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Abstract

The Laplacian of a (weighted) Cayley graph on the Weyl group W(B,)
is a N x N matrix with N = 2"n! equal to the order of the group. We
show that for a class of (weighted) generating sets, its spectral gap (lowest
nontrivial eigenvalue), is actually equal to the spectral gap of a 2n x 2n
matrix associated to a 2n-dimensional permutation representation of W,,.
This result can be viewed as an extension to W (B,,) of an analogous result
valid for the symmetric group, known as “Aldous’ spectral gap conjecture”,
proven in 2010 by Caputo, Liggett and Richthammer.
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1. Introduction

Let G be a finite group with complex group algebra CG. If w =) geG Wy g
is an element of the group algebra such that all coefficients w, are real,
nonnegative and symmetric, i.e. wz,-1 = wy, we denote by Cay(G,w) the
weighted Cayley graph whose vertices are the elements of G and whose
(undirected) edges are the pairs {g, hg} with g,h € G. Each edge {g,hg}
carries a weight equal to wy,. The Laplacian of Cay (G, w) is a linear operator
acting on functions f: G — C as

[Acay@uf] (9) =D wi(flg) - f(hg)) .

heG

Since (weighted) Cayley graphs are regular, the Laplacian is strictly related
to the (weighted) adjacency matrix Acay(qw), namely

Acay(Gw) = (Z wg) In — Acay(Gw) »
geG

where N is the order of G and I is the N x N identity matrix. The lowest
eigenvalue of the Laplacian is trivially zero with a constant eigenvector. The
spectral gap of Cay(G,w) is defined as the second lowest eigenvalue of the
associated Laplacian and it is denoted by g (w). It is strictly positive if
and only if the support of w generates G, that is if Cay(G,w) is connected.
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Taking into account the symmetry of w, we can rewrite the Laplacian as

ACauy G,w) th IN L )] (11)
heG

where L is the left regular representation of G acting on functions on G as

[L(h)f1(9) = f(h""g). (1.2)

Formula (1.1) suggests the following generalization: Given a representation
R of G on the d-dimensional complex vector space V', and given w € CG,
following [1], we define the representation Laplacian Ag(w,R) as the linear
operator on V' given by

AG w R Z W, IV — )} wy, € C, (13)
heG

where Iy is the identity on V. To the pair (w, R) we also associate a spectral
gap, denoted by 1 (w, R), which is again the smallest nontrivial eigenvalue
of Ag(w,R) (see Section 2 for a precise definition). Thus the Laplacian of
the Cayley graph is a special case of the representation Laplacian, and we
can write

ACauy(G,w) = AG(w7 L) ¢G(w) = ¢G(w7 L) : (14)

In this paper we pursue the general idea of [1] that, although L contains all
irreducible representations of GG, in some interesting cases it is possible to
pinpoint those representations which are “responsible” for the spectral gap
of the Cayley graph. These representations can then replace L in (1.4), with
the advantage of having to deal with a possibly much smaller matrix than
ACay(G’,w)'

The most important result so far in this direction is the proof of the
so called Aldous’ spectral gap conjecture, concerning the symmetric group.
After several partial successes in a series of papers [2], [3], [4], [5], [6], [7],
[8], [9], [10] spanning about 25 years, a general proof was finally given in
[11]. While the original formulation was given in a probabilistic framework
[12], the statement can be translated as follows (see [9] for more details on
the equivalence): let &,, be the symmetric group on {1,...,n}, and let T,
be the set of all transpositions in &,,.

Theorem 1.1. (Aldous’ spectral gap conjecture, proven in [11]). Let w €

C6,, be given by
> by (i),
(17)€Tn
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where (ij) is the transposition which exchanges i and j, and b;j > 0. Then

¢G(w) = 1[}@(10, D?z) ) (1'5)

where DY is the n-dimensional defining representation of &,, associated
with the natural action of S, on the set {1,2,...,n}.

Thanks to this theorem, if w is supported on transpositions, in order to find
the spectral gap of the Laplacian of Cay(S,,, w), which is a n! x n! matrix,
all one has to do is to find the smallest nontrivial eigenvalue of a n x n
matrix.

The spectral gap of Cayley graphs on the symmetric or alternating
groups has been computed also in some particular cases where the gen-
erators are not transpositions. Examples are the initial reversal graph [13],
the (complete, extended) alternating group graph [14] and the substring re-
versal graph [15]. In [16] the authors prove that if w =} i, 7, where [qa]
is a conjugacy class of &,, then, for n large enough, the spectral gap of w
is associated with one of eight low-dimensional representations. A weaker
statement is also proven for the more general case where w is invariant under
conjugation.

In [1] we described a general strategy for proving results analogous to
Theorem 1.1 for arbitrary finite groups and we gave a slightly simpler proof
based on this point of view. In particular, in this strategy, it appears that
the representations “responsible” for the spectral gap are the nontrivial ir-
reducible representations of &,, which, when restricted to &,,_1, contain the
trivial representation. In the case of the symmetric group there is a unique
such representation, namely the one associated with the partition (n—1,1).
This representation, apart from a trivial summand, is equivalent to DY (see
(3.6)).

In this paper we apply the idea of [1] to the Weyl/Coxeter group W (By,)
associated with the B, (or C,) root system, also called the hyperoctahedral
group. For simplicity we let W,, = W(B,,). There are several equivalent
ways to define this group. One possible realizationis as the subgroup of
GL(n,C) consisting of all n x n matrices which have exactly one non-zero
entry in each row and each column, and this non-zero entry is either 1 or
—1. We have thus a natural embedding &,, — W, where the symmetric
group is the subgroup of all matrices with nonnegative entries. The group
W, can also be described as a group of signed permutations. This leads to
another embedding

Pn:Wn‘—>62n,



where P, is a 2n-dimensional faithful permutation representation described
in more details in Section 3.

We can now state the main result of this paper: for i € {1,...,n}, let
s{;y € Wy be the diagonal matrix!

sy = diag(1,...,1,-1,1,...,1), (1.6)
where the unique —1 occurs in the i** place. Then we have:

Theorem 1.2. Let w € CW,, be given by

w = Zai S{:} + Z b@'j (Z]) a; > 0, bij >0. (17)
i=1 (ig)€Tn
Then
Y, () = Yw, (w,Py). (1.8)

In our approach the representation P,, appears in (1.8) for the same reason
that the defining representation of the symmetric group appears in (1.5),
that is P, contains all irreducible representations of W, which, when re-
stricted to W, _1, contain the trivial representation.

There is another result which is worth mentioning since it has an inter-
esting overlap with Theorem 1.2. In [17] it is proved that if (G, S) is a finite
Coxeter system, then both the spectral gap and the Kazhdan constant are
determined by the defining representation. In our notation, this implies that
if G = W, and if w is the sum of a Coxeter generating set, that is

n—1

w=sqy+ Y (i,i+1) (1.9)

=1

then Yw, (w) = Yw, (w, Dy,), where D,, is the n-dimensional defining repre-
sentation of W,, which will be defined in Section 3. This result covers every
finite Coxeter group, but applies (essentially) to only one element of the
group algebra, namely w = ) g5, where S is a Coxeter generator for G.
The approach used in the proof of this theorem is very different from ours,

1n this introduction we are implicitly using the defining representation for describing
the elements of W,,. See (4.8). This particular realization of W,, will be denoted with W,
in Section 3.



and in Section 5 of [1] we explain why it is unlikely that it could be effec-
tive for dealing with more general elements w of the group algebra. Since
D,, is a subrepresentation of P,, as we show in Proposition 3.1, Kassabov’s
result is stronger than ours for w of the form (1.9). Nevertheless, (1.8) is
optimal for a general w of type (1.7). In Section 5 we show, in fact, that
the theorem is (in general) false if we try to improve it by replacing P,, with
a subrepresentation. We also discuss a possible generalization of Theorem
1.2.

2. The representation Laplacian and its spectral gap

If G is a finite group, rep(G) denotes the set of all finite-dimensional complex
representations of G, while Irr(G) is the set of all equivalence classes of
irreducible representations. By Maschke’s theorem, we have for each R €
rep(G),

R~ P u®RT)T, (2.1)
Telrr(G)

where p(R,T) is a nonnegative integer called the multiplicity of T in R. If
R is a representation of G on the complex vector space V, V&R stands for
the subspace of all invariant vectors

VER —ly e V:R(g)v=v, Vg € G}.
By definition we have
dim VER = (R, 1), (2.2)
where I is the one-dimensional trivial representation. An eigenvalue A of the

representation Laplacian Ag(w, R), defined in (1.3), will be called trivial if

its corresponding eigenspace consists entirely of invariant vectors v € V&R,

If w € CG, the support of w is defined as
suppw = {g € G : wy # 0}.

We introduce a canonical involution in the group algebra CG as

w:ngg—>w* ::Z@gg_l.

geG geG



An element w € CG is called symmetric if w = w*, and it is called positive
if wy > 0 for all g € G. We let

CG®) = {w € CG : w is symmetric}
R.G® = {w € CG : w is symmetric and positive}.

It is easy to prove [1, Sect. 2| that Ag(w,R) has real eigenvalues if w is
symmetric and real nonnegative eigenvalues if w is symmetric and positive.
If w is symmetric we can label the eigenvalues of Ag(w,R), with possible
repetitions according to their multiplicity, in nondecreasing order as

M(Ag(w,R)) < Xa(Ag(w,R)) < -+ < A(Ag(w, R)),

where s is the degree (or dimension) of the representation R. If w € R, G(®),
we define the spectral gap of the pair (w,R) as

Ya(w,R) := min{\ € spec Ag(w,R) : A is nontrivial}, (2.3)

with the convention that min ) = 4+-o0. If t = dim V&R then Ag(w, R) has
exactly t trivial eigenvalues, thus, thanks to (2.2), we have?

Ya(w,R) = Ay1 (Ag(w,R)) where t = (R, I). (2.4)
The spectral gap of w is defined by minimizing over representations
Y(w) = inf{ypg(w,R) : R € rep(G) } . (2.5)

From (2.1) it follows that

spec Ag(w,R) = U spec Ag(w, T) (2.6)
Telrr(G): (R, T)>0

which implies
Ya(w,R) = min{¢g(w, T) : T € Irr(G), p(R,T) > 0}. (2.7)
Consequently in (2.5) we can just consider irreducible representations, so

Ya(w) = min{ye(w,R) : R € Irr(G) } . (2.8)

2Unless R is a multiple of I in which case all eigenvalues are trivial, and thus the
spectral gap is equal to 4oc0.



Let L be the left regular representation of G defined in (1.2). Since

L= & T, (2.9)

Telrr(G)

where fr is the degree of T, we have u(L,I) = 1. Therefore g(w) =
Ya(w,L) = Aa(Ag(w,L)). This shows that definitions (2.5) and (2.8) for
the quantity g (w) actually agree with the definition given in Section 1 as
the second lowest eigenvalue of the Cayley graph Cay (G, w).

3. Groups &,,, W(B,,) and their representations

In this section we review some more or less well known facts about the
symmetric group, the Weyl (or Coxeter) group W, := W(B,) and their
representations. For more details we refer the reader to [18], [19], [20].
A partition of n is a nonincreasing sequence o = (a1, ag, . . ., a,) of positive
integers such that ). ; oy = n. The size of o is defined as |o| = Y ;| o.
We write abn if « is a partition of n. The irreducible representations of &,
are indexed (modulo equivalence) by the partitions of n. If aFn, we denote
by [a] the corresponding irreducible representation of &,,.

The group W, can be realized as the set of all pairs (n, 7) with n € {0, 1}"
and ™ € G,, with product

(77777) ’ (Caa) = (77+ ¢ 07'(’_1,71’0')

where the sum of two elements of {0,1}" is componentwise mod 2, and
elements of {0,1}" are identified with functions from {1,...,n} to {0,1}.
Observe that (n,7) = (n,1s,)-(0,7) = (0,7)-(nom,lg, ). Consider the two
subgroups

Ny :={(n,1e,) : n € {0,1}"} = (Z/2Z)"
Sp i ={0,7) :TES,} =G,.

N,, is a normal subgroup of W,, and W,, can be written as a semidirect
product

Wy = Np xSy, = (Z)22)" x &,

The irreducible representations of W,, are indexed by ordered pairs of par-
titions (v, B) such that |a| + |3] = n. We denote by [«, 5] the irreducible
representation corresponding to («, 3). We also denote by T¢ and T(a.5)



some specific (but arbitrary) choice of representations in the equivalence
classes [a] and [« 5] respectively. Given a pair of partitions («, ) with
|a] = k and |B| = n — k, the representation [«, 3] can be obtained [20, Sect.
2] as an induced representation as®

[, 8] 2 (Ux @ [o] @ [B]) Ta" (5,5, 1) (3.1)

where Uy, is the one-dimensional representation of N,, given by
Ui(n) = (—1)@dtetbtbontm=1}  p e f9 137 ke {0,...,n}.

In particular, when k = n (and thus 8 = (), we have that U, is the trivial
representation and [, @] is the pullback of the [«] representation of S, =
W, /Ny, that is

T (5, 1) = T(7) (n,7) € W, . (3.2)

The trivial representation of W), is given by I, = [(n), (}].

Branching rules. An irreducible representation of a finite group is in general
no longer irreducible when restricted to a subgroup, but it can be expressed
as a direct sum of irreducible representations of the subgroup. The branching
rule &, — &, is [18, Sect. 6.1.8]

(G2
ol =P B abn (3.3)
Bea~
where, if & = (g, ..., ), @™ is defined as the collection of all sequences of
the form
(aly ey OG-, 0 — 1)ai+1a L) 7a7“)

which are partitions of n — 1. The branching rule W,, — W,_1 is [18, Sect.
6.1.9]

[ Bl = B .8l @ e (3.4)

yEQ™ YEB™

3we use the same notation as [18], while in [20] the order of [a, 8] is reversed. It is
easy to verify that although the group product N, - (Sx X S,—x) is not a direct product,
nevertheless U ® [a] ® [8] is indeed a representation. The interested reader is referred
to [21, Sect. 8.2], where the construction of the irreducible representations of semidirect
products by abelian groups is explained.



The defining representation of &,. Let DY be the defining n-dimensional
representation of &, with matrix elements

[Dg(ﬁ)]ij = 0 x(j) TEGB,. (3.5)
This representation is not irreducible, but it can be decomposed as

D) =mn)®(n-1,1). (3.6)

The defining representation of W,. We let D,, be the n-dimensional defining
representation of W, given by

[Dn(n,m)]ij = (=1)" din(j) - (3.7)

This is a faithful representation, hence W), is isomorphic to the image of D,
which is the group W, of all n x n matrices which have exactly one non-zero
entry in each row and each column, and this non-zero entry is either 1 or
—1. The normal subgroup N, is mapped to the subgroup of the diagonal
matrices of W,,, while the restriction of D,, to 5, is just the n-dimensional
defining representation of &,,. As explained right before Proposition II.1
of [20] (see also [18, Proposition 5.5.7] for a more general statement) D, is
irreducible, in particular,

D, =[(n—1),(1)]. (3-8)

The representation f)?1 Since N, is normal in W,,, every representation R of
the quotient W,,/N,, = &, can be pulled back (or lifted) to a representation
R of W, letting

R(y,7) = R(r) (n,7) € Wi (3.9)

Furthermore R is irreducible if and only if R is. We define f)% as the
pullback of the defining n-dimensional representation of &,,. Its matrix
elements are then

(DY (0, m)]ij = din(j) - (3.10)
From (3.6) and (3.2) it follows that

D? = [(n),0] @ [(n —1,1),0]. (3.11)
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The permutation representation P,. Let X, = {-n,...,—1}U{l,...,n}
and consider the (left) group action of W,, on X,, given by

(n, m)k = (=1)mUED son (k) 7 (|k|) keX,. (3.12)

We define P,, as the 2n-dimensional permutation representation associated
with this action. P,, acts on the complex vector space

Vi = CX,, :={(%))iex, : v; € C}.

If (e;)iex,, is the canonical basis of V,, such that

Z Ti€5 = (:Efna" <y L—1,21, - - '7xﬂ)a

1€Xp
the representation matrices are determined by the equalities

P.(g)er = egk geW,, ke X,,

where gk is given by (3.12). Therefore the matrix elements of P,, are given
by
1 if m(|j]) = [i| and sgn(j) = sgn(é) (—1)"
0 otherwise.

[Pn(777 ﬂ-)]ij = {

This representation is also faithful, so W), is isomorphic to the image of P,
which consists of the set of all permutations 7 of X, such that n(—k) =
—m(k) for each k € X,, (the so called signed permutations).

In the following proposition we find the irreducible components of P,,.

Proposition 3.1. We have
P,=D,aD’=[n—1), )], &[(n-1,1),0. (3.13)

Proof. Let V,, = CX,, and (e;);cx, be as above, and let

e::ek+e,k €, =€k —€e_j k=1,...,n.

Let V,= (V) be the subspace of V;, spanned by (e;)7_; ((e;)7_,). In other
words VI is the subspace of the “even” vectors such that z_; = x;, while
V., is the subspace of the odd vectors.

Let g = (n,m) € W,. The action defined in (3.12) satisfies g(—k) =
—g(k). Thus we have, for k =1,...,n,

Pn(g)e;{ = €gk T €g(—k) = €gk T €—gk = el-gkl = e:(k) (3.14)

11



and

Po(g)ey = egk — eg(—k) = €gk — €—gr. = sgn(gk) e, .

_ (_1)mom®) o=
= (- E e

(3.15)

It follows that both V, and V. are invariant under P, (g), thus we have a
direct sum decomposition

P,=P' aP, Vo=V oV, Pr.=P

n‘vni'

By comparing (3.14), (3.15) with (3.10), (3.7), we obtain
P =D° P, =D,. (3.16)

The second equality in (3.13) follows from (3.8), (3.11). O

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2 following the strategy described in [1,
Sect. 3].

Since G is a finite group, we can always assume that the representa-
tions are unitary with respect to some (positive definite) inner product (-, -)
defined on the representation space V. This will ensure that, if w is a sym-
metric element of the group algebra, then Ag(w,R) is self-adjoint. For a
self-adjoint linear operator A we write A > 0 if (A-,-) is a positive semidef-
inite bilinear form. We will write Ag(w,R) > 0 if Ag(w,R) is positive
semidefinite for some (equivalently for each) unitary version of R. We can
thus define

I'(G) = {w e CG® : Ag(w,R) > 0, VR € rep(G)}. (4.1)

For future reference we summarize a few elementary properties of the set
I'(G) in the following proposition.

Proposition 4.1. We have:

(1) T(G) is a convex cone, i.e. if w,z € I'(G), then for any o, € R4,
aw + Bz € I'(G);

(2) Ag(w,®}_R;) > 0 if and only if Ag(w,R;) > 0 for everyi=1,...,n;

(3) I'(G) = {w € CG® : Ag(w, T) >0, VT € Irr(G)};

12



(4) T(G) = {w € CG®) : Ag(w,L) > 0}, where L is the left reqular repre-
sentation of G;

(5) R+G®) C T(G);

(6) If H is a subgroup of G, then I'(H) C I'(G).

Proof. (1) and (2) follow from the definitions. (3) follows from (2) and (2.1).
(4) follows from (2), (3) and (2.9). If R is a unitary representation on V,

and w € CG®), a straightforward computation (see Proposition 2.1 in [1])
yields

1
(Ac(w,Rjv,v) = 5 > wy [R(g)v —v||” vev.
geG

Thus Ag(w,R) > 0 if w is positive, which proves (5).
Finally, let w € I'(H). Then Ag(w,T) > 0 for every T € Irr(H). If
S € Irr(G), then we have a branching rule

sl @ kmT

Telrr(H)

where k(T) are suitable nonnegative integers. Since w is an element of the
group algebra of H, the same decomposition applies to the representation
Laplacian

Acgw,8)= @ kT)Ap(w,T).

Telrr(H)

Therefore Ag(w,S) > 0 and (6) follows. O

In the following we regard W,,_; as the subgroup of W,, which fixes the last
coordinate, that is

W1 =2 {(n,7) € Wy :np, =0 and w(n) = n}.
The key point of the proof is the following “semirecursive” result:

Proposition 4.2. Let w € R+W,gs) and z € Ry r(f'_)l, be such that w —z €
I'(W,). Then

Yw, (w) > min{dw,_, (2), Yw, (w,Pn)}. (4.2)

13



Proof. Let Z,, be the set of all irreducible representations of W,, that, when
restricted to W,_1, contain the trivial representation. The branching rule
(3.4) implies that

I, = {Ina [(n -1, 1)7(2)]7 [(n - 1)7 (1)]} : (4'3)

Thanks to Proposition 3.1 and (2.7), and using the fact that ¢ (w,I) = 400,
we obtain

Yw, (w, Pn) = min{gw, (w, [(n —1,1),0)), Yw, (w, [(n — 1), (D))} .
Thus Proposition 4.2 follows from Proposition 3.2 in [1]. O

Let A,, be the subset of RJ’»WV(LS) considered in the hypothesis of Theorem
1.2

=l (i) €Tn

If we A, let us write w = wy + wr with

n

wy =Y a;sy) wr =Y bij(ij). (4.5)

=1 (ij)ETn

We observe that in the (7, 7) notation for the elements of W,, we have

1 ifj=i
Sy = (77{1'}, 1677,) where  (144); = 0ij = {0 ey (4.6)
It follows from (3.7) and (3.10) that
D (siy) = In (4.7)
) — s 13645 n
D, (s(;) = diag (( 1) J)FI . (4.8)
Thus we get
Aw, (wn, D) = 2diag(a;)i—; (4.10)
AVVn (U}T, ]391) = AWn (wTa Dn) . (411)

Strategy for proving Theorem 1.2.

Let us now assume that we find a map 9 : A, — A,_1 such that the
following holds for each w € A,:

14



(a) w— Y (w) € T(Wy,);
(b) Yw, (w, Ppn) < w,_, (I (w), Pp_1).

Then we can prove (1.8) by induction. Assume in fact that (1.8) holds for
n =k —1, that is

Ywi_y (2) = Yw,_, (2, Pr—1) Vz € Ag_1. (4.12)

From Proposition 4.2 and (4.12) with z = ¥(w), and from properties (a),
(b) of the map ¥ it follows that

Y (w) > min{q’Z)kal(ﬁ(w)? Pr_1), Yw, (w, Pk)} = Yw, (v, Py),

which, combined with the reversed inequality which is a trivial consequence
of (2.5), implies ¢w, (w) = Yw, (w, Py). The induction step is completed.

In the next proposition we take care of the starting point of the induction,
n = 2.

Proposition 4.3. If w € Ag, then Yw,(w) = Yw, (w, P2).

Proof. We have
II‘I‘(WQ) = {127 [(17 1)7 mv [(1)7 (1)]7 W)ﬂ (2)]7 [Q)v (171)]}' (4'13)
Proposition II.1 of [20] states that if o, 8] € Irr(W,,), then
[8,0] = 3, & [, 4], (4.14)

where & denotes the inner tensor product of representations and J, =
[0, (n)] is the one-dimensional representation of W), given by

Jn(77777) _ (_1)card{i€{1,...,n}:m'=1} (7777-‘-) cw,. (4.15)
Using (3.2) and (4.6), we have

TO(siy) = In(ngy 1s,) T(ls,) = (-1) T*(1s,) = — 14
T ((i5)) = (0, (i5)) T((i5)) = T((i5)) ,

where d is the degree of [a]. This implies that, for every w € A,, of the form
(4.4), we have

Aw, (w, [0, a]) — Aw, (w, [a, 0]) = (2 4

n
1=

ai) Ig. (4.16)
1

15



Therefore the eigenvalues of Ay, (w, [0, a]) are shifted, with respect to the
eigenvalues of A, (w,[a,(]) by a nonnegative quantity. In particular, if
a # (n), then [, (] is nontrivial and it has a spectral gap which is not
greater than the spectral gap of [(), «]. For this reason, representations of
type [0, o] with o # (n) can be safely omitted in the minimization process
(2.8) which produces the spectral gap of w.

Going back to the case n = 2, we can take care of the representation
[0, (2)] with an explicit calculation. If w € Ay, it can be written as

w =1z 841} +Yyspy +2(12) z,y,z>0.
Since the Laplacian of the trivial representation is null, (4.16) becomes
Awy (w, [0, (2)]) =2(z +y) Iy .

On the other hand, using (3.7), we get

= BQ

AWZ(w,Dg) _ [Qx + z —Z ]

-z 2y+z
whose eigenvalues are

Tyt 2 (@ -y + )
It follows that

Uy (w,Da) = \(Ba) =z +y + 2 — ((x —y)* + 22"/
<4y <2z +y) = duy(w, [0,(2)]).

Thus, for the purpose of computing the spectral gap of w, representation
[0, (2)] can also be disregarded in the list (4.13). Consequently

wW2 (w) = min{wW2(wﬂ [(17 1)7 ®])7 sz (wv [(1)7 (1)])} = ¢W2(W7P2) .

The mapping Y. In order to conclude the proof of Theorem 1.2 we are going
to define a map ¥ : A,, — A,,—1 which satisfies properties (a) and (b) stated
above.

fw=>Y" 0 sg;y with a; > 0, we let £ be the largest index j such that
a; = min; a;, and we define

n

N(w) = Y aisgy. (4.17)
i=1, i#L
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Ifw =23 en, bij (ij) with bj; > 0, for each m =1,...,n we let

Iy = 3 |w+ wmw’“m] (ik). (4.18)
(ik)iTn Zj?'fm Wjm
i,k#m

Finally we define a mapping ¥(w) as follows: let w = wx + wr as in (4.5).
Then we let

9(w) = 9 (wy) + 9 (wr) (4.19)

where £ is defined as above.

Remark 4.4. We can assume, without loss of generality, that £ = n in (4.19).
In this way ¥(A,) C A,—1. Otherwise one can define W,,_; as the subgroup
of W, obtained by “dropping the " coordinate”.

Remark 4.5. The mapping 97, amazingly, appeared almost simultaneously
in the preprint versions of [10] and [11] and it was key point which, together
with a quite tricky inequality, called the “octopus inequality”, produced a
proof of Aldous’ spectral gap conjecture in [11].

Properties (a) and (b) of the mapping 9 will be proved in Lemmas 4.6 and
4.7 respectively, completing in this way the proof of Theorem 1.2.

Lemma 4.6. If w € A,,, then w — Y(w) € T'(W,).

Proof. We can write

w—9(w) =wy — I (wy) +wr — 9 (wr) .

Swn Sw

Since dwy is positive and symmetric, we have dwy € I'(W,), thanks to
Proposition 4.1(5).

On the other hand Theorem 2.3 of [11], the “octopus inequality” (see also
Section 4 of [1] for a slightly simpler proof in which the algebraic perspective
is more explicit), states that dJwr € I'(8,). By Proposition 4.1(6) we get
dwr € F(Wn)

Hence w — ¥(w) = dwn + dwr € I'(W,,) by Proposition 4.1(1) O

Lemma 4.7. If w € A,, then

an (wv Pn) < ¢Wn,1 (ﬁwa Pn—l) . (4.20)
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Proof. From Propgsition 3.1 we know that P, = ]52 @® D,,. Since D,, is
irreducible, while DY contains the trivial representation with multiplicity 1,
by (2.4), we obtain

Uw, (w, Py) = min{ew, (w, DY), ¢y, (w,D,)}

_ min{)\Q(AWn (w, D)), M (Aw, (w, Dn))} . (4.21)

Since supp(dw) € W,,_1, the last row and column of its Laplacian are zero,
thus we can write its representation Laplacian in block diagonal form as

Aw, (9w, DY) = Aw,_, (¥w,Df_;) ® [0]1x1 (4.22)
Aw, (9w, Dy) = Ay, (9w, Dy_1) @ [0]1x1 , (4.23)

where [z]1x; is the 1 x 1 matrix whose unique entry is equal to x. This
implies

Yw,,_, (Yw, Py_1)
= min{)\g (AWn,1 (19’11), f)g_l)), /\1 (AI/an1 (1911], Dn_1)> } (4'24)

— min{)\g (AWn ww,ﬁg)) o (A, (9w, Dn))} .

We write w = wy + wyp with wy and wy as in (4.5). For simplicity we also
define the following matrices:

M,, = A, (wp, DY) M? = Ay, (9T wr, DY)
F, = 2diag(a;)i—; F,? = 2diag(a,...,an-1,0).

We are assuming (remember Remark 4.4) the a, = min; a;. It follows from
(3.16), (4.9), (4.10), (4.11) that

Aw, (w,D%) = M, Ay, (Yw, DY) = M (4.25)

Ay, (w,Dy,) = M, + F, Ay, (Vw,D,) = MY + F? . (4.26)
By (4.23) and (4.26) we can write
M) + Fy = Bp1 @ [01x1 (4.27)
with B,,—1 = Aw, _, (Yw,D,_1). But then we have

Mg +F,=B,_1® [2an]1><1 .
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Therefore?
spec(M? + F,) = spec(B,_1) U{2a,}. (4.28)

Since 97wy is symmetric and positive, by Proposition 4.1(5) the matrix
M;? is positive semidefinite, which implies (see, for instance, [22, Corollary
4.3.3])

Me(M? + Fp) > Mo(Fy) k=1,...,n. (4.29)
Thus we get
2an = A1 (F,) < M (MY + F,).

But (4.28) says that 2a,, is actually an eigenvalue of MY + F,,, so it must be
the lowest one

2a, = M (MY + Fy). (4.30)
Therefore, by (4.27), we get
Xo(M? + F,) = M\ (Bp_1) = Ma(M? + E?). (4.31)

Using the explicit expression (3.10) for the matrix elements of the repre-
sentation DY it is straightforward to check that the matrix elements of
M,, — MY are given by

d; d;

[Ln]ij = [Mn - Mg] i d. (4'32)

where d; = —b;, fori =1,...,n—1 and d, = E?:_ll bin. Following [10] we
observe that L, is a rank-1 matrix, so by standard linear algebra results as
[22, Thm. 4.3.4], one obtains, in particular, that

Ao(M,) = Ao (MP + L) < A3(MY) (4.33)
A (M + Fo) = M(M] + Fpy + Ly) < Ao(M) + F). (4.34)

Thus, using (4.31), we get

A (M, + E,) < Ap(MP + FYY. (4.35)

4The spectrum is always considered as a multiset, so if, for instance, spec(A) =
{0,0,1,2}, then (spec(A)\{0}) U {1} ={0,1,1,2}.
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From (4.21), (4.24), (4.25), (4.26) we obtain

Y, (0, Pp) = min{ Ao (M) , M (M, + F,)}
Y, (w, Py_1) = min{\3(M?), \a(MY + F)}

hence (4.33) and (4.35) imply Lemma 4.7. O

5. A few concluding remarks and one open problem

Theorem 1.2, together with Proposition 3.1, states that if w € A, then the
representation “responsible” for the spectral gap is either D,, = [(n—1), (1)]
or DO that is [(n—1,1), 0], since the trivial summand in (3.13) plays no role.
In our proof we are led to consider these two representations because they
are the representations which, when restricted to W,,_; contain the trivial
one.

We show that this is not an artifact of our strategy: we actually need
to include both of them, that is the statement of Theorem 1.2 cannot be
strengthened by replacing P,, with either D,, or f)% Let

n
wN:Zais{,-} wr = Z bij (Zj) a; ZO, bij ZO.
i=1 (i7)ETn
Let a := min; a; and assume a > 0. Assume also that:

(i) there are enough strictly positive b;; so that supp(w) generates S,,.

This condition is equivalent to requiring that the graph on {1,...,n} with
edge set & = {{i,7} : bij > 0} is connected.
For € > 0 define

W = WN +EWT .
Thanks to (4.9), (4.10), (4.11) we can write

F, == Aw, (wy, D,) = 2 diag(a:)l,
M, := Aw, (wr, Dy) = Aw, (wr, DY).

Hence

AWn(w& Dn) =F,+eM,
AWn(we,f)g) =eM,.
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The lowest eigenvalue of M,, is trivially A;(M,,) = 0 with eigenvector equal to
any constant vector. It is easy to show that hypothesis (i) above implies that
0 is a simple eigenvalue, that is A\a(M,,) > 0 (see, for instance, Proposition
2.1 of [1]). By perturbation theory we obtain, using (2.4),

bw, (wsa Dn) =)\ (Fn + EMn) =2a+ 0(5)

Y, (we, DY) = eXo(M,) = O(e),

where O(g) is a generic quantity which goes to 0 as ¢ — 0". Hence, for
small ¢ the spectral gap of w, is determined by DY.

Consider now the opposite situation with
We = EWN + wWp .
We obtain
Yw, (we, Dy) = A1 (My,) + O(e) = O(e)
Y, (we, DY) = Ao (M;) > 0,
hence, in this case, for € small enough, the spectral gap of w, is determined
by D,,.

Lastly we want to discuss the possibility of proving our main theorem for
more general elements w of the group algebra than those considered in (1.7).
For A C {1,...,n}, let s4 be the element of W,, which in the defining
representation is given by the diagonal matrix

—1 ifieA
D, (sa) = diag(z;)i=; where z; = 5.1
(5.) = ding() 1y {+1 fea 6D
Let then Y,© (Y,) be the set of all subsets of {1,...,n} of even (odd)
cardinality, and let
w]j\[,: Z aasSA wp = Z bij (i) as >0, bj; >0.
AeY;E (ij)€Tn

Question 5.1. Does the equality Yw, (w) = Yw, (w, Py) also hold for ele-
ments w of the form w = w} +wy +wr?

We show that the answer is (in general) negative.

Let
d;t = Z as

AEY,E: Adi

and assume that:
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i) there are enough strictly positive b;; so that supp(w) generates Sp,;
J
(i) wy # 0;
(iii) a* := min;a;" > 0.

The first two conditions are necessary, since otherwise the support of w does
not generate W,,, the spectral is trivially zero, and the problem becomes
uninteresting.

For € > 0, let
We = wh +ewy +wr. (5.2)
Thanks to (4.14) and (4.15) we have
TP (wy) = T (w}) T7%(wr) = TP (wr)

which, since [(n), 0] is the trivial representation I,,, implies in particular that

Aw, (wly, [0, (m)]) = Aw, (wr, [8, (1)]) = 0. (5.3)
As for the “odd term” w)y, using (4.15) we obtain

TP (s4) = (-1) T*(s,) = — 14,

where d is the degree of the representation [«], thus
Aw, (wy, [0, a]) = Z(ZAey,; aA>Id. (5.4)
From (5.3) and (5.4) it follows that
Yw, (we, [0, (n)]) = e (Aw, (wy, [0, (n)])) = 2¢ ZAGY,; as = 0(e).

On the other hand we claim that iy, (we, P,,) can be bounded from below
by a strictly positive (independent of &) quantity. It is easy to see that
equalities (4.9) and (4.10) become

Aw, (wy,DJ) =0 (5.5)
Ay, (fwﬁ, D,) = 2diag(df)?:1 .

Let (remember (4.11))

FE = Ay, (w3, D,) = 2diag(al),

Mn = Awn (’IUT, Dn) = AWn (wT, D%) .
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In this way we have obtained

Aw, (we,Dy,) = M, + F,f +¢F, > Ff

AWn (wsa D%) = M,,
where the inequality is intended in the sense of quadratic forms. Thanks to
assumption (i) above, we know that A(M,,) is strictly positive, therefore

Yw, (we, Pp) = min{¢w, (we, Dy), Y, (we, ]591)}
> min{\1 (F,]), \o(M,,)} = min{2a™, \o(M,,)} > 0.

Thus, for £ small enough, we have ¢, (we, [0, (n)]) < Yw, (we, Pp), which
implies a negative answer to Question 5.1.

We observe that a crucial element for this “counterexample” is assump-
tion (iii) above. This leaves room for a conjecture.

Conjecture 5.2. If w = wy + wr, then Yw, (w) = Yw, (w, Py).

The most obvious approach for proving this result would be to generalize
the map ¥V of (4.17) as

N (wy) = Z assA, (5.7)
Ae€Y, Al

where /¢ is the largest index j such that dj_ = min; a; . Unfortunately this
does not work because, with this choice, Lemma 4.7 is false. A counterex-
ample can be found already for n = 3: if

3
W= s+ spag + (12) +(23) + (13)
i=1
then ;
19(w) = S8{1} + S{2} + 5 (12)

which produces ¢y, (w,P3) = 3 > 2 = ¢y, (J(w), P2). We emphasize that
this is a counterexample to Lemma 4.7, not to Conjecture 5.2, since we have
in fact ¥y, (w) = 3. Hence one should devise a different map 9 : A,, — A,—1,

keeping in mind that there is a delicate balance between the two properties
(a) and (b) of Section 4 which must be satisfied by 9.

Acknowledgements. In the first version of this paper we erroneously
claimed to have proven Conjecture 5.2 due to a mistake in the proof of (a
more general version of) Lemma 4.7 where (5.7) was used. We thank one of
the referees for finding the mistake in the proof, which prompted us to find
the above counterexample.
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