ.

Clearly val(δ) = val(γ). As shown in Figure 6, δ is not necessarily time
feasible. ut

3 1 8 2 7													5														0													4														6

x2

x8
x6
x7

x3

x5

x4

x1

3 1 8 2 7													5														0													4														6

x2

x8

x6
x7

x3

x5

x4

x1

Fig. 6 S = 3, 1, 8, 2, 7, 5, 0, 4, 6; (left) optimal time feasible reconciliation γ as defined in
the proof of Lemma 4; (right) reconciliation δ as defined in the proof of Theorem 6; δ is
time infeasible because of the pair of host switches (u, v) = (x7, 7) and (u′, v′) = (x6, x5);
the addition of arc (par(γ(7)), γ(x5)) of kind (2d) creates a cycle in Gδ.
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7 Conclusions

In this paper we have considered the problem of finding time feasible recon-
ciliations with the maximum number of co-speciations in the very special case
in which both the host and the parasite trees are caterpillars of the same size
and function σ is a bijection.

Many open questions and possible research lines raise from this work:

– A natural step consists in relaxing our constraints. Namely, a first ques-
tion is to study the maximum co-divergence problem for two caterpillars
when σ is not a bijection anymore. This research could also lead to a tight
relation between the number of co-speciations and the maximum length
of a common subsequence with more general constraints than the nearly
increasing one.

Moreover, it is certainly interesting to investigate other tree topologies for
H and P such as for example complete binary trees. This approach could
lead to design approximation algorithms that locally solve TF-MCD on
substructures of the input phylogenies that can be reconciled optimally in
polynomial time.

– Recall that using the transformation described in Section 6 it is possible
to transform an optimal reconciliation to a reconciliation of the same value
that does not contain any duplication, but without necessarily ensure the
time feasibility. An interesting question may be to reach an optimal time
feasible reconciliation that has the minimum number of duplications. A first
idea is to procede in a greedy fashion, removing one by one the duplications
of an optimal time feasible reconciliation while keeping time feasibility, but
this simple procedure seems not to always lead to the optimum.
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